1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC 0xcafe4a11
60 #endif
61
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69 #define __printf(a, b) __attribute__((format(printf, a, b)))
70
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74 static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
102 [BPF_LIRC_MODE2] = "lirc_mode2",
103 [BPF_FLOW_DISSECTOR] = "flow_dissector",
104 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
105 [BPF_TRACE_FENTRY] = "trace_fentry",
106 [BPF_TRACE_FEXIT] = "trace_fexit",
107 [BPF_MODIFY_RETURN] = "modify_return",
108 [BPF_LSM_MAC] = "lsm_mac",
109 [BPF_LSM_CGROUP] = "lsm_cgroup",
110 [BPF_SK_LOOKUP] = "sk_lookup",
111 [BPF_TRACE_ITER] = "trace_iter",
112 [BPF_XDP_DEVMAP] = "xdp_devmap",
113 [BPF_XDP_CPUMAP] = "xdp_cpumap",
114 [BPF_XDP] = "xdp",
115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
117 [BPF_PERF_EVENT] = "perf_event",
118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
119 [BPF_STRUCT_OPS] = "struct_ops",
120 [BPF_NETFILTER] = "netfilter",
121 [BPF_TCX_INGRESS] = "tcx_ingress",
122 [BPF_TCX_EGRESS] = "tcx_egress",
123 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
124 };
125
126 static const char * const link_type_name[] = {
127 [BPF_LINK_TYPE_UNSPEC] = "unspec",
128 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
129 [BPF_LINK_TYPE_TRACING] = "tracing",
130 [BPF_LINK_TYPE_CGROUP] = "cgroup",
131 [BPF_LINK_TYPE_ITER] = "iter",
132 [BPF_LINK_TYPE_NETNS] = "netns",
133 [BPF_LINK_TYPE_XDP] = "xdp",
134 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
135 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
136 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
137 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
138 [BPF_LINK_TYPE_TCX] = "tcx",
139 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
140 };
141
142 static const char * const map_type_name[] = {
143 [BPF_MAP_TYPE_UNSPEC] = "unspec",
144 [BPF_MAP_TYPE_HASH] = "hash",
145 [BPF_MAP_TYPE_ARRAY] = "array",
146 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
147 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
148 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
149 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
150 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
151 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
152 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
153 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
154 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
155 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
156 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
157 [BPF_MAP_TYPE_DEVMAP] = "devmap",
158 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
159 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
160 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
161 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
162 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
163 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
164 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
165 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
166 [BPF_MAP_TYPE_QUEUE] = "queue",
167 [BPF_MAP_TYPE_STACK] = "stack",
168 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
169 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
170 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
171 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
172 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
173 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
174 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
175 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
176 };
177
178 static const char * const prog_type_name[] = {
179 [BPF_PROG_TYPE_UNSPEC] = "unspec",
180 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
181 [BPF_PROG_TYPE_KPROBE] = "kprobe",
182 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
183 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
184 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
185 [BPF_PROG_TYPE_XDP] = "xdp",
186 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
187 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
188 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
189 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
190 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
191 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
192 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
193 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
194 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
195 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
196 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
197 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
198 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
199 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
200 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
201 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
202 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
203 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
204 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
205 [BPF_PROG_TYPE_TRACING] = "tracing",
206 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
207 [BPF_PROG_TYPE_EXT] = "ext",
208 [BPF_PROG_TYPE_LSM] = "lsm",
209 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
210 [BPF_PROG_TYPE_SYSCALL] = "syscall",
211 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
212 };
213
__base_pr(enum libbpf_print_level level,const char * format,va_list args)214 static int __base_pr(enum libbpf_print_level level, const char *format,
215 va_list args)
216 {
217 if (level == LIBBPF_DEBUG)
218 return 0;
219
220 return vfprintf(stderr, format, args);
221 }
222
223 static libbpf_print_fn_t __libbpf_pr = __base_pr;
224
libbpf_set_print(libbpf_print_fn_t fn)225 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
226 {
227 libbpf_print_fn_t old_print_fn;
228
229 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
230
231 return old_print_fn;
232 }
233
234 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)235 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
236 {
237 va_list args;
238 int old_errno;
239 libbpf_print_fn_t print_fn;
240
241 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
242 if (!print_fn)
243 return;
244
245 old_errno = errno;
246
247 va_start(args, format);
248 __libbpf_pr(level, format, args);
249 va_end(args);
250
251 errno = old_errno;
252 }
253
pr_perm_msg(int err)254 static void pr_perm_msg(int err)
255 {
256 struct rlimit limit;
257 char buf[100];
258
259 if (err != -EPERM || geteuid() != 0)
260 return;
261
262 err = getrlimit(RLIMIT_MEMLOCK, &limit);
263 if (err)
264 return;
265
266 if (limit.rlim_cur == RLIM_INFINITY)
267 return;
268
269 if (limit.rlim_cur < 1024)
270 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
271 else if (limit.rlim_cur < 1024*1024)
272 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
273 else
274 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
275
276 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
277 buf);
278 }
279
280 #define STRERR_BUFSIZE 128
281
282 /* Copied from tools/perf/util/util.h */
283 #ifndef zfree
284 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
285 #endif
286
287 #ifndef zclose
288 # define zclose(fd) ({ \
289 int ___err = 0; \
290 if ((fd) >= 0) \
291 ___err = close((fd)); \
292 fd = -1; \
293 ___err; })
294 #endif
295
ptr_to_u64(const void * ptr)296 static inline __u64 ptr_to_u64(const void *ptr)
297 {
298 return (__u64) (unsigned long) ptr;
299 }
300
libbpf_set_strict_mode(enum libbpf_strict_mode mode)301 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
302 {
303 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
304 return 0;
305 }
306
libbpf_major_version(void)307 __u32 libbpf_major_version(void)
308 {
309 return LIBBPF_MAJOR_VERSION;
310 }
311
libbpf_minor_version(void)312 __u32 libbpf_minor_version(void)
313 {
314 return LIBBPF_MINOR_VERSION;
315 }
316
libbpf_version_string(void)317 const char *libbpf_version_string(void)
318 {
319 #define __S(X) #X
320 #define _S(X) __S(X)
321 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
322 #undef _S
323 #undef __S
324 }
325
326 enum reloc_type {
327 RELO_LD64,
328 RELO_CALL,
329 RELO_DATA,
330 RELO_EXTERN_LD64,
331 RELO_EXTERN_CALL,
332 RELO_SUBPROG_ADDR,
333 RELO_CORE,
334 };
335
336 struct reloc_desc {
337 enum reloc_type type;
338 int insn_idx;
339 union {
340 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
341 struct {
342 int map_idx;
343 int sym_off;
344 int ext_idx;
345 };
346 };
347 };
348
349 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
350 enum sec_def_flags {
351 SEC_NONE = 0,
352 /* expected_attach_type is optional, if kernel doesn't support that */
353 SEC_EXP_ATTACH_OPT = 1,
354 /* legacy, only used by libbpf_get_type_names() and
355 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
356 * This used to be associated with cgroup (and few other) BPF programs
357 * that were attachable through BPF_PROG_ATTACH command. Pretty
358 * meaningless nowadays, though.
359 */
360 SEC_ATTACHABLE = 2,
361 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
362 /* attachment target is specified through BTF ID in either kernel or
363 * other BPF program's BTF object
364 */
365 SEC_ATTACH_BTF = 4,
366 /* BPF program type allows sleeping/blocking in kernel */
367 SEC_SLEEPABLE = 8,
368 /* BPF program support non-linear XDP buffer */
369 SEC_XDP_FRAGS = 16,
370 /* Setup proper attach type for usdt probes. */
371 SEC_USDT = 32,
372 };
373
374 struct bpf_sec_def {
375 char *sec;
376 enum bpf_prog_type prog_type;
377 enum bpf_attach_type expected_attach_type;
378 long cookie;
379 int handler_id;
380
381 libbpf_prog_setup_fn_t prog_setup_fn;
382 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
383 libbpf_prog_attach_fn_t prog_attach_fn;
384 };
385
386 /*
387 * bpf_prog should be a better name but it has been used in
388 * linux/filter.h.
389 */
390 struct bpf_program {
391 char *name;
392 char *sec_name;
393 size_t sec_idx;
394 const struct bpf_sec_def *sec_def;
395 /* this program's instruction offset (in number of instructions)
396 * within its containing ELF section
397 */
398 size_t sec_insn_off;
399 /* number of original instructions in ELF section belonging to this
400 * program, not taking into account subprogram instructions possible
401 * appended later during relocation
402 */
403 size_t sec_insn_cnt;
404 /* Offset (in number of instructions) of the start of instruction
405 * belonging to this BPF program within its containing main BPF
406 * program. For the entry-point (main) BPF program, this is always
407 * zero. For a sub-program, this gets reset before each of main BPF
408 * programs are processed and relocated and is used to determined
409 * whether sub-program was already appended to the main program, and
410 * if yes, at which instruction offset.
411 */
412 size_t sub_insn_off;
413
414 /* instructions that belong to BPF program; insns[0] is located at
415 * sec_insn_off instruction within its ELF section in ELF file, so
416 * when mapping ELF file instruction index to the local instruction,
417 * one needs to subtract sec_insn_off; and vice versa.
418 */
419 struct bpf_insn *insns;
420 /* actual number of instruction in this BPF program's image; for
421 * entry-point BPF programs this includes the size of main program
422 * itself plus all the used sub-programs, appended at the end
423 */
424 size_t insns_cnt;
425
426 struct reloc_desc *reloc_desc;
427 int nr_reloc;
428
429 /* BPF verifier log settings */
430 char *log_buf;
431 size_t log_size;
432 __u32 log_level;
433
434 struct bpf_object *obj;
435
436 int fd;
437 bool autoload;
438 bool autoattach;
439 bool mark_btf_static;
440 enum bpf_prog_type type;
441 enum bpf_attach_type expected_attach_type;
442
443 int prog_ifindex;
444 __u32 attach_btf_obj_fd;
445 __u32 attach_btf_id;
446 __u32 attach_prog_fd;
447
448 void *func_info;
449 __u32 func_info_rec_size;
450 __u32 func_info_cnt;
451
452 void *line_info;
453 __u32 line_info_rec_size;
454 __u32 line_info_cnt;
455 __u32 prog_flags;
456 };
457
458 struct bpf_struct_ops {
459 const char *tname;
460 const struct btf_type *type;
461 struct bpf_program **progs;
462 __u32 *kern_func_off;
463 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
464 void *data;
465 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
466 * btf_vmlinux's format.
467 * struct bpf_struct_ops_tcp_congestion_ops {
468 * [... some other kernel fields ...]
469 * struct tcp_congestion_ops data;
470 * }
471 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
472 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
473 * from "data".
474 */
475 void *kern_vdata;
476 __u32 type_id;
477 };
478
479 #define DATA_SEC ".data"
480 #define BSS_SEC ".bss"
481 #define RODATA_SEC ".rodata"
482 #define KCONFIG_SEC ".kconfig"
483 #define KSYMS_SEC ".ksyms"
484 #define STRUCT_OPS_SEC ".struct_ops"
485 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
486
487 enum libbpf_map_type {
488 LIBBPF_MAP_UNSPEC,
489 LIBBPF_MAP_DATA,
490 LIBBPF_MAP_BSS,
491 LIBBPF_MAP_RODATA,
492 LIBBPF_MAP_KCONFIG,
493 };
494
495 struct bpf_map_def {
496 unsigned int type;
497 unsigned int key_size;
498 unsigned int value_size;
499 unsigned int max_entries;
500 unsigned int map_flags;
501 };
502
503 struct bpf_map {
504 struct bpf_object *obj;
505 char *name;
506 /* real_name is defined for special internal maps (.rodata*,
507 * .data*, .bss, .kconfig) and preserves their original ELF section
508 * name. This is important to be able to find corresponding BTF
509 * DATASEC information.
510 */
511 char *real_name;
512 int fd;
513 int sec_idx;
514 size_t sec_offset;
515 int map_ifindex;
516 int inner_map_fd;
517 struct bpf_map_def def;
518 __u32 numa_node;
519 __u32 btf_var_idx;
520 __u32 btf_key_type_id;
521 __u32 btf_value_type_id;
522 __u32 btf_vmlinux_value_type_id;
523 enum libbpf_map_type libbpf_type;
524 void *mmaped;
525 struct bpf_struct_ops *st_ops;
526 struct bpf_map *inner_map;
527 void **init_slots;
528 int init_slots_sz;
529 char *pin_path;
530 bool pinned;
531 bool reused;
532 bool autocreate;
533 __u64 map_extra;
534 };
535
536 enum extern_type {
537 EXT_UNKNOWN,
538 EXT_KCFG,
539 EXT_KSYM,
540 };
541
542 enum kcfg_type {
543 KCFG_UNKNOWN,
544 KCFG_CHAR,
545 KCFG_BOOL,
546 KCFG_INT,
547 KCFG_TRISTATE,
548 KCFG_CHAR_ARR,
549 };
550
551 struct extern_desc {
552 enum extern_type type;
553 int sym_idx;
554 int btf_id;
555 int sec_btf_id;
556 const char *name;
557 char *essent_name;
558 bool is_set;
559 bool is_weak;
560 union {
561 struct {
562 enum kcfg_type type;
563 int sz;
564 int align;
565 int data_off;
566 bool is_signed;
567 } kcfg;
568 struct {
569 unsigned long long addr;
570
571 /* target btf_id of the corresponding kernel var. */
572 int kernel_btf_obj_fd;
573 int kernel_btf_id;
574
575 /* local btf_id of the ksym extern's type. */
576 __u32 type_id;
577 /* BTF fd index to be patched in for insn->off, this is
578 * 0 for vmlinux BTF, index in obj->fd_array for module
579 * BTF
580 */
581 __s16 btf_fd_idx;
582 } ksym;
583 };
584 };
585
586 struct module_btf {
587 struct btf *btf;
588 char *name;
589 __u32 id;
590 int fd;
591 int fd_array_idx;
592 };
593
594 enum sec_type {
595 SEC_UNUSED = 0,
596 SEC_RELO,
597 SEC_BSS,
598 SEC_DATA,
599 SEC_RODATA,
600 };
601
602 struct elf_sec_desc {
603 enum sec_type sec_type;
604 Elf64_Shdr *shdr;
605 Elf_Data *data;
606 };
607
608 struct elf_state {
609 int fd;
610 const void *obj_buf;
611 size_t obj_buf_sz;
612 Elf *elf;
613 Elf64_Ehdr *ehdr;
614 Elf_Data *symbols;
615 Elf_Data *st_ops_data;
616 Elf_Data *st_ops_link_data;
617 size_t shstrndx; /* section index for section name strings */
618 size_t strtabidx;
619 struct elf_sec_desc *secs;
620 size_t sec_cnt;
621 int btf_maps_shndx;
622 __u32 btf_maps_sec_btf_id;
623 int text_shndx;
624 int symbols_shndx;
625 int st_ops_shndx;
626 int st_ops_link_shndx;
627 };
628
629 struct usdt_manager;
630
631 struct bpf_object {
632 char name[BPF_OBJ_NAME_LEN];
633 char license[64];
634 __u32 kern_version;
635
636 struct bpf_program *programs;
637 size_t nr_programs;
638 struct bpf_map *maps;
639 size_t nr_maps;
640 size_t maps_cap;
641
642 char *kconfig;
643 struct extern_desc *externs;
644 int nr_extern;
645 int kconfig_map_idx;
646
647 bool loaded;
648 bool has_subcalls;
649 bool has_rodata;
650
651 struct bpf_gen *gen_loader;
652
653 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
654 struct elf_state efile;
655
656 struct btf *btf;
657 struct btf_ext *btf_ext;
658
659 /* Parse and load BTF vmlinux if any of the programs in the object need
660 * it at load time.
661 */
662 struct btf *btf_vmlinux;
663 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
664 * override for vmlinux BTF.
665 */
666 char *btf_custom_path;
667 /* vmlinux BTF override for CO-RE relocations */
668 struct btf *btf_vmlinux_override;
669 /* Lazily initialized kernel module BTFs */
670 struct module_btf *btf_modules;
671 bool btf_modules_loaded;
672 size_t btf_module_cnt;
673 size_t btf_module_cap;
674
675 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
676 char *log_buf;
677 size_t log_size;
678 __u32 log_level;
679
680 int *fd_array;
681 size_t fd_array_cap;
682 size_t fd_array_cnt;
683
684 struct usdt_manager *usdt_man;
685
686 char path[];
687 };
688
689 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
690 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
691 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
692 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
693 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
694 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
695 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
696 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
697 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
698
bpf_program__unload(struct bpf_program * prog)699 void bpf_program__unload(struct bpf_program *prog)
700 {
701 if (!prog)
702 return;
703
704 zclose(prog->fd);
705
706 zfree(&prog->func_info);
707 zfree(&prog->line_info);
708 }
709
bpf_program__exit(struct bpf_program * prog)710 static void bpf_program__exit(struct bpf_program *prog)
711 {
712 if (!prog)
713 return;
714
715 bpf_program__unload(prog);
716 zfree(&prog->name);
717 zfree(&prog->sec_name);
718 zfree(&prog->insns);
719 zfree(&prog->reloc_desc);
720
721 prog->nr_reloc = 0;
722 prog->insns_cnt = 0;
723 prog->sec_idx = -1;
724 }
725
insn_is_subprog_call(const struct bpf_insn * insn)726 static bool insn_is_subprog_call(const struct bpf_insn *insn)
727 {
728 return BPF_CLASS(insn->code) == BPF_JMP &&
729 BPF_OP(insn->code) == BPF_CALL &&
730 BPF_SRC(insn->code) == BPF_K &&
731 insn->src_reg == BPF_PSEUDO_CALL &&
732 insn->dst_reg == 0 &&
733 insn->off == 0;
734 }
735
is_call_insn(const struct bpf_insn * insn)736 static bool is_call_insn(const struct bpf_insn *insn)
737 {
738 return insn->code == (BPF_JMP | BPF_CALL);
739 }
740
insn_is_pseudo_func(struct bpf_insn * insn)741 static bool insn_is_pseudo_func(struct bpf_insn *insn)
742 {
743 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
744 }
745
746 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)747 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
748 const char *name, size_t sec_idx, const char *sec_name,
749 size_t sec_off, void *insn_data, size_t insn_data_sz)
750 {
751 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
752 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
753 sec_name, name, sec_off, insn_data_sz);
754 return -EINVAL;
755 }
756
757 memset(prog, 0, sizeof(*prog));
758 prog->obj = obj;
759
760 prog->sec_idx = sec_idx;
761 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
762 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
763 /* insns_cnt can later be increased by appending used subprograms */
764 prog->insns_cnt = prog->sec_insn_cnt;
765
766 prog->type = BPF_PROG_TYPE_UNSPEC;
767 prog->fd = -1;
768
769 /* libbpf's convention for SEC("?abc...") is that it's just like
770 * SEC("abc...") but the corresponding bpf_program starts out with
771 * autoload set to false.
772 */
773 if (sec_name[0] == '?') {
774 prog->autoload = false;
775 /* from now on forget there was ? in section name */
776 sec_name++;
777 } else {
778 prog->autoload = true;
779 }
780
781 prog->autoattach = true;
782
783 /* inherit object's log_level */
784 prog->log_level = obj->log_level;
785
786 prog->sec_name = strdup(sec_name);
787 if (!prog->sec_name)
788 goto errout;
789
790 prog->name = strdup(name);
791 if (!prog->name)
792 goto errout;
793
794 prog->insns = malloc(insn_data_sz);
795 if (!prog->insns)
796 goto errout;
797 memcpy(prog->insns, insn_data, insn_data_sz);
798
799 return 0;
800 errout:
801 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
802 bpf_program__exit(prog);
803 return -ENOMEM;
804 }
805
806 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)807 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
808 const char *sec_name, int sec_idx)
809 {
810 Elf_Data *symbols = obj->efile.symbols;
811 struct bpf_program *prog, *progs;
812 void *data = sec_data->d_buf;
813 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
814 int nr_progs, err, i;
815 const char *name;
816 Elf64_Sym *sym;
817
818 progs = obj->programs;
819 nr_progs = obj->nr_programs;
820 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
821
822 for (i = 0; i < nr_syms; i++) {
823 sym = elf_sym_by_idx(obj, i);
824
825 if (sym->st_shndx != sec_idx)
826 continue;
827 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
828 continue;
829
830 prog_sz = sym->st_size;
831 sec_off = sym->st_value;
832
833 name = elf_sym_str(obj, sym->st_name);
834 if (!name) {
835 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
836 sec_name, sec_off);
837 return -LIBBPF_ERRNO__FORMAT;
838 }
839
840 if (sec_off + prog_sz > sec_sz) {
841 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
842 sec_name, sec_off);
843 return -LIBBPF_ERRNO__FORMAT;
844 }
845
846 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
847 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
848 return -ENOTSUP;
849 }
850
851 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
852 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
853
854 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
855 if (!progs) {
856 /*
857 * In this case the original obj->programs
858 * is still valid, so don't need special treat for
859 * bpf_close_object().
860 */
861 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
862 sec_name, name);
863 return -ENOMEM;
864 }
865 obj->programs = progs;
866
867 prog = &progs[nr_progs];
868
869 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
870 sec_off, data + sec_off, prog_sz);
871 if (err)
872 return err;
873
874 /* if function is a global/weak symbol, but has restricted
875 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
876 * as static to enable more permissive BPF verification mode
877 * with more outside context available to BPF verifier
878 */
879 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
880 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
881 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
882 prog->mark_btf_static = true;
883
884 nr_progs++;
885 obj->nr_programs = nr_progs;
886 }
887
888 return 0;
889 }
890
891 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)892 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
893 {
894 struct btf_member *m;
895 int i;
896
897 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
898 if (btf_member_bit_offset(t, i) == bit_offset)
899 return m;
900 }
901
902 return NULL;
903 }
904
905 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)906 find_member_by_name(const struct btf *btf, const struct btf_type *t,
907 const char *name)
908 {
909 struct btf_member *m;
910 int i;
911
912 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
913 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
914 return m;
915 }
916
917 return NULL;
918 }
919
920 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
921 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
922 const char *name, __u32 kind);
923
924 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)925 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
926 const struct btf_type **type, __u32 *type_id,
927 const struct btf_type **vtype, __u32 *vtype_id,
928 const struct btf_member **data_member)
929 {
930 const struct btf_type *kern_type, *kern_vtype;
931 const struct btf_member *kern_data_member;
932 __s32 kern_vtype_id, kern_type_id;
933 __u32 i;
934
935 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
936 if (kern_type_id < 0) {
937 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
938 tname);
939 return kern_type_id;
940 }
941 kern_type = btf__type_by_id(btf, kern_type_id);
942
943 /* Find the corresponding "map_value" type that will be used
944 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
945 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
946 * btf_vmlinux.
947 */
948 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
949 tname, BTF_KIND_STRUCT);
950 if (kern_vtype_id < 0) {
951 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
952 STRUCT_OPS_VALUE_PREFIX, tname);
953 return kern_vtype_id;
954 }
955 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
956
957 /* Find "struct tcp_congestion_ops" from
958 * struct bpf_struct_ops_tcp_congestion_ops {
959 * [ ... ]
960 * struct tcp_congestion_ops data;
961 * }
962 */
963 kern_data_member = btf_members(kern_vtype);
964 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
965 if (kern_data_member->type == kern_type_id)
966 break;
967 }
968 if (i == btf_vlen(kern_vtype)) {
969 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
970 tname, STRUCT_OPS_VALUE_PREFIX, tname);
971 return -EINVAL;
972 }
973
974 *type = kern_type;
975 *type_id = kern_type_id;
976 *vtype = kern_vtype;
977 *vtype_id = kern_vtype_id;
978 *data_member = kern_data_member;
979
980 return 0;
981 }
982
bpf_map__is_struct_ops(const struct bpf_map * map)983 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
984 {
985 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
986 }
987
988 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)989 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
990 const struct btf *btf,
991 const struct btf *kern_btf)
992 {
993 const struct btf_member *member, *kern_member, *kern_data_member;
994 const struct btf_type *type, *kern_type, *kern_vtype;
995 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
996 struct bpf_struct_ops *st_ops;
997 void *data, *kern_data;
998 const char *tname;
999 int err;
1000
1001 st_ops = map->st_ops;
1002 type = st_ops->type;
1003 tname = st_ops->tname;
1004 err = find_struct_ops_kern_types(kern_btf, tname,
1005 &kern_type, &kern_type_id,
1006 &kern_vtype, &kern_vtype_id,
1007 &kern_data_member);
1008 if (err)
1009 return err;
1010
1011 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1012 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1013
1014 map->def.value_size = kern_vtype->size;
1015 map->btf_vmlinux_value_type_id = kern_vtype_id;
1016
1017 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1018 if (!st_ops->kern_vdata)
1019 return -ENOMEM;
1020
1021 data = st_ops->data;
1022 kern_data_off = kern_data_member->offset / 8;
1023 kern_data = st_ops->kern_vdata + kern_data_off;
1024
1025 member = btf_members(type);
1026 for (i = 0; i < btf_vlen(type); i++, member++) {
1027 const struct btf_type *mtype, *kern_mtype;
1028 __u32 mtype_id, kern_mtype_id;
1029 void *mdata, *kern_mdata;
1030 __s64 msize, kern_msize;
1031 __u32 moff, kern_moff;
1032 __u32 kern_member_idx;
1033 const char *mname;
1034
1035 mname = btf__name_by_offset(btf, member->name_off);
1036 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1037 if (!kern_member) {
1038 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1039 map->name, mname);
1040 return -ENOTSUP;
1041 }
1042
1043 kern_member_idx = kern_member - btf_members(kern_type);
1044 if (btf_member_bitfield_size(type, i) ||
1045 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1046 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1047 map->name, mname);
1048 return -ENOTSUP;
1049 }
1050
1051 moff = member->offset / 8;
1052 kern_moff = kern_member->offset / 8;
1053
1054 mdata = data + moff;
1055 kern_mdata = kern_data + kern_moff;
1056
1057 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1058 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1059 &kern_mtype_id);
1060 if (BTF_INFO_KIND(mtype->info) !=
1061 BTF_INFO_KIND(kern_mtype->info)) {
1062 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1063 map->name, mname, BTF_INFO_KIND(mtype->info),
1064 BTF_INFO_KIND(kern_mtype->info));
1065 return -ENOTSUP;
1066 }
1067
1068 if (btf_is_ptr(mtype)) {
1069 struct bpf_program *prog;
1070
1071 prog = st_ops->progs[i];
1072 if (!prog)
1073 continue;
1074
1075 kern_mtype = skip_mods_and_typedefs(kern_btf,
1076 kern_mtype->type,
1077 &kern_mtype_id);
1078
1079 /* mtype->type must be a func_proto which was
1080 * guaranteed in bpf_object__collect_st_ops_relos(),
1081 * so only check kern_mtype for func_proto here.
1082 */
1083 if (!btf_is_func_proto(kern_mtype)) {
1084 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1085 map->name, mname);
1086 return -ENOTSUP;
1087 }
1088
1089 prog->attach_btf_id = kern_type_id;
1090 prog->expected_attach_type = kern_member_idx;
1091
1092 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1093
1094 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1095 map->name, mname, prog->name, moff,
1096 kern_moff);
1097
1098 continue;
1099 }
1100
1101 msize = btf__resolve_size(btf, mtype_id);
1102 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1103 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1104 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1105 map->name, mname, (ssize_t)msize,
1106 (ssize_t)kern_msize);
1107 return -ENOTSUP;
1108 }
1109
1110 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1111 map->name, mname, (unsigned int)msize,
1112 moff, kern_moff);
1113 memcpy(kern_mdata, mdata, msize);
1114 }
1115
1116 return 0;
1117 }
1118
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1119 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1120 {
1121 struct bpf_map *map;
1122 size_t i;
1123 int err;
1124
1125 for (i = 0; i < obj->nr_maps; i++) {
1126 map = &obj->maps[i];
1127
1128 if (!bpf_map__is_struct_ops(map))
1129 continue;
1130
1131 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1132 obj->btf_vmlinux);
1133 if (err)
1134 return err;
1135 }
1136
1137 return 0;
1138 }
1139
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data,__u32 map_flags)1140 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1141 int shndx, Elf_Data *data, __u32 map_flags)
1142 {
1143 const struct btf_type *type, *datasec;
1144 const struct btf_var_secinfo *vsi;
1145 struct bpf_struct_ops *st_ops;
1146 const char *tname, *var_name;
1147 __s32 type_id, datasec_id;
1148 const struct btf *btf;
1149 struct bpf_map *map;
1150 __u32 i;
1151
1152 if (shndx == -1)
1153 return 0;
1154
1155 btf = obj->btf;
1156 datasec_id = btf__find_by_name_kind(btf, sec_name,
1157 BTF_KIND_DATASEC);
1158 if (datasec_id < 0) {
1159 pr_warn("struct_ops init: DATASEC %s not found\n",
1160 sec_name);
1161 return -EINVAL;
1162 }
1163
1164 datasec = btf__type_by_id(btf, datasec_id);
1165 vsi = btf_var_secinfos(datasec);
1166 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1167 type = btf__type_by_id(obj->btf, vsi->type);
1168 var_name = btf__name_by_offset(obj->btf, type->name_off);
1169
1170 type_id = btf__resolve_type(obj->btf, vsi->type);
1171 if (type_id < 0) {
1172 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1173 vsi->type, sec_name);
1174 return -EINVAL;
1175 }
1176
1177 type = btf__type_by_id(obj->btf, type_id);
1178 tname = btf__name_by_offset(obj->btf, type->name_off);
1179 if (!tname[0]) {
1180 pr_warn("struct_ops init: anonymous type is not supported\n");
1181 return -ENOTSUP;
1182 }
1183 if (!btf_is_struct(type)) {
1184 pr_warn("struct_ops init: %s is not a struct\n", tname);
1185 return -EINVAL;
1186 }
1187
1188 map = bpf_object__add_map(obj);
1189 if (IS_ERR(map))
1190 return PTR_ERR(map);
1191
1192 map->sec_idx = shndx;
1193 map->sec_offset = vsi->offset;
1194 map->name = strdup(var_name);
1195 if (!map->name)
1196 return -ENOMEM;
1197
1198 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1199 map->def.key_size = sizeof(int);
1200 map->def.value_size = type->size;
1201 map->def.max_entries = 1;
1202 map->def.map_flags = map_flags;
1203
1204 map->st_ops = calloc(1, sizeof(*map->st_ops));
1205 if (!map->st_ops)
1206 return -ENOMEM;
1207 st_ops = map->st_ops;
1208 st_ops->data = malloc(type->size);
1209 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1210 st_ops->kern_func_off = malloc(btf_vlen(type) *
1211 sizeof(*st_ops->kern_func_off));
1212 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1213 return -ENOMEM;
1214
1215 if (vsi->offset + type->size > data->d_size) {
1216 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1217 var_name, sec_name);
1218 return -EINVAL;
1219 }
1220
1221 memcpy(st_ops->data,
1222 data->d_buf + vsi->offset,
1223 type->size);
1224 st_ops->tname = tname;
1225 st_ops->type = type;
1226 st_ops->type_id = type_id;
1227
1228 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1229 tname, type_id, var_name, vsi->offset);
1230 }
1231
1232 return 0;
1233 }
1234
bpf_object_init_struct_ops(struct bpf_object * obj)1235 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1236 {
1237 int err;
1238
1239 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1240 obj->efile.st_ops_data, 0);
1241 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1242 obj->efile.st_ops_link_shndx,
1243 obj->efile.st_ops_link_data,
1244 BPF_F_LINK);
1245 return err;
1246 }
1247
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1248 static struct bpf_object *bpf_object__new(const char *path,
1249 const void *obj_buf,
1250 size_t obj_buf_sz,
1251 const char *obj_name)
1252 {
1253 struct bpf_object *obj;
1254 char *end;
1255
1256 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1257 if (!obj) {
1258 pr_warn("alloc memory failed for %s\n", path);
1259 return ERR_PTR(-ENOMEM);
1260 }
1261
1262 strcpy(obj->path, path);
1263 if (obj_name) {
1264 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1265 } else {
1266 /* Using basename() GNU version which doesn't modify arg. */
1267 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1268 end = strchr(obj->name, '.');
1269 if (end)
1270 *end = 0;
1271 }
1272
1273 obj->efile.fd = -1;
1274 /*
1275 * Caller of this function should also call
1276 * bpf_object__elf_finish() after data collection to return
1277 * obj_buf to user. If not, we should duplicate the buffer to
1278 * avoid user freeing them before elf finish.
1279 */
1280 obj->efile.obj_buf = obj_buf;
1281 obj->efile.obj_buf_sz = obj_buf_sz;
1282 obj->efile.btf_maps_shndx = -1;
1283 obj->efile.st_ops_shndx = -1;
1284 obj->efile.st_ops_link_shndx = -1;
1285 obj->kconfig_map_idx = -1;
1286
1287 obj->kern_version = get_kernel_version();
1288 obj->loaded = false;
1289
1290 return obj;
1291 }
1292
bpf_object__elf_finish(struct bpf_object * obj)1293 static void bpf_object__elf_finish(struct bpf_object *obj)
1294 {
1295 if (!obj->efile.elf)
1296 return;
1297
1298 elf_end(obj->efile.elf);
1299 obj->efile.elf = NULL;
1300 obj->efile.symbols = NULL;
1301 obj->efile.st_ops_data = NULL;
1302 obj->efile.st_ops_link_data = NULL;
1303
1304 zfree(&obj->efile.secs);
1305 obj->efile.sec_cnt = 0;
1306 zclose(obj->efile.fd);
1307 obj->efile.obj_buf = NULL;
1308 obj->efile.obj_buf_sz = 0;
1309 }
1310
bpf_object__elf_init(struct bpf_object * obj)1311 static int bpf_object__elf_init(struct bpf_object *obj)
1312 {
1313 Elf64_Ehdr *ehdr;
1314 int err = 0;
1315 Elf *elf;
1316
1317 if (obj->efile.elf) {
1318 pr_warn("elf: init internal error\n");
1319 return -LIBBPF_ERRNO__LIBELF;
1320 }
1321
1322 if (obj->efile.obj_buf_sz > 0) {
1323 /* obj_buf should have been validated by bpf_object__open_mem(). */
1324 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1325 } else {
1326 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1327 if (obj->efile.fd < 0) {
1328 char errmsg[STRERR_BUFSIZE], *cp;
1329
1330 err = -errno;
1331 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1332 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1333 return err;
1334 }
1335
1336 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1337 }
1338
1339 if (!elf) {
1340 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1341 err = -LIBBPF_ERRNO__LIBELF;
1342 goto errout;
1343 }
1344
1345 obj->efile.elf = elf;
1346
1347 if (elf_kind(elf) != ELF_K_ELF) {
1348 err = -LIBBPF_ERRNO__FORMAT;
1349 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1350 goto errout;
1351 }
1352
1353 if (gelf_getclass(elf) != ELFCLASS64) {
1354 err = -LIBBPF_ERRNO__FORMAT;
1355 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1356 goto errout;
1357 }
1358
1359 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1360 if (!obj->efile.ehdr) {
1361 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1362 err = -LIBBPF_ERRNO__FORMAT;
1363 goto errout;
1364 }
1365
1366 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1367 pr_warn("elf: failed to get section names section index for %s: %s\n",
1368 obj->path, elf_errmsg(-1));
1369 err = -LIBBPF_ERRNO__FORMAT;
1370 goto errout;
1371 }
1372
1373 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1374 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1375 pr_warn("elf: failed to get section names strings from %s: %s\n",
1376 obj->path, elf_errmsg(-1));
1377 err = -LIBBPF_ERRNO__FORMAT;
1378 goto errout;
1379 }
1380
1381 /* Old LLVM set e_machine to EM_NONE */
1382 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1383 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1384 err = -LIBBPF_ERRNO__FORMAT;
1385 goto errout;
1386 }
1387
1388 return 0;
1389 errout:
1390 bpf_object__elf_finish(obj);
1391 return err;
1392 }
1393
bpf_object__check_endianness(struct bpf_object * obj)1394 static int bpf_object__check_endianness(struct bpf_object *obj)
1395 {
1396 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1397 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1398 return 0;
1399 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1400 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1401 return 0;
1402 #else
1403 # error "Unrecognized __BYTE_ORDER__"
1404 #endif
1405 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1406 return -LIBBPF_ERRNO__ENDIAN;
1407 }
1408
1409 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1410 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1411 {
1412 if (!data) {
1413 pr_warn("invalid license section in %s\n", obj->path);
1414 return -LIBBPF_ERRNO__FORMAT;
1415 }
1416 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1417 * go over allowed ELF data section buffer
1418 */
1419 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1420 pr_debug("license of %s is %s\n", obj->path, obj->license);
1421 return 0;
1422 }
1423
1424 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1425 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1426 {
1427 __u32 kver;
1428
1429 if (!data || size != sizeof(kver)) {
1430 pr_warn("invalid kver section in %s\n", obj->path);
1431 return -LIBBPF_ERRNO__FORMAT;
1432 }
1433 memcpy(&kver, data, sizeof(kver));
1434 obj->kern_version = kver;
1435 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1436 return 0;
1437 }
1438
bpf_map_type__is_map_in_map(enum bpf_map_type type)1439 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1440 {
1441 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1442 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1443 return true;
1444 return false;
1445 }
1446
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1447 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1448 {
1449 Elf_Data *data;
1450 Elf_Scn *scn;
1451
1452 if (!name)
1453 return -EINVAL;
1454
1455 scn = elf_sec_by_name(obj, name);
1456 data = elf_sec_data(obj, scn);
1457 if (data) {
1458 *size = data->d_size;
1459 return 0; /* found it */
1460 }
1461
1462 return -ENOENT;
1463 }
1464
find_elf_var_sym(const struct bpf_object * obj,const char * name)1465 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1466 {
1467 Elf_Data *symbols = obj->efile.symbols;
1468 const char *sname;
1469 size_t si;
1470
1471 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1472 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1473
1474 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1475 continue;
1476
1477 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1478 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1479 continue;
1480
1481 sname = elf_sym_str(obj, sym->st_name);
1482 if (!sname) {
1483 pr_warn("failed to get sym name string for var %s\n", name);
1484 return ERR_PTR(-EIO);
1485 }
1486 if (strcmp(name, sname) == 0)
1487 return sym;
1488 }
1489
1490 return ERR_PTR(-ENOENT);
1491 }
1492
bpf_object__add_map(struct bpf_object * obj)1493 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1494 {
1495 struct bpf_map *map;
1496 int err;
1497
1498 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1499 sizeof(*obj->maps), obj->nr_maps + 1);
1500 if (err)
1501 return ERR_PTR(err);
1502
1503 map = &obj->maps[obj->nr_maps++];
1504 map->obj = obj;
1505 map->fd = -1;
1506 map->inner_map_fd = -1;
1507 map->autocreate = true;
1508
1509 return map;
1510 }
1511
bpf_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1512 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1513 {
1514 const long page_sz = sysconf(_SC_PAGE_SIZE);
1515 size_t map_sz;
1516
1517 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1518 map_sz = roundup(map_sz, page_sz);
1519 return map_sz;
1520 }
1521
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1522 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1523 {
1524 void *mmaped;
1525
1526 if (!map->mmaped)
1527 return -EINVAL;
1528
1529 if (old_sz == new_sz)
1530 return 0;
1531
1532 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1533 if (mmaped == MAP_FAILED)
1534 return -errno;
1535
1536 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1537 munmap(map->mmaped, old_sz);
1538 map->mmaped = mmaped;
1539 return 0;
1540 }
1541
internal_map_name(struct bpf_object * obj,const char * real_name)1542 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1543 {
1544 char map_name[BPF_OBJ_NAME_LEN], *p;
1545 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1546
1547 /* This is one of the more confusing parts of libbpf for various
1548 * reasons, some of which are historical. The original idea for naming
1549 * internal names was to include as much of BPF object name prefix as
1550 * possible, so that it can be distinguished from similar internal
1551 * maps of a different BPF object.
1552 * As an example, let's say we have bpf_object named 'my_object_name'
1553 * and internal map corresponding to '.rodata' ELF section. The final
1554 * map name advertised to user and to the kernel will be
1555 * 'my_objec.rodata', taking first 8 characters of object name and
1556 * entire 7 characters of '.rodata'.
1557 * Somewhat confusingly, if internal map ELF section name is shorter
1558 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1559 * for the suffix, even though we only have 4 actual characters, and
1560 * resulting map will be called 'my_objec.bss', not even using all 15
1561 * characters allowed by the kernel. Oh well, at least the truncated
1562 * object name is somewhat consistent in this case. But if the map
1563 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1564 * (8 chars) and thus will be left with only first 7 characters of the
1565 * object name ('my_obje'). Happy guessing, user, that the final map
1566 * name will be "my_obje.kconfig".
1567 * Now, with libbpf starting to support arbitrarily named .rodata.*
1568 * and .data.* data sections, it's possible that ELF section name is
1569 * longer than allowed 15 chars, so we now need to be careful to take
1570 * only up to 15 first characters of ELF name, taking no BPF object
1571 * name characters at all. So '.rodata.abracadabra' will result in
1572 * '.rodata.abracad' kernel and user-visible name.
1573 * We need to keep this convoluted logic intact for .data, .bss and
1574 * .rodata maps, but for new custom .data.custom and .rodata.custom
1575 * maps we use their ELF names as is, not prepending bpf_object name
1576 * in front. We still need to truncate them to 15 characters for the
1577 * kernel. Full name can be recovered for such maps by using DATASEC
1578 * BTF type associated with such map's value type, though.
1579 */
1580 if (sfx_len >= BPF_OBJ_NAME_LEN)
1581 sfx_len = BPF_OBJ_NAME_LEN - 1;
1582
1583 /* if there are two or more dots in map name, it's a custom dot map */
1584 if (strchr(real_name + 1, '.') != NULL)
1585 pfx_len = 0;
1586 else
1587 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1588
1589 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1590 sfx_len, real_name);
1591
1592 /* sanitise map name to characters allowed by kernel */
1593 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1594 if (!isalnum(*p) && *p != '_' && *p != '.')
1595 *p = '_';
1596
1597 return strdup(map_name);
1598 }
1599
1600 static int
1601 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1602
1603 /* Internal BPF map is mmap()'able only if at least one of corresponding
1604 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1605 * variable and it's not marked as __hidden (which turns it into, effectively,
1606 * a STATIC variable).
1607 */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1608 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1609 {
1610 const struct btf_type *t, *vt;
1611 struct btf_var_secinfo *vsi;
1612 int i, n;
1613
1614 if (!map->btf_value_type_id)
1615 return false;
1616
1617 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1618 if (!btf_is_datasec(t))
1619 return false;
1620
1621 vsi = btf_var_secinfos(t);
1622 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1623 vt = btf__type_by_id(obj->btf, vsi->type);
1624 if (!btf_is_var(vt))
1625 continue;
1626
1627 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1628 return true;
1629 }
1630
1631 return false;
1632 }
1633
1634 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1635 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1636 const char *real_name, int sec_idx, void *data, size_t data_sz)
1637 {
1638 struct bpf_map_def *def;
1639 struct bpf_map *map;
1640 size_t mmap_sz;
1641 int err;
1642
1643 map = bpf_object__add_map(obj);
1644 if (IS_ERR(map))
1645 return PTR_ERR(map);
1646
1647 map->libbpf_type = type;
1648 map->sec_idx = sec_idx;
1649 map->sec_offset = 0;
1650 map->real_name = strdup(real_name);
1651 map->name = internal_map_name(obj, real_name);
1652 if (!map->real_name || !map->name) {
1653 zfree(&map->real_name);
1654 zfree(&map->name);
1655 return -ENOMEM;
1656 }
1657
1658 def = &map->def;
1659 def->type = BPF_MAP_TYPE_ARRAY;
1660 def->key_size = sizeof(int);
1661 def->value_size = data_sz;
1662 def->max_entries = 1;
1663 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1664 ? BPF_F_RDONLY_PROG : 0;
1665
1666 /* failures are fine because of maps like .rodata.str1.1 */
1667 (void) map_fill_btf_type_info(obj, map);
1668
1669 if (map_is_mmapable(obj, map))
1670 def->map_flags |= BPF_F_MMAPABLE;
1671
1672 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1673 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1674
1675 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1676 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1677 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1678 if (map->mmaped == MAP_FAILED) {
1679 err = -errno;
1680 map->mmaped = NULL;
1681 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1682 map->name, err);
1683 zfree(&map->real_name);
1684 zfree(&map->name);
1685 return err;
1686 }
1687
1688 if (data)
1689 memcpy(map->mmaped, data, data_sz);
1690
1691 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1692 return 0;
1693 }
1694
bpf_object__init_global_data_maps(struct bpf_object * obj)1695 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1696 {
1697 struct elf_sec_desc *sec_desc;
1698 const char *sec_name;
1699 int err = 0, sec_idx;
1700
1701 /*
1702 * Populate obj->maps with libbpf internal maps.
1703 */
1704 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1705 sec_desc = &obj->efile.secs[sec_idx];
1706
1707 /* Skip recognized sections with size 0. */
1708 if (!sec_desc->data || sec_desc->data->d_size == 0)
1709 continue;
1710
1711 switch (sec_desc->sec_type) {
1712 case SEC_DATA:
1713 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1714 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1715 sec_name, sec_idx,
1716 sec_desc->data->d_buf,
1717 sec_desc->data->d_size);
1718 break;
1719 case SEC_RODATA:
1720 obj->has_rodata = true;
1721 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1722 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1723 sec_name, sec_idx,
1724 sec_desc->data->d_buf,
1725 sec_desc->data->d_size);
1726 break;
1727 case SEC_BSS:
1728 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1729 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1730 sec_name, sec_idx,
1731 NULL,
1732 sec_desc->data->d_size);
1733 break;
1734 default:
1735 /* skip */
1736 break;
1737 }
1738 if (err)
1739 return err;
1740 }
1741 return 0;
1742 }
1743
1744
find_extern_by_name(const struct bpf_object * obj,const void * name)1745 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1746 const void *name)
1747 {
1748 int i;
1749
1750 for (i = 0; i < obj->nr_extern; i++) {
1751 if (strcmp(obj->externs[i].name, name) == 0)
1752 return &obj->externs[i];
1753 }
1754 return NULL;
1755 }
1756
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1757 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1758 char value)
1759 {
1760 switch (ext->kcfg.type) {
1761 case KCFG_BOOL:
1762 if (value == 'm') {
1763 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1764 ext->name, value);
1765 return -EINVAL;
1766 }
1767 *(bool *)ext_val = value == 'y' ? true : false;
1768 break;
1769 case KCFG_TRISTATE:
1770 if (value == 'y')
1771 *(enum libbpf_tristate *)ext_val = TRI_YES;
1772 else if (value == 'm')
1773 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1774 else /* value == 'n' */
1775 *(enum libbpf_tristate *)ext_val = TRI_NO;
1776 break;
1777 case KCFG_CHAR:
1778 *(char *)ext_val = value;
1779 break;
1780 case KCFG_UNKNOWN:
1781 case KCFG_INT:
1782 case KCFG_CHAR_ARR:
1783 default:
1784 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1785 ext->name, value);
1786 return -EINVAL;
1787 }
1788 ext->is_set = true;
1789 return 0;
1790 }
1791
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1792 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1793 const char *value)
1794 {
1795 size_t len;
1796
1797 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1798 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1799 ext->name, value);
1800 return -EINVAL;
1801 }
1802
1803 len = strlen(value);
1804 if (value[len - 1] != '"') {
1805 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1806 ext->name, value);
1807 return -EINVAL;
1808 }
1809
1810 /* strip quotes */
1811 len -= 2;
1812 if (len >= ext->kcfg.sz) {
1813 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1814 ext->name, value, len, ext->kcfg.sz - 1);
1815 len = ext->kcfg.sz - 1;
1816 }
1817 memcpy(ext_val, value + 1, len);
1818 ext_val[len] = '\0';
1819 ext->is_set = true;
1820 return 0;
1821 }
1822
parse_u64(const char * value,__u64 * res)1823 static int parse_u64(const char *value, __u64 *res)
1824 {
1825 char *value_end;
1826 int err;
1827
1828 errno = 0;
1829 *res = strtoull(value, &value_end, 0);
1830 if (errno) {
1831 err = -errno;
1832 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1833 return err;
1834 }
1835 if (*value_end) {
1836 pr_warn("failed to parse '%s' as integer completely\n", value);
1837 return -EINVAL;
1838 }
1839 return 0;
1840 }
1841
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1842 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1843 {
1844 int bit_sz = ext->kcfg.sz * 8;
1845
1846 if (ext->kcfg.sz == 8)
1847 return true;
1848
1849 /* Validate that value stored in u64 fits in integer of `ext->sz`
1850 * bytes size without any loss of information. If the target integer
1851 * is signed, we rely on the following limits of integer type of
1852 * Y bits and subsequent transformation:
1853 *
1854 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1855 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1856 * 0 <= X + 2^(Y-1) < 2^Y
1857 *
1858 * For unsigned target integer, check that all the (64 - Y) bits are
1859 * zero.
1860 */
1861 if (ext->kcfg.is_signed)
1862 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1863 else
1864 return (v >> bit_sz) == 0;
1865 }
1866
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1867 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1868 __u64 value)
1869 {
1870 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1871 ext->kcfg.type != KCFG_BOOL) {
1872 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1873 ext->name, (unsigned long long)value);
1874 return -EINVAL;
1875 }
1876 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1877 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1878 ext->name, (unsigned long long)value);
1879 return -EINVAL;
1880
1881 }
1882 if (!is_kcfg_value_in_range(ext, value)) {
1883 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1884 ext->name, (unsigned long long)value, ext->kcfg.sz);
1885 return -ERANGE;
1886 }
1887 switch (ext->kcfg.sz) {
1888 case 1:
1889 *(__u8 *)ext_val = value;
1890 break;
1891 case 2:
1892 *(__u16 *)ext_val = value;
1893 break;
1894 case 4:
1895 *(__u32 *)ext_val = value;
1896 break;
1897 case 8:
1898 *(__u64 *)ext_val = value;
1899 break;
1900 default:
1901 return -EINVAL;
1902 }
1903 ext->is_set = true;
1904 return 0;
1905 }
1906
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1907 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1908 char *buf, void *data)
1909 {
1910 struct extern_desc *ext;
1911 char *sep, *value;
1912 int len, err = 0;
1913 void *ext_val;
1914 __u64 num;
1915
1916 if (!str_has_pfx(buf, "CONFIG_"))
1917 return 0;
1918
1919 sep = strchr(buf, '=');
1920 if (!sep) {
1921 pr_warn("failed to parse '%s': no separator\n", buf);
1922 return -EINVAL;
1923 }
1924
1925 /* Trim ending '\n' */
1926 len = strlen(buf);
1927 if (buf[len - 1] == '\n')
1928 buf[len - 1] = '\0';
1929 /* Split on '=' and ensure that a value is present. */
1930 *sep = '\0';
1931 if (!sep[1]) {
1932 *sep = '=';
1933 pr_warn("failed to parse '%s': no value\n", buf);
1934 return -EINVAL;
1935 }
1936
1937 ext = find_extern_by_name(obj, buf);
1938 if (!ext || ext->is_set)
1939 return 0;
1940
1941 ext_val = data + ext->kcfg.data_off;
1942 value = sep + 1;
1943
1944 switch (*value) {
1945 case 'y': case 'n': case 'm':
1946 err = set_kcfg_value_tri(ext, ext_val, *value);
1947 break;
1948 case '"':
1949 err = set_kcfg_value_str(ext, ext_val, value);
1950 break;
1951 default:
1952 /* assume integer */
1953 err = parse_u64(value, &num);
1954 if (err) {
1955 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1956 return err;
1957 }
1958 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1959 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1960 return -EINVAL;
1961 }
1962 err = set_kcfg_value_num(ext, ext_val, num);
1963 break;
1964 }
1965 if (err)
1966 return err;
1967 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1968 return 0;
1969 }
1970
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1971 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1972 {
1973 char buf[PATH_MAX];
1974 struct utsname uts;
1975 int len, err = 0;
1976 gzFile file;
1977
1978 uname(&uts);
1979 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1980 if (len < 0)
1981 return -EINVAL;
1982 else if (len >= PATH_MAX)
1983 return -ENAMETOOLONG;
1984
1985 /* gzopen also accepts uncompressed files. */
1986 file = gzopen(buf, "re");
1987 if (!file)
1988 file = gzopen("/proc/config.gz", "re");
1989
1990 if (!file) {
1991 pr_warn("failed to open system Kconfig\n");
1992 return -ENOENT;
1993 }
1994
1995 while (gzgets(file, buf, sizeof(buf))) {
1996 err = bpf_object__process_kconfig_line(obj, buf, data);
1997 if (err) {
1998 pr_warn("error parsing system Kconfig line '%s': %d\n",
1999 buf, err);
2000 goto out;
2001 }
2002 }
2003
2004 out:
2005 gzclose(file);
2006 return err;
2007 }
2008
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2009 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2010 const char *config, void *data)
2011 {
2012 char buf[PATH_MAX];
2013 int err = 0;
2014 FILE *file;
2015
2016 file = fmemopen((void *)config, strlen(config), "r");
2017 if (!file) {
2018 err = -errno;
2019 pr_warn("failed to open in-memory Kconfig: %d\n", err);
2020 return err;
2021 }
2022
2023 while (fgets(buf, sizeof(buf), file)) {
2024 err = bpf_object__process_kconfig_line(obj, buf, data);
2025 if (err) {
2026 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2027 buf, err);
2028 break;
2029 }
2030 }
2031
2032 fclose(file);
2033 return err;
2034 }
2035
bpf_object__init_kconfig_map(struct bpf_object * obj)2036 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2037 {
2038 struct extern_desc *last_ext = NULL, *ext;
2039 size_t map_sz;
2040 int i, err;
2041
2042 for (i = 0; i < obj->nr_extern; i++) {
2043 ext = &obj->externs[i];
2044 if (ext->type == EXT_KCFG)
2045 last_ext = ext;
2046 }
2047
2048 if (!last_ext)
2049 return 0;
2050
2051 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2052 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2053 ".kconfig", obj->efile.symbols_shndx,
2054 NULL, map_sz);
2055 if (err)
2056 return err;
2057
2058 obj->kconfig_map_idx = obj->nr_maps - 1;
2059
2060 return 0;
2061 }
2062
2063 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2064 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2065 {
2066 const struct btf_type *t = btf__type_by_id(btf, id);
2067
2068 if (res_id)
2069 *res_id = id;
2070
2071 while (btf_is_mod(t) || btf_is_typedef(t)) {
2072 if (res_id)
2073 *res_id = t->type;
2074 t = btf__type_by_id(btf, t->type);
2075 }
2076
2077 return t;
2078 }
2079
2080 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2081 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2082 {
2083 const struct btf_type *t;
2084
2085 t = skip_mods_and_typedefs(btf, id, NULL);
2086 if (!btf_is_ptr(t))
2087 return NULL;
2088
2089 t = skip_mods_and_typedefs(btf, t->type, res_id);
2090
2091 return btf_is_func_proto(t) ? t : NULL;
2092 }
2093
__btf_kind_str(__u16 kind)2094 static const char *__btf_kind_str(__u16 kind)
2095 {
2096 switch (kind) {
2097 case BTF_KIND_UNKN: return "void";
2098 case BTF_KIND_INT: return "int";
2099 case BTF_KIND_PTR: return "ptr";
2100 case BTF_KIND_ARRAY: return "array";
2101 case BTF_KIND_STRUCT: return "struct";
2102 case BTF_KIND_UNION: return "union";
2103 case BTF_KIND_ENUM: return "enum";
2104 case BTF_KIND_FWD: return "fwd";
2105 case BTF_KIND_TYPEDEF: return "typedef";
2106 case BTF_KIND_VOLATILE: return "volatile";
2107 case BTF_KIND_CONST: return "const";
2108 case BTF_KIND_RESTRICT: return "restrict";
2109 case BTF_KIND_FUNC: return "func";
2110 case BTF_KIND_FUNC_PROTO: return "func_proto";
2111 case BTF_KIND_VAR: return "var";
2112 case BTF_KIND_DATASEC: return "datasec";
2113 case BTF_KIND_FLOAT: return "float";
2114 case BTF_KIND_DECL_TAG: return "decl_tag";
2115 case BTF_KIND_TYPE_TAG: return "type_tag";
2116 case BTF_KIND_ENUM64: return "enum64";
2117 default: return "unknown";
2118 }
2119 }
2120
btf_kind_str(const struct btf_type * t)2121 const char *btf_kind_str(const struct btf_type *t)
2122 {
2123 return __btf_kind_str(btf_kind(t));
2124 }
2125
2126 /*
2127 * Fetch integer attribute of BTF map definition. Such attributes are
2128 * represented using a pointer to an array, in which dimensionality of array
2129 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2130 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2131 * type definition, while using only sizeof(void *) space in ELF data section.
2132 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2133 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2134 const struct btf_member *m, __u32 *res)
2135 {
2136 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2137 const char *name = btf__name_by_offset(btf, m->name_off);
2138 const struct btf_array *arr_info;
2139 const struct btf_type *arr_t;
2140
2141 if (!btf_is_ptr(t)) {
2142 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2143 map_name, name, btf_kind_str(t));
2144 return false;
2145 }
2146
2147 arr_t = btf__type_by_id(btf, t->type);
2148 if (!arr_t) {
2149 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2150 map_name, name, t->type);
2151 return false;
2152 }
2153 if (!btf_is_array(arr_t)) {
2154 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2155 map_name, name, btf_kind_str(arr_t));
2156 return false;
2157 }
2158 arr_info = btf_array(arr_t);
2159 *res = arr_info->nelems;
2160 return true;
2161 }
2162
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2163 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2164 {
2165 int len;
2166
2167 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2168 if (len < 0)
2169 return -EINVAL;
2170 if (len >= buf_sz)
2171 return -ENAMETOOLONG;
2172
2173 return 0;
2174 }
2175
build_map_pin_path(struct bpf_map * map,const char * path)2176 static int build_map_pin_path(struct bpf_map *map, const char *path)
2177 {
2178 char buf[PATH_MAX];
2179 int err;
2180
2181 if (!path)
2182 path = "/sys/fs/bpf";
2183
2184 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2185 if (err)
2186 return err;
2187
2188 return bpf_map__set_pin_path(map, buf);
2189 }
2190
2191 /* should match definition in bpf_helpers.h */
2192 enum libbpf_pin_type {
2193 LIBBPF_PIN_NONE,
2194 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2195 LIBBPF_PIN_BY_NAME,
2196 };
2197
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2198 int parse_btf_map_def(const char *map_name, struct btf *btf,
2199 const struct btf_type *def_t, bool strict,
2200 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2201 {
2202 const struct btf_type *t;
2203 const struct btf_member *m;
2204 bool is_inner = inner_def == NULL;
2205 int vlen, i;
2206
2207 vlen = btf_vlen(def_t);
2208 m = btf_members(def_t);
2209 for (i = 0; i < vlen; i++, m++) {
2210 const char *name = btf__name_by_offset(btf, m->name_off);
2211
2212 if (!name) {
2213 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2214 return -EINVAL;
2215 }
2216 if (strcmp(name, "type") == 0) {
2217 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2218 return -EINVAL;
2219 map_def->parts |= MAP_DEF_MAP_TYPE;
2220 } else if (strcmp(name, "max_entries") == 0) {
2221 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2222 return -EINVAL;
2223 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2224 } else if (strcmp(name, "map_flags") == 0) {
2225 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2226 return -EINVAL;
2227 map_def->parts |= MAP_DEF_MAP_FLAGS;
2228 } else if (strcmp(name, "numa_node") == 0) {
2229 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2230 return -EINVAL;
2231 map_def->parts |= MAP_DEF_NUMA_NODE;
2232 } else if (strcmp(name, "key_size") == 0) {
2233 __u32 sz;
2234
2235 if (!get_map_field_int(map_name, btf, m, &sz))
2236 return -EINVAL;
2237 if (map_def->key_size && map_def->key_size != sz) {
2238 pr_warn("map '%s': conflicting key size %u != %u.\n",
2239 map_name, map_def->key_size, sz);
2240 return -EINVAL;
2241 }
2242 map_def->key_size = sz;
2243 map_def->parts |= MAP_DEF_KEY_SIZE;
2244 } else if (strcmp(name, "key") == 0) {
2245 __s64 sz;
2246
2247 t = btf__type_by_id(btf, m->type);
2248 if (!t) {
2249 pr_warn("map '%s': key type [%d] not found.\n",
2250 map_name, m->type);
2251 return -EINVAL;
2252 }
2253 if (!btf_is_ptr(t)) {
2254 pr_warn("map '%s': key spec is not PTR: %s.\n",
2255 map_name, btf_kind_str(t));
2256 return -EINVAL;
2257 }
2258 sz = btf__resolve_size(btf, t->type);
2259 if (sz < 0) {
2260 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2261 map_name, t->type, (ssize_t)sz);
2262 return sz;
2263 }
2264 if (map_def->key_size && map_def->key_size != sz) {
2265 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2266 map_name, map_def->key_size, (ssize_t)sz);
2267 return -EINVAL;
2268 }
2269 map_def->key_size = sz;
2270 map_def->key_type_id = t->type;
2271 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2272 } else if (strcmp(name, "value_size") == 0) {
2273 __u32 sz;
2274
2275 if (!get_map_field_int(map_name, btf, m, &sz))
2276 return -EINVAL;
2277 if (map_def->value_size && map_def->value_size != sz) {
2278 pr_warn("map '%s': conflicting value size %u != %u.\n",
2279 map_name, map_def->value_size, sz);
2280 return -EINVAL;
2281 }
2282 map_def->value_size = sz;
2283 map_def->parts |= MAP_DEF_VALUE_SIZE;
2284 } else if (strcmp(name, "value") == 0) {
2285 __s64 sz;
2286
2287 t = btf__type_by_id(btf, m->type);
2288 if (!t) {
2289 pr_warn("map '%s': value type [%d] not found.\n",
2290 map_name, m->type);
2291 return -EINVAL;
2292 }
2293 if (!btf_is_ptr(t)) {
2294 pr_warn("map '%s': value spec is not PTR: %s.\n",
2295 map_name, btf_kind_str(t));
2296 return -EINVAL;
2297 }
2298 sz = btf__resolve_size(btf, t->type);
2299 if (sz < 0) {
2300 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2301 map_name, t->type, (ssize_t)sz);
2302 return sz;
2303 }
2304 if (map_def->value_size && map_def->value_size != sz) {
2305 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2306 map_name, map_def->value_size, (ssize_t)sz);
2307 return -EINVAL;
2308 }
2309 map_def->value_size = sz;
2310 map_def->value_type_id = t->type;
2311 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2312 }
2313 else if (strcmp(name, "values") == 0) {
2314 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2315 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2316 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2317 char inner_map_name[128];
2318 int err;
2319
2320 if (is_inner) {
2321 pr_warn("map '%s': multi-level inner maps not supported.\n",
2322 map_name);
2323 return -ENOTSUP;
2324 }
2325 if (i != vlen - 1) {
2326 pr_warn("map '%s': '%s' member should be last.\n",
2327 map_name, name);
2328 return -EINVAL;
2329 }
2330 if (!is_map_in_map && !is_prog_array) {
2331 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2332 map_name);
2333 return -ENOTSUP;
2334 }
2335 if (map_def->value_size && map_def->value_size != 4) {
2336 pr_warn("map '%s': conflicting value size %u != 4.\n",
2337 map_name, map_def->value_size);
2338 return -EINVAL;
2339 }
2340 map_def->value_size = 4;
2341 t = btf__type_by_id(btf, m->type);
2342 if (!t) {
2343 pr_warn("map '%s': %s type [%d] not found.\n",
2344 map_name, desc, m->type);
2345 return -EINVAL;
2346 }
2347 if (!btf_is_array(t) || btf_array(t)->nelems) {
2348 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2349 map_name, desc);
2350 return -EINVAL;
2351 }
2352 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2353 if (!btf_is_ptr(t)) {
2354 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2355 map_name, desc, btf_kind_str(t));
2356 return -EINVAL;
2357 }
2358 t = skip_mods_and_typedefs(btf, t->type, NULL);
2359 if (is_prog_array) {
2360 if (!btf_is_func_proto(t)) {
2361 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2362 map_name, btf_kind_str(t));
2363 return -EINVAL;
2364 }
2365 continue;
2366 }
2367 if (!btf_is_struct(t)) {
2368 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2369 map_name, btf_kind_str(t));
2370 return -EINVAL;
2371 }
2372
2373 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2374 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2375 if (err)
2376 return err;
2377
2378 map_def->parts |= MAP_DEF_INNER_MAP;
2379 } else if (strcmp(name, "pinning") == 0) {
2380 __u32 val;
2381
2382 if (is_inner) {
2383 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2384 return -EINVAL;
2385 }
2386 if (!get_map_field_int(map_name, btf, m, &val))
2387 return -EINVAL;
2388 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2389 pr_warn("map '%s': invalid pinning value %u.\n",
2390 map_name, val);
2391 return -EINVAL;
2392 }
2393 map_def->pinning = val;
2394 map_def->parts |= MAP_DEF_PINNING;
2395 } else if (strcmp(name, "map_extra") == 0) {
2396 __u32 map_extra;
2397
2398 if (!get_map_field_int(map_name, btf, m, &map_extra))
2399 return -EINVAL;
2400 map_def->map_extra = map_extra;
2401 map_def->parts |= MAP_DEF_MAP_EXTRA;
2402 } else {
2403 if (strict) {
2404 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2405 return -ENOTSUP;
2406 }
2407 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2408 }
2409 }
2410
2411 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2412 pr_warn("map '%s': map type isn't specified.\n", map_name);
2413 return -EINVAL;
2414 }
2415
2416 return 0;
2417 }
2418
adjust_ringbuf_sz(size_t sz)2419 static size_t adjust_ringbuf_sz(size_t sz)
2420 {
2421 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2422 __u32 mul;
2423
2424 /* if user forgot to set any size, make sure they see error */
2425 if (sz == 0)
2426 return 0;
2427 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2428 * a power-of-2 multiple of kernel's page size. If user diligently
2429 * satisified these conditions, pass the size through.
2430 */
2431 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2432 return sz;
2433
2434 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2435 * user-set size to satisfy both user size request and kernel
2436 * requirements and substitute correct max_entries for map creation.
2437 */
2438 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2439 if (mul * page_sz > sz)
2440 return mul * page_sz;
2441 }
2442
2443 /* if it's impossible to satisfy the conditions (i.e., user size is
2444 * very close to UINT_MAX but is not a power-of-2 multiple of
2445 * page_size) then just return original size and let kernel reject it
2446 */
2447 return sz;
2448 }
2449
map_is_ringbuf(const struct bpf_map * map)2450 static bool map_is_ringbuf(const struct bpf_map *map)
2451 {
2452 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2453 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2454 }
2455
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2456 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2457 {
2458 map->def.type = def->map_type;
2459 map->def.key_size = def->key_size;
2460 map->def.value_size = def->value_size;
2461 map->def.max_entries = def->max_entries;
2462 map->def.map_flags = def->map_flags;
2463 map->map_extra = def->map_extra;
2464
2465 map->numa_node = def->numa_node;
2466 map->btf_key_type_id = def->key_type_id;
2467 map->btf_value_type_id = def->value_type_id;
2468
2469 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2470 if (map_is_ringbuf(map))
2471 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2472
2473 if (def->parts & MAP_DEF_MAP_TYPE)
2474 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2475
2476 if (def->parts & MAP_DEF_KEY_TYPE)
2477 pr_debug("map '%s': found key [%u], sz = %u.\n",
2478 map->name, def->key_type_id, def->key_size);
2479 else if (def->parts & MAP_DEF_KEY_SIZE)
2480 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2481
2482 if (def->parts & MAP_DEF_VALUE_TYPE)
2483 pr_debug("map '%s': found value [%u], sz = %u.\n",
2484 map->name, def->value_type_id, def->value_size);
2485 else if (def->parts & MAP_DEF_VALUE_SIZE)
2486 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2487
2488 if (def->parts & MAP_DEF_MAX_ENTRIES)
2489 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2490 if (def->parts & MAP_DEF_MAP_FLAGS)
2491 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2492 if (def->parts & MAP_DEF_MAP_EXTRA)
2493 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2494 (unsigned long long)def->map_extra);
2495 if (def->parts & MAP_DEF_PINNING)
2496 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2497 if (def->parts & MAP_DEF_NUMA_NODE)
2498 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2499
2500 if (def->parts & MAP_DEF_INNER_MAP)
2501 pr_debug("map '%s': found inner map definition.\n", map->name);
2502 }
2503
btf_var_linkage_str(__u32 linkage)2504 static const char *btf_var_linkage_str(__u32 linkage)
2505 {
2506 switch (linkage) {
2507 case BTF_VAR_STATIC: return "static";
2508 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2509 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2510 default: return "unknown";
2511 }
2512 }
2513
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2514 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2515 const struct btf_type *sec,
2516 int var_idx, int sec_idx,
2517 const Elf_Data *data, bool strict,
2518 const char *pin_root_path)
2519 {
2520 struct btf_map_def map_def = {}, inner_def = {};
2521 const struct btf_type *var, *def;
2522 const struct btf_var_secinfo *vi;
2523 const struct btf_var *var_extra;
2524 const char *map_name;
2525 struct bpf_map *map;
2526 int err;
2527
2528 vi = btf_var_secinfos(sec) + var_idx;
2529 var = btf__type_by_id(obj->btf, vi->type);
2530 var_extra = btf_var(var);
2531 map_name = btf__name_by_offset(obj->btf, var->name_off);
2532
2533 if (map_name == NULL || map_name[0] == '\0') {
2534 pr_warn("map #%d: empty name.\n", var_idx);
2535 return -EINVAL;
2536 }
2537 if ((__u64)vi->offset + vi->size > data->d_size) {
2538 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2539 return -EINVAL;
2540 }
2541 if (!btf_is_var(var)) {
2542 pr_warn("map '%s': unexpected var kind %s.\n",
2543 map_name, btf_kind_str(var));
2544 return -EINVAL;
2545 }
2546 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2547 pr_warn("map '%s': unsupported map linkage %s.\n",
2548 map_name, btf_var_linkage_str(var_extra->linkage));
2549 return -EOPNOTSUPP;
2550 }
2551
2552 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2553 if (!btf_is_struct(def)) {
2554 pr_warn("map '%s': unexpected def kind %s.\n",
2555 map_name, btf_kind_str(var));
2556 return -EINVAL;
2557 }
2558 if (def->size > vi->size) {
2559 pr_warn("map '%s': invalid def size.\n", map_name);
2560 return -EINVAL;
2561 }
2562
2563 map = bpf_object__add_map(obj);
2564 if (IS_ERR(map))
2565 return PTR_ERR(map);
2566 map->name = strdup(map_name);
2567 if (!map->name) {
2568 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2569 return -ENOMEM;
2570 }
2571 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2572 map->def.type = BPF_MAP_TYPE_UNSPEC;
2573 map->sec_idx = sec_idx;
2574 map->sec_offset = vi->offset;
2575 map->btf_var_idx = var_idx;
2576 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2577 map_name, map->sec_idx, map->sec_offset);
2578
2579 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2580 if (err)
2581 return err;
2582
2583 fill_map_from_def(map, &map_def);
2584
2585 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2586 err = build_map_pin_path(map, pin_root_path);
2587 if (err) {
2588 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2589 return err;
2590 }
2591 }
2592
2593 if (map_def.parts & MAP_DEF_INNER_MAP) {
2594 map->inner_map = calloc(1, sizeof(*map->inner_map));
2595 if (!map->inner_map)
2596 return -ENOMEM;
2597 map->inner_map->fd = -1;
2598 map->inner_map->sec_idx = sec_idx;
2599 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2600 if (!map->inner_map->name)
2601 return -ENOMEM;
2602 sprintf(map->inner_map->name, "%s.inner", map_name);
2603
2604 fill_map_from_def(map->inner_map, &inner_def);
2605 }
2606
2607 err = map_fill_btf_type_info(obj, map);
2608 if (err)
2609 return err;
2610
2611 return 0;
2612 }
2613
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2614 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2615 const char *pin_root_path)
2616 {
2617 const struct btf_type *sec = NULL;
2618 int nr_types, i, vlen, err;
2619 const struct btf_type *t;
2620 const char *name;
2621 Elf_Data *data;
2622 Elf_Scn *scn;
2623
2624 if (obj->efile.btf_maps_shndx < 0)
2625 return 0;
2626
2627 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2628 data = elf_sec_data(obj, scn);
2629 if (!scn || !data) {
2630 pr_warn("elf: failed to get %s map definitions for %s\n",
2631 MAPS_ELF_SEC, obj->path);
2632 return -EINVAL;
2633 }
2634
2635 nr_types = btf__type_cnt(obj->btf);
2636 for (i = 1; i < nr_types; i++) {
2637 t = btf__type_by_id(obj->btf, i);
2638 if (!btf_is_datasec(t))
2639 continue;
2640 name = btf__name_by_offset(obj->btf, t->name_off);
2641 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2642 sec = t;
2643 obj->efile.btf_maps_sec_btf_id = i;
2644 break;
2645 }
2646 }
2647
2648 if (!sec) {
2649 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2650 return -ENOENT;
2651 }
2652
2653 vlen = btf_vlen(sec);
2654 for (i = 0; i < vlen; i++) {
2655 err = bpf_object__init_user_btf_map(obj, sec, i,
2656 obj->efile.btf_maps_shndx,
2657 data, strict,
2658 pin_root_path);
2659 if (err)
2660 return err;
2661 }
2662
2663 return 0;
2664 }
2665
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2666 static int bpf_object__init_maps(struct bpf_object *obj,
2667 const struct bpf_object_open_opts *opts)
2668 {
2669 const char *pin_root_path;
2670 bool strict;
2671 int err = 0;
2672
2673 strict = !OPTS_GET(opts, relaxed_maps, false);
2674 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2675
2676 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2677 err = err ?: bpf_object__init_global_data_maps(obj);
2678 err = err ?: bpf_object__init_kconfig_map(obj);
2679 err = err ?: bpf_object_init_struct_ops(obj);
2680
2681 return err;
2682 }
2683
section_have_execinstr(struct bpf_object * obj,int idx)2684 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2685 {
2686 Elf64_Shdr *sh;
2687
2688 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2689 if (!sh)
2690 return false;
2691
2692 return sh->sh_flags & SHF_EXECINSTR;
2693 }
2694
btf_needs_sanitization(struct bpf_object * obj)2695 static bool btf_needs_sanitization(struct bpf_object *obj)
2696 {
2697 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2698 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2699 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2700 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2701 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2702 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2703 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2704
2705 return !has_func || !has_datasec || !has_func_global || !has_float ||
2706 !has_decl_tag || !has_type_tag || !has_enum64;
2707 }
2708
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2709 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2710 {
2711 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2712 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2713 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2714 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2715 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2716 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2717 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2718 int enum64_placeholder_id = 0;
2719 struct btf_type *t;
2720 int i, j, vlen;
2721
2722 for (i = 1; i < btf__type_cnt(btf); i++) {
2723 t = (struct btf_type *)btf__type_by_id(btf, i);
2724
2725 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2726 /* replace VAR/DECL_TAG with INT */
2727 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2728 /*
2729 * using size = 1 is the safest choice, 4 will be too
2730 * big and cause kernel BTF validation failure if
2731 * original variable took less than 4 bytes
2732 */
2733 t->size = 1;
2734 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2735 } else if (!has_datasec && btf_is_datasec(t)) {
2736 /* replace DATASEC with STRUCT */
2737 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2738 struct btf_member *m = btf_members(t);
2739 struct btf_type *vt;
2740 char *name;
2741
2742 name = (char *)btf__name_by_offset(btf, t->name_off);
2743 while (*name) {
2744 if (*name == '.')
2745 *name = '_';
2746 name++;
2747 }
2748
2749 vlen = btf_vlen(t);
2750 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2751 for (j = 0; j < vlen; j++, v++, m++) {
2752 /* order of field assignments is important */
2753 m->offset = v->offset * 8;
2754 m->type = v->type;
2755 /* preserve variable name as member name */
2756 vt = (void *)btf__type_by_id(btf, v->type);
2757 m->name_off = vt->name_off;
2758 }
2759 } else if (!has_func && btf_is_func_proto(t)) {
2760 /* replace FUNC_PROTO with ENUM */
2761 vlen = btf_vlen(t);
2762 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2763 t->size = sizeof(__u32); /* kernel enforced */
2764 } else if (!has_func && btf_is_func(t)) {
2765 /* replace FUNC with TYPEDEF */
2766 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2767 } else if (!has_func_global && btf_is_func(t)) {
2768 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2769 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2770 } else if (!has_float && btf_is_float(t)) {
2771 /* replace FLOAT with an equally-sized empty STRUCT;
2772 * since C compilers do not accept e.g. "float" as a
2773 * valid struct name, make it anonymous
2774 */
2775 t->name_off = 0;
2776 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2777 } else if (!has_type_tag && btf_is_type_tag(t)) {
2778 /* replace TYPE_TAG with a CONST */
2779 t->name_off = 0;
2780 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2781 } else if (!has_enum64 && btf_is_enum(t)) {
2782 /* clear the kflag */
2783 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2784 } else if (!has_enum64 && btf_is_enum64(t)) {
2785 /* replace ENUM64 with a union */
2786 struct btf_member *m;
2787
2788 if (enum64_placeholder_id == 0) {
2789 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2790 if (enum64_placeholder_id < 0)
2791 return enum64_placeholder_id;
2792
2793 t = (struct btf_type *)btf__type_by_id(btf, i);
2794 }
2795
2796 m = btf_members(t);
2797 vlen = btf_vlen(t);
2798 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2799 for (j = 0; j < vlen; j++, m++) {
2800 m->type = enum64_placeholder_id;
2801 m->offset = 0;
2802 }
2803 }
2804 }
2805
2806 return 0;
2807 }
2808
libbpf_needs_btf(const struct bpf_object * obj)2809 static bool libbpf_needs_btf(const struct bpf_object *obj)
2810 {
2811 return obj->efile.btf_maps_shndx >= 0 ||
2812 obj->efile.st_ops_shndx >= 0 ||
2813 obj->efile.st_ops_link_shndx >= 0 ||
2814 obj->nr_extern > 0;
2815 }
2816
kernel_needs_btf(const struct bpf_object * obj)2817 static bool kernel_needs_btf(const struct bpf_object *obj)
2818 {
2819 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2820 }
2821
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2822 static int bpf_object__init_btf(struct bpf_object *obj,
2823 Elf_Data *btf_data,
2824 Elf_Data *btf_ext_data)
2825 {
2826 int err = -ENOENT;
2827
2828 if (btf_data) {
2829 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2830 err = libbpf_get_error(obj->btf);
2831 if (err) {
2832 obj->btf = NULL;
2833 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2834 goto out;
2835 }
2836 /* enforce 8-byte pointers for BPF-targeted BTFs */
2837 btf__set_pointer_size(obj->btf, 8);
2838 }
2839 if (btf_ext_data) {
2840 struct btf_ext_info *ext_segs[3];
2841 int seg_num, sec_num;
2842
2843 if (!obj->btf) {
2844 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2845 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2846 goto out;
2847 }
2848 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2849 err = libbpf_get_error(obj->btf_ext);
2850 if (err) {
2851 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2852 BTF_EXT_ELF_SEC, err);
2853 obj->btf_ext = NULL;
2854 goto out;
2855 }
2856
2857 /* setup .BTF.ext to ELF section mapping */
2858 ext_segs[0] = &obj->btf_ext->func_info;
2859 ext_segs[1] = &obj->btf_ext->line_info;
2860 ext_segs[2] = &obj->btf_ext->core_relo_info;
2861 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2862 struct btf_ext_info *seg = ext_segs[seg_num];
2863 const struct btf_ext_info_sec *sec;
2864 const char *sec_name;
2865 Elf_Scn *scn;
2866
2867 if (seg->sec_cnt == 0)
2868 continue;
2869
2870 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2871 if (!seg->sec_idxs) {
2872 err = -ENOMEM;
2873 goto out;
2874 }
2875
2876 sec_num = 0;
2877 for_each_btf_ext_sec(seg, sec) {
2878 /* preventively increment index to avoid doing
2879 * this before every continue below
2880 */
2881 sec_num++;
2882
2883 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2884 if (str_is_empty(sec_name))
2885 continue;
2886 scn = elf_sec_by_name(obj, sec_name);
2887 if (!scn)
2888 continue;
2889
2890 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2891 }
2892 }
2893 }
2894 out:
2895 if (err && libbpf_needs_btf(obj)) {
2896 pr_warn("BTF is required, but is missing or corrupted.\n");
2897 return err;
2898 }
2899 return 0;
2900 }
2901
compare_vsi_off(const void * _a,const void * _b)2902 static int compare_vsi_off(const void *_a, const void *_b)
2903 {
2904 const struct btf_var_secinfo *a = _a;
2905 const struct btf_var_secinfo *b = _b;
2906
2907 return a->offset - b->offset;
2908 }
2909
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2910 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2911 struct btf_type *t)
2912 {
2913 __u32 size = 0, i, vars = btf_vlen(t);
2914 const char *sec_name = btf__name_by_offset(btf, t->name_off);
2915 struct btf_var_secinfo *vsi;
2916 bool fixup_offsets = false;
2917 int err;
2918
2919 if (!sec_name) {
2920 pr_debug("No name found in string section for DATASEC kind.\n");
2921 return -ENOENT;
2922 }
2923
2924 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2925 * variable offsets set at the previous step. Further, not every
2926 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2927 * all fixups altogether for such sections and go straight to sorting
2928 * VARs within their DATASEC.
2929 */
2930 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2931 goto sort_vars;
2932
2933 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2934 * fix this up. But BPF static linker already fixes this up and fills
2935 * all the sizes and offsets during static linking. So this step has
2936 * to be optional. But the STV_HIDDEN handling is non-optional for any
2937 * non-extern DATASEC, so the variable fixup loop below handles both
2938 * functions at the same time, paying the cost of BTF VAR <-> ELF
2939 * symbol matching just once.
2940 */
2941 if (t->size == 0) {
2942 err = find_elf_sec_sz(obj, sec_name, &size);
2943 if (err || !size) {
2944 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2945 sec_name, size, err);
2946 return -ENOENT;
2947 }
2948
2949 t->size = size;
2950 fixup_offsets = true;
2951 }
2952
2953 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2954 const struct btf_type *t_var;
2955 struct btf_var *var;
2956 const char *var_name;
2957 Elf64_Sym *sym;
2958
2959 t_var = btf__type_by_id(btf, vsi->type);
2960 if (!t_var || !btf_is_var(t_var)) {
2961 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2962 return -EINVAL;
2963 }
2964
2965 var = btf_var(t_var);
2966 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2967 continue;
2968
2969 var_name = btf__name_by_offset(btf, t_var->name_off);
2970 if (!var_name) {
2971 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2972 sec_name, i);
2973 return -ENOENT;
2974 }
2975
2976 sym = find_elf_var_sym(obj, var_name);
2977 if (IS_ERR(sym)) {
2978 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2979 sec_name, var_name);
2980 return -ENOENT;
2981 }
2982
2983 if (fixup_offsets)
2984 vsi->offset = sym->st_value;
2985
2986 /* if variable is a global/weak symbol, but has restricted
2987 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2988 * as static. This follows similar logic for functions (BPF
2989 * subprogs) and influences libbpf's further decisions about
2990 * whether to make global data BPF array maps as
2991 * BPF_F_MMAPABLE.
2992 */
2993 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2994 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2995 var->linkage = BTF_VAR_STATIC;
2996 }
2997
2998 sort_vars:
2999 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3000 return 0;
3001 }
3002
bpf_object_fixup_btf(struct bpf_object * obj)3003 static int bpf_object_fixup_btf(struct bpf_object *obj)
3004 {
3005 int i, n, err = 0;
3006
3007 if (!obj->btf)
3008 return 0;
3009
3010 n = btf__type_cnt(obj->btf);
3011 for (i = 1; i < n; i++) {
3012 struct btf_type *t = btf_type_by_id(obj->btf, i);
3013
3014 /* Loader needs to fix up some of the things compiler
3015 * couldn't get its hands on while emitting BTF. This
3016 * is section size and global variable offset. We use
3017 * the info from the ELF itself for this purpose.
3018 */
3019 if (btf_is_datasec(t)) {
3020 err = btf_fixup_datasec(obj, obj->btf, t);
3021 if (err)
3022 return err;
3023 }
3024 }
3025
3026 return 0;
3027 }
3028
prog_needs_vmlinux_btf(struct bpf_program * prog)3029 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3030 {
3031 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3032 prog->type == BPF_PROG_TYPE_LSM)
3033 return true;
3034
3035 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3036 * also need vmlinux BTF
3037 */
3038 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3039 return true;
3040
3041 return false;
3042 }
3043
obj_needs_vmlinux_btf(const struct bpf_object * obj)3044 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3045 {
3046 struct bpf_program *prog;
3047 int i;
3048
3049 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3050 * is not specified
3051 */
3052 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3053 return true;
3054
3055 /* Support for typed ksyms needs kernel BTF */
3056 for (i = 0; i < obj->nr_extern; i++) {
3057 const struct extern_desc *ext;
3058
3059 ext = &obj->externs[i];
3060 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3061 return true;
3062 }
3063
3064 bpf_object__for_each_program(prog, obj) {
3065 if (!prog->autoload)
3066 continue;
3067 if (prog_needs_vmlinux_btf(prog))
3068 return true;
3069 }
3070
3071 return false;
3072 }
3073
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3074 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3075 {
3076 int err;
3077
3078 /* btf_vmlinux could be loaded earlier */
3079 if (obj->btf_vmlinux || obj->gen_loader)
3080 return 0;
3081
3082 if (!force && !obj_needs_vmlinux_btf(obj))
3083 return 0;
3084
3085 obj->btf_vmlinux = btf__load_vmlinux_btf();
3086 err = libbpf_get_error(obj->btf_vmlinux);
3087 if (err) {
3088 pr_warn("Error loading vmlinux BTF: %d\n", err);
3089 obj->btf_vmlinux = NULL;
3090 return err;
3091 }
3092 return 0;
3093 }
3094
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3095 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3096 {
3097 struct btf *kern_btf = obj->btf;
3098 bool btf_mandatory, sanitize;
3099 int i, err = 0;
3100
3101 if (!obj->btf)
3102 return 0;
3103
3104 if (!kernel_supports(obj, FEAT_BTF)) {
3105 if (kernel_needs_btf(obj)) {
3106 err = -EOPNOTSUPP;
3107 goto report;
3108 }
3109 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3110 return 0;
3111 }
3112
3113 /* Even though some subprogs are global/weak, user might prefer more
3114 * permissive BPF verification process that BPF verifier performs for
3115 * static functions, taking into account more context from the caller
3116 * functions. In such case, they need to mark such subprogs with
3117 * __attribute__((visibility("hidden"))) and libbpf will adjust
3118 * corresponding FUNC BTF type to be marked as static and trigger more
3119 * involved BPF verification process.
3120 */
3121 for (i = 0; i < obj->nr_programs; i++) {
3122 struct bpf_program *prog = &obj->programs[i];
3123 struct btf_type *t;
3124 const char *name;
3125 int j, n;
3126
3127 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3128 continue;
3129
3130 n = btf__type_cnt(obj->btf);
3131 for (j = 1; j < n; j++) {
3132 t = btf_type_by_id(obj->btf, j);
3133 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3134 continue;
3135
3136 name = btf__str_by_offset(obj->btf, t->name_off);
3137 if (strcmp(name, prog->name) != 0)
3138 continue;
3139
3140 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3141 break;
3142 }
3143 }
3144
3145 sanitize = btf_needs_sanitization(obj);
3146 if (sanitize) {
3147 const void *raw_data;
3148 __u32 sz;
3149
3150 /* clone BTF to sanitize a copy and leave the original intact */
3151 raw_data = btf__raw_data(obj->btf, &sz);
3152 kern_btf = btf__new(raw_data, sz);
3153 err = libbpf_get_error(kern_btf);
3154 if (err)
3155 return err;
3156
3157 /* enforce 8-byte pointers for BPF-targeted BTFs */
3158 btf__set_pointer_size(obj->btf, 8);
3159 err = bpf_object__sanitize_btf(obj, kern_btf);
3160 if (err)
3161 return err;
3162 }
3163
3164 if (obj->gen_loader) {
3165 __u32 raw_size = 0;
3166 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3167
3168 if (!raw_data)
3169 return -ENOMEM;
3170 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3171 /* Pretend to have valid FD to pass various fd >= 0 checks.
3172 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3173 */
3174 btf__set_fd(kern_btf, 0);
3175 } else {
3176 /* currently BPF_BTF_LOAD only supports log_level 1 */
3177 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3178 obj->log_level ? 1 : 0);
3179 }
3180 if (sanitize) {
3181 if (!err) {
3182 /* move fd to libbpf's BTF */
3183 btf__set_fd(obj->btf, btf__fd(kern_btf));
3184 btf__set_fd(kern_btf, -1);
3185 }
3186 btf__free(kern_btf);
3187 }
3188 report:
3189 if (err) {
3190 btf_mandatory = kernel_needs_btf(obj);
3191 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3192 btf_mandatory ? "BTF is mandatory, can't proceed."
3193 : "BTF is optional, ignoring.");
3194 if (!btf_mandatory)
3195 err = 0;
3196 }
3197 return err;
3198 }
3199
elf_sym_str(const struct bpf_object * obj,size_t off)3200 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3201 {
3202 const char *name;
3203
3204 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3205 if (!name) {
3206 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3207 off, obj->path, elf_errmsg(-1));
3208 return NULL;
3209 }
3210
3211 return name;
3212 }
3213
elf_sec_str(const struct bpf_object * obj,size_t off)3214 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3215 {
3216 const char *name;
3217
3218 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3219 if (!name) {
3220 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3221 off, obj->path, elf_errmsg(-1));
3222 return NULL;
3223 }
3224
3225 return name;
3226 }
3227
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3228 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3229 {
3230 Elf_Scn *scn;
3231
3232 scn = elf_getscn(obj->efile.elf, idx);
3233 if (!scn) {
3234 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3235 idx, obj->path, elf_errmsg(-1));
3236 return NULL;
3237 }
3238 return scn;
3239 }
3240
elf_sec_by_name(const struct bpf_object * obj,const char * name)3241 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3242 {
3243 Elf_Scn *scn = NULL;
3244 Elf *elf = obj->efile.elf;
3245 const char *sec_name;
3246
3247 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3248 sec_name = elf_sec_name(obj, scn);
3249 if (!sec_name)
3250 return NULL;
3251
3252 if (strcmp(sec_name, name) != 0)
3253 continue;
3254
3255 return scn;
3256 }
3257 return NULL;
3258 }
3259
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3260 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3261 {
3262 Elf64_Shdr *shdr;
3263
3264 if (!scn)
3265 return NULL;
3266
3267 shdr = elf64_getshdr(scn);
3268 if (!shdr) {
3269 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3270 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3271 return NULL;
3272 }
3273
3274 return shdr;
3275 }
3276
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3277 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3278 {
3279 const char *name;
3280 Elf64_Shdr *sh;
3281
3282 if (!scn)
3283 return NULL;
3284
3285 sh = elf_sec_hdr(obj, scn);
3286 if (!sh)
3287 return NULL;
3288
3289 name = elf_sec_str(obj, sh->sh_name);
3290 if (!name) {
3291 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3292 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3293 return NULL;
3294 }
3295
3296 return name;
3297 }
3298
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3299 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3300 {
3301 Elf_Data *data;
3302
3303 if (!scn)
3304 return NULL;
3305
3306 data = elf_getdata(scn, 0);
3307 if (!data) {
3308 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3309 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3310 obj->path, elf_errmsg(-1));
3311 return NULL;
3312 }
3313
3314 return data;
3315 }
3316
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3317 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3318 {
3319 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3320 return NULL;
3321
3322 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3323 }
3324
elf_rel_by_idx(Elf_Data * data,size_t idx)3325 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3326 {
3327 if (idx >= data->d_size / sizeof(Elf64_Rel))
3328 return NULL;
3329
3330 return (Elf64_Rel *)data->d_buf + idx;
3331 }
3332
is_sec_name_dwarf(const char * name)3333 static bool is_sec_name_dwarf(const char *name)
3334 {
3335 /* approximation, but the actual list is too long */
3336 return str_has_pfx(name, ".debug_");
3337 }
3338
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3339 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3340 {
3341 /* no special handling of .strtab */
3342 if (hdr->sh_type == SHT_STRTAB)
3343 return true;
3344
3345 /* ignore .llvm_addrsig section as well */
3346 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3347 return true;
3348
3349 /* no subprograms will lead to an empty .text section, ignore it */
3350 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3351 strcmp(name, ".text") == 0)
3352 return true;
3353
3354 /* DWARF sections */
3355 if (is_sec_name_dwarf(name))
3356 return true;
3357
3358 if (str_has_pfx(name, ".rel")) {
3359 name += sizeof(".rel") - 1;
3360 /* DWARF section relocations */
3361 if (is_sec_name_dwarf(name))
3362 return true;
3363
3364 /* .BTF and .BTF.ext don't need relocations */
3365 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3366 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3367 return true;
3368 }
3369
3370 return false;
3371 }
3372
cmp_progs(const void * _a,const void * _b)3373 static int cmp_progs(const void *_a, const void *_b)
3374 {
3375 const struct bpf_program *a = _a;
3376 const struct bpf_program *b = _b;
3377
3378 if (a->sec_idx != b->sec_idx)
3379 return a->sec_idx < b->sec_idx ? -1 : 1;
3380
3381 /* sec_insn_off can't be the same within the section */
3382 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3383 }
3384
bpf_object__elf_collect(struct bpf_object * obj)3385 static int bpf_object__elf_collect(struct bpf_object *obj)
3386 {
3387 struct elf_sec_desc *sec_desc;
3388 Elf *elf = obj->efile.elf;
3389 Elf_Data *btf_ext_data = NULL;
3390 Elf_Data *btf_data = NULL;
3391 int idx = 0, err = 0;
3392 const char *name;
3393 Elf_Data *data;
3394 Elf_Scn *scn;
3395 Elf64_Shdr *sh;
3396
3397 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3398 * section. Since section count retrieved by elf_getshdrnum() does
3399 * include sec #0, it is already the necessary size of an array to keep
3400 * all the sections.
3401 */
3402 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3403 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3404 obj->path, elf_errmsg(-1));
3405 return -LIBBPF_ERRNO__FORMAT;
3406 }
3407 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3408 if (!obj->efile.secs)
3409 return -ENOMEM;
3410
3411 /* a bunch of ELF parsing functionality depends on processing symbols,
3412 * so do the first pass and find the symbol table
3413 */
3414 scn = NULL;
3415 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3416 sh = elf_sec_hdr(obj, scn);
3417 if (!sh)
3418 return -LIBBPF_ERRNO__FORMAT;
3419
3420 if (sh->sh_type == SHT_SYMTAB) {
3421 if (obj->efile.symbols) {
3422 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3423 return -LIBBPF_ERRNO__FORMAT;
3424 }
3425
3426 data = elf_sec_data(obj, scn);
3427 if (!data)
3428 return -LIBBPF_ERRNO__FORMAT;
3429
3430 idx = elf_ndxscn(scn);
3431
3432 obj->efile.symbols = data;
3433 obj->efile.symbols_shndx = idx;
3434 obj->efile.strtabidx = sh->sh_link;
3435 }
3436 }
3437
3438 if (!obj->efile.symbols) {
3439 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3440 obj->path);
3441 return -ENOENT;
3442 }
3443
3444 scn = NULL;
3445 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3446 idx = elf_ndxscn(scn);
3447 sec_desc = &obj->efile.secs[idx];
3448
3449 sh = elf_sec_hdr(obj, scn);
3450 if (!sh)
3451 return -LIBBPF_ERRNO__FORMAT;
3452
3453 name = elf_sec_str(obj, sh->sh_name);
3454 if (!name)
3455 return -LIBBPF_ERRNO__FORMAT;
3456
3457 if (ignore_elf_section(sh, name))
3458 continue;
3459
3460 data = elf_sec_data(obj, scn);
3461 if (!data)
3462 return -LIBBPF_ERRNO__FORMAT;
3463
3464 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3465 idx, name, (unsigned long)data->d_size,
3466 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3467 (int)sh->sh_type);
3468
3469 if (strcmp(name, "license") == 0) {
3470 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3471 if (err)
3472 return err;
3473 } else if (strcmp(name, "version") == 0) {
3474 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3475 if (err)
3476 return err;
3477 } else if (strcmp(name, "maps") == 0) {
3478 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3479 return -ENOTSUP;
3480 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3481 obj->efile.btf_maps_shndx = idx;
3482 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3483 if (sh->sh_type != SHT_PROGBITS)
3484 return -LIBBPF_ERRNO__FORMAT;
3485 btf_data = data;
3486 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3487 if (sh->sh_type != SHT_PROGBITS)
3488 return -LIBBPF_ERRNO__FORMAT;
3489 btf_ext_data = data;
3490 } else if (sh->sh_type == SHT_SYMTAB) {
3491 /* already processed during the first pass above */
3492 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3493 if (sh->sh_flags & SHF_EXECINSTR) {
3494 if (strcmp(name, ".text") == 0)
3495 obj->efile.text_shndx = idx;
3496 err = bpf_object__add_programs(obj, data, name, idx);
3497 if (err)
3498 return err;
3499 } else if (strcmp(name, DATA_SEC) == 0 ||
3500 str_has_pfx(name, DATA_SEC ".")) {
3501 sec_desc->sec_type = SEC_DATA;
3502 sec_desc->shdr = sh;
3503 sec_desc->data = data;
3504 } else if (strcmp(name, RODATA_SEC) == 0 ||
3505 str_has_pfx(name, RODATA_SEC ".")) {
3506 sec_desc->sec_type = SEC_RODATA;
3507 sec_desc->shdr = sh;
3508 sec_desc->data = data;
3509 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3510 obj->efile.st_ops_data = data;
3511 obj->efile.st_ops_shndx = idx;
3512 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3513 obj->efile.st_ops_link_data = data;
3514 obj->efile.st_ops_link_shndx = idx;
3515 } else {
3516 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3517 idx, name);
3518 }
3519 } else if (sh->sh_type == SHT_REL) {
3520 int targ_sec_idx = sh->sh_info; /* points to other section */
3521
3522 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3523 targ_sec_idx >= obj->efile.sec_cnt)
3524 return -LIBBPF_ERRNO__FORMAT;
3525
3526 /* Only do relo for section with exec instructions */
3527 if (!section_have_execinstr(obj, targ_sec_idx) &&
3528 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3529 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3530 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3531 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3532 idx, name, targ_sec_idx,
3533 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3534 continue;
3535 }
3536
3537 sec_desc->sec_type = SEC_RELO;
3538 sec_desc->shdr = sh;
3539 sec_desc->data = data;
3540 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3541 str_has_pfx(name, BSS_SEC "."))) {
3542 sec_desc->sec_type = SEC_BSS;
3543 sec_desc->shdr = sh;
3544 sec_desc->data = data;
3545 } else {
3546 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3547 (size_t)sh->sh_size);
3548 }
3549 }
3550
3551 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3552 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3553 return -LIBBPF_ERRNO__FORMAT;
3554 }
3555
3556 /* sort BPF programs by section name and in-section instruction offset
3557 * for faster search
3558 */
3559 if (obj->nr_programs)
3560 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3561
3562 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3563 }
3564
sym_is_extern(const Elf64_Sym * sym)3565 static bool sym_is_extern(const Elf64_Sym *sym)
3566 {
3567 int bind = ELF64_ST_BIND(sym->st_info);
3568 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3569 return sym->st_shndx == SHN_UNDEF &&
3570 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3571 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3572 }
3573
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3574 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3575 {
3576 int bind = ELF64_ST_BIND(sym->st_info);
3577 int type = ELF64_ST_TYPE(sym->st_info);
3578
3579 /* in .text section */
3580 if (sym->st_shndx != text_shndx)
3581 return false;
3582
3583 /* local function */
3584 if (bind == STB_LOCAL && type == STT_SECTION)
3585 return true;
3586
3587 /* global function */
3588 return bind == STB_GLOBAL && type == STT_FUNC;
3589 }
3590
find_extern_btf_id(const struct btf * btf,const char * ext_name)3591 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3592 {
3593 const struct btf_type *t;
3594 const char *tname;
3595 int i, n;
3596
3597 if (!btf)
3598 return -ESRCH;
3599
3600 n = btf__type_cnt(btf);
3601 for (i = 1; i < n; i++) {
3602 t = btf__type_by_id(btf, i);
3603
3604 if (!btf_is_var(t) && !btf_is_func(t))
3605 continue;
3606
3607 tname = btf__name_by_offset(btf, t->name_off);
3608 if (strcmp(tname, ext_name))
3609 continue;
3610
3611 if (btf_is_var(t) &&
3612 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3613 return -EINVAL;
3614
3615 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3616 return -EINVAL;
3617
3618 return i;
3619 }
3620
3621 return -ENOENT;
3622 }
3623
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3624 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3625 const struct btf_var_secinfo *vs;
3626 const struct btf_type *t;
3627 int i, j, n;
3628
3629 if (!btf)
3630 return -ESRCH;
3631
3632 n = btf__type_cnt(btf);
3633 for (i = 1; i < n; i++) {
3634 t = btf__type_by_id(btf, i);
3635
3636 if (!btf_is_datasec(t))
3637 continue;
3638
3639 vs = btf_var_secinfos(t);
3640 for (j = 0; j < btf_vlen(t); j++, vs++) {
3641 if (vs->type == ext_btf_id)
3642 return i;
3643 }
3644 }
3645
3646 return -ENOENT;
3647 }
3648
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3649 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3650 bool *is_signed)
3651 {
3652 const struct btf_type *t;
3653 const char *name;
3654
3655 t = skip_mods_and_typedefs(btf, id, NULL);
3656 name = btf__name_by_offset(btf, t->name_off);
3657
3658 if (is_signed)
3659 *is_signed = false;
3660 switch (btf_kind(t)) {
3661 case BTF_KIND_INT: {
3662 int enc = btf_int_encoding(t);
3663
3664 if (enc & BTF_INT_BOOL)
3665 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3666 if (is_signed)
3667 *is_signed = enc & BTF_INT_SIGNED;
3668 if (t->size == 1)
3669 return KCFG_CHAR;
3670 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3671 return KCFG_UNKNOWN;
3672 return KCFG_INT;
3673 }
3674 case BTF_KIND_ENUM:
3675 if (t->size != 4)
3676 return KCFG_UNKNOWN;
3677 if (strcmp(name, "libbpf_tristate"))
3678 return KCFG_UNKNOWN;
3679 return KCFG_TRISTATE;
3680 case BTF_KIND_ENUM64:
3681 if (strcmp(name, "libbpf_tristate"))
3682 return KCFG_UNKNOWN;
3683 return KCFG_TRISTATE;
3684 case BTF_KIND_ARRAY:
3685 if (btf_array(t)->nelems == 0)
3686 return KCFG_UNKNOWN;
3687 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3688 return KCFG_UNKNOWN;
3689 return KCFG_CHAR_ARR;
3690 default:
3691 return KCFG_UNKNOWN;
3692 }
3693 }
3694
cmp_externs(const void * _a,const void * _b)3695 static int cmp_externs(const void *_a, const void *_b)
3696 {
3697 const struct extern_desc *a = _a;
3698 const struct extern_desc *b = _b;
3699
3700 if (a->type != b->type)
3701 return a->type < b->type ? -1 : 1;
3702
3703 if (a->type == EXT_KCFG) {
3704 /* descending order by alignment requirements */
3705 if (a->kcfg.align != b->kcfg.align)
3706 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3707 /* ascending order by size, within same alignment class */
3708 if (a->kcfg.sz != b->kcfg.sz)
3709 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3710 }
3711
3712 /* resolve ties by name */
3713 return strcmp(a->name, b->name);
3714 }
3715
find_int_btf_id(const struct btf * btf)3716 static int find_int_btf_id(const struct btf *btf)
3717 {
3718 const struct btf_type *t;
3719 int i, n;
3720
3721 n = btf__type_cnt(btf);
3722 for (i = 1; i < n; i++) {
3723 t = btf__type_by_id(btf, i);
3724
3725 if (btf_is_int(t) && btf_int_bits(t) == 32)
3726 return i;
3727 }
3728
3729 return 0;
3730 }
3731
add_dummy_ksym_var(struct btf * btf)3732 static int add_dummy_ksym_var(struct btf *btf)
3733 {
3734 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3735 const struct btf_var_secinfo *vs;
3736 const struct btf_type *sec;
3737
3738 if (!btf)
3739 return 0;
3740
3741 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3742 BTF_KIND_DATASEC);
3743 if (sec_btf_id < 0)
3744 return 0;
3745
3746 sec = btf__type_by_id(btf, sec_btf_id);
3747 vs = btf_var_secinfos(sec);
3748 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3749 const struct btf_type *vt;
3750
3751 vt = btf__type_by_id(btf, vs->type);
3752 if (btf_is_func(vt))
3753 break;
3754 }
3755
3756 /* No func in ksyms sec. No need to add dummy var. */
3757 if (i == btf_vlen(sec))
3758 return 0;
3759
3760 int_btf_id = find_int_btf_id(btf);
3761 dummy_var_btf_id = btf__add_var(btf,
3762 "dummy_ksym",
3763 BTF_VAR_GLOBAL_ALLOCATED,
3764 int_btf_id);
3765 if (dummy_var_btf_id < 0)
3766 pr_warn("cannot create a dummy_ksym var\n");
3767
3768 return dummy_var_btf_id;
3769 }
3770
bpf_object__collect_externs(struct bpf_object * obj)3771 static int bpf_object__collect_externs(struct bpf_object *obj)
3772 {
3773 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3774 const struct btf_type *t;
3775 struct extern_desc *ext;
3776 int i, n, off, dummy_var_btf_id;
3777 const char *ext_name, *sec_name;
3778 size_t ext_essent_len;
3779 Elf_Scn *scn;
3780 Elf64_Shdr *sh;
3781
3782 if (!obj->efile.symbols)
3783 return 0;
3784
3785 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3786 sh = elf_sec_hdr(obj, scn);
3787 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3788 return -LIBBPF_ERRNO__FORMAT;
3789
3790 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3791 if (dummy_var_btf_id < 0)
3792 return dummy_var_btf_id;
3793
3794 n = sh->sh_size / sh->sh_entsize;
3795 pr_debug("looking for externs among %d symbols...\n", n);
3796
3797 for (i = 0; i < n; i++) {
3798 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3799
3800 if (!sym)
3801 return -LIBBPF_ERRNO__FORMAT;
3802 if (!sym_is_extern(sym))
3803 continue;
3804 ext_name = elf_sym_str(obj, sym->st_name);
3805 if (!ext_name || !ext_name[0])
3806 continue;
3807
3808 ext = obj->externs;
3809 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3810 if (!ext)
3811 return -ENOMEM;
3812 obj->externs = ext;
3813 ext = &ext[obj->nr_extern];
3814 memset(ext, 0, sizeof(*ext));
3815 obj->nr_extern++;
3816
3817 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3818 if (ext->btf_id <= 0) {
3819 pr_warn("failed to find BTF for extern '%s': %d\n",
3820 ext_name, ext->btf_id);
3821 return ext->btf_id;
3822 }
3823 t = btf__type_by_id(obj->btf, ext->btf_id);
3824 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3825 ext->sym_idx = i;
3826 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3827
3828 ext_essent_len = bpf_core_essential_name_len(ext->name);
3829 ext->essent_name = NULL;
3830 if (ext_essent_len != strlen(ext->name)) {
3831 ext->essent_name = strndup(ext->name, ext_essent_len);
3832 if (!ext->essent_name)
3833 return -ENOMEM;
3834 }
3835
3836 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3837 if (ext->sec_btf_id <= 0) {
3838 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3839 ext_name, ext->btf_id, ext->sec_btf_id);
3840 return ext->sec_btf_id;
3841 }
3842 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3843 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3844
3845 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3846 if (btf_is_func(t)) {
3847 pr_warn("extern function %s is unsupported under %s section\n",
3848 ext->name, KCONFIG_SEC);
3849 return -ENOTSUP;
3850 }
3851 kcfg_sec = sec;
3852 ext->type = EXT_KCFG;
3853 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3854 if (ext->kcfg.sz <= 0) {
3855 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3856 ext_name, ext->kcfg.sz);
3857 return ext->kcfg.sz;
3858 }
3859 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3860 if (ext->kcfg.align <= 0) {
3861 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3862 ext_name, ext->kcfg.align);
3863 return -EINVAL;
3864 }
3865 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3866 &ext->kcfg.is_signed);
3867 if (ext->kcfg.type == KCFG_UNKNOWN) {
3868 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3869 return -ENOTSUP;
3870 }
3871 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3872 ksym_sec = sec;
3873 ext->type = EXT_KSYM;
3874 skip_mods_and_typedefs(obj->btf, t->type,
3875 &ext->ksym.type_id);
3876 } else {
3877 pr_warn("unrecognized extern section '%s'\n", sec_name);
3878 return -ENOTSUP;
3879 }
3880 }
3881 pr_debug("collected %d externs total\n", obj->nr_extern);
3882
3883 if (!obj->nr_extern)
3884 return 0;
3885
3886 /* sort externs by type, for kcfg ones also by (align, size, name) */
3887 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3888
3889 /* for .ksyms section, we need to turn all externs into allocated
3890 * variables in BTF to pass kernel verification; we do this by
3891 * pretending that each extern is a 8-byte variable
3892 */
3893 if (ksym_sec) {
3894 /* find existing 4-byte integer type in BTF to use for fake
3895 * extern variables in DATASEC
3896 */
3897 int int_btf_id = find_int_btf_id(obj->btf);
3898 /* For extern function, a dummy_var added earlier
3899 * will be used to replace the vs->type and
3900 * its name string will be used to refill
3901 * the missing param's name.
3902 */
3903 const struct btf_type *dummy_var;
3904
3905 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3906 for (i = 0; i < obj->nr_extern; i++) {
3907 ext = &obj->externs[i];
3908 if (ext->type != EXT_KSYM)
3909 continue;
3910 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3911 i, ext->sym_idx, ext->name);
3912 }
3913
3914 sec = ksym_sec;
3915 n = btf_vlen(sec);
3916 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3917 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3918 struct btf_type *vt;
3919
3920 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3921 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3922 ext = find_extern_by_name(obj, ext_name);
3923 if (!ext) {
3924 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3925 btf_kind_str(vt), ext_name);
3926 return -ESRCH;
3927 }
3928 if (btf_is_func(vt)) {
3929 const struct btf_type *func_proto;
3930 struct btf_param *param;
3931 int j;
3932
3933 func_proto = btf__type_by_id(obj->btf,
3934 vt->type);
3935 param = btf_params(func_proto);
3936 /* Reuse the dummy_var string if the
3937 * func proto does not have param name.
3938 */
3939 for (j = 0; j < btf_vlen(func_proto); j++)
3940 if (param[j].type && !param[j].name_off)
3941 param[j].name_off =
3942 dummy_var->name_off;
3943 vs->type = dummy_var_btf_id;
3944 vt->info &= ~0xffff;
3945 vt->info |= BTF_FUNC_GLOBAL;
3946 } else {
3947 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3948 vt->type = int_btf_id;
3949 }
3950 vs->offset = off;
3951 vs->size = sizeof(int);
3952 }
3953 sec->size = off;
3954 }
3955
3956 if (kcfg_sec) {
3957 sec = kcfg_sec;
3958 /* for kcfg externs calculate their offsets within a .kconfig map */
3959 off = 0;
3960 for (i = 0; i < obj->nr_extern; i++) {
3961 ext = &obj->externs[i];
3962 if (ext->type != EXT_KCFG)
3963 continue;
3964
3965 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3966 off = ext->kcfg.data_off + ext->kcfg.sz;
3967 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3968 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3969 }
3970 sec->size = off;
3971 n = btf_vlen(sec);
3972 for (i = 0; i < n; i++) {
3973 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3974
3975 t = btf__type_by_id(obj->btf, vs->type);
3976 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3977 ext = find_extern_by_name(obj, ext_name);
3978 if (!ext) {
3979 pr_warn("failed to find extern definition for BTF var '%s'\n",
3980 ext_name);
3981 return -ESRCH;
3982 }
3983 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3984 vs->offset = ext->kcfg.data_off;
3985 }
3986 }
3987 return 0;
3988 }
3989
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3990 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3991 {
3992 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3993 }
3994
3995 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3996 bpf_object__find_program_by_name(const struct bpf_object *obj,
3997 const char *name)
3998 {
3999 struct bpf_program *prog;
4000
4001 bpf_object__for_each_program(prog, obj) {
4002 if (prog_is_subprog(obj, prog))
4003 continue;
4004 if (!strcmp(prog->name, name))
4005 return prog;
4006 }
4007 return errno = ENOENT, NULL;
4008 }
4009
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4010 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4011 int shndx)
4012 {
4013 switch (obj->efile.secs[shndx].sec_type) {
4014 case SEC_BSS:
4015 case SEC_DATA:
4016 case SEC_RODATA:
4017 return true;
4018 default:
4019 return false;
4020 }
4021 }
4022
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4023 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4024 int shndx)
4025 {
4026 return shndx == obj->efile.btf_maps_shndx;
4027 }
4028
4029 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4030 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4031 {
4032 if (shndx == obj->efile.symbols_shndx)
4033 return LIBBPF_MAP_KCONFIG;
4034
4035 switch (obj->efile.secs[shndx].sec_type) {
4036 case SEC_BSS:
4037 return LIBBPF_MAP_BSS;
4038 case SEC_DATA:
4039 return LIBBPF_MAP_DATA;
4040 case SEC_RODATA:
4041 return LIBBPF_MAP_RODATA;
4042 default:
4043 return LIBBPF_MAP_UNSPEC;
4044 }
4045 }
4046
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4047 static int bpf_program__record_reloc(struct bpf_program *prog,
4048 struct reloc_desc *reloc_desc,
4049 __u32 insn_idx, const char *sym_name,
4050 const Elf64_Sym *sym, const Elf64_Rel *rel)
4051 {
4052 struct bpf_insn *insn = &prog->insns[insn_idx];
4053 size_t map_idx, nr_maps = prog->obj->nr_maps;
4054 struct bpf_object *obj = prog->obj;
4055 __u32 shdr_idx = sym->st_shndx;
4056 enum libbpf_map_type type;
4057 const char *sym_sec_name;
4058 struct bpf_map *map;
4059
4060 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4061 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4062 prog->name, sym_name, insn_idx, insn->code);
4063 return -LIBBPF_ERRNO__RELOC;
4064 }
4065
4066 if (sym_is_extern(sym)) {
4067 int sym_idx = ELF64_R_SYM(rel->r_info);
4068 int i, n = obj->nr_extern;
4069 struct extern_desc *ext;
4070
4071 for (i = 0; i < n; i++) {
4072 ext = &obj->externs[i];
4073 if (ext->sym_idx == sym_idx)
4074 break;
4075 }
4076 if (i >= n) {
4077 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4078 prog->name, sym_name, sym_idx);
4079 return -LIBBPF_ERRNO__RELOC;
4080 }
4081 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4082 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4083 if (insn->code == (BPF_JMP | BPF_CALL))
4084 reloc_desc->type = RELO_EXTERN_CALL;
4085 else
4086 reloc_desc->type = RELO_EXTERN_LD64;
4087 reloc_desc->insn_idx = insn_idx;
4088 reloc_desc->ext_idx = i;
4089 return 0;
4090 }
4091
4092 /* sub-program call relocation */
4093 if (is_call_insn(insn)) {
4094 if (insn->src_reg != BPF_PSEUDO_CALL) {
4095 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4096 return -LIBBPF_ERRNO__RELOC;
4097 }
4098 /* text_shndx can be 0, if no default "main" program exists */
4099 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4100 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4101 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4102 prog->name, sym_name, sym_sec_name);
4103 return -LIBBPF_ERRNO__RELOC;
4104 }
4105 if (sym->st_value % BPF_INSN_SZ) {
4106 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4107 prog->name, sym_name, (size_t)sym->st_value);
4108 return -LIBBPF_ERRNO__RELOC;
4109 }
4110 reloc_desc->type = RELO_CALL;
4111 reloc_desc->insn_idx = insn_idx;
4112 reloc_desc->sym_off = sym->st_value;
4113 return 0;
4114 }
4115
4116 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4117 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4118 prog->name, sym_name, shdr_idx);
4119 return -LIBBPF_ERRNO__RELOC;
4120 }
4121
4122 /* loading subprog addresses */
4123 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4124 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4125 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4126 */
4127 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4128 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4129 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4130 return -LIBBPF_ERRNO__RELOC;
4131 }
4132
4133 reloc_desc->type = RELO_SUBPROG_ADDR;
4134 reloc_desc->insn_idx = insn_idx;
4135 reloc_desc->sym_off = sym->st_value;
4136 return 0;
4137 }
4138
4139 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4140 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4141
4142 /* generic map reference relocation */
4143 if (type == LIBBPF_MAP_UNSPEC) {
4144 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4145 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4146 prog->name, sym_name, sym_sec_name);
4147 return -LIBBPF_ERRNO__RELOC;
4148 }
4149 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4150 map = &obj->maps[map_idx];
4151 if (map->libbpf_type != type ||
4152 map->sec_idx != sym->st_shndx ||
4153 map->sec_offset != sym->st_value)
4154 continue;
4155 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4156 prog->name, map_idx, map->name, map->sec_idx,
4157 map->sec_offset, insn_idx);
4158 break;
4159 }
4160 if (map_idx >= nr_maps) {
4161 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4162 prog->name, sym_sec_name, (size_t)sym->st_value);
4163 return -LIBBPF_ERRNO__RELOC;
4164 }
4165 reloc_desc->type = RELO_LD64;
4166 reloc_desc->insn_idx = insn_idx;
4167 reloc_desc->map_idx = map_idx;
4168 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4169 return 0;
4170 }
4171
4172 /* global data map relocation */
4173 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4174 pr_warn("prog '%s': bad data relo against section '%s'\n",
4175 prog->name, sym_sec_name);
4176 return -LIBBPF_ERRNO__RELOC;
4177 }
4178 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4179 map = &obj->maps[map_idx];
4180 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4181 continue;
4182 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4183 prog->name, map_idx, map->name, map->sec_idx,
4184 map->sec_offset, insn_idx);
4185 break;
4186 }
4187 if (map_idx >= nr_maps) {
4188 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4189 prog->name, sym_sec_name);
4190 return -LIBBPF_ERRNO__RELOC;
4191 }
4192
4193 reloc_desc->type = RELO_DATA;
4194 reloc_desc->insn_idx = insn_idx;
4195 reloc_desc->map_idx = map_idx;
4196 reloc_desc->sym_off = sym->st_value;
4197 return 0;
4198 }
4199
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4200 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4201 {
4202 return insn_idx >= prog->sec_insn_off &&
4203 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4204 }
4205
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4206 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4207 size_t sec_idx, size_t insn_idx)
4208 {
4209 int l = 0, r = obj->nr_programs - 1, m;
4210 struct bpf_program *prog;
4211
4212 if (!obj->nr_programs)
4213 return NULL;
4214
4215 while (l < r) {
4216 m = l + (r - l + 1) / 2;
4217 prog = &obj->programs[m];
4218
4219 if (prog->sec_idx < sec_idx ||
4220 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4221 l = m;
4222 else
4223 r = m - 1;
4224 }
4225 /* matching program could be at index l, but it still might be the
4226 * wrong one, so we need to double check conditions for the last time
4227 */
4228 prog = &obj->programs[l];
4229 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4230 return prog;
4231 return NULL;
4232 }
4233
4234 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4235 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4236 {
4237 const char *relo_sec_name, *sec_name;
4238 size_t sec_idx = shdr->sh_info, sym_idx;
4239 struct bpf_program *prog;
4240 struct reloc_desc *relos;
4241 int err, i, nrels;
4242 const char *sym_name;
4243 __u32 insn_idx;
4244 Elf_Scn *scn;
4245 Elf_Data *scn_data;
4246 Elf64_Sym *sym;
4247 Elf64_Rel *rel;
4248
4249 if (sec_idx >= obj->efile.sec_cnt)
4250 return -EINVAL;
4251
4252 scn = elf_sec_by_idx(obj, sec_idx);
4253 scn_data = elf_sec_data(obj, scn);
4254
4255 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4256 sec_name = elf_sec_name(obj, scn);
4257 if (!relo_sec_name || !sec_name)
4258 return -EINVAL;
4259
4260 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4261 relo_sec_name, sec_idx, sec_name);
4262 nrels = shdr->sh_size / shdr->sh_entsize;
4263
4264 for (i = 0; i < nrels; i++) {
4265 rel = elf_rel_by_idx(data, i);
4266 if (!rel) {
4267 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4268 return -LIBBPF_ERRNO__FORMAT;
4269 }
4270
4271 sym_idx = ELF64_R_SYM(rel->r_info);
4272 sym = elf_sym_by_idx(obj, sym_idx);
4273 if (!sym) {
4274 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4275 relo_sec_name, sym_idx, i);
4276 return -LIBBPF_ERRNO__FORMAT;
4277 }
4278
4279 if (sym->st_shndx >= obj->efile.sec_cnt) {
4280 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4281 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4282 return -LIBBPF_ERRNO__FORMAT;
4283 }
4284
4285 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4286 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4287 relo_sec_name, (size_t)rel->r_offset, i);
4288 return -LIBBPF_ERRNO__FORMAT;
4289 }
4290
4291 insn_idx = rel->r_offset / BPF_INSN_SZ;
4292 /* relocations against static functions are recorded as
4293 * relocations against the section that contains a function;
4294 * in such case, symbol will be STT_SECTION and sym.st_name
4295 * will point to empty string (0), so fetch section name
4296 * instead
4297 */
4298 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4299 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4300 else
4301 sym_name = elf_sym_str(obj, sym->st_name);
4302 sym_name = sym_name ?: "<?";
4303
4304 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4305 relo_sec_name, i, insn_idx, sym_name);
4306
4307 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4308 if (!prog) {
4309 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4310 relo_sec_name, i, sec_name, insn_idx);
4311 continue;
4312 }
4313
4314 relos = libbpf_reallocarray(prog->reloc_desc,
4315 prog->nr_reloc + 1, sizeof(*relos));
4316 if (!relos)
4317 return -ENOMEM;
4318 prog->reloc_desc = relos;
4319
4320 /* adjust insn_idx to local BPF program frame of reference */
4321 insn_idx -= prog->sec_insn_off;
4322 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4323 insn_idx, sym_name, sym, rel);
4324 if (err)
4325 return err;
4326
4327 prog->nr_reloc++;
4328 }
4329 return 0;
4330 }
4331
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4332 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4333 {
4334 int id;
4335
4336 if (!obj->btf)
4337 return -ENOENT;
4338
4339 /* if it's BTF-defined map, we don't need to search for type IDs.
4340 * For struct_ops map, it does not need btf_key_type_id and
4341 * btf_value_type_id.
4342 */
4343 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4344 return 0;
4345
4346 /*
4347 * LLVM annotates global data differently in BTF, that is,
4348 * only as '.data', '.bss' or '.rodata'.
4349 */
4350 if (!bpf_map__is_internal(map))
4351 return -ENOENT;
4352
4353 id = btf__find_by_name(obj->btf, map->real_name);
4354 if (id < 0)
4355 return id;
4356
4357 map->btf_key_type_id = 0;
4358 map->btf_value_type_id = id;
4359 return 0;
4360 }
4361
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4362 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4363 {
4364 char file[PATH_MAX], buff[4096];
4365 FILE *fp;
4366 __u32 val;
4367 int err;
4368
4369 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4370 memset(info, 0, sizeof(*info));
4371
4372 fp = fopen(file, "re");
4373 if (!fp) {
4374 err = -errno;
4375 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4376 err);
4377 return err;
4378 }
4379
4380 while (fgets(buff, sizeof(buff), fp)) {
4381 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4382 info->type = val;
4383 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4384 info->key_size = val;
4385 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4386 info->value_size = val;
4387 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4388 info->max_entries = val;
4389 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4390 info->map_flags = val;
4391 }
4392
4393 fclose(fp);
4394
4395 return 0;
4396 }
4397
bpf_map__autocreate(const struct bpf_map * map)4398 bool bpf_map__autocreate(const struct bpf_map *map)
4399 {
4400 return map->autocreate;
4401 }
4402
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4403 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4404 {
4405 if (map->obj->loaded)
4406 return libbpf_err(-EBUSY);
4407
4408 map->autocreate = autocreate;
4409 return 0;
4410 }
4411
bpf_map__reuse_fd(struct bpf_map * map,int fd)4412 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4413 {
4414 struct bpf_map_info info;
4415 __u32 len = sizeof(info), name_len;
4416 int new_fd, err;
4417 char *new_name;
4418
4419 memset(&info, 0, len);
4420 err = bpf_map_get_info_by_fd(fd, &info, &len);
4421 if (err && errno == EINVAL)
4422 err = bpf_get_map_info_from_fdinfo(fd, &info);
4423 if (err)
4424 return libbpf_err(err);
4425
4426 name_len = strlen(info.name);
4427 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4428 new_name = strdup(map->name);
4429 else
4430 new_name = strdup(info.name);
4431
4432 if (!new_name)
4433 return libbpf_err(-errno);
4434
4435 /*
4436 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4437 * This is similar to what we do in ensure_good_fd(), but without
4438 * closing original FD.
4439 */
4440 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4441 if (new_fd < 0) {
4442 err = -errno;
4443 goto err_free_new_name;
4444 }
4445
4446 err = zclose(map->fd);
4447 if (err) {
4448 err = -errno;
4449 goto err_close_new_fd;
4450 }
4451 free(map->name);
4452
4453 map->fd = new_fd;
4454 map->name = new_name;
4455 map->def.type = info.type;
4456 map->def.key_size = info.key_size;
4457 map->def.value_size = info.value_size;
4458 map->def.max_entries = info.max_entries;
4459 map->def.map_flags = info.map_flags;
4460 map->btf_key_type_id = info.btf_key_type_id;
4461 map->btf_value_type_id = info.btf_value_type_id;
4462 map->reused = true;
4463 map->map_extra = info.map_extra;
4464
4465 return 0;
4466
4467 err_close_new_fd:
4468 close(new_fd);
4469 err_free_new_name:
4470 free(new_name);
4471 return libbpf_err(err);
4472 }
4473
bpf_map__max_entries(const struct bpf_map * map)4474 __u32 bpf_map__max_entries(const struct bpf_map *map)
4475 {
4476 return map->def.max_entries;
4477 }
4478
bpf_map__inner_map(struct bpf_map * map)4479 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4480 {
4481 if (!bpf_map_type__is_map_in_map(map->def.type))
4482 return errno = EINVAL, NULL;
4483
4484 return map->inner_map;
4485 }
4486
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4487 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4488 {
4489 if (map->obj->loaded)
4490 return libbpf_err(-EBUSY);
4491
4492 map->def.max_entries = max_entries;
4493
4494 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4495 if (map_is_ringbuf(map))
4496 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4497
4498 return 0;
4499 }
4500
4501 static int
bpf_object__probe_loading(struct bpf_object * obj)4502 bpf_object__probe_loading(struct bpf_object *obj)
4503 {
4504 char *cp, errmsg[STRERR_BUFSIZE];
4505 struct bpf_insn insns[] = {
4506 BPF_MOV64_IMM(BPF_REG_0, 0),
4507 BPF_EXIT_INSN(),
4508 };
4509 int ret, insn_cnt = ARRAY_SIZE(insns);
4510
4511 if (obj->gen_loader)
4512 return 0;
4513
4514 ret = bump_rlimit_memlock();
4515 if (ret)
4516 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4517
4518 /* make sure basic loading works */
4519 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4520 if (ret < 0)
4521 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4522 if (ret < 0) {
4523 ret = errno;
4524 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4525 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4526 "program. Make sure your kernel supports BPF "
4527 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4528 "set to big enough value.\n", __func__, cp, ret);
4529 return -ret;
4530 }
4531 close(ret);
4532
4533 return 0;
4534 }
4535
probe_fd(int fd)4536 static int probe_fd(int fd)
4537 {
4538 if (fd >= 0)
4539 close(fd);
4540 return fd >= 0;
4541 }
4542
probe_kern_prog_name(void)4543 static int probe_kern_prog_name(void)
4544 {
4545 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4546 struct bpf_insn insns[] = {
4547 BPF_MOV64_IMM(BPF_REG_0, 0),
4548 BPF_EXIT_INSN(),
4549 };
4550 union bpf_attr attr;
4551 int ret;
4552
4553 memset(&attr, 0, attr_sz);
4554 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4555 attr.license = ptr_to_u64("GPL");
4556 attr.insns = ptr_to_u64(insns);
4557 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4558 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4559
4560 /* make sure loading with name works */
4561 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4562 return probe_fd(ret);
4563 }
4564
probe_kern_global_data(void)4565 static int probe_kern_global_data(void)
4566 {
4567 char *cp, errmsg[STRERR_BUFSIZE];
4568 struct bpf_insn insns[] = {
4569 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4570 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4571 BPF_MOV64_IMM(BPF_REG_0, 0),
4572 BPF_EXIT_INSN(),
4573 };
4574 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4575
4576 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4577 if (map < 0) {
4578 ret = -errno;
4579 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4580 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4581 __func__, cp, -ret);
4582 return ret;
4583 }
4584
4585 insns[0].imm = map;
4586
4587 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4588 close(map);
4589 return probe_fd(ret);
4590 }
4591
probe_kern_btf(void)4592 static int probe_kern_btf(void)
4593 {
4594 static const char strs[] = "\0int";
4595 __u32 types[] = {
4596 /* int */
4597 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4598 };
4599
4600 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4601 strs, sizeof(strs)));
4602 }
4603
probe_kern_btf_func(void)4604 static int probe_kern_btf_func(void)
4605 {
4606 static const char strs[] = "\0int\0x\0a";
4607 /* void x(int a) {} */
4608 __u32 types[] = {
4609 /* int */
4610 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4611 /* FUNC_PROTO */ /* [2] */
4612 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4613 BTF_PARAM_ENC(7, 1),
4614 /* FUNC x */ /* [3] */
4615 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4616 };
4617
4618 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4619 strs, sizeof(strs)));
4620 }
4621
probe_kern_btf_func_global(void)4622 static int probe_kern_btf_func_global(void)
4623 {
4624 static const char strs[] = "\0int\0x\0a";
4625 /* static void x(int a) {} */
4626 __u32 types[] = {
4627 /* int */
4628 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4629 /* FUNC_PROTO */ /* [2] */
4630 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4631 BTF_PARAM_ENC(7, 1),
4632 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4633 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4634 };
4635
4636 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4637 strs, sizeof(strs)));
4638 }
4639
probe_kern_btf_datasec(void)4640 static int probe_kern_btf_datasec(void)
4641 {
4642 static const char strs[] = "\0x\0.data";
4643 /* static int a; */
4644 __u32 types[] = {
4645 /* int */
4646 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4647 /* VAR x */ /* [2] */
4648 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4649 BTF_VAR_STATIC,
4650 /* DATASEC val */ /* [3] */
4651 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4652 BTF_VAR_SECINFO_ENC(2, 0, 4),
4653 };
4654
4655 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4656 strs, sizeof(strs)));
4657 }
4658
probe_kern_btf_float(void)4659 static int probe_kern_btf_float(void)
4660 {
4661 static const char strs[] = "\0float";
4662 __u32 types[] = {
4663 /* float */
4664 BTF_TYPE_FLOAT_ENC(1, 4),
4665 };
4666
4667 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4668 strs, sizeof(strs)));
4669 }
4670
probe_kern_btf_decl_tag(void)4671 static int probe_kern_btf_decl_tag(void)
4672 {
4673 static const char strs[] = "\0tag";
4674 __u32 types[] = {
4675 /* int */
4676 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4677 /* VAR x */ /* [2] */
4678 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4679 BTF_VAR_STATIC,
4680 /* attr */
4681 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4682 };
4683
4684 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4685 strs, sizeof(strs)));
4686 }
4687
probe_kern_btf_type_tag(void)4688 static int probe_kern_btf_type_tag(void)
4689 {
4690 static const char strs[] = "\0tag";
4691 __u32 types[] = {
4692 /* int */
4693 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4694 /* attr */
4695 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4696 /* ptr */
4697 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4698 };
4699
4700 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4701 strs, sizeof(strs)));
4702 }
4703
probe_kern_array_mmap(void)4704 static int probe_kern_array_mmap(void)
4705 {
4706 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4707 int fd;
4708
4709 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4710 return probe_fd(fd);
4711 }
4712
probe_kern_exp_attach_type(void)4713 static int probe_kern_exp_attach_type(void)
4714 {
4715 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4716 struct bpf_insn insns[] = {
4717 BPF_MOV64_IMM(BPF_REG_0, 0),
4718 BPF_EXIT_INSN(),
4719 };
4720 int fd, insn_cnt = ARRAY_SIZE(insns);
4721
4722 /* use any valid combination of program type and (optional)
4723 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4724 * to see if kernel supports expected_attach_type field for
4725 * BPF_PROG_LOAD command
4726 */
4727 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4728 return probe_fd(fd);
4729 }
4730
probe_kern_probe_read_kernel(void)4731 static int probe_kern_probe_read_kernel(void)
4732 {
4733 struct bpf_insn insns[] = {
4734 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4735 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4736 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4737 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4738 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4739 BPF_EXIT_INSN(),
4740 };
4741 int fd, insn_cnt = ARRAY_SIZE(insns);
4742
4743 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4744 return probe_fd(fd);
4745 }
4746
probe_prog_bind_map(void)4747 static int probe_prog_bind_map(void)
4748 {
4749 char *cp, errmsg[STRERR_BUFSIZE];
4750 struct bpf_insn insns[] = {
4751 BPF_MOV64_IMM(BPF_REG_0, 0),
4752 BPF_EXIT_INSN(),
4753 };
4754 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4755
4756 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4757 if (map < 0) {
4758 ret = -errno;
4759 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4760 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4761 __func__, cp, -ret);
4762 return ret;
4763 }
4764
4765 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4766 if (prog < 0) {
4767 close(map);
4768 return 0;
4769 }
4770
4771 ret = bpf_prog_bind_map(prog, map, NULL);
4772
4773 close(map);
4774 close(prog);
4775
4776 return ret >= 0;
4777 }
4778
probe_module_btf(void)4779 static int probe_module_btf(void)
4780 {
4781 static const char strs[] = "\0int";
4782 __u32 types[] = {
4783 /* int */
4784 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4785 };
4786 struct bpf_btf_info info;
4787 __u32 len = sizeof(info);
4788 char name[16];
4789 int fd, err;
4790
4791 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4792 if (fd < 0)
4793 return 0; /* BTF not supported at all */
4794
4795 memset(&info, 0, sizeof(info));
4796 info.name = ptr_to_u64(name);
4797 info.name_len = sizeof(name);
4798
4799 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4800 * kernel's module BTF support coincides with support for
4801 * name/name_len fields in struct bpf_btf_info.
4802 */
4803 err = bpf_btf_get_info_by_fd(fd, &info, &len);
4804 close(fd);
4805 return !err;
4806 }
4807
probe_perf_link(void)4808 static int probe_perf_link(void)
4809 {
4810 struct bpf_insn insns[] = {
4811 BPF_MOV64_IMM(BPF_REG_0, 0),
4812 BPF_EXIT_INSN(),
4813 };
4814 int prog_fd, link_fd, err;
4815
4816 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4817 insns, ARRAY_SIZE(insns), NULL);
4818 if (prog_fd < 0)
4819 return -errno;
4820
4821 /* use invalid perf_event FD to get EBADF, if link is supported;
4822 * otherwise EINVAL should be returned
4823 */
4824 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4825 err = -errno; /* close() can clobber errno */
4826
4827 if (link_fd >= 0)
4828 close(link_fd);
4829 close(prog_fd);
4830
4831 return link_fd < 0 && err == -EBADF;
4832 }
4833
probe_uprobe_multi_link(void)4834 static int probe_uprobe_multi_link(void)
4835 {
4836 LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4837 .expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4838 );
4839 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4840 struct bpf_insn insns[] = {
4841 BPF_MOV64_IMM(BPF_REG_0, 0),
4842 BPF_EXIT_INSN(),
4843 };
4844 int prog_fd, link_fd, err;
4845 unsigned long offset = 0;
4846
4847 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4848 insns, ARRAY_SIZE(insns), &load_opts);
4849 if (prog_fd < 0)
4850 return -errno;
4851
4852 /* Creating uprobe in '/' binary should fail with -EBADF. */
4853 link_opts.uprobe_multi.path = "/";
4854 link_opts.uprobe_multi.offsets = &offset;
4855 link_opts.uprobe_multi.cnt = 1;
4856
4857 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4858 err = -errno; /* close() can clobber errno */
4859
4860 if (link_fd >= 0)
4861 close(link_fd);
4862 close(prog_fd);
4863
4864 return link_fd < 0 && err == -EBADF;
4865 }
4866
probe_kern_bpf_cookie(void)4867 static int probe_kern_bpf_cookie(void)
4868 {
4869 struct bpf_insn insns[] = {
4870 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4871 BPF_EXIT_INSN(),
4872 };
4873 int ret, insn_cnt = ARRAY_SIZE(insns);
4874
4875 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4876 return probe_fd(ret);
4877 }
4878
probe_kern_btf_enum64(void)4879 static int probe_kern_btf_enum64(void)
4880 {
4881 static const char strs[] = "\0enum64";
4882 __u32 types[] = {
4883 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4884 };
4885
4886 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4887 strs, sizeof(strs)));
4888 }
4889
4890 static int probe_kern_syscall_wrapper(void);
4891
4892 enum kern_feature_result {
4893 FEAT_UNKNOWN = 0,
4894 FEAT_SUPPORTED = 1,
4895 FEAT_MISSING = 2,
4896 };
4897
4898 typedef int (*feature_probe_fn)(void);
4899
4900 static struct kern_feature_desc {
4901 const char *desc;
4902 feature_probe_fn probe;
4903 enum kern_feature_result res;
4904 } feature_probes[__FEAT_CNT] = {
4905 [FEAT_PROG_NAME] = {
4906 "BPF program name", probe_kern_prog_name,
4907 },
4908 [FEAT_GLOBAL_DATA] = {
4909 "global variables", probe_kern_global_data,
4910 },
4911 [FEAT_BTF] = {
4912 "minimal BTF", probe_kern_btf,
4913 },
4914 [FEAT_BTF_FUNC] = {
4915 "BTF functions", probe_kern_btf_func,
4916 },
4917 [FEAT_BTF_GLOBAL_FUNC] = {
4918 "BTF global function", probe_kern_btf_func_global,
4919 },
4920 [FEAT_BTF_DATASEC] = {
4921 "BTF data section and variable", probe_kern_btf_datasec,
4922 },
4923 [FEAT_ARRAY_MMAP] = {
4924 "ARRAY map mmap()", probe_kern_array_mmap,
4925 },
4926 [FEAT_EXP_ATTACH_TYPE] = {
4927 "BPF_PROG_LOAD expected_attach_type attribute",
4928 probe_kern_exp_attach_type,
4929 },
4930 [FEAT_PROBE_READ_KERN] = {
4931 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4932 },
4933 [FEAT_PROG_BIND_MAP] = {
4934 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4935 },
4936 [FEAT_MODULE_BTF] = {
4937 "module BTF support", probe_module_btf,
4938 },
4939 [FEAT_BTF_FLOAT] = {
4940 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4941 },
4942 [FEAT_PERF_LINK] = {
4943 "BPF perf link support", probe_perf_link,
4944 },
4945 [FEAT_BTF_DECL_TAG] = {
4946 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4947 },
4948 [FEAT_BTF_TYPE_TAG] = {
4949 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4950 },
4951 [FEAT_MEMCG_ACCOUNT] = {
4952 "memcg-based memory accounting", probe_memcg_account,
4953 },
4954 [FEAT_BPF_COOKIE] = {
4955 "BPF cookie support", probe_kern_bpf_cookie,
4956 },
4957 [FEAT_BTF_ENUM64] = {
4958 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4959 },
4960 [FEAT_SYSCALL_WRAPPER] = {
4961 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4962 },
4963 [FEAT_UPROBE_MULTI_LINK] = {
4964 "BPF multi-uprobe link support", probe_uprobe_multi_link,
4965 },
4966 };
4967
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4968 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4969 {
4970 struct kern_feature_desc *feat = &feature_probes[feat_id];
4971 int ret;
4972
4973 if (obj && obj->gen_loader)
4974 /* To generate loader program assume the latest kernel
4975 * to avoid doing extra prog_load, map_create syscalls.
4976 */
4977 return true;
4978
4979 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4980 ret = feat->probe();
4981 if (ret > 0) {
4982 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4983 } else if (ret == 0) {
4984 WRITE_ONCE(feat->res, FEAT_MISSING);
4985 } else {
4986 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4987 WRITE_ONCE(feat->res, FEAT_MISSING);
4988 }
4989 }
4990
4991 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4992 }
4993
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4994 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4995 {
4996 struct bpf_map_info map_info;
4997 char msg[STRERR_BUFSIZE];
4998 __u32 map_info_len = sizeof(map_info);
4999 int err;
5000
5001 memset(&map_info, 0, map_info_len);
5002 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5003 if (err && errno == EINVAL)
5004 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5005 if (err) {
5006 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5007 libbpf_strerror_r(errno, msg, sizeof(msg)));
5008 return false;
5009 }
5010
5011 return (map_info.type == map->def.type &&
5012 map_info.key_size == map->def.key_size &&
5013 map_info.value_size == map->def.value_size &&
5014 map_info.max_entries == map->def.max_entries &&
5015 map_info.map_flags == map->def.map_flags &&
5016 map_info.map_extra == map->map_extra);
5017 }
5018
5019 static int
bpf_object__reuse_map(struct bpf_map * map)5020 bpf_object__reuse_map(struct bpf_map *map)
5021 {
5022 char *cp, errmsg[STRERR_BUFSIZE];
5023 int err, pin_fd;
5024
5025 pin_fd = bpf_obj_get(map->pin_path);
5026 if (pin_fd < 0) {
5027 err = -errno;
5028 if (err == -ENOENT) {
5029 pr_debug("found no pinned map to reuse at '%s'\n",
5030 map->pin_path);
5031 return 0;
5032 }
5033
5034 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5035 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5036 map->pin_path, cp);
5037 return err;
5038 }
5039
5040 if (!map_is_reuse_compat(map, pin_fd)) {
5041 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5042 map->pin_path);
5043 close(pin_fd);
5044 return -EINVAL;
5045 }
5046
5047 err = bpf_map__reuse_fd(map, pin_fd);
5048 close(pin_fd);
5049 if (err)
5050 return err;
5051
5052 map->pinned = true;
5053 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5054
5055 return 0;
5056 }
5057
5058 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5059 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5060 {
5061 enum libbpf_map_type map_type = map->libbpf_type;
5062 char *cp, errmsg[STRERR_BUFSIZE];
5063 int err, zero = 0;
5064
5065 if (obj->gen_loader) {
5066 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5067 map->mmaped, map->def.value_size);
5068 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5069 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5070 return 0;
5071 }
5072 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5073 if (err) {
5074 err = -errno;
5075 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5076 pr_warn("Error setting initial map(%s) contents: %s\n",
5077 map->name, cp);
5078 return err;
5079 }
5080
5081 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5082 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5083 err = bpf_map_freeze(map->fd);
5084 if (err) {
5085 err = -errno;
5086 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5087 pr_warn("Error freezing map(%s) as read-only: %s\n",
5088 map->name, cp);
5089 return err;
5090 }
5091 }
5092 return 0;
5093 }
5094
5095 static void bpf_map__destroy(struct bpf_map *map);
5096
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5097 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5098 {
5099 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5100 struct bpf_map_def *def = &map->def;
5101 const char *map_name = NULL;
5102 int err = 0;
5103
5104 if (kernel_supports(obj, FEAT_PROG_NAME))
5105 map_name = map->name;
5106 create_attr.map_ifindex = map->map_ifindex;
5107 create_attr.map_flags = def->map_flags;
5108 create_attr.numa_node = map->numa_node;
5109 create_attr.map_extra = map->map_extra;
5110
5111 if (bpf_map__is_struct_ops(map))
5112 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5113
5114 if (obj->btf && btf__fd(obj->btf) >= 0) {
5115 create_attr.btf_fd = btf__fd(obj->btf);
5116 create_attr.btf_key_type_id = map->btf_key_type_id;
5117 create_attr.btf_value_type_id = map->btf_value_type_id;
5118 }
5119
5120 if (bpf_map_type__is_map_in_map(def->type)) {
5121 if (map->inner_map) {
5122 err = bpf_object__create_map(obj, map->inner_map, true);
5123 if (err) {
5124 pr_warn("map '%s': failed to create inner map: %d\n",
5125 map->name, err);
5126 return err;
5127 }
5128 map->inner_map_fd = bpf_map__fd(map->inner_map);
5129 }
5130 if (map->inner_map_fd >= 0)
5131 create_attr.inner_map_fd = map->inner_map_fd;
5132 }
5133
5134 switch (def->type) {
5135 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5136 case BPF_MAP_TYPE_CGROUP_ARRAY:
5137 case BPF_MAP_TYPE_STACK_TRACE:
5138 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5139 case BPF_MAP_TYPE_HASH_OF_MAPS:
5140 case BPF_MAP_TYPE_DEVMAP:
5141 case BPF_MAP_TYPE_DEVMAP_HASH:
5142 case BPF_MAP_TYPE_CPUMAP:
5143 case BPF_MAP_TYPE_XSKMAP:
5144 case BPF_MAP_TYPE_SOCKMAP:
5145 case BPF_MAP_TYPE_SOCKHASH:
5146 case BPF_MAP_TYPE_QUEUE:
5147 case BPF_MAP_TYPE_STACK:
5148 create_attr.btf_fd = 0;
5149 create_attr.btf_key_type_id = 0;
5150 create_attr.btf_value_type_id = 0;
5151 map->btf_key_type_id = 0;
5152 map->btf_value_type_id = 0;
5153 default:
5154 break;
5155 }
5156
5157 if (obj->gen_loader) {
5158 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5159 def->key_size, def->value_size, def->max_entries,
5160 &create_attr, is_inner ? -1 : map - obj->maps);
5161 /* Pretend to have valid FD to pass various fd >= 0 checks.
5162 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5163 */
5164 map->fd = 0;
5165 } else {
5166 map->fd = bpf_map_create(def->type, map_name,
5167 def->key_size, def->value_size,
5168 def->max_entries, &create_attr);
5169 }
5170 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5171 create_attr.btf_value_type_id)) {
5172 char *cp, errmsg[STRERR_BUFSIZE];
5173
5174 err = -errno;
5175 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5176 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5177 map->name, cp, err);
5178 create_attr.btf_fd = 0;
5179 create_attr.btf_key_type_id = 0;
5180 create_attr.btf_value_type_id = 0;
5181 map->btf_key_type_id = 0;
5182 map->btf_value_type_id = 0;
5183 map->fd = bpf_map_create(def->type, map_name,
5184 def->key_size, def->value_size,
5185 def->max_entries, &create_attr);
5186 }
5187
5188 err = map->fd < 0 ? -errno : 0;
5189
5190 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5191 if (obj->gen_loader)
5192 map->inner_map->fd = -1;
5193 bpf_map__destroy(map->inner_map);
5194 zfree(&map->inner_map);
5195 }
5196
5197 return err;
5198 }
5199
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5200 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5201 {
5202 const struct bpf_map *targ_map;
5203 unsigned int i;
5204 int fd, err = 0;
5205
5206 for (i = 0; i < map->init_slots_sz; i++) {
5207 if (!map->init_slots[i])
5208 continue;
5209
5210 targ_map = map->init_slots[i];
5211 fd = bpf_map__fd(targ_map);
5212
5213 if (obj->gen_loader) {
5214 bpf_gen__populate_outer_map(obj->gen_loader,
5215 map - obj->maps, i,
5216 targ_map - obj->maps);
5217 } else {
5218 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5219 }
5220 if (err) {
5221 err = -errno;
5222 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5223 map->name, i, targ_map->name, fd, err);
5224 return err;
5225 }
5226 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5227 map->name, i, targ_map->name, fd);
5228 }
5229
5230 zfree(&map->init_slots);
5231 map->init_slots_sz = 0;
5232
5233 return 0;
5234 }
5235
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5236 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5237 {
5238 const struct bpf_program *targ_prog;
5239 unsigned int i;
5240 int fd, err;
5241
5242 if (obj->gen_loader)
5243 return -ENOTSUP;
5244
5245 for (i = 0; i < map->init_slots_sz; i++) {
5246 if (!map->init_slots[i])
5247 continue;
5248
5249 targ_prog = map->init_slots[i];
5250 fd = bpf_program__fd(targ_prog);
5251
5252 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5253 if (err) {
5254 err = -errno;
5255 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5256 map->name, i, targ_prog->name, fd, err);
5257 return err;
5258 }
5259 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5260 map->name, i, targ_prog->name, fd);
5261 }
5262
5263 zfree(&map->init_slots);
5264 map->init_slots_sz = 0;
5265
5266 return 0;
5267 }
5268
bpf_object_init_prog_arrays(struct bpf_object * obj)5269 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5270 {
5271 struct bpf_map *map;
5272 int i, err;
5273
5274 for (i = 0; i < obj->nr_maps; i++) {
5275 map = &obj->maps[i];
5276
5277 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5278 continue;
5279
5280 err = init_prog_array_slots(obj, map);
5281 if (err < 0) {
5282 zclose(map->fd);
5283 return err;
5284 }
5285 }
5286 return 0;
5287 }
5288
map_set_def_max_entries(struct bpf_map * map)5289 static int map_set_def_max_entries(struct bpf_map *map)
5290 {
5291 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5292 int nr_cpus;
5293
5294 nr_cpus = libbpf_num_possible_cpus();
5295 if (nr_cpus < 0) {
5296 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5297 map->name, nr_cpus);
5298 return nr_cpus;
5299 }
5300 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5301 map->def.max_entries = nr_cpus;
5302 }
5303
5304 return 0;
5305 }
5306
5307 static int
bpf_object__create_maps(struct bpf_object * obj)5308 bpf_object__create_maps(struct bpf_object *obj)
5309 {
5310 struct bpf_map *map;
5311 char *cp, errmsg[STRERR_BUFSIZE];
5312 unsigned int i, j;
5313 int err;
5314 bool retried;
5315
5316 for (i = 0; i < obj->nr_maps; i++) {
5317 map = &obj->maps[i];
5318
5319 /* To support old kernels, we skip creating global data maps
5320 * (.rodata, .data, .kconfig, etc); later on, during program
5321 * loading, if we detect that at least one of the to-be-loaded
5322 * programs is referencing any global data map, we'll error
5323 * out with program name and relocation index logged.
5324 * This approach allows to accommodate Clang emitting
5325 * unnecessary .rodata.str1.1 sections for string literals,
5326 * but also it allows to have CO-RE applications that use
5327 * global variables in some of BPF programs, but not others.
5328 * If those global variable-using programs are not loaded at
5329 * runtime due to bpf_program__set_autoload(prog, false),
5330 * bpf_object loading will succeed just fine even on old
5331 * kernels.
5332 */
5333 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5334 map->autocreate = false;
5335
5336 if (!map->autocreate) {
5337 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5338 continue;
5339 }
5340
5341 err = map_set_def_max_entries(map);
5342 if (err)
5343 goto err_out;
5344
5345 retried = false;
5346 retry:
5347 if (map->pin_path) {
5348 err = bpf_object__reuse_map(map);
5349 if (err) {
5350 pr_warn("map '%s': error reusing pinned map\n",
5351 map->name);
5352 goto err_out;
5353 }
5354 if (retried && map->fd < 0) {
5355 pr_warn("map '%s': cannot find pinned map\n",
5356 map->name);
5357 err = -ENOENT;
5358 goto err_out;
5359 }
5360 }
5361
5362 if (map->fd >= 0) {
5363 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5364 map->name, map->fd);
5365 } else {
5366 err = bpf_object__create_map(obj, map, false);
5367 if (err)
5368 goto err_out;
5369
5370 pr_debug("map '%s': created successfully, fd=%d\n",
5371 map->name, map->fd);
5372
5373 if (bpf_map__is_internal(map)) {
5374 err = bpf_object__populate_internal_map(obj, map);
5375 if (err < 0) {
5376 zclose(map->fd);
5377 goto err_out;
5378 }
5379 }
5380
5381 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5382 err = init_map_in_map_slots(obj, map);
5383 if (err < 0) {
5384 zclose(map->fd);
5385 goto err_out;
5386 }
5387 }
5388 }
5389
5390 if (map->pin_path && !map->pinned) {
5391 err = bpf_map__pin(map, NULL);
5392 if (err) {
5393 zclose(map->fd);
5394 if (!retried && err == -EEXIST) {
5395 retried = true;
5396 goto retry;
5397 }
5398 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5399 map->name, map->pin_path, err);
5400 goto err_out;
5401 }
5402 }
5403 }
5404
5405 return 0;
5406
5407 err_out:
5408 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5409 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5410 pr_perm_msg(err);
5411 for (j = 0; j < i; j++)
5412 zclose(obj->maps[j].fd);
5413 return err;
5414 }
5415
bpf_core_is_flavor_sep(const char * s)5416 static bool bpf_core_is_flavor_sep(const char *s)
5417 {
5418 /* check X___Y name pattern, where X and Y are not underscores */
5419 return s[0] != '_' && /* X */
5420 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5421 s[4] != '_'; /* Y */
5422 }
5423
5424 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5425 * before last triple underscore. Struct name part after last triple
5426 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5427 */
bpf_core_essential_name_len(const char * name)5428 size_t bpf_core_essential_name_len(const char *name)
5429 {
5430 size_t n = strlen(name);
5431 int i;
5432
5433 for (i = n - 5; i >= 0; i--) {
5434 if (bpf_core_is_flavor_sep(name + i))
5435 return i + 1;
5436 }
5437 return n;
5438 }
5439
bpf_core_free_cands(struct bpf_core_cand_list * cands)5440 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5441 {
5442 if (!cands)
5443 return;
5444
5445 free(cands->cands);
5446 free(cands);
5447 }
5448
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5449 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5450 size_t local_essent_len,
5451 const struct btf *targ_btf,
5452 const char *targ_btf_name,
5453 int targ_start_id,
5454 struct bpf_core_cand_list *cands)
5455 {
5456 struct bpf_core_cand *new_cands, *cand;
5457 const struct btf_type *t, *local_t;
5458 const char *targ_name, *local_name;
5459 size_t targ_essent_len;
5460 int n, i;
5461
5462 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5463 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5464
5465 n = btf__type_cnt(targ_btf);
5466 for (i = targ_start_id; i < n; i++) {
5467 t = btf__type_by_id(targ_btf, i);
5468 if (!btf_kind_core_compat(t, local_t))
5469 continue;
5470
5471 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5472 if (str_is_empty(targ_name))
5473 continue;
5474
5475 targ_essent_len = bpf_core_essential_name_len(targ_name);
5476 if (targ_essent_len != local_essent_len)
5477 continue;
5478
5479 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5480 continue;
5481
5482 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5483 local_cand->id, btf_kind_str(local_t),
5484 local_name, i, btf_kind_str(t), targ_name,
5485 targ_btf_name);
5486 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5487 sizeof(*cands->cands));
5488 if (!new_cands)
5489 return -ENOMEM;
5490
5491 cand = &new_cands[cands->len];
5492 cand->btf = targ_btf;
5493 cand->id = i;
5494
5495 cands->cands = new_cands;
5496 cands->len++;
5497 }
5498 return 0;
5499 }
5500
load_module_btfs(struct bpf_object * obj)5501 static int load_module_btfs(struct bpf_object *obj)
5502 {
5503 struct bpf_btf_info info;
5504 struct module_btf *mod_btf;
5505 struct btf *btf;
5506 char name[64];
5507 __u32 id = 0, len;
5508 int err, fd;
5509
5510 if (obj->btf_modules_loaded)
5511 return 0;
5512
5513 if (obj->gen_loader)
5514 return 0;
5515
5516 /* don't do this again, even if we find no module BTFs */
5517 obj->btf_modules_loaded = true;
5518
5519 /* kernel too old to support module BTFs */
5520 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5521 return 0;
5522
5523 while (true) {
5524 err = bpf_btf_get_next_id(id, &id);
5525 if (err && errno == ENOENT)
5526 return 0;
5527 if (err && errno == EPERM) {
5528 pr_debug("skipping module BTFs loading, missing privileges\n");
5529 return 0;
5530 }
5531 if (err) {
5532 err = -errno;
5533 pr_warn("failed to iterate BTF objects: %d\n", err);
5534 return err;
5535 }
5536
5537 fd = bpf_btf_get_fd_by_id(id);
5538 if (fd < 0) {
5539 if (errno == ENOENT)
5540 continue; /* expected race: BTF was unloaded */
5541 err = -errno;
5542 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5543 return err;
5544 }
5545
5546 len = sizeof(info);
5547 memset(&info, 0, sizeof(info));
5548 info.name = ptr_to_u64(name);
5549 info.name_len = sizeof(name);
5550
5551 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5552 if (err) {
5553 err = -errno;
5554 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5555 goto err_out;
5556 }
5557
5558 /* ignore non-module BTFs */
5559 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5560 close(fd);
5561 continue;
5562 }
5563
5564 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5565 err = libbpf_get_error(btf);
5566 if (err) {
5567 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5568 name, id, err);
5569 goto err_out;
5570 }
5571
5572 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5573 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5574 if (err)
5575 goto err_out;
5576
5577 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5578
5579 mod_btf->btf = btf;
5580 mod_btf->id = id;
5581 mod_btf->fd = fd;
5582 mod_btf->name = strdup(name);
5583 if (!mod_btf->name) {
5584 err = -ENOMEM;
5585 goto err_out;
5586 }
5587 continue;
5588
5589 err_out:
5590 close(fd);
5591 return err;
5592 }
5593
5594 return 0;
5595 }
5596
5597 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5598 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5599 {
5600 struct bpf_core_cand local_cand = {};
5601 struct bpf_core_cand_list *cands;
5602 const struct btf *main_btf;
5603 const struct btf_type *local_t;
5604 const char *local_name;
5605 size_t local_essent_len;
5606 int err, i;
5607
5608 local_cand.btf = local_btf;
5609 local_cand.id = local_type_id;
5610 local_t = btf__type_by_id(local_btf, local_type_id);
5611 if (!local_t)
5612 return ERR_PTR(-EINVAL);
5613
5614 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5615 if (str_is_empty(local_name))
5616 return ERR_PTR(-EINVAL);
5617 local_essent_len = bpf_core_essential_name_len(local_name);
5618
5619 cands = calloc(1, sizeof(*cands));
5620 if (!cands)
5621 return ERR_PTR(-ENOMEM);
5622
5623 /* Attempt to find target candidates in vmlinux BTF first */
5624 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5625 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5626 if (err)
5627 goto err_out;
5628
5629 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5630 if (cands->len)
5631 return cands;
5632
5633 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5634 if (obj->btf_vmlinux_override)
5635 return cands;
5636
5637 /* now look through module BTFs, trying to still find candidates */
5638 err = load_module_btfs(obj);
5639 if (err)
5640 goto err_out;
5641
5642 for (i = 0; i < obj->btf_module_cnt; i++) {
5643 err = bpf_core_add_cands(&local_cand, local_essent_len,
5644 obj->btf_modules[i].btf,
5645 obj->btf_modules[i].name,
5646 btf__type_cnt(obj->btf_vmlinux),
5647 cands);
5648 if (err)
5649 goto err_out;
5650 }
5651
5652 return cands;
5653 err_out:
5654 bpf_core_free_cands(cands);
5655 return ERR_PTR(err);
5656 }
5657
5658 /* Check local and target types for compatibility. This check is used for
5659 * type-based CO-RE relocations and follow slightly different rules than
5660 * field-based relocations. This function assumes that root types were already
5661 * checked for name match. Beyond that initial root-level name check, names
5662 * are completely ignored. Compatibility rules are as follows:
5663 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5664 * kind should match for local and target types (i.e., STRUCT is not
5665 * compatible with UNION);
5666 * - for ENUMs, the size is ignored;
5667 * - for INT, size and signedness are ignored;
5668 * - for ARRAY, dimensionality is ignored, element types are checked for
5669 * compatibility recursively;
5670 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5671 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5672 * - FUNC_PROTOs are compatible if they have compatible signature: same
5673 * number of input args and compatible return and argument types.
5674 * These rules are not set in stone and probably will be adjusted as we get
5675 * more experience with using BPF CO-RE relocations.
5676 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5677 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5678 const struct btf *targ_btf, __u32 targ_id)
5679 {
5680 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5681 }
5682
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5683 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5684 const struct btf *targ_btf, __u32 targ_id)
5685 {
5686 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5687 }
5688
bpf_core_hash_fn(const long key,void * ctx)5689 static size_t bpf_core_hash_fn(const long key, void *ctx)
5690 {
5691 return key;
5692 }
5693
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5694 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5695 {
5696 return k1 == k2;
5697 }
5698
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5699 static int record_relo_core(struct bpf_program *prog,
5700 const struct bpf_core_relo *core_relo, int insn_idx)
5701 {
5702 struct reloc_desc *relos, *relo;
5703
5704 relos = libbpf_reallocarray(prog->reloc_desc,
5705 prog->nr_reloc + 1, sizeof(*relos));
5706 if (!relos)
5707 return -ENOMEM;
5708 relo = &relos[prog->nr_reloc];
5709 relo->type = RELO_CORE;
5710 relo->insn_idx = insn_idx;
5711 relo->core_relo = core_relo;
5712 prog->reloc_desc = relos;
5713 prog->nr_reloc++;
5714 return 0;
5715 }
5716
find_relo_core(struct bpf_program * prog,int insn_idx)5717 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5718 {
5719 struct reloc_desc *relo;
5720 int i;
5721
5722 for (i = 0; i < prog->nr_reloc; i++) {
5723 relo = &prog->reloc_desc[i];
5724 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5725 continue;
5726
5727 return relo->core_relo;
5728 }
5729
5730 return NULL;
5731 }
5732
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5733 static int bpf_core_resolve_relo(struct bpf_program *prog,
5734 const struct bpf_core_relo *relo,
5735 int relo_idx,
5736 const struct btf *local_btf,
5737 struct hashmap *cand_cache,
5738 struct bpf_core_relo_res *targ_res)
5739 {
5740 struct bpf_core_spec specs_scratch[3] = {};
5741 struct bpf_core_cand_list *cands = NULL;
5742 const char *prog_name = prog->name;
5743 const struct btf_type *local_type;
5744 const char *local_name;
5745 __u32 local_id = relo->type_id;
5746 int err;
5747
5748 local_type = btf__type_by_id(local_btf, local_id);
5749 if (!local_type)
5750 return -EINVAL;
5751
5752 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5753 if (!local_name)
5754 return -EINVAL;
5755
5756 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5757 !hashmap__find(cand_cache, local_id, &cands)) {
5758 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5759 if (IS_ERR(cands)) {
5760 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5761 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5762 local_name, PTR_ERR(cands));
5763 return PTR_ERR(cands);
5764 }
5765 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5766 if (err) {
5767 bpf_core_free_cands(cands);
5768 return err;
5769 }
5770 }
5771
5772 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5773 targ_res);
5774 }
5775
5776 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5777 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5778 {
5779 const struct btf_ext_info_sec *sec;
5780 struct bpf_core_relo_res targ_res;
5781 const struct bpf_core_relo *rec;
5782 const struct btf_ext_info *seg;
5783 struct hashmap_entry *entry;
5784 struct hashmap *cand_cache = NULL;
5785 struct bpf_program *prog;
5786 struct bpf_insn *insn;
5787 const char *sec_name;
5788 int i, err = 0, insn_idx, sec_idx, sec_num;
5789
5790 if (obj->btf_ext->core_relo_info.len == 0)
5791 return 0;
5792
5793 if (targ_btf_path) {
5794 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5795 err = libbpf_get_error(obj->btf_vmlinux_override);
5796 if (err) {
5797 pr_warn("failed to parse target BTF: %d\n", err);
5798 return err;
5799 }
5800 }
5801
5802 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5803 if (IS_ERR(cand_cache)) {
5804 err = PTR_ERR(cand_cache);
5805 goto out;
5806 }
5807
5808 seg = &obj->btf_ext->core_relo_info;
5809 sec_num = 0;
5810 for_each_btf_ext_sec(seg, sec) {
5811 sec_idx = seg->sec_idxs[sec_num];
5812 sec_num++;
5813
5814 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5815 if (str_is_empty(sec_name)) {
5816 err = -EINVAL;
5817 goto out;
5818 }
5819
5820 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5821
5822 for_each_btf_ext_rec(seg, sec, i, rec) {
5823 if (rec->insn_off % BPF_INSN_SZ)
5824 return -EINVAL;
5825 insn_idx = rec->insn_off / BPF_INSN_SZ;
5826 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5827 if (!prog) {
5828 /* When __weak subprog is "overridden" by another instance
5829 * of the subprog from a different object file, linker still
5830 * appends all the .BTF.ext info that used to belong to that
5831 * eliminated subprogram.
5832 * This is similar to what x86-64 linker does for relocations.
5833 * So just ignore such relocations just like we ignore
5834 * subprog instructions when discovering subprograms.
5835 */
5836 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5837 sec_name, i, insn_idx);
5838 continue;
5839 }
5840 /* no need to apply CO-RE relocation if the program is
5841 * not going to be loaded
5842 */
5843 if (!prog->autoload)
5844 continue;
5845
5846 /* adjust insn_idx from section frame of reference to the local
5847 * program's frame of reference; (sub-)program code is not yet
5848 * relocated, so it's enough to just subtract in-section offset
5849 */
5850 insn_idx = insn_idx - prog->sec_insn_off;
5851 if (insn_idx >= prog->insns_cnt)
5852 return -EINVAL;
5853 insn = &prog->insns[insn_idx];
5854
5855 err = record_relo_core(prog, rec, insn_idx);
5856 if (err) {
5857 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5858 prog->name, i, err);
5859 goto out;
5860 }
5861
5862 if (prog->obj->gen_loader)
5863 continue;
5864
5865 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5866 if (err) {
5867 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5868 prog->name, i, err);
5869 goto out;
5870 }
5871
5872 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5873 if (err) {
5874 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5875 prog->name, i, insn_idx, err);
5876 goto out;
5877 }
5878 }
5879 }
5880
5881 out:
5882 /* obj->btf_vmlinux and module BTFs are freed after object load */
5883 btf__free(obj->btf_vmlinux_override);
5884 obj->btf_vmlinux_override = NULL;
5885
5886 if (!IS_ERR_OR_NULL(cand_cache)) {
5887 hashmap__for_each_entry(cand_cache, entry, i) {
5888 bpf_core_free_cands(entry->pvalue);
5889 }
5890 hashmap__free(cand_cache);
5891 }
5892 return err;
5893 }
5894
5895 /* base map load ldimm64 special constant, used also for log fixup logic */
5896 #define POISON_LDIMM64_MAP_BASE 2001000000
5897 #define POISON_LDIMM64_MAP_PFX "200100"
5898
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5899 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5900 int insn_idx, struct bpf_insn *insn,
5901 int map_idx, const struct bpf_map *map)
5902 {
5903 int i;
5904
5905 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5906 prog->name, relo_idx, insn_idx, map_idx, map->name);
5907
5908 /* we turn single ldimm64 into two identical invalid calls */
5909 for (i = 0; i < 2; i++) {
5910 insn->code = BPF_JMP | BPF_CALL;
5911 insn->dst_reg = 0;
5912 insn->src_reg = 0;
5913 insn->off = 0;
5914 /* if this instruction is reachable (not a dead code),
5915 * verifier will complain with something like:
5916 * invalid func unknown#2001000123
5917 * where lower 123 is map index into obj->maps[] array
5918 */
5919 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5920
5921 insn++;
5922 }
5923 }
5924
5925 /* unresolved kfunc call special constant, used also for log fixup logic */
5926 #define POISON_CALL_KFUNC_BASE 2002000000
5927 #define POISON_CALL_KFUNC_PFX "2002"
5928
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)5929 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5930 int insn_idx, struct bpf_insn *insn,
5931 int ext_idx, const struct extern_desc *ext)
5932 {
5933 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5934 prog->name, relo_idx, insn_idx, ext->name);
5935
5936 /* we turn kfunc call into invalid helper call with identifiable constant */
5937 insn->code = BPF_JMP | BPF_CALL;
5938 insn->dst_reg = 0;
5939 insn->src_reg = 0;
5940 insn->off = 0;
5941 /* if this instruction is reachable (not a dead code),
5942 * verifier will complain with something like:
5943 * invalid func unknown#2001000123
5944 * where lower 123 is extern index into obj->externs[] array
5945 */
5946 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5947 }
5948
5949 /* Relocate data references within program code:
5950 * - map references;
5951 * - global variable references;
5952 * - extern references.
5953 */
5954 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5955 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5956 {
5957 int i;
5958
5959 for (i = 0; i < prog->nr_reloc; i++) {
5960 struct reloc_desc *relo = &prog->reloc_desc[i];
5961 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5962 const struct bpf_map *map;
5963 struct extern_desc *ext;
5964
5965 switch (relo->type) {
5966 case RELO_LD64:
5967 map = &obj->maps[relo->map_idx];
5968 if (obj->gen_loader) {
5969 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5970 insn[0].imm = relo->map_idx;
5971 } else if (map->autocreate) {
5972 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5973 insn[0].imm = map->fd;
5974 } else {
5975 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5976 relo->map_idx, map);
5977 }
5978 break;
5979 case RELO_DATA:
5980 map = &obj->maps[relo->map_idx];
5981 insn[1].imm = insn[0].imm + relo->sym_off;
5982 if (obj->gen_loader) {
5983 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5984 insn[0].imm = relo->map_idx;
5985 } else if (map->autocreate) {
5986 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5987 insn[0].imm = map->fd;
5988 } else {
5989 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5990 relo->map_idx, map);
5991 }
5992 break;
5993 case RELO_EXTERN_LD64:
5994 ext = &obj->externs[relo->ext_idx];
5995 if (ext->type == EXT_KCFG) {
5996 if (obj->gen_loader) {
5997 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5998 insn[0].imm = obj->kconfig_map_idx;
5999 } else {
6000 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6001 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6002 }
6003 insn[1].imm = ext->kcfg.data_off;
6004 } else /* EXT_KSYM */ {
6005 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6006 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6007 insn[0].imm = ext->ksym.kernel_btf_id;
6008 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6009 } else { /* typeless ksyms or unresolved typed ksyms */
6010 insn[0].imm = (__u32)ext->ksym.addr;
6011 insn[1].imm = ext->ksym.addr >> 32;
6012 }
6013 }
6014 break;
6015 case RELO_EXTERN_CALL:
6016 ext = &obj->externs[relo->ext_idx];
6017 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6018 if (ext->is_set) {
6019 insn[0].imm = ext->ksym.kernel_btf_id;
6020 insn[0].off = ext->ksym.btf_fd_idx;
6021 } else { /* unresolved weak kfunc call */
6022 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6023 relo->ext_idx, ext);
6024 }
6025 break;
6026 case RELO_SUBPROG_ADDR:
6027 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6028 pr_warn("prog '%s': relo #%d: bad insn\n",
6029 prog->name, i);
6030 return -EINVAL;
6031 }
6032 /* handled already */
6033 break;
6034 case RELO_CALL:
6035 /* handled already */
6036 break;
6037 case RELO_CORE:
6038 /* will be handled by bpf_program_record_relos() */
6039 break;
6040 default:
6041 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6042 prog->name, i, relo->type);
6043 return -EINVAL;
6044 }
6045 }
6046
6047 return 0;
6048 }
6049
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6050 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6051 const struct bpf_program *prog,
6052 const struct btf_ext_info *ext_info,
6053 void **prog_info, __u32 *prog_rec_cnt,
6054 __u32 *prog_rec_sz)
6055 {
6056 void *copy_start = NULL, *copy_end = NULL;
6057 void *rec, *rec_end, *new_prog_info;
6058 const struct btf_ext_info_sec *sec;
6059 size_t old_sz, new_sz;
6060 int i, sec_num, sec_idx, off_adj;
6061
6062 sec_num = 0;
6063 for_each_btf_ext_sec(ext_info, sec) {
6064 sec_idx = ext_info->sec_idxs[sec_num];
6065 sec_num++;
6066 if (prog->sec_idx != sec_idx)
6067 continue;
6068
6069 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6070 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6071
6072 if (insn_off < prog->sec_insn_off)
6073 continue;
6074 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6075 break;
6076
6077 if (!copy_start)
6078 copy_start = rec;
6079 copy_end = rec + ext_info->rec_size;
6080 }
6081
6082 if (!copy_start)
6083 return -ENOENT;
6084
6085 /* append func/line info of a given (sub-)program to the main
6086 * program func/line info
6087 */
6088 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6089 new_sz = old_sz + (copy_end - copy_start);
6090 new_prog_info = realloc(*prog_info, new_sz);
6091 if (!new_prog_info)
6092 return -ENOMEM;
6093 *prog_info = new_prog_info;
6094 *prog_rec_cnt = new_sz / ext_info->rec_size;
6095 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6096
6097 /* Kernel instruction offsets are in units of 8-byte
6098 * instructions, while .BTF.ext instruction offsets generated
6099 * by Clang are in units of bytes. So convert Clang offsets
6100 * into kernel offsets and adjust offset according to program
6101 * relocated position.
6102 */
6103 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6104 rec = new_prog_info + old_sz;
6105 rec_end = new_prog_info + new_sz;
6106 for (; rec < rec_end; rec += ext_info->rec_size) {
6107 __u32 *insn_off = rec;
6108
6109 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6110 }
6111 *prog_rec_sz = ext_info->rec_size;
6112 return 0;
6113 }
6114
6115 return -ENOENT;
6116 }
6117
6118 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6119 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6120 struct bpf_program *main_prog,
6121 const struct bpf_program *prog)
6122 {
6123 int err;
6124
6125 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6126 * supprot func/line info
6127 */
6128 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6129 return 0;
6130
6131 /* only attempt func info relocation if main program's func_info
6132 * relocation was successful
6133 */
6134 if (main_prog != prog && !main_prog->func_info)
6135 goto line_info;
6136
6137 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6138 &main_prog->func_info,
6139 &main_prog->func_info_cnt,
6140 &main_prog->func_info_rec_size);
6141 if (err) {
6142 if (err != -ENOENT) {
6143 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6144 prog->name, err);
6145 return err;
6146 }
6147 if (main_prog->func_info) {
6148 /*
6149 * Some info has already been found but has problem
6150 * in the last btf_ext reloc. Must have to error out.
6151 */
6152 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6153 return err;
6154 }
6155 /* Have problem loading the very first info. Ignore the rest. */
6156 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6157 prog->name);
6158 }
6159
6160 line_info:
6161 /* don't relocate line info if main program's relocation failed */
6162 if (main_prog != prog && !main_prog->line_info)
6163 return 0;
6164
6165 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6166 &main_prog->line_info,
6167 &main_prog->line_info_cnt,
6168 &main_prog->line_info_rec_size);
6169 if (err) {
6170 if (err != -ENOENT) {
6171 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6172 prog->name, err);
6173 return err;
6174 }
6175 if (main_prog->line_info) {
6176 /*
6177 * Some info has already been found but has problem
6178 * in the last btf_ext reloc. Must have to error out.
6179 */
6180 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6181 return err;
6182 }
6183 /* Have problem loading the very first info. Ignore the rest. */
6184 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6185 prog->name);
6186 }
6187 return 0;
6188 }
6189
cmp_relo_by_insn_idx(const void * key,const void * elem)6190 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6191 {
6192 size_t insn_idx = *(const size_t *)key;
6193 const struct reloc_desc *relo = elem;
6194
6195 if (insn_idx == relo->insn_idx)
6196 return 0;
6197 return insn_idx < relo->insn_idx ? -1 : 1;
6198 }
6199
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6200 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6201 {
6202 if (!prog->nr_reloc)
6203 return NULL;
6204 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6205 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6206 }
6207
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6208 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6209 {
6210 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6211 struct reloc_desc *relos;
6212 int i;
6213
6214 if (main_prog == subprog)
6215 return 0;
6216 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6217 /* if new count is zero, reallocarray can return a valid NULL result;
6218 * in this case the previous pointer will be freed, so we *have to*
6219 * reassign old pointer to the new value (even if it's NULL)
6220 */
6221 if (!relos && new_cnt)
6222 return -ENOMEM;
6223 if (subprog->nr_reloc)
6224 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6225 sizeof(*relos) * subprog->nr_reloc);
6226
6227 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6228 relos[i].insn_idx += subprog->sub_insn_off;
6229 /* After insn_idx adjustment the 'relos' array is still sorted
6230 * by insn_idx and doesn't break bsearch.
6231 */
6232 main_prog->reloc_desc = relos;
6233 main_prog->nr_reloc = new_cnt;
6234 return 0;
6235 }
6236
6237 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6238 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6239 struct bpf_program *prog)
6240 {
6241 size_t sub_insn_idx, insn_idx, new_cnt;
6242 struct bpf_program *subprog;
6243 struct bpf_insn *insns, *insn;
6244 struct reloc_desc *relo;
6245 int err;
6246
6247 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6248 if (err)
6249 return err;
6250
6251 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6252 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6253 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6254 continue;
6255
6256 relo = find_prog_insn_relo(prog, insn_idx);
6257 if (relo && relo->type == RELO_EXTERN_CALL)
6258 /* kfunc relocations will be handled later
6259 * in bpf_object__relocate_data()
6260 */
6261 continue;
6262 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6263 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6264 prog->name, insn_idx, relo->type);
6265 return -LIBBPF_ERRNO__RELOC;
6266 }
6267 if (relo) {
6268 /* sub-program instruction index is a combination of
6269 * an offset of a symbol pointed to by relocation and
6270 * call instruction's imm field; for global functions,
6271 * call always has imm = -1, but for static functions
6272 * relocation is against STT_SECTION and insn->imm
6273 * points to a start of a static function
6274 *
6275 * for subprog addr relocation, the relo->sym_off + insn->imm is
6276 * the byte offset in the corresponding section.
6277 */
6278 if (relo->type == RELO_CALL)
6279 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6280 else
6281 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6282 } else if (insn_is_pseudo_func(insn)) {
6283 /*
6284 * RELO_SUBPROG_ADDR relo is always emitted even if both
6285 * functions are in the same section, so it shouldn't reach here.
6286 */
6287 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6288 prog->name, insn_idx);
6289 return -LIBBPF_ERRNO__RELOC;
6290 } else {
6291 /* if subprogram call is to a static function within
6292 * the same ELF section, there won't be any relocation
6293 * emitted, but it also means there is no additional
6294 * offset necessary, insns->imm is relative to
6295 * instruction's original position within the section
6296 */
6297 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6298 }
6299
6300 /* we enforce that sub-programs should be in .text section */
6301 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6302 if (!subprog) {
6303 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6304 prog->name);
6305 return -LIBBPF_ERRNO__RELOC;
6306 }
6307
6308 /* if it's the first call instruction calling into this
6309 * subprogram (meaning this subprog hasn't been processed
6310 * yet) within the context of current main program:
6311 * - append it at the end of main program's instructions blog;
6312 * - process is recursively, while current program is put on hold;
6313 * - if that subprogram calls some other not yet processes
6314 * subprogram, same thing will happen recursively until
6315 * there are no more unprocesses subprograms left to append
6316 * and relocate.
6317 */
6318 if (subprog->sub_insn_off == 0) {
6319 subprog->sub_insn_off = main_prog->insns_cnt;
6320
6321 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6322 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6323 if (!insns) {
6324 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6325 return -ENOMEM;
6326 }
6327 main_prog->insns = insns;
6328 main_prog->insns_cnt = new_cnt;
6329
6330 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6331 subprog->insns_cnt * sizeof(*insns));
6332
6333 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6334 main_prog->name, subprog->insns_cnt, subprog->name);
6335
6336 /* The subprog insns are now appended. Append its relos too. */
6337 err = append_subprog_relos(main_prog, subprog);
6338 if (err)
6339 return err;
6340 err = bpf_object__reloc_code(obj, main_prog, subprog);
6341 if (err)
6342 return err;
6343 }
6344
6345 /* main_prog->insns memory could have been re-allocated, so
6346 * calculate pointer again
6347 */
6348 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6349 /* calculate correct instruction position within current main
6350 * prog; each main prog can have a different set of
6351 * subprograms appended (potentially in different order as
6352 * well), so position of any subprog can be different for
6353 * different main programs
6354 */
6355 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6356
6357 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6358 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6359 }
6360
6361 return 0;
6362 }
6363
6364 /*
6365 * Relocate sub-program calls.
6366 *
6367 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6368 * main prog) is processed separately. For each subprog (non-entry functions,
6369 * that can be called from either entry progs or other subprogs) gets their
6370 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6371 * hasn't been yet appended and relocated within current main prog. Once its
6372 * relocated, sub_insn_off will point at the position within current main prog
6373 * where given subprog was appended. This will further be used to relocate all
6374 * the call instructions jumping into this subprog.
6375 *
6376 * We start with main program and process all call instructions. If the call
6377 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6378 * is zero), subprog instructions are appended at the end of main program's
6379 * instruction array. Then main program is "put on hold" while we recursively
6380 * process newly appended subprogram. If that subprogram calls into another
6381 * subprogram that hasn't been appended, new subprogram is appended again to
6382 * the *main* prog's instructions (subprog's instructions are always left
6383 * untouched, as they need to be in unmodified state for subsequent main progs
6384 * and subprog instructions are always sent only as part of a main prog) and
6385 * the process continues recursively. Once all the subprogs called from a main
6386 * prog or any of its subprogs are appended (and relocated), all their
6387 * positions within finalized instructions array are known, so it's easy to
6388 * rewrite call instructions with correct relative offsets, corresponding to
6389 * desired target subprog.
6390 *
6391 * Its important to realize that some subprogs might not be called from some
6392 * main prog and any of its called/used subprogs. Those will keep their
6393 * subprog->sub_insn_off as zero at all times and won't be appended to current
6394 * main prog and won't be relocated within the context of current main prog.
6395 * They might still be used from other main progs later.
6396 *
6397 * Visually this process can be shown as below. Suppose we have two main
6398 * programs mainA and mainB and BPF object contains three subprogs: subA,
6399 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6400 * subC both call subB:
6401 *
6402 * +--------+ +-------+
6403 * | v v |
6404 * +--+---+ +--+-+-+ +---+--+
6405 * | subA | | subB | | subC |
6406 * +--+---+ +------+ +---+--+
6407 * ^ ^
6408 * | |
6409 * +---+-------+ +------+----+
6410 * | mainA | | mainB |
6411 * +-----------+ +-----------+
6412 *
6413 * We'll start relocating mainA, will find subA, append it and start
6414 * processing sub A recursively:
6415 *
6416 * +-----------+------+
6417 * | mainA | subA |
6418 * +-----------+------+
6419 *
6420 * At this point we notice that subB is used from subA, so we append it and
6421 * relocate (there are no further subcalls from subB):
6422 *
6423 * +-----------+------+------+
6424 * | mainA | subA | subB |
6425 * +-----------+------+------+
6426 *
6427 * At this point, we relocate subA calls, then go one level up and finish with
6428 * relocatin mainA calls. mainA is done.
6429 *
6430 * For mainB process is similar but results in different order. We start with
6431 * mainB and skip subA and subB, as mainB never calls them (at least
6432 * directly), but we see subC is needed, so we append and start processing it:
6433 *
6434 * +-----------+------+
6435 * | mainB | subC |
6436 * +-----------+------+
6437 * Now we see subC needs subB, so we go back to it, append and relocate it:
6438 *
6439 * +-----------+------+------+
6440 * | mainB | subC | subB |
6441 * +-----------+------+------+
6442 *
6443 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6444 */
6445 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6446 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6447 {
6448 struct bpf_program *subprog;
6449 int i, err;
6450
6451 /* mark all subprogs as not relocated (yet) within the context of
6452 * current main program
6453 */
6454 for (i = 0; i < obj->nr_programs; i++) {
6455 subprog = &obj->programs[i];
6456 if (!prog_is_subprog(obj, subprog))
6457 continue;
6458
6459 subprog->sub_insn_off = 0;
6460 }
6461
6462 err = bpf_object__reloc_code(obj, prog, prog);
6463 if (err)
6464 return err;
6465
6466 return 0;
6467 }
6468
6469 static void
bpf_object__free_relocs(struct bpf_object * obj)6470 bpf_object__free_relocs(struct bpf_object *obj)
6471 {
6472 struct bpf_program *prog;
6473 int i;
6474
6475 /* free up relocation descriptors */
6476 for (i = 0; i < obj->nr_programs; i++) {
6477 prog = &obj->programs[i];
6478 zfree(&prog->reloc_desc);
6479 prog->nr_reloc = 0;
6480 }
6481 }
6482
cmp_relocs(const void * _a,const void * _b)6483 static int cmp_relocs(const void *_a, const void *_b)
6484 {
6485 const struct reloc_desc *a = _a;
6486 const struct reloc_desc *b = _b;
6487
6488 if (a->insn_idx != b->insn_idx)
6489 return a->insn_idx < b->insn_idx ? -1 : 1;
6490
6491 /* no two relocations should have the same insn_idx, but ... */
6492 if (a->type != b->type)
6493 return a->type < b->type ? -1 : 1;
6494
6495 return 0;
6496 }
6497
bpf_object__sort_relos(struct bpf_object * obj)6498 static void bpf_object__sort_relos(struct bpf_object *obj)
6499 {
6500 int i;
6501
6502 for (i = 0; i < obj->nr_programs; i++) {
6503 struct bpf_program *p = &obj->programs[i];
6504
6505 if (!p->nr_reloc)
6506 continue;
6507
6508 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6509 }
6510 }
6511
6512 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6513 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6514 {
6515 struct bpf_program *prog;
6516 size_t i, j;
6517 int err;
6518
6519 if (obj->btf_ext) {
6520 err = bpf_object__relocate_core(obj, targ_btf_path);
6521 if (err) {
6522 pr_warn("failed to perform CO-RE relocations: %d\n",
6523 err);
6524 return err;
6525 }
6526 bpf_object__sort_relos(obj);
6527 }
6528
6529 /* Before relocating calls pre-process relocations and mark
6530 * few ld_imm64 instructions that points to subprogs.
6531 * Otherwise bpf_object__reloc_code() later would have to consider
6532 * all ld_imm64 insns as relocation candidates. That would
6533 * reduce relocation speed, since amount of find_prog_insn_relo()
6534 * would increase and most of them will fail to find a relo.
6535 */
6536 for (i = 0; i < obj->nr_programs; i++) {
6537 prog = &obj->programs[i];
6538 for (j = 0; j < prog->nr_reloc; j++) {
6539 struct reloc_desc *relo = &prog->reloc_desc[j];
6540 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6541
6542 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6543 if (relo->type == RELO_SUBPROG_ADDR)
6544 insn[0].src_reg = BPF_PSEUDO_FUNC;
6545 }
6546 }
6547
6548 /* relocate subprogram calls and append used subprograms to main
6549 * programs; each copy of subprogram code needs to be relocated
6550 * differently for each main program, because its code location might
6551 * have changed.
6552 * Append subprog relos to main programs to allow data relos to be
6553 * processed after text is completely relocated.
6554 */
6555 for (i = 0; i < obj->nr_programs; i++) {
6556 prog = &obj->programs[i];
6557 /* sub-program's sub-calls are relocated within the context of
6558 * its main program only
6559 */
6560 if (prog_is_subprog(obj, prog))
6561 continue;
6562 if (!prog->autoload)
6563 continue;
6564
6565 err = bpf_object__relocate_calls(obj, prog);
6566 if (err) {
6567 pr_warn("prog '%s': failed to relocate calls: %d\n",
6568 prog->name, err);
6569 return err;
6570 }
6571 }
6572 /* Process data relos for main programs */
6573 for (i = 0; i < obj->nr_programs; i++) {
6574 prog = &obj->programs[i];
6575 if (prog_is_subprog(obj, prog))
6576 continue;
6577 if (!prog->autoload)
6578 continue;
6579 err = bpf_object__relocate_data(obj, prog);
6580 if (err) {
6581 pr_warn("prog '%s': failed to relocate data references: %d\n",
6582 prog->name, err);
6583 return err;
6584 }
6585 }
6586
6587 return 0;
6588 }
6589
6590 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6591 Elf64_Shdr *shdr, Elf_Data *data);
6592
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6593 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6594 Elf64_Shdr *shdr, Elf_Data *data)
6595 {
6596 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6597 int i, j, nrels, new_sz;
6598 const struct btf_var_secinfo *vi = NULL;
6599 const struct btf_type *sec, *var, *def;
6600 struct bpf_map *map = NULL, *targ_map = NULL;
6601 struct bpf_program *targ_prog = NULL;
6602 bool is_prog_array, is_map_in_map;
6603 const struct btf_member *member;
6604 const char *name, *mname, *type;
6605 unsigned int moff;
6606 Elf64_Sym *sym;
6607 Elf64_Rel *rel;
6608 void *tmp;
6609
6610 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6611 return -EINVAL;
6612 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6613 if (!sec)
6614 return -EINVAL;
6615
6616 nrels = shdr->sh_size / shdr->sh_entsize;
6617 for (i = 0; i < nrels; i++) {
6618 rel = elf_rel_by_idx(data, i);
6619 if (!rel) {
6620 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6621 return -LIBBPF_ERRNO__FORMAT;
6622 }
6623
6624 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6625 if (!sym) {
6626 pr_warn(".maps relo #%d: symbol %zx not found\n",
6627 i, (size_t)ELF64_R_SYM(rel->r_info));
6628 return -LIBBPF_ERRNO__FORMAT;
6629 }
6630 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6631
6632 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6633 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6634 (size_t)rel->r_offset, sym->st_name, name);
6635
6636 for (j = 0; j < obj->nr_maps; j++) {
6637 map = &obj->maps[j];
6638 if (map->sec_idx != obj->efile.btf_maps_shndx)
6639 continue;
6640
6641 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6642 if (vi->offset <= rel->r_offset &&
6643 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6644 break;
6645 }
6646 if (j == obj->nr_maps) {
6647 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6648 i, name, (size_t)rel->r_offset);
6649 return -EINVAL;
6650 }
6651
6652 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6653 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6654 type = is_map_in_map ? "map" : "prog";
6655 if (is_map_in_map) {
6656 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6657 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6658 i, name);
6659 return -LIBBPF_ERRNO__RELOC;
6660 }
6661 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6662 map->def.key_size != sizeof(int)) {
6663 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6664 i, map->name, sizeof(int));
6665 return -EINVAL;
6666 }
6667 targ_map = bpf_object__find_map_by_name(obj, name);
6668 if (!targ_map) {
6669 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6670 i, name);
6671 return -ESRCH;
6672 }
6673 } else if (is_prog_array) {
6674 targ_prog = bpf_object__find_program_by_name(obj, name);
6675 if (!targ_prog) {
6676 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6677 i, name);
6678 return -ESRCH;
6679 }
6680 if (targ_prog->sec_idx != sym->st_shndx ||
6681 targ_prog->sec_insn_off * 8 != sym->st_value ||
6682 prog_is_subprog(obj, targ_prog)) {
6683 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6684 i, name);
6685 return -LIBBPF_ERRNO__RELOC;
6686 }
6687 } else {
6688 return -EINVAL;
6689 }
6690
6691 var = btf__type_by_id(obj->btf, vi->type);
6692 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6693 if (btf_vlen(def) == 0)
6694 return -EINVAL;
6695 member = btf_members(def) + btf_vlen(def) - 1;
6696 mname = btf__name_by_offset(obj->btf, member->name_off);
6697 if (strcmp(mname, "values"))
6698 return -EINVAL;
6699
6700 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6701 if (rel->r_offset - vi->offset < moff)
6702 return -EINVAL;
6703
6704 moff = rel->r_offset - vi->offset - moff;
6705 /* here we use BPF pointer size, which is always 64 bit, as we
6706 * are parsing ELF that was built for BPF target
6707 */
6708 if (moff % bpf_ptr_sz)
6709 return -EINVAL;
6710 moff /= bpf_ptr_sz;
6711 if (moff >= map->init_slots_sz) {
6712 new_sz = moff + 1;
6713 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6714 if (!tmp)
6715 return -ENOMEM;
6716 map->init_slots = tmp;
6717 memset(map->init_slots + map->init_slots_sz, 0,
6718 (new_sz - map->init_slots_sz) * host_ptr_sz);
6719 map->init_slots_sz = new_sz;
6720 }
6721 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6722
6723 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6724 i, map->name, moff, type, name);
6725 }
6726
6727 return 0;
6728 }
6729
bpf_object__collect_relos(struct bpf_object * obj)6730 static int bpf_object__collect_relos(struct bpf_object *obj)
6731 {
6732 int i, err;
6733
6734 for (i = 0; i < obj->efile.sec_cnt; i++) {
6735 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6736 Elf64_Shdr *shdr;
6737 Elf_Data *data;
6738 int idx;
6739
6740 if (sec_desc->sec_type != SEC_RELO)
6741 continue;
6742
6743 shdr = sec_desc->shdr;
6744 data = sec_desc->data;
6745 idx = shdr->sh_info;
6746
6747 if (shdr->sh_type != SHT_REL) {
6748 pr_warn("internal error at %d\n", __LINE__);
6749 return -LIBBPF_ERRNO__INTERNAL;
6750 }
6751
6752 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6753 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6754 else if (idx == obj->efile.btf_maps_shndx)
6755 err = bpf_object__collect_map_relos(obj, shdr, data);
6756 else
6757 err = bpf_object__collect_prog_relos(obj, shdr, data);
6758 if (err)
6759 return err;
6760 }
6761
6762 bpf_object__sort_relos(obj);
6763 return 0;
6764 }
6765
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6766 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6767 {
6768 if (BPF_CLASS(insn->code) == BPF_JMP &&
6769 BPF_OP(insn->code) == BPF_CALL &&
6770 BPF_SRC(insn->code) == BPF_K &&
6771 insn->src_reg == 0 &&
6772 insn->dst_reg == 0) {
6773 *func_id = insn->imm;
6774 return true;
6775 }
6776 return false;
6777 }
6778
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6779 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6780 {
6781 struct bpf_insn *insn = prog->insns;
6782 enum bpf_func_id func_id;
6783 int i;
6784
6785 if (obj->gen_loader)
6786 return 0;
6787
6788 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6789 if (!insn_is_helper_call(insn, &func_id))
6790 continue;
6791
6792 /* on kernels that don't yet support
6793 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6794 * to bpf_probe_read() which works well for old kernels
6795 */
6796 switch (func_id) {
6797 case BPF_FUNC_probe_read_kernel:
6798 case BPF_FUNC_probe_read_user:
6799 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6800 insn->imm = BPF_FUNC_probe_read;
6801 break;
6802 case BPF_FUNC_probe_read_kernel_str:
6803 case BPF_FUNC_probe_read_user_str:
6804 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6805 insn->imm = BPF_FUNC_probe_read_str;
6806 break;
6807 default:
6808 break;
6809 }
6810 }
6811 return 0;
6812 }
6813
6814 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6815 int *btf_obj_fd, int *btf_type_id);
6816
6817 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6818 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6819 struct bpf_prog_load_opts *opts, long cookie)
6820 {
6821 enum sec_def_flags def = cookie;
6822
6823 /* old kernels might not support specifying expected_attach_type */
6824 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6825 opts->expected_attach_type = 0;
6826
6827 if (def & SEC_SLEEPABLE)
6828 opts->prog_flags |= BPF_F_SLEEPABLE;
6829
6830 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6831 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6832
6833 /* special check for usdt to use uprobe_multi link */
6834 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
6835 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6836
6837 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6838 int btf_obj_fd = 0, btf_type_id = 0, err;
6839 const char *attach_name;
6840
6841 attach_name = strchr(prog->sec_name, '/');
6842 if (!attach_name) {
6843 /* if BPF program is annotated with just SEC("fentry")
6844 * (or similar) without declaratively specifying
6845 * target, then it is expected that target will be
6846 * specified with bpf_program__set_attach_target() at
6847 * runtime before BPF object load step. If not, then
6848 * there is nothing to load into the kernel as BPF
6849 * verifier won't be able to validate BPF program
6850 * correctness anyways.
6851 */
6852 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6853 prog->name);
6854 return -EINVAL;
6855 }
6856 attach_name++; /* skip over / */
6857
6858 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6859 if (err)
6860 return err;
6861
6862 /* cache resolved BTF FD and BTF type ID in the prog */
6863 prog->attach_btf_obj_fd = btf_obj_fd;
6864 prog->attach_btf_id = btf_type_id;
6865
6866 /* but by now libbpf common logic is not utilizing
6867 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6868 * this callback is called after opts were populated by
6869 * libbpf, so this callback has to update opts explicitly here
6870 */
6871 opts->attach_btf_obj_fd = btf_obj_fd;
6872 opts->attach_btf_id = btf_type_id;
6873 }
6874 return 0;
6875 }
6876
6877 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6878
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6879 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6880 struct bpf_insn *insns, int insns_cnt,
6881 const char *license, __u32 kern_version, int *prog_fd)
6882 {
6883 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6884 const char *prog_name = NULL;
6885 char *cp, errmsg[STRERR_BUFSIZE];
6886 size_t log_buf_size = 0;
6887 char *log_buf = NULL, *tmp;
6888 int btf_fd, ret, err;
6889 bool own_log_buf = true;
6890 __u32 log_level = prog->log_level;
6891
6892 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6893 /*
6894 * The program type must be set. Most likely we couldn't find a proper
6895 * section definition at load time, and thus we didn't infer the type.
6896 */
6897 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6898 prog->name, prog->sec_name);
6899 return -EINVAL;
6900 }
6901
6902 if (!insns || !insns_cnt)
6903 return -EINVAL;
6904
6905 if (kernel_supports(obj, FEAT_PROG_NAME))
6906 prog_name = prog->name;
6907 load_attr.attach_prog_fd = prog->attach_prog_fd;
6908 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6909 load_attr.attach_btf_id = prog->attach_btf_id;
6910 load_attr.kern_version = kern_version;
6911 load_attr.prog_ifindex = prog->prog_ifindex;
6912
6913 /* specify func_info/line_info only if kernel supports them */
6914 btf_fd = bpf_object__btf_fd(obj);
6915 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6916 load_attr.prog_btf_fd = btf_fd;
6917 load_attr.func_info = prog->func_info;
6918 load_attr.func_info_rec_size = prog->func_info_rec_size;
6919 load_attr.func_info_cnt = prog->func_info_cnt;
6920 load_attr.line_info = prog->line_info;
6921 load_attr.line_info_rec_size = prog->line_info_rec_size;
6922 load_attr.line_info_cnt = prog->line_info_cnt;
6923 }
6924 load_attr.log_level = log_level;
6925 load_attr.prog_flags = prog->prog_flags;
6926 load_attr.fd_array = obj->fd_array;
6927
6928 /* adjust load_attr if sec_def provides custom preload callback */
6929 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6930 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6931 if (err < 0) {
6932 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6933 prog->name, err);
6934 return err;
6935 }
6936 insns = prog->insns;
6937 insns_cnt = prog->insns_cnt;
6938 }
6939
6940 /* allow prog_prepare_load_fn to change expected_attach_type */
6941 load_attr.expected_attach_type = prog->expected_attach_type;
6942
6943 if (obj->gen_loader) {
6944 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6945 license, insns, insns_cnt, &load_attr,
6946 prog - obj->programs);
6947 *prog_fd = -1;
6948 return 0;
6949 }
6950
6951 retry_load:
6952 /* if log_level is zero, we don't request logs initially even if
6953 * custom log_buf is specified; if the program load fails, then we'll
6954 * bump log_level to 1 and use either custom log_buf or we'll allocate
6955 * our own and retry the load to get details on what failed
6956 */
6957 if (log_level) {
6958 if (prog->log_buf) {
6959 log_buf = prog->log_buf;
6960 log_buf_size = prog->log_size;
6961 own_log_buf = false;
6962 } else if (obj->log_buf) {
6963 log_buf = obj->log_buf;
6964 log_buf_size = obj->log_size;
6965 own_log_buf = false;
6966 } else {
6967 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6968 tmp = realloc(log_buf, log_buf_size);
6969 if (!tmp) {
6970 ret = -ENOMEM;
6971 goto out;
6972 }
6973 log_buf = tmp;
6974 log_buf[0] = '\0';
6975 own_log_buf = true;
6976 }
6977 }
6978
6979 load_attr.log_buf = log_buf;
6980 load_attr.log_size = log_buf_size;
6981 load_attr.log_level = log_level;
6982
6983 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6984 if (ret >= 0) {
6985 if (log_level && own_log_buf) {
6986 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6987 prog->name, log_buf);
6988 }
6989
6990 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6991 struct bpf_map *map;
6992 int i;
6993
6994 for (i = 0; i < obj->nr_maps; i++) {
6995 map = &prog->obj->maps[i];
6996 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6997 continue;
6998
6999 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7000 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7001 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7002 prog->name, map->real_name, cp);
7003 /* Don't fail hard if can't bind rodata. */
7004 }
7005 }
7006 }
7007
7008 *prog_fd = ret;
7009 ret = 0;
7010 goto out;
7011 }
7012
7013 if (log_level == 0) {
7014 log_level = 1;
7015 goto retry_load;
7016 }
7017 /* On ENOSPC, increase log buffer size and retry, unless custom
7018 * log_buf is specified.
7019 * Be careful to not overflow u32, though. Kernel's log buf size limit
7020 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7021 * multiply by 2 unless we are sure we'll fit within 32 bits.
7022 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7023 */
7024 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7025 goto retry_load;
7026
7027 ret = -errno;
7028
7029 /* post-process verifier log to improve error descriptions */
7030 fixup_verifier_log(prog, log_buf, log_buf_size);
7031
7032 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7033 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7034 pr_perm_msg(ret);
7035
7036 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7037 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7038 prog->name, log_buf);
7039 }
7040
7041 out:
7042 if (own_log_buf)
7043 free(log_buf);
7044 return ret;
7045 }
7046
find_prev_line(char * buf,char * cur)7047 static char *find_prev_line(char *buf, char *cur)
7048 {
7049 char *p;
7050
7051 if (cur == buf) /* end of a log buf */
7052 return NULL;
7053
7054 p = cur - 1;
7055 while (p - 1 >= buf && *(p - 1) != '\n')
7056 p--;
7057
7058 return p;
7059 }
7060
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7061 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7062 char *orig, size_t orig_sz, const char *patch)
7063 {
7064 /* size of the remaining log content to the right from the to-be-replaced part */
7065 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7066 size_t patch_sz = strlen(patch);
7067
7068 if (patch_sz != orig_sz) {
7069 /* If patch line(s) are longer than original piece of verifier log,
7070 * shift log contents by (patch_sz - orig_sz) bytes to the right
7071 * starting from after to-be-replaced part of the log.
7072 *
7073 * If patch line(s) are shorter than original piece of verifier log,
7074 * shift log contents by (orig_sz - patch_sz) bytes to the left
7075 * starting from after to-be-replaced part of the log
7076 *
7077 * We need to be careful about not overflowing available
7078 * buf_sz capacity. If that's the case, we'll truncate the end
7079 * of the original log, as necessary.
7080 */
7081 if (patch_sz > orig_sz) {
7082 if (orig + patch_sz >= buf + buf_sz) {
7083 /* patch is big enough to cover remaining space completely */
7084 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7085 rem_sz = 0;
7086 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7087 /* patch causes part of remaining log to be truncated */
7088 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7089 }
7090 }
7091 /* shift remaining log to the right by calculated amount */
7092 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7093 }
7094
7095 memcpy(orig, patch, patch_sz);
7096 }
7097
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7098 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7099 char *buf, size_t buf_sz, size_t log_sz,
7100 char *line1, char *line2, char *line3)
7101 {
7102 /* Expected log for failed and not properly guarded CO-RE relocation:
7103 * line1 -> 123: (85) call unknown#195896080
7104 * line2 -> invalid func unknown#195896080
7105 * line3 -> <anything else or end of buffer>
7106 *
7107 * "123" is the index of the instruction that was poisoned. We extract
7108 * instruction index to find corresponding CO-RE relocation and
7109 * replace this part of the log with more relevant information about
7110 * failed CO-RE relocation.
7111 */
7112 const struct bpf_core_relo *relo;
7113 struct bpf_core_spec spec;
7114 char patch[512], spec_buf[256];
7115 int insn_idx, err, spec_len;
7116
7117 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7118 return;
7119
7120 relo = find_relo_core(prog, insn_idx);
7121 if (!relo)
7122 return;
7123
7124 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7125 if (err)
7126 return;
7127
7128 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7129 snprintf(patch, sizeof(patch),
7130 "%d: <invalid CO-RE relocation>\n"
7131 "failed to resolve CO-RE relocation %s%s\n",
7132 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7133
7134 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7135 }
7136
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7137 static void fixup_log_missing_map_load(struct bpf_program *prog,
7138 char *buf, size_t buf_sz, size_t log_sz,
7139 char *line1, char *line2, char *line3)
7140 {
7141 /* Expected log for failed and not properly guarded map reference:
7142 * line1 -> 123: (85) call unknown#2001000345
7143 * line2 -> invalid func unknown#2001000345
7144 * line3 -> <anything else or end of buffer>
7145 *
7146 * "123" is the index of the instruction that was poisoned.
7147 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7148 */
7149 struct bpf_object *obj = prog->obj;
7150 const struct bpf_map *map;
7151 int insn_idx, map_idx;
7152 char patch[128];
7153
7154 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7155 return;
7156
7157 map_idx -= POISON_LDIMM64_MAP_BASE;
7158 if (map_idx < 0 || map_idx >= obj->nr_maps)
7159 return;
7160 map = &obj->maps[map_idx];
7161
7162 snprintf(patch, sizeof(patch),
7163 "%d: <invalid BPF map reference>\n"
7164 "BPF map '%s' is referenced but wasn't created\n",
7165 insn_idx, map->name);
7166
7167 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7168 }
7169
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7170 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7171 char *buf, size_t buf_sz, size_t log_sz,
7172 char *line1, char *line2, char *line3)
7173 {
7174 /* Expected log for failed and not properly guarded kfunc call:
7175 * line1 -> 123: (85) call unknown#2002000345
7176 * line2 -> invalid func unknown#2002000345
7177 * line3 -> <anything else or end of buffer>
7178 *
7179 * "123" is the index of the instruction that was poisoned.
7180 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7181 */
7182 struct bpf_object *obj = prog->obj;
7183 const struct extern_desc *ext;
7184 int insn_idx, ext_idx;
7185 char patch[128];
7186
7187 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7188 return;
7189
7190 ext_idx -= POISON_CALL_KFUNC_BASE;
7191 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7192 return;
7193 ext = &obj->externs[ext_idx];
7194
7195 snprintf(patch, sizeof(patch),
7196 "%d: <invalid kfunc call>\n"
7197 "kfunc '%s' is referenced but wasn't resolved\n",
7198 insn_idx, ext->name);
7199
7200 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7201 }
7202
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7203 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7204 {
7205 /* look for familiar error patterns in last N lines of the log */
7206 const size_t max_last_line_cnt = 10;
7207 char *prev_line, *cur_line, *next_line;
7208 size_t log_sz;
7209 int i;
7210
7211 if (!buf)
7212 return;
7213
7214 log_sz = strlen(buf) + 1;
7215 next_line = buf + log_sz - 1;
7216
7217 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7218 cur_line = find_prev_line(buf, next_line);
7219 if (!cur_line)
7220 return;
7221
7222 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7223 prev_line = find_prev_line(buf, cur_line);
7224 if (!prev_line)
7225 continue;
7226
7227 /* failed CO-RE relocation case */
7228 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7229 prev_line, cur_line, next_line);
7230 return;
7231 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7232 prev_line = find_prev_line(buf, cur_line);
7233 if (!prev_line)
7234 continue;
7235
7236 /* reference to uncreated BPF map */
7237 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7238 prev_line, cur_line, next_line);
7239 return;
7240 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7241 prev_line = find_prev_line(buf, cur_line);
7242 if (!prev_line)
7243 continue;
7244
7245 /* reference to unresolved kfunc */
7246 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7247 prev_line, cur_line, next_line);
7248 return;
7249 }
7250 }
7251 }
7252
bpf_program_record_relos(struct bpf_program * prog)7253 static int bpf_program_record_relos(struct bpf_program *prog)
7254 {
7255 struct bpf_object *obj = prog->obj;
7256 int i;
7257
7258 for (i = 0; i < prog->nr_reloc; i++) {
7259 struct reloc_desc *relo = &prog->reloc_desc[i];
7260 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7261 int kind;
7262
7263 switch (relo->type) {
7264 case RELO_EXTERN_LD64:
7265 if (ext->type != EXT_KSYM)
7266 continue;
7267 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7268 BTF_KIND_VAR : BTF_KIND_FUNC;
7269 bpf_gen__record_extern(obj->gen_loader, ext->name,
7270 ext->is_weak, !ext->ksym.type_id,
7271 true, kind, relo->insn_idx);
7272 break;
7273 case RELO_EXTERN_CALL:
7274 bpf_gen__record_extern(obj->gen_loader, ext->name,
7275 ext->is_weak, false, false, BTF_KIND_FUNC,
7276 relo->insn_idx);
7277 break;
7278 case RELO_CORE: {
7279 struct bpf_core_relo cr = {
7280 .insn_off = relo->insn_idx * 8,
7281 .type_id = relo->core_relo->type_id,
7282 .access_str_off = relo->core_relo->access_str_off,
7283 .kind = relo->core_relo->kind,
7284 };
7285
7286 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7287 break;
7288 }
7289 default:
7290 continue;
7291 }
7292 }
7293 return 0;
7294 }
7295
7296 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7297 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7298 {
7299 struct bpf_program *prog;
7300 size_t i;
7301 int err;
7302
7303 for (i = 0; i < obj->nr_programs; i++) {
7304 prog = &obj->programs[i];
7305 err = bpf_object__sanitize_prog(obj, prog);
7306 if (err)
7307 return err;
7308 }
7309
7310 for (i = 0; i < obj->nr_programs; i++) {
7311 prog = &obj->programs[i];
7312 if (prog_is_subprog(obj, prog))
7313 continue;
7314 if (!prog->autoload) {
7315 pr_debug("prog '%s': skipped loading\n", prog->name);
7316 continue;
7317 }
7318 prog->log_level |= log_level;
7319
7320 if (obj->gen_loader)
7321 bpf_program_record_relos(prog);
7322
7323 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7324 obj->license, obj->kern_version, &prog->fd);
7325 if (err) {
7326 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7327 return err;
7328 }
7329 }
7330
7331 bpf_object__free_relocs(obj);
7332 return 0;
7333 }
7334
7335 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7336
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7337 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7338 {
7339 struct bpf_program *prog;
7340 int err;
7341
7342 bpf_object__for_each_program(prog, obj) {
7343 prog->sec_def = find_sec_def(prog->sec_name);
7344 if (!prog->sec_def) {
7345 /* couldn't guess, but user might manually specify */
7346 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7347 prog->name, prog->sec_name);
7348 continue;
7349 }
7350
7351 prog->type = prog->sec_def->prog_type;
7352 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7353
7354 /* sec_def can have custom callback which should be called
7355 * after bpf_program is initialized to adjust its properties
7356 */
7357 if (prog->sec_def->prog_setup_fn) {
7358 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7359 if (err < 0) {
7360 pr_warn("prog '%s': failed to initialize: %d\n",
7361 prog->name, err);
7362 return err;
7363 }
7364 }
7365 }
7366
7367 return 0;
7368 }
7369
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7370 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7371 const struct bpf_object_open_opts *opts)
7372 {
7373 const char *obj_name, *kconfig, *btf_tmp_path;
7374 struct bpf_object *obj;
7375 char tmp_name[64];
7376 int err;
7377 char *log_buf;
7378 size_t log_size;
7379 __u32 log_level;
7380
7381 if (elf_version(EV_CURRENT) == EV_NONE) {
7382 pr_warn("failed to init libelf for %s\n",
7383 path ? : "(mem buf)");
7384 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7385 }
7386
7387 if (!OPTS_VALID(opts, bpf_object_open_opts))
7388 return ERR_PTR(-EINVAL);
7389
7390 obj_name = OPTS_GET(opts, object_name, NULL);
7391 if (obj_buf) {
7392 if (!obj_name) {
7393 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7394 (unsigned long)obj_buf,
7395 (unsigned long)obj_buf_sz);
7396 obj_name = tmp_name;
7397 }
7398 path = obj_name;
7399 pr_debug("loading object '%s' from buffer\n", obj_name);
7400 }
7401
7402 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7403 log_size = OPTS_GET(opts, kernel_log_size, 0);
7404 log_level = OPTS_GET(opts, kernel_log_level, 0);
7405 if (log_size > UINT_MAX)
7406 return ERR_PTR(-EINVAL);
7407 if (log_size && !log_buf)
7408 return ERR_PTR(-EINVAL);
7409
7410 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7411 if (IS_ERR(obj))
7412 return obj;
7413
7414 obj->log_buf = log_buf;
7415 obj->log_size = log_size;
7416 obj->log_level = log_level;
7417
7418 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7419 if (btf_tmp_path) {
7420 if (strlen(btf_tmp_path) >= PATH_MAX) {
7421 err = -ENAMETOOLONG;
7422 goto out;
7423 }
7424 obj->btf_custom_path = strdup(btf_tmp_path);
7425 if (!obj->btf_custom_path) {
7426 err = -ENOMEM;
7427 goto out;
7428 }
7429 }
7430
7431 kconfig = OPTS_GET(opts, kconfig, NULL);
7432 if (kconfig) {
7433 obj->kconfig = strdup(kconfig);
7434 if (!obj->kconfig) {
7435 err = -ENOMEM;
7436 goto out;
7437 }
7438 }
7439
7440 err = bpf_object__elf_init(obj);
7441 err = err ? : bpf_object__check_endianness(obj);
7442 err = err ? : bpf_object__elf_collect(obj);
7443 err = err ? : bpf_object__collect_externs(obj);
7444 err = err ? : bpf_object_fixup_btf(obj);
7445 err = err ? : bpf_object__init_maps(obj, opts);
7446 err = err ? : bpf_object_init_progs(obj, opts);
7447 err = err ? : bpf_object__collect_relos(obj);
7448 if (err)
7449 goto out;
7450
7451 bpf_object__elf_finish(obj);
7452
7453 return obj;
7454 out:
7455 bpf_object__close(obj);
7456 return ERR_PTR(err);
7457 }
7458
7459 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7460 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7461 {
7462 if (!path)
7463 return libbpf_err_ptr(-EINVAL);
7464
7465 pr_debug("loading %s\n", path);
7466
7467 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7468 }
7469
bpf_object__open(const char * path)7470 struct bpf_object *bpf_object__open(const char *path)
7471 {
7472 return bpf_object__open_file(path, NULL);
7473 }
7474
7475 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7476 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7477 const struct bpf_object_open_opts *opts)
7478 {
7479 if (!obj_buf || obj_buf_sz == 0)
7480 return libbpf_err_ptr(-EINVAL);
7481
7482 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7483 }
7484
bpf_object_unload(struct bpf_object * obj)7485 static int bpf_object_unload(struct bpf_object *obj)
7486 {
7487 size_t i;
7488
7489 if (!obj)
7490 return libbpf_err(-EINVAL);
7491
7492 for (i = 0; i < obj->nr_maps; i++) {
7493 zclose(obj->maps[i].fd);
7494 if (obj->maps[i].st_ops)
7495 zfree(&obj->maps[i].st_ops->kern_vdata);
7496 }
7497
7498 for (i = 0; i < obj->nr_programs; i++)
7499 bpf_program__unload(&obj->programs[i]);
7500
7501 return 0;
7502 }
7503
bpf_object__sanitize_maps(struct bpf_object * obj)7504 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7505 {
7506 struct bpf_map *m;
7507
7508 bpf_object__for_each_map(m, obj) {
7509 if (!bpf_map__is_internal(m))
7510 continue;
7511 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7512 m->def.map_flags &= ~BPF_F_MMAPABLE;
7513 }
7514
7515 return 0;
7516 }
7517
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7518 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7519 {
7520 char sym_type, sym_name[500];
7521 unsigned long long sym_addr;
7522 int ret, err = 0;
7523 FILE *f;
7524
7525 f = fopen("/proc/kallsyms", "re");
7526 if (!f) {
7527 err = -errno;
7528 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7529 return err;
7530 }
7531
7532 while (true) {
7533 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7534 &sym_addr, &sym_type, sym_name);
7535 if (ret == EOF && feof(f))
7536 break;
7537 if (ret != 3) {
7538 pr_warn("failed to read kallsyms entry: %d\n", ret);
7539 err = -EINVAL;
7540 break;
7541 }
7542
7543 err = cb(sym_addr, sym_type, sym_name, ctx);
7544 if (err)
7545 break;
7546 }
7547
7548 fclose(f);
7549 return err;
7550 }
7551
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7552 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7553 const char *sym_name, void *ctx)
7554 {
7555 struct bpf_object *obj = ctx;
7556 const struct btf_type *t;
7557 struct extern_desc *ext;
7558
7559 ext = find_extern_by_name(obj, sym_name);
7560 if (!ext || ext->type != EXT_KSYM)
7561 return 0;
7562
7563 t = btf__type_by_id(obj->btf, ext->btf_id);
7564 if (!btf_is_var(t))
7565 return 0;
7566
7567 if (ext->is_set && ext->ksym.addr != sym_addr) {
7568 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7569 sym_name, ext->ksym.addr, sym_addr);
7570 return -EINVAL;
7571 }
7572 if (!ext->is_set) {
7573 ext->is_set = true;
7574 ext->ksym.addr = sym_addr;
7575 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7576 }
7577 return 0;
7578 }
7579
bpf_object__read_kallsyms_file(struct bpf_object * obj)7580 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7581 {
7582 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7583 }
7584
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7585 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7586 __u16 kind, struct btf **res_btf,
7587 struct module_btf **res_mod_btf)
7588 {
7589 struct module_btf *mod_btf;
7590 struct btf *btf;
7591 int i, id, err;
7592
7593 btf = obj->btf_vmlinux;
7594 mod_btf = NULL;
7595 id = btf__find_by_name_kind(btf, ksym_name, kind);
7596
7597 if (id == -ENOENT) {
7598 err = load_module_btfs(obj);
7599 if (err)
7600 return err;
7601
7602 for (i = 0; i < obj->btf_module_cnt; i++) {
7603 /* we assume module_btf's BTF FD is always >0 */
7604 mod_btf = &obj->btf_modules[i];
7605 btf = mod_btf->btf;
7606 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7607 if (id != -ENOENT)
7608 break;
7609 }
7610 }
7611 if (id <= 0)
7612 return -ESRCH;
7613
7614 *res_btf = btf;
7615 *res_mod_btf = mod_btf;
7616 return id;
7617 }
7618
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7619 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7620 struct extern_desc *ext)
7621 {
7622 const struct btf_type *targ_var, *targ_type;
7623 __u32 targ_type_id, local_type_id;
7624 struct module_btf *mod_btf = NULL;
7625 const char *targ_var_name;
7626 struct btf *btf = NULL;
7627 int id, err;
7628
7629 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7630 if (id < 0) {
7631 if (id == -ESRCH && ext->is_weak)
7632 return 0;
7633 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7634 ext->name);
7635 return id;
7636 }
7637
7638 /* find local type_id */
7639 local_type_id = ext->ksym.type_id;
7640
7641 /* find target type_id */
7642 targ_var = btf__type_by_id(btf, id);
7643 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7644 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7645
7646 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7647 btf, targ_type_id);
7648 if (err <= 0) {
7649 const struct btf_type *local_type;
7650 const char *targ_name, *local_name;
7651
7652 local_type = btf__type_by_id(obj->btf, local_type_id);
7653 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7654 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7655
7656 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7657 ext->name, local_type_id,
7658 btf_kind_str(local_type), local_name, targ_type_id,
7659 btf_kind_str(targ_type), targ_name);
7660 return -EINVAL;
7661 }
7662
7663 ext->is_set = true;
7664 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7665 ext->ksym.kernel_btf_id = id;
7666 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7667 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7668
7669 return 0;
7670 }
7671
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7672 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7673 struct extern_desc *ext)
7674 {
7675 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7676 struct module_btf *mod_btf = NULL;
7677 const struct btf_type *kern_func;
7678 struct btf *kern_btf = NULL;
7679 int ret;
7680
7681 local_func_proto_id = ext->ksym.type_id;
7682
7683 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7684 &mod_btf);
7685 if (kfunc_id < 0) {
7686 if (kfunc_id == -ESRCH && ext->is_weak)
7687 return 0;
7688 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7689 ext->name);
7690 return kfunc_id;
7691 }
7692
7693 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7694 kfunc_proto_id = kern_func->type;
7695
7696 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7697 kern_btf, kfunc_proto_id);
7698 if (ret <= 0) {
7699 if (ext->is_weak)
7700 return 0;
7701
7702 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7703 ext->name, local_func_proto_id,
7704 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7705 return -EINVAL;
7706 }
7707
7708 /* set index for module BTF fd in fd_array, if unset */
7709 if (mod_btf && !mod_btf->fd_array_idx) {
7710 /* insn->off is s16 */
7711 if (obj->fd_array_cnt == INT16_MAX) {
7712 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7713 ext->name, mod_btf->fd_array_idx);
7714 return -E2BIG;
7715 }
7716 /* Cannot use index 0 for module BTF fd */
7717 if (!obj->fd_array_cnt)
7718 obj->fd_array_cnt = 1;
7719
7720 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7721 obj->fd_array_cnt + 1);
7722 if (ret)
7723 return ret;
7724 mod_btf->fd_array_idx = obj->fd_array_cnt;
7725 /* we assume module BTF FD is always >0 */
7726 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7727 }
7728
7729 ext->is_set = true;
7730 ext->ksym.kernel_btf_id = kfunc_id;
7731 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7732 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7733 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7734 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7735 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7736 */
7737 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7738 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7739 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7740
7741 return 0;
7742 }
7743
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7744 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7745 {
7746 const struct btf_type *t;
7747 struct extern_desc *ext;
7748 int i, err;
7749
7750 for (i = 0; i < obj->nr_extern; i++) {
7751 ext = &obj->externs[i];
7752 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7753 continue;
7754
7755 if (obj->gen_loader) {
7756 ext->is_set = true;
7757 ext->ksym.kernel_btf_obj_fd = 0;
7758 ext->ksym.kernel_btf_id = 0;
7759 continue;
7760 }
7761 t = btf__type_by_id(obj->btf, ext->btf_id);
7762 if (btf_is_var(t))
7763 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7764 else
7765 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7766 if (err)
7767 return err;
7768 }
7769 return 0;
7770 }
7771
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7772 static int bpf_object__resolve_externs(struct bpf_object *obj,
7773 const char *extra_kconfig)
7774 {
7775 bool need_config = false, need_kallsyms = false;
7776 bool need_vmlinux_btf = false;
7777 struct extern_desc *ext;
7778 void *kcfg_data = NULL;
7779 int err, i;
7780
7781 if (obj->nr_extern == 0)
7782 return 0;
7783
7784 if (obj->kconfig_map_idx >= 0)
7785 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7786
7787 for (i = 0; i < obj->nr_extern; i++) {
7788 ext = &obj->externs[i];
7789
7790 if (ext->type == EXT_KSYM) {
7791 if (ext->ksym.type_id)
7792 need_vmlinux_btf = true;
7793 else
7794 need_kallsyms = true;
7795 continue;
7796 } else if (ext->type == EXT_KCFG) {
7797 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7798 __u64 value = 0;
7799
7800 /* Kconfig externs need actual /proc/config.gz */
7801 if (str_has_pfx(ext->name, "CONFIG_")) {
7802 need_config = true;
7803 continue;
7804 }
7805
7806 /* Virtual kcfg externs are customly handled by libbpf */
7807 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7808 value = get_kernel_version();
7809 if (!value) {
7810 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7811 return -EINVAL;
7812 }
7813 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7814 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7815 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7816 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7817 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7818 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7819 * __kconfig externs, where LINUX_ ones are virtual and filled out
7820 * customly by libbpf (their values don't come from Kconfig).
7821 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7822 * __weak, it defaults to zero value, just like for CONFIG_xxx
7823 * externs.
7824 */
7825 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7826 return -EINVAL;
7827 }
7828
7829 err = set_kcfg_value_num(ext, ext_ptr, value);
7830 if (err)
7831 return err;
7832 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7833 ext->name, (long long)value);
7834 } else {
7835 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7836 return -EINVAL;
7837 }
7838 }
7839 if (need_config && extra_kconfig) {
7840 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7841 if (err)
7842 return -EINVAL;
7843 need_config = false;
7844 for (i = 0; i < obj->nr_extern; i++) {
7845 ext = &obj->externs[i];
7846 if (ext->type == EXT_KCFG && !ext->is_set) {
7847 need_config = true;
7848 break;
7849 }
7850 }
7851 }
7852 if (need_config) {
7853 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7854 if (err)
7855 return -EINVAL;
7856 }
7857 if (need_kallsyms) {
7858 err = bpf_object__read_kallsyms_file(obj);
7859 if (err)
7860 return -EINVAL;
7861 }
7862 if (need_vmlinux_btf) {
7863 err = bpf_object__resolve_ksyms_btf_id(obj);
7864 if (err)
7865 return -EINVAL;
7866 }
7867 for (i = 0; i < obj->nr_extern; i++) {
7868 ext = &obj->externs[i];
7869
7870 if (!ext->is_set && !ext->is_weak) {
7871 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7872 return -ESRCH;
7873 } else if (!ext->is_set) {
7874 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7875 ext->name);
7876 }
7877 }
7878
7879 return 0;
7880 }
7881
bpf_map_prepare_vdata(const struct bpf_map * map)7882 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7883 {
7884 struct bpf_struct_ops *st_ops;
7885 __u32 i;
7886
7887 st_ops = map->st_ops;
7888 for (i = 0; i < btf_vlen(st_ops->type); i++) {
7889 struct bpf_program *prog = st_ops->progs[i];
7890 void *kern_data;
7891 int prog_fd;
7892
7893 if (!prog)
7894 continue;
7895
7896 prog_fd = bpf_program__fd(prog);
7897 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7898 *(unsigned long *)kern_data = prog_fd;
7899 }
7900 }
7901
bpf_object_prepare_struct_ops(struct bpf_object * obj)7902 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7903 {
7904 int i;
7905
7906 for (i = 0; i < obj->nr_maps; i++)
7907 if (bpf_map__is_struct_ops(&obj->maps[i]))
7908 bpf_map_prepare_vdata(&obj->maps[i]);
7909
7910 return 0;
7911 }
7912
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7913 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7914 {
7915 int err, i;
7916
7917 if (!obj)
7918 return libbpf_err(-EINVAL);
7919
7920 if (obj->loaded) {
7921 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7922 return libbpf_err(-EINVAL);
7923 }
7924
7925 if (obj->gen_loader)
7926 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7927
7928 err = bpf_object__probe_loading(obj);
7929 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7930 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7931 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7932 err = err ? : bpf_object__sanitize_maps(obj);
7933 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7934 err = err ? : bpf_object__create_maps(obj);
7935 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7936 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7937 err = err ? : bpf_object_init_prog_arrays(obj);
7938 err = err ? : bpf_object_prepare_struct_ops(obj);
7939
7940 if (obj->gen_loader) {
7941 /* reset FDs */
7942 if (obj->btf)
7943 btf__set_fd(obj->btf, -1);
7944 for (i = 0; i < obj->nr_maps; i++)
7945 obj->maps[i].fd = -1;
7946 if (!err)
7947 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7948 }
7949
7950 /* clean up fd_array */
7951 zfree(&obj->fd_array);
7952
7953 /* clean up module BTFs */
7954 for (i = 0; i < obj->btf_module_cnt; i++) {
7955 close(obj->btf_modules[i].fd);
7956 btf__free(obj->btf_modules[i].btf);
7957 free(obj->btf_modules[i].name);
7958 }
7959 free(obj->btf_modules);
7960
7961 /* clean up vmlinux BTF */
7962 btf__free(obj->btf_vmlinux);
7963 obj->btf_vmlinux = NULL;
7964
7965 obj->loaded = true; /* doesn't matter if successfully or not */
7966
7967 if (err)
7968 goto out;
7969
7970 return 0;
7971 out:
7972 /* unpin any maps that were auto-pinned during load */
7973 for (i = 0; i < obj->nr_maps; i++)
7974 if (obj->maps[i].pinned && !obj->maps[i].reused)
7975 bpf_map__unpin(&obj->maps[i], NULL);
7976
7977 bpf_object_unload(obj);
7978 pr_warn("failed to load object '%s'\n", obj->path);
7979 return libbpf_err(err);
7980 }
7981
bpf_object__load(struct bpf_object * obj)7982 int bpf_object__load(struct bpf_object *obj)
7983 {
7984 return bpf_object_load(obj, 0, NULL);
7985 }
7986
make_parent_dir(const char * path)7987 static int make_parent_dir(const char *path)
7988 {
7989 char *cp, errmsg[STRERR_BUFSIZE];
7990 char *dname, *dir;
7991 int err = 0;
7992
7993 dname = strdup(path);
7994 if (dname == NULL)
7995 return -ENOMEM;
7996
7997 dir = dirname(dname);
7998 if (mkdir(dir, 0700) && errno != EEXIST)
7999 err = -errno;
8000
8001 free(dname);
8002 if (err) {
8003 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8004 pr_warn("failed to mkdir %s: %s\n", path, cp);
8005 }
8006 return err;
8007 }
8008
check_path(const char * path)8009 static int check_path(const char *path)
8010 {
8011 char *cp, errmsg[STRERR_BUFSIZE];
8012 struct statfs st_fs;
8013 char *dname, *dir;
8014 int err = 0;
8015
8016 if (path == NULL)
8017 return -EINVAL;
8018
8019 dname = strdup(path);
8020 if (dname == NULL)
8021 return -ENOMEM;
8022
8023 dir = dirname(dname);
8024 if (statfs(dir, &st_fs)) {
8025 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8026 pr_warn("failed to statfs %s: %s\n", dir, cp);
8027 err = -errno;
8028 }
8029 free(dname);
8030
8031 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8032 pr_warn("specified path %s is not on BPF FS\n", path);
8033 err = -EINVAL;
8034 }
8035
8036 return err;
8037 }
8038
bpf_program__pin(struct bpf_program * prog,const char * path)8039 int bpf_program__pin(struct bpf_program *prog, const char *path)
8040 {
8041 char *cp, errmsg[STRERR_BUFSIZE];
8042 int err;
8043
8044 if (prog->fd < 0) {
8045 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8046 return libbpf_err(-EINVAL);
8047 }
8048
8049 err = make_parent_dir(path);
8050 if (err)
8051 return libbpf_err(err);
8052
8053 err = check_path(path);
8054 if (err)
8055 return libbpf_err(err);
8056
8057 if (bpf_obj_pin(prog->fd, path)) {
8058 err = -errno;
8059 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8060 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8061 return libbpf_err(err);
8062 }
8063
8064 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8065 return 0;
8066 }
8067
bpf_program__unpin(struct bpf_program * prog,const char * path)8068 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8069 {
8070 int err;
8071
8072 if (prog->fd < 0) {
8073 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8074 return libbpf_err(-EINVAL);
8075 }
8076
8077 err = check_path(path);
8078 if (err)
8079 return libbpf_err(err);
8080
8081 err = unlink(path);
8082 if (err)
8083 return libbpf_err(-errno);
8084
8085 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8086 return 0;
8087 }
8088
bpf_map__pin(struct bpf_map * map,const char * path)8089 int bpf_map__pin(struct bpf_map *map, const char *path)
8090 {
8091 char *cp, errmsg[STRERR_BUFSIZE];
8092 int err;
8093
8094 if (map == NULL) {
8095 pr_warn("invalid map pointer\n");
8096 return libbpf_err(-EINVAL);
8097 }
8098
8099 if (map->pin_path) {
8100 if (path && strcmp(path, map->pin_path)) {
8101 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8102 bpf_map__name(map), map->pin_path, path);
8103 return libbpf_err(-EINVAL);
8104 } else if (map->pinned) {
8105 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8106 bpf_map__name(map), map->pin_path);
8107 return 0;
8108 }
8109 } else {
8110 if (!path) {
8111 pr_warn("missing a path to pin map '%s' at\n",
8112 bpf_map__name(map));
8113 return libbpf_err(-EINVAL);
8114 } else if (map->pinned) {
8115 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8116 return libbpf_err(-EEXIST);
8117 }
8118
8119 map->pin_path = strdup(path);
8120 if (!map->pin_path) {
8121 err = -errno;
8122 goto out_err;
8123 }
8124 }
8125
8126 err = make_parent_dir(map->pin_path);
8127 if (err)
8128 return libbpf_err(err);
8129
8130 err = check_path(map->pin_path);
8131 if (err)
8132 return libbpf_err(err);
8133
8134 if (bpf_obj_pin(map->fd, map->pin_path)) {
8135 err = -errno;
8136 goto out_err;
8137 }
8138
8139 map->pinned = true;
8140 pr_debug("pinned map '%s'\n", map->pin_path);
8141
8142 return 0;
8143
8144 out_err:
8145 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8146 pr_warn("failed to pin map: %s\n", cp);
8147 return libbpf_err(err);
8148 }
8149
bpf_map__unpin(struct bpf_map * map,const char * path)8150 int bpf_map__unpin(struct bpf_map *map, const char *path)
8151 {
8152 int err;
8153
8154 if (map == NULL) {
8155 pr_warn("invalid map pointer\n");
8156 return libbpf_err(-EINVAL);
8157 }
8158
8159 if (map->pin_path) {
8160 if (path && strcmp(path, map->pin_path)) {
8161 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8162 bpf_map__name(map), map->pin_path, path);
8163 return libbpf_err(-EINVAL);
8164 }
8165 path = map->pin_path;
8166 } else if (!path) {
8167 pr_warn("no path to unpin map '%s' from\n",
8168 bpf_map__name(map));
8169 return libbpf_err(-EINVAL);
8170 }
8171
8172 err = check_path(path);
8173 if (err)
8174 return libbpf_err(err);
8175
8176 err = unlink(path);
8177 if (err != 0)
8178 return libbpf_err(-errno);
8179
8180 map->pinned = false;
8181 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8182
8183 return 0;
8184 }
8185
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8186 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8187 {
8188 char *new = NULL;
8189
8190 if (path) {
8191 new = strdup(path);
8192 if (!new)
8193 return libbpf_err(-errno);
8194 }
8195
8196 free(map->pin_path);
8197 map->pin_path = new;
8198 return 0;
8199 }
8200
8201 __alias(bpf_map__pin_path)
8202 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8203
bpf_map__pin_path(const struct bpf_map * map)8204 const char *bpf_map__pin_path(const struct bpf_map *map)
8205 {
8206 return map->pin_path;
8207 }
8208
bpf_map__is_pinned(const struct bpf_map * map)8209 bool bpf_map__is_pinned(const struct bpf_map *map)
8210 {
8211 return map->pinned;
8212 }
8213
sanitize_pin_path(char * s)8214 static void sanitize_pin_path(char *s)
8215 {
8216 /* bpffs disallows periods in path names */
8217 while (*s) {
8218 if (*s == '.')
8219 *s = '_';
8220 s++;
8221 }
8222 }
8223
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8224 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8225 {
8226 struct bpf_map *map;
8227 int err;
8228
8229 if (!obj)
8230 return libbpf_err(-ENOENT);
8231
8232 if (!obj->loaded) {
8233 pr_warn("object not yet loaded; load it first\n");
8234 return libbpf_err(-ENOENT);
8235 }
8236
8237 bpf_object__for_each_map(map, obj) {
8238 char *pin_path = NULL;
8239 char buf[PATH_MAX];
8240
8241 if (!map->autocreate)
8242 continue;
8243
8244 if (path) {
8245 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8246 if (err)
8247 goto err_unpin_maps;
8248 sanitize_pin_path(buf);
8249 pin_path = buf;
8250 } else if (!map->pin_path) {
8251 continue;
8252 }
8253
8254 err = bpf_map__pin(map, pin_path);
8255 if (err)
8256 goto err_unpin_maps;
8257 }
8258
8259 return 0;
8260
8261 err_unpin_maps:
8262 while ((map = bpf_object__prev_map(obj, map))) {
8263 if (!map->pin_path)
8264 continue;
8265
8266 bpf_map__unpin(map, NULL);
8267 }
8268
8269 return libbpf_err(err);
8270 }
8271
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8272 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8273 {
8274 struct bpf_map *map;
8275 int err;
8276
8277 if (!obj)
8278 return libbpf_err(-ENOENT);
8279
8280 bpf_object__for_each_map(map, obj) {
8281 char *pin_path = NULL;
8282 char buf[PATH_MAX];
8283
8284 if (path) {
8285 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8286 if (err)
8287 return libbpf_err(err);
8288 sanitize_pin_path(buf);
8289 pin_path = buf;
8290 } else if (!map->pin_path) {
8291 continue;
8292 }
8293
8294 err = bpf_map__unpin(map, pin_path);
8295 if (err)
8296 return libbpf_err(err);
8297 }
8298
8299 return 0;
8300 }
8301
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8302 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8303 {
8304 struct bpf_program *prog;
8305 char buf[PATH_MAX];
8306 int err;
8307
8308 if (!obj)
8309 return libbpf_err(-ENOENT);
8310
8311 if (!obj->loaded) {
8312 pr_warn("object not yet loaded; load it first\n");
8313 return libbpf_err(-ENOENT);
8314 }
8315
8316 bpf_object__for_each_program(prog, obj) {
8317 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8318 if (err)
8319 goto err_unpin_programs;
8320
8321 err = bpf_program__pin(prog, buf);
8322 if (err)
8323 goto err_unpin_programs;
8324 }
8325
8326 return 0;
8327
8328 err_unpin_programs:
8329 while ((prog = bpf_object__prev_program(obj, prog))) {
8330 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8331 continue;
8332
8333 bpf_program__unpin(prog, buf);
8334 }
8335
8336 return libbpf_err(err);
8337 }
8338
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8339 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8340 {
8341 struct bpf_program *prog;
8342 int err;
8343
8344 if (!obj)
8345 return libbpf_err(-ENOENT);
8346
8347 bpf_object__for_each_program(prog, obj) {
8348 char buf[PATH_MAX];
8349
8350 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8351 if (err)
8352 return libbpf_err(err);
8353
8354 err = bpf_program__unpin(prog, buf);
8355 if (err)
8356 return libbpf_err(err);
8357 }
8358
8359 return 0;
8360 }
8361
bpf_object__pin(struct bpf_object * obj,const char * path)8362 int bpf_object__pin(struct bpf_object *obj, const char *path)
8363 {
8364 int err;
8365
8366 err = bpf_object__pin_maps(obj, path);
8367 if (err)
8368 return libbpf_err(err);
8369
8370 err = bpf_object__pin_programs(obj, path);
8371 if (err) {
8372 bpf_object__unpin_maps(obj, path);
8373 return libbpf_err(err);
8374 }
8375
8376 return 0;
8377 }
8378
bpf_object__unpin(struct bpf_object * obj,const char * path)8379 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8380 {
8381 int err;
8382
8383 err = bpf_object__unpin_programs(obj, path);
8384 if (err)
8385 return libbpf_err(err);
8386
8387 err = bpf_object__unpin_maps(obj, path);
8388 if (err)
8389 return libbpf_err(err);
8390
8391 return 0;
8392 }
8393
bpf_map__destroy(struct bpf_map * map)8394 static void bpf_map__destroy(struct bpf_map *map)
8395 {
8396 if (map->inner_map) {
8397 bpf_map__destroy(map->inner_map);
8398 zfree(&map->inner_map);
8399 }
8400
8401 zfree(&map->init_slots);
8402 map->init_slots_sz = 0;
8403
8404 if (map->mmaped) {
8405 size_t mmap_sz;
8406
8407 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8408 munmap(map->mmaped, mmap_sz);
8409 map->mmaped = NULL;
8410 }
8411
8412 if (map->st_ops) {
8413 zfree(&map->st_ops->data);
8414 zfree(&map->st_ops->progs);
8415 zfree(&map->st_ops->kern_func_off);
8416 zfree(&map->st_ops);
8417 }
8418
8419 zfree(&map->name);
8420 zfree(&map->real_name);
8421 zfree(&map->pin_path);
8422
8423 if (map->fd >= 0)
8424 zclose(map->fd);
8425 }
8426
bpf_object__close(struct bpf_object * obj)8427 void bpf_object__close(struct bpf_object *obj)
8428 {
8429 size_t i;
8430
8431 if (IS_ERR_OR_NULL(obj))
8432 return;
8433
8434 usdt_manager_free(obj->usdt_man);
8435 obj->usdt_man = NULL;
8436
8437 bpf_gen__free(obj->gen_loader);
8438 bpf_object__elf_finish(obj);
8439 bpf_object_unload(obj);
8440 btf__free(obj->btf);
8441 btf__free(obj->btf_vmlinux);
8442 btf_ext__free(obj->btf_ext);
8443
8444 for (i = 0; i < obj->nr_maps; i++)
8445 bpf_map__destroy(&obj->maps[i]);
8446
8447 zfree(&obj->btf_custom_path);
8448 zfree(&obj->kconfig);
8449
8450 for (i = 0; i < obj->nr_extern; i++)
8451 zfree(&obj->externs[i].essent_name);
8452
8453 zfree(&obj->externs);
8454 obj->nr_extern = 0;
8455
8456 zfree(&obj->maps);
8457 obj->nr_maps = 0;
8458
8459 if (obj->programs && obj->nr_programs) {
8460 for (i = 0; i < obj->nr_programs; i++)
8461 bpf_program__exit(&obj->programs[i]);
8462 }
8463 zfree(&obj->programs);
8464
8465 free(obj);
8466 }
8467
bpf_object__name(const struct bpf_object * obj)8468 const char *bpf_object__name(const struct bpf_object *obj)
8469 {
8470 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8471 }
8472
bpf_object__kversion(const struct bpf_object * obj)8473 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8474 {
8475 return obj ? obj->kern_version : 0;
8476 }
8477
bpf_object__btf(const struct bpf_object * obj)8478 struct btf *bpf_object__btf(const struct bpf_object *obj)
8479 {
8480 return obj ? obj->btf : NULL;
8481 }
8482
bpf_object__btf_fd(const struct bpf_object * obj)8483 int bpf_object__btf_fd(const struct bpf_object *obj)
8484 {
8485 return obj->btf ? btf__fd(obj->btf) : -1;
8486 }
8487
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8488 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8489 {
8490 if (obj->loaded)
8491 return libbpf_err(-EINVAL);
8492
8493 obj->kern_version = kern_version;
8494
8495 return 0;
8496 }
8497
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8498 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8499 {
8500 struct bpf_gen *gen;
8501
8502 if (!opts)
8503 return -EFAULT;
8504 if (!OPTS_VALID(opts, gen_loader_opts))
8505 return -EINVAL;
8506 gen = calloc(sizeof(*gen), 1);
8507 if (!gen)
8508 return -ENOMEM;
8509 gen->opts = opts;
8510 obj->gen_loader = gen;
8511 return 0;
8512 }
8513
8514 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8515 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8516 bool forward)
8517 {
8518 size_t nr_programs = obj->nr_programs;
8519 ssize_t idx;
8520
8521 if (!nr_programs)
8522 return NULL;
8523
8524 if (!p)
8525 /* Iter from the beginning */
8526 return forward ? &obj->programs[0] :
8527 &obj->programs[nr_programs - 1];
8528
8529 if (p->obj != obj) {
8530 pr_warn("error: program handler doesn't match object\n");
8531 return errno = EINVAL, NULL;
8532 }
8533
8534 idx = (p - obj->programs) + (forward ? 1 : -1);
8535 if (idx >= obj->nr_programs || idx < 0)
8536 return NULL;
8537 return &obj->programs[idx];
8538 }
8539
8540 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8541 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8542 {
8543 struct bpf_program *prog = prev;
8544
8545 do {
8546 prog = __bpf_program__iter(prog, obj, true);
8547 } while (prog && prog_is_subprog(obj, prog));
8548
8549 return prog;
8550 }
8551
8552 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8553 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8554 {
8555 struct bpf_program *prog = next;
8556
8557 do {
8558 prog = __bpf_program__iter(prog, obj, false);
8559 } while (prog && prog_is_subprog(obj, prog));
8560
8561 return prog;
8562 }
8563
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8564 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8565 {
8566 prog->prog_ifindex = ifindex;
8567 }
8568
bpf_program__name(const struct bpf_program * prog)8569 const char *bpf_program__name(const struct bpf_program *prog)
8570 {
8571 return prog->name;
8572 }
8573
bpf_program__section_name(const struct bpf_program * prog)8574 const char *bpf_program__section_name(const struct bpf_program *prog)
8575 {
8576 return prog->sec_name;
8577 }
8578
bpf_program__autoload(const struct bpf_program * prog)8579 bool bpf_program__autoload(const struct bpf_program *prog)
8580 {
8581 return prog->autoload;
8582 }
8583
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8584 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8585 {
8586 if (prog->obj->loaded)
8587 return libbpf_err(-EINVAL);
8588
8589 prog->autoload = autoload;
8590 return 0;
8591 }
8592
bpf_program__autoattach(const struct bpf_program * prog)8593 bool bpf_program__autoattach(const struct bpf_program *prog)
8594 {
8595 return prog->autoattach;
8596 }
8597
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)8598 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8599 {
8600 prog->autoattach = autoattach;
8601 }
8602
bpf_program__insns(const struct bpf_program * prog)8603 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8604 {
8605 return prog->insns;
8606 }
8607
bpf_program__insn_cnt(const struct bpf_program * prog)8608 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8609 {
8610 return prog->insns_cnt;
8611 }
8612
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8613 int bpf_program__set_insns(struct bpf_program *prog,
8614 struct bpf_insn *new_insns, size_t new_insn_cnt)
8615 {
8616 struct bpf_insn *insns;
8617
8618 if (prog->obj->loaded)
8619 return -EBUSY;
8620
8621 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8622 /* NULL is a valid return from reallocarray if the new count is zero */
8623 if (!insns && new_insn_cnt) {
8624 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8625 return -ENOMEM;
8626 }
8627 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8628
8629 prog->insns = insns;
8630 prog->insns_cnt = new_insn_cnt;
8631 return 0;
8632 }
8633
bpf_program__fd(const struct bpf_program * prog)8634 int bpf_program__fd(const struct bpf_program *prog)
8635 {
8636 if (!prog)
8637 return libbpf_err(-EINVAL);
8638
8639 if (prog->fd < 0)
8640 return libbpf_err(-ENOENT);
8641
8642 return prog->fd;
8643 }
8644
8645 __alias(bpf_program__type)
8646 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8647
bpf_program__type(const struct bpf_program * prog)8648 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8649 {
8650 return prog->type;
8651 }
8652
8653 static size_t custom_sec_def_cnt;
8654 static struct bpf_sec_def *custom_sec_defs;
8655 static struct bpf_sec_def custom_fallback_def;
8656 static bool has_custom_fallback_def;
8657 static int last_custom_sec_def_handler_id;
8658
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8659 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8660 {
8661 if (prog->obj->loaded)
8662 return libbpf_err(-EBUSY);
8663
8664 /* if type is not changed, do nothing */
8665 if (prog->type == type)
8666 return 0;
8667
8668 prog->type = type;
8669
8670 /* If a program type was changed, we need to reset associated SEC()
8671 * handler, as it will be invalid now. The only exception is a generic
8672 * fallback handler, which by definition is program type-agnostic and
8673 * is a catch-all custom handler, optionally set by the application,
8674 * so should be able to handle any type of BPF program.
8675 */
8676 if (prog->sec_def != &custom_fallback_def)
8677 prog->sec_def = NULL;
8678 return 0;
8679 }
8680
8681 __alias(bpf_program__expected_attach_type)
8682 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8683
bpf_program__expected_attach_type(const struct bpf_program * prog)8684 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8685 {
8686 return prog->expected_attach_type;
8687 }
8688
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8689 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8690 enum bpf_attach_type type)
8691 {
8692 if (prog->obj->loaded)
8693 return libbpf_err(-EBUSY);
8694
8695 prog->expected_attach_type = type;
8696 return 0;
8697 }
8698
bpf_program__flags(const struct bpf_program * prog)8699 __u32 bpf_program__flags(const struct bpf_program *prog)
8700 {
8701 return prog->prog_flags;
8702 }
8703
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8704 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8705 {
8706 if (prog->obj->loaded)
8707 return libbpf_err(-EBUSY);
8708
8709 prog->prog_flags = flags;
8710 return 0;
8711 }
8712
bpf_program__log_level(const struct bpf_program * prog)8713 __u32 bpf_program__log_level(const struct bpf_program *prog)
8714 {
8715 return prog->log_level;
8716 }
8717
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8718 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8719 {
8720 if (prog->obj->loaded)
8721 return libbpf_err(-EBUSY);
8722
8723 prog->log_level = log_level;
8724 return 0;
8725 }
8726
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8727 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8728 {
8729 *log_size = prog->log_size;
8730 return prog->log_buf;
8731 }
8732
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8733 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8734 {
8735 if (log_size && !log_buf)
8736 return -EINVAL;
8737 if (prog->log_size > UINT_MAX)
8738 return -EINVAL;
8739 if (prog->obj->loaded)
8740 return -EBUSY;
8741
8742 prog->log_buf = log_buf;
8743 prog->log_size = log_size;
8744 return 0;
8745 }
8746
8747 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8748 .sec = (char *)sec_pfx, \
8749 .prog_type = BPF_PROG_TYPE_##ptype, \
8750 .expected_attach_type = atype, \
8751 .cookie = (long)(flags), \
8752 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8753 __VA_ARGS__ \
8754 }
8755
8756 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8757 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8758 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8759 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8760 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8761 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8762 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8763 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8764 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8765 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8766 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8767
8768 static const struct bpf_sec_def section_defs[] = {
8769 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8770 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8771 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8772 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8773 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8774 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8775 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8776 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8777 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8778 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8779 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8780 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8781 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8782 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8783 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8784 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8785 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8786 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
8787 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8788 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8789 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
8790 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8791 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8792 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8793 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8794 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8795 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8796 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8797 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8798 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8799 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8800 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8801 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8802 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8803 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8804 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8805 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8806 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8807 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8808 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8809 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8810 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8811 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8812 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8813 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8814 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8815 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8816 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8817 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8818 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8819 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8820 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8821 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8822 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8823 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8824 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8825 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8826 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8827 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8828 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8829 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8830 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8831 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8832 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8833 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8834 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8835 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8836 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8837 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8838 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8839 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8840 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8841 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8842 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8843 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8844 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8845 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8846 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8847 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8848 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8849 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8850 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8851 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8852 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8853 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8854 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8855 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8856 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8857 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8858 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
8859 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8860 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
8861 };
8862
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)8863 int libbpf_register_prog_handler(const char *sec,
8864 enum bpf_prog_type prog_type,
8865 enum bpf_attach_type exp_attach_type,
8866 const struct libbpf_prog_handler_opts *opts)
8867 {
8868 struct bpf_sec_def *sec_def;
8869
8870 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8871 return libbpf_err(-EINVAL);
8872
8873 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8874 return libbpf_err(-E2BIG);
8875
8876 if (sec) {
8877 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8878 sizeof(*sec_def));
8879 if (!sec_def)
8880 return libbpf_err(-ENOMEM);
8881
8882 custom_sec_defs = sec_def;
8883 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8884 } else {
8885 if (has_custom_fallback_def)
8886 return libbpf_err(-EBUSY);
8887
8888 sec_def = &custom_fallback_def;
8889 }
8890
8891 sec_def->sec = sec ? strdup(sec) : NULL;
8892 if (sec && !sec_def->sec)
8893 return libbpf_err(-ENOMEM);
8894
8895 sec_def->prog_type = prog_type;
8896 sec_def->expected_attach_type = exp_attach_type;
8897 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8898
8899 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8900 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8901 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8902
8903 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8904
8905 if (sec)
8906 custom_sec_def_cnt++;
8907 else
8908 has_custom_fallback_def = true;
8909
8910 return sec_def->handler_id;
8911 }
8912
libbpf_unregister_prog_handler(int handler_id)8913 int libbpf_unregister_prog_handler(int handler_id)
8914 {
8915 struct bpf_sec_def *sec_defs;
8916 int i;
8917
8918 if (handler_id <= 0)
8919 return libbpf_err(-EINVAL);
8920
8921 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8922 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8923 has_custom_fallback_def = false;
8924 return 0;
8925 }
8926
8927 for (i = 0; i < custom_sec_def_cnt; i++) {
8928 if (custom_sec_defs[i].handler_id == handler_id)
8929 break;
8930 }
8931
8932 if (i == custom_sec_def_cnt)
8933 return libbpf_err(-ENOENT);
8934
8935 free(custom_sec_defs[i].sec);
8936 for (i = i + 1; i < custom_sec_def_cnt; i++)
8937 custom_sec_defs[i - 1] = custom_sec_defs[i];
8938 custom_sec_def_cnt--;
8939
8940 /* try to shrink the array, but it's ok if we couldn't */
8941 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8942 /* if new count is zero, reallocarray can return a valid NULL result;
8943 * in this case the previous pointer will be freed, so we *have to*
8944 * reassign old pointer to the new value (even if it's NULL)
8945 */
8946 if (sec_defs || custom_sec_def_cnt == 0)
8947 custom_sec_defs = sec_defs;
8948
8949 return 0;
8950 }
8951
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)8952 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8953 {
8954 size_t len = strlen(sec_def->sec);
8955
8956 /* "type/" always has to have proper SEC("type/extras") form */
8957 if (sec_def->sec[len - 1] == '/') {
8958 if (str_has_pfx(sec_name, sec_def->sec))
8959 return true;
8960 return false;
8961 }
8962
8963 /* "type+" means it can be either exact SEC("type") or
8964 * well-formed SEC("type/extras") with proper '/' separator
8965 */
8966 if (sec_def->sec[len - 1] == '+') {
8967 len--;
8968 /* not even a prefix */
8969 if (strncmp(sec_name, sec_def->sec, len) != 0)
8970 return false;
8971 /* exact match or has '/' separator */
8972 if (sec_name[len] == '\0' || sec_name[len] == '/')
8973 return true;
8974 return false;
8975 }
8976
8977 return strcmp(sec_name, sec_def->sec) == 0;
8978 }
8979
find_sec_def(const char * sec_name)8980 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8981 {
8982 const struct bpf_sec_def *sec_def;
8983 int i, n;
8984
8985 n = custom_sec_def_cnt;
8986 for (i = 0; i < n; i++) {
8987 sec_def = &custom_sec_defs[i];
8988 if (sec_def_matches(sec_def, sec_name))
8989 return sec_def;
8990 }
8991
8992 n = ARRAY_SIZE(section_defs);
8993 for (i = 0; i < n; i++) {
8994 sec_def = §ion_defs[i];
8995 if (sec_def_matches(sec_def, sec_name))
8996 return sec_def;
8997 }
8998
8999 if (has_custom_fallback_def)
9000 return &custom_fallback_def;
9001
9002 return NULL;
9003 }
9004
9005 #define MAX_TYPE_NAME_SIZE 32
9006
libbpf_get_type_names(bool attach_type)9007 static char *libbpf_get_type_names(bool attach_type)
9008 {
9009 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9010 char *buf;
9011
9012 buf = malloc(len);
9013 if (!buf)
9014 return NULL;
9015
9016 buf[0] = '\0';
9017 /* Forge string buf with all available names */
9018 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9019 const struct bpf_sec_def *sec_def = §ion_defs[i];
9020
9021 if (attach_type) {
9022 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9023 continue;
9024
9025 if (!(sec_def->cookie & SEC_ATTACHABLE))
9026 continue;
9027 }
9028
9029 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9030 free(buf);
9031 return NULL;
9032 }
9033 strcat(buf, " ");
9034 strcat(buf, section_defs[i].sec);
9035 }
9036
9037 return buf;
9038 }
9039
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9040 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9041 enum bpf_attach_type *expected_attach_type)
9042 {
9043 const struct bpf_sec_def *sec_def;
9044 char *type_names;
9045
9046 if (!name)
9047 return libbpf_err(-EINVAL);
9048
9049 sec_def = find_sec_def(name);
9050 if (sec_def) {
9051 *prog_type = sec_def->prog_type;
9052 *expected_attach_type = sec_def->expected_attach_type;
9053 return 0;
9054 }
9055
9056 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9057 type_names = libbpf_get_type_names(false);
9058 if (type_names != NULL) {
9059 pr_debug("supported section(type) names are:%s\n", type_names);
9060 free(type_names);
9061 }
9062
9063 return libbpf_err(-ESRCH);
9064 }
9065
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9066 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9067 {
9068 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9069 return NULL;
9070
9071 return attach_type_name[t];
9072 }
9073
libbpf_bpf_link_type_str(enum bpf_link_type t)9074 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9075 {
9076 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9077 return NULL;
9078
9079 return link_type_name[t];
9080 }
9081
libbpf_bpf_map_type_str(enum bpf_map_type t)9082 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9083 {
9084 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9085 return NULL;
9086
9087 return map_type_name[t];
9088 }
9089
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9090 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9091 {
9092 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9093 return NULL;
9094
9095 return prog_type_name[t];
9096 }
9097
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9098 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9099 int sec_idx,
9100 size_t offset)
9101 {
9102 struct bpf_map *map;
9103 size_t i;
9104
9105 for (i = 0; i < obj->nr_maps; i++) {
9106 map = &obj->maps[i];
9107 if (!bpf_map__is_struct_ops(map))
9108 continue;
9109 if (map->sec_idx == sec_idx &&
9110 map->sec_offset <= offset &&
9111 offset - map->sec_offset < map->def.value_size)
9112 return map;
9113 }
9114
9115 return NULL;
9116 }
9117
9118 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9119 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9120 Elf64_Shdr *shdr, Elf_Data *data)
9121 {
9122 const struct btf_member *member;
9123 struct bpf_struct_ops *st_ops;
9124 struct bpf_program *prog;
9125 unsigned int shdr_idx;
9126 const struct btf *btf;
9127 struct bpf_map *map;
9128 unsigned int moff, insn_idx;
9129 const char *name;
9130 __u32 member_idx;
9131 Elf64_Sym *sym;
9132 Elf64_Rel *rel;
9133 int i, nrels;
9134
9135 btf = obj->btf;
9136 nrels = shdr->sh_size / shdr->sh_entsize;
9137 for (i = 0; i < nrels; i++) {
9138 rel = elf_rel_by_idx(data, i);
9139 if (!rel) {
9140 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9141 return -LIBBPF_ERRNO__FORMAT;
9142 }
9143
9144 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9145 if (!sym) {
9146 pr_warn("struct_ops reloc: symbol %zx not found\n",
9147 (size_t)ELF64_R_SYM(rel->r_info));
9148 return -LIBBPF_ERRNO__FORMAT;
9149 }
9150
9151 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9152 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9153 if (!map) {
9154 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9155 (size_t)rel->r_offset);
9156 return -EINVAL;
9157 }
9158
9159 moff = rel->r_offset - map->sec_offset;
9160 shdr_idx = sym->st_shndx;
9161 st_ops = map->st_ops;
9162 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9163 map->name,
9164 (long long)(rel->r_info >> 32),
9165 (long long)sym->st_value,
9166 shdr_idx, (size_t)rel->r_offset,
9167 map->sec_offset, sym->st_name, name);
9168
9169 if (shdr_idx >= SHN_LORESERVE) {
9170 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9171 map->name, (size_t)rel->r_offset, shdr_idx);
9172 return -LIBBPF_ERRNO__RELOC;
9173 }
9174 if (sym->st_value % BPF_INSN_SZ) {
9175 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9176 map->name, (unsigned long long)sym->st_value);
9177 return -LIBBPF_ERRNO__FORMAT;
9178 }
9179 insn_idx = sym->st_value / BPF_INSN_SZ;
9180
9181 member = find_member_by_offset(st_ops->type, moff * 8);
9182 if (!member) {
9183 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9184 map->name, moff);
9185 return -EINVAL;
9186 }
9187 member_idx = member - btf_members(st_ops->type);
9188 name = btf__name_by_offset(btf, member->name_off);
9189
9190 if (!resolve_func_ptr(btf, member->type, NULL)) {
9191 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9192 map->name, name);
9193 return -EINVAL;
9194 }
9195
9196 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9197 if (!prog) {
9198 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9199 map->name, shdr_idx, name);
9200 return -EINVAL;
9201 }
9202
9203 /* prevent the use of BPF prog with invalid type */
9204 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9205 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9206 map->name, prog->name);
9207 return -EINVAL;
9208 }
9209
9210 /* if we haven't yet processed this BPF program, record proper
9211 * attach_btf_id and member_idx
9212 */
9213 if (!prog->attach_btf_id) {
9214 prog->attach_btf_id = st_ops->type_id;
9215 prog->expected_attach_type = member_idx;
9216 }
9217
9218 /* struct_ops BPF prog can be re-used between multiple
9219 * .struct_ops & .struct_ops.link as long as it's the
9220 * same struct_ops struct definition and the same
9221 * function pointer field
9222 */
9223 if (prog->attach_btf_id != st_ops->type_id ||
9224 prog->expected_attach_type != member_idx) {
9225 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9226 map->name, prog->name, prog->sec_name, prog->type,
9227 prog->attach_btf_id, prog->expected_attach_type, name);
9228 return -EINVAL;
9229 }
9230
9231 st_ops->progs[member_idx] = prog;
9232 }
9233
9234 return 0;
9235 }
9236
9237 #define BTF_TRACE_PREFIX "btf_trace_"
9238 #define BTF_LSM_PREFIX "bpf_lsm_"
9239 #define BTF_ITER_PREFIX "bpf_iter_"
9240 #define BTF_MAX_NAME_SIZE 128
9241
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9242 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9243 const char **prefix, int *kind)
9244 {
9245 switch (attach_type) {
9246 case BPF_TRACE_RAW_TP:
9247 *prefix = BTF_TRACE_PREFIX;
9248 *kind = BTF_KIND_TYPEDEF;
9249 break;
9250 case BPF_LSM_MAC:
9251 case BPF_LSM_CGROUP:
9252 *prefix = BTF_LSM_PREFIX;
9253 *kind = BTF_KIND_FUNC;
9254 break;
9255 case BPF_TRACE_ITER:
9256 *prefix = BTF_ITER_PREFIX;
9257 *kind = BTF_KIND_FUNC;
9258 break;
9259 default:
9260 *prefix = "";
9261 *kind = BTF_KIND_FUNC;
9262 }
9263 }
9264
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9265 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9266 const char *name, __u32 kind)
9267 {
9268 char btf_type_name[BTF_MAX_NAME_SIZE];
9269 int ret;
9270
9271 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9272 "%s%s", prefix, name);
9273 /* snprintf returns the number of characters written excluding the
9274 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9275 * indicates truncation.
9276 */
9277 if (ret < 0 || ret >= sizeof(btf_type_name))
9278 return -ENAMETOOLONG;
9279 return btf__find_by_name_kind(btf, btf_type_name, kind);
9280 }
9281
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9282 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9283 enum bpf_attach_type attach_type)
9284 {
9285 const char *prefix;
9286 int kind;
9287
9288 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9289 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9290 }
9291
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9292 int libbpf_find_vmlinux_btf_id(const char *name,
9293 enum bpf_attach_type attach_type)
9294 {
9295 struct btf *btf;
9296 int err;
9297
9298 btf = btf__load_vmlinux_btf();
9299 err = libbpf_get_error(btf);
9300 if (err) {
9301 pr_warn("vmlinux BTF is not found\n");
9302 return libbpf_err(err);
9303 }
9304
9305 err = find_attach_btf_id(btf, name, attach_type);
9306 if (err <= 0)
9307 pr_warn("%s is not found in vmlinux BTF\n", name);
9308
9309 btf__free(btf);
9310 return libbpf_err(err);
9311 }
9312
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9313 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9314 {
9315 struct bpf_prog_info info;
9316 __u32 info_len = sizeof(info);
9317 struct btf *btf;
9318 int err;
9319
9320 memset(&info, 0, info_len);
9321 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9322 if (err) {
9323 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9324 attach_prog_fd, err);
9325 return err;
9326 }
9327
9328 err = -EINVAL;
9329 if (!info.btf_id) {
9330 pr_warn("The target program doesn't have BTF\n");
9331 goto out;
9332 }
9333 btf = btf__load_from_kernel_by_id(info.btf_id);
9334 err = libbpf_get_error(btf);
9335 if (err) {
9336 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9337 goto out;
9338 }
9339 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9340 btf__free(btf);
9341 if (err <= 0) {
9342 pr_warn("%s is not found in prog's BTF\n", name);
9343 goto out;
9344 }
9345 out:
9346 return err;
9347 }
9348
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9349 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9350 enum bpf_attach_type attach_type,
9351 int *btf_obj_fd, int *btf_type_id)
9352 {
9353 int ret, i;
9354
9355 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9356 if (ret > 0) {
9357 *btf_obj_fd = 0; /* vmlinux BTF */
9358 *btf_type_id = ret;
9359 return 0;
9360 }
9361 if (ret != -ENOENT)
9362 return ret;
9363
9364 ret = load_module_btfs(obj);
9365 if (ret)
9366 return ret;
9367
9368 for (i = 0; i < obj->btf_module_cnt; i++) {
9369 const struct module_btf *mod = &obj->btf_modules[i];
9370
9371 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9372 if (ret > 0) {
9373 *btf_obj_fd = mod->fd;
9374 *btf_type_id = ret;
9375 return 0;
9376 }
9377 if (ret == -ENOENT)
9378 continue;
9379
9380 return ret;
9381 }
9382
9383 return -ESRCH;
9384 }
9385
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9386 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9387 int *btf_obj_fd, int *btf_type_id)
9388 {
9389 enum bpf_attach_type attach_type = prog->expected_attach_type;
9390 __u32 attach_prog_fd = prog->attach_prog_fd;
9391 int err = 0;
9392
9393 /* BPF program's BTF ID */
9394 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9395 if (!attach_prog_fd) {
9396 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9397 return -EINVAL;
9398 }
9399 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9400 if (err < 0) {
9401 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9402 prog->name, attach_prog_fd, attach_name, err);
9403 return err;
9404 }
9405 *btf_obj_fd = 0;
9406 *btf_type_id = err;
9407 return 0;
9408 }
9409
9410 /* kernel/module BTF ID */
9411 if (prog->obj->gen_loader) {
9412 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9413 *btf_obj_fd = 0;
9414 *btf_type_id = 1;
9415 } else {
9416 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9417 }
9418 if (err) {
9419 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9420 prog->name, attach_name, err);
9421 return err;
9422 }
9423 return 0;
9424 }
9425
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9426 int libbpf_attach_type_by_name(const char *name,
9427 enum bpf_attach_type *attach_type)
9428 {
9429 char *type_names;
9430 const struct bpf_sec_def *sec_def;
9431
9432 if (!name)
9433 return libbpf_err(-EINVAL);
9434
9435 sec_def = find_sec_def(name);
9436 if (!sec_def) {
9437 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9438 type_names = libbpf_get_type_names(true);
9439 if (type_names != NULL) {
9440 pr_debug("attachable section(type) names are:%s\n", type_names);
9441 free(type_names);
9442 }
9443
9444 return libbpf_err(-EINVAL);
9445 }
9446
9447 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9448 return libbpf_err(-EINVAL);
9449 if (!(sec_def->cookie & SEC_ATTACHABLE))
9450 return libbpf_err(-EINVAL);
9451
9452 *attach_type = sec_def->expected_attach_type;
9453 return 0;
9454 }
9455
bpf_map__fd(const struct bpf_map * map)9456 int bpf_map__fd(const struct bpf_map *map)
9457 {
9458 return map ? map->fd : libbpf_err(-EINVAL);
9459 }
9460
map_uses_real_name(const struct bpf_map * map)9461 static bool map_uses_real_name(const struct bpf_map *map)
9462 {
9463 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9464 * their user-visible name differs from kernel-visible name. Users see
9465 * such map's corresponding ELF section name as a map name.
9466 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9467 * maps to know which name has to be returned to the user.
9468 */
9469 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9470 return true;
9471 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9472 return true;
9473 return false;
9474 }
9475
bpf_map__name(const struct bpf_map * map)9476 const char *bpf_map__name(const struct bpf_map *map)
9477 {
9478 if (!map)
9479 return NULL;
9480
9481 if (map_uses_real_name(map))
9482 return map->real_name;
9483
9484 return map->name;
9485 }
9486
bpf_map__type(const struct bpf_map * map)9487 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9488 {
9489 return map->def.type;
9490 }
9491
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9492 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9493 {
9494 if (map->fd >= 0)
9495 return libbpf_err(-EBUSY);
9496 map->def.type = type;
9497 return 0;
9498 }
9499
bpf_map__map_flags(const struct bpf_map * map)9500 __u32 bpf_map__map_flags(const struct bpf_map *map)
9501 {
9502 return map->def.map_flags;
9503 }
9504
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9505 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9506 {
9507 if (map->fd >= 0)
9508 return libbpf_err(-EBUSY);
9509 map->def.map_flags = flags;
9510 return 0;
9511 }
9512
bpf_map__map_extra(const struct bpf_map * map)9513 __u64 bpf_map__map_extra(const struct bpf_map *map)
9514 {
9515 return map->map_extra;
9516 }
9517
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9518 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9519 {
9520 if (map->fd >= 0)
9521 return libbpf_err(-EBUSY);
9522 map->map_extra = map_extra;
9523 return 0;
9524 }
9525
bpf_map__numa_node(const struct bpf_map * map)9526 __u32 bpf_map__numa_node(const struct bpf_map *map)
9527 {
9528 return map->numa_node;
9529 }
9530
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9531 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9532 {
9533 if (map->fd >= 0)
9534 return libbpf_err(-EBUSY);
9535 map->numa_node = numa_node;
9536 return 0;
9537 }
9538
bpf_map__key_size(const struct bpf_map * map)9539 __u32 bpf_map__key_size(const struct bpf_map *map)
9540 {
9541 return map->def.key_size;
9542 }
9543
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9544 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9545 {
9546 if (map->fd >= 0)
9547 return libbpf_err(-EBUSY);
9548 map->def.key_size = size;
9549 return 0;
9550 }
9551
bpf_map__value_size(const struct bpf_map * map)9552 __u32 bpf_map__value_size(const struct bpf_map *map)
9553 {
9554 return map->def.value_size;
9555 }
9556
map_btf_datasec_resize(struct bpf_map * map,__u32 size)9557 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9558 {
9559 struct btf *btf;
9560 struct btf_type *datasec_type, *var_type;
9561 struct btf_var_secinfo *var;
9562 const struct btf_type *array_type;
9563 const struct btf_array *array;
9564 int vlen, element_sz, new_array_id;
9565 __u32 nr_elements;
9566
9567 /* check btf existence */
9568 btf = bpf_object__btf(map->obj);
9569 if (!btf)
9570 return -ENOENT;
9571
9572 /* verify map is datasec */
9573 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9574 if (!btf_is_datasec(datasec_type)) {
9575 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9576 bpf_map__name(map));
9577 return -EINVAL;
9578 }
9579
9580 /* verify datasec has at least one var */
9581 vlen = btf_vlen(datasec_type);
9582 if (vlen == 0) {
9583 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9584 bpf_map__name(map));
9585 return -EINVAL;
9586 }
9587
9588 /* verify last var in the datasec is an array */
9589 var = &btf_var_secinfos(datasec_type)[vlen - 1];
9590 var_type = btf_type_by_id(btf, var->type);
9591 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9592 if (!btf_is_array(array_type)) {
9593 pr_warn("map '%s': cannot be resized, last var must be an array\n",
9594 bpf_map__name(map));
9595 return -EINVAL;
9596 }
9597
9598 /* verify request size aligns with array */
9599 array = btf_array(array_type);
9600 element_sz = btf__resolve_size(btf, array->type);
9601 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9602 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9603 bpf_map__name(map), element_sz, size);
9604 return -EINVAL;
9605 }
9606
9607 /* create a new array based on the existing array, but with new length */
9608 nr_elements = (size - var->offset) / element_sz;
9609 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9610 if (new_array_id < 0)
9611 return new_array_id;
9612
9613 /* adding a new btf type invalidates existing pointers to btf objects,
9614 * so refresh pointers before proceeding
9615 */
9616 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9617 var = &btf_var_secinfos(datasec_type)[vlen - 1];
9618 var_type = btf_type_by_id(btf, var->type);
9619
9620 /* finally update btf info */
9621 datasec_type->size = size;
9622 var->size = size - var->offset;
9623 var_type->type = new_array_id;
9624
9625 return 0;
9626 }
9627
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9628 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9629 {
9630 if (map->fd >= 0)
9631 return libbpf_err(-EBUSY);
9632
9633 if (map->mmaped) {
9634 int err;
9635 size_t mmap_old_sz, mmap_new_sz;
9636
9637 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9638 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9639 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9640 if (err) {
9641 pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9642 bpf_map__name(map), err);
9643 return err;
9644 }
9645 err = map_btf_datasec_resize(map, size);
9646 if (err && err != -ENOENT) {
9647 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9648 bpf_map__name(map), err);
9649 map->btf_value_type_id = 0;
9650 map->btf_key_type_id = 0;
9651 }
9652 }
9653
9654 map->def.value_size = size;
9655 return 0;
9656 }
9657
bpf_map__btf_key_type_id(const struct bpf_map * map)9658 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9659 {
9660 return map ? map->btf_key_type_id : 0;
9661 }
9662
bpf_map__btf_value_type_id(const struct bpf_map * map)9663 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9664 {
9665 return map ? map->btf_value_type_id : 0;
9666 }
9667
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9668 int bpf_map__set_initial_value(struct bpf_map *map,
9669 const void *data, size_t size)
9670 {
9671 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9672 size != map->def.value_size || map->fd >= 0)
9673 return libbpf_err(-EINVAL);
9674
9675 memcpy(map->mmaped, data, size);
9676 return 0;
9677 }
9678
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9679 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9680 {
9681 if (!map->mmaped)
9682 return NULL;
9683 *psize = map->def.value_size;
9684 return map->mmaped;
9685 }
9686
bpf_map__is_internal(const struct bpf_map * map)9687 bool bpf_map__is_internal(const struct bpf_map *map)
9688 {
9689 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9690 }
9691
bpf_map__ifindex(const struct bpf_map * map)9692 __u32 bpf_map__ifindex(const struct bpf_map *map)
9693 {
9694 return map->map_ifindex;
9695 }
9696
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9697 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9698 {
9699 if (map->fd >= 0)
9700 return libbpf_err(-EBUSY);
9701 map->map_ifindex = ifindex;
9702 return 0;
9703 }
9704
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9705 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9706 {
9707 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9708 pr_warn("error: unsupported map type\n");
9709 return libbpf_err(-EINVAL);
9710 }
9711 if (map->inner_map_fd != -1) {
9712 pr_warn("error: inner_map_fd already specified\n");
9713 return libbpf_err(-EINVAL);
9714 }
9715 if (map->inner_map) {
9716 bpf_map__destroy(map->inner_map);
9717 zfree(&map->inner_map);
9718 }
9719 map->inner_map_fd = fd;
9720 return 0;
9721 }
9722
9723 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9724 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9725 {
9726 ssize_t idx;
9727 struct bpf_map *s, *e;
9728
9729 if (!obj || !obj->maps)
9730 return errno = EINVAL, NULL;
9731
9732 s = obj->maps;
9733 e = obj->maps + obj->nr_maps;
9734
9735 if ((m < s) || (m >= e)) {
9736 pr_warn("error in %s: map handler doesn't belong to object\n",
9737 __func__);
9738 return errno = EINVAL, NULL;
9739 }
9740
9741 idx = (m - obj->maps) + i;
9742 if (idx >= obj->nr_maps || idx < 0)
9743 return NULL;
9744 return &obj->maps[idx];
9745 }
9746
9747 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9748 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9749 {
9750 if (prev == NULL)
9751 return obj->maps;
9752
9753 return __bpf_map__iter(prev, obj, 1);
9754 }
9755
9756 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9757 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9758 {
9759 if (next == NULL) {
9760 if (!obj->nr_maps)
9761 return NULL;
9762 return obj->maps + obj->nr_maps - 1;
9763 }
9764
9765 return __bpf_map__iter(next, obj, -1);
9766 }
9767
9768 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9769 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9770 {
9771 struct bpf_map *pos;
9772
9773 bpf_object__for_each_map(pos, obj) {
9774 /* if it's a special internal map name (which always starts
9775 * with dot) then check if that special name matches the
9776 * real map name (ELF section name)
9777 */
9778 if (name[0] == '.') {
9779 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9780 return pos;
9781 continue;
9782 }
9783 /* otherwise map name has to be an exact match */
9784 if (map_uses_real_name(pos)) {
9785 if (strcmp(pos->real_name, name) == 0)
9786 return pos;
9787 continue;
9788 }
9789 if (strcmp(pos->name, name) == 0)
9790 return pos;
9791 }
9792 return errno = ENOENT, NULL;
9793 }
9794
9795 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9796 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9797 {
9798 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9799 }
9800
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9801 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9802 size_t value_sz, bool check_value_sz)
9803 {
9804 if (map->fd <= 0)
9805 return -ENOENT;
9806
9807 if (map->def.key_size != key_sz) {
9808 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9809 map->name, key_sz, map->def.key_size);
9810 return -EINVAL;
9811 }
9812
9813 if (!check_value_sz)
9814 return 0;
9815
9816 switch (map->def.type) {
9817 case BPF_MAP_TYPE_PERCPU_ARRAY:
9818 case BPF_MAP_TYPE_PERCPU_HASH:
9819 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9820 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9821 int num_cpu = libbpf_num_possible_cpus();
9822 size_t elem_sz = roundup(map->def.value_size, 8);
9823
9824 if (value_sz != num_cpu * elem_sz) {
9825 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9826 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9827 return -EINVAL;
9828 }
9829 break;
9830 }
9831 default:
9832 if (map->def.value_size != value_sz) {
9833 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9834 map->name, value_sz, map->def.value_size);
9835 return -EINVAL;
9836 }
9837 break;
9838 }
9839 return 0;
9840 }
9841
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9842 int bpf_map__lookup_elem(const struct bpf_map *map,
9843 const void *key, size_t key_sz,
9844 void *value, size_t value_sz, __u64 flags)
9845 {
9846 int err;
9847
9848 err = validate_map_op(map, key_sz, value_sz, true);
9849 if (err)
9850 return libbpf_err(err);
9851
9852 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9853 }
9854
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)9855 int bpf_map__update_elem(const struct bpf_map *map,
9856 const void *key, size_t key_sz,
9857 const void *value, size_t value_sz, __u64 flags)
9858 {
9859 int err;
9860
9861 err = validate_map_op(map, key_sz, value_sz, true);
9862 if (err)
9863 return libbpf_err(err);
9864
9865 return bpf_map_update_elem(map->fd, key, value, flags);
9866 }
9867
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)9868 int bpf_map__delete_elem(const struct bpf_map *map,
9869 const void *key, size_t key_sz, __u64 flags)
9870 {
9871 int err;
9872
9873 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9874 if (err)
9875 return libbpf_err(err);
9876
9877 return bpf_map_delete_elem_flags(map->fd, key, flags);
9878 }
9879
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9880 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9881 const void *key, size_t key_sz,
9882 void *value, size_t value_sz, __u64 flags)
9883 {
9884 int err;
9885
9886 err = validate_map_op(map, key_sz, value_sz, true);
9887 if (err)
9888 return libbpf_err(err);
9889
9890 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9891 }
9892
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)9893 int bpf_map__get_next_key(const struct bpf_map *map,
9894 const void *cur_key, void *next_key, size_t key_sz)
9895 {
9896 int err;
9897
9898 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9899 if (err)
9900 return libbpf_err(err);
9901
9902 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9903 }
9904
libbpf_get_error(const void * ptr)9905 long libbpf_get_error(const void *ptr)
9906 {
9907 if (!IS_ERR_OR_NULL(ptr))
9908 return 0;
9909
9910 if (IS_ERR(ptr))
9911 errno = -PTR_ERR(ptr);
9912
9913 /* If ptr == NULL, then errno should be already set by the failing
9914 * API, because libbpf never returns NULL on success and it now always
9915 * sets errno on error. So no extra errno handling for ptr == NULL
9916 * case.
9917 */
9918 return -errno;
9919 }
9920
9921 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9922 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9923 {
9924 int ret;
9925
9926 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9927 return libbpf_err_errno(ret);
9928 }
9929
9930 /* Release "ownership" of underlying BPF resource (typically, BPF program
9931 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9932 * link, when destructed through bpf_link__destroy() call won't attempt to
9933 * detach/unregisted that BPF resource. This is useful in situations where,
9934 * say, attached BPF program has to outlive userspace program that attached it
9935 * in the system. Depending on type of BPF program, though, there might be
9936 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9937 * exit of userspace program doesn't trigger automatic detachment and clean up
9938 * inside the kernel.
9939 */
bpf_link__disconnect(struct bpf_link * link)9940 void bpf_link__disconnect(struct bpf_link *link)
9941 {
9942 link->disconnected = true;
9943 }
9944
bpf_link__destroy(struct bpf_link * link)9945 int bpf_link__destroy(struct bpf_link *link)
9946 {
9947 int err = 0;
9948
9949 if (IS_ERR_OR_NULL(link))
9950 return 0;
9951
9952 if (!link->disconnected && link->detach)
9953 err = link->detach(link);
9954 if (link->pin_path)
9955 free(link->pin_path);
9956 if (link->dealloc)
9957 link->dealloc(link);
9958 else
9959 free(link);
9960
9961 return libbpf_err(err);
9962 }
9963
bpf_link__fd(const struct bpf_link * link)9964 int bpf_link__fd(const struct bpf_link *link)
9965 {
9966 return link->fd;
9967 }
9968
bpf_link__pin_path(const struct bpf_link * link)9969 const char *bpf_link__pin_path(const struct bpf_link *link)
9970 {
9971 return link->pin_path;
9972 }
9973
bpf_link__detach_fd(struct bpf_link * link)9974 static int bpf_link__detach_fd(struct bpf_link *link)
9975 {
9976 return libbpf_err_errno(close(link->fd));
9977 }
9978
bpf_link__open(const char * path)9979 struct bpf_link *bpf_link__open(const char *path)
9980 {
9981 struct bpf_link *link;
9982 int fd;
9983
9984 fd = bpf_obj_get(path);
9985 if (fd < 0) {
9986 fd = -errno;
9987 pr_warn("failed to open link at %s: %d\n", path, fd);
9988 return libbpf_err_ptr(fd);
9989 }
9990
9991 link = calloc(1, sizeof(*link));
9992 if (!link) {
9993 close(fd);
9994 return libbpf_err_ptr(-ENOMEM);
9995 }
9996 link->detach = &bpf_link__detach_fd;
9997 link->fd = fd;
9998
9999 link->pin_path = strdup(path);
10000 if (!link->pin_path) {
10001 bpf_link__destroy(link);
10002 return libbpf_err_ptr(-ENOMEM);
10003 }
10004
10005 return link;
10006 }
10007
bpf_link__detach(struct bpf_link * link)10008 int bpf_link__detach(struct bpf_link *link)
10009 {
10010 return bpf_link_detach(link->fd) ? -errno : 0;
10011 }
10012
bpf_link__pin(struct bpf_link * link,const char * path)10013 int bpf_link__pin(struct bpf_link *link, const char *path)
10014 {
10015 int err;
10016
10017 if (link->pin_path)
10018 return libbpf_err(-EBUSY);
10019 err = make_parent_dir(path);
10020 if (err)
10021 return libbpf_err(err);
10022 err = check_path(path);
10023 if (err)
10024 return libbpf_err(err);
10025
10026 link->pin_path = strdup(path);
10027 if (!link->pin_path)
10028 return libbpf_err(-ENOMEM);
10029
10030 if (bpf_obj_pin(link->fd, link->pin_path)) {
10031 err = -errno;
10032 zfree(&link->pin_path);
10033 return libbpf_err(err);
10034 }
10035
10036 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10037 return 0;
10038 }
10039
bpf_link__unpin(struct bpf_link * link)10040 int bpf_link__unpin(struct bpf_link *link)
10041 {
10042 int err;
10043
10044 if (!link->pin_path)
10045 return libbpf_err(-EINVAL);
10046
10047 err = unlink(link->pin_path);
10048 if (err != 0)
10049 return -errno;
10050
10051 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10052 zfree(&link->pin_path);
10053 return 0;
10054 }
10055
10056 struct bpf_link_perf {
10057 struct bpf_link link;
10058 int perf_event_fd;
10059 /* legacy kprobe support: keep track of probe identifier and type */
10060 char *legacy_probe_name;
10061 bool legacy_is_kprobe;
10062 bool legacy_is_retprobe;
10063 };
10064
10065 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10066 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10067
bpf_link_perf_detach(struct bpf_link * link)10068 static int bpf_link_perf_detach(struct bpf_link *link)
10069 {
10070 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10071 int err = 0;
10072
10073 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10074 err = -errno;
10075
10076 if (perf_link->perf_event_fd != link->fd)
10077 close(perf_link->perf_event_fd);
10078 close(link->fd);
10079
10080 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10081 if (perf_link->legacy_probe_name) {
10082 if (perf_link->legacy_is_kprobe) {
10083 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10084 perf_link->legacy_is_retprobe);
10085 } else {
10086 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10087 perf_link->legacy_is_retprobe);
10088 }
10089 }
10090
10091 return err;
10092 }
10093
bpf_link_perf_dealloc(struct bpf_link * link)10094 static void bpf_link_perf_dealloc(struct bpf_link *link)
10095 {
10096 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10097
10098 free(perf_link->legacy_probe_name);
10099 free(perf_link);
10100 }
10101
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10102 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10103 const struct bpf_perf_event_opts *opts)
10104 {
10105 char errmsg[STRERR_BUFSIZE];
10106 struct bpf_link_perf *link;
10107 int prog_fd, link_fd = -1, err;
10108 bool force_ioctl_attach;
10109
10110 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10111 return libbpf_err_ptr(-EINVAL);
10112
10113 if (pfd < 0) {
10114 pr_warn("prog '%s': invalid perf event FD %d\n",
10115 prog->name, pfd);
10116 return libbpf_err_ptr(-EINVAL);
10117 }
10118 prog_fd = bpf_program__fd(prog);
10119 if (prog_fd < 0) {
10120 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10121 prog->name);
10122 return libbpf_err_ptr(-EINVAL);
10123 }
10124
10125 link = calloc(1, sizeof(*link));
10126 if (!link)
10127 return libbpf_err_ptr(-ENOMEM);
10128 link->link.detach = &bpf_link_perf_detach;
10129 link->link.dealloc = &bpf_link_perf_dealloc;
10130 link->perf_event_fd = pfd;
10131
10132 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10133 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10134 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10135 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10136
10137 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10138 if (link_fd < 0) {
10139 err = -errno;
10140 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10141 prog->name, pfd,
10142 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10143 goto err_out;
10144 }
10145 link->link.fd = link_fd;
10146 } else {
10147 if (OPTS_GET(opts, bpf_cookie, 0)) {
10148 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10149 err = -EOPNOTSUPP;
10150 goto err_out;
10151 }
10152
10153 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10154 err = -errno;
10155 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10156 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10157 if (err == -EPROTO)
10158 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10159 prog->name, pfd);
10160 goto err_out;
10161 }
10162 link->link.fd = pfd;
10163 }
10164 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10165 err = -errno;
10166 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10167 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10168 goto err_out;
10169 }
10170
10171 return &link->link;
10172 err_out:
10173 if (link_fd >= 0)
10174 close(link_fd);
10175 free(link);
10176 return libbpf_err_ptr(err);
10177 }
10178
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10179 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10180 {
10181 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10182 }
10183
10184 /*
10185 * this function is expected to parse integer in the range of [0, 2^31-1] from
10186 * given file using scanf format string fmt. If actual parsed value is
10187 * negative, the result might be indistinguishable from error
10188 */
parse_uint_from_file(const char * file,const char * fmt)10189 static int parse_uint_from_file(const char *file, const char *fmt)
10190 {
10191 char buf[STRERR_BUFSIZE];
10192 int err, ret;
10193 FILE *f;
10194
10195 f = fopen(file, "re");
10196 if (!f) {
10197 err = -errno;
10198 pr_debug("failed to open '%s': %s\n", file,
10199 libbpf_strerror_r(err, buf, sizeof(buf)));
10200 return err;
10201 }
10202 err = fscanf(f, fmt, &ret);
10203 if (err != 1) {
10204 err = err == EOF ? -EIO : -errno;
10205 pr_debug("failed to parse '%s': %s\n", file,
10206 libbpf_strerror_r(err, buf, sizeof(buf)));
10207 fclose(f);
10208 return err;
10209 }
10210 fclose(f);
10211 return ret;
10212 }
10213
determine_kprobe_perf_type(void)10214 static int determine_kprobe_perf_type(void)
10215 {
10216 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10217
10218 return parse_uint_from_file(file, "%d\n");
10219 }
10220
determine_uprobe_perf_type(void)10221 static int determine_uprobe_perf_type(void)
10222 {
10223 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10224
10225 return parse_uint_from_file(file, "%d\n");
10226 }
10227
determine_kprobe_retprobe_bit(void)10228 static int determine_kprobe_retprobe_bit(void)
10229 {
10230 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10231
10232 return parse_uint_from_file(file, "config:%d\n");
10233 }
10234
determine_uprobe_retprobe_bit(void)10235 static int determine_uprobe_retprobe_bit(void)
10236 {
10237 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10238
10239 return parse_uint_from_file(file, "config:%d\n");
10240 }
10241
10242 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10243 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10244
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10245 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10246 uint64_t offset, int pid, size_t ref_ctr_off)
10247 {
10248 const size_t attr_sz = sizeof(struct perf_event_attr);
10249 struct perf_event_attr attr;
10250 char errmsg[STRERR_BUFSIZE];
10251 int type, pfd;
10252
10253 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10254 return -EINVAL;
10255
10256 memset(&attr, 0, attr_sz);
10257
10258 type = uprobe ? determine_uprobe_perf_type()
10259 : determine_kprobe_perf_type();
10260 if (type < 0) {
10261 pr_warn("failed to determine %s perf type: %s\n",
10262 uprobe ? "uprobe" : "kprobe",
10263 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10264 return type;
10265 }
10266 if (retprobe) {
10267 int bit = uprobe ? determine_uprobe_retprobe_bit()
10268 : determine_kprobe_retprobe_bit();
10269
10270 if (bit < 0) {
10271 pr_warn("failed to determine %s retprobe bit: %s\n",
10272 uprobe ? "uprobe" : "kprobe",
10273 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10274 return bit;
10275 }
10276 attr.config |= 1 << bit;
10277 }
10278 attr.size = attr_sz;
10279 attr.type = type;
10280 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10281 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10282 attr.config2 = offset; /* kprobe_addr or probe_offset */
10283
10284 /* pid filter is meaningful only for uprobes */
10285 pfd = syscall(__NR_perf_event_open, &attr,
10286 pid < 0 ? -1 : pid /* pid */,
10287 pid == -1 ? 0 : -1 /* cpu */,
10288 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10289 return pfd >= 0 ? pfd : -errno;
10290 }
10291
append_to_file(const char * file,const char * fmt,...)10292 static int append_to_file(const char *file, const char *fmt, ...)
10293 {
10294 int fd, n, err = 0;
10295 va_list ap;
10296 char buf[1024];
10297
10298 va_start(ap, fmt);
10299 n = vsnprintf(buf, sizeof(buf), fmt, ap);
10300 va_end(ap);
10301
10302 if (n < 0 || n >= sizeof(buf))
10303 return -EINVAL;
10304
10305 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10306 if (fd < 0)
10307 return -errno;
10308
10309 if (write(fd, buf, n) < 0)
10310 err = -errno;
10311
10312 close(fd);
10313 return err;
10314 }
10315
10316 #define DEBUGFS "/sys/kernel/debug/tracing"
10317 #define TRACEFS "/sys/kernel/tracing"
10318
use_debugfs(void)10319 static bool use_debugfs(void)
10320 {
10321 static int has_debugfs = -1;
10322
10323 if (has_debugfs < 0)
10324 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10325
10326 return has_debugfs == 1;
10327 }
10328
tracefs_path(void)10329 static const char *tracefs_path(void)
10330 {
10331 return use_debugfs() ? DEBUGFS : TRACEFS;
10332 }
10333
tracefs_kprobe_events(void)10334 static const char *tracefs_kprobe_events(void)
10335 {
10336 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10337 }
10338
tracefs_uprobe_events(void)10339 static const char *tracefs_uprobe_events(void)
10340 {
10341 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10342 }
10343
tracefs_available_filter_functions(void)10344 static const char *tracefs_available_filter_functions(void)
10345 {
10346 return use_debugfs() ? DEBUGFS"/available_filter_functions"
10347 : TRACEFS"/available_filter_functions";
10348 }
10349
tracefs_available_filter_functions_addrs(void)10350 static const char *tracefs_available_filter_functions_addrs(void)
10351 {
10352 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10353 : TRACEFS"/available_filter_functions_addrs";
10354 }
10355
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)10356 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10357 const char *kfunc_name, size_t offset)
10358 {
10359 static int index = 0;
10360 int i;
10361
10362 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10363 __sync_fetch_and_add(&index, 1));
10364
10365 /* sanitize binary_path in the probe name */
10366 for (i = 0; buf[i]; i++) {
10367 if (!isalnum(buf[i]))
10368 buf[i] = '_';
10369 }
10370 }
10371
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)10372 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10373 const char *kfunc_name, size_t offset)
10374 {
10375 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10376 retprobe ? 'r' : 'p',
10377 retprobe ? "kretprobes" : "kprobes",
10378 probe_name, kfunc_name, offset);
10379 }
10380
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)10381 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10382 {
10383 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10384 retprobe ? "kretprobes" : "kprobes", probe_name);
10385 }
10386
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)10387 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10388 {
10389 char file[256];
10390
10391 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10392 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10393
10394 return parse_uint_from_file(file, "%d\n");
10395 }
10396
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)10397 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10398 const char *kfunc_name, size_t offset, int pid)
10399 {
10400 const size_t attr_sz = sizeof(struct perf_event_attr);
10401 struct perf_event_attr attr;
10402 char errmsg[STRERR_BUFSIZE];
10403 int type, pfd, err;
10404
10405 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10406 if (err < 0) {
10407 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10408 kfunc_name, offset,
10409 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10410 return err;
10411 }
10412 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10413 if (type < 0) {
10414 err = type;
10415 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10416 kfunc_name, offset,
10417 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10418 goto err_clean_legacy;
10419 }
10420
10421 memset(&attr, 0, attr_sz);
10422 attr.size = attr_sz;
10423 attr.config = type;
10424 attr.type = PERF_TYPE_TRACEPOINT;
10425
10426 pfd = syscall(__NR_perf_event_open, &attr,
10427 pid < 0 ? -1 : pid, /* pid */
10428 pid == -1 ? 0 : -1, /* cpu */
10429 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10430 if (pfd < 0) {
10431 err = -errno;
10432 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10433 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10434 goto err_clean_legacy;
10435 }
10436 return pfd;
10437
10438 err_clean_legacy:
10439 /* Clear the newly added legacy kprobe_event */
10440 remove_kprobe_event_legacy(probe_name, retprobe);
10441 return err;
10442 }
10443
arch_specific_syscall_pfx(void)10444 static const char *arch_specific_syscall_pfx(void)
10445 {
10446 #if defined(__x86_64__)
10447 return "x64";
10448 #elif defined(__i386__)
10449 return "ia32";
10450 #elif defined(__s390x__)
10451 return "s390x";
10452 #elif defined(__s390__)
10453 return "s390";
10454 #elif defined(__arm__)
10455 return "arm";
10456 #elif defined(__aarch64__)
10457 return "arm64";
10458 #elif defined(__mips__)
10459 return "mips";
10460 #elif defined(__riscv)
10461 return "riscv";
10462 #elif defined(__powerpc__)
10463 return "powerpc";
10464 #elif defined(__powerpc64__)
10465 return "powerpc64";
10466 #else
10467 return NULL;
10468 #endif
10469 }
10470
probe_kern_syscall_wrapper(void)10471 static int probe_kern_syscall_wrapper(void)
10472 {
10473 char syscall_name[64];
10474 const char *ksys_pfx;
10475
10476 ksys_pfx = arch_specific_syscall_pfx();
10477 if (!ksys_pfx)
10478 return 0;
10479
10480 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10481
10482 if (determine_kprobe_perf_type() >= 0) {
10483 int pfd;
10484
10485 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10486 if (pfd >= 0)
10487 close(pfd);
10488
10489 return pfd >= 0 ? 1 : 0;
10490 } else { /* legacy mode */
10491 char probe_name[128];
10492
10493 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10494 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10495 return 0;
10496
10497 (void)remove_kprobe_event_legacy(probe_name, false);
10498 return 1;
10499 }
10500 }
10501
10502 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10503 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10504 const char *func_name,
10505 const struct bpf_kprobe_opts *opts)
10506 {
10507 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10508 enum probe_attach_mode attach_mode;
10509 char errmsg[STRERR_BUFSIZE];
10510 char *legacy_probe = NULL;
10511 struct bpf_link *link;
10512 size_t offset;
10513 bool retprobe, legacy;
10514 int pfd, err;
10515
10516 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10517 return libbpf_err_ptr(-EINVAL);
10518
10519 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10520 retprobe = OPTS_GET(opts, retprobe, false);
10521 offset = OPTS_GET(opts, offset, 0);
10522 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10523
10524 legacy = determine_kprobe_perf_type() < 0;
10525 switch (attach_mode) {
10526 case PROBE_ATTACH_MODE_LEGACY:
10527 legacy = true;
10528 pe_opts.force_ioctl_attach = true;
10529 break;
10530 case PROBE_ATTACH_MODE_PERF:
10531 if (legacy)
10532 return libbpf_err_ptr(-ENOTSUP);
10533 pe_opts.force_ioctl_attach = true;
10534 break;
10535 case PROBE_ATTACH_MODE_LINK:
10536 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10537 return libbpf_err_ptr(-ENOTSUP);
10538 break;
10539 case PROBE_ATTACH_MODE_DEFAULT:
10540 break;
10541 default:
10542 return libbpf_err_ptr(-EINVAL);
10543 }
10544
10545 if (!legacy) {
10546 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10547 func_name, offset,
10548 -1 /* pid */, 0 /* ref_ctr_off */);
10549 } else {
10550 char probe_name[256];
10551
10552 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10553 func_name, offset);
10554
10555 legacy_probe = strdup(probe_name);
10556 if (!legacy_probe)
10557 return libbpf_err_ptr(-ENOMEM);
10558
10559 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10560 offset, -1 /* pid */);
10561 }
10562 if (pfd < 0) {
10563 err = -errno;
10564 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10565 prog->name, retprobe ? "kretprobe" : "kprobe",
10566 func_name, offset,
10567 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10568 goto err_out;
10569 }
10570 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10571 err = libbpf_get_error(link);
10572 if (err) {
10573 close(pfd);
10574 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10575 prog->name, retprobe ? "kretprobe" : "kprobe",
10576 func_name, offset,
10577 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10578 goto err_clean_legacy;
10579 }
10580 if (legacy) {
10581 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10582
10583 perf_link->legacy_probe_name = legacy_probe;
10584 perf_link->legacy_is_kprobe = true;
10585 perf_link->legacy_is_retprobe = retprobe;
10586 }
10587
10588 return link;
10589
10590 err_clean_legacy:
10591 if (legacy)
10592 remove_kprobe_event_legacy(legacy_probe, retprobe);
10593 err_out:
10594 free(legacy_probe);
10595 return libbpf_err_ptr(err);
10596 }
10597
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10598 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10599 bool retprobe,
10600 const char *func_name)
10601 {
10602 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10603 .retprobe = retprobe,
10604 );
10605
10606 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10607 }
10608
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)10609 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10610 const char *syscall_name,
10611 const struct bpf_ksyscall_opts *opts)
10612 {
10613 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10614 char func_name[128];
10615
10616 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10617 return libbpf_err_ptr(-EINVAL);
10618
10619 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10620 /* arch_specific_syscall_pfx() should never return NULL here
10621 * because it is guarded by kernel_supports(). However, since
10622 * compiler does not know that we have an explicit conditional
10623 * as well.
10624 */
10625 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10626 arch_specific_syscall_pfx() ? : "", syscall_name);
10627 } else {
10628 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10629 }
10630
10631 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10632 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10633
10634 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10635 }
10636
10637 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10638 bool glob_match(const char *str, const char *pat)
10639 {
10640 while (*str && *pat && *pat != '*') {
10641 if (*pat == '?') { /* Matches any single character */
10642 str++;
10643 pat++;
10644 continue;
10645 }
10646 if (*str != *pat)
10647 return false;
10648 str++;
10649 pat++;
10650 }
10651 /* Check wild card */
10652 if (*pat == '*') {
10653 while (*pat == '*')
10654 pat++;
10655 if (!*pat) /* Tail wild card matches all */
10656 return true;
10657 while (*str)
10658 if (glob_match(str++, pat))
10659 return true;
10660 }
10661 return !*str && !*pat;
10662 }
10663
10664 struct kprobe_multi_resolve {
10665 const char *pattern;
10666 unsigned long *addrs;
10667 size_t cap;
10668 size_t cnt;
10669 };
10670
10671 struct avail_kallsyms_data {
10672 char **syms;
10673 size_t cnt;
10674 struct kprobe_multi_resolve *res;
10675 };
10676
avail_func_cmp(const void * a,const void * b)10677 static int avail_func_cmp(const void *a, const void *b)
10678 {
10679 return strcmp(*(const char **)a, *(const char **)b);
10680 }
10681
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10682 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10683 const char *sym_name, void *ctx)
10684 {
10685 struct avail_kallsyms_data *data = ctx;
10686 struct kprobe_multi_resolve *res = data->res;
10687 int err;
10688
10689 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10690 return 0;
10691
10692 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10693 if (err)
10694 return err;
10695
10696 res->addrs[res->cnt++] = (unsigned long)sym_addr;
10697 return 0;
10698 }
10699
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)10700 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10701 {
10702 const char *available_functions_file = tracefs_available_filter_functions();
10703 struct avail_kallsyms_data data;
10704 char sym_name[500];
10705 FILE *f;
10706 int err = 0, ret, i;
10707 char **syms = NULL;
10708 size_t cap = 0, cnt = 0;
10709
10710 f = fopen(available_functions_file, "re");
10711 if (!f) {
10712 err = -errno;
10713 pr_warn("failed to open %s: %d\n", available_functions_file, err);
10714 return err;
10715 }
10716
10717 while (true) {
10718 char *name;
10719
10720 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10721 if (ret == EOF && feof(f))
10722 break;
10723
10724 if (ret != 1) {
10725 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10726 err = -EINVAL;
10727 goto cleanup;
10728 }
10729
10730 if (!glob_match(sym_name, res->pattern))
10731 continue;
10732
10733 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10734 if (err)
10735 goto cleanup;
10736
10737 name = strdup(sym_name);
10738 if (!name) {
10739 err = -errno;
10740 goto cleanup;
10741 }
10742
10743 syms[cnt++] = name;
10744 }
10745
10746 /* no entries found, bail out */
10747 if (cnt == 0) {
10748 err = -ENOENT;
10749 goto cleanup;
10750 }
10751
10752 /* sort available functions */
10753 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10754
10755 data.syms = syms;
10756 data.res = res;
10757 data.cnt = cnt;
10758 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10759
10760 if (res->cnt == 0)
10761 err = -ENOENT;
10762
10763 cleanup:
10764 for (i = 0; i < cnt; i++)
10765 free((char *)syms[i]);
10766 free(syms);
10767
10768 fclose(f);
10769 return err;
10770 }
10771
has_available_filter_functions_addrs(void)10772 static bool has_available_filter_functions_addrs(void)
10773 {
10774 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10775 }
10776
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)10777 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10778 {
10779 const char *available_path = tracefs_available_filter_functions_addrs();
10780 char sym_name[500];
10781 FILE *f;
10782 int ret, err = 0;
10783 unsigned long long sym_addr;
10784
10785 f = fopen(available_path, "re");
10786 if (!f) {
10787 err = -errno;
10788 pr_warn("failed to open %s: %d\n", available_path, err);
10789 return err;
10790 }
10791
10792 while (true) {
10793 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10794 if (ret == EOF && feof(f))
10795 break;
10796
10797 if (ret != 2) {
10798 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10799 ret);
10800 err = -EINVAL;
10801 goto cleanup;
10802 }
10803
10804 if (!glob_match(sym_name, res->pattern))
10805 continue;
10806
10807 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10808 sizeof(*res->addrs), res->cnt + 1);
10809 if (err)
10810 goto cleanup;
10811
10812 res->addrs[res->cnt++] = (unsigned long)sym_addr;
10813 }
10814
10815 if (res->cnt == 0)
10816 err = -ENOENT;
10817
10818 cleanup:
10819 fclose(f);
10820 return err;
10821 }
10822
10823 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10824 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10825 const char *pattern,
10826 const struct bpf_kprobe_multi_opts *opts)
10827 {
10828 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10829 struct kprobe_multi_resolve res = {
10830 .pattern = pattern,
10831 };
10832 struct bpf_link *link = NULL;
10833 char errmsg[STRERR_BUFSIZE];
10834 const unsigned long *addrs;
10835 int err, link_fd, prog_fd;
10836 const __u64 *cookies;
10837 const char **syms;
10838 bool retprobe;
10839 size_t cnt;
10840
10841 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10842 return libbpf_err_ptr(-EINVAL);
10843
10844 syms = OPTS_GET(opts, syms, false);
10845 addrs = OPTS_GET(opts, addrs, false);
10846 cnt = OPTS_GET(opts, cnt, false);
10847 cookies = OPTS_GET(opts, cookies, false);
10848
10849 if (!pattern && !addrs && !syms)
10850 return libbpf_err_ptr(-EINVAL);
10851 if (pattern && (addrs || syms || cookies || cnt))
10852 return libbpf_err_ptr(-EINVAL);
10853 if (!pattern && !cnt)
10854 return libbpf_err_ptr(-EINVAL);
10855 if (addrs && syms)
10856 return libbpf_err_ptr(-EINVAL);
10857
10858 if (pattern) {
10859 if (has_available_filter_functions_addrs())
10860 err = libbpf_available_kprobes_parse(&res);
10861 else
10862 err = libbpf_available_kallsyms_parse(&res);
10863 if (err)
10864 goto error;
10865 addrs = res.addrs;
10866 cnt = res.cnt;
10867 }
10868
10869 retprobe = OPTS_GET(opts, retprobe, false);
10870
10871 lopts.kprobe_multi.syms = syms;
10872 lopts.kprobe_multi.addrs = addrs;
10873 lopts.kprobe_multi.cookies = cookies;
10874 lopts.kprobe_multi.cnt = cnt;
10875 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10876
10877 link = calloc(1, sizeof(*link));
10878 if (!link) {
10879 err = -ENOMEM;
10880 goto error;
10881 }
10882 link->detach = &bpf_link__detach_fd;
10883
10884 prog_fd = bpf_program__fd(prog);
10885 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10886 if (link_fd < 0) {
10887 err = -errno;
10888 pr_warn("prog '%s': failed to attach: %s\n",
10889 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10890 goto error;
10891 }
10892 link->fd = link_fd;
10893 free(res.addrs);
10894 return link;
10895
10896 error:
10897 free(link);
10898 free(res.addrs);
10899 return libbpf_err_ptr(err);
10900 }
10901
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10902 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10903 {
10904 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10905 unsigned long offset = 0;
10906 const char *func_name;
10907 char *func;
10908 int n;
10909
10910 *link = NULL;
10911
10912 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10913 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10914 return 0;
10915
10916 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10917 if (opts.retprobe)
10918 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10919 else
10920 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10921
10922 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10923 if (n < 1) {
10924 pr_warn("kprobe name is invalid: %s\n", func_name);
10925 return -EINVAL;
10926 }
10927 if (opts.retprobe && offset != 0) {
10928 free(func);
10929 pr_warn("kretprobes do not support offset specification\n");
10930 return -EINVAL;
10931 }
10932
10933 opts.offset = offset;
10934 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10935 free(func);
10936 return libbpf_get_error(*link);
10937 }
10938
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10939 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10940 {
10941 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10942 const char *syscall_name;
10943
10944 *link = NULL;
10945
10946 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10947 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10948 return 0;
10949
10950 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10951 if (opts.retprobe)
10952 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10953 else
10954 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10955
10956 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10957 return *link ? 0 : -errno;
10958 }
10959
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10960 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10961 {
10962 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10963 const char *spec;
10964 char *pattern;
10965 int n;
10966
10967 *link = NULL;
10968
10969 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10970 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10971 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10972 return 0;
10973
10974 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10975 if (opts.retprobe)
10976 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10977 else
10978 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10979
10980 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10981 if (n < 1) {
10982 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10983 return -EINVAL;
10984 }
10985
10986 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10987 free(pattern);
10988 return libbpf_get_error(*link);
10989 }
10990
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10991 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10992 {
10993 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10994 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
10995 int n, ret = -EINVAL;
10996
10997 *link = NULL;
10998
10999 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms",
11000 &probe_type, &binary_path, &func_name);
11001 switch (n) {
11002 case 1:
11003 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11004 ret = 0;
11005 break;
11006 case 3:
11007 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11008 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11009 ret = libbpf_get_error(*link);
11010 break;
11011 default:
11012 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11013 prog->sec_name);
11014 break;
11015 }
11016 free(probe_type);
11017 free(binary_path);
11018 free(func_name);
11019 return ret;
11020 }
11021
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11022 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11023 const char *binary_path, uint64_t offset)
11024 {
11025 int i;
11026
11027 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11028
11029 /* sanitize binary_path in the probe name */
11030 for (i = 0; buf[i]; i++) {
11031 if (!isalnum(buf[i]))
11032 buf[i] = '_';
11033 }
11034 }
11035
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11036 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11037 const char *binary_path, size_t offset)
11038 {
11039 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11040 retprobe ? 'r' : 'p',
11041 retprobe ? "uretprobes" : "uprobes",
11042 probe_name, binary_path, offset);
11043 }
11044
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11045 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11046 {
11047 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11048 retprobe ? "uretprobes" : "uprobes", probe_name);
11049 }
11050
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11051 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11052 {
11053 char file[512];
11054
11055 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11056 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11057
11058 return parse_uint_from_file(file, "%d\n");
11059 }
11060
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11061 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11062 const char *binary_path, size_t offset, int pid)
11063 {
11064 const size_t attr_sz = sizeof(struct perf_event_attr);
11065 struct perf_event_attr attr;
11066 int type, pfd, err;
11067
11068 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11069 if (err < 0) {
11070 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11071 binary_path, (size_t)offset, err);
11072 return err;
11073 }
11074 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11075 if (type < 0) {
11076 err = type;
11077 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11078 binary_path, offset, err);
11079 goto err_clean_legacy;
11080 }
11081
11082 memset(&attr, 0, attr_sz);
11083 attr.size = attr_sz;
11084 attr.config = type;
11085 attr.type = PERF_TYPE_TRACEPOINT;
11086
11087 pfd = syscall(__NR_perf_event_open, &attr,
11088 pid < 0 ? -1 : pid, /* pid */
11089 pid == -1 ? 0 : -1, /* cpu */
11090 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11091 if (pfd < 0) {
11092 err = -errno;
11093 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11094 goto err_clean_legacy;
11095 }
11096 return pfd;
11097
11098 err_clean_legacy:
11099 /* Clear the newly added legacy uprobe_event */
11100 remove_uprobe_event_legacy(probe_name, retprobe);
11101 return err;
11102 }
11103
11104 /* Find offset of function name in archive specified by path. Currently
11105 * supported are .zip files that do not compress their contents, as used on
11106 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11107 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11108 * library functions.
11109 *
11110 * An overview of the APK format specifically provided here:
11111 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11112 */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11113 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11114 const char *func_name)
11115 {
11116 struct zip_archive *archive;
11117 struct zip_entry entry;
11118 long ret;
11119 Elf *elf;
11120
11121 archive = zip_archive_open(archive_path);
11122 if (IS_ERR(archive)) {
11123 ret = PTR_ERR(archive);
11124 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11125 return ret;
11126 }
11127
11128 ret = zip_archive_find_entry(archive, file_name, &entry);
11129 if (ret) {
11130 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11131 archive_path, ret);
11132 goto out;
11133 }
11134 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11135 (unsigned long)entry.data_offset);
11136
11137 if (entry.compression) {
11138 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11139 archive_path);
11140 ret = -LIBBPF_ERRNO__FORMAT;
11141 goto out;
11142 }
11143
11144 elf = elf_memory((void *)entry.data, entry.data_length);
11145 if (!elf) {
11146 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11147 elf_errmsg(-1));
11148 ret = -LIBBPF_ERRNO__LIBELF;
11149 goto out;
11150 }
11151
11152 ret = elf_find_func_offset(elf, file_name, func_name);
11153 if (ret > 0) {
11154 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11155 func_name, file_name, archive_path, entry.data_offset, ret,
11156 ret + entry.data_offset);
11157 ret += entry.data_offset;
11158 }
11159 elf_end(elf);
11160
11161 out:
11162 zip_archive_close(archive);
11163 return ret;
11164 }
11165
arch_specific_lib_paths(void)11166 static const char *arch_specific_lib_paths(void)
11167 {
11168 /*
11169 * Based on https://packages.debian.org/sid/libc6.
11170 *
11171 * Assume that the traced program is built for the same architecture
11172 * as libbpf, which should cover the vast majority of cases.
11173 */
11174 #if defined(__x86_64__)
11175 return "/lib/x86_64-linux-gnu";
11176 #elif defined(__i386__)
11177 return "/lib/i386-linux-gnu";
11178 #elif defined(__s390x__)
11179 return "/lib/s390x-linux-gnu";
11180 #elif defined(__s390__)
11181 return "/lib/s390-linux-gnu";
11182 #elif defined(__arm__) && defined(__SOFTFP__)
11183 return "/lib/arm-linux-gnueabi";
11184 #elif defined(__arm__) && !defined(__SOFTFP__)
11185 return "/lib/arm-linux-gnueabihf";
11186 #elif defined(__aarch64__)
11187 return "/lib/aarch64-linux-gnu";
11188 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11189 return "/lib/mips64el-linux-gnuabi64";
11190 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11191 return "/lib/mipsel-linux-gnu";
11192 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11193 return "/lib/powerpc64le-linux-gnu";
11194 #elif defined(__sparc__) && defined(__arch64__)
11195 return "/lib/sparc64-linux-gnu";
11196 #elif defined(__riscv) && __riscv_xlen == 64
11197 return "/lib/riscv64-linux-gnu";
11198 #else
11199 return NULL;
11200 #endif
11201 }
11202
11203 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11204 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11205 {
11206 const char *search_paths[3] = {};
11207 int i, perm;
11208
11209 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11210 search_paths[0] = getenv("LD_LIBRARY_PATH");
11211 search_paths[1] = "/usr/lib64:/usr/lib";
11212 search_paths[2] = arch_specific_lib_paths();
11213 perm = R_OK;
11214 } else {
11215 search_paths[0] = getenv("PATH");
11216 search_paths[1] = "/usr/bin:/usr/sbin";
11217 perm = R_OK | X_OK;
11218 }
11219
11220 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11221 const char *s;
11222
11223 if (!search_paths[i])
11224 continue;
11225 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11226 char *next_path;
11227 int seg_len;
11228
11229 if (s[0] == ':')
11230 s++;
11231 next_path = strchr(s, ':');
11232 seg_len = next_path ? next_path - s : strlen(s);
11233 if (!seg_len)
11234 continue;
11235 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11236 /* ensure it has required permissions */
11237 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11238 continue;
11239 pr_debug("resolved '%s' to '%s'\n", file, result);
11240 return 0;
11241 }
11242 }
11243 return -ENOENT;
11244 }
11245
11246 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)11247 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11248 pid_t pid,
11249 const char *path,
11250 const char *func_pattern,
11251 const struct bpf_uprobe_multi_opts *opts)
11252 {
11253 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11254 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11255 unsigned long *resolved_offsets = NULL;
11256 int err = 0, link_fd, prog_fd;
11257 struct bpf_link *link = NULL;
11258 char errmsg[STRERR_BUFSIZE];
11259 char full_path[PATH_MAX];
11260 const __u64 *cookies;
11261 const char **syms;
11262 size_t cnt;
11263
11264 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11265 return libbpf_err_ptr(-EINVAL);
11266
11267 syms = OPTS_GET(opts, syms, NULL);
11268 offsets = OPTS_GET(opts, offsets, NULL);
11269 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11270 cookies = OPTS_GET(opts, cookies, NULL);
11271 cnt = OPTS_GET(opts, cnt, 0);
11272
11273 /*
11274 * User can specify 2 mutually exclusive set of inputs:
11275 *
11276 * 1) use only path/func_pattern/pid arguments
11277 *
11278 * 2) use path/pid with allowed combinations of:
11279 * syms/offsets/ref_ctr_offsets/cookies/cnt
11280 *
11281 * - syms and offsets are mutually exclusive
11282 * - ref_ctr_offsets and cookies are optional
11283 *
11284 * Any other usage results in error.
11285 */
11286
11287 if (!path)
11288 return libbpf_err_ptr(-EINVAL);
11289 if (!func_pattern && cnt == 0)
11290 return libbpf_err_ptr(-EINVAL);
11291
11292 if (func_pattern) {
11293 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11294 return libbpf_err_ptr(-EINVAL);
11295 } else {
11296 if (!!syms == !!offsets)
11297 return libbpf_err_ptr(-EINVAL);
11298 }
11299
11300 if (func_pattern) {
11301 if (!strchr(path, '/')) {
11302 err = resolve_full_path(path, full_path, sizeof(full_path));
11303 if (err) {
11304 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11305 prog->name, path, err);
11306 return libbpf_err_ptr(err);
11307 }
11308 path = full_path;
11309 }
11310
11311 err = elf_resolve_pattern_offsets(path, func_pattern,
11312 &resolved_offsets, &cnt);
11313 if (err < 0)
11314 return libbpf_err_ptr(err);
11315 offsets = resolved_offsets;
11316 } else if (syms) {
11317 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11318 if (err < 0)
11319 return libbpf_err_ptr(err);
11320 offsets = resolved_offsets;
11321 }
11322
11323 lopts.uprobe_multi.path = path;
11324 lopts.uprobe_multi.offsets = offsets;
11325 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11326 lopts.uprobe_multi.cookies = cookies;
11327 lopts.uprobe_multi.cnt = cnt;
11328 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11329
11330 if (pid == 0)
11331 pid = getpid();
11332 if (pid > 0)
11333 lopts.uprobe_multi.pid = pid;
11334
11335 link = calloc(1, sizeof(*link));
11336 if (!link) {
11337 err = -ENOMEM;
11338 goto error;
11339 }
11340 link->detach = &bpf_link__detach_fd;
11341
11342 prog_fd = bpf_program__fd(prog);
11343 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11344 if (link_fd < 0) {
11345 err = -errno;
11346 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11347 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11348 goto error;
11349 }
11350 link->fd = link_fd;
11351 free(resolved_offsets);
11352 return link;
11353
11354 error:
11355 free(resolved_offsets);
11356 free(link);
11357 return libbpf_err_ptr(err);
11358 }
11359
11360 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)11361 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11362 const char *binary_path, size_t func_offset,
11363 const struct bpf_uprobe_opts *opts)
11364 {
11365 const char *archive_path = NULL, *archive_sep = NULL;
11366 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11367 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11368 enum probe_attach_mode attach_mode;
11369 char full_path[PATH_MAX];
11370 struct bpf_link *link;
11371 size_t ref_ctr_off;
11372 int pfd, err;
11373 bool retprobe, legacy;
11374 const char *func_name;
11375
11376 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11377 return libbpf_err_ptr(-EINVAL);
11378
11379 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11380 retprobe = OPTS_GET(opts, retprobe, false);
11381 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11382 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11383
11384 if (!binary_path)
11385 return libbpf_err_ptr(-EINVAL);
11386
11387 /* Check if "binary_path" refers to an archive. */
11388 archive_sep = strstr(binary_path, "!/");
11389 if (archive_sep) {
11390 full_path[0] = '\0';
11391 libbpf_strlcpy(full_path, binary_path,
11392 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11393 archive_path = full_path;
11394 binary_path = archive_sep + 2;
11395 } else if (!strchr(binary_path, '/')) {
11396 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11397 if (err) {
11398 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11399 prog->name, binary_path, err);
11400 return libbpf_err_ptr(err);
11401 }
11402 binary_path = full_path;
11403 }
11404 func_name = OPTS_GET(opts, func_name, NULL);
11405 if (func_name) {
11406 long sym_off;
11407
11408 if (archive_path) {
11409 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11410 func_name);
11411 binary_path = archive_path;
11412 } else {
11413 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11414 }
11415 if (sym_off < 0)
11416 return libbpf_err_ptr(sym_off);
11417 func_offset += sym_off;
11418 }
11419
11420 legacy = determine_uprobe_perf_type() < 0;
11421 switch (attach_mode) {
11422 case PROBE_ATTACH_MODE_LEGACY:
11423 legacy = true;
11424 pe_opts.force_ioctl_attach = true;
11425 break;
11426 case PROBE_ATTACH_MODE_PERF:
11427 if (legacy)
11428 return libbpf_err_ptr(-ENOTSUP);
11429 pe_opts.force_ioctl_attach = true;
11430 break;
11431 case PROBE_ATTACH_MODE_LINK:
11432 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11433 return libbpf_err_ptr(-ENOTSUP);
11434 break;
11435 case PROBE_ATTACH_MODE_DEFAULT:
11436 break;
11437 default:
11438 return libbpf_err_ptr(-EINVAL);
11439 }
11440
11441 if (!legacy) {
11442 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11443 func_offset, pid, ref_ctr_off);
11444 } else {
11445 char probe_name[PATH_MAX + 64];
11446
11447 if (ref_ctr_off)
11448 return libbpf_err_ptr(-EINVAL);
11449
11450 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11451 binary_path, func_offset);
11452
11453 legacy_probe = strdup(probe_name);
11454 if (!legacy_probe)
11455 return libbpf_err_ptr(-ENOMEM);
11456
11457 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11458 binary_path, func_offset, pid);
11459 }
11460 if (pfd < 0) {
11461 err = -errno;
11462 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11463 prog->name, retprobe ? "uretprobe" : "uprobe",
11464 binary_path, func_offset,
11465 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11466 goto err_out;
11467 }
11468
11469 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11470 err = libbpf_get_error(link);
11471 if (err) {
11472 close(pfd);
11473 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11474 prog->name, retprobe ? "uretprobe" : "uprobe",
11475 binary_path, func_offset,
11476 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11477 goto err_clean_legacy;
11478 }
11479 if (legacy) {
11480 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11481
11482 perf_link->legacy_probe_name = legacy_probe;
11483 perf_link->legacy_is_kprobe = false;
11484 perf_link->legacy_is_retprobe = retprobe;
11485 }
11486 return link;
11487
11488 err_clean_legacy:
11489 if (legacy)
11490 remove_uprobe_event_legacy(legacy_probe, retprobe);
11491 err_out:
11492 free(legacy_probe);
11493 return libbpf_err_ptr(err);
11494 }
11495
11496 /* Format of u[ret]probe section definition supporting auto-attach:
11497 * u[ret]probe/binary:function[+offset]
11498 *
11499 * binary can be an absolute/relative path or a filename; the latter is resolved to a
11500 * full binary path via bpf_program__attach_uprobe_opts.
11501 *
11502 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11503 * specified (and auto-attach is not possible) or the above format is specified for
11504 * auto-attach.
11505 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11506 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11507 {
11508 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11509 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11510 int n, ret = -EINVAL;
11511 long offset = 0;
11512
11513 *link = NULL;
11514
11515 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11516 &probe_type, &binary_path, &func_name, &offset);
11517 switch (n) {
11518 case 1:
11519 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11520 ret = 0;
11521 break;
11522 case 2:
11523 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11524 prog->name, prog->sec_name);
11525 break;
11526 case 3:
11527 case 4:
11528 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11529 strcmp(probe_type, "uretprobe.s") == 0;
11530 if (opts.retprobe && offset != 0) {
11531 pr_warn("prog '%s': uretprobes do not support offset specification\n",
11532 prog->name);
11533 break;
11534 }
11535 opts.func_name = func_name;
11536 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11537 ret = libbpf_get_error(*link);
11538 break;
11539 default:
11540 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11541 prog->sec_name);
11542 break;
11543 }
11544 free(probe_type);
11545 free(binary_path);
11546 free(func_name);
11547
11548 return ret;
11549 }
11550
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)11551 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11552 bool retprobe, pid_t pid,
11553 const char *binary_path,
11554 size_t func_offset)
11555 {
11556 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11557
11558 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11559 }
11560
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)11561 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11562 pid_t pid, const char *binary_path,
11563 const char *usdt_provider, const char *usdt_name,
11564 const struct bpf_usdt_opts *opts)
11565 {
11566 char resolved_path[512];
11567 struct bpf_object *obj = prog->obj;
11568 struct bpf_link *link;
11569 __u64 usdt_cookie;
11570 int err;
11571
11572 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11573 return libbpf_err_ptr(-EINVAL);
11574
11575 if (bpf_program__fd(prog) < 0) {
11576 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11577 prog->name);
11578 return libbpf_err_ptr(-EINVAL);
11579 }
11580
11581 if (!binary_path)
11582 return libbpf_err_ptr(-EINVAL);
11583
11584 if (!strchr(binary_path, '/')) {
11585 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11586 if (err) {
11587 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11588 prog->name, binary_path, err);
11589 return libbpf_err_ptr(err);
11590 }
11591 binary_path = resolved_path;
11592 }
11593
11594 /* USDT manager is instantiated lazily on first USDT attach. It will
11595 * be destroyed together with BPF object in bpf_object__close().
11596 */
11597 if (IS_ERR(obj->usdt_man))
11598 return libbpf_ptr(obj->usdt_man);
11599 if (!obj->usdt_man) {
11600 obj->usdt_man = usdt_manager_new(obj);
11601 if (IS_ERR(obj->usdt_man))
11602 return libbpf_ptr(obj->usdt_man);
11603 }
11604
11605 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11606 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11607 usdt_provider, usdt_name, usdt_cookie);
11608 err = libbpf_get_error(link);
11609 if (err)
11610 return libbpf_err_ptr(err);
11611 return link;
11612 }
11613
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11614 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11615 {
11616 char *path = NULL, *provider = NULL, *name = NULL;
11617 const char *sec_name;
11618 int n, err;
11619
11620 sec_name = bpf_program__section_name(prog);
11621 if (strcmp(sec_name, "usdt") == 0) {
11622 /* no auto-attach for just SEC("usdt") */
11623 *link = NULL;
11624 return 0;
11625 }
11626
11627 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11628 if (n != 3) {
11629 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11630 sec_name);
11631 err = -EINVAL;
11632 } else {
11633 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11634 provider, name, NULL);
11635 err = libbpf_get_error(*link);
11636 }
11637 free(path);
11638 free(provider);
11639 free(name);
11640 return err;
11641 }
11642
determine_tracepoint_id(const char * tp_category,const char * tp_name)11643 static int determine_tracepoint_id(const char *tp_category,
11644 const char *tp_name)
11645 {
11646 char file[PATH_MAX];
11647 int ret;
11648
11649 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11650 tracefs_path(), tp_category, tp_name);
11651 if (ret < 0)
11652 return -errno;
11653 if (ret >= sizeof(file)) {
11654 pr_debug("tracepoint %s/%s path is too long\n",
11655 tp_category, tp_name);
11656 return -E2BIG;
11657 }
11658 return parse_uint_from_file(file, "%d\n");
11659 }
11660
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)11661 static int perf_event_open_tracepoint(const char *tp_category,
11662 const char *tp_name)
11663 {
11664 const size_t attr_sz = sizeof(struct perf_event_attr);
11665 struct perf_event_attr attr;
11666 char errmsg[STRERR_BUFSIZE];
11667 int tp_id, pfd, err;
11668
11669 tp_id = determine_tracepoint_id(tp_category, tp_name);
11670 if (tp_id < 0) {
11671 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11672 tp_category, tp_name,
11673 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11674 return tp_id;
11675 }
11676
11677 memset(&attr, 0, attr_sz);
11678 attr.type = PERF_TYPE_TRACEPOINT;
11679 attr.size = attr_sz;
11680 attr.config = tp_id;
11681
11682 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11683 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11684 if (pfd < 0) {
11685 err = -errno;
11686 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11687 tp_category, tp_name,
11688 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11689 return err;
11690 }
11691 return pfd;
11692 }
11693
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11694 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11695 const char *tp_category,
11696 const char *tp_name,
11697 const struct bpf_tracepoint_opts *opts)
11698 {
11699 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11700 char errmsg[STRERR_BUFSIZE];
11701 struct bpf_link *link;
11702 int pfd, err;
11703
11704 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11705 return libbpf_err_ptr(-EINVAL);
11706
11707 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11708
11709 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11710 if (pfd < 0) {
11711 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11712 prog->name, tp_category, tp_name,
11713 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11714 return libbpf_err_ptr(pfd);
11715 }
11716 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11717 err = libbpf_get_error(link);
11718 if (err) {
11719 close(pfd);
11720 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11721 prog->name, tp_category, tp_name,
11722 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11723 return libbpf_err_ptr(err);
11724 }
11725 return link;
11726 }
11727
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11728 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11729 const char *tp_category,
11730 const char *tp_name)
11731 {
11732 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11733 }
11734
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11735 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11736 {
11737 char *sec_name, *tp_cat, *tp_name;
11738
11739 *link = NULL;
11740
11741 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11742 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11743 return 0;
11744
11745 sec_name = strdup(prog->sec_name);
11746 if (!sec_name)
11747 return -ENOMEM;
11748
11749 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11750 if (str_has_pfx(prog->sec_name, "tp/"))
11751 tp_cat = sec_name + sizeof("tp/") - 1;
11752 else
11753 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11754 tp_name = strchr(tp_cat, '/');
11755 if (!tp_name) {
11756 free(sec_name);
11757 return -EINVAL;
11758 }
11759 *tp_name = '\0';
11760 tp_name++;
11761
11762 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11763 free(sec_name);
11764 return libbpf_get_error(*link);
11765 }
11766
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11767 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11768 const char *tp_name)
11769 {
11770 char errmsg[STRERR_BUFSIZE];
11771 struct bpf_link *link;
11772 int prog_fd, pfd;
11773
11774 prog_fd = bpf_program__fd(prog);
11775 if (prog_fd < 0) {
11776 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11777 return libbpf_err_ptr(-EINVAL);
11778 }
11779
11780 link = calloc(1, sizeof(*link));
11781 if (!link)
11782 return libbpf_err_ptr(-ENOMEM);
11783 link->detach = &bpf_link__detach_fd;
11784
11785 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11786 if (pfd < 0) {
11787 pfd = -errno;
11788 free(link);
11789 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11790 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11791 return libbpf_err_ptr(pfd);
11792 }
11793 link->fd = pfd;
11794 return link;
11795 }
11796
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11797 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11798 {
11799 static const char *const prefixes[] = {
11800 "raw_tp",
11801 "raw_tracepoint",
11802 "raw_tp.w",
11803 "raw_tracepoint.w",
11804 };
11805 size_t i;
11806 const char *tp_name = NULL;
11807
11808 *link = NULL;
11809
11810 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11811 size_t pfx_len;
11812
11813 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11814 continue;
11815
11816 pfx_len = strlen(prefixes[i]);
11817 /* no auto-attach case of, e.g., SEC("raw_tp") */
11818 if (prog->sec_name[pfx_len] == '\0')
11819 return 0;
11820
11821 if (prog->sec_name[pfx_len] != '/')
11822 continue;
11823
11824 tp_name = prog->sec_name + pfx_len + 1;
11825 break;
11826 }
11827
11828 if (!tp_name) {
11829 pr_warn("prog '%s': invalid section name '%s'\n",
11830 prog->name, prog->sec_name);
11831 return -EINVAL;
11832 }
11833
11834 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11835 return libbpf_get_error(*link);
11836 }
11837
11838 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11839 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11840 const struct bpf_trace_opts *opts)
11841 {
11842 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11843 char errmsg[STRERR_BUFSIZE];
11844 struct bpf_link *link;
11845 int prog_fd, pfd;
11846
11847 if (!OPTS_VALID(opts, bpf_trace_opts))
11848 return libbpf_err_ptr(-EINVAL);
11849
11850 prog_fd = bpf_program__fd(prog);
11851 if (prog_fd < 0) {
11852 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11853 return libbpf_err_ptr(-EINVAL);
11854 }
11855
11856 link = calloc(1, sizeof(*link));
11857 if (!link)
11858 return libbpf_err_ptr(-ENOMEM);
11859 link->detach = &bpf_link__detach_fd;
11860
11861 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11862 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11863 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11864 if (pfd < 0) {
11865 pfd = -errno;
11866 free(link);
11867 pr_warn("prog '%s': failed to attach: %s\n",
11868 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11869 return libbpf_err_ptr(pfd);
11870 }
11871 link->fd = pfd;
11872 return link;
11873 }
11874
bpf_program__attach_trace(const struct bpf_program * prog)11875 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11876 {
11877 return bpf_program__attach_btf_id(prog, NULL);
11878 }
11879
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11880 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11881 const struct bpf_trace_opts *opts)
11882 {
11883 return bpf_program__attach_btf_id(prog, opts);
11884 }
11885
bpf_program__attach_lsm(const struct bpf_program * prog)11886 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11887 {
11888 return bpf_program__attach_btf_id(prog, NULL);
11889 }
11890
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11891 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11892 {
11893 *link = bpf_program__attach_trace(prog);
11894 return libbpf_get_error(*link);
11895 }
11896
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11897 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11898 {
11899 *link = bpf_program__attach_lsm(prog);
11900 return libbpf_get_error(*link);
11901 }
11902
11903 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)11904 bpf_program_attach_fd(const struct bpf_program *prog,
11905 int target_fd, const char *target_name,
11906 const struct bpf_link_create_opts *opts)
11907 {
11908 enum bpf_attach_type attach_type;
11909 char errmsg[STRERR_BUFSIZE];
11910 struct bpf_link *link;
11911 int prog_fd, link_fd;
11912
11913 prog_fd = bpf_program__fd(prog);
11914 if (prog_fd < 0) {
11915 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11916 return libbpf_err_ptr(-EINVAL);
11917 }
11918
11919 link = calloc(1, sizeof(*link));
11920 if (!link)
11921 return libbpf_err_ptr(-ENOMEM);
11922 link->detach = &bpf_link__detach_fd;
11923
11924 attach_type = bpf_program__expected_attach_type(prog);
11925 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
11926 if (link_fd < 0) {
11927 link_fd = -errno;
11928 free(link);
11929 pr_warn("prog '%s': failed to attach to %s: %s\n",
11930 prog->name, target_name,
11931 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11932 return libbpf_err_ptr(link_fd);
11933 }
11934 link->fd = link_fd;
11935 return link;
11936 }
11937
11938 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11939 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11940 {
11941 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
11942 }
11943
11944 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11945 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11946 {
11947 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
11948 }
11949
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11950 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11951 {
11952 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11953 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
11954 }
11955
11956 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)11957 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
11958 const struct bpf_tcx_opts *opts)
11959 {
11960 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11961 __u32 relative_id;
11962 int relative_fd;
11963
11964 if (!OPTS_VALID(opts, bpf_tcx_opts))
11965 return libbpf_err_ptr(-EINVAL);
11966
11967 relative_id = OPTS_GET(opts, relative_id, 0);
11968 relative_fd = OPTS_GET(opts, relative_fd, 0);
11969
11970 /* validate we don't have unexpected combinations of non-zero fields */
11971 if (!ifindex) {
11972 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
11973 prog->name);
11974 return libbpf_err_ptr(-EINVAL);
11975 }
11976 if (relative_fd && relative_id) {
11977 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
11978 prog->name);
11979 return libbpf_err_ptr(-EINVAL);
11980 }
11981
11982 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
11983 link_create_opts.tcx.relative_fd = relative_fd;
11984 link_create_opts.tcx.relative_id = relative_id;
11985 link_create_opts.flags = OPTS_GET(opts, flags, 0);
11986
11987 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11988 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
11989 }
11990
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)11991 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11992 int target_fd,
11993 const char *attach_func_name)
11994 {
11995 int btf_id;
11996
11997 if (!!target_fd != !!attach_func_name) {
11998 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11999 prog->name);
12000 return libbpf_err_ptr(-EINVAL);
12001 }
12002
12003 if (prog->type != BPF_PROG_TYPE_EXT) {
12004 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12005 prog->name);
12006 return libbpf_err_ptr(-EINVAL);
12007 }
12008
12009 if (target_fd) {
12010 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12011
12012 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12013 if (btf_id < 0)
12014 return libbpf_err_ptr(btf_id);
12015
12016 target_opts.target_btf_id = btf_id;
12017
12018 return bpf_program_attach_fd(prog, target_fd, "freplace",
12019 &target_opts);
12020 } else {
12021 /* no target, so use raw_tracepoint_open for compatibility
12022 * with old kernels
12023 */
12024 return bpf_program__attach_trace(prog);
12025 }
12026 }
12027
12028 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12029 bpf_program__attach_iter(const struct bpf_program *prog,
12030 const struct bpf_iter_attach_opts *opts)
12031 {
12032 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12033 char errmsg[STRERR_BUFSIZE];
12034 struct bpf_link *link;
12035 int prog_fd, link_fd;
12036 __u32 target_fd = 0;
12037
12038 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12039 return libbpf_err_ptr(-EINVAL);
12040
12041 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12042 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12043
12044 prog_fd = bpf_program__fd(prog);
12045 if (prog_fd < 0) {
12046 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12047 return libbpf_err_ptr(-EINVAL);
12048 }
12049
12050 link = calloc(1, sizeof(*link));
12051 if (!link)
12052 return libbpf_err_ptr(-ENOMEM);
12053 link->detach = &bpf_link__detach_fd;
12054
12055 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12056 &link_create_opts);
12057 if (link_fd < 0) {
12058 link_fd = -errno;
12059 free(link);
12060 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12061 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12062 return libbpf_err_ptr(link_fd);
12063 }
12064 link->fd = link_fd;
12065 return link;
12066 }
12067
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12068 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12069 {
12070 *link = bpf_program__attach_iter(prog, NULL);
12071 return libbpf_get_error(*link);
12072 }
12073
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12074 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12075 const struct bpf_netfilter_opts *opts)
12076 {
12077 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12078 struct bpf_link *link;
12079 int prog_fd, link_fd;
12080
12081 if (!OPTS_VALID(opts, bpf_netfilter_opts))
12082 return libbpf_err_ptr(-EINVAL);
12083
12084 prog_fd = bpf_program__fd(prog);
12085 if (prog_fd < 0) {
12086 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12087 return libbpf_err_ptr(-EINVAL);
12088 }
12089
12090 link = calloc(1, sizeof(*link));
12091 if (!link)
12092 return libbpf_err_ptr(-ENOMEM);
12093
12094 link->detach = &bpf_link__detach_fd;
12095
12096 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12097 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12098 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12099 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12100
12101 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12102 if (link_fd < 0) {
12103 char errmsg[STRERR_BUFSIZE];
12104
12105 link_fd = -errno;
12106 free(link);
12107 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12108 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12109 return libbpf_err_ptr(link_fd);
12110 }
12111 link->fd = link_fd;
12112
12113 return link;
12114 }
12115
bpf_program__attach(const struct bpf_program * prog)12116 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12117 {
12118 struct bpf_link *link = NULL;
12119 int err;
12120
12121 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12122 return libbpf_err_ptr(-EOPNOTSUPP);
12123
12124 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12125 if (err)
12126 return libbpf_err_ptr(err);
12127
12128 /* When calling bpf_program__attach() explicitly, auto-attach support
12129 * is expected to work, so NULL returned link is considered an error.
12130 * This is different for skeleton's attach, see comment in
12131 * bpf_object__attach_skeleton().
12132 */
12133 if (!link)
12134 return libbpf_err_ptr(-EOPNOTSUPP);
12135
12136 return link;
12137 }
12138
12139 struct bpf_link_struct_ops {
12140 struct bpf_link link;
12141 int map_fd;
12142 };
12143
bpf_link__detach_struct_ops(struct bpf_link * link)12144 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12145 {
12146 struct bpf_link_struct_ops *st_link;
12147 __u32 zero = 0;
12148
12149 st_link = container_of(link, struct bpf_link_struct_ops, link);
12150
12151 if (st_link->map_fd < 0)
12152 /* w/o a real link */
12153 return bpf_map_delete_elem(link->fd, &zero);
12154
12155 return close(link->fd);
12156 }
12157
bpf_map__attach_struct_ops(const struct bpf_map * map)12158 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12159 {
12160 struct bpf_link_struct_ops *link;
12161 __u32 zero = 0;
12162 int err, fd;
12163
12164 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12165 return libbpf_err_ptr(-EINVAL);
12166
12167 link = calloc(1, sizeof(*link));
12168 if (!link)
12169 return libbpf_err_ptr(-EINVAL);
12170
12171 /* kern_vdata should be prepared during the loading phase. */
12172 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12173 /* It can be EBUSY if the map has been used to create or
12174 * update a link before. We don't allow updating the value of
12175 * a struct_ops once it is set. That ensures that the value
12176 * never changed. So, it is safe to skip EBUSY.
12177 */
12178 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12179 free(link);
12180 return libbpf_err_ptr(err);
12181 }
12182
12183 link->link.detach = bpf_link__detach_struct_ops;
12184
12185 if (!(map->def.map_flags & BPF_F_LINK)) {
12186 /* w/o a real link */
12187 link->link.fd = map->fd;
12188 link->map_fd = -1;
12189 return &link->link;
12190 }
12191
12192 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12193 if (fd < 0) {
12194 free(link);
12195 return libbpf_err_ptr(fd);
12196 }
12197
12198 link->link.fd = fd;
12199 link->map_fd = map->fd;
12200
12201 return &link->link;
12202 }
12203
12204 /*
12205 * Swap the back struct_ops of a link with a new struct_ops map.
12206 */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)12207 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12208 {
12209 struct bpf_link_struct_ops *st_ops_link;
12210 __u32 zero = 0;
12211 int err;
12212
12213 if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12214 return -EINVAL;
12215
12216 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12217 /* Ensure the type of a link is correct */
12218 if (st_ops_link->map_fd < 0)
12219 return -EINVAL;
12220
12221 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12222 /* It can be EBUSY if the map has been used to create or
12223 * update a link before. We don't allow updating the value of
12224 * a struct_ops once it is set. That ensures that the value
12225 * never changed. So, it is safe to skip EBUSY.
12226 */
12227 if (err && err != -EBUSY)
12228 return err;
12229
12230 err = bpf_link_update(link->fd, map->fd, NULL);
12231 if (err < 0)
12232 return err;
12233
12234 st_ops_link->map_fd = map->fd;
12235
12236 return 0;
12237 }
12238
12239 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12240 void *private_data);
12241
12242 static enum bpf_perf_event_ret
12243 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12244 void **copy_mem, size_t *copy_size,
12245 bpf_perf_event_print_t fn, void *private_data)
12246 {
12247 struct perf_event_mmap_page *header = mmap_mem;
12248 __u64 data_head = ring_buffer_read_head(header);
12249 __u64 data_tail = header->data_tail;
12250 void *base = ((__u8 *)header) + page_size;
12251 int ret = LIBBPF_PERF_EVENT_CONT;
12252 struct perf_event_header *ehdr;
12253 size_t ehdr_size;
12254
12255 while (data_head != data_tail) {
12256 ehdr = base + (data_tail & (mmap_size - 1));
12257 ehdr_size = ehdr->size;
12258
12259 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12260 void *copy_start = ehdr;
12261 size_t len_first = base + mmap_size - copy_start;
12262 size_t len_secnd = ehdr_size - len_first;
12263
12264 if (*copy_size < ehdr_size) {
12265 free(*copy_mem);
12266 *copy_mem = malloc(ehdr_size);
12267 if (!*copy_mem) {
12268 *copy_size = 0;
12269 ret = LIBBPF_PERF_EVENT_ERROR;
12270 break;
12271 }
12272 *copy_size = ehdr_size;
12273 }
12274
12275 memcpy(*copy_mem, copy_start, len_first);
12276 memcpy(*copy_mem + len_first, base, len_secnd);
12277 ehdr = *copy_mem;
12278 }
12279
12280 ret = fn(ehdr, private_data);
12281 data_tail += ehdr_size;
12282 if (ret != LIBBPF_PERF_EVENT_CONT)
12283 break;
12284 }
12285
12286 ring_buffer_write_tail(header, data_tail);
12287 return libbpf_err(ret);
12288 }
12289
12290 struct perf_buffer;
12291
12292 struct perf_buffer_params {
12293 struct perf_event_attr *attr;
12294 /* if event_cb is specified, it takes precendence */
12295 perf_buffer_event_fn event_cb;
12296 /* sample_cb and lost_cb are higher-level common-case callbacks */
12297 perf_buffer_sample_fn sample_cb;
12298 perf_buffer_lost_fn lost_cb;
12299 void *ctx;
12300 int cpu_cnt;
12301 int *cpus;
12302 int *map_keys;
12303 };
12304
12305 struct perf_cpu_buf {
12306 struct perf_buffer *pb;
12307 void *base; /* mmap()'ed memory */
12308 void *buf; /* for reconstructing segmented data */
12309 size_t buf_size;
12310 int fd;
12311 int cpu;
12312 int map_key;
12313 };
12314
12315 struct perf_buffer {
12316 perf_buffer_event_fn event_cb;
12317 perf_buffer_sample_fn sample_cb;
12318 perf_buffer_lost_fn lost_cb;
12319 void *ctx; /* passed into callbacks */
12320
12321 size_t page_size;
12322 size_t mmap_size;
12323 struct perf_cpu_buf **cpu_bufs;
12324 struct epoll_event *events;
12325 int cpu_cnt; /* number of allocated CPU buffers */
12326 int epoll_fd; /* perf event FD */
12327 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12328 };
12329
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12330 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12331 struct perf_cpu_buf *cpu_buf)
12332 {
12333 if (!cpu_buf)
12334 return;
12335 if (cpu_buf->base &&
12336 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12337 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12338 if (cpu_buf->fd >= 0) {
12339 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12340 close(cpu_buf->fd);
12341 }
12342 free(cpu_buf->buf);
12343 free(cpu_buf);
12344 }
12345
perf_buffer__free(struct perf_buffer * pb)12346 void perf_buffer__free(struct perf_buffer *pb)
12347 {
12348 int i;
12349
12350 if (IS_ERR_OR_NULL(pb))
12351 return;
12352 if (pb->cpu_bufs) {
12353 for (i = 0; i < pb->cpu_cnt; i++) {
12354 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12355
12356 if (!cpu_buf)
12357 continue;
12358
12359 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12360 perf_buffer__free_cpu_buf(pb, cpu_buf);
12361 }
12362 free(pb->cpu_bufs);
12363 }
12364 if (pb->epoll_fd >= 0)
12365 close(pb->epoll_fd);
12366 free(pb->events);
12367 free(pb);
12368 }
12369
12370 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)12371 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12372 int cpu, int map_key)
12373 {
12374 struct perf_cpu_buf *cpu_buf;
12375 char msg[STRERR_BUFSIZE];
12376 int err;
12377
12378 cpu_buf = calloc(1, sizeof(*cpu_buf));
12379 if (!cpu_buf)
12380 return ERR_PTR(-ENOMEM);
12381
12382 cpu_buf->pb = pb;
12383 cpu_buf->cpu = cpu;
12384 cpu_buf->map_key = map_key;
12385
12386 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12387 -1, PERF_FLAG_FD_CLOEXEC);
12388 if (cpu_buf->fd < 0) {
12389 err = -errno;
12390 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12391 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12392 goto error;
12393 }
12394
12395 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12396 PROT_READ | PROT_WRITE, MAP_SHARED,
12397 cpu_buf->fd, 0);
12398 if (cpu_buf->base == MAP_FAILED) {
12399 cpu_buf->base = NULL;
12400 err = -errno;
12401 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12402 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12403 goto error;
12404 }
12405
12406 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12407 err = -errno;
12408 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12409 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12410 goto error;
12411 }
12412
12413 return cpu_buf;
12414
12415 error:
12416 perf_buffer__free_cpu_buf(pb, cpu_buf);
12417 return (struct perf_cpu_buf *)ERR_PTR(err);
12418 }
12419
12420 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12421 struct perf_buffer_params *p);
12422
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)12423 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12424 perf_buffer_sample_fn sample_cb,
12425 perf_buffer_lost_fn lost_cb,
12426 void *ctx,
12427 const struct perf_buffer_opts *opts)
12428 {
12429 const size_t attr_sz = sizeof(struct perf_event_attr);
12430 struct perf_buffer_params p = {};
12431 struct perf_event_attr attr;
12432 __u32 sample_period;
12433
12434 if (!OPTS_VALID(opts, perf_buffer_opts))
12435 return libbpf_err_ptr(-EINVAL);
12436
12437 sample_period = OPTS_GET(opts, sample_period, 1);
12438 if (!sample_period)
12439 sample_period = 1;
12440
12441 memset(&attr, 0, attr_sz);
12442 attr.size = attr_sz;
12443 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12444 attr.type = PERF_TYPE_SOFTWARE;
12445 attr.sample_type = PERF_SAMPLE_RAW;
12446 attr.sample_period = sample_period;
12447 attr.wakeup_events = sample_period;
12448
12449 p.attr = &attr;
12450 p.sample_cb = sample_cb;
12451 p.lost_cb = lost_cb;
12452 p.ctx = ctx;
12453
12454 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12455 }
12456
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)12457 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12458 struct perf_event_attr *attr,
12459 perf_buffer_event_fn event_cb, void *ctx,
12460 const struct perf_buffer_raw_opts *opts)
12461 {
12462 struct perf_buffer_params p = {};
12463
12464 if (!attr)
12465 return libbpf_err_ptr(-EINVAL);
12466
12467 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12468 return libbpf_err_ptr(-EINVAL);
12469
12470 p.attr = attr;
12471 p.event_cb = event_cb;
12472 p.ctx = ctx;
12473 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12474 p.cpus = OPTS_GET(opts, cpus, NULL);
12475 p.map_keys = OPTS_GET(opts, map_keys, NULL);
12476
12477 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12478 }
12479
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)12480 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12481 struct perf_buffer_params *p)
12482 {
12483 const char *online_cpus_file = "/sys/devices/system/cpu/online";
12484 struct bpf_map_info map;
12485 char msg[STRERR_BUFSIZE];
12486 struct perf_buffer *pb;
12487 bool *online = NULL;
12488 __u32 map_info_len;
12489 int err, i, j, n;
12490
12491 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12492 pr_warn("page count should be power of two, but is %zu\n",
12493 page_cnt);
12494 return ERR_PTR(-EINVAL);
12495 }
12496
12497 /* best-effort sanity checks */
12498 memset(&map, 0, sizeof(map));
12499 map_info_len = sizeof(map);
12500 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12501 if (err) {
12502 err = -errno;
12503 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12504 * -EBADFD, -EFAULT, or -E2BIG on real error
12505 */
12506 if (err != -EINVAL) {
12507 pr_warn("failed to get map info for map FD %d: %s\n",
12508 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12509 return ERR_PTR(err);
12510 }
12511 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12512 map_fd);
12513 } else {
12514 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12515 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12516 map.name);
12517 return ERR_PTR(-EINVAL);
12518 }
12519 }
12520
12521 pb = calloc(1, sizeof(*pb));
12522 if (!pb)
12523 return ERR_PTR(-ENOMEM);
12524
12525 pb->event_cb = p->event_cb;
12526 pb->sample_cb = p->sample_cb;
12527 pb->lost_cb = p->lost_cb;
12528 pb->ctx = p->ctx;
12529
12530 pb->page_size = getpagesize();
12531 pb->mmap_size = pb->page_size * page_cnt;
12532 pb->map_fd = map_fd;
12533
12534 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12535 if (pb->epoll_fd < 0) {
12536 err = -errno;
12537 pr_warn("failed to create epoll instance: %s\n",
12538 libbpf_strerror_r(err, msg, sizeof(msg)));
12539 goto error;
12540 }
12541
12542 if (p->cpu_cnt > 0) {
12543 pb->cpu_cnt = p->cpu_cnt;
12544 } else {
12545 pb->cpu_cnt = libbpf_num_possible_cpus();
12546 if (pb->cpu_cnt < 0) {
12547 err = pb->cpu_cnt;
12548 goto error;
12549 }
12550 if (map.max_entries && map.max_entries < pb->cpu_cnt)
12551 pb->cpu_cnt = map.max_entries;
12552 }
12553
12554 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12555 if (!pb->events) {
12556 err = -ENOMEM;
12557 pr_warn("failed to allocate events: out of memory\n");
12558 goto error;
12559 }
12560 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12561 if (!pb->cpu_bufs) {
12562 err = -ENOMEM;
12563 pr_warn("failed to allocate buffers: out of memory\n");
12564 goto error;
12565 }
12566
12567 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12568 if (err) {
12569 pr_warn("failed to get online CPU mask: %d\n", err);
12570 goto error;
12571 }
12572
12573 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12574 struct perf_cpu_buf *cpu_buf;
12575 int cpu, map_key;
12576
12577 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12578 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12579
12580 /* in case user didn't explicitly requested particular CPUs to
12581 * be attached to, skip offline/not present CPUs
12582 */
12583 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12584 continue;
12585
12586 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12587 if (IS_ERR(cpu_buf)) {
12588 err = PTR_ERR(cpu_buf);
12589 goto error;
12590 }
12591
12592 pb->cpu_bufs[j] = cpu_buf;
12593
12594 err = bpf_map_update_elem(pb->map_fd, &map_key,
12595 &cpu_buf->fd, 0);
12596 if (err) {
12597 err = -errno;
12598 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12599 cpu, map_key, cpu_buf->fd,
12600 libbpf_strerror_r(err, msg, sizeof(msg)));
12601 goto error;
12602 }
12603
12604 pb->events[j].events = EPOLLIN;
12605 pb->events[j].data.ptr = cpu_buf;
12606 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12607 &pb->events[j]) < 0) {
12608 err = -errno;
12609 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12610 cpu, cpu_buf->fd,
12611 libbpf_strerror_r(err, msg, sizeof(msg)));
12612 goto error;
12613 }
12614 j++;
12615 }
12616 pb->cpu_cnt = j;
12617 free(online);
12618
12619 return pb;
12620
12621 error:
12622 free(online);
12623 if (pb)
12624 perf_buffer__free(pb);
12625 return ERR_PTR(err);
12626 }
12627
12628 struct perf_sample_raw {
12629 struct perf_event_header header;
12630 uint32_t size;
12631 char data[];
12632 };
12633
12634 struct perf_sample_lost {
12635 struct perf_event_header header;
12636 uint64_t id;
12637 uint64_t lost;
12638 uint64_t sample_id;
12639 };
12640
12641 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)12642 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12643 {
12644 struct perf_cpu_buf *cpu_buf = ctx;
12645 struct perf_buffer *pb = cpu_buf->pb;
12646 void *data = e;
12647
12648 /* user wants full control over parsing perf event */
12649 if (pb->event_cb)
12650 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12651
12652 switch (e->type) {
12653 case PERF_RECORD_SAMPLE: {
12654 struct perf_sample_raw *s = data;
12655
12656 if (pb->sample_cb)
12657 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12658 break;
12659 }
12660 case PERF_RECORD_LOST: {
12661 struct perf_sample_lost *s = data;
12662
12663 if (pb->lost_cb)
12664 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12665 break;
12666 }
12667 default:
12668 pr_warn("unknown perf sample type %d\n", e->type);
12669 return LIBBPF_PERF_EVENT_ERROR;
12670 }
12671 return LIBBPF_PERF_EVENT_CONT;
12672 }
12673
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12674 static int perf_buffer__process_records(struct perf_buffer *pb,
12675 struct perf_cpu_buf *cpu_buf)
12676 {
12677 enum bpf_perf_event_ret ret;
12678
12679 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12680 pb->page_size, &cpu_buf->buf,
12681 &cpu_buf->buf_size,
12682 perf_buffer__process_record, cpu_buf);
12683 if (ret != LIBBPF_PERF_EVENT_CONT)
12684 return ret;
12685 return 0;
12686 }
12687
perf_buffer__epoll_fd(const struct perf_buffer * pb)12688 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12689 {
12690 return pb->epoll_fd;
12691 }
12692
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)12693 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12694 {
12695 int i, cnt, err;
12696
12697 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12698 if (cnt < 0)
12699 return -errno;
12700
12701 for (i = 0; i < cnt; i++) {
12702 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12703
12704 err = perf_buffer__process_records(pb, cpu_buf);
12705 if (err) {
12706 pr_warn("error while processing records: %d\n", err);
12707 return libbpf_err(err);
12708 }
12709 }
12710 return cnt;
12711 }
12712
12713 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12714 * manager.
12715 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)12716 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12717 {
12718 return pb->cpu_cnt;
12719 }
12720
12721 /*
12722 * Return perf_event FD of a ring buffer in *buf_idx* slot of
12723 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12724 * select()/poll()/epoll() Linux syscalls.
12725 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)12726 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12727 {
12728 struct perf_cpu_buf *cpu_buf;
12729
12730 if (buf_idx >= pb->cpu_cnt)
12731 return libbpf_err(-EINVAL);
12732
12733 cpu_buf = pb->cpu_bufs[buf_idx];
12734 if (!cpu_buf)
12735 return libbpf_err(-ENOENT);
12736
12737 return cpu_buf->fd;
12738 }
12739
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)12740 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12741 {
12742 struct perf_cpu_buf *cpu_buf;
12743
12744 if (buf_idx >= pb->cpu_cnt)
12745 return libbpf_err(-EINVAL);
12746
12747 cpu_buf = pb->cpu_bufs[buf_idx];
12748 if (!cpu_buf)
12749 return libbpf_err(-ENOENT);
12750
12751 *buf = cpu_buf->base;
12752 *buf_size = pb->mmap_size;
12753 return 0;
12754 }
12755
12756 /*
12757 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12758 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12759 * consume, do nothing and return success.
12760 * Returns:
12761 * - 0 on success;
12762 * - <0 on failure.
12763 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)12764 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12765 {
12766 struct perf_cpu_buf *cpu_buf;
12767
12768 if (buf_idx >= pb->cpu_cnt)
12769 return libbpf_err(-EINVAL);
12770
12771 cpu_buf = pb->cpu_bufs[buf_idx];
12772 if (!cpu_buf)
12773 return libbpf_err(-ENOENT);
12774
12775 return perf_buffer__process_records(pb, cpu_buf);
12776 }
12777
perf_buffer__consume(struct perf_buffer * pb)12778 int perf_buffer__consume(struct perf_buffer *pb)
12779 {
12780 int i, err;
12781
12782 for (i = 0; i < pb->cpu_cnt; i++) {
12783 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12784
12785 if (!cpu_buf)
12786 continue;
12787
12788 err = perf_buffer__process_records(pb, cpu_buf);
12789 if (err) {
12790 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12791 return libbpf_err(err);
12792 }
12793 }
12794 return 0;
12795 }
12796
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)12797 int bpf_program__set_attach_target(struct bpf_program *prog,
12798 int attach_prog_fd,
12799 const char *attach_func_name)
12800 {
12801 int btf_obj_fd = 0, btf_id = 0, err;
12802
12803 if (!prog || attach_prog_fd < 0)
12804 return libbpf_err(-EINVAL);
12805
12806 if (prog->obj->loaded)
12807 return libbpf_err(-EINVAL);
12808
12809 if (attach_prog_fd && !attach_func_name) {
12810 /* remember attach_prog_fd and let bpf_program__load() find
12811 * BTF ID during the program load
12812 */
12813 prog->attach_prog_fd = attach_prog_fd;
12814 return 0;
12815 }
12816
12817 if (attach_prog_fd) {
12818 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12819 attach_prog_fd);
12820 if (btf_id < 0)
12821 return libbpf_err(btf_id);
12822 } else {
12823 if (!attach_func_name)
12824 return libbpf_err(-EINVAL);
12825
12826 /* load btf_vmlinux, if not yet */
12827 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12828 if (err)
12829 return libbpf_err(err);
12830 err = find_kernel_btf_id(prog->obj, attach_func_name,
12831 prog->expected_attach_type,
12832 &btf_obj_fd, &btf_id);
12833 if (err)
12834 return libbpf_err(err);
12835 }
12836
12837 prog->attach_btf_id = btf_id;
12838 prog->attach_btf_obj_fd = btf_obj_fd;
12839 prog->attach_prog_fd = attach_prog_fd;
12840 return 0;
12841 }
12842
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12843 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12844 {
12845 int err = 0, n, len, start, end = -1;
12846 bool *tmp;
12847
12848 *mask = NULL;
12849 *mask_sz = 0;
12850
12851 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12852 while (*s) {
12853 if (*s == ',' || *s == '\n') {
12854 s++;
12855 continue;
12856 }
12857 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12858 if (n <= 0 || n > 2) {
12859 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12860 err = -EINVAL;
12861 goto cleanup;
12862 } else if (n == 1) {
12863 end = start;
12864 }
12865 if (start < 0 || start > end) {
12866 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12867 start, end, s);
12868 err = -EINVAL;
12869 goto cleanup;
12870 }
12871 tmp = realloc(*mask, end + 1);
12872 if (!tmp) {
12873 err = -ENOMEM;
12874 goto cleanup;
12875 }
12876 *mask = tmp;
12877 memset(tmp + *mask_sz, 0, start - *mask_sz);
12878 memset(tmp + start, 1, end - start + 1);
12879 *mask_sz = end + 1;
12880 s += len;
12881 }
12882 if (!*mask_sz) {
12883 pr_warn("Empty CPU range\n");
12884 return -EINVAL;
12885 }
12886 return 0;
12887 cleanup:
12888 free(*mask);
12889 *mask = NULL;
12890 return err;
12891 }
12892
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12893 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12894 {
12895 int fd, err = 0, len;
12896 char buf[128];
12897
12898 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12899 if (fd < 0) {
12900 err = -errno;
12901 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12902 return err;
12903 }
12904 len = read(fd, buf, sizeof(buf));
12905 close(fd);
12906 if (len <= 0) {
12907 err = len ? -errno : -EINVAL;
12908 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12909 return err;
12910 }
12911 if (len >= sizeof(buf)) {
12912 pr_warn("CPU mask is too big in file %s\n", fcpu);
12913 return -E2BIG;
12914 }
12915 buf[len] = '\0';
12916
12917 return parse_cpu_mask_str(buf, mask, mask_sz);
12918 }
12919
libbpf_num_possible_cpus(void)12920 int libbpf_num_possible_cpus(void)
12921 {
12922 static const char *fcpu = "/sys/devices/system/cpu/possible";
12923 static int cpus;
12924 int err, n, i, tmp_cpus;
12925 bool *mask;
12926
12927 tmp_cpus = READ_ONCE(cpus);
12928 if (tmp_cpus > 0)
12929 return tmp_cpus;
12930
12931 err = parse_cpu_mask_file(fcpu, &mask, &n);
12932 if (err)
12933 return libbpf_err(err);
12934
12935 tmp_cpus = 0;
12936 for (i = 0; i < n; i++) {
12937 if (mask[i])
12938 tmp_cpus++;
12939 }
12940 free(mask);
12941
12942 WRITE_ONCE(cpus, tmp_cpus);
12943 return tmp_cpus;
12944 }
12945
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12946 static int populate_skeleton_maps(const struct bpf_object *obj,
12947 struct bpf_map_skeleton *maps,
12948 size_t map_cnt)
12949 {
12950 int i;
12951
12952 for (i = 0; i < map_cnt; i++) {
12953 struct bpf_map **map = maps[i].map;
12954 const char *name = maps[i].name;
12955 void **mmaped = maps[i].mmaped;
12956
12957 *map = bpf_object__find_map_by_name(obj, name);
12958 if (!*map) {
12959 pr_warn("failed to find skeleton map '%s'\n", name);
12960 return -ESRCH;
12961 }
12962
12963 /* externs shouldn't be pre-setup from user code */
12964 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12965 *mmaped = (*map)->mmaped;
12966 }
12967 return 0;
12968 }
12969
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12970 static int populate_skeleton_progs(const struct bpf_object *obj,
12971 struct bpf_prog_skeleton *progs,
12972 size_t prog_cnt)
12973 {
12974 int i;
12975
12976 for (i = 0; i < prog_cnt; i++) {
12977 struct bpf_program **prog = progs[i].prog;
12978 const char *name = progs[i].name;
12979
12980 *prog = bpf_object__find_program_by_name(obj, name);
12981 if (!*prog) {
12982 pr_warn("failed to find skeleton program '%s'\n", name);
12983 return -ESRCH;
12984 }
12985 }
12986 return 0;
12987 }
12988
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)12989 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12990 const struct bpf_object_open_opts *opts)
12991 {
12992 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12993 .object_name = s->name,
12994 );
12995 struct bpf_object *obj;
12996 int err;
12997
12998 /* Attempt to preserve opts->object_name, unless overriden by user
12999 * explicitly. Overwriting object name for skeletons is discouraged,
13000 * as it breaks global data maps, because they contain object name
13001 * prefix as their own map name prefix. When skeleton is generated,
13002 * bpftool is making an assumption that this name will stay the same.
13003 */
13004 if (opts) {
13005 memcpy(&skel_opts, opts, sizeof(*opts));
13006 if (!opts->object_name)
13007 skel_opts.object_name = s->name;
13008 }
13009
13010 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13011 err = libbpf_get_error(obj);
13012 if (err) {
13013 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13014 s->name, err);
13015 return libbpf_err(err);
13016 }
13017
13018 *s->obj = obj;
13019 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13020 if (err) {
13021 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13022 return libbpf_err(err);
13023 }
13024
13025 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13026 if (err) {
13027 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13028 return libbpf_err(err);
13029 }
13030
13031 return 0;
13032 }
13033
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13034 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13035 {
13036 int err, len, var_idx, i;
13037 const char *var_name;
13038 const struct bpf_map *map;
13039 struct btf *btf;
13040 __u32 map_type_id;
13041 const struct btf_type *map_type, *var_type;
13042 const struct bpf_var_skeleton *var_skel;
13043 struct btf_var_secinfo *var;
13044
13045 if (!s->obj)
13046 return libbpf_err(-EINVAL);
13047
13048 btf = bpf_object__btf(s->obj);
13049 if (!btf) {
13050 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13051 bpf_object__name(s->obj));
13052 return libbpf_err(-errno);
13053 }
13054
13055 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13056 if (err) {
13057 pr_warn("failed to populate subskeleton maps: %d\n", err);
13058 return libbpf_err(err);
13059 }
13060
13061 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13062 if (err) {
13063 pr_warn("failed to populate subskeleton maps: %d\n", err);
13064 return libbpf_err(err);
13065 }
13066
13067 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13068 var_skel = &s->vars[var_idx];
13069 map = *var_skel->map;
13070 map_type_id = bpf_map__btf_value_type_id(map);
13071 map_type = btf__type_by_id(btf, map_type_id);
13072
13073 if (!btf_is_datasec(map_type)) {
13074 pr_warn("type for map '%1$s' is not a datasec: %2$s",
13075 bpf_map__name(map),
13076 __btf_kind_str(btf_kind(map_type)));
13077 return libbpf_err(-EINVAL);
13078 }
13079
13080 len = btf_vlen(map_type);
13081 var = btf_var_secinfos(map_type);
13082 for (i = 0; i < len; i++, var++) {
13083 var_type = btf__type_by_id(btf, var->type);
13084 var_name = btf__name_by_offset(btf, var_type->name_off);
13085 if (strcmp(var_name, var_skel->name) == 0) {
13086 *var_skel->addr = map->mmaped + var->offset;
13087 break;
13088 }
13089 }
13090 }
13091 return 0;
13092 }
13093
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13094 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13095 {
13096 if (!s)
13097 return;
13098 free(s->maps);
13099 free(s->progs);
13100 free(s->vars);
13101 free(s);
13102 }
13103
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13104 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13105 {
13106 int i, err;
13107
13108 err = bpf_object__load(*s->obj);
13109 if (err) {
13110 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13111 return libbpf_err(err);
13112 }
13113
13114 for (i = 0; i < s->map_cnt; i++) {
13115 struct bpf_map *map = *s->maps[i].map;
13116 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13117 int prot, map_fd = bpf_map__fd(map);
13118 void **mmaped = s->maps[i].mmaped;
13119
13120 if (!mmaped)
13121 continue;
13122
13123 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13124 *mmaped = NULL;
13125 continue;
13126 }
13127
13128 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13129 prot = PROT_READ;
13130 else
13131 prot = PROT_READ | PROT_WRITE;
13132
13133 /* Remap anonymous mmap()-ed "map initialization image" as
13134 * a BPF map-backed mmap()-ed memory, but preserving the same
13135 * memory address. This will cause kernel to change process'
13136 * page table to point to a different piece of kernel memory,
13137 * but from userspace point of view memory address (and its
13138 * contents, being identical at this point) will stay the
13139 * same. This mapping will be released by bpf_object__close()
13140 * as per normal clean up procedure, so we don't need to worry
13141 * about it from skeleton's clean up perspective.
13142 */
13143 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13144 if (*mmaped == MAP_FAILED) {
13145 err = -errno;
13146 *mmaped = NULL;
13147 pr_warn("failed to re-mmap() map '%s': %d\n",
13148 bpf_map__name(map), err);
13149 return libbpf_err(err);
13150 }
13151 }
13152
13153 return 0;
13154 }
13155
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13156 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13157 {
13158 int i, err;
13159
13160 for (i = 0; i < s->prog_cnt; i++) {
13161 struct bpf_program *prog = *s->progs[i].prog;
13162 struct bpf_link **link = s->progs[i].link;
13163
13164 if (!prog->autoload || !prog->autoattach)
13165 continue;
13166
13167 /* auto-attaching not supported for this program */
13168 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13169 continue;
13170
13171 /* if user already set the link manually, don't attempt auto-attach */
13172 if (*link)
13173 continue;
13174
13175 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13176 if (err) {
13177 pr_warn("prog '%s': failed to auto-attach: %d\n",
13178 bpf_program__name(prog), err);
13179 return libbpf_err(err);
13180 }
13181
13182 /* It's possible that for some SEC() definitions auto-attach
13183 * is supported in some cases (e.g., if definition completely
13184 * specifies target information), but is not in other cases.
13185 * SEC("uprobe") is one such case. If user specified target
13186 * binary and function name, such BPF program can be
13187 * auto-attached. But if not, it shouldn't trigger skeleton's
13188 * attach to fail. It should just be skipped.
13189 * attach_fn signals such case with returning 0 (no error) and
13190 * setting link to NULL.
13191 */
13192 }
13193
13194 return 0;
13195 }
13196
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)13197 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13198 {
13199 int i;
13200
13201 for (i = 0; i < s->prog_cnt; i++) {
13202 struct bpf_link **link = s->progs[i].link;
13203
13204 bpf_link__destroy(*link);
13205 *link = NULL;
13206 }
13207 }
13208
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)13209 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13210 {
13211 if (!s)
13212 return;
13213
13214 if (s->progs)
13215 bpf_object__detach_skeleton(s);
13216 if (s->obj)
13217 bpf_object__close(*s->obj);
13218 free(s->maps);
13219 free(s->progs);
13220 free(s);
13221 }
13222