1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC 0xcafe4a11
60 #endif
61
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69 #define __printf(a, b) __attribute__((format(printf, a, b)))
70
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74 static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
102 [BPF_LIRC_MODE2] = "lirc_mode2",
103 [BPF_FLOW_DISSECTOR] = "flow_dissector",
104 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
105 [BPF_TRACE_FENTRY] = "trace_fentry",
106 [BPF_TRACE_FEXIT] = "trace_fexit",
107 [BPF_MODIFY_RETURN] = "modify_return",
108 [BPF_LSM_MAC] = "lsm_mac",
109 [BPF_LSM_CGROUP] = "lsm_cgroup",
110 [BPF_SK_LOOKUP] = "sk_lookup",
111 [BPF_TRACE_ITER] = "trace_iter",
112 [BPF_XDP_DEVMAP] = "xdp_devmap",
113 [BPF_XDP_CPUMAP] = "xdp_cpumap",
114 [BPF_XDP] = "xdp",
115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
117 [BPF_PERF_EVENT] = "perf_event",
118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
119 };
120
121 static const char * const link_type_name[] = {
122 [BPF_LINK_TYPE_UNSPEC] = "unspec",
123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
124 [BPF_LINK_TYPE_TRACING] = "tracing",
125 [BPF_LINK_TYPE_CGROUP] = "cgroup",
126 [BPF_LINK_TYPE_ITER] = "iter",
127 [BPF_LINK_TYPE_NETNS] = "netns",
128 [BPF_LINK_TYPE_XDP] = "xdp",
129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
132 };
133
134 static const char * const map_type_name[] = {
135 [BPF_MAP_TYPE_UNSPEC] = "unspec",
136 [BPF_MAP_TYPE_HASH] = "hash",
137 [BPF_MAP_TYPE_ARRAY] = "array",
138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
149 [BPF_MAP_TYPE_DEVMAP] = "devmap",
150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
152 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
153 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
158 [BPF_MAP_TYPE_QUEUE] = "queue",
159 [BPF_MAP_TYPE_STACK] = "stack",
160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
167 };
168
169 static const char * const prog_type_name[] = {
170 [BPF_PROG_TYPE_UNSPEC] = "unspec",
171 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
172 [BPF_PROG_TYPE_KPROBE] = "kprobe",
173 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
174 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
175 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
176 [BPF_PROG_TYPE_XDP] = "xdp",
177 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
178 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
179 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
180 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
181 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
182 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
183 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
184 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
185 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
186 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
187 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
188 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
189 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
190 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
191 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
192 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
193 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
194 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
195 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
196 [BPF_PROG_TYPE_TRACING] = "tracing",
197 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
198 [BPF_PROG_TYPE_EXT] = "ext",
199 [BPF_PROG_TYPE_LSM] = "lsm",
200 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
201 [BPF_PROG_TYPE_SYSCALL] = "syscall",
202 };
203
__base_pr(enum libbpf_print_level level,const char * format,va_list args)204 static int __base_pr(enum libbpf_print_level level, const char *format,
205 va_list args)
206 {
207 if (level == LIBBPF_DEBUG)
208 return 0;
209
210 return vfprintf(stderr, format, args);
211 }
212
213 static libbpf_print_fn_t __libbpf_pr = __base_pr;
214
libbpf_set_print(libbpf_print_fn_t fn)215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
216 {
217 libbpf_print_fn_t old_print_fn = __libbpf_pr;
218
219 __libbpf_pr = fn;
220 return old_print_fn;
221 }
222
223 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)224 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
225 {
226 va_list args;
227 int old_errno;
228
229 if (!__libbpf_pr)
230 return;
231
232 old_errno = errno;
233
234 va_start(args, format);
235 __libbpf_pr(level, format, args);
236 va_end(args);
237
238 errno = old_errno;
239 }
240
pr_perm_msg(int err)241 static void pr_perm_msg(int err)
242 {
243 struct rlimit limit;
244 char buf[100];
245
246 if (err != -EPERM || geteuid() != 0)
247 return;
248
249 err = getrlimit(RLIMIT_MEMLOCK, &limit);
250 if (err)
251 return;
252
253 if (limit.rlim_cur == RLIM_INFINITY)
254 return;
255
256 if (limit.rlim_cur < 1024)
257 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
258 else if (limit.rlim_cur < 1024*1024)
259 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
260 else
261 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
262
263 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
264 buf);
265 }
266
267 #define STRERR_BUFSIZE 128
268
269 /* Copied from tools/perf/util/util.h */
270 #ifndef zfree
271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
272 #endif
273
274 #ifndef zclose
275 # define zclose(fd) ({ \
276 int ___err = 0; \
277 if ((fd) >= 0) \
278 ___err = close((fd)); \
279 fd = -1; \
280 ___err; })
281 #endif
282
ptr_to_u64(const void * ptr)283 static inline __u64 ptr_to_u64(const void *ptr)
284 {
285 return (__u64) (unsigned long) ptr;
286 }
287
libbpf_set_strict_mode(enum libbpf_strict_mode mode)288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
289 {
290 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
291 return 0;
292 }
293
libbpf_major_version(void)294 __u32 libbpf_major_version(void)
295 {
296 return LIBBPF_MAJOR_VERSION;
297 }
298
libbpf_minor_version(void)299 __u32 libbpf_minor_version(void)
300 {
301 return LIBBPF_MINOR_VERSION;
302 }
303
libbpf_version_string(void)304 const char *libbpf_version_string(void)
305 {
306 #define __S(X) #X
307 #define _S(X) __S(X)
308 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
309 #undef _S
310 #undef __S
311 }
312
313 enum reloc_type {
314 RELO_LD64,
315 RELO_CALL,
316 RELO_DATA,
317 RELO_EXTERN_VAR,
318 RELO_EXTERN_FUNC,
319 RELO_SUBPROG_ADDR,
320 RELO_CORE,
321 };
322
323 struct reloc_desc {
324 enum reloc_type type;
325 int insn_idx;
326 union {
327 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
328 struct {
329 int map_idx;
330 int sym_off;
331 };
332 };
333 };
334
335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
336 enum sec_def_flags {
337 SEC_NONE = 0,
338 /* expected_attach_type is optional, if kernel doesn't support that */
339 SEC_EXP_ATTACH_OPT = 1,
340 /* legacy, only used by libbpf_get_type_names() and
341 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
342 * This used to be associated with cgroup (and few other) BPF programs
343 * that were attachable through BPF_PROG_ATTACH command. Pretty
344 * meaningless nowadays, though.
345 */
346 SEC_ATTACHABLE = 2,
347 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
348 /* attachment target is specified through BTF ID in either kernel or
349 * other BPF program's BTF object */
350 SEC_ATTACH_BTF = 4,
351 /* BPF program type allows sleeping/blocking in kernel */
352 SEC_SLEEPABLE = 8,
353 /* BPF program support non-linear XDP buffer */
354 SEC_XDP_FRAGS = 16,
355 };
356
357 struct bpf_sec_def {
358 char *sec;
359 enum bpf_prog_type prog_type;
360 enum bpf_attach_type expected_attach_type;
361 long cookie;
362 int handler_id;
363
364 libbpf_prog_setup_fn_t prog_setup_fn;
365 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
366 libbpf_prog_attach_fn_t prog_attach_fn;
367 };
368
369 /*
370 * bpf_prog should be a better name but it has been used in
371 * linux/filter.h.
372 */
373 struct bpf_program {
374 char *name;
375 char *sec_name;
376 size_t sec_idx;
377 const struct bpf_sec_def *sec_def;
378 /* this program's instruction offset (in number of instructions)
379 * within its containing ELF section
380 */
381 size_t sec_insn_off;
382 /* number of original instructions in ELF section belonging to this
383 * program, not taking into account subprogram instructions possible
384 * appended later during relocation
385 */
386 size_t sec_insn_cnt;
387 /* Offset (in number of instructions) of the start of instruction
388 * belonging to this BPF program within its containing main BPF
389 * program. For the entry-point (main) BPF program, this is always
390 * zero. For a sub-program, this gets reset before each of main BPF
391 * programs are processed and relocated and is used to determined
392 * whether sub-program was already appended to the main program, and
393 * if yes, at which instruction offset.
394 */
395 size_t sub_insn_off;
396
397 /* instructions that belong to BPF program; insns[0] is located at
398 * sec_insn_off instruction within its ELF section in ELF file, so
399 * when mapping ELF file instruction index to the local instruction,
400 * one needs to subtract sec_insn_off; and vice versa.
401 */
402 struct bpf_insn *insns;
403 /* actual number of instruction in this BPF program's image; for
404 * entry-point BPF programs this includes the size of main program
405 * itself plus all the used sub-programs, appended at the end
406 */
407 size_t insns_cnt;
408
409 struct reloc_desc *reloc_desc;
410 int nr_reloc;
411
412 /* BPF verifier log settings */
413 char *log_buf;
414 size_t log_size;
415 __u32 log_level;
416
417 struct bpf_object *obj;
418
419 int fd;
420 bool autoload;
421 bool autoattach;
422 bool mark_btf_static;
423 enum bpf_prog_type type;
424 enum bpf_attach_type expected_attach_type;
425
426 int prog_ifindex;
427 __u32 attach_btf_obj_fd;
428 __u32 attach_btf_id;
429 __u32 attach_prog_fd;
430
431 void *func_info;
432 __u32 func_info_rec_size;
433 __u32 func_info_cnt;
434
435 void *line_info;
436 __u32 line_info_rec_size;
437 __u32 line_info_cnt;
438 __u32 prog_flags;
439 };
440
441 struct bpf_struct_ops {
442 const char *tname;
443 const struct btf_type *type;
444 struct bpf_program **progs;
445 __u32 *kern_func_off;
446 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
447 void *data;
448 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
449 * btf_vmlinux's format.
450 * struct bpf_struct_ops_tcp_congestion_ops {
451 * [... some other kernel fields ...]
452 * struct tcp_congestion_ops data;
453 * }
454 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
455 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
456 * from "data".
457 */
458 void *kern_vdata;
459 __u32 type_id;
460 };
461
462 #define DATA_SEC ".data"
463 #define BSS_SEC ".bss"
464 #define RODATA_SEC ".rodata"
465 #define KCONFIG_SEC ".kconfig"
466 #define KSYMS_SEC ".ksyms"
467 #define STRUCT_OPS_SEC ".struct_ops"
468
469 enum libbpf_map_type {
470 LIBBPF_MAP_UNSPEC,
471 LIBBPF_MAP_DATA,
472 LIBBPF_MAP_BSS,
473 LIBBPF_MAP_RODATA,
474 LIBBPF_MAP_KCONFIG,
475 };
476
477 struct bpf_map_def {
478 unsigned int type;
479 unsigned int key_size;
480 unsigned int value_size;
481 unsigned int max_entries;
482 unsigned int map_flags;
483 };
484
485 struct bpf_map {
486 struct bpf_object *obj;
487 char *name;
488 /* real_name is defined for special internal maps (.rodata*,
489 * .data*, .bss, .kconfig) and preserves their original ELF section
490 * name. This is important to be be able to find corresponding BTF
491 * DATASEC information.
492 */
493 char *real_name;
494 int fd;
495 int sec_idx;
496 size_t sec_offset;
497 int map_ifindex;
498 int inner_map_fd;
499 struct bpf_map_def def;
500 __u32 numa_node;
501 __u32 btf_var_idx;
502 __u32 btf_key_type_id;
503 __u32 btf_value_type_id;
504 __u32 btf_vmlinux_value_type_id;
505 enum libbpf_map_type libbpf_type;
506 void *mmaped;
507 struct bpf_struct_ops *st_ops;
508 struct bpf_map *inner_map;
509 void **init_slots;
510 int init_slots_sz;
511 char *pin_path;
512 bool pinned;
513 bool reused;
514 bool autocreate;
515 __u64 map_extra;
516 };
517
518 enum extern_type {
519 EXT_UNKNOWN,
520 EXT_KCFG,
521 EXT_KSYM,
522 };
523
524 enum kcfg_type {
525 KCFG_UNKNOWN,
526 KCFG_CHAR,
527 KCFG_BOOL,
528 KCFG_INT,
529 KCFG_TRISTATE,
530 KCFG_CHAR_ARR,
531 };
532
533 struct extern_desc {
534 enum extern_type type;
535 int sym_idx;
536 int btf_id;
537 int sec_btf_id;
538 const char *name;
539 bool is_set;
540 bool is_weak;
541 union {
542 struct {
543 enum kcfg_type type;
544 int sz;
545 int align;
546 int data_off;
547 bool is_signed;
548 } kcfg;
549 struct {
550 unsigned long long addr;
551
552 /* target btf_id of the corresponding kernel var. */
553 int kernel_btf_obj_fd;
554 int kernel_btf_id;
555
556 /* local btf_id of the ksym extern's type. */
557 __u32 type_id;
558 /* BTF fd index to be patched in for insn->off, this is
559 * 0 for vmlinux BTF, index in obj->fd_array for module
560 * BTF
561 */
562 __s16 btf_fd_idx;
563 } ksym;
564 };
565 };
566
567 struct module_btf {
568 struct btf *btf;
569 char *name;
570 __u32 id;
571 int fd;
572 int fd_array_idx;
573 };
574
575 enum sec_type {
576 SEC_UNUSED = 0,
577 SEC_RELO,
578 SEC_BSS,
579 SEC_DATA,
580 SEC_RODATA,
581 };
582
583 struct elf_sec_desc {
584 enum sec_type sec_type;
585 Elf64_Shdr *shdr;
586 Elf_Data *data;
587 };
588
589 struct elf_state {
590 int fd;
591 const void *obj_buf;
592 size_t obj_buf_sz;
593 Elf *elf;
594 Elf64_Ehdr *ehdr;
595 Elf_Data *symbols;
596 Elf_Data *st_ops_data;
597 size_t shstrndx; /* section index for section name strings */
598 size_t strtabidx;
599 struct elf_sec_desc *secs;
600 int sec_cnt;
601 int btf_maps_shndx;
602 __u32 btf_maps_sec_btf_id;
603 int text_shndx;
604 int symbols_shndx;
605 int st_ops_shndx;
606 };
607
608 struct usdt_manager;
609
610 struct bpf_object {
611 char name[BPF_OBJ_NAME_LEN];
612 char license[64];
613 __u32 kern_version;
614
615 struct bpf_program *programs;
616 size_t nr_programs;
617 struct bpf_map *maps;
618 size_t nr_maps;
619 size_t maps_cap;
620
621 char *kconfig;
622 struct extern_desc *externs;
623 int nr_extern;
624 int kconfig_map_idx;
625
626 bool loaded;
627 bool has_subcalls;
628 bool has_rodata;
629
630 struct bpf_gen *gen_loader;
631
632 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
633 struct elf_state efile;
634
635 struct btf *btf;
636 struct btf_ext *btf_ext;
637
638 /* Parse and load BTF vmlinux if any of the programs in the object need
639 * it at load time.
640 */
641 struct btf *btf_vmlinux;
642 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
643 * override for vmlinux BTF.
644 */
645 char *btf_custom_path;
646 /* vmlinux BTF override for CO-RE relocations */
647 struct btf *btf_vmlinux_override;
648 /* Lazily initialized kernel module BTFs */
649 struct module_btf *btf_modules;
650 bool btf_modules_loaded;
651 size_t btf_module_cnt;
652 size_t btf_module_cap;
653
654 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
655 char *log_buf;
656 size_t log_size;
657 __u32 log_level;
658
659 int *fd_array;
660 size_t fd_array_cap;
661 size_t fd_array_cnt;
662
663 struct usdt_manager *usdt_man;
664
665 char path[];
666 };
667
668 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
669 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
670 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
671 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
672 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
673 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
674 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
675 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
676 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
677
bpf_program__unload(struct bpf_program * prog)678 void bpf_program__unload(struct bpf_program *prog)
679 {
680 if (!prog)
681 return;
682
683 zclose(prog->fd);
684
685 zfree(&prog->func_info);
686 zfree(&prog->line_info);
687 }
688
bpf_program__exit(struct bpf_program * prog)689 static void bpf_program__exit(struct bpf_program *prog)
690 {
691 if (!prog)
692 return;
693
694 bpf_program__unload(prog);
695 zfree(&prog->name);
696 zfree(&prog->sec_name);
697 zfree(&prog->insns);
698 zfree(&prog->reloc_desc);
699
700 prog->nr_reloc = 0;
701 prog->insns_cnt = 0;
702 prog->sec_idx = -1;
703 }
704
insn_is_subprog_call(const struct bpf_insn * insn)705 static bool insn_is_subprog_call(const struct bpf_insn *insn)
706 {
707 return BPF_CLASS(insn->code) == BPF_JMP &&
708 BPF_OP(insn->code) == BPF_CALL &&
709 BPF_SRC(insn->code) == BPF_K &&
710 insn->src_reg == BPF_PSEUDO_CALL &&
711 insn->dst_reg == 0 &&
712 insn->off == 0;
713 }
714
is_call_insn(const struct bpf_insn * insn)715 static bool is_call_insn(const struct bpf_insn *insn)
716 {
717 return insn->code == (BPF_JMP | BPF_CALL);
718 }
719
insn_is_pseudo_func(struct bpf_insn * insn)720 static bool insn_is_pseudo_func(struct bpf_insn *insn)
721 {
722 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
723 }
724
725 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)726 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
727 const char *name, size_t sec_idx, const char *sec_name,
728 size_t sec_off, void *insn_data, size_t insn_data_sz)
729 {
730 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
731 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
732 sec_name, name, sec_off, insn_data_sz);
733 return -EINVAL;
734 }
735
736 memset(prog, 0, sizeof(*prog));
737 prog->obj = obj;
738
739 prog->sec_idx = sec_idx;
740 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
741 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
742 /* insns_cnt can later be increased by appending used subprograms */
743 prog->insns_cnt = prog->sec_insn_cnt;
744
745 prog->type = BPF_PROG_TYPE_UNSPEC;
746 prog->fd = -1;
747
748 /* libbpf's convention for SEC("?abc...") is that it's just like
749 * SEC("abc...") but the corresponding bpf_program starts out with
750 * autoload set to false.
751 */
752 if (sec_name[0] == '?') {
753 prog->autoload = false;
754 /* from now on forget there was ? in section name */
755 sec_name++;
756 } else {
757 prog->autoload = true;
758 }
759
760 prog->autoattach = true;
761
762 /* inherit object's log_level */
763 prog->log_level = obj->log_level;
764
765 prog->sec_name = strdup(sec_name);
766 if (!prog->sec_name)
767 goto errout;
768
769 prog->name = strdup(name);
770 if (!prog->name)
771 goto errout;
772
773 prog->insns = malloc(insn_data_sz);
774 if (!prog->insns)
775 goto errout;
776 memcpy(prog->insns, insn_data, insn_data_sz);
777
778 return 0;
779 errout:
780 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
781 bpf_program__exit(prog);
782 return -ENOMEM;
783 }
784
785 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)786 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
787 const char *sec_name, int sec_idx)
788 {
789 Elf_Data *symbols = obj->efile.symbols;
790 struct bpf_program *prog, *progs;
791 void *data = sec_data->d_buf;
792 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
793 int nr_progs, err, i;
794 const char *name;
795 Elf64_Sym *sym;
796
797 progs = obj->programs;
798 nr_progs = obj->nr_programs;
799 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
800 sec_off = 0;
801
802 for (i = 0; i < nr_syms; i++) {
803 sym = elf_sym_by_idx(obj, i);
804
805 if (sym->st_shndx != sec_idx)
806 continue;
807 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
808 continue;
809
810 prog_sz = sym->st_size;
811 sec_off = sym->st_value;
812
813 name = elf_sym_str(obj, sym->st_name);
814 if (!name) {
815 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
816 sec_name, sec_off);
817 return -LIBBPF_ERRNO__FORMAT;
818 }
819
820 if (sec_off + prog_sz > sec_sz) {
821 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
822 sec_name, sec_off);
823 return -LIBBPF_ERRNO__FORMAT;
824 }
825
826 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
827 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
828 return -ENOTSUP;
829 }
830
831 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
832 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
833
834 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
835 if (!progs) {
836 /*
837 * In this case the original obj->programs
838 * is still valid, so don't need special treat for
839 * bpf_close_object().
840 */
841 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
842 sec_name, name);
843 return -ENOMEM;
844 }
845 obj->programs = progs;
846
847 prog = &progs[nr_progs];
848
849 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
850 sec_off, data + sec_off, prog_sz);
851 if (err)
852 return err;
853
854 /* if function is a global/weak symbol, but has restricted
855 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
856 * as static to enable more permissive BPF verification mode
857 * with more outside context available to BPF verifier
858 */
859 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
860 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
861 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
862 prog->mark_btf_static = true;
863
864 nr_progs++;
865 obj->nr_programs = nr_progs;
866 }
867
868 return 0;
869 }
870
get_kernel_version(void)871 __u32 get_kernel_version(void)
872 {
873 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
874 * but Ubuntu provides /proc/version_signature file, as described at
875 * https://ubuntu.com/kernel, with an example contents below, which we
876 * can use to get a proper LINUX_VERSION_CODE.
877 *
878 * Ubuntu 5.4.0-12.15-generic 5.4.8
879 *
880 * In the above, 5.4.8 is what kernel is actually expecting, while
881 * uname() call will return 5.4.0 in info.release.
882 */
883 const char *ubuntu_kver_file = "/proc/version_signature";
884 __u32 major, minor, patch;
885 struct utsname info;
886
887 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) {
888 FILE *f;
889
890 f = fopen(ubuntu_kver_file, "r");
891 if (f) {
892 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
893 fclose(f);
894 return KERNEL_VERSION(major, minor, patch);
895 }
896 fclose(f);
897 }
898 /* something went wrong, fall back to uname() approach */
899 }
900
901 uname(&info);
902 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
903 return 0;
904 return KERNEL_VERSION(major, minor, patch);
905 }
906
907 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)908 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
909 {
910 struct btf_member *m;
911 int i;
912
913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
914 if (btf_member_bit_offset(t, i) == bit_offset)
915 return m;
916 }
917
918 return NULL;
919 }
920
921 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)922 find_member_by_name(const struct btf *btf, const struct btf_type *t,
923 const char *name)
924 {
925 struct btf_member *m;
926 int i;
927
928 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
929 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
930 return m;
931 }
932
933 return NULL;
934 }
935
936 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
937 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
938 const char *name, __u32 kind);
939
940 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)941 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
942 const struct btf_type **type, __u32 *type_id,
943 const struct btf_type **vtype, __u32 *vtype_id,
944 const struct btf_member **data_member)
945 {
946 const struct btf_type *kern_type, *kern_vtype;
947 const struct btf_member *kern_data_member;
948 __s32 kern_vtype_id, kern_type_id;
949 __u32 i;
950
951 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
952 if (kern_type_id < 0) {
953 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
954 tname);
955 return kern_type_id;
956 }
957 kern_type = btf__type_by_id(btf, kern_type_id);
958
959 /* Find the corresponding "map_value" type that will be used
960 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
961 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
962 * btf_vmlinux.
963 */
964 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
965 tname, BTF_KIND_STRUCT);
966 if (kern_vtype_id < 0) {
967 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
968 STRUCT_OPS_VALUE_PREFIX, tname);
969 return kern_vtype_id;
970 }
971 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
972
973 /* Find "struct tcp_congestion_ops" from
974 * struct bpf_struct_ops_tcp_congestion_ops {
975 * [ ... ]
976 * struct tcp_congestion_ops data;
977 * }
978 */
979 kern_data_member = btf_members(kern_vtype);
980 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
981 if (kern_data_member->type == kern_type_id)
982 break;
983 }
984 if (i == btf_vlen(kern_vtype)) {
985 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
986 tname, STRUCT_OPS_VALUE_PREFIX, tname);
987 return -EINVAL;
988 }
989
990 *type = kern_type;
991 *type_id = kern_type_id;
992 *vtype = kern_vtype;
993 *vtype_id = kern_vtype_id;
994 *data_member = kern_data_member;
995
996 return 0;
997 }
998
bpf_map__is_struct_ops(const struct bpf_map * map)999 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1000 {
1001 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1002 }
1003
1004 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)1005 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1006 const struct btf *btf,
1007 const struct btf *kern_btf)
1008 {
1009 const struct btf_member *member, *kern_member, *kern_data_member;
1010 const struct btf_type *type, *kern_type, *kern_vtype;
1011 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1012 struct bpf_struct_ops *st_ops;
1013 void *data, *kern_data;
1014 const char *tname;
1015 int err;
1016
1017 st_ops = map->st_ops;
1018 type = st_ops->type;
1019 tname = st_ops->tname;
1020 err = find_struct_ops_kern_types(kern_btf, tname,
1021 &kern_type, &kern_type_id,
1022 &kern_vtype, &kern_vtype_id,
1023 &kern_data_member);
1024 if (err)
1025 return err;
1026
1027 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1028 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1029
1030 map->def.value_size = kern_vtype->size;
1031 map->btf_vmlinux_value_type_id = kern_vtype_id;
1032
1033 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1034 if (!st_ops->kern_vdata)
1035 return -ENOMEM;
1036
1037 data = st_ops->data;
1038 kern_data_off = kern_data_member->offset / 8;
1039 kern_data = st_ops->kern_vdata + kern_data_off;
1040
1041 member = btf_members(type);
1042 for (i = 0; i < btf_vlen(type); i++, member++) {
1043 const struct btf_type *mtype, *kern_mtype;
1044 __u32 mtype_id, kern_mtype_id;
1045 void *mdata, *kern_mdata;
1046 __s64 msize, kern_msize;
1047 __u32 moff, kern_moff;
1048 __u32 kern_member_idx;
1049 const char *mname;
1050
1051 mname = btf__name_by_offset(btf, member->name_off);
1052 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1053 if (!kern_member) {
1054 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1055 map->name, mname);
1056 return -ENOTSUP;
1057 }
1058
1059 kern_member_idx = kern_member - btf_members(kern_type);
1060 if (btf_member_bitfield_size(type, i) ||
1061 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1062 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1063 map->name, mname);
1064 return -ENOTSUP;
1065 }
1066
1067 moff = member->offset / 8;
1068 kern_moff = kern_member->offset / 8;
1069
1070 mdata = data + moff;
1071 kern_mdata = kern_data + kern_moff;
1072
1073 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1074 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1075 &kern_mtype_id);
1076 if (BTF_INFO_KIND(mtype->info) !=
1077 BTF_INFO_KIND(kern_mtype->info)) {
1078 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1079 map->name, mname, BTF_INFO_KIND(mtype->info),
1080 BTF_INFO_KIND(kern_mtype->info));
1081 return -ENOTSUP;
1082 }
1083
1084 if (btf_is_ptr(mtype)) {
1085 struct bpf_program *prog;
1086
1087 prog = st_ops->progs[i];
1088 if (!prog)
1089 continue;
1090
1091 kern_mtype = skip_mods_and_typedefs(kern_btf,
1092 kern_mtype->type,
1093 &kern_mtype_id);
1094
1095 /* mtype->type must be a func_proto which was
1096 * guaranteed in bpf_object__collect_st_ops_relos(),
1097 * so only check kern_mtype for func_proto here.
1098 */
1099 if (!btf_is_func_proto(kern_mtype)) {
1100 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1101 map->name, mname);
1102 return -ENOTSUP;
1103 }
1104
1105 prog->attach_btf_id = kern_type_id;
1106 prog->expected_attach_type = kern_member_idx;
1107
1108 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1109
1110 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1111 map->name, mname, prog->name, moff,
1112 kern_moff);
1113
1114 continue;
1115 }
1116
1117 msize = btf__resolve_size(btf, mtype_id);
1118 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1119 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1120 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1121 map->name, mname, (ssize_t)msize,
1122 (ssize_t)kern_msize);
1123 return -ENOTSUP;
1124 }
1125
1126 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1127 map->name, mname, (unsigned int)msize,
1128 moff, kern_moff);
1129 memcpy(kern_mdata, mdata, msize);
1130 }
1131
1132 return 0;
1133 }
1134
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1135 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1136 {
1137 struct bpf_map *map;
1138 size_t i;
1139 int err;
1140
1141 for (i = 0; i < obj->nr_maps; i++) {
1142 map = &obj->maps[i];
1143
1144 if (!bpf_map__is_struct_ops(map))
1145 continue;
1146
1147 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1148 obj->btf_vmlinux);
1149 if (err)
1150 return err;
1151 }
1152
1153 return 0;
1154 }
1155
bpf_object__init_struct_ops_maps(struct bpf_object * obj)1156 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1157 {
1158 const struct btf_type *type, *datasec;
1159 const struct btf_var_secinfo *vsi;
1160 struct bpf_struct_ops *st_ops;
1161 const char *tname, *var_name;
1162 __s32 type_id, datasec_id;
1163 const struct btf *btf;
1164 struct bpf_map *map;
1165 __u32 i;
1166
1167 if (obj->efile.st_ops_shndx == -1)
1168 return 0;
1169
1170 btf = obj->btf;
1171 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1172 BTF_KIND_DATASEC);
1173 if (datasec_id < 0) {
1174 pr_warn("struct_ops init: DATASEC %s not found\n",
1175 STRUCT_OPS_SEC);
1176 return -EINVAL;
1177 }
1178
1179 datasec = btf__type_by_id(btf, datasec_id);
1180 vsi = btf_var_secinfos(datasec);
1181 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1182 type = btf__type_by_id(obj->btf, vsi->type);
1183 var_name = btf__name_by_offset(obj->btf, type->name_off);
1184
1185 type_id = btf__resolve_type(obj->btf, vsi->type);
1186 if (type_id < 0) {
1187 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1188 vsi->type, STRUCT_OPS_SEC);
1189 return -EINVAL;
1190 }
1191
1192 type = btf__type_by_id(obj->btf, type_id);
1193 tname = btf__name_by_offset(obj->btf, type->name_off);
1194 if (!tname[0]) {
1195 pr_warn("struct_ops init: anonymous type is not supported\n");
1196 return -ENOTSUP;
1197 }
1198 if (!btf_is_struct(type)) {
1199 pr_warn("struct_ops init: %s is not a struct\n", tname);
1200 return -EINVAL;
1201 }
1202
1203 map = bpf_object__add_map(obj);
1204 if (IS_ERR(map))
1205 return PTR_ERR(map);
1206
1207 map->sec_idx = obj->efile.st_ops_shndx;
1208 map->sec_offset = vsi->offset;
1209 map->name = strdup(var_name);
1210 if (!map->name)
1211 return -ENOMEM;
1212
1213 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1214 map->def.key_size = sizeof(int);
1215 map->def.value_size = type->size;
1216 map->def.max_entries = 1;
1217
1218 map->st_ops = calloc(1, sizeof(*map->st_ops));
1219 if (!map->st_ops)
1220 return -ENOMEM;
1221 st_ops = map->st_ops;
1222 st_ops->data = malloc(type->size);
1223 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1224 st_ops->kern_func_off = malloc(btf_vlen(type) *
1225 sizeof(*st_ops->kern_func_off));
1226 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1227 return -ENOMEM;
1228
1229 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1230 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1231 var_name, STRUCT_OPS_SEC);
1232 return -EINVAL;
1233 }
1234
1235 memcpy(st_ops->data,
1236 obj->efile.st_ops_data->d_buf + vsi->offset,
1237 type->size);
1238 st_ops->tname = tname;
1239 st_ops->type = type;
1240 st_ops->type_id = type_id;
1241
1242 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1243 tname, type_id, var_name, vsi->offset);
1244 }
1245
1246 return 0;
1247 }
1248
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1249 static struct bpf_object *bpf_object__new(const char *path,
1250 const void *obj_buf,
1251 size_t obj_buf_sz,
1252 const char *obj_name)
1253 {
1254 struct bpf_object *obj;
1255 char *end;
1256
1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1258 if (!obj) {
1259 pr_warn("alloc memory failed for %s\n", path);
1260 return ERR_PTR(-ENOMEM);
1261 }
1262
1263 strcpy(obj->path, path);
1264 if (obj_name) {
1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1266 } else {
1267 /* Using basename() GNU version which doesn't modify arg. */
1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1269 end = strchr(obj->name, '.');
1270 if (end)
1271 *end = 0;
1272 }
1273
1274 obj->efile.fd = -1;
1275 /*
1276 * Caller of this function should also call
1277 * bpf_object__elf_finish() after data collection to return
1278 * obj_buf to user. If not, we should duplicate the buffer to
1279 * avoid user freeing them before elf finish.
1280 */
1281 obj->efile.obj_buf = obj_buf;
1282 obj->efile.obj_buf_sz = obj_buf_sz;
1283 obj->efile.btf_maps_shndx = -1;
1284 obj->efile.st_ops_shndx = -1;
1285 obj->kconfig_map_idx = -1;
1286
1287 obj->kern_version = get_kernel_version();
1288 obj->loaded = false;
1289
1290 return obj;
1291 }
1292
bpf_object__elf_finish(struct bpf_object * obj)1293 static void bpf_object__elf_finish(struct bpf_object *obj)
1294 {
1295 if (!obj->efile.elf)
1296 return;
1297
1298 elf_end(obj->efile.elf);
1299 obj->efile.elf = NULL;
1300 obj->efile.symbols = NULL;
1301 obj->efile.st_ops_data = NULL;
1302
1303 zfree(&obj->efile.secs);
1304 obj->efile.sec_cnt = 0;
1305 zclose(obj->efile.fd);
1306 obj->efile.obj_buf = NULL;
1307 obj->efile.obj_buf_sz = 0;
1308 }
1309
bpf_object__elf_init(struct bpf_object * obj)1310 static int bpf_object__elf_init(struct bpf_object *obj)
1311 {
1312 Elf64_Ehdr *ehdr;
1313 int err = 0;
1314 Elf *elf;
1315
1316 if (obj->efile.elf) {
1317 pr_warn("elf: init internal error\n");
1318 return -LIBBPF_ERRNO__LIBELF;
1319 }
1320
1321 if (obj->efile.obj_buf_sz > 0) {
1322 /* obj_buf should have been validated by bpf_object__open_mem(). */
1323 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1324 } else {
1325 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1326 if (obj->efile.fd < 0) {
1327 char errmsg[STRERR_BUFSIZE], *cp;
1328
1329 err = -errno;
1330 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1331 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1332 return err;
1333 }
1334
1335 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1336 }
1337
1338 if (!elf) {
1339 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1340 err = -LIBBPF_ERRNO__LIBELF;
1341 goto errout;
1342 }
1343
1344 obj->efile.elf = elf;
1345
1346 if (elf_kind(elf) != ELF_K_ELF) {
1347 err = -LIBBPF_ERRNO__FORMAT;
1348 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1349 goto errout;
1350 }
1351
1352 if (gelf_getclass(elf) != ELFCLASS64) {
1353 err = -LIBBPF_ERRNO__FORMAT;
1354 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1355 goto errout;
1356 }
1357
1358 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1359 if (!obj->efile.ehdr) {
1360 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1361 err = -LIBBPF_ERRNO__FORMAT;
1362 goto errout;
1363 }
1364
1365 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1366 pr_warn("elf: failed to get section names section index for %s: %s\n",
1367 obj->path, elf_errmsg(-1));
1368 err = -LIBBPF_ERRNO__FORMAT;
1369 goto errout;
1370 }
1371
1372 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1373 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1374 pr_warn("elf: failed to get section names strings from %s: %s\n",
1375 obj->path, elf_errmsg(-1));
1376 err = -LIBBPF_ERRNO__FORMAT;
1377 goto errout;
1378 }
1379
1380 /* Old LLVM set e_machine to EM_NONE */
1381 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1382 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1383 err = -LIBBPF_ERRNO__FORMAT;
1384 goto errout;
1385 }
1386
1387 return 0;
1388 errout:
1389 bpf_object__elf_finish(obj);
1390 return err;
1391 }
1392
bpf_object__check_endianness(struct bpf_object * obj)1393 static int bpf_object__check_endianness(struct bpf_object *obj)
1394 {
1395 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1396 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1397 return 0;
1398 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1399 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1400 return 0;
1401 #else
1402 # error "Unrecognized __BYTE_ORDER__"
1403 #endif
1404 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1405 return -LIBBPF_ERRNO__ENDIAN;
1406 }
1407
1408 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1409 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1410 {
1411 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1412 * go over allowed ELF data section buffer
1413 */
1414 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1415 pr_debug("license of %s is %s\n", obj->path, obj->license);
1416 return 0;
1417 }
1418
1419 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1420 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1421 {
1422 __u32 kver;
1423
1424 if (size != sizeof(kver)) {
1425 pr_warn("invalid kver section in %s\n", obj->path);
1426 return -LIBBPF_ERRNO__FORMAT;
1427 }
1428 memcpy(&kver, data, sizeof(kver));
1429 obj->kern_version = kver;
1430 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1431 return 0;
1432 }
1433
bpf_map_type__is_map_in_map(enum bpf_map_type type)1434 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1435 {
1436 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1437 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1438 return true;
1439 return false;
1440 }
1441
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1442 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1443 {
1444 Elf_Data *data;
1445 Elf_Scn *scn;
1446
1447 if (!name)
1448 return -EINVAL;
1449
1450 scn = elf_sec_by_name(obj, name);
1451 data = elf_sec_data(obj, scn);
1452 if (data) {
1453 *size = data->d_size;
1454 return 0; /* found it */
1455 }
1456
1457 return -ENOENT;
1458 }
1459
find_elf_var_offset(const struct bpf_object * obj,const char * name,__u32 * off)1460 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1461 {
1462 Elf_Data *symbols = obj->efile.symbols;
1463 const char *sname;
1464 size_t si;
1465
1466 if (!name || !off)
1467 return -EINVAL;
1468
1469 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1470 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1471
1472 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1473 continue;
1474
1475 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1476 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1477 continue;
1478
1479 sname = elf_sym_str(obj, sym->st_name);
1480 if (!sname) {
1481 pr_warn("failed to get sym name string for var %s\n", name);
1482 return -EIO;
1483 }
1484 if (strcmp(name, sname) == 0) {
1485 *off = sym->st_value;
1486 return 0;
1487 }
1488 }
1489
1490 return -ENOENT;
1491 }
1492
bpf_object__add_map(struct bpf_object * obj)1493 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1494 {
1495 struct bpf_map *map;
1496 int err;
1497
1498 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1499 sizeof(*obj->maps), obj->nr_maps + 1);
1500 if (err)
1501 return ERR_PTR(err);
1502
1503 map = &obj->maps[obj->nr_maps++];
1504 map->obj = obj;
1505 map->fd = -1;
1506 map->inner_map_fd = -1;
1507 map->autocreate = true;
1508
1509 return map;
1510 }
1511
bpf_map_mmap_sz(const struct bpf_map * map)1512 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1513 {
1514 long page_sz = sysconf(_SC_PAGE_SIZE);
1515 size_t map_sz;
1516
1517 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1518 map_sz = roundup(map_sz, page_sz);
1519 return map_sz;
1520 }
1521
internal_map_name(struct bpf_object * obj,const char * real_name)1522 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1523 {
1524 char map_name[BPF_OBJ_NAME_LEN], *p;
1525 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1526
1527 /* This is one of the more confusing parts of libbpf for various
1528 * reasons, some of which are historical. The original idea for naming
1529 * internal names was to include as much of BPF object name prefix as
1530 * possible, so that it can be distinguished from similar internal
1531 * maps of a different BPF object.
1532 * As an example, let's say we have bpf_object named 'my_object_name'
1533 * and internal map corresponding to '.rodata' ELF section. The final
1534 * map name advertised to user and to the kernel will be
1535 * 'my_objec.rodata', taking first 8 characters of object name and
1536 * entire 7 characters of '.rodata'.
1537 * Somewhat confusingly, if internal map ELF section name is shorter
1538 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1539 * for the suffix, even though we only have 4 actual characters, and
1540 * resulting map will be called 'my_objec.bss', not even using all 15
1541 * characters allowed by the kernel. Oh well, at least the truncated
1542 * object name is somewhat consistent in this case. But if the map
1543 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1544 * (8 chars) and thus will be left with only first 7 characters of the
1545 * object name ('my_obje'). Happy guessing, user, that the final map
1546 * name will be "my_obje.kconfig".
1547 * Now, with libbpf starting to support arbitrarily named .rodata.*
1548 * and .data.* data sections, it's possible that ELF section name is
1549 * longer than allowed 15 chars, so we now need to be careful to take
1550 * only up to 15 first characters of ELF name, taking no BPF object
1551 * name characters at all. So '.rodata.abracadabra' will result in
1552 * '.rodata.abracad' kernel and user-visible name.
1553 * We need to keep this convoluted logic intact for .data, .bss and
1554 * .rodata maps, but for new custom .data.custom and .rodata.custom
1555 * maps we use their ELF names as is, not prepending bpf_object name
1556 * in front. We still need to truncate them to 15 characters for the
1557 * kernel. Full name can be recovered for such maps by using DATASEC
1558 * BTF type associated with such map's value type, though.
1559 */
1560 if (sfx_len >= BPF_OBJ_NAME_LEN)
1561 sfx_len = BPF_OBJ_NAME_LEN - 1;
1562
1563 /* if there are two or more dots in map name, it's a custom dot map */
1564 if (strchr(real_name + 1, '.') != NULL)
1565 pfx_len = 0;
1566 else
1567 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1568
1569 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1570 sfx_len, real_name);
1571
1572 /* sanitise map name to characters allowed by kernel */
1573 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1574 if (!isalnum(*p) && *p != '_' && *p != '.')
1575 *p = '_';
1576
1577 return strdup(map_name);
1578 }
1579
1580 static int
1581 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1582
1583 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1584 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1585 const char *real_name, int sec_idx, void *data, size_t data_sz)
1586 {
1587 struct bpf_map_def *def;
1588 struct bpf_map *map;
1589 int err;
1590
1591 map = bpf_object__add_map(obj);
1592 if (IS_ERR(map))
1593 return PTR_ERR(map);
1594
1595 map->libbpf_type = type;
1596 map->sec_idx = sec_idx;
1597 map->sec_offset = 0;
1598 map->real_name = strdup(real_name);
1599 map->name = internal_map_name(obj, real_name);
1600 if (!map->real_name || !map->name) {
1601 zfree(&map->real_name);
1602 zfree(&map->name);
1603 return -ENOMEM;
1604 }
1605
1606 def = &map->def;
1607 def->type = BPF_MAP_TYPE_ARRAY;
1608 def->key_size = sizeof(int);
1609 def->value_size = data_sz;
1610 def->max_entries = 1;
1611 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1612 ? BPF_F_RDONLY_PROG : 0;
1613 def->map_flags |= BPF_F_MMAPABLE;
1614
1615 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1616 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1617
1618 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1619 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1620 if (map->mmaped == MAP_FAILED) {
1621 err = -errno;
1622 map->mmaped = NULL;
1623 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1624 map->name, err);
1625 zfree(&map->real_name);
1626 zfree(&map->name);
1627 return err;
1628 }
1629
1630 /* failures are fine because of maps like .rodata.str1.1 */
1631 (void) bpf_map_find_btf_info(obj, map);
1632
1633 if (data)
1634 memcpy(map->mmaped, data, data_sz);
1635
1636 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1637 return 0;
1638 }
1639
bpf_object__init_global_data_maps(struct bpf_object * obj)1640 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1641 {
1642 struct elf_sec_desc *sec_desc;
1643 const char *sec_name;
1644 int err = 0, sec_idx;
1645
1646 /*
1647 * Populate obj->maps with libbpf internal maps.
1648 */
1649 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1650 sec_desc = &obj->efile.secs[sec_idx];
1651
1652 /* Skip recognized sections with size 0. */
1653 if (!sec_desc->data || sec_desc->data->d_size == 0)
1654 continue;
1655
1656 switch (sec_desc->sec_type) {
1657 case SEC_DATA:
1658 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1659 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1660 sec_name, sec_idx,
1661 sec_desc->data->d_buf,
1662 sec_desc->data->d_size);
1663 break;
1664 case SEC_RODATA:
1665 obj->has_rodata = true;
1666 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1667 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1668 sec_name, sec_idx,
1669 sec_desc->data->d_buf,
1670 sec_desc->data->d_size);
1671 break;
1672 case SEC_BSS:
1673 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1674 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1675 sec_name, sec_idx,
1676 NULL,
1677 sec_desc->data->d_size);
1678 break;
1679 default:
1680 /* skip */
1681 break;
1682 }
1683 if (err)
1684 return err;
1685 }
1686 return 0;
1687 }
1688
1689
find_extern_by_name(const struct bpf_object * obj,const void * name)1690 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1691 const void *name)
1692 {
1693 int i;
1694
1695 for (i = 0; i < obj->nr_extern; i++) {
1696 if (strcmp(obj->externs[i].name, name) == 0)
1697 return &obj->externs[i];
1698 }
1699 return NULL;
1700 }
1701
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1702 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1703 char value)
1704 {
1705 switch (ext->kcfg.type) {
1706 case KCFG_BOOL:
1707 if (value == 'm') {
1708 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1709 ext->name, value);
1710 return -EINVAL;
1711 }
1712 *(bool *)ext_val = value == 'y' ? true : false;
1713 break;
1714 case KCFG_TRISTATE:
1715 if (value == 'y')
1716 *(enum libbpf_tristate *)ext_val = TRI_YES;
1717 else if (value == 'm')
1718 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1719 else /* value == 'n' */
1720 *(enum libbpf_tristate *)ext_val = TRI_NO;
1721 break;
1722 case KCFG_CHAR:
1723 *(char *)ext_val = value;
1724 break;
1725 case KCFG_UNKNOWN:
1726 case KCFG_INT:
1727 case KCFG_CHAR_ARR:
1728 default:
1729 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1730 ext->name, value);
1731 return -EINVAL;
1732 }
1733 ext->is_set = true;
1734 return 0;
1735 }
1736
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1737 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1738 const char *value)
1739 {
1740 size_t len;
1741
1742 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1743 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1744 ext->name, value);
1745 return -EINVAL;
1746 }
1747
1748 len = strlen(value);
1749 if (value[len - 1] != '"') {
1750 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1751 ext->name, value);
1752 return -EINVAL;
1753 }
1754
1755 /* strip quotes */
1756 len -= 2;
1757 if (len >= ext->kcfg.sz) {
1758 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1759 ext->name, value, len, ext->kcfg.sz - 1);
1760 len = ext->kcfg.sz - 1;
1761 }
1762 memcpy(ext_val, value + 1, len);
1763 ext_val[len] = '\0';
1764 ext->is_set = true;
1765 return 0;
1766 }
1767
parse_u64(const char * value,__u64 * res)1768 static int parse_u64(const char *value, __u64 *res)
1769 {
1770 char *value_end;
1771 int err;
1772
1773 errno = 0;
1774 *res = strtoull(value, &value_end, 0);
1775 if (errno) {
1776 err = -errno;
1777 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1778 return err;
1779 }
1780 if (*value_end) {
1781 pr_warn("failed to parse '%s' as integer completely\n", value);
1782 return -EINVAL;
1783 }
1784 return 0;
1785 }
1786
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1787 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1788 {
1789 int bit_sz = ext->kcfg.sz * 8;
1790
1791 if (ext->kcfg.sz == 8)
1792 return true;
1793
1794 /* Validate that value stored in u64 fits in integer of `ext->sz`
1795 * bytes size without any loss of information. If the target integer
1796 * is signed, we rely on the following limits of integer type of
1797 * Y bits and subsequent transformation:
1798 *
1799 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1800 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1801 * 0 <= X + 2^(Y-1) < 2^Y
1802 *
1803 * For unsigned target integer, check that all the (64 - Y) bits are
1804 * zero.
1805 */
1806 if (ext->kcfg.is_signed)
1807 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1808 else
1809 return (v >> bit_sz) == 0;
1810 }
1811
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1812 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1813 __u64 value)
1814 {
1815 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1816 ext->kcfg.type != KCFG_BOOL) {
1817 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1818 ext->name, (unsigned long long)value);
1819 return -EINVAL;
1820 }
1821 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1822 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1823 ext->name, (unsigned long long)value);
1824 return -EINVAL;
1825
1826 }
1827 if (!is_kcfg_value_in_range(ext, value)) {
1828 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1829 ext->name, (unsigned long long)value, ext->kcfg.sz);
1830 return -ERANGE;
1831 }
1832 switch (ext->kcfg.sz) {
1833 case 1: *(__u8 *)ext_val = value; break;
1834 case 2: *(__u16 *)ext_val = value; break;
1835 case 4: *(__u32 *)ext_val = value; break;
1836 case 8: *(__u64 *)ext_val = value; break;
1837 default:
1838 return -EINVAL;
1839 }
1840 ext->is_set = true;
1841 return 0;
1842 }
1843
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1844 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1845 char *buf, void *data)
1846 {
1847 struct extern_desc *ext;
1848 char *sep, *value;
1849 int len, err = 0;
1850 void *ext_val;
1851 __u64 num;
1852
1853 if (!str_has_pfx(buf, "CONFIG_"))
1854 return 0;
1855
1856 sep = strchr(buf, '=');
1857 if (!sep) {
1858 pr_warn("failed to parse '%s': no separator\n", buf);
1859 return -EINVAL;
1860 }
1861
1862 /* Trim ending '\n' */
1863 len = strlen(buf);
1864 if (buf[len - 1] == '\n')
1865 buf[len - 1] = '\0';
1866 /* Split on '=' and ensure that a value is present. */
1867 *sep = '\0';
1868 if (!sep[1]) {
1869 *sep = '=';
1870 pr_warn("failed to parse '%s': no value\n", buf);
1871 return -EINVAL;
1872 }
1873
1874 ext = find_extern_by_name(obj, buf);
1875 if (!ext || ext->is_set)
1876 return 0;
1877
1878 ext_val = data + ext->kcfg.data_off;
1879 value = sep + 1;
1880
1881 switch (*value) {
1882 case 'y': case 'n': case 'm':
1883 err = set_kcfg_value_tri(ext, ext_val, *value);
1884 break;
1885 case '"':
1886 err = set_kcfg_value_str(ext, ext_val, value);
1887 break;
1888 default:
1889 /* assume integer */
1890 err = parse_u64(value, &num);
1891 if (err) {
1892 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1893 return err;
1894 }
1895 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1896 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1897 return -EINVAL;
1898 }
1899 err = set_kcfg_value_num(ext, ext_val, num);
1900 break;
1901 }
1902 if (err)
1903 return err;
1904 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1905 return 0;
1906 }
1907
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1908 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1909 {
1910 char buf[PATH_MAX];
1911 struct utsname uts;
1912 int len, err = 0;
1913 gzFile file;
1914
1915 uname(&uts);
1916 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1917 if (len < 0)
1918 return -EINVAL;
1919 else if (len >= PATH_MAX)
1920 return -ENAMETOOLONG;
1921
1922 /* gzopen also accepts uncompressed files. */
1923 file = gzopen(buf, "r");
1924 if (!file)
1925 file = gzopen("/proc/config.gz", "r");
1926
1927 if (!file) {
1928 pr_warn("failed to open system Kconfig\n");
1929 return -ENOENT;
1930 }
1931
1932 while (gzgets(file, buf, sizeof(buf))) {
1933 err = bpf_object__process_kconfig_line(obj, buf, data);
1934 if (err) {
1935 pr_warn("error parsing system Kconfig line '%s': %d\n",
1936 buf, err);
1937 goto out;
1938 }
1939 }
1940
1941 out:
1942 gzclose(file);
1943 return err;
1944 }
1945
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)1946 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1947 const char *config, void *data)
1948 {
1949 char buf[PATH_MAX];
1950 int err = 0;
1951 FILE *file;
1952
1953 file = fmemopen((void *)config, strlen(config), "r");
1954 if (!file) {
1955 err = -errno;
1956 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1957 return err;
1958 }
1959
1960 while (fgets(buf, sizeof(buf), file)) {
1961 err = bpf_object__process_kconfig_line(obj, buf, data);
1962 if (err) {
1963 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1964 buf, err);
1965 break;
1966 }
1967 }
1968
1969 fclose(file);
1970 return err;
1971 }
1972
bpf_object__init_kconfig_map(struct bpf_object * obj)1973 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1974 {
1975 struct extern_desc *last_ext = NULL, *ext;
1976 size_t map_sz;
1977 int i, err;
1978
1979 for (i = 0; i < obj->nr_extern; i++) {
1980 ext = &obj->externs[i];
1981 if (ext->type == EXT_KCFG)
1982 last_ext = ext;
1983 }
1984
1985 if (!last_ext)
1986 return 0;
1987
1988 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1989 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1990 ".kconfig", obj->efile.symbols_shndx,
1991 NULL, map_sz);
1992 if (err)
1993 return err;
1994
1995 obj->kconfig_map_idx = obj->nr_maps - 1;
1996
1997 return 0;
1998 }
1999
2000 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2001 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2002 {
2003 const struct btf_type *t = btf__type_by_id(btf, id);
2004
2005 if (res_id)
2006 *res_id = id;
2007
2008 while (btf_is_mod(t) || btf_is_typedef(t)) {
2009 if (res_id)
2010 *res_id = t->type;
2011 t = btf__type_by_id(btf, t->type);
2012 }
2013
2014 return t;
2015 }
2016
2017 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2018 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2019 {
2020 const struct btf_type *t;
2021
2022 t = skip_mods_and_typedefs(btf, id, NULL);
2023 if (!btf_is_ptr(t))
2024 return NULL;
2025
2026 t = skip_mods_and_typedefs(btf, t->type, res_id);
2027
2028 return btf_is_func_proto(t) ? t : NULL;
2029 }
2030
__btf_kind_str(__u16 kind)2031 static const char *__btf_kind_str(__u16 kind)
2032 {
2033 switch (kind) {
2034 case BTF_KIND_UNKN: return "void";
2035 case BTF_KIND_INT: return "int";
2036 case BTF_KIND_PTR: return "ptr";
2037 case BTF_KIND_ARRAY: return "array";
2038 case BTF_KIND_STRUCT: return "struct";
2039 case BTF_KIND_UNION: return "union";
2040 case BTF_KIND_ENUM: return "enum";
2041 case BTF_KIND_FWD: return "fwd";
2042 case BTF_KIND_TYPEDEF: return "typedef";
2043 case BTF_KIND_VOLATILE: return "volatile";
2044 case BTF_KIND_CONST: return "const";
2045 case BTF_KIND_RESTRICT: return "restrict";
2046 case BTF_KIND_FUNC: return "func";
2047 case BTF_KIND_FUNC_PROTO: return "func_proto";
2048 case BTF_KIND_VAR: return "var";
2049 case BTF_KIND_DATASEC: return "datasec";
2050 case BTF_KIND_FLOAT: return "float";
2051 case BTF_KIND_DECL_TAG: return "decl_tag";
2052 case BTF_KIND_TYPE_TAG: return "type_tag";
2053 case BTF_KIND_ENUM64: return "enum64";
2054 default: return "unknown";
2055 }
2056 }
2057
btf_kind_str(const struct btf_type * t)2058 const char *btf_kind_str(const struct btf_type *t)
2059 {
2060 return __btf_kind_str(btf_kind(t));
2061 }
2062
2063 /*
2064 * Fetch integer attribute of BTF map definition. Such attributes are
2065 * represented using a pointer to an array, in which dimensionality of array
2066 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2067 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2068 * type definition, while using only sizeof(void *) space in ELF data section.
2069 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2070 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2071 const struct btf_member *m, __u32 *res)
2072 {
2073 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2074 const char *name = btf__name_by_offset(btf, m->name_off);
2075 const struct btf_array *arr_info;
2076 const struct btf_type *arr_t;
2077
2078 if (!btf_is_ptr(t)) {
2079 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2080 map_name, name, btf_kind_str(t));
2081 return false;
2082 }
2083
2084 arr_t = btf__type_by_id(btf, t->type);
2085 if (!arr_t) {
2086 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2087 map_name, name, t->type);
2088 return false;
2089 }
2090 if (!btf_is_array(arr_t)) {
2091 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2092 map_name, name, btf_kind_str(arr_t));
2093 return false;
2094 }
2095 arr_info = btf_array(arr_t);
2096 *res = arr_info->nelems;
2097 return true;
2098 }
2099
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2100 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2101 {
2102 int len;
2103
2104 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2105 if (len < 0)
2106 return -EINVAL;
2107 if (len >= buf_sz)
2108 return -ENAMETOOLONG;
2109
2110 return 0;
2111 }
2112
build_map_pin_path(struct bpf_map * map,const char * path)2113 static int build_map_pin_path(struct bpf_map *map, const char *path)
2114 {
2115 char buf[PATH_MAX];
2116 int err;
2117
2118 if (!path)
2119 path = "/sys/fs/bpf";
2120
2121 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2122 if (err)
2123 return err;
2124
2125 return bpf_map__set_pin_path(map, buf);
2126 }
2127
2128 /* should match definition in bpf_helpers.h */
2129 enum libbpf_pin_type {
2130 LIBBPF_PIN_NONE,
2131 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2132 LIBBPF_PIN_BY_NAME,
2133 };
2134
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2135 int parse_btf_map_def(const char *map_name, struct btf *btf,
2136 const struct btf_type *def_t, bool strict,
2137 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2138 {
2139 const struct btf_type *t;
2140 const struct btf_member *m;
2141 bool is_inner = inner_def == NULL;
2142 int vlen, i;
2143
2144 vlen = btf_vlen(def_t);
2145 m = btf_members(def_t);
2146 for (i = 0; i < vlen; i++, m++) {
2147 const char *name = btf__name_by_offset(btf, m->name_off);
2148
2149 if (!name) {
2150 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2151 return -EINVAL;
2152 }
2153 if (strcmp(name, "type") == 0) {
2154 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2155 return -EINVAL;
2156 map_def->parts |= MAP_DEF_MAP_TYPE;
2157 } else if (strcmp(name, "max_entries") == 0) {
2158 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2159 return -EINVAL;
2160 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2161 } else if (strcmp(name, "map_flags") == 0) {
2162 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2163 return -EINVAL;
2164 map_def->parts |= MAP_DEF_MAP_FLAGS;
2165 } else if (strcmp(name, "numa_node") == 0) {
2166 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2167 return -EINVAL;
2168 map_def->parts |= MAP_DEF_NUMA_NODE;
2169 } else if (strcmp(name, "key_size") == 0) {
2170 __u32 sz;
2171
2172 if (!get_map_field_int(map_name, btf, m, &sz))
2173 return -EINVAL;
2174 if (map_def->key_size && map_def->key_size != sz) {
2175 pr_warn("map '%s': conflicting key size %u != %u.\n",
2176 map_name, map_def->key_size, sz);
2177 return -EINVAL;
2178 }
2179 map_def->key_size = sz;
2180 map_def->parts |= MAP_DEF_KEY_SIZE;
2181 } else if (strcmp(name, "key") == 0) {
2182 __s64 sz;
2183
2184 t = btf__type_by_id(btf, m->type);
2185 if (!t) {
2186 pr_warn("map '%s': key type [%d] not found.\n",
2187 map_name, m->type);
2188 return -EINVAL;
2189 }
2190 if (!btf_is_ptr(t)) {
2191 pr_warn("map '%s': key spec is not PTR: %s.\n",
2192 map_name, btf_kind_str(t));
2193 return -EINVAL;
2194 }
2195 sz = btf__resolve_size(btf, t->type);
2196 if (sz < 0) {
2197 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2198 map_name, t->type, (ssize_t)sz);
2199 return sz;
2200 }
2201 if (map_def->key_size && map_def->key_size != sz) {
2202 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2203 map_name, map_def->key_size, (ssize_t)sz);
2204 return -EINVAL;
2205 }
2206 map_def->key_size = sz;
2207 map_def->key_type_id = t->type;
2208 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2209 } else if (strcmp(name, "value_size") == 0) {
2210 __u32 sz;
2211
2212 if (!get_map_field_int(map_name, btf, m, &sz))
2213 return -EINVAL;
2214 if (map_def->value_size && map_def->value_size != sz) {
2215 pr_warn("map '%s': conflicting value size %u != %u.\n",
2216 map_name, map_def->value_size, sz);
2217 return -EINVAL;
2218 }
2219 map_def->value_size = sz;
2220 map_def->parts |= MAP_DEF_VALUE_SIZE;
2221 } else if (strcmp(name, "value") == 0) {
2222 __s64 sz;
2223
2224 t = btf__type_by_id(btf, m->type);
2225 if (!t) {
2226 pr_warn("map '%s': value type [%d] not found.\n",
2227 map_name, m->type);
2228 return -EINVAL;
2229 }
2230 if (!btf_is_ptr(t)) {
2231 pr_warn("map '%s': value spec is not PTR: %s.\n",
2232 map_name, btf_kind_str(t));
2233 return -EINVAL;
2234 }
2235 sz = btf__resolve_size(btf, t->type);
2236 if (sz < 0) {
2237 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2238 map_name, t->type, (ssize_t)sz);
2239 return sz;
2240 }
2241 if (map_def->value_size && map_def->value_size != sz) {
2242 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2243 map_name, map_def->value_size, (ssize_t)sz);
2244 return -EINVAL;
2245 }
2246 map_def->value_size = sz;
2247 map_def->value_type_id = t->type;
2248 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2249 }
2250 else if (strcmp(name, "values") == 0) {
2251 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2252 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2253 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2254 char inner_map_name[128];
2255 int err;
2256
2257 if (is_inner) {
2258 pr_warn("map '%s': multi-level inner maps not supported.\n",
2259 map_name);
2260 return -ENOTSUP;
2261 }
2262 if (i != vlen - 1) {
2263 pr_warn("map '%s': '%s' member should be last.\n",
2264 map_name, name);
2265 return -EINVAL;
2266 }
2267 if (!is_map_in_map && !is_prog_array) {
2268 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2269 map_name);
2270 return -ENOTSUP;
2271 }
2272 if (map_def->value_size && map_def->value_size != 4) {
2273 pr_warn("map '%s': conflicting value size %u != 4.\n",
2274 map_name, map_def->value_size);
2275 return -EINVAL;
2276 }
2277 map_def->value_size = 4;
2278 t = btf__type_by_id(btf, m->type);
2279 if (!t) {
2280 pr_warn("map '%s': %s type [%d] not found.\n",
2281 map_name, desc, m->type);
2282 return -EINVAL;
2283 }
2284 if (!btf_is_array(t) || btf_array(t)->nelems) {
2285 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2286 map_name, desc);
2287 return -EINVAL;
2288 }
2289 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2290 if (!btf_is_ptr(t)) {
2291 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2292 map_name, desc, btf_kind_str(t));
2293 return -EINVAL;
2294 }
2295 t = skip_mods_and_typedefs(btf, t->type, NULL);
2296 if (is_prog_array) {
2297 if (!btf_is_func_proto(t)) {
2298 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2299 map_name, btf_kind_str(t));
2300 return -EINVAL;
2301 }
2302 continue;
2303 }
2304 if (!btf_is_struct(t)) {
2305 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2306 map_name, btf_kind_str(t));
2307 return -EINVAL;
2308 }
2309
2310 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2311 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2312 if (err)
2313 return err;
2314
2315 map_def->parts |= MAP_DEF_INNER_MAP;
2316 } else if (strcmp(name, "pinning") == 0) {
2317 __u32 val;
2318
2319 if (is_inner) {
2320 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2321 return -EINVAL;
2322 }
2323 if (!get_map_field_int(map_name, btf, m, &val))
2324 return -EINVAL;
2325 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2326 pr_warn("map '%s': invalid pinning value %u.\n",
2327 map_name, val);
2328 return -EINVAL;
2329 }
2330 map_def->pinning = val;
2331 map_def->parts |= MAP_DEF_PINNING;
2332 } else if (strcmp(name, "map_extra") == 0) {
2333 __u32 map_extra;
2334
2335 if (!get_map_field_int(map_name, btf, m, &map_extra))
2336 return -EINVAL;
2337 map_def->map_extra = map_extra;
2338 map_def->parts |= MAP_DEF_MAP_EXTRA;
2339 } else {
2340 if (strict) {
2341 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2342 return -ENOTSUP;
2343 }
2344 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2345 }
2346 }
2347
2348 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2349 pr_warn("map '%s': map type isn't specified.\n", map_name);
2350 return -EINVAL;
2351 }
2352
2353 return 0;
2354 }
2355
adjust_ringbuf_sz(size_t sz)2356 static size_t adjust_ringbuf_sz(size_t sz)
2357 {
2358 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2359 __u32 mul;
2360
2361 /* if user forgot to set any size, make sure they see error */
2362 if (sz == 0)
2363 return 0;
2364 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2365 * a power-of-2 multiple of kernel's page size. If user diligently
2366 * satisified these conditions, pass the size through.
2367 */
2368 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2369 return sz;
2370
2371 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2372 * user-set size to satisfy both user size request and kernel
2373 * requirements and substitute correct max_entries for map creation.
2374 */
2375 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2376 if (mul * page_sz > sz)
2377 return mul * page_sz;
2378 }
2379
2380 /* if it's impossible to satisfy the conditions (i.e., user size is
2381 * very close to UINT_MAX but is not a power-of-2 multiple of
2382 * page_size) then just return original size and let kernel reject it
2383 */
2384 return sz;
2385 }
2386
map_is_ringbuf(const struct bpf_map * map)2387 static bool map_is_ringbuf(const struct bpf_map *map)
2388 {
2389 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2390 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2391 }
2392
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2393 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2394 {
2395 map->def.type = def->map_type;
2396 map->def.key_size = def->key_size;
2397 map->def.value_size = def->value_size;
2398 map->def.max_entries = def->max_entries;
2399 map->def.map_flags = def->map_flags;
2400 map->map_extra = def->map_extra;
2401
2402 map->numa_node = def->numa_node;
2403 map->btf_key_type_id = def->key_type_id;
2404 map->btf_value_type_id = def->value_type_id;
2405
2406 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2407 if (map_is_ringbuf(map))
2408 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2409
2410 if (def->parts & MAP_DEF_MAP_TYPE)
2411 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2412
2413 if (def->parts & MAP_DEF_KEY_TYPE)
2414 pr_debug("map '%s': found key [%u], sz = %u.\n",
2415 map->name, def->key_type_id, def->key_size);
2416 else if (def->parts & MAP_DEF_KEY_SIZE)
2417 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2418
2419 if (def->parts & MAP_DEF_VALUE_TYPE)
2420 pr_debug("map '%s': found value [%u], sz = %u.\n",
2421 map->name, def->value_type_id, def->value_size);
2422 else if (def->parts & MAP_DEF_VALUE_SIZE)
2423 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2424
2425 if (def->parts & MAP_DEF_MAX_ENTRIES)
2426 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2427 if (def->parts & MAP_DEF_MAP_FLAGS)
2428 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2429 if (def->parts & MAP_DEF_MAP_EXTRA)
2430 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2431 (unsigned long long)def->map_extra);
2432 if (def->parts & MAP_DEF_PINNING)
2433 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2434 if (def->parts & MAP_DEF_NUMA_NODE)
2435 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2436
2437 if (def->parts & MAP_DEF_INNER_MAP)
2438 pr_debug("map '%s': found inner map definition.\n", map->name);
2439 }
2440
btf_var_linkage_str(__u32 linkage)2441 static const char *btf_var_linkage_str(__u32 linkage)
2442 {
2443 switch (linkage) {
2444 case BTF_VAR_STATIC: return "static";
2445 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2446 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2447 default: return "unknown";
2448 }
2449 }
2450
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2451 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2452 const struct btf_type *sec,
2453 int var_idx, int sec_idx,
2454 const Elf_Data *data, bool strict,
2455 const char *pin_root_path)
2456 {
2457 struct btf_map_def map_def = {}, inner_def = {};
2458 const struct btf_type *var, *def;
2459 const struct btf_var_secinfo *vi;
2460 const struct btf_var *var_extra;
2461 const char *map_name;
2462 struct bpf_map *map;
2463 int err;
2464
2465 vi = btf_var_secinfos(sec) + var_idx;
2466 var = btf__type_by_id(obj->btf, vi->type);
2467 var_extra = btf_var(var);
2468 map_name = btf__name_by_offset(obj->btf, var->name_off);
2469
2470 if (map_name == NULL || map_name[0] == '\0') {
2471 pr_warn("map #%d: empty name.\n", var_idx);
2472 return -EINVAL;
2473 }
2474 if ((__u64)vi->offset + vi->size > data->d_size) {
2475 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2476 return -EINVAL;
2477 }
2478 if (!btf_is_var(var)) {
2479 pr_warn("map '%s': unexpected var kind %s.\n",
2480 map_name, btf_kind_str(var));
2481 return -EINVAL;
2482 }
2483 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2484 pr_warn("map '%s': unsupported map linkage %s.\n",
2485 map_name, btf_var_linkage_str(var_extra->linkage));
2486 return -EOPNOTSUPP;
2487 }
2488
2489 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2490 if (!btf_is_struct(def)) {
2491 pr_warn("map '%s': unexpected def kind %s.\n",
2492 map_name, btf_kind_str(var));
2493 return -EINVAL;
2494 }
2495 if (def->size > vi->size) {
2496 pr_warn("map '%s': invalid def size.\n", map_name);
2497 return -EINVAL;
2498 }
2499
2500 map = bpf_object__add_map(obj);
2501 if (IS_ERR(map))
2502 return PTR_ERR(map);
2503 map->name = strdup(map_name);
2504 if (!map->name) {
2505 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2506 return -ENOMEM;
2507 }
2508 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2509 map->def.type = BPF_MAP_TYPE_UNSPEC;
2510 map->sec_idx = sec_idx;
2511 map->sec_offset = vi->offset;
2512 map->btf_var_idx = var_idx;
2513 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2514 map_name, map->sec_idx, map->sec_offset);
2515
2516 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2517 if (err)
2518 return err;
2519
2520 fill_map_from_def(map, &map_def);
2521
2522 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2523 err = build_map_pin_path(map, pin_root_path);
2524 if (err) {
2525 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2526 return err;
2527 }
2528 }
2529
2530 if (map_def.parts & MAP_DEF_INNER_MAP) {
2531 map->inner_map = calloc(1, sizeof(*map->inner_map));
2532 if (!map->inner_map)
2533 return -ENOMEM;
2534 map->inner_map->fd = -1;
2535 map->inner_map->sec_idx = sec_idx;
2536 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2537 if (!map->inner_map->name)
2538 return -ENOMEM;
2539 sprintf(map->inner_map->name, "%s.inner", map_name);
2540
2541 fill_map_from_def(map->inner_map, &inner_def);
2542 }
2543
2544 err = bpf_map_find_btf_info(obj, map);
2545 if (err)
2546 return err;
2547
2548 return 0;
2549 }
2550
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2551 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2552 const char *pin_root_path)
2553 {
2554 const struct btf_type *sec = NULL;
2555 int nr_types, i, vlen, err;
2556 const struct btf_type *t;
2557 const char *name;
2558 Elf_Data *data;
2559 Elf_Scn *scn;
2560
2561 if (obj->efile.btf_maps_shndx < 0)
2562 return 0;
2563
2564 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2565 data = elf_sec_data(obj, scn);
2566 if (!scn || !data) {
2567 pr_warn("elf: failed to get %s map definitions for %s\n",
2568 MAPS_ELF_SEC, obj->path);
2569 return -EINVAL;
2570 }
2571
2572 nr_types = btf__type_cnt(obj->btf);
2573 for (i = 1; i < nr_types; i++) {
2574 t = btf__type_by_id(obj->btf, i);
2575 if (!btf_is_datasec(t))
2576 continue;
2577 name = btf__name_by_offset(obj->btf, t->name_off);
2578 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2579 sec = t;
2580 obj->efile.btf_maps_sec_btf_id = i;
2581 break;
2582 }
2583 }
2584
2585 if (!sec) {
2586 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2587 return -ENOENT;
2588 }
2589
2590 vlen = btf_vlen(sec);
2591 for (i = 0; i < vlen; i++) {
2592 err = bpf_object__init_user_btf_map(obj, sec, i,
2593 obj->efile.btf_maps_shndx,
2594 data, strict,
2595 pin_root_path);
2596 if (err)
2597 return err;
2598 }
2599
2600 return 0;
2601 }
2602
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2603 static int bpf_object__init_maps(struct bpf_object *obj,
2604 const struct bpf_object_open_opts *opts)
2605 {
2606 const char *pin_root_path;
2607 bool strict;
2608 int err = 0;
2609
2610 strict = !OPTS_GET(opts, relaxed_maps, false);
2611 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2612
2613 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2614 err = err ?: bpf_object__init_global_data_maps(obj);
2615 err = err ?: bpf_object__init_kconfig_map(obj);
2616 err = err ?: bpf_object__init_struct_ops_maps(obj);
2617
2618 return err;
2619 }
2620
section_have_execinstr(struct bpf_object * obj,int idx)2621 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2622 {
2623 Elf64_Shdr *sh;
2624
2625 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2626 if (!sh)
2627 return false;
2628
2629 return sh->sh_flags & SHF_EXECINSTR;
2630 }
2631
btf_needs_sanitization(struct bpf_object * obj)2632 static bool btf_needs_sanitization(struct bpf_object *obj)
2633 {
2634 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2635 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2636 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2637 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2638 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2639 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2640 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2641
2642 return !has_func || !has_datasec || !has_func_global || !has_float ||
2643 !has_decl_tag || !has_type_tag || !has_enum64;
2644 }
2645
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2646 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2647 {
2648 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2649 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2650 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2651 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2652 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2653 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2654 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2655 int enum64_placeholder_id = 0;
2656 struct btf_type *t;
2657 int i, j, vlen;
2658
2659 for (i = 1; i < btf__type_cnt(btf); i++) {
2660 t = (struct btf_type *)btf__type_by_id(btf, i);
2661
2662 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2663 /* replace VAR/DECL_TAG with INT */
2664 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2665 /*
2666 * using size = 1 is the safest choice, 4 will be too
2667 * big and cause kernel BTF validation failure if
2668 * original variable took less than 4 bytes
2669 */
2670 t->size = 1;
2671 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2672 } else if (!has_datasec && btf_is_datasec(t)) {
2673 /* replace DATASEC with STRUCT */
2674 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2675 struct btf_member *m = btf_members(t);
2676 struct btf_type *vt;
2677 char *name;
2678
2679 name = (char *)btf__name_by_offset(btf, t->name_off);
2680 while (*name) {
2681 if (*name == '.')
2682 *name = '_';
2683 name++;
2684 }
2685
2686 vlen = btf_vlen(t);
2687 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2688 for (j = 0; j < vlen; j++, v++, m++) {
2689 /* order of field assignments is important */
2690 m->offset = v->offset * 8;
2691 m->type = v->type;
2692 /* preserve variable name as member name */
2693 vt = (void *)btf__type_by_id(btf, v->type);
2694 m->name_off = vt->name_off;
2695 }
2696 } else if (!has_func && btf_is_func_proto(t)) {
2697 /* replace FUNC_PROTO with ENUM */
2698 vlen = btf_vlen(t);
2699 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2700 t->size = sizeof(__u32); /* kernel enforced */
2701 } else if (!has_func && btf_is_func(t)) {
2702 /* replace FUNC with TYPEDEF */
2703 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2704 } else if (!has_func_global && btf_is_func(t)) {
2705 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2706 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2707 } else if (!has_float && btf_is_float(t)) {
2708 /* replace FLOAT with an equally-sized empty STRUCT;
2709 * since C compilers do not accept e.g. "float" as a
2710 * valid struct name, make it anonymous
2711 */
2712 t->name_off = 0;
2713 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2714 } else if (!has_type_tag && btf_is_type_tag(t)) {
2715 /* replace TYPE_TAG with a CONST */
2716 t->name_off = 0;
2717 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2718 } else if (!has_enum64 && btf_is_enum(t)) {
2719 /* clear the kflag */
2720 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2721 } else if (!has_enum64 && btf_is_enum64(t)) {
2722 /* replace ENUM64 with a union */
2723 struct btf_member *m;
2724
2725 if (enum64_placeholder_id == 0) {
2726 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2727 if (enum64_placeholder_id < 0)
2728 return enum64_placeholder_id;
2729
2730 t = (struct btf_type *)btf__type_by_id(btf, i);
2731 }
2732
2733 m = btf_members(t);
2734 vlen = btf_vlen(t);
2735 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2736 for (j = 0; j < vlen; j++, m++) {
2737 m->type = enum64_placeholder_id;
2738 m->offset = 0;
2739 }
2740 }
2741 }
2742
2743 return 0;
2744 }
2745
libbpf_needs_btf(const struct bpf_object * obj)2746 static bool libbpf_needs_btf(const struct bpf_object *obj)
2747 {
2748 return obj->efile.btf_maps_shndx >= 0 ||
2749 obj->efile.st_ops_shndx >= 0 ||
2750 obj->nr_extern > 0;
2751 }
2752
kernel_needs_btf(const struct bpf_object * obj)2753 static bool kernel_needs_btf(const struct bpf_object *obj)
2754 {
2755 return obj->efile.st_ops_shndx >= 0;
2756 }
2757
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2758 static int bpf_object__init_btf(struct bpf_object *obj,
2759 Elf_Data *btf_data,
2760 Elf_Data *btf_ext_data)
2761 {
2762 int err = -ENOENT;
2763
2764 if (btf_data) {
2765 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2766 err = libbpf_get_error(obj->btf);
2767 if (err) {
2768 obj->btf = NULL;
2769 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2770 goto out;
2771 }
2772 /* enforce 8-byte pointers for BPF-targeted BTFs */
2773 btf__set_pointer_size(obj->btf, 8);
2774 }
2775 if (btf_ext_data) {
2776 struct btf_ext_info *ext_segs[3];
2777 int seg_num, sec_num;
2778
2779 if (!obj->btf) {
2780 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2781 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2782 goto out;
2783 }
2784 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2785 err = libbpf_get_error(obj->btf_ext);
2786 if (err) {
2787 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2788 BTF_EXT_ELF_SEC, err);
2789 obj->btf_ext = NULL;
2790 goto out;
2791 }
2792
2793 /* setup .BTF.ext to ELF section mapping */
2794 ext_segs[0] = &obj->btf_ext->func_info;
2795 ext_segs[1] = &obj->btf_ext->line_info;
2796 ext_segs[2] = &obj->btf_ext->core_relo_info;
2797 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2798 struct btf_ext_info *seg = ext_segs[seg_num];
2799 const struct btf_ext_info_sec *sec;
2800 const char *sec_name;
2801 Elf_Scn *scn;
2802
2803 if (seg->sec_cnt == 0)
2804 continue;
2805
2806 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2807 if (!seg->sec_idxs) {
2808 err = -ENOMEM;
2809 goto out;
2810 }
2811
2812 sec_num = 0;
2813 for_each_btf_ext_sec(seg, sec) {
2814 /* preventively increment index to avoid doing
2815 * this before every continue below
2816 */
2817 sec_num++;
2818
2819 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2820 if (str_is_empty(sec_name))
2821 continue;
2822 scn = elf_sec_by_name(obj, sec_name);
2823 if (!scn)
2824 continue;
2825
2826 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2827 }
2828 }
2829 }
2830 out:
2831 if (err && libbpf_needs_btf(obj)) {
2832 pr_warn("BTF is required, but is missing or corrupted.\n");
2833 return err;
2834 }
2835 return 0;
2836 }
2837
compare_vsi_off(const void * _a,const void * _b)2838 static int compare_vsi_off(const void *_a, const void *_b)
2839 {
2840 const struct btf_var_secinfo *a = _a;
2841 const struct btf_var_secinfo *b = _b;
2842
2843 return a->offset - b->offset;
2844 }
2845
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2846 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2847 struct btf_type *t)
2848 {
2849 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
2850 const char *name = btf__name_by_offset(btf, t->name_off);
2851 const struct btf_type *t_var;
2852 struct btf_var_secinfo *vsi;
2853 const struct btf_var *var;
2854 int ret;
2855
2856 if (!name) {
2857 pr_debug("No name found in string section for DATASEC kind.\n");
2858 return -ENOENT;
2859 }
2860
2861 /* .extern datasec size and var offsets were set correctly during
2862 * extern collection step, so just skip straight to sorting variables
2863 */
2864 if (t->size)
2865 goto sort_vars;
2866
2867 ret = find_elf_sec_sz(obj, name, &size);
2868 if (ret || !size) {
2869 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2870 return -ENOENT;
2871 }
2872
2873 t->size = size;
2874
2875 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2876 t_var = btf__type_by_id(btf, vsi->type);
2877 if (!t_var || !btf_is_var(t_var)) {
2878 pr_debug("Non-VAR type seen in section %s\n", name);
2879 return -EINVAL;
2880 }
2881
2882 var = btf_var(t_var);
2883 if (var->linkage == BTF_VAR_STATIC)
2884 continue;
2885
2886 name = btf__name_by_offset(btf, t_var->name_off);
2887 if (!name) {
2888 pr_debug("No name found in string section for VAR kind\n");
2889 return -ENOENT;
2890 }
2891
2892 ret = find_elf_var_offset(obj, name, &off);
2893 if (ret) {
2894 pr_debug("No offset found in symbol table for VAR %s\n",
2895 name);
2896 return -ENOENT;
2897 }
2898
2899 vsi->offset = off;
2900 }
2901
2902 sort_vars:
2903 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2904 return 0;
2905 }
2906
btf_finalize_data(struct bpf_object * obj,struct btf * btf)2907 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2908 {
2909 int err = 0;
2910 __u32 i, n = btf__type_cnt(btf);
2911
2912 for (i = 1; i < n; i++) {
2913 struct btf_type *t = btf_type_by_id(btf, i);
2914
2915 /* Loader needs to fix up some of the things compiler
2916 * couldn't get its hands on while emitting BTF. This
2917 * is section size and global variable offset. We use
2918 * the info from the ELF itself for this purpose.
2919 */
2920 if (btf_is_datasec(t)) {
2921 err = btf_fixup_datasec(obj, btf, t);
2922 if (err)
2923 break;
2924 }
2925 }
2926
2927 return libbpf_err(err);
2928 }
2929
bpf_object__finalize_btf(struct bpf_object * obj)2930 static int bpf_object__finalize_btf(struct bpf_object *obj)
2931 {
2932 int err;
2933
2934 if (!obj->btf)
2935 return 0;
2936
2937 err = btf_finalize_data(obj, obj->btf);
2938 if (err) {
2939 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2940 return err;
2941 }
2942
2943 return 0;
2944 }
2945
prog_needs_vmlinux_btf(struct bpf_program * prog)2946 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2947 {
2948 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2949 prog->type == BPF_PROG_TYPE_LSM)
2950 return true;
2951
2952 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2953 * also need vmlinux BTF
2954 */
2955 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2956 return true;
2957
2958 return false;
2959 }
2960
obj_needs_vmlinux_btf(const struct bpf_object * obj)2961 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2962 {
2963 struct bpf_program *prog;
2964 int i;
2965
2966 /* CO-RE relocations need kernel BTF, only when btf_custom_path
2967 * is not specified
2968 */
2969 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2970 return true;
2971
2972 /* Support for typed ksyms needs kernel BTF */
2973 for (i = 0; i < obj->nr_extern; i++) {
2974 const struct extern_desc *ext;
2975
2976 ext = &obj->externs[i];
2977 if (ext->type == EXT_KSYM && ext->ksym.type_id)
2978 return true;
2979 }
2980
2981 bpf_object__for_each_program(prog, obj) {
2982 if (!prog->autoload)
2983 continue;
2984 if (prog_needs_vmlinux_btf(prog))
2985 return true;
2986 }
2987
2988 return false;
2989 }
2990
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)2991 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2992 {
2993 int err;
2994
2995 /* btf_vmlinux could be loaded earlier */
2996 if (obj->btf_vmlinux || obj->gen_loader)
2997 return 0;
2998
2999 if (!force && !obj_needs_vmlinux_btf(obj))
3000 return 0;
3001
3002 obj->btf_vmlinux = btf__load_vmlinux_btf();
3003 err = libbpf_get_error(obj->btf_vmlinux);
3004 if (err) {
3005 pr_warn("Error loading vmlinux BTF: %d\n", err);
3006 obj->btf_vmlinux = NULL;
3007 return err;
3008 }
3009 return 0;
3010 }
3011
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3012 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3013 {
3014 struct btf *kern_btf = obj->btf;
3015 bool btf_mandatory, sanitize;
3016 int i, err = 0;
3017
3018 if (!obj->btf)
3019 return 0;
3020
3021 if (!kernel_supports(obj, FEAT_BTF)) {
3022 if (kernel_needs_btf(obj)) {
3023 err = -EOPNOTSUPP;
3024 goto report;
3025 }
3026 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3027 return 0;
3028 }
3029
3030 /* Even though some subprogs are global/weak, user might prefer more
3031 * permissive BPF verification process that BPF verifier performs for
3032 * static functions, taking into account more context from the caller
3033 * functions. In such case, they need to mark such subprogs with
3034 * __attribute__((visibility("hidden"))) and libbpf will adjust
3035 * corresponding FUNC BTF type to be marked as static and trigger more
3036 * involved BPF verification process.
3037 */
3038 for (i = 0; i < obj->nr_programs; i++) {
3039 struct bpf_program *prog = &obj->programs[i];
3040 struct btf_type *t;
3041 const char *name;
3042 int j, n;
3043
3044 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3045 continue;
3046
3047 n = btf__type_cnt(obj->btf);
3048 for (j = 1; j < n; j++) {
3049 t = btf_type_by_id(obj->btf, j);
3050 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3051 continue;
3052
3053 name = btf__str_by_offset(obj->btf, t->name_off);
3054 if (strcmp(name, prog->name) != 0)
3055 continue;
3056
3057 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3058 break;
3059 }
3060 }
3061
3062 sanitize = btf_needs_sanitization(obj);
3063 if (sanitize) {
3064 const void *raw_data;
3065 __u32 sz;
3066
3067 /* clone BTF to sanitize a copy and leave the original intact */
3068 raw_data = btf__raw_data(obj->btf, &sz);
3069 kern_btf = btf__new(raw_data, sz);
3070 err = libbpf_get_error(kern_btf);
3071 if (err)
3072 return err;
3073
3074 /* enforce 8-byte pointers for BPF-targeted BTFs */
3075 btf__set_pointer_size(obj->btf, 8);
3076 err = bpf_object__sanitize_btf(obj, kern_btf);
3077 if (err)
3078 return err;
3079 }
3080
3081 if (obj->gen_loader) {
3082 __u32 raw_size = 0;
3083 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3084
3085 if (!raw_data)
3086 return -ENOMEM;
3087 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3088 /* Pretend to have valid FD to pass various fd >= 0 checks.
3089 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3090 */
3091 btf__set_fd(kern_btf, 0);
3092 } else {
3093 /* currently BPF_BTF_LOAD only supports log_level 1 */
3094 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3095 obj->log_level ? 1 : 0);
3096 }
3097 if (sanitize) {
3098 if (!err) {
3099 /* move fd to libbpf's BTF */
3100 btf__set_fd(obj->btf, btf__fd(kern_btf));
3101 btf__set_fd(kern_btf, -1);
3102 }
3103 btf__free(kern_btf);
3104 }
3105 report:
3106 if (err) {
3107 btf_mandatory = kernel_needs_btf(obj);
3108 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3109 btf_mandatory ? "BTF is mandatory, can't proceed."
3110 : "BTF is optional, ignoring.");
3111 if (!btf_mandatory)
3112 err = 0;
3113 }
3114 return err;
3115 }
3116
elf_sym_str(const struct bpf_object * obj,size_t off)3117 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3118 {
3119 const char *name;
3120
3121 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3122 if (!name) {
3123 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3124 off, obj->path, elf_errmsg(-1));
3125 return NULL;
3126 }
3127
3128 return name;
3129 }
3130
elf_sec_str(const struct bpf_object * obj,size_t off)3131 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3132 {
3133 const char *name;
3134
3135 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3136 if (!name) {
3137 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3138 off, obj->path, elf_errmsg(-1));
3139 return NULL;
3140 }
3141
3142 return name;
3143 }
3144
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3145 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3146 {
3147 Elf_Scn *scn;
3148
3149 scn = elf_getscn(obj->efile.elf, idx);
3150 if (!scn) {
3151 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3152 idx, obj->path, elf_errmsg(-1));
3153 return NULL;
3154 }
3155 return scn;
3156 }
3157
elf_sec_by_name(const struct bpf_object * obj,const char * name)3158 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3159 {
3160 Elf_Scn *scn = NULL;
3161 Elf *elf = obj->efile.elf;
3162 const char *sec_name;
3163
3164 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3165 sec_name = elf_sec_name(obj, scn);
3166 if (!sec_name)
3167 return NULL;
3168
3169 if (strcmp(sec_name, name) != 0)
3170 continue;
3171
3172 return scn;
3173 }
3174 return NULL;
3175 }
3176
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3177 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3178 {
3179 Elf64_Shdr *shdr;
3180
3181 if (!scn)
3182 return NULL;
3183
3184 shdr = elf64_getshdr(scn);
3185 if (!shdr) {
3186 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3187 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3188 return NULL;
3189 }
3190
3191 return shdr;
3192 }
3193
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3194 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3195 {
3196 const char *name;
3197 Elf64_Shdr *sh;
3198
3199 if (!scn)
3200 return NULL;
3201
3202 sh = elf_sec_hdr(obj, scn);
3203 if (!sh)
3204 return NULL;
3205
3206 name = elf_sec_str(obj, sh->sh_name);
3207 if (!name) {
3208 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3209 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3210 return NULL;
3211 }
3212
3213 return name;
3214 }
3215
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3216 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3217 {
3218 Elf_Data *data;
3219
3220 if (!scn)
3221 return NULL;
3222
3223 data = elf_getdata(scn, 0);
3224 if (!data) {
3225 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3226 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3227 obj->path, elf_errmsg(-1));
3228 return NULL;
3229 }
3230
3231 return data;
3232 }
3233
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3234 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3235 {
3236 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3237 return NULL;
3238
3239 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3240 }
3241
elf_rel_by_idx(Elf_Data * data,size_t idx)3242 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3243 {
3244 if (idx >= data->d_size / sizeof(Elf64_Rel))
3245 return NULL;
3246
3247 return (Elf64_Rel *)data->d_buf + idx;
3248 }
3249
is_sec_name_dwarf(const char * name)3250 static bool is_sec_name_dwarf(const char *name)
3251 {
3252 /* approximation, but the actual list is too long */
3253 return str_has_pfx(name, ".debug_");
3254 }
3255
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3256 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3257 {
3258 /* no special handling of .strtab */
3259 if (hdr->sh_type == SHT_STRTAB)
3260 return true;
3261
3262 /* ignore .llvm_addrsig section as well */
3263 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3264 return true;
3265
3266 /* no subprograms will lead to an empty .text section, ignore it */
3267 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3268 strcmp(name, ".text") == 0)
3269 return true;
3270
3271 /* DWARF sections */
3272 if (is_sec_name_dwarf(name))
3273 return true;
3274
3275 if (str_has_pfx(name, ".rel")) {
3276 name += sizeof(".rel") - 1;
3277 /* DWARF section relocations */
3278 if (is_sec_name_dwarf(name))
3279 return true;
3280
3281 /* .BTF and .BTF.ext don't need relocations */
3282 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3283 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3284 return true;
3285 }
3286
3287 return false;
3288 }
3289
cmp_progs(const void * _a,const void * _b)3290 static int cmp_progs(const void *_a, const void *_b)
3291 {
3292 const struct bpf_program *a = _a;
3293 const struct bpf_program *b = _b;
3294
3295 if (a->sec_idx != b->sec_idx)
3296 return a->sec_idx < b->sec_idx ? -1 : 1;
3297
3298 /* sec_insn_off can't be the same within the section */
3299 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3300 }
3301
bpf_object__elf_collect(struct bpf_object * obj)3302 static int bpf_object__elf_collect(struct bpf_object *obj)
3303 {
3304 struct elf_sec_desc *sec_desc;
3305 Elf *elf = obj->efile.elf;
3306 Elf_Data *btf_ext_data = NULL;
3307 Elf_Data *btf_data = NULL;
3308 int idx = 0, err = 0;
3309 const char *name;
3310 Elf_Data *data;
3311 Elf_Scn *scn;
3312 Elf64_Shdr *sh;
3313
3314 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3315 * section. e_shnum does include sec #0, so e_shnum is the necessary
3316 * size of an array to keep all the sections.
3317 */
3318 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3319 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3320 if (!obj->efile.secs)
3321 return -ENOMEM;
3322
3323 /* a bunch of ELF parsing functionality depends on processing symbols,
3324 * so do the first pass and find the symbol table
3325 */
3326 scn = NULL;
3327 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3328 sh = elf_sec_hdr(obj, scn);
3329 if (!sh)
3330 return -LIBBPF_ERRNO__FORMAT;
3331
3332 if (sh->sh_type == SHT_SYMTAB) {
3333 if (obj->efile.symbols) {
3334 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3335 return -LIBBPF_ERRNO__FORMAT;
3336 }
3337
3338 data = elf_sec_data(obj, scn);
3339 if (!data)
3340 return -LIBBPF_ERRNO__FORMAT;
3341
3342 idx = elf_ndxscn(scn);
3343
3344 obj->efile.symbols = data;
3345 obj->efile.symbols_shndx = idx;
3346 obj->efile.strtabidx = sh->sh_link;
3347 }
3348 }
3349
3350 if (!obj->efile.symbols) {
3351 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3352 obj->path);
3353 return -ENOENT;
3354 }
3355
3356 scn = NULL;
3357 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3358 idx = elf_ndxscn(scn);
3359 sec_desc = &obj->efile.secs[idx];
3360
3361 sh = elf_sec_hdr(obj, scn);
3362 if (!sh)
3363 return -LIBBPF_ERRNO__FORMAT;
3364
3365 name = elf_sec_str(obj, sh->sh_name);
3366 if (!name)
3367 return -LIBBPF_ERRNO__FORMAT;
3368
3369 if (ignore_elf_section(sh, name))
3370 continue;
3371
3372 data = elf_sec_data(obj, scn);
3373 if (!data)
3374 return -LIBBPF_ERRNO__FORMAT;
3375
3376 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3377 idx, name, (unsigned long)data->d_size,
3378 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3379 (int)sh->sh_type);
3380
3381 if (strcmp(name, "license") == 0) {
3382 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3383 if (err)
3384 return err;
3385 } else if (strcmp(name, "version") == 0) {
3386 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3387 if (err)
3388 return err;
3389 } else if (strcmp(name, "maps") == 0) {
3390 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3391 return -ENOTSUP;
3392 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3393 obj->efile.btf_maps_shndx = idx;
3394 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3395 if (sh->sh_type != SHT_PROGBITS)
3396 return -LIBBPF_ERRNO__FORMAT;
3397 btf_data = data;
3398 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3399 if (sh->sh_type != SHT_PROGBITS)
3400 return -LIBBPF_ERRNO__FORMAT;
3401 btf_ext_data = data;
3402 } else if (sh->sh_type == SHT_SYMTAB) {
3403 /* already processed during the first pass above */
3404 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3405 if (sh->sh_flags & SHF_EXECINSTR) {
3406 if (strcmp(name, ".text") == 0)
3407 obj->efile.text_shndx = idx;
3408 err = bpf_object__add_programs(obj, data, name, idx);
3409 if (err)
3410 return err;
3411 } else if (strcmp(name, DATA_SEC) == 0 ||
3412 str_has_pfx(name, DATA_SEC ".")) {
3413 sec_desc->sec_type = SEC_DATA;
3414 sec_desc->shdr = sh;
3415 sec_desc->data = data;
3416 } else if (strcmp(name, RODATA_SEC) == 0 ||
3417 str_has_pfx(name, RODATA_SEC ".")) {
3418 sec_desc->sec_type = SEC_RODATA;
3419 sec_desc->shdr = sh;
3420 sec_desc->data = data;
3421 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3422 obj->efile.st_ops_data = data;
3423 obj->efile.st_ops_shndx = idx;
3424 } else {
3425 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3426 idx, name);
3427 }
3428 } else if (sh->sh_type == SHT_REL) {
3429 int targ_sec_idx = sh->sh_info; /* points to other section */
3430
3431 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3432 targ_sec_idx >= obj->efile.sec_cnt)
3433 return -LIBBPF_ERRNO__FORMAT;
3434
3435 /* Only do relo for section with exec instructions */
3436 if (!section_have_execinstr(obj, targ_sec_idx) &&
3437 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3438 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3439 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3440 idx, name, targ_sec_idx,
3441 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3442 continue;
3443 }
3444
3445 sec_desc->sec_type = SEC_RELO;
3446 sec_desc->shdr = sh;
3447 sec_desc->data = data;
3448 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3449 sec_desc->sec_type = SEC_BSS;
3450 sec_desc->shdr = sh;
3451 sec_desc->data = data;
3452 } else {
3453 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3454 (size_t)sh->sh_size);
3455 }
3456 }
3457
3458 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3459 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3460 return -LIBBPF_ERRNO__FORMAT;
3461 }
3462
3463 /* sort BPF programs by section name and in-section instruction offset
3464 * for faster search */
3465 if (obj->nr_programs)
3466 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3467
3468 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3469 }
3470
sym_is_extern(const Elf64_Sym * sym)3471 static bool sym_is_extern(const Elf64_Sym *sym)
3472 {
3473 int bind = ELF64_ST_BIND(sym->st_info);
3474 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3475 return sym->st_shndx == SHN_UNDEF &&
3476 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3477 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3478 }
3479
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3480 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3481 {
3482 int bind = ELF64_ST_BIND(sym->st_info);
3483 int type = ELF64_ST_TYPE(sym->st_info);
3484
3485 /* in .text section */
3486 if (sym->st_shndx != text_shndx)
3487 return false;
3488
3489 /* local function */
3490 if (bind == STB_LOCAL && type == STT_SECTION)
3491 return true;
3492
3493 /* global function */
3494 return bind == STB_GLOBAL && type == STT_FUNC;
3495 }
3496
find_extern_btf_id(const struct btf * btf,const char * ext_name)3497 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3498 {
3499 const struct btf_type *t;
3500 const char *tname;
3501 int i, n;
3502
3503 if (!btf)
3504 return -ESRCH;
3505
3506 n = btf__type_cnt(btf);
3507 for (i = 1; i < n; i++) {
3508 t = btf__type_by_id(btf, i);
3509
3510 if (!btf_is_var(t) && !btf_is_func(t))
3511 continue;
3512
3513 tname = btf__name_by_offset(btf, t->name_off);
3514 if (strcmp(tname, ext_name))
3515 continue;
3516
3517 if (btf_is_var(t) &&
3518 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3519 return -EINVAL;
3520
3521 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3522 return -EINVAL;
3523
3524 return i;
3525 }
3526
3527 return -ENOENT;
3528 }
3529
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3530 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3531 const struct btf_var_secinfo *vs;
3532 const struct btf_type *t;
3533 int i, j, n;
3534
3535 if (!btf)
3536 return -ESRCH;
3537
3538 n = btf__type_cnt(btf);
3539 for (i = 1; i < n; i++) {
3540 t = btf__type_by_id(btf, i);
3541
3542 if (!btf_is_datasec(t))
3543 continue;
3544
3545 vs = btf_var_secinfos(t);
3546 for (j = 0; j < btf_vlen(t); j++, vs++) {
3547 if (vs->type == ext_btf_id)
3548 return i;
3549 }
3550 }
3551
3552 return -ENOENT;
3553 }
3554
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3555 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3556 bool *is_signed)
3557 {
3558 const struct btf_type *t;
3559 const char *name;
3560
3561 t = skip_mods_and_typedefs(btf, id, NULL);
3562 name = btf__name_by_offset(btf, t->name_off);
3563
3564 if (is_signed)
3565 *is_signed = false;
3566 switch (btf_kind(t)) {
3567 case BTF_KIND_INT: {
3568 int enc = btf_int_encoding(t);
3569
3570 if (enc & BTF_INT_BOOL)
3571 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3572 if (is_signed)
3573 *is_signed = enc & BTF_INT_SIGNED;
3574 if (t->size == 1)
3575 return KCFG_CHAR;
3576 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3577 return KCFG_UNKNOWN;
3578 return KCFG_INT;
3579 }
3580 case BTF_KIND_ENUM:
3581 if (t->size != 4)
3582 return KCFG_UNKNOWN;
3583 if (strcmp(name, "libbpf_tristate"))
3584 return KCFG_UNKNOWN;
3585 return KCFG_TRISTATE;
3586 case BTF_KIND_ENUM64:
3587 if (strcmp(name, "libbpf_tristate"))
3588 return KCFG_UNKNOWN;
3589 return KCFG_TRISTATE;
3590 case BTF_KIND_ARRAY:
3591 if (btf_array(t)->nelems == 0)
3592 return KCFG_UNKNOWN;
3593 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3594 return KCFG_UNKNOWN;
3595 return KCFG_CHAR_ARR;
3596 default:
3597 return KCFG_UNKNOWN;
3598 }
3599 }
3600
cmp_externs(const void * _a,const void * _b)3601 static int cmp_externs(const void *_a, const void *_b)
3602 {
3603 const struct extern_desc *a = _a;
3604 const struct extern_desc *b = _b;
3605
3606 if (a->type != b->type)
3607 return a->type < b->type ? -1 : 1;
3608
3609 if (a->type == EXT_KCFG) {
3610 /* descending order by alignment requirements */
3611 if (a->kcfg.align != b->kcfg.align)
3612 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3613 /* ascending order by size, within same alignment class */
3614 if (a->kcfg.sz != b->kcfg.sz)
3615 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3616 }
3617
3618 /* resolve ties by name */
3619 return strcmp(a->name, b->name);
3620 }
3621
find_int_btf_id(const struct btf * btf)3622 static int find_int_btf_id(const struct btf *btf)
3623 {
3624 const struct btf_type *t;
3625 int i, n;
3626
3627 n = btf__type_cnt(btf);
3628 for (i = 1; i < n; i++) {
3629 t = btf__type_by_id(btf, i);
3630
3631 if (btf_is_int(t) && btf_int_bits(t) == 32)
3632 return i;
3633 }
3634
3635 return 0;
3636 }
3637
add_dummy_ksym_var(struct btf * btf)3638 static int add_dummy_ksym_var(struct btf *btf)
3639 {
3640 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3641 const struct btf_var_secinfo *vs;
3642 const struct btf_type *sec;
3643
3644 if (!btf)
3645 return 0;
3646
3647 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3648 BTF_KIND_DATASEC);
3649 if (sec_btf_id < 0)
3650 return 0;
3651
3652 sec = btf__type_by_id(btf, sec_btf_id);
3653 vs = btf_var_secinfos(sec);
3654 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3655 const struct btf_type *vt;
3656
3657 vt = btf__type_by_id(btf, vs->type);
3658 if (btf_is_func(vt))
3659 break;
3660 }
3661
3662 /* No func in ksyms sec. No need to add dummy var. */
3663 if (i == btf_vlen(sec))
3664 return 0;
3665
3666 int_btf_id = find_int_btf_id(btf);
3667 dummy_var_btf_id = btf__add_var(btf,
3668 "dummy_ksym",
3669 BTF_VAR_GLOBAL_ALLOCATED,
3670 int_btf_id);
3671 if (dummy_var_btf_id < 0)
3672 pr_warn("cannot create a dummy_ksym var\n");
3673
3674 return dummy_var_btf_id;
3675 }
3676
bpf_object__collect_externs(struct bpf_object * obj)3677 static int bpf_object__collect_externs(struct bpf_object *obj)
3678 {
3679 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3680 const struct btf_type *t;
3681 struct extern_desc *ext;
3682 int i, n, off, dummy_var_btf_id;
3683 const char *ext_name, *sec_name;
3684 Elf_Scn *scn;
3685 Elf64_Shdr *sh;
3686
3687 if (!obj->efile.symbols)
3688 return 0;
3689
3690 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3691 sh = elf_sec_hdr(obj, scn);
3692 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3693 return -LIBBPF_ERRNO__FORMAT;
3694
3695 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3696 if (dummy_var_btf_id < 0)
3697 return dummy_var_btf_id;
3698
3699 n = sh->sh_size / sh->sh_entsize;
3700 pr_debug("looking for externs among %d symbols...\n", n);
3701
3702 for (i = 0; i < n; i++) {
3703 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3704
3705 if (!sym)
3706 return -LIBBPF_ERRNO__FORMAT;
3707 if (!sym_is_extern(sym))
3708 continue;
3709 ext_name = elf_sym_str(obj, sym->st_name);
3710 if (!ext_name || !ext_name[0])
3711 continue;
3712
3713 ext = obj->externs;
3714 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3715 if (!ext)
3716 return -ENOMEM;
3717 obj->externs = ext;
3718 ext = &ext[obj->nr_extern];
3719 memset(ext, 0, sizeof(*ext));
3720 obj->nr_extern++;
3721
3722 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3723 if (ext->btf_id <= 0) {
3724 pr_warn("failed to find BTF for extern '%s': %d\n",
3725 ext_name, ext->btf_id);
3726 return ext->btf_id;
3727 }
3728 t = btf__type_by_id(obj->btf, ext->btf_id);
3729 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3730 ext->sym_idx = i;
3731 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3732
3733 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3734 if (ext->sec_btf_id <= 0) {
3735 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3736 ext_name, ext->btf_id, ext->sec_btf_id);
3737 return ext->sec_btf_id;
3738 }
3739 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3740 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3741
3742 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3743 if (btf_is_func(t)) {
3744 pr_warn("extern function %s is unsupported under %s section\n",
3745 ext->name, KCONFIG_SEC);
3746 return -ENOTSUP;
3747 }
3748 kcfg_sec = sec;
3749 ext->type = EXT_KCFG;
3750 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3751 if (ext->kcfg.sz <= 0) {
3752 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3753 ext_name, ext->kcfg.sz);
3754 return ext->kcfg.sz;
3755 }
3756 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3757 if (ext->kcfg.align <= 0) {
3758 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3759 ext_name, ext->kcfg.align);
3760 return -EINVAL;
3761 }
3762 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3763 &ext->kcfg.is_signed);
3764 if (ext->kcfg.type == KCFG_UNKNOWN) {
3765 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3766 return -ENOTSUP;
3767 }
3768 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3769 ksym_sec = sec;
3770 ext->type = EXT_KSYM;
3771 skip_mods_and_typedefs(obj->btf, t->type,
3772 &ext->ksym.type_id);
3773 } else {
3774 pr_warn("unrecognized extern section '%s'\n", sec_name);
3775 return -ENOTSUP;
3776 }
3777 }
3778 pr_debug("collected %d externs total\n", obj->nr_extern);
3779
3780 if (!obj->nr_extern)
3781 return 0;
3782
3783 /* sort externs by type, for kcfg ones also by (align, size, name) */
3784 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3785
3786 /* for .ksyms section, we need to turn all externs into allocated
3787 * variables in BTF to pass kernel verification; we do this by
3788 * pretending that each extern is a 8-byte variable
3789 */
3790 if (ksym_sec) {
3791 /* find existing 4-byte integer type in BTF to use for fake
3792 * extern variables in DATASEC
3793 */
3794 int int_btf_id = find_int_btf_id(obj->btf);
3795 /* For extern function, a dummy_var added earlier
3796 * will be used to replace the vs->type and
3797 * its name string will be used to refill
3798 * the missing param's name.
3799 */
3800 const struct btf_type *dummy_var;
3801
3802 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3803 for (i = 0; i < obj->nr_extern; i++) {
3804 ext = &obj->externs[i];
3805 if (ext->type != EXT_KSYM)
3806 continue;
3807 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3808 i, ext->sym_idx, ext->name);
3809 }
3810
3811 sec = ksym_sec;
3812 n = btf_vlen(sec);
3813 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3814 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3815 struct btf_type *vt;
3816
3817 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3818 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3819 ext = find_extern_by_name(obj, ext_name);
3820 if (!ext) {
3821 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3822 btf_kind_str(vt), ext_name);
3823 return -ESRCH;
3824 }
3825 if (btf_is_func(vt)) {
3826 const struct btf_type *func_proto;
3827 struct btf_param *param;
3828 int j;
3829
3830 func_proto = btf__type_by_id(obj->btf,
3831 vt->type);
3832 param = btf_params(func_proto);
3833 /* Reuse the dummy_var string if the
3834 * func proto does not have param name.
3835 */
3836 for (j = 0; j < btf_vlen(func_proto); j++)
3837 if (param[j].type && !param[j].name_off)
3838 param[j].name_off =
3839 dummy_var->name_off;
3840 vs->type = dummy_var_btf_id;
3841 vt->info &= ~0xffff;
3842 vt->info |= BTF_FUNC_GLOBAL;
3843 } else {
3844 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3845 vt->type = int_btf_id;
3846 }
3847 vs->offset = off;
3848 vs->size = sizeof(int);
3849 }
3850 sec->size = off;
3851 }
3852
3853 if (kcfg_sec) {
3854 sec = kcfg_sec;
3855 /* for kcfg externs calculate their offsets within a .kconfig map */
3856 off = 0;
3857 for (i = 0; i < obj->nr_extern; i++) {
3858 ext = &obj->externs[i];
3859 if (ext->type != EXT_KCFG)
3860 continue;
3861
3862 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3863 off = ext->kcfg.data_off + ext->kcfg.sz;
3864 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3865 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3866 }
3867 sec->size = off;
3868 n = btf_vlen(sec);
3869 for (i = 0; i < n; i++) {
3870 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3871
3872 t = btf__type_by_id(obj->btf, vs->type);
3873 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3874 ext = find_extern_by_name(obj, ext_name);
3875 if (!ext) {
3876 pr_warn("failed to find extern definition for BTF var '%s'\n",
3877 ext_name);
3878 return -ESRCH;
3879 }
3880 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3881 vs->offset = ext->kcfg.data_off;
3882 }
3883 }
3884 return 0;
3885 }
3886
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3887 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3888 {
3889 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3890 }
3891
3892 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3893 bpf_object__find_program_by_name(const struct bpf_object *obj,
3894 const char *name)
3895 {
3896 struct bpf_program *prog;
3897
3898 bpf_object__for_each_program(prog, obj) {
3899 if (prog_is_subprog(obj, prog))
3900 continue;
3901 if (!strcmp(prog->name, name))
3902 return prog;
3903 }
3904 return errno = ENOENT, NULL;
3905 }
3906
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)3907 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3908 int shndx)
3909 {
3910 switch (obj->efile.secs[shndx].sec_type) {
3911 case SEC_BSS:
3912 case SEC_DATA:
3913 case SEC_RODATA:
3914 return true;
3915 default:
3916 return false;
3917 }
3918 }
3919
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)3920 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3921 int shndx)
3922 {
3923 return shndx == obj->efile.btf_maps_shndx;
3924 }
3925
3926 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)3927 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3928 {
3929 if (shndx == obj->efile.symbols_shndx)
3930 return LIBBPF_MAP_KCONFIG;
3931
3932 switch (obj->efile.secs[shndx].sec_type) {
3933 case SEC_BSS:
3934 return LIBBPF_MAP_BSS;
3935 case SEC_DATA:
3936 return LIBBPF_MAP_DATA;
3937 case SEC_RODATA:
3938 return LIBBPF_MAP_RODATA;
3939 default:
3940 return LIBBPF_MAP_UNSPEC;
3941 }
3942 }
3943
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)3944 static int bpf_program__record_reloc(struct bpf_program *prog,
3945 struct reloc_desc *reloc_desc,
3946 __u32 insn_idx, const char *sym_name,
3947 const Elf64_Sym *sym, const Elf64_Rel *rel)
3948 {
3949 struct bpf_insn *insn = &prog->insns[insn_idx];
3950 size_t map_idx, nr_maps = prog->obj->nr_maps;
3951 struct bpf_object *obj = prog->obj;
3952 __u32 shdr_idx = sym->st_shndx;
3953 enum libbpf_map_type type;
3954 const char *sym_sec_name;
3955 struct bpf_map *map;
3956
3957 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3958 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3959 prog->name, sym_name, insn_idx, insn->code);
3960 return -LIBBPF_ERRNO__RELOC;
3961 }
3962
3963 if (sym_is_extern(sym)) {
3964 int sym_idx = ELF64_R_SYM(rel->r_info);
3965 int i, n = obj->nr_extern;
3966 struct extern_desc *ext;
3967
3968 for (i = 0; i < n; i++) {
3969 ext = &obj->externs[i];
3970 if (ext->sym_idx == sym_idx)
3971 break;
3972 }
3973 if (i >= n) {
3974 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3975 prog->name, sym_name, sym_idx);
3976 return -LIBBPF_ERRNO__RELOC;
3977 }
3978 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3979 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3980 if (insn->code == (BPF_JMP | BPF_CALL))
3981 reloc_desc->type = RELO_EXTERN_FUNC;
3982 else
3983 reloc_desc->type = RELO_EXTERN_VAR;
3984 reloc_desc->insn_idx = insn_idx;
3985 reloc_desc->sym_off = i; /* sym_off stores extern index */
3986 return 0;
3987 }
3988
3989 /* sub-program call relocation */
3990 if (is_call_insn(insn)) {
3991 if (insn->src_reg != BPF_PSEUDO_CALL) {
3992 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3993 return -LIBBPF_ERRNO__RELOC;
3994 }
3995 /* text_shndx can be 0, if no default "main" program exists */
3996 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3997 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3998 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3999 prog->name, sym_name, sym_sec_name);
4000 return -LIBBPF_ERRNO__RELOC;
4001 }
4002 if (sym->st_value % BPF_INSN_SZ) {
4003 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4004 prog->name, sym_name, (size_t)sym->st_value);
4005 return -LIBBPF_ERRNO__RELOC;
4006 }
4007 reloc_desc->type = RELO_CALL;
4008 reloc_desc->insn_idx = insn_idx;
4009 reloc_desc->sym_off = sym->st_value;
4010 return 0;
4011 }
4012
4013 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4014 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4015 prog->name, sym_name, shdr_idx);
4016 return -LIBBPF_ERRNO__RELOC;
4017 }
4018
4019 /* loading subprog addresses */
4020 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4021 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4022 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4023 */
4024 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4025 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4026 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4027 return -LIBBPF_ERRNO__RELOC;
4028 }
4029
4030 reloc_desc->type = RELO_SUBPROG_ADDR;
4031 reloc_desc->insn_idx = insn_idx;
4032 reloc_desc->sym_off = sym->st_value;
4033 return 0;
4034 }
4035
4036 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4037 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4038
4039 /* generic map reference relocation */
4040 if (type == LIBBPF_MAP_UNSPEC) {
4041 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4042 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4043 prog->name, sym_name, sym_sec_name);
4044 return -LIBBPF_ERRNO__RELOC;
4045 }
4046 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4047 map = &obj->maps[map_idx];
4048 if (map->libbpf_type != type ||
4049 map->sec_idx != sym->st_shndx ||
4050 map->sec_offset != sym->st_value)
4051 continue;
4052 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4053 prog->name, map_idx, map->name, map->sec_idx,
4054 map->sec_offset, insn_idx);
4055 break;
4056 }
4057 if (map_idx >= nr_maps) {
4058 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4059 prog->name, sym_sec_name, (size_t)sym->st_value);
4060 return -LIBBPF_ERRNO__RELOC;
4061 }
4062 reloc_desc->type = RELO_LD64;
4063 reloc_desc->insn_idx = insn_idx;
4064 reloc_desc->map_idx = map_idx;
4065 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4066 return 0;
4067 }
4068
4069 /* global data map relocation */
4070 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4071 pr_warn("prog '%s': bad data relo against section '%s'\n",
4072 prog->name, sym_sec_name);
4073 return -LIBBPF_ERRNO__RELOC;
4074 }
4075 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4076 map = &obj->maps[map_idx];
4077 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4078 continue;
4079 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4080 prog->name, map_idx, map->name, map->sec_idx,
4081 map->sec_offset, insn_idx);
4082 break;
4083 }
4084 if (map_idx >= nr_maps) {
4085 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4086 prog->name, sym_sec_name);
4087 return -LIBBPF_ERRNO__RELOC;
4088 }
4089
4090 reloc_desc->type = RELO_DATA;
4091 reloc_desc->insn_idx = insn_idx;
4092 reloc_desc->map_idx = map_idx;
4093 reloc_desc->sym_off = sym->st_value;
4094 return 0;
4095 }
4096
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4097 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4098 {
4099 return insn_idx >= prog->sec_insn_off &&
4100 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4101 }
4102
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4103 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4104 size_t sec_idx, size_t insn_idx)
4105 {
4106 int l = 0, r = obj->nr_programs - 1, m;
4107 struct bpf_program *prog;
4108
4109 while (l < r) {
4110 m = l + (r - l + 1) / 2;
4111 prog = &obj->programs[m];
4112
4113 if (prog->sec_idx < sec_idx ||
4114 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4115 l = m;
4116 else
4117 r = m - 1;
4118 }
4119 /* matching program could be at index l, but it still might be the
4120 * wrong one, so we need to double check conditions for the last time
4121 */
4122 prog = &obj->programs[l];
4123 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4124 return prog;
4125 return NULL;
4126 }
4127
4128 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4129 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4130 {
4131 const char *relo_sec_name, *sec_name;
4132 size_t sec_idx = shdr->sh_info, sym_idx;
4133 struct bpf_program *prog;
4134 struct reloc_desc *relos;
4135 int err, i, nrels;
4136 const char *sym_name;
4137 __u32 insn_idx;
4138 Elf_Scn *scn;
4139 Elf_Data *scn_data;
4140 Elf64_Sym *sym;
4141 Elf64_Rel *rel;
4142
4143 if (sec_idx >= obj->efile.sec_cnt)
4144 return -EINVAL;
4145
4146 scn = elf_sec_by_idx(obj, sec_idx);
4147 scn_data = elf_sec_data(obj, scn);
4148
4149 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4150 sec_name = elf_sec_name(obj, scn);
4151 if (!relo_sec_name || !sec_name)
4152 return -EINVAL;
4153
4154 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4155 relo_sec_name, sec_idx, sec_name);
4156 nrels = shdr->sh_size / shdr->sh_entsize;
4157
4158 for (i = 0; i < nrels; i++) {
4159 rel = elf_rel_by_idx(data, i);
4160 if (!rel) {
4161 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4162 return -LIBBPF_ERRNO__FORMAT;
4163 }
4164
4165 sym_idx = ELF64_R_SYM(rel->r_info);
4166 sym = elf_sym_by_idx(obj, sym_idx);
4167 if (!sym) {
4168 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4169 relo_sec_name, sym_idx, i);
4170 return -LIBBPF_ERRNO__FORMAT;
4171 }
4172
4173 if (sym->st_shndx >= obj->efile.sec_cnt) {
4174 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4175 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4176 return -LIBBPF_ERRNO__FORMAT;
4177 }
4178
4179 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4180 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4181 relo_sec_name, (size_t)rel->r_offset, i);
4182 return -LIBBPF_ERRNO__FORMAT;
4183 }
4184
4185 insn_idx = rel->r_offset / BPF_INSN_SZ;
4186 /* relocations against static functions are recorded as
4187 * relocations against the section that contains a function;
4188 * in such case, symbol will be STT_SECTION and sym.st_name
4189 * will point to empty string (0), so fetch section name
4190 * instead
4191 */
4192 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4193 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4194 else
4195 sym_name = elf_sym_str(obj, sym->st_name);
4196 sym_name = sym_name ?: "<?";
4197
4198 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4199 relo_sec_name, i, insn_idx, sym_name);
4200
4201 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4202 if (!prog) {
4203 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4204 relo_sec_name, i, sec_name, insn_idx);
4205 continue;
4206 }
4207
4208 relos = libbpf_reallocarray(prog->reloc_desc,
4209 prog->nr_reloc + 1, sizeof(*relos));
4210 if (!relos)
4211 return -ENOMEM;
4212 prog->reloc_desc = relos;
4213
4214 /* adjust insn_idx to local BPF program frame of reference */
4215 insn_idx -= prog->sec_insn_off;
4216 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4217 insn_idx, sym_name, sym, rel);
4218 if (err)
4219 return err;
4220
4221 prog->nr_reloc++;
4222 }
4223 return 0;
4224 }
4225
bpf_map_find_btf_info(struct bpf_object * obj,struct bpf_map * map)4226 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4227 {
4228 int id;
4229
4230 if (!obj->btf)
4231 return -ENOENT;
4232
4233 /* if it's BTF-defined map, we don't need to search for type IDs.
4234 * For struct_ops map, it does not need btf_key_type_id and
4235 * btf_value_type_id.
4236 */
4237 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4238 return 0;
4239
4240 /*
4241 * LLVM annotates global data differently in BTF, that is,
4242 * only as '.data', '.bss' or '.rodata'.
4243 */
4244 if (!bpf_map__is_internal(map))
4245 return -ENOENT;
4246
4247 id = btf__find_by_name(obj->btf, map->real_name);
4248 if (id < 0)
4249 return id;
4250
4251 map->btf_key_type_id = 0;
4252 map->btf_value_type_id = id;
4253 return 0;
4254 }
4255
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4256 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4257 {
4258 char file[PATH_MAX], buff[4096];
4259 FILE *fp;
4260 __u32 val;
4261 int err;
4262
4263 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4264 memset(info, 0, sizeof(*info));
4265
4266 fp = fopen(file, "r");
4267 if (!fp) {
4268 err = -errno;
4269 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4270 err);
4271 return err;
4272 }
4273
4274 while (fgets(buff, sizeof(buff), fp)) {
4275 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4276 info->type = val;
4277 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4278 info->key_size = val;
4279 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4280 info->value_size = val;
4281 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4282 info->max_entries = val;
4283 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4284 info->map_flags = val;
4285 }
4286
4287 fclose(fp);
4288
4289 return 0;
4290 }
4291
bpf_map__autocreate(const struct bpf_map * map)4292 bool bpf_map__autocreate(const struct bpf_map *map)
4293 {
4294 return map->autocreate;
4295 }
4296
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4297 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4298 {
4299 if (map->obj->loaded)
4300 return libbpf_err(-EBUSY);
4301
4302 map->autocreate = autocreate;
4303 return 0;
4304 }
4305
bpf_map__reuse_fd(struct bpf_map * map,int fd)4306 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4307 {
4308 struct bpf_map_info info;
4309 __u32 len = sizeof(info), name_len;
4310 int new_fd, err;
4311 char *new_name;
4312
4313 memset(&info, 0, len);
4314 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4315 if (err && errno == EINVAL)
4316 err = bpf_get_map_info_from_fdinfo(fd, &info);
4317 if (err)
4318 return libbpf_err(err);
4319
4320 name_len = strlen(info.name);
4321 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4322 new_name = strdup(map->name);
4323 else
4324 new_name = strdup(info.name);
4325
4326 if (!new_name)
4327 return libbpf_err(-errno);
4328
4329 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4330 if (new_fd < 0) {
4331 err = -errno;
4332 goto err_free_new_name;
4333 }
4334
4335 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4336 if (new_fd < 0) {
4337 err = -errno;
4338 goto err_close_new_fd;
4339 }
4340
4341 err = zclose(map->fd);
4342 if (err) {
4343 err = -errno;
4344 goto err_close_new_fd;
4345 }
4346 free(map->name);
4347
4348 map->fd = new_fd;
4349 map->name = new_name;
4350 map->def.type = info.type;
4351 map->def.key_size = info.key_size;
4352 map->def.value_size = info.value_size;
4353 map->def.max_entries = info.max_entries;
4354 map->def.map_flags = info.map_flags;
4355 map->btf_key_type_id = info.btf_key_type_id;
4356 map->btf_value_type_id = info.btf_value_type_id;
4357 map->reused = true;
4358 map->map_extra = info.map_extra;
4359
4360 return 0;
4361
4362 err_close_new_fd:
4363 close(new_fd);
4364 err_free_new_name:
4365 free(new_name);
4366 return libbpf_err(err);
4367 }
4368
bpf_map__max_entries(const struct bpf_map * map)4369 __u32 bpf_map__max_entries(const struct bpf_map *map)
4370 {
4371 return map->def.max_entries;
4372 }
4373
bpf_map__inner_map(struct bpf_map * map)4374 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4375 {
4376 if (!bpf_map_type__is_map_in_map(map->def.type))
4377 return errno = EINVAL, NULL;
4378
4379 return map->inner_map;
4380 }
4381
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4382 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4383 {
4384 if (map->obj->loaded)
4385 return libbpf_err(-EBUSY);
4386
4387 map->def.max_entries = max_entries;
4388
4389 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4390 if (map_is_ringbuf(map))
4391 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4392
4393 return 0;
4394 }
4395
4396 static int
bpf_object__probe_loading(struct bpf_object * obj)4397 bpf_object__probe_loading(struct bpf_object *obj)
4398 {
4399 char *cp, errmsg[STRERR_BUFSIZE];
4400 struct bpf_insn insns[] = {
4401 BPF_MOV64_IMM(BPF_REG_0, 0),
4402 BPF_EXIT_INSN(),
4403 };
4404 int ret, insn_cnt = ARRAY_SIZE(insns);
4405
4406 if (obj->gen_loader)
4407 return 0;
4408
4409 ret = bump_rlimit_memlock();
4410 if (ret)
4411 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4412
4413 /* make sure basic loading works */
4414 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4415 if (ret < 0)
4416 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4417 if (ret < 0) {
4418 ret = errno;
4419 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4420 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4421 "program. Make sure your kernel supports BPF "
4422 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4423 "set to big enough value.\n", __func__, cp, ret);
4424 return -ret;
4425 }
4426 close(ret);
4427
4428 return 0;
4429 }
4430
probe_fd(int fd)4431 static int probe_fd(int fd)
4432 {
4433 if (fd >= 0)
4434 close(fd);
4435 return fd >= 0;
4436 }
4437
probe_kern_prog_name(void)4438 static int probe_kern_prog_name(void)
4439 {
4440 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4441 struct bpf_insn insns[] = {
4442 BPF_MOV64_IMM(BPF_REG_0, 0),
4443 BPF_EXIT_INSN(),
4444 };
4445 union bpf_attr attr;
4446 int ret;
4447
4448 memset(&attr, 0, attr_sz);
4449 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4450 attr.license = ptr_to_u64("GPL");
4451 attr.insns = ptr_to_u64(insns);
4452 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4453 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4454
4455 /* make sure loading with name works */
4456 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4457 return probe_fd(ret);
4458 }
4459
probe_kern_global_data(void)4460 static int probe_kern_global_data(void)
4461 {
4462 char *cp, errmsg[STRERR_BUFSIZE];
4463 struct bpf_insn insns[] = {
4464 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4465 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4466 BPF_MOV64_IMM(BPF_REG_0, 0),
4467 BPF_EXIT_INSN(),
4468 };
4469 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4470
4471 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4472 if (map < 0) {
4473 ret = -errno;
4474 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4475 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4476 __func__, cp, -ret);
4477 return ret;
4478 }
4479
4480 insns[0].imm = map;
4481
4482 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4483 close(map);
4484 return probe_fd(ret);
4485 }
4486
probe_kern_btf(void)4487 static int probe_kern_btf(void)
4488 {
4489 static const char strs[] = "\0int";
4490 __u32 types[] = {
4491 /* int */
4492 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4493 };
4494
4495 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4496 strs, sizeof(strs)));
4497 }
4498
probe_kern_btf_func(void)4499 static int probe_kern_btf_func(void)
4500 {
4501 static const char strs[] = "\0int\0x\0a";
4502 /* void x(int a) {} */
4503 __u32 types[] = {
4504 /* int */
4505 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4506 /* FUNC_PROTO */ /* [2] */
4507 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4508 BTF_PARAM_ENC(7, 1),
4509 /* FUNC x */ /* [3] */
4510 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4511 };
4512
4513 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4514 strs, sizeof(strs)));
4515 }
4516
probe_kern_btf_func_global(void)4517 static int probe_kern_btf_func_global(void)
4518 {
4519 static const char strs[] = "\0int\0x\0a";
4520 /* static void x(int a) {} */
4521 __u32 types[] = {
4522 /* int */
4523 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4524 /* FUNC_PROTO */ /* [2] */
4525 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4526 BTF_PARAM_ENC(7, 1),
4527 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4528 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4529 };
4530
4531 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4532 strs, sizeof(strs)));
4533 }
4534
probe_kern_btf_datasec(void)4535 static int probe_kern_btf_datasec(void)
4536 {
4537 static const char strs[] = "\0x\0.data";
4538 /* static int a; */
4539 __u32 types[] = {
4540 /* int */
4541 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4542 /* VAR x */ /* [2] */
4543 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4544 BTF_VAR_STATIC,
4545 /* DATASEC val */ /* [3] */
4546 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4547 BTF_VAR_SECINFO_ENC(2, 0, 4),
4548 };
4549
4550 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4551 strs, sizeof(strs)));
4552 }
4553
probe_kern_btf_float(void)4554 static int probe_kern_btf_float(void)
4555 {
4556 static const char strs[] = "\0float";
4557 __u32 types[] = {
4558 /* float */
4559 BTF_TYPE_FLOAT_ENC(1, 4),
4560 };
4561
4562 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4563 strs, sizeof(strs)));
4564 }
4565
probe_kern_btf_decl_tag(void)4566 static int probe_kern_btf_decl_tag(void)
4567 {
4568 static const char strs[] = "\0tag";
4569 __u32 types[] = {
4570 /* int */
4571 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4572 /* VAR x */ /* [2] */
4573 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4574 BTF_VAR_STATIC,
4575 /* attr */
4576 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4577 };
4578
4579 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4580 strs, sizeof(strs)));
4581 }
4582
probe_kern_btf_type_tag(void)4583 static int probe_kern_btf_type_tag(void)
4584 {
4585 static const char strs[] = "\0tag";
4586 __u32 types[] = {
4587 /* int */
4588 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4589 /* attr */
4590 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4591 /* ptr */
4592 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4593 };
4594
4595 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4596 strs, sizeof(strs)));
4597 }
4598
probe_kern_array_mmap(void)4599 static int probe_kern_array_mmap(void)
4600 {
4601 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4602 int fd;
4603
4604 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4605 return probe_fd(fd);
4606 }
4607
probe_kern_exp_attach_type(void)4608 static int probe_kern_exp_attach_type(void)
4609 {
4610 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4611 struct bpf_insn insns[] = {
4612 BPF_MOV64_IMM(BPF_REG_0, 0),
4613 BPF_EXIT_INSN(),
4614 };
4615 int fd, insn_cnt = ARRAY_SIZE(insns);
4616
4617 /* use any valid combination of program type and (optional)
4618 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4619 * to see if kernel supports expected_attach_type field for
4620 * BPF_PROG_LOAD command
4621 */
4622 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4623 return probe_fd(fd);
4624 }
4625
probe_kern_probe_read_kernel(void)4626 static int probe_kern_probe_read_kernel(void)
4627 {
4628 struct bpf_insn insns[] = {
4629 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4630 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4631 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4632 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4633 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4634 BPF_EXIT_INSN(),
4635 };
4636 int fd, insn_cnt = ARRAY_SIZE(insns);
4637
4638 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4639 return probe_fd(fd);
4640 }
4641
probe_prog_bind_map(void)4642 static int probe_prog_bind_map(void)
4643 {
4644 char *cp, errmsg[STRERR_BUFSIZE];
4645 struct bpf_insn insns[] = {
4646 BPF_MOV64_IMM(BPF_REG_0, 0),
4647 BPF_EXIT_INSN(),
4648 };
4649 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4650
4651 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4652 if (map < 0) {
4653 ret = -errno;
4654 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4655 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4656 __func__, cp, -ret);
4657 return ret;
4658 }
4659
4660 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4661 if (prog < 0) {
4662 close(map);
4663 return 0;
4664 }
4665
4666 ret = bpf_prog_bind_map(prog, map, NULL);
4667
4668 close(map);
4669 close(prog);
4670
4671 return ret >= 0;
4672 }
4673
probe_module_btf(void)4674 static int probe_module_btf(void)
4675 {
4676 static const char strs[] = "\0int";
4677 __u32 types[] = {
4678 /* int */
4679 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4680 };
4681 struct bpf_btf_info info;
4682 __u32 len = sizeof(info);
4683 char name[16];
4684 int fd, err;
4685
4686 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4687 if (fd < 0)
4688 return 0; /* BTF not supported at all */
4689
4690 memset(&info, 0, sizeof(info));
4691 info.name = ptr_to_u64(name);
4692 info.name_len = sizeof(name);
4693
4694 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4695 * kernel's module BTF support coincides with support for
4696 * name/name_len fields in struct bpf_btf_info.
4697 */
4698 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4699 close(fd);
4700 return !err;
4701 }
4702
probe_perf_link(void)4703 static int probe_perf_link(void)
4704 {
4705 struct bpf_insn insns[] = {
4706 BPF_MOV64_IMM(BPF_REG_0, 0),
4707 BPF_EXIT_INSN(),
4708 };
4709 int prog_fd, link_fd, err;
4710
4711 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4712 insns, ARRAY_SIZE(insns), NULL);
4713 if (prog_fd < 0)
4714 return -errno;
4715
4716 /* use invalid perf_event FD to get EBADF, if link is supported;
4717 * otherwise EINVAL should be returned
4718 */
4719 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4720 err = -errno; /* close() can clobber errno */
4721
4722 if (link_fd >= 0)
4723 close(link_fd);
4724 close(prog_fd);
4725
4726 return link_fd < 0 && err == -EBADF;
4727 }
4728
probe_kern_bpf_cookie(void)4729 static int probe_kern_bpf_cookie(void)
4730 {
4731 struct bpf_insn insns[] = {
4732 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4733 BPF_EXIT_INSN(),
4734 };
4735 int ret, insn_cnt = ARRAY_SIZE(insns);
4736
4737 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4738 return probe_fd(ret);
4739 }
4740
probe_kern_btf_enum64(void)4741 static int probe_kern_btf_enum64(void)
4742 {
4743 static const char strs[] = "\0enum64";
4744 __u32 types[] = {
4745 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4746 };
4747
4748 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4749 strs, sizeof(strs)));
4750 }
4751
4752 static int probe_kern_syscall_wrapper(void);
4753
4754 enum kern_feature_result {
4755 FEAT_UNKNOWN = 0,
4756 FEAT_SUPPORTED = 1,
4757 FEAT_MISSING = 2,
4758 };
4759
4760 typedef int (*feature_probe_fn)(void);
4761
4762 static struct kern_feature_desc {
4763 const char *desc;
4764 feature_probe_fn probe;
4765 enum kern_feature_result res;
4766 } feature_probes[__FEAT_CNT] = {
4767 [FEAT_PROG_NAME] = {
4768 "BPF program name", probe_kern_prog_name,
4769 },
4770 [FEAT_GLOBAL_DATA] = {
4771 "global variables", probe_kern_global_data,
4772 },
4773 [FEAT_BTF] = {
4774 "minimal BTF", probe_kern_btf,
4775 },
4776 [FEAT_BTF_FUNC] = {
4777 "BTF functions", probe_kern_btf_func,
4778 },
4779 [FEAT_BTF_GLOBAL_FUNC] = {
4780 "BTF global function", probe_kern_btf_func_global,
4781 },
4782 [FEAT_BTF_DATASEC] = {
4783 "BTF data section and variable", probe_kern_btf_datasec,
4784 },
4785 [FEAT_ARRAY_MMAP] = {
4786 "ARRAY map mmap()", probe_kern_array_mmap,
4787 },
4788 [FEAT_EXP_ATTACH_TYPE] = {
4789 "BPF_PROG_LOAD expected_attach_type attribute",
4790 probe_kern_exp_attach_type,
4791 },
4792 [FEAT_PROBE_READ_KERN] = {
4793 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4794 },
4795 [FEAT_PROG_BIND_MAP] = {
4796 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4797 },
4798 [FEAT_MODULE_BTF] = {
4799 "module BTF support", probe_module_btf,
4800 },
4801 [FEAT_BTF_FLOAT] = {
4802 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4803 },
4804 [FEAT_PERF_LINK] = {
4805 "BPF perf link support", probe_perf_link,
4806 },
4807 [FEAT_BTF_DECL_TAG] = {
4808 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4809 },
4810 [FEAT_BTF_TYPE_TAG] = {
4811 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4812 },
4813 [FEAT_MEMCG_ACCOUNT] = {
4814 "memcg-based memory accounting", probe_memcg_account,
4815 },
4816 [FEAT_BPF_COOKIE] = {
4817 "BPF cookie support", probe_kern_bpf_cookie,
4818 },
4819 [FEAT_BTF_ENUM64] = {
4820 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4821 },
4822 [FEAT_SYSCALL_WRAPPER] = {
4823 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4824 },
4825 };
4826
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4827 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4828 {
4829 struct kern_feature_desc *feat = &feature_probes[feat_id];
4830 int ret;
4831
4832 if (obj && obj->gen_loader)
4833 /* To generate loader program assume the latest kernel
4834 * to avoid doing extra prog_load, map_create syscalls.
4835 */
4836 return true;
4837
4838 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4839 ret = feat->probe();
4840 if (ret > 0) {
4841 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4842 } else if (ret == 0) {
4843 WRITE_ONCE(feat->res, FEAT_MISSING);
4844 } else {
4845 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4846 WRITE_ONCE(feat->res, FEAT_MISSING);
4847 }
4848 }
4849
4850 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4851 }
4852
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4853 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4854 {
4855 struct bpf_map_info map_info;
4856 char msg[STRERR_BUFSIZE];
4857 __u32 map_info_len = sizeof(map_info);
4858 int err;
4859
4860 memset(&map_info, 0, map_info_len);
4861 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4862 if (err && errno == EINVAL)
4863 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4864 if (err) {
4865 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4866 libbpf_strerror_r(errno, msg, sizeof(msg)));
4867 return false;
4868 }
4869
4870 return (map_info.type == map->def.type &&
4871 map_info.key_size == map->def.key_size &&
4872 map_info.value_size == map->def.value_size &&
4873 map_info.max_entries == map->def.max_entries &&
4874 map_info.map_flags == map->def.map_flags &&
4875 map_info.map_extra == map->map_extra);
4876 }
4877
4878 static int
bpf_object__reuse_map(struct bpf_map * map)4879 bpf_object__reuse_map(struct bpf_map *map)
4880 {
4881 char *cp, errmsg[STRERR_BUFSIZE];
4882 int err, pin_fd;
4883
4884 pin_fd = bpf_obj_get(map->pin_path);
4885 if (pin_fd < 0) {
4886 err = -errno;
4887 if (err == -ENOENT) {
4888 pr_debug("found no pinned map to reuse at '%s'\n",
4889 map->pin_path);
4890 return 0;
4891 }
4892
4893 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4894 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4895 map->pin_path, cp);
4896 return err;
4897 }
4898
4899 if (!map_is_reuse_compat(map, pin_fd)) {
4900 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4901 map->pin_path);
4902 close(pin_fd);
4903 return -EINVAL;
4904 }
4905
4906 err = bpf_map__reuse_fd(map, pin_fd);
4907 close(pin_fd);
4908 if (err) {
4909 return err;
4910 }
4911 map->pinned = true;
4912 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4913
4914 return 0;
4915 }
4916
4917 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)4918 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4919 {
4920 enum libbpf_map_type map_type = map->libbpf_type;
4921 char *cp, errmsg[STRERR_BUFSIZE];
4922 int err, zero = 0;
4923
4924 if (obj->gen_loader) {
4925 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4926 map->mmaped, map->def.value_size);
4927 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4928 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4929 return 0;
4930 }
4931 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4932 if (err) {
4933 err = -errno;
4934 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4935 pr_warn("Error setting initial map(%s) contents: %s\n",
4936 map->name, cp);
4937 return err;
4938 }
4939
4940 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4941 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4942 err = bpf_map_freeze(map->fd);
4943 if (err) {
4944 err = -errno;
4945 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4946 pr_warn("Error freezing map(%s) as read-only: %s\n",
4947 map->name, cp);
4948 return err;
4949 }
4950 }
4951 return 0;
4952 }
4953
4954 static void bpf_map__destroy(struct bpf_map *map);
4955
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)4956 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4957 {
4958 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4959 struct bpf_map_def *def = &map->def;
4960 const char *map_name = NULL;
4961 int err = 0;
4962
4963 if (kernel_supports(obj, FEAT_PROG_NAME))
4964 map_name = map->name;
4965 create_attr.map_ifindex = map->map_ifindex;
4966 create_attr.map_flags = def->map_flags;
4967 create_attr.numa_node = map->numa_node;
4968 create_attr.map_extra = map->map_extra;
4969
4970 if (bpf_map__is_struct_ops(map))
4971 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4972
4973 if (obj->btf && btf__fd(obj->btf) >= 0) {
4974 create_attr.btf_fd = btf__fd(obj->btf);
4975 create_attr.btf_key_type_id = map->btf_key_type_id;
4976 create_attr.btf_value_type_id = map->btf_value_type_id;
4977 }
4978
4979 if (bpf_map_type__is_map_in_map(def->type)) {
4980 if (map->inner_map) {
4981 err = bpf_object__create_map(obj, map->inner_map, true);
4982 if (err) {
4983 pr_warn("map '%s': failed to create inner map: %d\n",
4984 map->name, err);
4985 return err;
4986 }
4987 map->inner_map_fd = bpf_map__fd(map->inner_map);
4988 }
4989 if (map->inner_map_fd >= 0)
4990 create_attr.inner_map_fd = map->inner_map_fd;
4991 }
4992
4993 switch (def->type) {
4994 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4995 case BPF_MAP_TYPE_CGROUP_ARRAY:
4996 case BPF_MAP_TYPE_STACK_TRACE:
4997 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4998 case BPF_MAP_TYPE_HASH_OF_MAPS:
4999 case BPF_MAP_TYPE_DEVMAP:
5000 case BPF_MAP_TYPE_DEVMAP_HASH:
5001 case BPF_MAP_TYPE_CPUMAP:
5002 case BPF_MAP_TYPE_XSKMAP:
5003 case BPF_MAP_TYPE_SOCKMAP:
5004 case BPF_MAP_TYPE_SOCKHASH:
5005 case BPF_MAP_TYPE_QUEUE:
5006 case BPF_MAP_TYPE_STACK:
5007 create_attr.btf_fd = 0;
5008 create_attr.btf_key_type_id = 0;
5009 create_attr.btf_value_type_id = 0;
5010 map->btf_key_type_id = 0;
5011 map->btf_value_type_id = 0;
5012 default:
5013 break;
5014 }
5015
5016 if (obj->gen_loader) {
5017 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5018 def->key_size, def->value_size, def->max_entries,
5019 &create_attr, is_inner ? -1 : map - obj->maps);
5020 /* Pretend to have valid FD to pass various fd >= 0 checks.
5021 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5022 */
5023 map->fd = 0;
5024 } else {
5025 map->fd = bpf_map_create(def->type, map_name,
5026 def->key_size, def->value_size,
5027 def->max_entries, &create_attr);
5028 }
5029 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5030 create_attr.btf_value_type_id)) {
5031 char *cp, errmsg[STRERR_BUFSIZE];
5032
5033 err = -errno;
5034 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5035 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5036 map->name, cp, err);
5037 create_attr.btf_fd = 0;
5038 create_attr.btf_key_type_id = 0;
5039 create_attr.btf_value_type_id = 0;
5040 map->btf_key_type_id = 0;
5041 map->btf_value_type_id = 0;
5042 map->fd = bpf_map_create(def->type, map_name,
5043 def->key_size, def->value_size,
5044 def->max_entries, &create_attr);
5045 }
5046
5047 err = map->fd < 0 ? -errno : 0;
5048
5049 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5050 if (obj->gen_loader)
5051 map->inner_map->fd = -1;
5052 bpf_map__destroy(map->inner_map);
5053 zfree(&map->inner_map);
5054 }
5055
5056 return err;
5057 }
5058
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5059 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5060 {
5061 const struct bpf_map *targ_map;
5062 unsigned int i;
5063 int fd, err = 0;
5064
5065 for (i = 0; i < map->init_slots_sz; i++) {
5066 if (!map->init_slots[i])
5067 continue;
5068
5069 targ_map = map->init_slots[i];
5070 fd = bpf_map__fd(targ_map);
5071
5072 if (obj->gen_loader) {
5073 bpf_gen__populate_outer_map(obj->gen_loader,
5074 map - obj->maps, i,
5075 targ_map - obj->maps);
5076 } else {
5077 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5078 }
5079 if (err) {
5080 err = -errno;
5081 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5082 map->name, i, targ_map->name, fd, err);
5083 return err;
5084 }
5085 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5086 map->name, i, targ_map->name, fd);
5087 }
5088
5089 zfree(&map->init_slots);
5090 map->init_slots_sz = 0;
5091
5092 return 0;
5093 }
5094
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5095 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5096 {
5097 const struct bpf_program *targ_prog;
5098 unsigned int i;
5099 int fd, err;
5100
5101 if (obj->gen_loader)
5102 return -ENOTSUP;
5103
5104 for (i = 0; i < map->init_slots_sz; i++) {
5105 if (!map->init_slots[i])
5106 continue;
5107
5108 targ_prog = map->init_slots[i];
5109 fd = bpf_program__fd(targ_prog);
5110
5111 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5112 if (err) {
5113 err = -errno;
5114 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5115 map->name, i, targ_prog->name, fd, err);
5116 return err;
5117 }
5118 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5119 map->name, i, targ_prog->name, fd);
5120 }
5121
5122 zfree(&map->init_slots);
5123 map->init_slots_sz = 0;
5124
5125 return 0;
5126 }
5127
bpf_object_init_prog_arrays(struct bpf_object * obj)5128 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5129 {
5130 struct bpf_map *map;
5131 int i, err;
5132
5133 for (i = 0; i < obj->nr_maps; i++) {
5134 map = &obj->maps[i];
5135
5136 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5137 continue;
5138
5139 err = init_prog_array_slots(obj, map);
5140 if (err < 0) {
5141 zclose(map->fd);
5142 return err;
5143 }
5144 }
5145 return 0;
5146 }
5147
map_set_def_max_entries(struct bpf_map * map)5148 static int map_set_def_max_entries(struct bpf_map *map)
5149 {
5150 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5151 int nr_cpus;
5152
5153 nr_cpus = libbpf_num_possible_cpus();
5154 if (nr_cpus < 0) {
5155 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5156 map->name, nr_cpus);
5157 return nr_cpus;
5158 }
5159 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5160 map->def.max_entries = nr_cpus;
5161 }
5162
5163 return 0;
5164 }
5165
5166 static int
bpf_object__create_maps(struct bpf_object * obj)5167 bpf_object__create_maps(struct bpf_object *obj)
5168 {
5169 struct bpf_map *map;
5170 char *cp, errmsg[STRERR_BUFSIZE];
5171 unsigned int i, j;
5172 int err;
5173 bool retried;
5174
5175 for (i = 0; i < obj->nr_maps; i++) {
5176 map = &obj->maps[i];
5177
5178 /* To support old kernels, we skip creating global data maps
5179 * (.rodata, .data, .kconfig, etc); later on, during program
5180 * loading, if we detect that at least one of the to-be-loaded
5181 * programs is referencing any global data map, we'll error
5182 * out with program name and relocation index logged.
5183 * This approach allows to accommodate Clang emitting
5184 * unnecessary .rodata.str1.1 sections for string literals,
5185 * but also it allows to have CO-RE applications that use
5186 * global variables in some of BPF programs, but not others.
5187 * If those global variable-using programs are not loaded at
5188 * runtime due to bpf_program__set_autoload(prog, false),
5189 * bpf_object loading will succeed just fine even on old
5190 * kernels.
5191 */
5192 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5193 map->autocreate = false;
5194
5195 if (!map->autocreate) {
5196 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5197 continue;
5198 }
5199
5200 err = map_set_def_max_entries(map);
5201 if (err)
5202 goto err_out;
5203
5204 retried = false;
5205 retry:
5206 if (map->pin_path) {
5207 err = bpf_object__reuse_map(map);
5208 if (err) {
5209 pr_warn("map '%s': error reusing pinned map\n",
5210 map->name);
5211 goto err_out;
5212 }
5213 if (retried && map->fd < 0) {
5214 pr_warn("map '%s': cannot find pinned map\n",
5215 map->name);
5216 err = -ENOENT;
5217 goto err_out;
5218 }
5219 }
5220
5221 if (map->fd >= 0) {
5222 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5223 map->name, map->fd);
5224 } else {
5225 err = bpf_object__create_map(obj, map, false);
5226 if (err)
5227 goto err_out;
5228
5229 pr_debug("map '%s': created successfully, fd=%d\n",
5230 map->name, map->fd);
5231
5232 if (bpf_map__is_internal(map)) {
5233 err = bpf_object__populate_internal_map(obj, map);
5234 if (err < 0) {
5235 zclose(map->fd);
5236 goto err_out;
5237 }
5238 }
5239
5240 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5241 err = init_map_in_map_slots(obj, map);
5242 if (err < 0) {
5243 zclose(map->fd);
5244 goto err_out;
5245 }
5246 }
5247 }
5248
5249 if (map->pin_path && !map->pinned) {
5250 err = bpf_map__pin(map, NULL);
5251 if (err) {
5252 zclose(map->fd);
5253 if (!retried && err == -EEXIST) {
5254 retried = true;
5255 goto retry;
5256 }
5257 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5258 map->name, map->pin_path, err);
5259 goto err_out;
5260 }
5261 }
5262 }
5263
5264 return 0;
5265
5266 err_out:
5267 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5268 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5269 pr_perm_msg(err);
5270 for (j = 0; j < i; j++)
5271 zclose(obj->maps[j].fd);
5272 return err;
5273 }
5274
bpf_core_is_flavor_sep(const char * s)5275 static bool bpf_core_is_flavor_sep(const char *s)
5276 {
5277 /* check X___Y name pattern, where X and Y are not underscores */
5278 return s[0] != '_' && /* X */
5279 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5280 s[4] != '_'; /* Y */
5281 }
5282
5283 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5284 * before last triple underscore. Struct name part after last triple
5285 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5286 */
bpf_core_essential_name_len(const char * name)5287 size_t bpf_core_essential_name_len(const char *name)
5288 {
5289 size_t n = strlen(name);
5290 int i;
5291
5292 for (i = n - 5; i >= 0; i--) {
5293 if (bpf_core_is_flavor_sep(name + i))
5294 return i + 1;
5295 }
5296 return n;
5297 }
5298
bpf_core_free_cands(struct bpf_core_cand_list * cands)5299 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5300 {
5301 if (!cands)
5302 return;
5303
5304 free(cands->cands);
5305 free(cands);
5306 }
5307
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5308 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5309 size_t local_essent_len,
5310 const struct btf *targ_btf,
5311 const char *targ_btf_name,
5312 int targ_start_id,
5313 struct bpf_core_cand_list *cands)
5314 {
5315 struct bpf_core_cand *new_cands, *cand;
5316 const struct btf_type *t, *local_t;
5317 const char *targ_name, *local_name;
5318 size_t targ_essent_len;
5319 int n, i;
5320
5321 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5322 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5323
5324 n = btf__type_cnt(targ_btf);
5325 for (i = targ_start_id; i < n; i++) {
5326 t = btf__type_by_id(targ_btf, i);
5327 if (!btf_kind_core_compat(t, local_t))
5328 continue;
5329
5330 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5331 if (str_is_empty(targ_name))
5332 continue;
5333
5334 targ_essent_len = bpf_core_essential_name_len(targ_name);
5335 if (targ_essent_len != local_essent_len)
5336 continue;
5337
5338 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5339 continue;
5340
5341 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5342 local_cand->id, btf_kind_str(local_t),
5343 local_name, i, btf_kind_str(t), targ_name,
5344 targ_btf_name);
5345 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5346 sizeof(*cands->cands));
5347 if (!new_cands)
5348 return -ENOMEM;
5349
5350 cand = &new_cands[cands->len];
5351 cand->btf = targ_btf;
5352 cand->id = i;
5353
5354 cands->cands = new_cands;
5355 cands->len++;
5356 }
5357 return 0;
5358 }
5359
load_module_btfs(struct bpf_object * obj)5360 static int load_module_btfs(struct bpf_object *obj)
5361 {
5362 struct bpf_btf_info info;
5363 struct module_btf *mod_btf;
5364 struct btf *btf;
5365 char name[64];
5366 __u32 id = 0, len;
5367 int err, fd;
5368
5369 if (obj->btf_modules_loaded)
5370 return 0;
5371
5372 if (obj->gen_loader)
5373 return 0;
5374
5375 /* don't do this again, even if we find no module BTFs */
5376 obj->btf_modules_loaded = true;
5377
5378 /* kernel too old to support module BTFs */
5379 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5380 return 0;
5381
5382 while (true) {
5383 err = bpf_btf_get_next_id(id, &id);
5384 if (err && errno == ENOENT)
5385 return 0;
5386 if (err) {
5387 err = -errno;
5388 pr_warn("failed to iterate BTF objects: %d\n", err);
5389 return err;
5390 }
5391
5392 fd = bpf_btf_get_fd_by_id(id);
5393 if (fd < 0) {
5394 if (errno == ENOENT)
5395 continue; /* expected race: BTF was unloaded */
5396 err = -errno;
5397 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5398 return err;
5399 }
5400
5401 len = sizeof(info);
5402 memset(&info, 0, sizeof(info));
5403 info.name = ptr_to_u64(name);
5404 info.name_len = sizeof(name);
5405
5406 err = bpf_obj_get_info_by_fd(fd, &info, &len);
5407 if (err) {
5408 err = -errno;
5409 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5410 goto err_out;
5411 }
5412
5413 /* ignore non-module BTFs */
5414 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5415 close(fd);
5416 continue;
5417 }
5418
5419 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5420 err = libbpf_get_error(btf);
5421 if (err) {
5422 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5423 name, id, err);
5424 goto err_out;
5425 }
5426
5427 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5428 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5429 if (err)
5430 goto err_out;
5431
5432 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5433
5434 mod_btf->btf = btf;
5435 mod_btf->id = id;
5436 mod_btf->fd = fd;
5437 mod_btf->name = strdup(name);
5438 if (!mod_btf->name) {
5439 err = -ENOMEM;
5440 goto err_out;
5441 }
5442 continue;
5443
5444 err_out:
5445 close(fd);
5446 return err;
5447 }
5448
5449 return 0;
5450 }
5451
5452 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5453 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5454 {
5455 struct bpf_core_cand local_cand = {};
5456 struct bpf_core_cand_list *cands;
5457 const struct btf *main_btf;
5458 const struct btf_type *local_t;
5459 const char *local_name;
5460 size_t local_essent_len;
5461 int err, i;
5462
5463 local_cand.btf = local_btf;
5464 local_cand.id = local_type_id;
5465 local_t = btf__type_by_id(local_btf, local_type_id);
5466 if (!local_t)
5467 return ERR_PTR(-EINVAL);
5468
5469 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5470 if (str_is_empty(local_name))
5471 return ERR_PTR(-EINVAL);
5472 local_essent_len = bpf_core_essential_name_len(local_name);
5473
5474 cands = calloc(1, sizeof(*cands));
5475 if (!cands)
5476 return ERR_PTR(-ENOMEM);
5477
5478 /* Attempt to find target candidates in vmlinux BTF first */
5479 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5480 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5481 if (err)
5482 goto err_out;
5483
5484 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5485 if (cands->len)
5486 return cands;
5487
5488 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5489 if (obj->btf_vmlinux_override)
5490 return cands;
5491
5492 /* now look through module BTFs, trying to still find candidates */
5493 err = load_module_btfs(obj);
5494 if (err)
5495 goto err_out;
5496
5497 for (i = 0; i < obj->btf_module_cnt; i++) {
5498 err = bpf_core_add_cands(&local_cand, local_essent_len,
5499 obj->btf_modules[i].btf,
5500 obj->btf_modules[i].name,
5501 btf__type_cnt(obj->btf_vmlinux),
5502 cands);
5503 if (err)
5504 goto err_out;
5505 }
5506
5507 return cands;
5508 err_out:
5509 bpf_core_free_cands(cands);
5510 return ERR_PTR(err);
5511 }
5512
5513 /* Check local and target types for compatibility. This check is used for
5514 * type-based CO-RE relocations and follow slightly different rules than
5515 * field-based relocations. This function assumes that root types were already
5516 * checked for name match. Beyond that initial root-level name check, names
5517 * are completely ignored. Compatibility rules are as follows:
5518 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5519 * kind should match for local and target types (i.e., STRUCT is not
5520 * compatible with UNION);
5521 * - for ENUMs, the size is ignored;
5522 * - for INT, size and signedness are ignored;
5523 * - for ARRAY, dimensionality is ignored, element types are checked for
5524 * compatibility recursively;
5525 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5526 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5527 * - FUNC_PROTOs are compatible if they have compatible signature: same
5528 * number of input args and compatible return and argument types.
5529 * These rules are not set in stone and probably will be adjusted as we get
5530 * more experience with using BPF CO-RE relocations.
5531 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5532 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5533 const struct btf *targ_btf, __u32 targ_id)
5534 {
5535 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5536 }
5537
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5538 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5539 const struct btf *targ_btf, __u32 targ_id)
5540 {
5541 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5542 }
5543
bpf_core_hash_fn(const void * key,void * ctx)5544 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5545 {
5546 return (size_t)key;
5547 }
5548
bpf_core_equal_fn(const void * k1,const void * k2,void * ctx)5549 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5550 {
5551 return k1 == k2;
5552 }
5553
u32_as_hash_key(__u32 x)5554 static void *u32_as_hash_key(__u32 x)
5555 {
5556 return (void *)(uintptr_t)x;
5557 }
5558
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5559 static int record_relo_core(struct bpf_program *prog,
5560 const struct bpf_core_relo *core_relo, int insn_idx)
5561 {
5562 struct reloc_desc *relos, *relo;
5563
5564 relos = libbpf_reallocarray(prog->reloc_desc,
5565 prog->nr_reloc + 1, sizeof(*relos));
5566 if (!relos)
5567 return -ENOMEM;
5568 relo = &relos[prog->nr_reloc];
5569 relo->type = RELO_CORE;
5570 relo->insn_idx = insn_idx;
5571 relo->core_relo = core_relo;
5572 prog->reloc_desc = relos;
5573 prog->nr_reloc++;
5574 return 0;
5575 }
5576
find_relo_core(struct bpf_program * prog,int insn_idx)5577 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5578 {
5579 struct reloc_desc *relo;
5580 int i;
5581
5582 for (i = 0; i < prog->nr_reloc; i++) {
5583 relo = &prog->reloc_desc[i];
5584 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5585 continue;
5586
5587 return relo->core_relo;
5588 }
5589
5590 return NULL;
5591 }
5592
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5593 static int bpf_core_resolve_relo(struct bpf_program *prog,
5594 const struct bpf_core_relo *relo,
5595 int relo_idx,
5596 const struct btf *local_btf,
5597 struct hashmap *cand_cache,
5598 struct bpf_core_relo_res *targ_res)
5599 {
5600 struct bpf_core_spec specs_scratch[3] = {};
5601 const void *type_key = u32_as_hash_key(relo->type_id);
5602 struct bpf_core_cand_list *cands = NULL;
5603 const char *prog_name = prog->name;
5604 const struct btf_type *local_type;
5605 const char *local_name;
5606 __u32 local_id = relo->type_id;
5607 int err;
5608
5609 local_type = btf__type_by_id(local_btf, local_id);
5610 if (!local_type)
5611 return -EINVAL;
5612
5613 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5614 if (!local_name)
5615 return -EINVAL;
5616
5617 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5618 !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5619 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5620 if (IS_ERR(cands)) {
5621 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5622 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5623 local_name, PTR_ERR(cands));
5624 return PTR_ERR(cands);
5625 }
5626 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5627 if (err) {
5628 bpf_core_free_cands(cands);
5629 return err;
5630 }
5631 }
5632
5633 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5634 targ_res);
5635 }
5636
5637 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5638 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5639 {
5640 const struct btf_ext_info_sec *sec;
5641 struct bpf_core_relo_res targ_res;
5642 const struct bpf_core_relo *rec;
5643 const struct btf_ext_info *seg;
5644 struct hashmap_entry *entry;
5645 struct hashmap *cand_cache = NULL;
5646 struct bpf_program *prog;
5647 struct bpf_insn *insn;
5648 const char *sec_name;
5649 int i, err = 0, insn_idx, sec_idx, sec_num;
5650
5651 if (obj->btf_ext->core_relo_info.len == 0)
5652 return 0;
5653
5654 if (targ_btf_path) {
5655 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5656 err = libbpf_get_error(obj->btf_vmlinux_override);
5657 if (err) {
5658 pr_warn("failed to parse target BTF: %d\n", err);
5659 return err;
5660 }
5661 }
5662
5663 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5664 if (IS_ERR(cand_cache)) {
5665 err = PTR_ERR(cand_cache);
5666 goto out;
5667 }
5668
5669 seg = &obj->btf_ext->core_relo_info;
5670 sec_num = 0;
5671 for_each_btf_ext_sec(seg, sec) {
5672 sec_idx = seg->sec_idxs[sec_num];
5673 sec_num++;
5674
5675 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5676 if (str_is_empty(sec_name)) {
5677 err = -EINVAL;
5678 goto out;
5679 }
5680
5681 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5682
5683 for_each_btf_ext_rec(seg, sec, i, rec) {
5684 if (rec->insn_off % BPF_INSN_SZ)
5685 return -EINVAL;
5686 insn_idx = rec->insn_off / BPF_INSN_SZ;
5687 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5688 if (!prog) {
5689 /* When __weak subprog is "overridden" by another instance
5690 * of the subprog from a different object file, linker still
5691 * appends all the .BTF.ext info that used to belong to that
5692 * eliminated subprogram.
5693 * This is similar to what x86-64 linker does for relocations.
5694 * So just ignore such relocations just like we ignore
5695 * subprog instructions when discovering subprograms.
5696 */
5697 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5698 sec_name, i, insn_idx);
5699 continue;
5700 }
5701 /* no need to apply CO-RE relocation if the program is
5702 * not going to be loaded
5703 */
5704 if (!prog->autoload)
5705 continue;
5706
5707 /* adjust insn_idx from section frame of reference to the local
5708 * program's frame of reference; (sub-)program code is not yet
5709 * relocated, so it's enough to just subtract in-section offset
5710 */
5711 insn_idx = insn_idx - prog->sec_insn_off;
5712 if (insn_idx >= prog->insns_cnt)
5713 return -EINVAL;
5714 insn = &prog->insns[insn_idx];
5715
5716 err = record_relo_core(prog, rec, insn_idx);
5717 if (err) {
5718 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5719 prog->name, i, err);
5720 goto out;
5721 }
5722
5723 if (prog->obj->gen_loader)
5724 continue;
5725
5726 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5727 if (err) {
5728 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5729 prog->name, i, err);
5730 goto out;
5731 }
5732
5733 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5734 if (err) {
5735 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5736 prog->name, i, insn_idx, err);
5737 goto out;
5738 }
5739 }
5740 }
5741
5742 out:
5743 /* obj->btf_vmlinux and module BTFs are freed after object load */
5744 btf__free(obj->btf_vmlinux_override);
5745 obj->btf_vmlinux_override = NULL;
5746
5747 if (!IS_ERR_OR_NULL(cand_cache)) {
5748 hashmap__for_each_entry(cand_cache, entry, i) {
5749 bpf_core_free_cands(entry->value);
5750 }
5751 hashmap__free(cand_cache);
5752 }
5753 return err;
5754 }
5755
5756 /* base map load ldimm64 special constant, used also for log fixup logic */
5757 #define MAP_LDIMM64_POISON_BASE 2001000000
5758 #define MAP_LDIMM64_POISON_PFX "200100"
5759
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5760 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5761 int insn_idx, struct bpf_insn *insn,
5762 int map_idx, const struct bpf_map *map)
5763 {
5764 int i;
5765
5766 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5767 prog->name, relo_idx, insn_idx, map_idx, map->name);
5768
5769 /* we turn single ldimm64 into two identical invalid calls */
5770 for (i = 0; i < 2; i++) {
5771 insn->code = BPF_JMP | BPF_CALL;
5772 insn->dst_reg = 0;
5773 insn->src_reg = 0;
5774 insn->off = 0;
5775 /* if this instruction is reachable (not a dead code),
5776 * verifier will complain with something like:
5777 * invalid func unknown#2001000123
5778 * where lower 123 is map index into obj->maps[] array
5779 */
5780 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5781
5782 insn++;
5783 }
5784 }
5785
5786 /* Relocate data references within program code:
5787 * - map references;
5788 * - global variable references;
5789 * - extern references.
5790 */
5791 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5792 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5793 {
5794 int i;
5795
5796 for (i = 0; i < prog->nr_reloc; i++) {
5797 struct reloc_desc *relo = &prog->reloc_desc[i];
5798 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5799 const struct bpf_map *map;
5800 struct extern_desc *ext;
5801
5802 switch (relo->type) {
5803 case RELO_LD64:
5804 map = &obj->maps[relo->map_idx];
5805 if (obj->gen_loader) {
5806 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5807 insn[0].imm = relo->map_idx;
5808 } else if (map->autocreate) {
5809 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5810 insn[0].imm = map->fd;
5811 } else {
5812 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5813 relo->map_idx, map);
5814 }
5815 break;
5816 case RELO_DATA:
5817 map = &obj->maps[relo->map_idx];
5818 insn[1].imm = insn[0].imm + relo->sym_off;
5819 if (obj->gen_loader) {
5820 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5821 insn[0].imm = relo->map_idx;
5822 } else if (map->autocreate) {
5823 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5824 insn[0].imm = map->fd;
5825 } else {
5826 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5827 relo->map_idx, map);
5828 }
5829 break;
5830 case RELO_EXTERN_VAR:
5831 ext = &obj->externs[relo->sym_off];
5832 if (ext->type == EXT_KCFG) {
5833 if (obj->gen_loader) {
5834 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5835 insn[0].imm = obj->kconfig_map_idx;
5836 } else {
5837 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5838 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5839 }
5840 insn[1].imm = ext->kcfg.data_off;
5841 } else /* EXT_KSYM */ {
5842 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5843 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5844 insn[0].imm = ext->ksym.kernel_btf_id;
5845 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5846 } else { /* typeless ksyms or unresolved typed ksyms */
5847 insn[0].imm = (__u32)ext->ksym.addr;
5848 insn[1].imm = ext->ksym.addr >> 32;
5849 }
5850 }
5851 break;
5852 case RELO_EXTERN_FUNC:
5853 ext = &obj->externs[relo->sym_off];
5854 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5855 if (ext->is_set) {
5856 insn[0].imm = ext->ksym.kernel_btf_id;
5857 insn[0].off = ext->ksym.btf_fd_idx;
5858 } else { /* unresolved weak kfunc */
5859 insn[0].imm = 0;
5860 insn[0].off = 0;
5861 }
5862 break;
5863 case RELO_SUBPROG_ADDR:
5864 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5865 pr_warn("prog '%s': relo #%d: bad insn\n",
5866 prog->name, i);
5867 return -EINVAL;
5868 }
5869 /* handled already */
5870 break;
5871 case RELO_CALL:
5872 /* handled already */
5873 break;
5874 case RELO_CORE:
5875 /* will be handled by bpf_program_record_relos() */
5876 break;
5877 default:
5878 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5879 prog->name, i, relo->type);
5880 return -EINVAL;
5881 }
5882 }
5883
5884 return 0;
5885 }
5886
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)5887 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5888 const struct bpf_program *prog,
5889 const struct btf_ext_info *ext_info,
5890 void **prog_info, __u32 *prog_rec_cnt,
5891 __u32 *prog_rec_sz)
5892 {
5893 void *copy_start = NULL, *copy_end = NULL;
5894 void *rec, *rec_end, *new_prog_info;
5895 const struct btf_ext_info_sec *sec;
5896 size_t old_sz, new_sz;
5897 int i, sec_num, sec_idx, off_adj;
5898
5899 sec_num = 0;
5900 for_each_btf_ext_sec(ext_info, sec) {
5901 sec_idx = ext_info->sec_idxs[sec_num];
5902 sec_num++;
5903 if (prog->sec_idx != sec_idx)
5904 continue;
5905
5906 for_each_btf_ext_rec(ext_info, sec, i, rec) {
5907 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5908
5909 if (insn_off < prog->sec_insn_off)
5910 continue;
5911 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5912 break;
5913
5914 if (!copy_start)
5915 copy_start = rec;
5916 copy_end = rec + ext_info->rec_size;
5917 }
5918
5919 if (!copy_start)
5920 return -ENOENT;
5921
5922 /* append func/line info of a given (sub-)program to the main
5923 * program func/line info
5924 */
5925 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5926 new_sz = old_sz + (copy_end - copy_start);
5927 new_prog_info = realloc(*prog_info, new_sz);
5928 if (!new_prog_info)
5929 return -ENOMEM;
5930 *prog_info = new_prog_info;
5931 *prog_rec_cnt = new_sz / ext_info->rec_size;
5932 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5933
5934 /* Kernel instruction offsets are in units of 8-byte
5935 * instructions, while .BTF.ext instruction offsets generated
5936 * by Clang are in units of bytes. So convert Clang offsets
5937 * into kernel offsets and adjust offset according to program
5938 * relocated position.
5939 */
5940 off_adj = prog->sub_insn_off - prog->sec_insn_off;
5941 rec = new_prog_info + old_sz;
5942 rec_end = new_prog_info + new_sz;
5943 for (; rec < rec_end; rec += ext_info->rec_size) {
5944 __u32 *insn_off = rec;
5945
5946 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5947 }
5948 *prog_rec_sz = ext_info->rec_size;
5949 return 0;
5950 }
5951
5952 return -ENOENT;
5953 }
5954
5955 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)5956 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5957 struct bpf_program *main_prog,
5958 const struct bpf_program *prog)
5959 {
5960 int err;
5961
5962 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5963 * supprot func/line info
5964 */
5965 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5966 return 0;
5967
5968 /* only attempt func info relocation if main program's func_info
5969 * relocation was successful
5970 */
5971 if (main_prog != prog && !main_prog->func_info)
5972 goto line_info;
5973
5974 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5975 &main_prog->func_info,
5976 &main_prog->func_info_cnt,
5977 &main_prog->func_info_rec_size);
5978 if (err) {
5979 if (err != -ENOENT) {
5980 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5981 prog->name, err);
5982 return err;
5983 }
5984 if (main_prog->func_info) {
5985 /*
5986 * Some info has already been found but has problem
5987 * in the last btf_ext reloc. Must have to error out.
5988 */
5989 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5990 return err;
5991 }
5992 /* Have problem loading the very first info. Ignore the rest. */
5993 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5994 prog->name);
5995 }
5996
5997 line_info:
5998 /* don't relocate line info if main program's relocation failed */
5999 if (main_prog != prog && !main_prog->line_info)
6000 return 0;
6001
6002 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6003 &main_prog->line_info,
6004 &main_prog->line_info_cnt,
6005 &main_prog->line_info_rec_size);
6006 if (err) {
6007 if (err != -ENOENT) {
6008 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6009 prog->name, err);
6010 return err;
6011 }
6012 if (main_prog->line_info) {
6013 /*
6014 * Some info has already been found but has problem
6015 * in the last btf_ext reloc. Must have to error out.
6016 */
6017 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6018 return err;
6019 }
6020 /* Have problem loading the very first info. Ignore the rest. */
6021 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6022 prog->name);
6023 }
6024 return 0;
6025 }
6026
cmp_relo_by_insn_idx(const void * key,const void * elem)6027 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6028 {
6029 size_t insn_idx = *(const size_t *)key;
6030 const struct reloc_desc *relo = elem;
6031
6032 if (insn_idx == relo->insn_idx)
6033 return 0;
6034 return insn_idx < relo->insn_idx ? -1 : 1;
6035 }
6036
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6037 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6038 {
6039 if (!prog->nr_reloc)
6040 return NULL;
6041 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6042 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6043 }
6044
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6045 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6046 {
6047 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6048 struct reloc_desc *relos;
6049 int i;
6050
6051 if (main_prog == subprog)
6052 return 0;
6053 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6054 if (!relos)
6055 return -ENOMEM;
6056 if (subprog->nr_reloc)
6057 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6058 sizeof(*relos) * subprog->nr_reloc);
6059
6060 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6061 relos[i].insn_idx += subprog->sub_insn_off;
6062 /* After insn_idx adjustment the 'relos' array is still sorted
6063 * by insn_idx and doesn't break bsearch.
6064 */
6065 main_prog->reloc_desc = relos;
6066 main_prog->nr_reloc = new_cnt;
6067 return 0;
6068 }
6069
6070 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6071 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6072 struct bpf_program *prog)
6073 {
6074 size_t sub_insn_idx, insn_idx, new_cnt;
6075 struct bpf_program *subprog;
6076 struct bpf_insn *insns, *insn;
6077 struct reloc_desc *relo;
6078 int err;
6079
6080 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6081 if (err)
6082 return err;
6083
6084 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6085 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6086 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6087 continue;
6088
6089 relo = find_prog_insn_relo(prog, insn_idx);
6090 if (relo && relo->type == RELO_EXTERN_FUNC)
6091 /* kfunc relocations will be handled later
6092 * in bpf_object__relocate_data()
6093 */
6094 continue;
6095 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6096 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6097 prog->name, insn_idx, relo->type);
6098 return -LIBBPF_ERRNO__RELOC;
6099 }
6100 if (relo) {
6101 /* sub-program instruction index is a combination of
6102 * an offset of a symbol pointed to by relocation and
6103 * call instruction's imm field; for global functions,
6104 * call always has imm = -1, but for static functions
6105 * relocation is against STT_SECTION and insn->imm
6106 * points to a start of a static function
6107 *
6108 * for subprog addr relocation, the relo->sym_off + insn->imm is
6109 * the byte offset in the corresponding section.
6110 */
6111 if (relo->type == RELO_CALL)
6112 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6113 else
6114 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6115 } else if (insn_is_pseudo_func(insn)) {
6116 /*
6117 * RELO_SUBPROG_ADDR relo is always emitted even if both
6118 * functions are in the same section, so it shouldn't reach here.
6119 */
6120 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6121 prog->name, insn_idx);
6122 return -LIBBPF_ERRNO__RELOC;
6123 } else {
6124 /* if subprogram call is to a static function within
6125 * the same ELF section, there won't be any relocation
6126 * emitted, but it also means there is no additional
6127 * offset necessary, insns->imm is relative to
6128 * instruction's original position within the section
6129 */
6130 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6131 }
6132
6133 /* we enforce that sub-programs should be in .text section */
6134 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6135 if (!subprog) {
6136 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6137 prog->name);
6138 return -LIBBPF_ERRNO__RELOC;
6139 }
6140
6141 /* if it's the first call instruction calling into this
6142 * subprogram (meaning this subprog hasn't been processed
6143 * yet) within the context of current main program:
6144 * - append it at the end of main program's instructions blog;
6145 * - process is recursively, while current program is put on hold;
6146 * - if that subprogram calls some other not yet processes
6147 * subprogram, same thing will happen recursively until
6148 * there are no more unprocesses subprograms left to append
6149 * and relocate.
6150 */
6151 if (subprog->sub_insn_off == 0) {
6152 subprog->sub_insn_off = main_prog->insns_cnt;
6153
6154 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6155 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6156 if (!insns) {
6157 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6158 return -ENOMEM;
6159 }
6160 main_prog->insns = insns;
6161 main_prog->insns_cnt = new_cnt;
6162
6163 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6164 subprog->insns_cnt * sizeof(*insns));
6165
6166 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6167 main_prog->name, subprog->insns_cnt, subprog->name);
6168
6169 /* The subprog insns are now appended. Append its relos too. */
6170 err = append_subprog_relos(main_prog, subprog);
6171 if (err)
6172 return err;
6173 err = bpf_object__reloc_code(obj, main_prog, subprog);
6174 if (err)
6175 return err;
6176 }
6177
6178 /* main_prog->insns memory could have been re-allocated, so
6179 * calculate pointer again
6180 */
6181 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6182 /* calculate correct instruction position within current main
6183 * prog; each main prog can have a different set of
6184 * subprograms appended (potentially in different order as
6185 * well), so position of any subprog can be different for
6186 * different main programs */
6187 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6188
6189 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6190 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6191 }
6192
6193 return 0;
6194 }
6195
6196 /*
6197 * Relocate sub-program calls.
6198 *
6199 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6200 * main prog) is processed separately. For each subprog (non-entry functions,
6201 * that can be called from either entry progs or other subprogs) gets their
6202 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6203 * hasn't been yet appended and relocated within current main prog. Once its
6204 * relocated, sub_insn_off will point at the position within current main prog
6205 * where given subprog was appended. This will further be used to relocate all
6206 * the call instructions jumping into this subprog.
6207 *
6208 * We start with main program and process all call instructions. If the call
6209 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6210 * is zero), subprog instructions are appended at the end of main program's
6211 * instruction array. Then main program is "put on hold" while we recursively
6212 * process newly appended subprogram. If that subprogram calls into another
6213 * subprogram that hasn't been appended, new subprogram is appended again to
6214 * the *main* prog's instructions (subprog's instructions are always left
6215 * untouched, as they need to be in unmodified state for subsequent main progs
6216 * and subprog instructions are always sent only as part of a main prog) and
6217 * the process continues recursively. Once all the subprogs called from a main
6218 * prog or any of its subprogs are appended (and relocated), all their
6219 * positions within finalized instructions array are known, so it's easy to
6220 * rewrite call instructions with correct relative offsets, corresponding to
6221 * desired target subprog.
6222 *
6223 * Its important to realize that some subprogs might not be called from some
6224 * main prog and any of its called/used subprogs. Those will keep their
6225 * subprog->sub_insn_off as zero at all times and won't be appended to current
6226 * main prog and won't be relocated within the context of current main prog.
6227 * They might still be used from other main progs later.
6228 *
6229 * Visually this process can be shown as below. Suppose we have two main
6230 * programs mainA and mainB and BPF object contains three subprogs: subA,
6231 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6232 * subC both call subB:
6233 *
6234 * +--------+ +-------+
6235 * | v v |
6236 * +--+---+ +--+-+-+ +---+--+
6237 * | subA | | subB | | subC |
6238 * +--+---+ +------+ +---+--+
6239 * ^ ^
6240 * | |
6241 * +---+-------+ +------+----+
6242 * | mainA | | mainB |
6243 * +-----------+ +-----------+
6244 *
6245 * We'll start relocating mainA, will find subA, append it and start
6246 * processing sub A recursively:
6247 *
6248 * +-----------+------+
6249 * | mainA | subA |
6250 * +-----------+------+
6251 *
6252 * At this point we notice that subB is used from subA, so we append it and
6253 * relocate (there are no further subcalls from subB):
6254 *
6255 * +-----------+------+------+
6256 * | mainA | subA | subB |
6257 * +-----------+------+------+
6258 *
6259 * At this point, we relocate subA calls, then go one level up and finish with
6260 * relocatin mainA calls. mainA is done.
6261 *
6262 * For mainB process is similar but results in different order. We start with
6263 * mainB and skip subA and subB, as mainB never calls them (at least
6264 * directly), but we see subC is needed, so we append and start processing it:
6265 *
6266 * +-----------+------+
6267 * | mainB | subC |
6268 * +-----------+------+
6269 * Now we see subC needs subB, so we go back to it, append and relocate it:
6270 *
6271 * +-----------+------+------+
6272 * | mainB | subC | subB |
6273 * +-----------+------+------+
6274 *
6275 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6276 */
6277 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6278 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6279 {
6280 struct bpf_program *subprog;
6281 int i, err;
6282
6283 /* mark all subprogs as not relocated (yet) within the context of
6284 * current main program
6285 */
6286 for (i = 0; i < obj->nr_programs; i++) {
6287 subprog = &obj->programs[i];
6288 if (!prog_is_subprog(obj, subprog))
6289 continue;
6290
6291 subprog->sub_insn_off = 0;
6292 }
6293
6294 err = bpf_object__reloc_code(obj, prog, prog);
6295 if (err)
6296 return err;
6297
6298 return 0;
6299 }
6300
6301 static void
bpf_object__free_relocs(struct bpf_object * obj)6302 bpf_object__free_relocs(struct bpf_object *obj)
6303 {
6304 struct bpf_program *prog;
6305 int i;
6306
6307 /* free up relocation descriptors */
6308 for (i = 0; i < obj->nr_programs; i++) {
6309 prog = &obj->programs[i];
6310 zfree(&prog->reloc_desc);
6311 prog->nr_reloc = 0;
6312 }
6313 }
6314
cmp_relocs(const void * _a,const void * _b)6315 static int cmp_relocs(const void *_a, const void *_b)
6316 {
6317 const struct reloc_desc *a = _a;
6318 const struct reloc_desc *b = _b;
6319
6320 if (a->insn_idx != b->insn_idx)
6321 return a->insn_idx < b->insn_idx ? -1 : 1;
6322
6323 /* no two relocations should have the same insn_idx, but ... */
6324 if (a->type != b->type)
6325 return a->type < b->type ? -1 : 1;
6326
6327 return 0;
6328 }
6329
bpf_object__sort_relos(struct bpf_object * obj)6330 static void bpf_object__sort_relos(struct bpf_object *obj)
6331 {
6332 int i;
6333
6334 for (i = 0; i < obj->nr_programs; i++) {
6335 struct bpf_program *p = &obj->programs[i];
6336
6337 if (!p->nr_reloc)
6338 continue;
6339
6340 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6341 }
6342 }
6343
6344 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6345 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6346 {
6347 struct bpf_program *prog;
6348 size_t i, j;
6349 int err;
6350
6351 if (obj->btf_ext) {
6352 err = bpf_object__relocate_core(obj, targ_btf_path);
6353 if (err) {
6354 pr_warn("failed to perform CO-RE relocations: %d\n",
6355 err);
6356 return err;
6357 }
6358 bpf_object__sort_relos(obj);
6359 }
6360
6361 /* Before relocating calls pre-process relocations and mark
6362 * few ld_imm64 instructions that points to subprogs.
6363 * Otherwise bpf_object__reloc_code() later would have to consider
6364 * all ld_imm64 insns as relocation candidates. That would
6365 * reduce relocation speed, since amount of find_prog_insn_relo()
6366 * would increase and most of them will fail to find a relo.
6367 */
6368 for (i = 0; i < obj->nr_programs; i++) {
6369 prog = &obj->programs[i];
6370 for (j = 0; j < prog->nr_reloc; j++) {
6371 struct reloc_desc *relo = &prog->reloc_desc[j];
6372 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6373
6374 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6375 if (relo->type == RELO_SUBPROG_ADDR)
6376 insn[0].src_reg = BPF_PSEUDO_FUNC;
6377 }
6378 }
6379
6380 /* relocate subprogram calls and append used subprograms to main
6381 * programs; each copy of subprogram code needs to be relocated
6382 * differently for each main program, because its code location might
6383 * have changed.
6384 * Append subprog relos to main programs to allow data relos to be
6385 * processed after text is completely relocated.
6386 */
6387 for (i = 0; i < obj->nr_programs; i++) {
6388 prog = &obj->programs[i];
6389 /* sub-program's sub-calls are relocated within the context of
6390 * its main program only
6391 */
6392 if (prog_is_subprog(obj, prog))
6393 continue;
6394 if (!prog->autoload)
6395 continue;
6396
6397 err = bpf_object__relocate_calls(obj, prog);
6398 if (err) {
6399 pr_warn("prog '%s': failed to relocate calls: %d\n",
6400 prog->name, err);
6401 return err;
6402 }
6403 }
6404 /* Process data relos for main programs */
6405 for (i = 0; i < obj->nr_programs; i++) {
6406 prog = &obj->programs[i];
6407 if (prog_is_subprog(obj, prog))
6408 continue;
6409 if (!prog->autoload)
6410 continue;
6411 err = bpf_object__relocate_data(obj, prog);
6412 if (err) {
6413 pr_warn("prog '%s': failed to relocate data references: %d\n",
6414 prog->name, err);
6415 return err;
6416 }
6417 }
6418
6419 return 0;
6420 }
6421
6422 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6423 Elf64_Shdr *shdr, Elf_Data *data);
6424
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6425 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6426 Elf64_Shdr *shdr, Elf_Data *data)
6427 {
6428 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6429 int i, j, nrels, new_sz;
6430 const struct btf_var_secinfo *vi = NULL;
6431 const struct btf_type *sec, *var, *def;
6432 struct bpf_map *map = NULL, *targ_map = NULL;
6433 struct bpf_program *targ_prog = NULL;
6434 bool is_prog_array, is_map_in_map;
6435 const struct btf_member *member;
6436 const char *name, *mname, *type;
6437 unsigned int moff;
6438 Elf64_Sym *sym;
6439 Elf64_Rel *rel;
6440 void *tmp;
6441
6442 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6443 return -EINVAL;
6444 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6445 if (!sec)
6446 return -EINVAL;
6447
6448 nrels = shdr->sh_size / shdr->sh_entsize;
6449 for (i = 0; i < nrels; i++) {
6450 rel = elf_rel_by_idx(data, i);
6451 if (!rel) {
6452 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6453 return -LIBBPF_ERRNO__FORMAT;
6454 }
6455
6456 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6457 if (!sym) {
6458 pr_warn(".maps relo #%d: symbol %zx not found\n",
6459 i, (size_t)ELF64_R_SYM(rel->r_info));
6460 return -LIBBPF_ERRNO__FORMAT;
6461 }
6462 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6463
6464 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6465 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6466 (size_t)rel->r_offset, sym->st_name, name);
6467
6468 for (j = 0; j < obj->nr_maps; j++) {
6469 map = &obj->maps[j];
6470 if (map->sec_idx != obj->efile.btf_maps_shndx)
6471 continue;
6472
6473 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6474 if (vi->offset <= rel->r_offset &&
6475 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6476 break;
6477 }
6478 if (j == obj->nr_maps) {
6479 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6480 i, name, (size_t)rel->r_offset);
6481 return -EINVAL;
6482 }
6483
6484 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6485 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6486 type = is_map_in_map ? "map" : "prog";
6487 if (is_map_in_map) {
6488 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6489 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6490 i, name);
6491 return -LIBBPF_ERRNO__RELOC;
6492 }
6493 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6494 map->def.key_size != sizeof(int)) {
6495 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6496 i, map->name, sizeof(int));
6497 return -EINVAL;
6498 }
6499 targ_map = bpf_object__find_map_by_name(obj, name);
6500 if (!targ_map) {
6501 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6502 i, name);
6503 return -ESRCH;
6504 }
6505 } else if (is_prog_array) {
6506 targ_prog = bpf_object__find_program_by_name(obj, name);
6507 if (!targ_prog) {
6508 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6509 i, name);
6510 return -ESRCH;
6511 }
6512 if (targ_prog->sec_idx != sym->st_shndx ||
6513 targ_prog->sec_insn_off * 8 != sym->st_value ||
6514 prog_is_subprog(obj, targ_prog)) {
6515 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6516 i, name);
6517 return -LIBBPF_ERRNO__RELOC;
6518 }
6519 } else {
6520 return -EINVAL;
6521 }
6522
6523 var = btf__type_by_id(obj->btf, vi->type);
6524 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6525 if (btf_vlen(def) == 0)
6526 return -EINVAL;
6527 member = btf_members(def) + btf_vlen(def) - 1;
6528 mname = btf__name_by_offset(obj->btf, member->name_off);
6529 if (strcmp(mname, "values"))
6530 return -EINVAL;
6531
6532 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6533 if (rel->r_offset - vi->offset < moff)
6534 return -EINVAL;
6535
6536 moff = rel->r_offset - vi->offset - moff;
6537 /* here we use BPF pointer size, which is always 64 bit, as we
6538 * are parsing ELF that was built for BPF target
6539 */
6540 if (moff % bpf_ptr_sz)
6541 return -EINVAL;
6542 moff /= bpf_ptr_sz;
6543 if (moff >= map->init_slots_sz) {
6544 new_sz = moff + 1;
6545 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6546 if (!tmp)
6547 return -ENOMEM;
6548 map->init_slots = tmp;
6549 memset(map->init_slots + map->init_slots_sz, 0,
6550 (new_sz - map->init_slots_sz) * host_ptr_sz);
6551 map->init_slots_sz = new_sz;
6552 }
6553 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6554
6555 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6556 i, map->name, moff, type, name);
6557 }
6558
6559 return 0;
6560 }
6561
bpf_object__collect_relos(struct bpf_object * obj)6562 static int bpf_object__collect_relos(struct bpf_object *obj)
6563 {
6564 int i, err;
6565
6566 for (i = 0; i < obj->efile.sec_cnt; i++) {
6567 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6568 Elf64_Shdr *shdr;
6569 Elf_Data *data;
6570 int idx;
6571
6572 if (sec_desc->sec_type != SEC_RELO)
6573 continue;
6574
6575 shdr = sec_desc->shdr;
6576 data = sec_desc->data;
6577 idx = shdr->sh_info;
6578
6579 if (shdr->sh_type != SHT_REL) {
6580 pr_warn("internal error at %d\n", __LINE__);
6581 return -LIBBPF_ERRNO__INTERNAL;
6582 }
6583
6584 if (idx == obj->efile.st_ops_shndx)
6585 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6586 else if (idx == obj->efile.btf_maps_shndx)
6587 err = bpf_object__collect_map_relos(obj, shdr, data);
6588 else
6589 err = bpf_object__collect_prog_relos(obj, shdr, data);
6590 if (err)
6591 return err;
6592 }
6593
6594 bpf_object__sort_relos(obj);
6595 return 0;
6596 }
6597
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6598 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6599 {
6600 if (BPF_CLASS(insn->code) == BPF_JMP &&
6601 BPF_OP(insn->code) == BPF_CALL &&
6602 BPF_SRC(insn->code) == BPF_K &&
6603 insn->src_reg == 0 &&
6604 insn->dst_reg == 0) {
6605 *func_id = insn->imm;
6606 return true;
6607 }
6608 return false;
6609 }
6610
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6611 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6612 {
6613 struct bpf_insn *insn = prog->insns;
6614 enum bpf_func_id func_id;
6615 int i;
6616
6617 if (obj->gen_loader)
6618 return 0;
6619
6620 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6621 if (!insn_is_helper_call(insn, &func_id))
6622 continue;
6623
6624 /* on kernels that don't yet support
6625 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6626 * to bpf_probe_read() which works well for old kernels
6627 */
6628 switch (func_id) {
6629 case BPF_FUNC_probe_read_kernel:
6630 case BPF_FUNC_probe_read_user:
6631 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6632 insn->imm = BPF_FUNC_probe_read;
6633 break;
6634 case BPF_FUNC_probe_read_kernel_str:
6635 case BPF_FUNC_probe_read_user_str:
6636 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6637 insn->imm = BPF_FUNC_probe_read_str;
6638 break;
6639 default:
6640 break;
6641 }
6642 }
6643 return 0;
6644 }
6645
6646 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6647 int *btf_obj_fd, int *btf_type_id);
6648
6649 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6650 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6651 struct bpf_prog_load_opts *opts, long cookie)
6652 {
6653 enum sec_def_flags def = cookie;
6654
6655 /* old kernels might not support specifying expected_attach_type */
6656 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6657 opts->expected_attach_type = 0;
6658
6659 if (def & SEC_SLEEPABLE)
6660 opts->prog_flags |= BPF_F_SLEEPABLE;
6661
6662 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6663 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6664
6665 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6666 int btf_obj_fd = 0, btf_type_id = 0, err;
6667 const char *attach_name;
6668
6669 attach_name = strchr(prog->sec_name, '/');
6670 if (!attach_name) {
6671 /* if BPF program is annotated with just SEC("fentry")
6672 * (or similar) without declaratively specifying
6673 * target, then it is expected that target will be
6674 * specified with bpf_program__set_attach_target() at
6675 * runtime before BPF object load step. If not, then
6676 * there is nothing to load into the kernel as BPF
6677 * verifier won't be able to validate BPF program
6678 * correctness anyways.
6679 */
6680 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6681 prog->name);
6682 return -EINVAL;
6683 }
6684 attach_name++; /* skip over / */
6685
6686 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6687 if (err)
6688 return err;
6689
6690 /* cache resolved BTF FD and BTF type ID in the prog */
6691 prog->attach_btf_obj_fd = btf_obj_fd;
6692 prog->attach_btf_id = btf_type_id;
6693
6694 /* but by now libbpf common logic is not utilizing
6695 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6696 * this callback is called after opts were populated by
6697 * libbpf, so this callback has to update opts explicitly here
6698 */
6699 opts->attach_btf_obj_fd = btf_obj_fd;
6700 opts->attach_btf_id = btf_type_id;
6701 }
6702 return 0;
6703 }
6704
6705 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6706
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6707 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6708 struct bpf_insn *insns, int insns_cnt,
6709 const char *license, __u32 kern_version, int *prog_fd)
6710 {
6711 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6712 const char *prog_name = NULL;
6713 char *cp, errmsg[STRERR_BUFSIZE];
6714 size_t log_buf_size = 0;
6715 char *log_buf = NULL, *tmp;
6716 int btf_fd, ret, err;
6717 bool own_log_buf = true;
6718 __u32 log_level = prog->log_level;
6719
6720 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6721 /*
6722 * The program type must be set. Most likely we couldn't find a proper
6723 * section definition at load time, and thus we didn't infer the type.
6724 */
6725 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6726 prog->name, prog->sec_name);
6727 return -EINVAL;
6728 }
6729
6730 if (!insns || !insns_cnt)
6731 return -EINVAL;
6732
6733 load_attr.expected_attach_type = prog->expected_attach_type;
6734 if (kernel_supports(obj, FEAT_PROG_NAME))
6735 prog_name = prog->name;
6736 load_attr.attach_prog_fd = prog->attach_prog_fd;
6737 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6738 load_attr.attach_btf_id = prog->attach_btf_id;
6739 load_attr.kern_version = kern_version;
6740 load_attr.prog_ifindex = prog->prog_ifindex;
6741
6742 /* specify func_info/line_info only if kernel supports them */
6743 btf_fd = bpf_object__btf_fd(obj);
6744 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6745 load_attr.prog_btf_fd = btf_fd;
6746 load_attr.func_info = prog->func_info;
6747 load_attr.func_info_rec_size = prog->func_info_rec_size;
6748 load_attr.func_info_cnt = prog->func_info_cnt;
6749 load_attr.line_info = prog->line_info;
6750 load_attr.line_info_rec_size = prog->line_info_rec_size;
6751 load_attr.line_info_cnt = prog->line_info_cnt;
6752 }
6753 load_attr.log_level = log_level;
6754 load_attr.prog_flags = prog->prog_flags;
6755 load_attr.fd_array = obj->fd_array;
6756
6757 /* adjust load_attr if sec_def provides custom preload callback */
6758 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6759 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6760 if (err < 0) {
6761 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6762 prog->name, err);
6763 return err;
6764 }
6765 insns = prog->insns;
6766 insns_cnt = prog->insns_cnt;
6767 }
6768
6769 if (obj->gen_loader) {
6770 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6771 license, insns, insns_cnt, &load_attr,
6772 prog - obj->programs);
6773 *prog_fd = -1;
6774 return 0;
6775 }
6776
6777 retry_load:
6778 /* if log_level is zero, we don't request logs initially even if
6779 * custom log_buf is specified; if the program load fails, then we'll
6780 * bump log_level to 1 and use either custom log_buf or we'll allocate
6781 * our own and retry the load to get details on what failed
6782 */
6783 if (log_level) {
6784 if (prog->log_buf) {
6785 log_buf = prog->log_buf;
6786 log_buf_size = prog->log_size;
6787 own_log_buf = false;
6788 } else if (obj->log_buf) {
6789 log_buf = obj->log_buf;
6790 log_buf_size = obj->log_size;
6791 own_log_buf = false;
6792 } else {
6793 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6794 tmp = realloc(log_buf, log_buf_size);
6795 if (!tmp) {
6796 ret = -ENOMEM;
6797 goto out;
6798 }
6799 log_buf = tmp;
6800 log_buf[0] = '\0';
6801 own_log_buf = true;
6802 }
6803 }
6804
6805 load_attr.log_buf = log_buf;
6806 load_attr.log_size = log_buf_size;
6807 load_attr.log_level = log_level;
6808
6809 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6810 if (ret >= 0) {
6811 if (log_level && own_log_buf) {
6812 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6813 prog->name, log_buf);
6814 }
6815
6816 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6817 struct bpf_map *map;
6818 int i;
6819
6820 for (i = 0; i < obj->nr_maps; i++) {
6821 map = &prog->obj->maps[i];
6822 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6823 continue;
6824
6825 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6826 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6827 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6828 prog->name, map->real_name, cp);
6829 /* Don't fail hard if can't bind rodata. */
6830 }
6831 }
6832 }
6833
6834 *prog_fd = ret;
6835 ret = 0;
6836 goto out;
6837 }
6838
6839 if (log_level == 0) {
6840 log_level = 1;
6841 goto retry_load;
6842 }
6843 /* On ENOSPC, increase log buffer size and retry, unless custom
6844 * log_buf is specified.
6845 * Be careful to not overflow u32, though. Kernel's log buf size limit
6846 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6847 * multiply by 2 unless we are sure we'll fit within 32 bits.
6848 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6849 */
6850 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6851 goto retry_load;
6852
6853 ret = -errno;
6854
6855 /* post-process verifier log to improve error descriptions */
6856 fixup_verifier_log(prog, log_buf, log_buf_size);
6857
6858 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6859 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6860 pr_perm_msg(ret);
6861
6862 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6863 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6864 prog->name, log_buf);
6865 }
6866
6867 out:
6868 if (own_log_buf)
6869 free(log_buf);
6870 return ret;
6871 }
6872
find_prev_line(char * buf,char * cur)6873 static char *find_prev_line(char *buf, char *cur)
6874 {
6875 char *p;
6876
6877 if (cur == buf) /* end of a log buf */
6878 return NULL;
6879
6880 p = cur - 1;
6881 while (p - 1 >= buf && *(p - 1) != '\n')
6882 p--;
6883
6884 return p;
6885 }
6886
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)6887 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6888 char *orig, size_t orig_sz, const char *patch)
6889 {
6890 /* size of the remaining log content to the right from the to-be-replaced part */
6891 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6892 size_t patch_sz = strlen(patch);
6893
6894 if (patch_sz != orig_sz) {
6895 /* If patch line(s) are longer than original piece of verifier log,
6896 * shift log contents by (patch_sz - orig_sz) bytes to the right
6897 * starting from after to-be-replaced part of the log.
6898 *
6899 * If patch line(s) are shorter than original piece of verifier log,
6900 * shift log contents by (orig_sz - patch_sz) bytes to the left
6901 * starting from after to-be-replaced part of the log
6902 *
6903 * We need to be careful about not overflowing available
6904 * buf_sz capacity. If that's the case, we'll truncate the end
6905 * of the original log, as necessary.
6906 */
6907 if (patch_sz > orig_sz) {
6908 if (orig + patch_sz >= buf + buf_sz) {
6909 /* patch is big enough to cover remaining space completely */
6910 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6911 rem_sz = 0;
6912 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
6913 /* patch causes part of remaining log to be truncated */
6914 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6915 }
6916 }
6917 /* shift remaining log to the right by calculated amount */
6918 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6919 }
6920
6921 memcpy(orig, patch, patch_sz);
6922 }
6923
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)6924 static void fixup_log_failed_core_relo(struct bpf_program *prog,
6925 char *buf, size_t buf_sz, size_t log_sz,
6926 char *line1, char *line2, char *line3)
6927 {
6928 /* Expected log for failed and not properly guarded CO-RE relocation:
6929 * line1 -> 123: (85) call unknown#195896080
6930 * line2 -> invalid func unknown#195896080
6931 * line3 -> <anything else or end of buffer>
6932 *
6933 * "123" is the index of the instruction that was poisoned. We extract
6934 * instruction index to find corresponding CO-RE relocation and
6935 * replace this part of the log with more relevant information about
6936 * failed CO-RE relocation.
6937 */
6938 const struct bpf_core_relo *relo;
6939 struct bpf_core_spec spec;
6940 char patch[512], spec_buf[256];
6941 int insn_idx, err, spec_len;
6942
6943 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
6944 return;
6945
6946 relo = find_relo_core(prog, insn_idx);
6947 if (!relo)
6948 return;
6949
6950 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
6951 if (err)
6952 return;
6953
6954 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
6955 snprintf(patch, sizeof(patch),
6956 "%d: <invalid CO-RE relocation>\n"
6957 "failed to resolve CO-RE relocation %s%s\n",
6958 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
6959
6960 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6961 }
6962
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)6963 static void fixup_log_missing_map_load(struct bpf_program *prog,
6964 char *buf, size_t buf_sz, size_t log_sz,
6965 char *line1, char *line2, char *line3)
6966 {
6967 /* Expected log for failed and not properly guarded CO-RE relocation:
6968 * line1 -> 123: (85) call unknown#2001000345
6969 * line2 -> invalid func unknown#2001000345
6970 * line3 -> <anything else or end of buffer>
6971 *
6972 * "123" is the index of the instruction that was poisoned.
6973 * "345" in "2001000345" are map index in obj->maps to fetch map name.
6974 */
6975 struct bpf_object *obj = prog->obj;
6976 const struct bpf_map *map;
6977 int insn_idx, map_idx;
6978 char patch[128];
6979
6980 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
6981 return;
6982
6983 map_idx -= MAP_LDIMM64_POISON_BASE;
6984 if (map_idx < 0 || map_idx >= obj->nr_maps)
6985 return;
6986 map = &obj->maps[map_idx];
6987
6988 snprintf(patch, sizeof(patch),
6989 "%d: <invalid BPF map reference>\n"
6990 "BPF map '%s' is referenced but wasn't created\n",
6991 insn_idx, map->name);
6992
6993 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6994 }
6995
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)6996 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
6997 {
6998 /* look for familiar error patterns in last N lines of the log */
6999 const size_t max_last_line_cnt = 10;
7000 char *prev_line, *cur_line, *next_line;
7001 size_t log_sz;
7002 int i;
7003
7004 if (!buf)
7005 return;
7006
7007 log_sz = strlen(buf) + 1;
7008 next_line = buf + log_sz - 1;
7009
7010 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7011 cur_line = find_prev_line(buf, next_line);
7012 if (!cur_line)
7013 return;
7014
7015 /* failed CO-RE relocation case */
7016 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7017 prev_line = find_prev_line(buf, cur_line);
7018 if (!prev_line)
7019 continue;
7020
7021 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7022 prev_line, cur_line, next_line);
7023 return;
7024 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7025 prev_line = find_prev_line(buf, cur_line);
7026 if (!prev_line)
7027 continue;
7028
7029 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7030 prev_line, cur_line, next_line);
7031 return;
7032 }
7033 }
7034 }
7035
bpf_program_record_relos(struct bpf_program * prog)7036 static int bpf_program_record_relos(struct bpf_program *prog)
7037 {
7038 struct bpf_object *obj = prog->obj;
7039 int i;
7040
7041 for (i = 0; i < prog->nr_reloc; i++) {
7042 struct reloc_desc *relo = &prog->reloc_desc[i];
7043 struct extern_desc *ext = &obj->externs[relo->sym_off];
7044
7045 switch (relo->type) {
7046 case RELO_EXTERN_VAR:
7047 if (ext->type != EXT_KSYM)
7048 continue;
7049 bpf_gen__record_extern(obj->gen_loader, ext->name,
7050 ext->is_weak, !ext->ksym.type_id,
7051 BTF_KIND_VAR, relo->insn_idx);
7052 break;
7053 case RELO_EXTERN_FUNC:
7054 bpf_gen__record_extern(obj->gen_loader, ext->name,
7055 ext->is_weak, false, BTF_KIND_FUNC,
7056 relo->insn_idx);
7057 break;
7058 case RELO_CORE: {
7059 struct bpf_core_relo cr = {
7060 .insn_off = relo->insn_idx * 8,
7061 .type_id = relo->core_relo->type_id,
7062 .access_str_off = relo->core_relo->access_str_off,
7063 .kind = relo->core_relo->kind,
7064 };
7065
7066 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7067 break;
7068 }
7069 default:
7070 continue;
7071 }
7072 }
7073 return 0;
7074 }
7075
7076 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7077 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7078 {
7079 struct bpf_program *prog;
7080 size_t i;
7081 int err;
7082
7083 for (i = 0; i < obj->nr_programs; i++) {
7084 prog = &obj->programs[i];
7085 err = bpf_object__sanitize_prog(obj, prog);
7086 if (err)
7087 return err;
7088 }
7089
7090 for (i = 0; i < obj->nr_programs; i++) {
7091 prog = &obj->programs[i];
7092 if (prog_is_subprog(obj, prog))
7093 continue;
7094 if (!prog->autoload) {
7095 pr_debug("prog '%s': skipped loading\n", prog->name);
7096 continue;
7097 }
7098 prog->log_level |= log_level;
7099
7100 if (obj->gen_loader)
7101 bpf_program_record_relos(prog);
7102
7103 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7104 obj->license, obj->kern_version, &prog->fd);
7105 if (err) {
7106 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7107 return err;
7108 }
7109 }
7110
7111 bpf_object__free_relocs(obj);
7112 return 0;
7113 }
7114
7115 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7116
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7117 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7118 {
7119 struct bpf_program *prog;
7120 int err;
7121
7122 bpf_object__for_each_program(prog, obj) {
7123 prog->sec_def = find_sec_def(prog->sec_name);
7124 if (!prog->sec_def) {
7125 /* couldn't guess, but user might manually specify */
7126 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7127 prog->name, prog->sec_name);
7128 continue;
7129 }
7130
7131 prog->type = prog->sec_def->prog_type;
7132 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7133
7134 /* sec_def can have custom callback which should be called
7135 * after bpf_program is initialized to adjust its properties
7136 */
7137 if (prog->sec_def->prog_setup_fn) {
7138 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7139 if (err < 0) {
7140 pr_warn("prog '%s': failed to initialize: %d\n",
7141 prog->name, err);
7142 return err;
7143 }
7144 }
7145 }
7146
7147 return 0;
7148 }
7149
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7150 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7151 const struct bpf_object_open_opts *opts)
7152 {
7153 const char *obj_name, *kconfig, *btf_tmp_path;
7154 struct bpf_object *obj;
7155 char tmp_name[64];
7156 int err;
7157 char *log_buf;
7158 size_t log_size;
7159 __u32 log_level;
7160
7161 if (elf_version(EV_CURRENT) == EV_NONE) {
7162 pr_warn("failed to init libelf for %s\n",
7163 path ? : "(mem buf)");
7164 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7165 }
7166
7167 if (!OPTS_VALID(opts, bpf_object_open_opts))
7168 return ERR_PTR(-EINVAL);
7169
7170 obj_name = OPTS_GET(opts, object_name, NULL);
7171 if (obj_buf) {
7172 if (!obj_name) {
7173 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7174 (unsigned long)obj_buf,
7175 (unsigned long)obj_buf_sz);
7176 obj_name = tmp_name;
7177 }
7178 path = obj_name;
7179 pr_debug("loading object '%s' from buffer\n", obj_name);
7180 }
7181
7182 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7183 log_size = OPTS_GET(opts, kernel_log_size, 0);
7184 log_level = OPTS_GET(opts, kernel_log_level, 0);
7185 if (log_size > UINT_MAX)
7186 return ERR_PTR(-EINVAL);
7187 if (log_size && !log_buf)
7188 return ERR_PTR(-EINVAL);
7189
7190 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7191 if (IS_ERR(obj))
7192 return obj;
7193
7194 obj->log_buf = log_buf;
7195 obj->log_size = log_size;
7196 obj->log_level = log_level;
7197
7198 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7199 if (btf_tmp_path) {
7200 if (strlen(btf_tmp_path) >= PATH_MAX) {
7201 err = -ENAMETOOLONG;
7202 goto out;
7203 }
7204 obj->btf_custom_path = strdup(btf_tmp_path);
7205 if (!obj->btf_custom_path) {
7206 err = -ENOMEM;
7207 goto out;
7208 }
7209 }
7210
7211 kconfig = OPTS_GET(opts, kconfig, NULL);
7212 if (kconfig) {
7213 obj->kconfig = strdup(kconfig);
7214 if (!obj->kconfig) {
7215 err = -ENOMEM;
7216 goto out;
7217 }
7218 }
7219
7220 err = bpf_object__elf_init(obj);
7221 err = err ? : bpf_object__check_endianness(obj);
7222 err = err ? : bpf_object__elf_collect(obj);
7223 err = err ? : bpf_object__collect_externs(obj);
7224 err = err ? : bpf_object__finalize_btf(obj);
7225 err = err ? : bpf_object__init_maps(obj, opts);
7226 err = err ? : bpf_object_init_progs(obj, opts);
7227 err = err ? : bpf_object__collect_relos(obj);
7228 if (err)
7229 goto out;
7230
7231 bpf_object__elf_finish(obj);
7232
7233 return obj;
7234 out:
7235 bpf_object__close(obj);
7236 return ERR_PTR(err);
7237 }
7238
7239 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7240 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7241 {
7242 if (!path)
7243 return libbpf_err_ptr(-EINVAL);
7244
7245 pr_debug("loading %s\n", path);
7246
7247 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7248 }
7249
bpf_object__open(const char * path)7250 struct bpf_object *bpf_object__open(const char *path)
7251 {
7252 return bpf_object__open_file(path, NULL);
7253 }
7254
7255 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7256 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7257 const struct bpf_object_open_opts *opts)
7258 {
7259 if (!obj_buf || obj_buf_sz == 0)
7260 return libbpf_err_ptr(-EINVAL);
7261
7262 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7263 }
7264
bpf_object_unload(struct bpf_object * obj)7265 static int bpf_object_unload(struct bpf_object *obj)
7266 {
7267 size_t i;
7268
7269 if (!obj)
7270 return libbpf_err(-EINVAL);
7271
7272 for (i = 0; i < obj->nr_maps; i++) {
7273 zclose(obj->maps[i].fd);
7274 if (obj->maps[i].st_ops)
7275 zfree(&obj->maps[i].st_ops->kern_vdata);
7276 }
7277
7278 for (i = 0; i < obj->nr_programs; i++)
7279 bpf_program__unload(&obj->programs[i]);
7280
7281 return 0;
7282 }
7283
bpf_object__sanitize_maps(struct bpf_object * obj)7284 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7285 {
7286 struct bpf_map *m;
7287
7288 bpf_object__for_each_map(m, obj) {
7289 if (!bpf_map__is_internal(m))
7290 continue;
7291 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7292 m->def.map_flags ^= BPF_F_MMAPABLE;
7293 }
7294
7295 return 0;
7296 }
7297
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7298 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7299 {
7300 char sym_type, sym_name[500];
7301 unsigned long long sym_addr;
7302 int ret, err = 0;
7303 FILE *f;
7304
7305 f = fopen("/proc/kallsyms", "r");
7306 if (!f) {
7307 err = -errno;
7308 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7309 return err;
7310 }
7311
7312 while (true) {
7313 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7314 &sym_addr, &sym_type, sym_name);
7315 if (ret == EOF && feof(f))
7316 break;
7317 if (ret != 3) {
7318 pr_warn("failed to read kallsyms entry: %d\n", ret);
7319 err = -EINVAL;
7320 break;
7321 }
7322
7323 err = cb(sym_addr, sym_type, sym_name, ctx);
7324 if (err)
7325 break;
7326 }
7327
7328 fclose(f);
7329 return err;
7330 }
7331
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7332 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7333 const char *sym_name, void *ctx)
7334 {
7335 struct bpf_object *obj = ctx;
7336 const struct btf_type *t;
7337 struct extern_desc *ext;
7338
7339 ext = find_extern_by_name(obj, sym_name);
7340 if (!ext || ext->type != EXT_KSYM)
7341 return 0;
7342
7343 t = btf__type_by_id(obj->btf, ext->btf_id);
7344 if (!btf_is_var(t))
7345 return 0;
7346
7347 if (ext->is_set && ext->ksym.addr != sym_addr) {
7348 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7349 sym_name, ext->ksym.addr, sym_addr);
7350 return -EINVAL;
7351 }
7352 if (!ext->is_set) {
7353 ext->is_set = true;
7354 ext->ksym.addr = sym_addr;
7355 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7356 }
7357 return 0;
7358 }
7359
bpf_object__read_kallsyms_file(struct bpf_object * obj)7360 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7361 {
7362 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7363 }
7364
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7365 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7366 __u16 kind, struct btf **res_btf,
7367 struct module_btf **res_mod_btf)
7368 {
7369 struct module_btf *mod_btf;
7370 struct btf *btf;
7371 int i, id, err;
7372
7373 btf = obj->btf_vmlinux;
7374 mod_btf = NULL;
7375 id = btf__find_by_name_kind(btf, ksym_name, kind);
7376
7377 if (id == -ENOENT) {
7378 err = load_module_btfs(obj);
7379 if (err)
7380 return err;
7381
7382 for (i = 0; i < obj->btf_module_cnt; i++) {
7383 /* we assume module_btf's BTF FD is always >0 */
7384 mod_btf = &obj->btf_modules[i];
7385 btf = mod_btf->btf;
7386 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7387 if (id != -ENOENT)
7388 break;
7389 }
7390 }
7391 if (id <= 0)
7392 return -ESRCH;
7393
7394 *res_btf = btf;
7395 *res_mod_btf = mod_btf;
7396 return id;
7397 }
7398
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7399 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7400 struct extern_desc *ext)
7401 {
7402 const struct btf_type *targ_var, *targ_type;
7403 __u32 targ_type_id, local_type_id;
7404 struct module_btf *mod_btf = NULL;
7405 const char *targ_var_name;
7406 struct btf *btf = NULL;
7407 int id, err;
7408
7409 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7410 if (id < 0) {
7411 if (id == -ESRCH && ext->is_weak)
7412 return 0;
7413 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7414 ext->name);
7415 return id;
7416 }
7417
7418 /* find local type_id */
7419 local_type_id = ext->ksym.type_id;
7420
7421 /* find target type_id */
7422 targ_var = btf__type_by_id(btf, id);
7423 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7424 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7425
7426 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7427 btf, targ_type_id);
7428 if (err <= 0) {
7429 const struct btf_type *local_type;
7430 const char *targ_name, *local_name;
7431
7432 local_type = btf__type_by_id(obj->btf, local_type_id);
7433 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7434 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7435
7436 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7437 ext->name, local_type_id,
7438 btf_kind_str(local_type), local_name, targ_type_id,
7439 btf_kind_str(targ_type), targ_name);
7440 return -EINVAL;
7441 }
7442
7443 ext->is_set = true;
7444 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7445 ext->ksym.kernel_btf_id = id;
7446 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7447 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7448
7449 return 0;
7450 }
7451
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7452 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7453 struct extern_desc *ext)
7454 {
7455 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7456 struct module_btf *mod_btf = NULL;
7457 const struct btf_type *kern_func;
7458 struct btf *kern_btf = NULL;
7459 int ret;
7460
7461 local_func_proto_id = ext->ksym.type_id;
7462
7463 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7464 if (kfunc_id < 0) {
7465 if (kfunc_id == -ESRCH && ext->is_weak)
7466 return 0;
7467 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7468 ext->name);
7469 return kfunc_id;
7470 }
7471
7472 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7473 kfunc_proto_id = kern_func->type;
7474
7475 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7476 kern_btf, kfunc_proto_id);
7477 if (ret <= 0) {
7478 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7479 ext->name, local_func_proto_id, kfunc_proto_id);
7480 return -EINVAL;
7481 }
7482
7483 /* set index for module BTF fd in fd_array, if unset */
7484 if (mod_btf && !mod_btf->fd_array_idx) {
7485 /* insn->off is s16 */
7486 if (obj->fd_array_cnt == INT16_MAX) {
7487 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7488 ext->name, mod_btf->fd_array_idx);
7489 return -E2BIG;
7490 }
7491 /* Cannot use index 0 for module BTF fd */
7492 if (!obj->fd_array_cnt)
7493 obj->fd_array_cnt = 1;
7494
7495 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7496 obj->fd_array_cnt + 1);
7497 if (ret)
7498 return ret;
7499 mod_btf->fd_array_idx = obj->fd_array_cnt;
7500 /* we assume module BTF FD is always >0 */
7501 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7502 }
7503
7504 ext->is_set = true;
7505 ext->ksym.kernel_btf_id = kfunc_id;
7506 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7507 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7508 ext->name, kfunc_id);
7509
7510 return 0;
7511 }
7512
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7513 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7514 {
7515 const struct btf_type *t;
7516 struct extern_desc *ext;
7517 int i, err;
7518
7519 for (i = 0; i < obj->nr_extern; i++) {
7520 ext = &obj->externs[i];
7521 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7522 continue;
7523
7524 if (obj->gen_loader) {
7525 ext->is_set = true;
7526 ext->ksym.kernel_btf_obj_fd = 0;
7527 ext->ksym.kernel_btf_id = 0;
7528 continue;
7529 }
7530 t = btf__type_by_id(obj->btf, ext->btf_id);
7531 if (btf_is_var(t))
7532 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7533 else
7534 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7535 if (err)
7536 return err;
7537 }
7538 return 0;
7539 }
7540
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7541 static int bpf_object__resolve_externs(struct bpf_object *obj,
7542 const char *extra_kconfig)
7543 {
7544 bool need_config = false, need_kallsyms = false;
7545 bool need_vmlinux_btf = false;
7546 struct extern_desc *ext;
7547 void *kcfg_data = NULL;
7548 int err, i;
7549
7550 if (obj->nr_extern == 0)
7551 return 0;
7552
7553 if (obj->kconfig_map_idx >= 0)
7554 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7555
7556 for (i = 0; i < obj->nr_extern; i++) {
7557 ext = &obj->externs[i];
7558
7559 if (ext->type == EXT_KSYM) {
7560 if (ext->ksym.type_id)
7561 need_vmlinux_btf = true;
7562 else
7563 need_kallsyms = true;
7564 continue;
7565 } else if (ext->type == EXT_KCFG) {
7566 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7567 __u64 value = 0;
7568
7569 /* Kconfig externs need actual /proc/config.gz */
7570 if (str_has_pfx(ext->name, "CONFIG_")) {
7571 need_config = true;
7572 continue;
7573 }
7574
7575 /* Virtual kcfg externs are customly handled by libbpf */
7576 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7577 value = get_kernel_version();
7578 if (!value) {
7579 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7580 return -EINVAL;
7581 }
7582 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7583 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7584 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7585 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7586 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7587 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7588 * __kconfig externs, where LINUX_ ones are virtual and filled out
7589 * customly by libbpf (their values don't come from Kconfig).
7590 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7591 * __weak, it defaults to zero value, just like for CONFIG_xxx
7592 * externs.
7593 */
7594 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7595 return -EINVAL;
7596 }
7597
7598 err = set_kcfg_value_num(ext, ext_ptr, value);
7599 if (err)
7600 return err;
7601 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7602 ext->name, (long long)value);
7603 } else {
7604 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7605 return -EINVAL;
7606 }
7607 }
7608 if (need_config && extra_kconfig) {
7609 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7610 if (err)
7611 return -EINVAL;
7612 need_config = false;
7613 for (i = 0; i < obj->nr_extern; i++) {
7614 ext = &obj->externs[i];
7615 if (ext->type == EXT_KCFG && !ext->is_set) {
7616 need_config = true;
7617 break;
7618 }
7619 }
7620 }
7621 if (need_config) {
7622 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7623 if (err)
7624 return -EINVAL;
7625 }
7626 if (need_kallsyms) {
7627 err = bpf_object__read_kallsyms_file(obj);
7628 if (err)
7629 return -EINVAL;
7630 }
7631 if (need_vmlinux_btf) {
7632 err = bpf_object__resolve_ksyms_btf_id(obj);
7633 if (err)
7634 return -EINVAL;
7635 }
7636 for (i = 0; i < obj->nr_extern; i++) {
7637 ext = &obj->externs[i];
7638
7639 if (!ext->is_set && !ext->is_weak) {
7640 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7641 return -ESRCH;
7642 } else if (!ext->is_set) {
7643 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7644 ext->name);
7645 }
7646 }
7647
7648 return 0;
7649 }
7650
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7651 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7652 {
7653 int err, i;
7654
7655 if (!obj)
7656 return libbpf_err(-EINVAL);
7657
7658 if (obj->loaded) {
7659 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7660 return libbpf_err(-EINVAL);
7661 }
7662
7663 if (obj->gen_loader)
7664 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7665
7666 err = bpf_object__probe_loading(obj);
7667 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7668 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7669 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7670 err = err ? : bpf_object__sanitize_maps(obj);
7671 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7672 err = err ? : bpf_object__create_maps(obj);
7673 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7674 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7675 err = err ? : bpf_object_init_prog_arrays(obj);
7676
7677 if (obj->gen_loader) {
7678 /* reset FDs */
7679 if (obj->btf)
7680 btf__set_fd(obj->btf, -1);
7681 for (i = 0; i < obj->nr_maps; i++)
7682 obj->maps[i].fd = -1;
7683 if (!err)
7684 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7685 }
7686
7687 /* clean up fd_array */
7688 zfree(&obj->fd_array);
7689
7690 /* clean up module BTFs */
7691 for (i = 0; i < obj->btf_module_cnt; i++) {
7692 close(obj->btf_modules[i].fd);
7693 btf__free(obj->btf_modules[i].btf);
7694 free(obj->btf_modules[i].name);
7695 }
7696 free(obj->btf_modules);
7697
7698 /* clean up vmlinux BTF */
7699 btf__free(obj->btf_vmlinux);
7700 obj->btf_vmlinux = NULL;
7701
7702 obj->loaded = true; /* doesn't matter if successfully or not */
7703
7704 if (err)
7705 goto out;
7706
7707 return 0;
7708 out:
7709 /* unpin any maps that were auto-pinned during load */
7710 for (i = 0; i < obj->nr_maps; i++)
7711 if (obj->maps[i].pinned && !obj->maps[i].reused)
7712 bpf_map__unpin(&obj->maps[i], NULL);
7713
7714 bpf_object_unload(obj);
7715 pr_warn("failed to load object '%s'\n", obj->path);
7716 return libbpf_err(err);
7717 }
7718
bpf_object__load(struct bpf_object * obj)7719 int bpf_object__load(struct bpf_object *obj)
7720 {
7721 return bpf_object_load(obj, 0, NULL);
7722 }
7723
make_parent_dir(const char * path)7724 static int make_parent_dir(const char *path)
7725 {
7726 char *cp, errmsg[STRERR_BUFSIZE];
7727 char *dname, *dir;
7728 int err = 0;
7729
7730 dname = strdup(path);
7731 if (dname == NULL)
7732 return -ENOMEM;
7733
7734 dir = dirname(dname);
7735 if (mkdir(dir, 0700) && errno != EEXIST)
7736 err = -errno;
7737
7738 free(dname);
7739 if (err) {
7740 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7741 pr_warn("failed to mkdir %s: %s\n", path, cp);
7742 }
7743 return err;
7744 }
7745
check_path(const char * path)7746 static int check_path(const char *path)
7747 {
7748 char *cp, errmsg[STRERR_BUFSIZE];
7749 struct statfs st_fs;
7750 char *dname, *dir;
7751 int err = 0;
7752
7753 if (path == NULL)
7754 return -EINVAL;
7755
7756 dname = strdup(path);
7757 if (dname == NULL)
7758 return -ENOMEM;
7759
7760 dir = dirname(dname);
7761 if (statfs(dir, &st_fs)) {
7762 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7763 pr_warn("failed to statfs %s: %s\n", dir, cp);
7764 err = -errno;
7765 }
7766 free(dname);
7767
7768 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7769 pr_warn("specified path %s is not on BPF FS\n", path);
7770 err = -EINVAL;
7771 }
7772
7773 return err;
7774 }
7775
bpf_program__pin(struct bpf_program * prog,const char * path)7776 int bpf_program__pin(struct bpf_program *prog, const char *path)
7777 {
7778 char *cp, errmsg[STRERR_BUFSIZE];
7779 int err;
7780
7781 if (prog->fd < 0) {
7782 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7783 return libbpf_err(-EINVAL);
7784 }
7785
7786 err = make_parent_dir(path);
7787 if (err)
7788 return libbpf_err(err);
7789
7790 err = check_path(path);
7791 if (err)
7792 return libbpf_err(err);
7793
7794 if (bpf_obj_pin(prog->fd, path)) {
7795 err = -errno;
7796 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7797 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7798 return libbpf_err(err);
7799 }
7800
7801 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7802 return 0;
7803 }
7804
bpf_program__unpin(struct bpf_program * prog,const char * path)7805 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7806 {
7807 int err;
7808
7809 if (prog->fd < 0) {
7810 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7811 return libbpf_err(-EINVAL);
7812 }
7813
7814 err = check_path(path);
7815 if (err)
7816 return libbpf_err(err);
7817
7818 err = unlink(path);
7819 if (err)
7820 return libbpf_err(-errno);
7821
7822 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7823 return 0;
7824 }
7825
bpf_map__pin(struct bpf_map * map,const char * path)7826 int bpf_map__pin(struct bpf_map *map, const char *path)
7827 {
7828 char *cp, errmsg[STRERR_BUFSIZE];
7829 int err;
7830
7831 if (map == NULL) {
7832 pr_warn("invalid map pointer\n");
7833 return libbpf_err(-EINVAL);
7834 }
7835
7836 if (map->pin_path) {
7837 if (path && strcmp(path, map->pin_path)) {
7838 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7839 bpf_map__name(map), map->pin_path, path);
7840 return libbpf_err(-EINVAL);
7841 } else if (map->pinned) {
7842 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7843 bpf_map__name(map), map->pin_path);
7844 return 0;
7845 }
7846 } else {
7847 if (!path) {
7848 pr_warn("missing a path to pin map '%s' at\n",
7849 bpf_map__name(map));
7850 return libbpf_err(-EINVAL);
7851 } else if (map->pinned) {
7852 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7853 return libbpf_err(-EEXIST);
7854 }
7855
7856 map->pin_path = strdup(path);
7857 if (!map->pin_path) {
7858 err = -errno;
7859 goto out_err;
7860 }
7861 }
7862
7863 err = make_parent_dir(map->pin_path);
7864 if (err)
7865 return libbpf_err(err);
7866
7867 err = check_path(map->pin_path);
7868 if (err)
7869 return libbpf_err(err);
7870
7871 if (bpf_obj_pin(map->fd, map->pin_path)) {
7872 err = -errno;
7873 goto out_err;
7874 }
7875
7876 map->pinned = true;
7877 pr_debug("pinned map '%s'\n", map->pin_path);
7878
7879 return 0;
7880
7881 out_err:
7882 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7883 pr_warn("failed to pin map: %s\n", cp);
7884 return libbpf_err(err);
7885 }
7886
bpf_map__unpin(struct bpf_map * map,const char * path)7887 int bpf_map__unpin(struct bpf_map *map, const char *path)
7888 {
7889 int err;
7890
7891 if (map == NULL) {
7892 pr_warn("invalid map pointer\n");
7893 return libbpf_err(-EINVAL);
7894 }
7895
7896 if (map->pin_path) {
7897 if (path && strcmp(path, map->pin_path)) {
7898 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7899 bpf_map__name(map), map->pin_path, path);
7900 return libbpf_err(-EINVAL);
7901 }
7902 path = map->pin_path;
7903 } else if (!path) {
7904 pr_warn("no path to unpin map '%s' from\n",
7905 bpf_map__name(map));
7906 return libbpf_err(-EINVAL);
7907 }
7908
7909 err = check_path(path);
7910 if (err)
7911 return libbpf_err(err);
7912
7913 err = unlink(path);
7914 if (err != 0)
7915 return libbpf_err(-errno);
7916
7917 map->pinned = false;
7918 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7919
7920 return 0;
7921 }
7922
bpf_map__set_pin_path(struct bpf_map * map,const char * path)7923 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7924 {
7925 char *new = NULL;
7926
7927 if (path) {
7928 new = strdup(path);
7929 if (!new)
7930 return libbpf_err(-errno);
7931 }
7932
7933 free(map->pin_path);
7934 map->pin_path = new;
7935 return 0;
7936 }
7937
7938 __alias(bpf_map__pin_path)
7939 const char *bpf_map__get_pin_path(const struct bpf_map *map);
7940
bpf_map__pin_path(const struct bpf_map * map)7941 const char *bpf_map__pin_path(const struct bpf_map *map)
7942 {
7943 return map->pin_path;
7944 }
7945
bpf_map__is_pinned(const struct bpf_map * map)7946 bool bpf_map__is_pinned(const struct bpf_map *map)
7947 {
7948 return map->pinned;
7949 }
7950
sanitize_pin_path(char * s)7951 static void sanitize_pin_path(char *s)
7952 {
7953 /* bpffs disallows periods in path names */
7954 while (*s) {
7955 if (*s == '.')
7956 *s = '_';
7957 s++;
7958 }
7959 }
7960
bpf_object__pin_maps(struct bpf_object * obj,const char * path)7961 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7962 {
7963 struct bpf_map *map;
7964 int err;
7965
7966 if (!obj)
7967 return libbpf_err(-ENOENT);
7968
7969 if (!obj->loaded) {
7970 pr_warn("object not yet loaded; load it first\n");
7971 return libbpf_err(-ENOENT);
7972 }
7973
7974 bpf_object__for_each_map(map, obj) {
7975 char *pin_path = NULL;
7976 char buf[PATH_MAX];
7977
7978 if (!map->autocreate)
7979 continue;
7980
7981 if (path) {
7982 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
7983 if (err)
7984 goto err_unpin_maps;
7985 sanitize_pin_path(buf);
7986 pin_path = buf;
7987 } else if (!map->pin_path) {
7988 continue;
7989 }
7990
7991 err = bpf_map__pin(map, pin_path);
7992 if (err)
7993 goto err_unpin_maps;
7994 }
7995
7996 return 0;
7997
7998 err_unpin_maps:
7999 while ((map = bpf_object__prev_map(obj, map))) {
8000 if (!map->pin_path)
8001 continue;
8002
8003 bpf_map__unpin(map, NULL);
8004 }
8005
8006 return libbpf_err(err);
8007 }
8008
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8009 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8010 {
8011 struct bpf_map *map;
8012 int err;
8013
8014 if (!obj)
8015 return libbpf_err(-ENOENT);
8016
8017 bpf_object__for_each_map(map, obj) {
8018 char *pin_path = NULL;
8019 char buf[PATH_MAX];
8020
8021 if (path) {
8022 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8023 if (err)
8024 return libbpf_err(err);
8025 sanitize_pin_path(buf);
8026 pin_path = buf;
8027 } else if (!map->pin_path) {
8028 continue;
8029 }
8030
8031 err = bpf_map__unpin(map, pin_path);
8032 if (err)
8033 return libbpf_err(err);
8034 }
8035
8036 return 0;
8037 }
8038
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8039 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8040 {
8041 struct bpf_program *prog;
8042 char buf[PATH_MAX];
8043 int err;
8044
8045 if (!obj)
8046 return libbpf_err(-ENOENT);
8047
8048 if (!obj->loaded) {
8049 pr_warn("object not yet loaded; load it first\n");
8050 return libbpf_err(-ENOENT);
8051 }
8052
8053 bpf_object__for_each_program(prog, obj) {
8054 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8055 if (err)
8056 goto err_unpin_programs;
8057
8058 err = bpf_program__pin(prog, buf);
8059 if (err)
8060 goto err_unpin_programs;
8061 }
8062
8063 return 0;
8064
8065 err_unpin_programs:
8066 while ((prog = bpf_object__prev_program(obj, prog))) {
8067 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8068 continue;
8069
8070 bpf_program__unpin(prog, buf);
8071 }
8072
8073 return libbpf_err(err);
8074 }
8075
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8076 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8077 {
8078 struct bpf_program *prog;
8079 int err;
8080
8081 if (!obj)
8082 return libbpf_err(-ENOENT);
8083
8084 bpf_object__for_each_program(prog, obj) {
8085 char buf[PATH_MAX];
8086
8087 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8088 if (err)
8089 return libbpf_err(err);
8090
8091 err = bpf_program__unpin(prog, buf);
8092 if (err)
8093 return libbpf_err(err);
8094 }
8095
8096 return 0;
8097 }
8098
bpf_object__pin(struct bpf_object * obj,const char * path)8099 int bpf_object__pin(struct bpf_object *obj, const char *path)
8100 {
8101 int err;
8102
8103 err = bpf_object__pin_maps(obj, path);
8104 if (err)
8105 return libbpf_err(err);
8106
8107 err = bpf_object__pin_programs(obj, path);
8108 if (err) {
8109 bpf_object__unpin_maps(obj, path);
8110 return libbpf_err(err);
8111 }
8112
8113 return 0;
8114 }
8115
bpf_map__destroy(struct bpf_map * map)8116 static void bpf_map__destroy(struct bpf_map *map)
8117 {
8118 if (map->inner_map) {
8119 bpf_map__destroy(map->inner_map);
8120 zfree(&map->inner_map);
8121 }
8122
8123 zfree(&map->init_slots);
8124 map->init_slots_sz = 0;
8125
8126 if (map->mmaped) {
8127 munmap(map->mmaped, bpf_map_mmap_sz(map));
8128 map->mmaped = NULL;
8129 }
8130
8131 if (map->st_ops) {
8132 zfree(&map->st_ops->data);
8133 zfree(&map->st_ops->progs);
8134 zfree(&map->st_ops->kern_func_off);
8135 zfree(&map->st_ops);
8136 }
8137
8138 zfree(&map->name);
8139 zfree(&map->real_name);
8140 zfree(&map->pin_path);
8141
8142 if (map->fd >= 0)
8143 zclose(map->fd);
8144 }
8145
bpf_object__close(struct bpf_object * obj)8146 void bpf_object__close(struct bpf_object *obj)
8147 {
8148 size_t i;
8149
8150 if (IS_ERR_OR_NULL(obj))
8151 return;
8152
8153 usdt_manager_free(obj->usdt_man);
8154 obj->usdt_man = NULL;
8155
8156 bpf_gen__free(obj->gen_loader);
8157 bpf_object__elf_finish(obj);
8158 bpf_object_unload(obj);
8159 btf__free(obj->btf);
8160 btf_ext__free(obj->btf_ext);
8161
8162 for (i = 0; i < obj->nr_maps; i++)
8163 bpf_map__destroy(&obj->maps[i]);
8164
8165 zfree(&obj->btf_custom_path);
8166 zfree(&obj->kconfig);
8167 zfree(&obj->externs);
8168 obj->nr_extern = 0;
8169
8170 zfree(&obj->maps);
8171 obj->nr_maps = 0;
8172
8173 if (obj->programs && obj->nr_programs) {
8174 for (i = 0; i < obj->nr_programs; i++)
8175 bpf_program__exit(&obj->programs[i]);
8176 }
8177 zfree(&obj->programs);
8178
8179 free(obj);
8180 }
8181
bpf_object__name(const struct bpf_object * obj)8182 const char *bpf_object__name(const struct bpf_object *obj)
8183 {
8184 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8185 }
8186
bpf_object__kversion(const struct bpf_object * obj)8187 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8188 {
8189 return obj ? obj->kern_version : 0;
8190 }
8191
bpf_object__btf(const struct bpf_object * obj)8192 struct btf *bpf_object__btf(const struct bpf_object *obj)
8193 {
8194 return obj ? obj->btf : NULL;
8195 }
8196
bpf_object__btf_fd(const struct bpf_object * obj)8197 int bpf_object__btf_fd(const struct bpf_object *obj)
8198 {
8199 return obj->btf ? btf__fd(obj->btf) : -1;
8200 }
8201
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8202 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8203 {
8204 if (obj->loaded)
8205 return libbpf_err(-EINVAL);
8206
8207 obj->kern_version = kern_version;
8208
8209 return 0;
8210 }
8211
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8212 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8213 {
8214 struct bpf_gen *gen;
8215
8216 if (!opts)
8217 return -EFAULT;
8218 if (!OPTS_VALID(opts, gen_loader_opts))
8219 return -EINVAL;
8220 gen = calloc(sizeof(*gen), 1);
8221 if (!gen)
8222 return -ENOMEM;
8223 gen->opts = opts;
8224 obj->gen_loader = gen;
8225 return 0;
8226 }
8227
8228 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8229 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8230 bool forward)
8231 {
8232 size_t nr_programs = obj->nr_programs;
8233 ssize_t idx;
8234
8235 if (!nr_programs)
8236 return NULL;
8237
8238 if (!p)
8239 /* Iter from the beginning */
8240 return forward ? &obj->programs[0] :
8241 &obj->programs[nr_programs - 1];
8242
8243 if (p->obj != obj) {
8244 pr_warn("error: program handler doesn't match object\n");
8245 return errno = EINVAL, NULL;
8246 }
8247
8248 idx = (p - obj->programs) + (forward ? 1 : -1);
8249 if (idx >= obj->nr_programs || idx < 0)
8250 return NULL;
8251 return &obj->programs[idx];
8252 }
8253
8254 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8255 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8256 {
8257 struct bpf_program *prog = prev;
8258
8259 do {
8260 prog = __bpf_program__iter(prog, obj, true);
8261 } while (prog && prog_is_subprog(obj, prog));
8262
8263 return prog;
8264 }
8265
8266 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8267 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8268 {
8269 struct bpf_program *prog = next;
8270
8271 do {
8272 prog = __bpf_program__iter(prog, obj, false);
8273 } while (prog && prog_is_subprog(obj, prog));
8274
8275 return prog;
8276 }
8277
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8278 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8279 {
8280 prog->prog_ifindex = ifindex;
8281 }
8282
bpf_program__name(const struct bpf_program * prog)8283 const char *bpf_program__name(const struct bpf_program *prog)
8284 {
8285 return prog->name;
8286 }
8287
bpf_program__section_name(const struct bpf_program * prog)8288 const char *bpf_program__section_name(const struct bpf_program *prog)
8289 {
8290 return prog->sec_name;
8291 }
8292
bpf_program__autoload(const struct bpf_program * prog)8293 bool bpf_program__autoload(const struct bpf_program *prog)
8294 {
8295 return prog->autoload;
8296 }
8297
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8298 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8299 {
8300 if (prog->obj->loaded)
8301 return libbpf_err(-EINVAL);
8302
8303 prog->autoload = autoload;
8304 return 0;
8305 }
8306
bpf_program__autoattach(const struct bpf_program * prog)8307 bool bpf_program__autoattach(const struct bpf_program *prog)
8308 {
8309 return prog->autoattach;
8310 }
8311
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)8312 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8313 {
8314 prog->autoattach = autoattach;
8315 }
8316
bpf_program__insns(const struct bpf_program * prog)8317 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8318 {
8319 return prog->insns;
8320 }
8321
bpf_program__insn_cnt(const struct bpf_program * prog)8322 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8323 {
8324 return prog->insns_cnt;
8325 }
8326
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8327 int bpf_program__set_insns(struct bpf_program *prog,
8328 struct bpf_insn *new_insns, size_t new_insn_cnt)
8329 {
8330 struct bpf_insn *insns;
8331
8332 if (prog->obj->loaded)
8333 return -EBUSY;
8334
8335 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8336 if (!insns) {
8337 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8338 return -ENOMEM;
8339 }
8340 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8341
8342 prog->insns = insns;
8343 prog->insns_cnt = new_insn_cnt;
8344 return 0;
8345 }
8346
bpf_program__fd(const struct bpf_program * prog)8347 int bpf_program__fd(const struct bpf_program *prog)
8348 {
8349 if (!prog)
8350 return libbpf_err(-EINVAL);
8351
8352 if (prog->fd < 0)
8353 return libbpf_err(-ENOENT);
8354
8355 return prog->fd;
8356 }
8357
8358 __alias(bpf_program__type)
8359 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8360
bpf_program__type(const struct bpf_program * prog)8361 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8362 {
8363 return prog->type;
8364 }
8365
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8366 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8367 {
8368 if (prog->obj->loaded)
8369 return libbpf_err(-EBUSY);
8370
8371 prog->type = type;
8372 return 0;
8373 }
8374
8375 __alias(bpf_program__expected_attach_type)
8376 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8377
bpf_program__expected_attach_type(const struct bpf_program * prog)8378 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8379 {
8380 return prog->expected_attach_type;
8381 }
8382
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8383 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8384 enum bpf_attach_type type)
8385 {
8386 if (prog->obj->loaded)
8387 return libbpf_err(-EBUSY);
8388
8389 prog->expected_attach_type = type;
8390 return 0;
8391 }
8392
bpf_program__flags(const struct bpf_program * prog)8393 __u32 bpf_program__flags(const struct bpf_program *prog)
8394 {
8395 return prog->prog_flags;
8396 }
8397
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8398 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8399 {
8400 if (prog->obj->loaded)
8401 return libbpf_err(-EBUSY);
8402
8403 prog->prog_flags = flags;
8404 return 0;
8405 }
8406
bpf_program__log_level(const struct bpf_program * prog)8407 __u32 bpf_program__log_level(const struct bpf_program *prog)
8408 {
8409 return prog->log_level;
8410 }
8411
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8412 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8413 {
8414 if (prog->obj->loaded)
8415 return libbpf_err(-EBUSY);
8416
8417 prog->log_level = log_level;
8418 return 0;
8419 }
8420
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8421 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8422 {
8423 *log_size = prog->log_size;
8424 return prog->log_buf;
8425 }
8426
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8427 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8428 {
8429 if (log_size && !log_buf)
8430 return -EINVAL;
8431 if (prog->log_size > UINT_MAX)
8432 return -EINVAL;
8433 if (prog->obj->loaded)
8434 return -EBUSY;
8435
8436 prog->log_buf = log_buf;
8437 prog->log_size = log_size;
8438 return 0;
8439 }
8440
8441 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8442 .sec = (char *)sec_pfx, \
8443 .prog_type = BPF_PROG_TYPE_##ptype, \
8444 .expected_attach_type = atype, \
8445 .cookie = (long)(flags), \
8446 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8447 __VA_ARGS__ \
8448 }
8449
8450 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8451 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8452 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8453 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8454 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8455 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8456 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8457 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8458 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8459 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8460
8461 static const struct bpf_sec_def section_defs[] = {
8462 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8463 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8464 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8465 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8466 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8467 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8468 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8469 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8470 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8471 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8472 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8473 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8474 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8475 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt),
8476 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
8477 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE),
8478 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE),
8479 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8480 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8481 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8482 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8483 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8484 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8485 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8486 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8487 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8488 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8489 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8490 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8491 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8492 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8493 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8494 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8495 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8496 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8497 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8498 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8499 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8500 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8501 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8502 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8503 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8504 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8505 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8506 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8507 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8508 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8509 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8510 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8511 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8512 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8513 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8514 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8515 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8516 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8517 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8518 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8519 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8520 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8521 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8522 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8523 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8524 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8525 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8526 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8527 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8528 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8529 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8530 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8531 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8532 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8533 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8534 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8535 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8536 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8537 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8538 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8539 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8540 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8541 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8542 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8543 };
8544
8545 static size_t custom_sec_def_cnt;
8546 static struct bpf_sec_def *custom_sec_defs;
8547 static struct bpf_sec_def custom_fallback_def;
8548 static bool has_custom_fallback_def;
8549
8550 static int last_custom_sec_def_handler_id;
8551
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)8552 int libbpf_register_prog_handler(const char *sec,
8553 enum bpf_prog_type prog_type,
8554 enum bpf_attach_type exp_attach_type,
8555 const struct libbpf_prog_handler_opts *opts)
8556 {
8557 struct bpf_sec_def *sec_def;
8558
8559 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8560 return libbpf_err(-EINVAL);
8561
8562 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8563 return libbpf_err(-E2BIG);
8564
8565 if (sec) {
8566 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8567 sizeof(*sec_def));
8568 if (!sec_def)
8569 return libbpf_err(-ENOMEM);
8570
8571 custom_sec_defs = sec_def;
8572 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8573 } else {
8574 if (has_custom_fallback_def)
8575 return libbpf_err(-EBUSY);
8576
8577 sec_def = &custom_fallback_def;
8578 }
8579
8580 sec_def->sec = sec ? strdup(sec) : NULL;
8581 if (sec && !sec_def->sec)
8582 return libbpf_err(-ENOMEM);
8583
8584 sec_def->prog_type = prog_type;
8585 sec_def->expected_attach_type = exp_attach_type;
8586 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8587
8588 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8589 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8590 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8591
8592 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8593
8594 if (sec)
8595 custom_sec_def_cnt++;
8596 else
8597 has_custom_fallback_def = true;
8598
8599 return sec_def->handler_id;
8600 }
8601
libbpf_unregister_prog_handler(int handler_id)8602 int libbpf_unregister_prog_handler(int handler_id)
8603 {
8604 struct bpf_sec_def *sec_defs;
8605 int i;
8606
8607 if (handler_id <= 0)
8608 return libbpf_err(-EINVAL);
8609
8610 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8611 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8612 has_custom_fallback_def = false;
8613 return 0;
8614 }
8615
8616 for (i = 0; i < custom_sec_def_cnt; i++) {
8617 if (custom_sec_defs[i].handler_id == handler_id)
8618 break;
8619 }
8620
8621 if (i == custom_sec_def_cnt)
8622 return libbpf_err(-ENOENT);
8623
8624 free(custom_sec_defs[i].sec);
8625 for (i = i + 1; i < custom_sec_def_cnt; i++)
8626 custom_sec_defs[i - 1] = custom_sec_defs[i];
8627 custom_sec_def_cnt--;
8628
8629 /* try to shrink the array, but it's ok if we couldn't */
8630 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8631 if (sec_defs)
8632 custom_sec_defs = sec_defs;
8633
8634 return 0;
8635 }
8636
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)8637 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8638 {
8639 size_t len = strlen(sec_def->sec);
8640
8641 /* "type/" always has to have proper SEC("type/extras") form */
8642 if (sec_def->sec[len - 1] == '/') {
8643 if (str_has_pfx(sec_name, sec_def->sec))
8644 return true;
8645 return false;
8646 }
8647
8648 /* "type+" means it can be either exact SEC("type") or
8649 * well-formed SEC("type/extras") with proper '/' separator
8650 */
8651 if (sec_def->sec[len - 1] == '+') {
8652 len--;
8653 /* not even a prefix */
8654 if (strncmp(sec_name, sec_def->sec, len) != 0)
8655 return false;
8656 /* exact match or has '/' separator */
8657 if (sec_name[len] == '\0' || sec_name[len] == '/')
8658 return true;
8659 return false;
8660 }
8661
8662 return strcmp(sec_name, sec_def->sec) == 0;
8663 }
8664
find_sec_def(const char * sec_name)8665 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8666 {
8667 const struct bpf_sec_def *sec_def;
8668 int i, n;
8669
8670 n = custom_sec_def_cnt;
8671 for (i = 0; i < n; i++) {
8672 sec_def = &custom_sec_defs[i];
8673 if (sec_def_matches(sec_def, sec_name))
8674 return sec_def;
8675 }
8676
8677 n = ARRAY_SIZE(section_defs);
8678 for (i = 0; i < n; i++) {
8679 sec_def = §ion_defs[i];
8680 if (sec_def_matches(sec_def, sec_name))
8681 return sec_def;
8682 }
8683
8684 if (has_custom_fallback_def)
8685 return &custom_fallback_def;
8686
8687 return NULL;
8688 }
8689
8690 #define MAX_TYPE_NAME_SIZE 32
8691
libbpf_get_type_names(bool attach_type)8692 static char *libbpf_get_type_names(bool attach_type)
8693 {
8694 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8695 char *buf;
8696
8697 buf = malloc(len);
8698 if (!buf)
8699 return NULL;
8700
8701 buf[0] = '\0';
8702 /* Forge string buf with all available names */
8703 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8704 const struct bpf_sec_def *sec_def = §ion_defs[i];
8705
8706 if (attach_type) {
8707 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8708 continue;
8709
8710 if (!(sec_def->cookie & SEC_ATTACHABLE))
8711 continue;
8712 }
8713
8714 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8715 free(buf);
8716 return NULL;
8717 }
8718 strcat(buf, " ");
8719 strcat(buf, section_defs[i].sec);
8720 }
8721
8722 return buf;
8723 }
8724
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)8725 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8726 enum bpf_attach_type *expected_attach_type)
8727 {
8728 const struct bpf_sec_def *sec_def;
8729 char *type_names;
8730
8731 if (!name)
8732 return libbpf_err(-EINVAL);
8733
8734 sec_def = find_sec_def(name);
8735 if (sec_def) {
8736 *prog_type = sec_def->prog_type;
8737 *expected_attach_type = sec_def->expected_attach_type;
8738 return 0;
8739 }
8740
8741 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8742 type_names = libbpf_get_type_names(false);
8743 if (type_names != NULL) {
8744 pr_debug("supported section(type) names are:%s\n", type_names);
8745 free(type_names);
8746 }
8747
8748 return libbpf_err(-ESRCH);
8749 }
8750
libbpf_bpf_attach_type_str(enum bpf_attach_type t)8751 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8752 {
8753 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8754 return NULL;
8755
8756 return attach_type_name[t];
8757 }
8758
libbpf_bpf_link_type_str(enum bpf_link_type t)8759 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8760 {
8761 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8762 return NULL;
8763
8764 return link_type_name[t];
8765 }
8766
libbpf_bpf_map_type_str(enum bpf_map_type t)8767 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8768 {
8769 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8770 return NULL;
8771
8772 return map_type_name[t];
8773 }
8774
libbpf_bpf_prog_type_str(enum bpf_prog_type t)8775 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8776 {
8777 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8778 return NULL;
8779
8780 return prog_type_name[t];
8781 }
8782
find_struct_ops_map_by_offset(struct bpf_object * obj,size_t offset)8783 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8784 size_t offset)
8785 {
8786 struct bpf_map *map;
8787 size_t i;
8788
8789 for (i = 0; i < obj->nr_maps; i++) {
8790 map = &obj->maps[i];
8791 if (!bpf_map__is_struct_ops(map))
8792 continue;
8793 if (map->sec_offset <= offset &&
8794 offset - map->sec_offset < map->def.value_size)
8795 return map;
8796 }
8797
8798 return NULL;
8799 }
8800
8801 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)8802 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8803 Elf64_Shdr *shdr, Elf_Data *data)
8804 {
8805 const struct btf_member *member;
8806 struct bpf_struct_ops *st_ops;
8807 struct bpf_program *prog;
8808 unsigned int shdr_idx;
8809 const struct btf *btf;
8810 struct bpf_map *map;
8811 unsigned int moff, insn_idx;
8812 const char *name;
8813 __u32 member_idx;
8814 Elf64_Sym *sym;
8815 Elf64_Rel *rel;
8816 int i, nrels;
8817
8818 btf = obj->btf;
8819 nrels = shdr->sh_size / shdr->sh_entsize;
8820 for (i = 0; i < nrels; i++) {
8821 rel = elf_rel_by_idx(data, i);
8822 if (!rel) {
8823 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8824 return -LIBBPF_ERRNO__FORMAT;
8825 }
8826
8827 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8828 if (!sym) {
8829 pr_warn("struct_ops reloc: symbol %zx not found\n",
8830 (size_t)ELF64_R_SYM(rel->r_info));
8831 return -LIBBPF_ERRNO__FORMAT;
8832 }
8833
8834 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8835 map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8836 if (!map) {
8837 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8838 (size_t)rel->r_offset);
8839 return -EINVAL;
8840 }
8841
8842 moff = rel->r_offset - map->sec_offset;
8843 shdr_idx = sym->st_shndx;
8844 st_ops = map->st_ops;
8845 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8846 map->name,
8847 (long long)(rel->r_info >> 32),
8848 (long long)sym->st_value,
8849 shdr_idx, (size_t)rel->r_offset,
8850 map->sec_offset, sym->st_name, name);
8851
8852 if (shdr_idx >= SHN_LORESERVE) {
8853 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8854 map->name, (size_t)rel->r_offset, shdr_idx);
8855 return -LIBBPF_ERRNO__RELOC;
8856 }
8857 if (sym->st_value % BPF_INSN_SZ) {
8858 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8859 map->name, (unsigned long long)sym->st_value);
8860 return -LIBBPF_ERRNO__FORMAT;
8861 }
8862 insn_idx = sym->st_value / BPF_INSN_SZ;
8863
8864 member = find_member_by_offset(st_ops->type, moff * 8);
8865 if (!member) {
8866 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8867 map->name, moff);
8868 return -EINVAL;
8869 }
8870 member_idx = member - btf_members(st_ops->type);
8871 name = btf__name_by_offset(btf, member->name_off);
8872
8873 if (!resolve_func_ptr(btf, member->type, NULL)) {
8874 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8875 map->name, name);
8876 return -EINVAL;
8877 }
8878
8879 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8880 if (!prog) {
8881 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8882 map->name, shdr_idx, name);
8883 return -EINVAL;
8884 }
8885
8886 /* prevent the use of BPF prog with invalid type */
8887 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8888 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8889 map->name, prog->name);
8890 return -EINVAL;
8891 }
8892
8893 /* if we haven't yet processed this BPF program, record proper
8894 * attach_btf_id and member_idx
8895 */
8896 if (!prog->attach_btf_id) {
8897 prog->attach_btf_id = st_ops->type_id;
8898 prog->expected_attach_type = member_idx;
8899 }
8900
8901 /* struct_ops BPF prog can be re-used between multiple
8902 * .struct_ops as long as it's the same struct_ops struct
8903 * definition and the same function pointer field
8904 */
8905 if (prog->attach_btf_id != st_ops->type_id ||
8906 prog->expected_attach_type != member_idx) {
8907 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8908 map->name, prog->name, prog->sec_name, prog->type,
8909 prog->attach_btf_id, prog->expected_attach_type, name);
8910 return -EINVAL;
8911 }
8912
8913 st_ops->progs[member_idx] = prog;
8914 }
8915
8916 return 0;
8917 }
8918
8919 #define BTF_TRACE_PREFIX "btf_trace_"
8920 #define BTF_LSM_PREFIX "bpf_lsm_"
8921 #define BTF_ITER_PREFIX "bpf_iter_"
8922 #define BTF_MAX_NAME_SIZE 128
8923
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)8924 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8925 const char **prefix, int *kind)
8926 {
8927 switch (attach_type) {
8928 case BPF_TRACE_RAW_TP:
8929 *prefix = BTF_TRACE_PREFIX;
8930 *kind = BTF_KIND_TYPEDEF;
8931 break;
8932 case BPF_LSM_MAC:
8933 case BPF_LSM_CGROUP:
8934 *prefix = BTF_LSM_PREFIX;
8935 *kind = BTF_KIND_FUNC;
8936 break;
8937 case BPF_TRACE_ITER:
8938 *prefix = BTF_ITER_PREFIX;
8939 *kind = BTF_KIND_FUNC;
8940 break;
8941 default:
8942 *prefix = "";
8943 *kind = BTF_KIND_FUNC;
8944 }
8945 }
8946
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)8947 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8948 const char *name, __u32 kind)
8949 {
8950 char btf_type_name[BTF_MAX_NAME_SIZE];
8951 int ret;
8952
8953 ret = snprintf(btf_type_name, sizeof(btf_type_name),
8954 "%s%s", prefix, name);
8955 /* snprintf returns the number of characters written excluding the
8956 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8957 * indicates truncation.
8958 */
8959 if (ret < 0 || ret >= sizeof(btf_type_name))
8960 return -ENAMETOOLONG;
8961 return btf__find_by_name_kind(btf, btf_type_name, kind);
8962 }
8963
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)8964 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8965 enum bpf_attach_type attach_type)
8966 {
8967 const char *prefix;
8968 int kind;
8969
8970 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8971 return find_btf_by_prefix_kind(btf, prefix, name, kind);
8972 }
8973
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)8974 int libbpf_find_vmlinux_btf_id(const char *name,
8975 enum bpf_attach_type attach_type)
8976 {
8977 struct btf *btf;
8978 int err;
8979
8980 btf = btf__load_vmlinux_btf();
8981 err = libbpf_get_error(btf);
8982 if (err) {
8983 pr_warn("vmlinux BTF is not found\n");
8984 return libbpf_err(err);
8985 }
8986
8987 err = find_attach_btf_id(btf, name, attach_type);
8988 if (err <= 0)
8989 pr_warn("%s is not found in vmlinux BTF\n", name);
8990
8991 btf__free(btf);
8992 return libbpf_err(err);
8993 }
8994
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)8995 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8996 {
8997 struct bpf_prog_info info;
8998 __u32 info_len = sizeof(info);
8999 struct btf *btf;
9000 int err;
9001
9002 memset(&info, 0, info_len);
9003 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9004 if (err) {
9005 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9006 attach_prog_fd, err);
9007 return err;
9008 }
9009
9010 err = -EINVAL;
9011 if (!info.btf_id) {
9012 pr_warn("The target program doesn't have BTF\n");
9013 goto out;
9014 }
9015 btf = btf__load_from_kernel_by_id(info.btf_id);
9016 err = libbpf_get_error(btf);
9017 if (err) {
9018 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9019 goto out;
9020 }
9021 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9022 btf__free(btf);
9023 if (err <= 0) {
9024 pr_warn("%s is not found in prog's BTF\n", name);
9025 goto out;
9026 }
9027 out:
9028 return err;
9029 }
9030
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9031 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9032 enum bpf_attach_type attach_type,
9033 int *btf_obj_fd, int *btf_type_id)
9034 {
9035 int ret, i;
9036
9037 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9038 if (ret > 0) {
9039 *btf_obj_fd = 0; /* vmlinux BTF */
9040 *btf_type_id = ret;
9041 return 0;
9042 }
9043 if (ret != -ENOENT)
9044 return ret;
9045
9046 ret = load_module_btfs(obj);
9047 if (ret)
9048 return ret;
9049
9050 for (i = 0; i < obj->btf_module_cnt; i++) {
9051 const struct module_btf *mod = &obj->btf_modules[i];
9052
9053 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9054 if (ret > 0) {
9055 *btf_obj_fd = mod->fd;
9056 *btf_type_id = ret;
9057 return 0;
9058 }
9059 if (ret == -ENOENT)
9060 continue;
9061
9062 return ret;
9063 }
9064
9065 return -ESRCH;
9066 }
9067
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9068 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9069 int *btf_obj_fd, int *btf_type_id)
9070 {
9071 enum bpf_attach_type attach_type = prog->expected_attach_type;
9072 __u32 attach_prog_fd = prog->attach_prog_fd;
9073 int err = 0;
9074
9075 /* BPF program's BTF ID */
9076 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9077 if (!attach_prog_fd) {
9078 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9079 return -EINVAL;
9080 }
9081 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9082 if (err < 0) {
9083 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9084 prog->name, attach_prog_fd, attach_name, err);
9085 return err;
9086 }
9087 *btf_obj_fd = 0;
9088 *btf_type_id = err;
9089 return 0;
9090 }
9091
9092 /* kernel/module BTF ID */
9093 if (prog->obj->gen_loader) {
9094 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9095 *btf_obj_fd = 0;
9096 *btf_type_id = 1;
9097 } else {
9098 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9099 }
9100 if (err) {
9101 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9102 prog->name, attach_name, err);
9103 return err;
9104 }
9105 return 0;
9106 }
9107
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9108 int libbpf_attach_type_by_name(const char *name,
9109 enum bpf_attach_type *attach_type)
9110 {
9111 char *type_names;
9112 const struct bpf_sec_def *sec_def;
9113
9114 if (!name)
9115 return libbpf_err(-EINVAL);
9116
9117 sec_def = find_sec_def(name);
9118 if (!sec_def) {
9119 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9120 type_names = libbpf_get_type_names(true);
9121 if (type_names != NULL) {
9122 pr_debug("attachable section(type) names are:%s\n", type_names);
9123 free(type_names);
9124 }
9125
9126 return libbpf_err(-EINVAL);
9127 }
9128
9129 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9130 return libbpf_err(-EINVAL);
9131 if (!(sec_def->cookie & SEC_ATTACHABLE))
9132 return libbpf_err(-EINVAL);
9133
9134 *attach_type = sec_def->expected_attach_type;
9135 return 0;
9136 }
9137
bpf_map__fd(const struct bpf_map * map)9138 int bpf_map__fd(const struct bpf_map *map)
9139 {
9140 return map ? map->fd : libbpf_err(-EINVAL);
9141 }
9142
map_uses_real_name(const struct bpf_map * map)9143 static bool map_uses_real_name(const struct bpf_map *map)
9144 {
9145 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9146 * their user-visible name differs from kernel-visible name. Users see
9147 * such map's corresponding ELF section name as a map name.
9148 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9149 * maps to know which name has to be returned to the user.
9150 */
9151 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9152 return true;
9153 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9154 return true;
9155 return false;
9156 }
9157
bpf_map__name(const struct bpf_map * map)9158 const char *bpf_map__name(const struct bpf_map *map)
9159 {
9160 if (!map)
9161 return NULL;
9162
9163 if (map_uses_real_name(map))
9164 return map->real_name;
9165
9166 return map->name;
9167 }
9168
bpf_map__type(const struct bpf_map * map)9169 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9170 {
9171 return map->def.type;
9172 }
9173
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9174 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9175 {
9176 if (map->fd >= 0)
9177 return libbpf_err(-EBUSY);
9178 map->def.type = type;
9179 return 0;
9180 }
9181
bpf_map__map_flags(const struct bpf_map * map)9182 __u32 bpf_map__map_flags(const struct bpf_map *map)
9183 {
9184 return map->def.map_flags;
9185 }
9186
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9187 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9188 {
9189 if (map->fd >= 0)
9190 return libbpf_err(-EBUSY);
9191 map->def.map_flags = flags;
9192 return 0;
9193 }
9194
bpf_map__map_extra(const struct bpf_map * map)9195 __u64 bpf_map__map_extra(const struct bpf_map *map)
9196 {
9197 return map->map_extra;
9198 }
9199
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9200 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9201 {
9202 if (map->fd >= 0)
9203 return libbpf_err(-EBUSY);
9204 map->map_extra = map_extra;
9205 return 0;
9206 }
9207
bpf_map__numa_node(const struct bpf_map * map)9208 __u32 bpf_map__numa_node(const struct bpf_map *map)
9209 {
9210 return map->numa_node;
9211 }
9212
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9213 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9214 {
9215 if (map->fd >= 0)
9216 return libbpf_err(-EBUSY);
9217 map->numa_node = numa_node;
9218 return 0;
9219 }
9220
bpf_map__key_size(const struct bpf_map * map)9221 __u32 bpf_map__key_size(const struct bpf_map *map)
9222 {
9223 return map->def.key_size;
9224 }
9225
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9226 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9227 {
9228 if (map->fd >= 0)
9229 return libbpf_err(-EBUSY);
9230 map->def.key_size = size;
9231 return 0;
9232 }
9233
bpf_map__value_size(const struct bpf_map * map)9234 __u32 bpf_map__value_size(const struct bpf_map *map)
9235 {
9236 return map->def.value_size;
9237 }
9238
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9239 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9240 {
9241 if (map->fd >= 0)
9242 return libbpf_err(-EBUSY);
9243 map->def.value_size = size;
9244 return 0;
9245 }
9246
bpf_map__btf_key_type_id(const struct bpf_map * map)9247 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9248 {
9249 return map ? map->btf_key_type_id : 0;
9250 }
9251
bpf_map__btf_value_type_id(const struct bpf_map * map)9252 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9253 {
9254 return map ? map->btf_value_type_id : 0;
9255 }
9256
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9257 int bpf_map__set_initial_value(struct bpf_map *map,
9258 const void *data, size_t size)
9259 {
9260 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9261 size != map->def.value_size || map->fd >= 0)
9262 return libbpf_err(-EINVAL);
9263
9264 memcpy(map->mmaped, data, size);
9265 return 0;
9266 }
9267
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9268 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9269 {
9270 if (!map->mmaped)
9271 return NULL;
9272 *psize = map->def.value_size;
9273 return map->mmaped;
9274 }
9275
bpf_map__is_internal(const struct bpf_map * map)9276 bool bpf_map__is_internal(const struct bpf_map *map)
9277 {
9278 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9279 }
9280
bpf_map__ifindex(const struct bpf_map * map)9281 __u32 bpf_map__ifindex(const struct bpf_map *map)
9282 {
9283 return map->map_ifindex;
9284 }
9285
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9286 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9287 {
9288 if (map->fd >= 0)
9289 return libbpf_err(-EBUSY);
9290 map->map_ifindex = ifindex;
9291 return 0;
9292 }
9293
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9294 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9295 {
9296 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9297 pr_warn("error: unsupported map type\n");
9298 return libbpf_err(-EINVAL);
9299 }
9300 if (map->inner_map_fd != -1) {
9301 pr_warn("error: inner_map_fd already specified\n");
9302 return libbpf_err(-EINVAL);
9303 }
9304 if (map->inner_map) {
9305 bpf_map__destroy(map->inner_map);
9306 zfree(&map->inner_map);
9307 }
9308 map->inner_map_fd = fd;
9309 return 0;
9310 }
9311
9312 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9313 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9314 {
9315 ssize_t idx;
9316 struct bpf_map *s, *e;
9317
9318 if (!obj || !obj->maps)
9319 return errno = EINVAL, NULL;
9320
9321 s = obj->maps;
9322 e = obj->maps + obj->nr_maps;
9323
9324 if ((m < s) || (m >= e)) {
9325 pr_warn("error in %s: map handler doesn't belong to object\n",
9326 __func__);
9327 return errno = EINVAL, NULL;
9328 }
9329
9330 idx = (m - obj->maps) + i;
9331 if (idx >= obj->nr_maps || idx < 0)
9332 return NULL;
9333 return &obj->maps[idx];
9334 }
9335
9336 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9337 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9338 {
9339 if (prev == NULL)
9340 return obj->maps;
9341
9342 return __bpf_map__iter(prev, obj, 1);
9343 }
9344
9345 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9346 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9347 {
9348 if (next == NULL) {
9349 if (!obj->nr_maps)
9350 return NULL;
9351 return obj->maps + obj->nr_maps - 1;
9352 }
9353
9354 return __bpf_map__iter(next, obj, -1);
9355 }
9356
9357 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9358 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9359 {
9360 struct bpf_map *pos;
9361
9362 bpf_object__for_each_map(pos, obj) {
9363 /* if it's a special internal map name (which always starts
9364 * with dot) then check if that special name matches the
9365 * real map name (ELF section name)
9366 */
9367 if (name[0] == '.') {
9368 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9369 return pos;
9370 continue;
9371 }
9372 /* otherwise map name has to be an exact match */
9373 if (map_uses_real_name(pos)) {
9374 if (strcmp(pos->real_name, name) == 0)
9375 return pos;
9376 continue;
9377 }
9378 if (strcmp(pos->name, name) == 0)
9379 return pos;
9380 }
9381 return errno = ENOENT, NULL;
9382 }
9383
9384 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9385 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9386 {
9387 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9388 }
9389
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9390 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9391 size_t value_sz, bool check_value_sz)
9392 {
9393 if (map->fd <= 0)
9394 return -ENOENT;
9395
9396 if (map->def.key_size != key_sz) {
9397 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9398 map->name, key_sz, map->def.key_size);
9399 return -EINVAL;
9400 }
9401
9402 if (!check_value_sz)
9403 return 0;
9404
9405 switch (map->def.type) {
9406 case BPF_MAP_TYPE_PERCPU_ARRAY:
9407 case BPF_MAP_TYPE_PERCPU_HASH:
9408 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9409 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9410 int num_cpu = libbpf_num_possible_cpus();
9411 size_t elem_sz = roundup(map->def.value_size, 8);
9412
9413 if (value_sz != num_cpu * elem_sz) {
9414 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9415 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9416 return -EINVAL;
9417 }
9418 break;
9419 }
9420 default:
9421 if (map->def.value_size != value_sz) {
9422 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9423 map->name, value_sz, map->def.value_size);
9424 return -EINVAL;
9425 }
9426 break;
9427 }
9428 return 0;
9429 }
9430
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9431 int bpf_map__lookup_elem(const struct bpf_map *map,
9432 const void *key, size_t key_sz,
9433 void *value, size_t value_sz, __u64 flags)
9434 {
9435 int err;
9436
9437 err = validate_map_op(map, key_sz, value_sz, true);
9438 if (err)
9439 return libbpf_err(err);
9440
9441 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9442 }
9443
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)9444 int bpf_map__update_elem(const struct bpf_map *map,
9445 const void *key, size_t key_sz,
9446 const void *value, size_t value_sz, __u64 flags)
9447 {
9448 int err;
9449
9450 err = validate_map_op(map, key_sz, value_sz, true);
9451 if (err)
9452 return libbpf_err(err);
9453
9454 return bpf_map_update_elem(map->fd, key, value, flags);
9455 }
9456
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)9457 int bpf_map__delete_elem(const struct bpf_map *map,
9458 const void *key, size_t key_sz, __u64 flags)
9459 {
9460 int err;
9461
9462 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9463 if (err)
9464 return libbpf_err(err);
9465
9466 return bpf_map_delete_elem_flags(map->fd, key, flags);
9467 }
9468
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9469 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9470 const void *key, size_t key_sz,
9471 void *value, size_t value_sz, __u64 flags)
9472 {
9473 int err;
9474
9475 err = validate_map_op(map, key_sz, value_sz, true);
9476 if (err)
9477 return libbpf_err(err);
9478
9479 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9480 }
9481
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)9482 int bpf_map__get_next_key(const struct bpf_map *map,
9483 const void *cur_key, void *next_key, size_t key_sz)
9484 {
9485 int err;
9486
9487 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9488 if (err)
9489 return libbpf_err(err);
9490
9491 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9492 }
9493
libbpf_get_error(const void * ptr)9494 long libbpf_get_error(const void *ptr)
9495 {
9496 if (!IS_ERR_OR_NULL(ptr))
9497 return 0;
9498
9499 if (IS_ERR(ptr))
9500 errno = -PTR_ERR(ptr);
9501
9502 /* If ptr == NULL, then errno should be already set by the failing
9503 * API, because libbpf never returns NULL on success and it now always
9504 * sets errno on error. So no extra errno handling for ptr == NULL
9505 * case.
9506 */
9507 return -errno;
9508 }
9509
9510 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9511 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9512 {
9513 int ret;
9514
9515 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9516 return libbpf_err_errno(ret);
9517 }
9518
9519 /* Release "ownership" of underlying BPF resource (typically, BPF program
9520 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9521 * link, when destructed through bpf_link__destroy() call won't attempt to
9522 * detach/unregisted that BPF resource. This is useful in situations where,
9523 * say, attached BPF program has to outlive userspace program that attached it
9524 * in the system. Depending on type of BPF program, though, there might be
9525 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9526 * exit of userspace program doesn't trigger automatic detachment and clean up
9527 * inside the kernel.
9528 */
bpf_link__disconnect(struct bpf_link * link)9529 void bpf_link__disconnect(struct bpf_link *link)
9530 {
9531 link->disconnected = true;
9532 }
9533
bpf_link__destroy(struct bpf_link * link)9534 int bpf_link__destroy(struct bpf_link *link)
9535 {
9536 int err = 0;
9537
9538 if (IS_ERR_OR_NULL(link))
9539 return 0;
9540
9541 if (!link->disconnected && link->detach)
9542 err = link->detach(link);
9543 if (link->pin_path)
9544 free(link->pin_path);
9545 if (link->dealloc)
9546 link->dealloc(link);
9547 else
9548 free(link);
9549
9550 return libbpf_err(err);
9551 }
9552
bpf_link__fd(const struct bpf_link * link)9553 int bpf_link__fd(const struct bpf_link *link)
9554 {
9555 return link->fd;
9556 }
9557
bpf_link__pin_path(const struct bpf_link * link)9558 const char *bpf_link__pin_path(const struct bpf_link *link)
9559 {
9560 return link->pin_path;
9561 }
9562
bpf_link__detach_fd(struct bpf_link * link)9563 static int bpf_link__detach_fd(struct bpf_link *link)
9564 {
9565 return libbpf_err_errno(close(link->fd));
9566 }
9567
bpf_link__open(const char * path)9568 struct bpf_link *bpf_link__open(const char *path)
9569 {
9570 struct bpf_link *link;
9571 int fd;
9572
9573 fd = bpf_obj_get(path);
9574 if (fd < 0) {
9575 fd = -errno;
9576 pr_warn("failed to open link at %s: %d\n", path, fd);
9577 return libbpf_err_ptr(fd);
9578 }
9579
9580 link = calloc(1, sizeof(*link));
9581 if (!link) {
9582 close(fd);
9583 return libbpf_err_ptr(-ENOMEM);
9584 }
9585 link->detach = &bpf_link__detach_fd;
9586 link->fd = fd;
9587
9588 link->pin_path = strdup(path);
9589 if (!link->pin_path) {
9590 bpf_link__destroy(link);
9591 return libbpf_err_ptr(-ENOMEM);
9592 }
9593
9594 return link;
9595 }
9596
bpf_link__detach(struct bpf_link * link)9597 int bpf_link__detach(struct bpf_link *link)
9598 {
9599 return bpf_link_detach(link->fd) ? -errno : 0;
9600 }
9601
bpf_link__pin(struct bpf_link * link,const char * path)9602 int bpf_link__pin(struct bpf_link *link, const char *path)
9603 {
9604 int err;
9605
9606 if (link->pin_path)
9607 return libbpf_err(-EBUSY);
9608 err = make_parent_dir(path);
9609 if (err)
9610 return libbpf_err(err);
9611 err = check_path(path);
9612 if (err)
9613 return libbpf_err(err);
9614
9615 link->pin_path = strdup(path);
9616 if (!link->pin_path)
9617 return libbpf_err(-ENOMEM);
9618
9619 if (bpf_obj_pin(link->fd, link->pin_path)) {
9620 err = -errno;
9621 zfree(&link->pin_path);
9622 return libbpf_err(err);
9623 }
9624
9625 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9626 return 0;
9627 }
9628
bpf_link__unpin(struct bpf_link * link)9629 int bpf_link__unpin(struct bpf_link *link)
9630 {
9631 int err;
9632
9633 if (!link->pin_path)
9634 return libbpf_err(-EINVAL);
9635
9636 err = unlink(link->pin_path);
9637 if (err != 0)
9638 return -errno;
9639
9640 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9641 zfree(&link->pin_path);
9642 return 0;
9643 }
9644
9645 struct bpf_link_perf {
9646 struct bpf_link link;
9647 int perf_event_fd;
9648 /* legacy kprobe support: keep track of probe identifier and type */
9649 char *legacy_probe_name;
9650 bool legacy_is_kprobe;
9651 bool legacy_is_retprobe;
9652 };
9653
9654 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9655 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9656
bpf_link_perf_detach(struct bpf_link * link)9657 static int bpf_link_perf_detach(struct bpf_link *link)
9658 {
9659 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9660 int err = 0;
9661
9662 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9663 err = -errno;
9664
9665 if (perf_link->perf_event_fd != link->fd)
9666 close(perf_link->perf_event_fd);
9667 close(link->fd);
9668
9669 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9670 if (perf_link->legacy_probe_name) {
9671 if (perf_link->legacy_is_kprobe) {
9672 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9673 perf_link->legacy_is_retprobe);
9674 } else {
9675 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9676 perf_link->legacy_is_retprobe);
9677 }
9678 }
9679
9680 return err;
9681 }
9682
bpf_link_perf_dealloc(struct bpf_link * link)9683 static void bpf_link_perf_dealloc(struct bpf_link *link)
9684 {
9685 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9686
9687 free(perf_link->legacy_probe_name);
9688 free(perf_link);
9689 }
9690
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)9691 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9692 const struct bpf_perf_event_opts *opts)
9693 {
9694 char errmsg[STRERR_BUFSIZE];
9695 struct bpf_link_perf *link;
9696 int prog_fd, link_fd = -1, err;
9697
9698 if (!OPTS_VALID(opts, bpf_perf_event_opts))
9699 return libbpf_err_ptr(-EINVAL);
9700
9701 if (pfd < 0) {
9702 pr_warn("prog '%s': invalid perf event FD %d\n",
9703 prog->name, pfd);
9704 return libbpf_err_ptr(-EINVAL);
9705 }
9706 prog_fd = bpf_program__fd(prog);
9707 if (prog_fd < 0) {
9708 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9709 prog->name);
9710 return libbpf_err_ptr(-EINVAL);
9711 }
9712
9713 link = calloc(1, sizeof(*link));
9714 if (!link)
9715 return libbpf_err_ptr(-ENOMEM);
9716 link->link.detach = &bpf_link_perf_detach;
9717 link->link.dealloc = &bpf_link_perf_dealloc;
9718 link->perf_event_fd = pfd;
9719
9720 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9721 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9722 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9723
9724 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9725 if (link_fd < 0) {
9726 err = -errno;
9727 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9728 prog->name, pfd,
9729 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9730 goto err_out;
9731 }
9732 link->link.fd = link_fd;
9733 } else {
9734 if (OPTS_GET(opts, bpf_cookie, 0)) {
9735 pr_warn("prog '%s': user context value is not supported\n", prog->name);
9736 err = -EOPNOTSUPP;
9737 goto err_out;
9738 }
9739
9740 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9741 err = -errno;
9742 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9743 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9744 if (err == -EPROTO)
9745 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9746 prog->name, pfd);
9747 goto err_out;
9748 }
9749 link->link.fd = pfd;
9750 }
9751 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9752 err = -errno;
9753 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9754 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9755 goto err_out;
9756 }
9757
9758 return &link->link;
9759 err_out:
9760 if (link_fd >= 0)
9761 close(link_fd);
9762 free(link);
9763 return libbpf_err_ptr(err);
9764 }
9765
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)9766 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9767 {
9768 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9769 }
9770
9771 /*
9772 * this function is expected to parse integer in the range of [0, 2^31-1] from
9773 * given file using scanf format string fmt. If actual parsed value is
9774 * negative, the result might be indistinguishable from error
9775 */
parse_uint_from_file(const char * file,const char * fmt)9776 static int parse_uint_from_file(const char *file, const char *fmt)
9777 {
9778 char buf[STRERR_BUFSIZE];
9779 int err, ret;
9780 FILE *f;
9781
9782 f = fopen(file, "r");
9783 if (!f) {
9784 err = -errno;
9785 pr_debug("failed to open '%s': %s\n", file,
9786 libbpf_strerror_r(err, buf, sizeof(buf)));
9787 return err;
9788 }
9789 err = fscanf(f, fmt, &ret);
9790 if (err != 1) {
9791 err = err == EOF ? -EIO : -errno;
9792 pr_debug("failed to parse '%s': %s\n", file,
9793 libbpf_strerror_r(err, buf, sizeof(buf)));
9794 fclose(f);
9795 return err;
9796 }
9797 fclose(f);
9798 return ret;
9799 }
9800
determine_kprobe_perf_type(void)9801 static int determine_kprobe_perf_type(void)
9802 {
9803 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9804
9805 return parse_uint_from_file(file, "%d\n");
9806 }
9807
determine_uprobe_perf_type(void)9808 static int determine_uprobe_perf_type(void)
9809 {
9810 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9811
9812 return parse_uint_from_file(file, "%d\n");
9813 }
9814
determine_kprobe_retprobe_bit(void)9815 static int determine_kprobe_retprobe_bit(void)
9816 {
9817 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9818
9819 return parse_uint_from_file(file, "config:%d\n");
9820 }
9821
determine_uprobe_retprobe_bit(void)9822 static int determine_uprobe_retprobe_bit(void)
9823 {
9824 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9825
9826 return parse_uint_from_file(file, "config:%d\n");
9827 }
9828
9829 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9830 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9831
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)9832 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9833 uint64_t offset, int pid, size_t ref_ctr_off)
9834 {
9835 const size_t attr_sz = sizeof(struct perf_event_attr);
9836 struct perf_event_attr attr;
9837 char errmsg[STRERR_BUFSIZE];
9838 int type, pfd;
9839
9840 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9841 return -EINVAL;
9842
9843 memset(&attr, 0, attr_sz);
9844
9845 type = uprobe ? determine_uprobe_perf_type()
9846 : determine_kprobe_perf_type();
9847 if (type < 0) {
9848 pr_warn("failed to determine %s perf type: %s\n",
9849 uprobe ? "uprobe" : "kprobe",
9850 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9851 return type;
9852 }
9853 if (retprobe) {
9854 int bit = uprobe ? determine_uprobe_retprobe_bit()
9855 : determine_kprobe_retprobe_bit();
9856
9857 if (bit < 0) {
9858 pr_warn("failed to determine %s retprobe bit: %s\n",
9859 uprobe ? "uprobe" : "kprobe",
9860 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9861 return bit;
9862 }
9863 attr.config |= 1 << bit;
9864 }
9865 attr.size = attr_sz;
9866 attr.type = type;
9867 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9868 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9869 attr.config2 = offset; /* kprobe_addr or probe_offset */
9870
9871 /* pid filter is meaningful only for uprobes */
9872 pfd = syscall(__NR_perf_event_open, &attr,
9873 pid < 0 ? -1 : pid /* pid */,
9874 pid == -1 ? 0 : -1 /* cpu */,
9875 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9876 return pfd >= 0 ? pfd : -errno;
9877 }
9878
append_to_file(const char * file,const char * fmt,...)9879 static int append_to_file(const char *file, const char *fmt, ...)
9880 {
9881 int fd, n, err = 0;
9882 va_list ap;
9883
9884 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9885 if (fd < 0)
9886 return -errno;
9887
9888 va_start(ap, fmt);
9889 n = vdprintf(fd, fmt, ap);
9890 va_end(ap);
9891
9892 if (n < 0)
9893 err = -errno;
9894
9895 close(fd);
9896 return err;
9897 }
9898
9899 #define DEBUGFS "/sys/kernel/debug/tracing"
9900 #define TRACEFS "/sys/kernel/tracing"
9901
use_debugfs(void)9902 static bool use_debugfs(void)
9903 {
9904 static int has_debugfs = -1;
9905
9906 if (has_debugfs < 0)
9907 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
9908
9909 return has_debugfs == 1;
9910 }
9911
tracefs_path(void)9912 static const char *tracefs_path(void)
9913 {
9914 return use_debugfs() ? DEBUGFS : TRACEFS;
9915 }
9916
tracefs_kprobe_events(void)9917 static const char *tracefs_kprobe_events(void)
9918 {
9919 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9920 }
9921
tracefs_uprobe_events(void)9922 static const char *tracefs_uprobe_events(void)
9923 {
9924 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9925 }
9926
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)9927 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9928 const char *kfunc_name, size_t offset)
9929 {
9930 static int index = 0;
9931
9932 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9933 __sync_fetch_and_add(&index, 1));
9934 }
9935
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)9936 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9937 const char *kfunc_name, size_t offset)
9938 {
9939 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
9940 retprobe ? 'r' : 'p',
9941 retprobe ? "kretprobes" : "kprobes",
9942 probe_name, kfunc_name, offset);
9943 }
9944
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)9945 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9946 {
9947 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
9948 retprobe ? "kretprobes" : "kprobes", probe_name);
9949 }
9950
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)9951 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9952 {
9953 char file[256];
9954
9955 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
9956 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
9957
9958 return parse_uint_from_file(file, "%d\n");
9959 }
9960
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)9961 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9962 const char *kfunc_name, size_t offset, int pid)
9963 {
9964 const size_t attr_sz = sizeof(struct perf_event_attr);
9965 struct perf_event_attr attr;
9966 char errmsg[STRERR_BUFSIZE];
9967 int type, pfd, err;
9968
9969 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9970 if (err < 0) {
9971 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9972 kfunc_name, offset,
9973 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9974 return err;
9975 }
9976 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
9977 if (type < 0) {
9978 err = type;
9979 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
9980 kfunc_name, offset,
9981 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9982 goto err_clean_legacy;
9983 }
9984
9985 memset(&attr, 0, attr_sz);
9986 attr.size = attr_sz;
9987 attr.config = type;
9988 attr.type = PERF_TYPE_TRACEPOINT;
9989
9990 pfd = syscall(__NR_perf_event_open, &attr,
9991 pid < 0 ? -1 : pid, /* pid */
9992 pid == -1 ? 0 : -1, /* cpu */
9993 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9994 if (pfd < 0) {
9995 err = -errno;
9996 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
9997 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9998 goto err_clean_legacy;
9999 }
10000 return pfd;
10001
10002 err_clean_legacy:
10003 /* Clear the newly added legacy kprobe_event */
10004 remove_kprobe_event_legacy(probe_name, retprobe);
10005 return err;
10006 }
10007
arch_specific_syscall_pfx(void)10008 static const char *arch_specific_syscall_pfx(void)
10009 {
10010 #if defined(__x86_64__)
10011 return "x64";
10012 #elif defined(__i386__)
10013 return "ia32";
10014 #elif defined(__s390x__)
10015 return "s390x";
10016 #elif defined(__s390__)
10017 return "s390";
10018 #elif defined(__arm__)
10019 return "arm";
10020 #elif defined(__aarch64__)
10021 return "arm64";
10022 #elif defined(__mips__)
10023 return "mips";
10024 #elif defined(__riscv)
10025 return "riscv";
10026 #elif defined(__powerpc__)
10027 return "powerpc";
10028 #elif defined(__powerpc64__)
10029 return "powerpc64";
10030 #else
10031 return NULL;
10032 #endif
10033 }
10034
probe_kern_syscall_wrapper(void)10035 static int probe_kern_syscall_wrapper(void)
10036 {
10037 char syscall_name[64];
10038 const char *ksys_pfx;
10039
10040 ksys_pfx = arch_specific_syscall_pfx();
10041 if (!ksys_pfx)
10042 return 0;
10043
10044 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10045
10046 if (determine_kprobe_perf_type() >= 0) {
10047 int pfd;
10048
10049 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10050 if (pfd >= 0)
10051 close(pfd);
10052
10053 return pfd >= 0 ? 1 : 0;
10054 } else { /* legacy mode */
10055 char probe_name[128];
10056
10057 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10058 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10059 return 0;
10060
10061 (void)remove_kprobe_event_legacy(probe_name, false);
10062 return 1;
10063 }
10064 }
10065
10066 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10067 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10068 const char *func_name,
10069 const struct bpf_kprobe_opts *opts)
10070 {
10071 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10072 char errmsg[STRERR_BUFSIZE];
10073 char *legacy_probe = NULL;
10074 struct bpf_link *link;
10075 size_t offset;
10076 bool retprobe, legacy;
10077 int pfd, err;
10078
10079 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10080 return libbpf_err_ptr(-EINVAL);
10081
10082 retprobe = OPTS_GET(opts, retprobe, false);
10083 offset = OPTS_GET(opts, offset, 0);
10084 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10085
10086 legacy = determine_kprobe_perf_type() < 0;
10087 if (!legacy) {
10088 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10089 func_name, offset,
10090 -1 /* pid */, 0 /* ref_ctr_off */);
10091 } else {
10092 char probe_name[256];
10093
10094 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10095 func_name, offset);
10096
10097 legacy_probe = strdup(probe_name);
10098 if (!legacy_probe)
10099 return libbpf_err_ptr(-ENOMEM);
10100
10101 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10102 offset, -1 /* pid */);
10103 }
10104 if (pfd < 0) {
10105 err = -errno;
10106 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10107 prog->name, retprobe ? "kretprobe" : "kprobe",
10108 func_name, offset,
10109 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10110 goto err_out;
10111 }
10112 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10113 err = libbpf_get_error(link);
10114 if (err) {
10115 close(pfd);
10116 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10117 prog->name, retprobe ? "kretprobe" : "kprobe",
10118 func_name, offset,
10119 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10120 goto err_clean_legacy;
10121 }
10122 if (legacy) {
10123 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10124
10125 perf_link->legacy_probe_name = legacy_probe;
10126 perf_link->legacy_is_kprobe = true;
10127 perf_link->legacy_is_retprobe = retprobe;
10128 }
10129
10130 return link;
10131
10132 err_clean_legacy:
10133 if (legacy)
10134 remove_kprobe_event_legacy(legacy_probe, retprobe);
10135 err_out:
10136 free(legacy_probe);
10137 return libbpf_err_ptr(err);
10138 }
10139
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10140 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10141 bool retprobe,
10142 const char *func_name)
10143 {
10144 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10145 .retprobe = retprobe,
10146 );
10147
10148 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10149 }
10150
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)10151 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10152 const char *syscall_name,
10153 const struct bpf_ksyscall_opts *opts)
10154 {
10155 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10156 char func_name[128];
10157
10158 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10159 return libbpf_err_ptr(-EINVAL);
10160
10161 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10162 /* arch_specific_syscall_pfx() should never return NULL here
10163 * because it is guarded by kernel_supports(). However, since
10164 * compiler does not know that we have an explicit conditional
10165 * as well.
10166 */
10167 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10168 arch_specific_syscall_pfx() ? : "", syscall_name);
10169 } else {
10170 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10171 }
10172
10173 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10174 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10175
10176 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10177 }
10178
10179 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10180 static bool glob_match(const char *str, const char *pat)
10181 {
10182 while (*str && *pat && *pat != '*') {
10183 if (*pat == '?') { /* Matches any single character */
10184 str++;
10185 pat++;
10186 continue;
10187 }
10188 if (*str != *pat)
10189 return false;
10190 str++;
10191 pat++;
10192 }
10193 /* Check wild card */
10194 if (*pat == '*') {
10195 while (*pat == '*')
10196 pat++;
10197 if (!*pat) /* Tail wild card matches all */
10198 return true;
10199 while (*str)
10200 if (glob_match(str++, pat))
10201 return true;
10202 }
10203 return !*str && !*pat;
10204 }
10205
10206 struct kprobe_multi_resolve {
10207 const char *pattern;
10208 unsigned long *addrs;
10209 size_t cap;
10210 size_t cnt;
10211 };
10212
10213 static int
resolve_kprobe_multi_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10214 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10215 const char *sym_name, void *ctx)
10216 {
10217 struct kprobe_multi_resolve *res = ctx;
10218 int err;
10219
10220 if (!glob_match(sym_name, res->pattern))
10221 return 0;
10222
10223 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10224 res->cnt + 1);
10225 if (err)
10226 return err;
10227
10228 res->addrs[res->cnt++] = (unsigned long) sym_addr;
10229 return 0;
10230 }
10231
10232 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10233 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10234 const char *pattern,
10235 const struct bpf_kprobe_multi_opts *opts)
10236 {
10237 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10238 struct kprobe_multi_resolve res = {
10239 .pattern = pattern,
10240 };
10241 struct bpf_link *link = NULL;
10242 char errmsg[STRERR_BUFSIZE];
10243 const unsigned long *addrs;
10244 int err, link_fd, prog_fd;
10245 const __u64 *cookies;
10246 const char **syms;
10247 bool retprobe;
10248 size_t cnt;
10249
10250 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10251 return libbpf_err_ptr(-EINVAL);
10252
10253 syms = OPTS_GET(opts, syms, false);
10254 addrs = OPTS_GET(opts, addrs, false);
10255 cnt = OPTS_GET(opts, cnt, false);
10256 cookies = OPTS_GET(opts, cookies, false);
10257
10258 if (!pattern && !addrs && !syms)
10259 return libbpf_err_ptr(-EINVAL);
10260 if (pattern && (addrs || syms || cookies || cnt))
10261 return libbpf_err_ptr(-EINVAL);
10262 if (!pattern && !cnt)
10263 return libbpf_err_ptr(-EINVAL);
10264 if (addrs && syms)
10265 return libbpf_err_ptr(-EINVAL);
10266
10267 if (pattern) {
10268 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10269 if (err)
10270 goto error;
10271 if (!res.cnt) {
10272 err = -ENOENT;
10273 goto error;
10274 }
10275 addrs = res.addrs;
10276 cnt = res.cnt;
10277 }
10278
10279 retprobe = OPTS_GET(opts, retprobe, false);
10280
10281 lopts.kprobe_multi.syms = syms;
10282 lopts.kprobe_multi.addrs = addrs;
10283 lopts.kprobe_multi.cookies = cookies;
10284 lopts.kprobe_multi.cnt = cnt;
10285 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10286
10287 link = calloc(1, sizeof(*link));
10288 if (!link) {
10289 err = -ENOMEM;
10290 goto error;
10291 }
10292 link->detach = &bpf_link__detach_fd;
10293
10294 prog_fd = bpf_program__fd(prog);
10295 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10296 if (link_fd < 0) {
10297 err = -errno;
10298 pr_warn("prog '%s': failed to attach: %s\n",
10299 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10300 goto error;
10301 }
10302 link->fd = link_fd;
10303 free(res.addrs);
10304 return link;
10305
10306 error:
10307 free(link);
10308 free(res.addrs);
10309 return libbpf_err_ptr(err);
10310 }
10311
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10312 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10313 {
10314 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10315 unsigned long offset = 0;
10316 const char *func_name;
10317 char *func;
10318 int n;
10319
10320 *link = NULL;
10321
10322 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10323 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10324 return 0;
10325
10326 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10327 if (opts.retprobe)
10328 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10329 else
10330 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10331
10332 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10333 if (n < 1) {
10334 pr_warn("kprobe name is invalid: %s\n", func_name);
10335 return -EINVAL;
10336 }
10337 if (opts.retprobe && offset != 0) {
10338 free(func);
10339 pr_warn("kretprobes do not support offset specification\n");
10340 return -EINVAL;
10341 }
10342
10343 opts.offset = offset;
10344 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10345 free(func);
10346 return libbpf_get_error(*link);
10347 }
10348
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10349 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10350 {
10351 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10352 const char *syscall_name;
10353
10354 *link = NULL;
10355
10356 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10357 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10358 return 0;
10359
10360 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10361 if (opts.retprobe)
10362 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10363 else
10364 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10365
10366 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10367 return *link ? 0 : -errno;
10368 }
10369
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10370 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10371 {
10372 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10373 const char *spec;
10374 char *pattern;
10375 int n;
10376
10377 *link = NULL;
10378
10379 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10380 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10381 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10382 return 0;
10383
10384 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10385 if (opts.retprobe)
10386 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10387 else
10388 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10389
10390 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10391 if (n < 1) {
10392 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10393 return -EINVAL;
10394 }
10395
10396 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10397 free(pattern);
10398 return libbpf_get_error(*link);
10399 }
10400
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)10401 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10402 const char *binary_path, uint64_t offset)
10403 {
10404 int i;
10405
10406 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10407
10408 /* sanitize binary_path in the probe name */
10409 for (i = 0; buf[i]; i++) {
10410 if (!isalnum(buf[i]))
10411 buf[i] = '_';
10412 }
10413 }
10414
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)10415 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10416 const char *binary_path, size_t offset)
10417 {
10418 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10419 retprobe ? 'r' : 'p',
10420 retprobe ? "uretprobes" : "uprobes",
10421 probe_name, binary_path, offset);
10422 }
10423
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)10424 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10425 {
10426 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10427 retprobe ? "uretprobes" : "uprobes", probe_name);
10428 }
10429
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)10430 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10431 {
10432 char file[512];
10433
10434 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10435 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10436
10437 return parse_uint_from_file(file, "%d\n");
10438 }
10439
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)10440 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10441 const char *binary_path, size_t offset, int pid)
10442 {
10443 const size_t attr_sz = sizeof(struct perf_event_attr);
10444 struct perf_event_attr attr;
10445 int type, pfd, err;
10446
10447 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10448 if (err < 0) {
10449 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10450 binary_path, (size_t)offset, err);
10451 return err;
10452 }
10453 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10454 if (type < 0) {
10455 err = type;
10456 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10457 binary_path, offset, err);
10458 goto err_clean_legacy;
10459 }
10460
10461 memset(&attr, 0, attr_sz);
10462 attr.size = attr_sz;
10463 attr.config = type;
10464 attr.type = PERF_TYPE_TRACEPOINT;
10465
10466 pfd = syscall(__NR_perf_event_open, &attr,
10467 pid < 0 ? -1 : pid, /* pid */
10468 pid == -1 ? 0 : -1, /* cpu */
10469 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10470 if (pfd < 0) {
10471 err = -errno;
10472 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10473 goto err_clean_legacy;
10474 }
10475 return pfd;
10476
10477 err_clean_legacy:
10478 /* Clear the newly added legacy uprobe_event */
10479 remove_uprobe_event_legacy(probe_name, retprobe);
10480 return err;
10481 }
10482
10483 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
elf_find_next_scn_by_type(Elf * elf,int sh_type,Elf_Scn * scn)10484 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10485 {
10486 while ((scn = elf_nextscn(elf, scn)) != NULL) {
10487 GElf_Shdr sh;
10488
10489 if (!gelf_getshdr(scn, &sh))
10490 continue;
10491 if (sh.sh_type == sh_type)
10492 return scn;
10493 }
10494 return NULL;
10495 }
10496
10497 /* Find offset of function name in object specified by path. "name" matches
10498 * symbol name or name@@LIB for library functions.
10499 */
elf_find_func_offset(const char * binary_path,const char * name)10500 static long elf_find_func_offset(const char *binary_path, const char *name)
10501 {
10502 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10503 bool is_shared_lib, is_name_qualified;
10504 char errmsg[STRERR_BUFSIZE];
10505 long ret = -ENOENT;
10506 size_t name_len;
10507 GElf_Ehdr ehdr;
10508 Elf *elf;
10509
10510 fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10511 if (fd < 0) {
10512 ret = -errno;
10513 pr_warn("failed to open %s: %s\n", binary_path,
10514 libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10515 return ret;
10516 }
10517 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10518 if (!elf) {
10519 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10520 close(fd);
10521 return -LIBBPF_ERRNO__FORMAT;
10522 }
10523 if (!gelf_getehdr(elf, &ehdr)) {
10524 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10525 ret = -LIBBPF_ERRNO__FORMAT;
10526 goto out;
10527 }
10528 /* for shared lib case, we do not need to calculate relative offset */
10529 is_shared_lib = ehdr.e_type == ET_DYN;
10530
10531 name_len = strlen(name);
10532 /* Does name specify "@@LIB"? */
10533 is_name_qualified = strstr(name, "@@") != NULL;
10534
10535 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
10536 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10537 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10538 * reported as a warning/error.
10539 */
10540 for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10541 size_t nr_syms, strtabidx, idx;
10542 Elf_Data *symbols = NULL;
10543 Elf_Scn *scn = NULL;
10544 int last_bind = -1;
10545 const char *sname;
10546 GElf_Shdr sh;
10547
10548 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10549 if (!scn) {
10550 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10551 binary_path);
10552 continue;
10553 }
10554 if (!gelf_getshdr(scn, &sh))
10555 continue;
10556 strtabidx = sh.sh_link;
10557 symbols = elf_getdata(scn, 0);
10558 if (!symbols) {
10559 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10560 binary_path, elf_errmsg(-1));
10561 ret = -LIBBPF_ERRNO__FORMAT;
10562 goto out;
10563 }
10564 nr_syms = symbols->d_size / sh.sh_entsize;
10565
10566 for (idx = 0; idx < nr_syms; idx++) {
10567 int curr_bind;
10568 GElf_Sym sym;
10569 Elf_Scn *sym_scn;
10570 GElf_Shdr sym_sh;
10571
10572 if (!gelf_getsym(symbols, idx, &sym))
10573 continue;
10574
10575 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10576 continue;
10577
10578 sname = elf_strptr(elf, strtabidx, sym.st_name);
10579 if (!sname)
10580 continue;
10581
10582 curr_bind = GELF_ST_BIND(sym.st_info);
10583
10584 /* User can specify func, func@@LIB or func@@LIB_VERSION. */
10585 if (strncmp(sname, name, name_len) != 0)
10586 continue;
10587 /* ...but we don't want a search for "foo" to match 'foo2" also, so any
10588 * additional characters in sname should be of the form "@@LIB".
10589 */
10590 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10591 continue;
10592
10593 if (ret >= 0) {
10594 /* handle multiple matches */
10595 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10596 /* Only accept one non-weak bind. */
10597 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10598 sname, name, binary_path);
10599 ret = -LIBBPF_ERRNO__FORMAT;
10600 goto out;
10601 } else if (curr_bind == STB_WEAK) {
10602 /* already have a non-weak bind, and
10603 * this is a weak bind, so ignore.
10604 */
10605 continue;
10606 }
10607 }
10608
10609 /* Transform symbol's virtual address (absolute for
10610 * binaries and relative for shared libs) into file
10611 * offset, which is what kernel is expecting for
10612 * uprobe/uretprobe attachment.
10613 * See Documentation/trace/uprobetracer.rst for more
10614 * details.
10615 * This is done by looking up symbol's containing
10616 * section's header and using it's virtual address
10617 * (sh_addr) and corresponding file offset (sh_offset)
10618 * to transform sym.st_value (virtual address) into
10619 * desired final file offset.
10620 */
10621 sym_scn = elf_getscn(elf, sym.st_shndx);
10622 if (!sym_scn)
10623 continue;
10624 if (!gelf_getshdr(sym_scn, &sym_sh))
10625 continue;
10626
10627 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10628 last_bind = curr_bind;
10629 }
10630 if (ret > 0)
10631 break;
10632 }
10633
10634 if (ret > 0) {
10635 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10636 ret);
10637 } else {
10638 if (ret == 0) {
10639 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10640 is_shared_lib ? "should not be 0 in a shared library" :
10641 "try using shared library path instead");
10642 ret = -ENOENT;
10643 } else {
10644 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10645 }
10646 }
10647 out:
10648 elf_end(elf);
10649 close(fd);
10650 return ret;
10651 }
10652
arch_specific_lib_paths(void)10653 static const char *arch_specific_lib_paths(void)
10654 {
10655 /*
10656 * Based on https://packages.debian.org/sid/libc6.
10657 *
10658 * Assume that the traced program is built for the same architecture
10659 * as libbpf, which should cover the vast majority of cases.
10660 */
10661 #if defined(__x86_64__)
10662 return "/lib/x86_64-linux-gnu";
10663 #elif defined(__i386__)
10664 return "/lib/i386-linux-gnu";
10665 #elif defined(__s390x__)
10666 return "/lib/s390x-linux-gnu";
10667 #elif defined(__s390__)
10668 return "/lib/s390-linux-gnu";
10669 #elif defined(__arm__) && defined(__SOFTFP__)
10670 return "/lib/arm-linux-gnueabi";
10671 #elif defined(__arm__) && !defined(__SOFTFP__)
10672 return "/lib/arm-linux-gnueabihf";
10673 #elif defined(__aarch64__)
10674 return "/lib/aarch64-linux-gnu";
10675 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10676 return "/lib/mips64el-linux-gnuabi64";
10677 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10678 return "/lib/mipsel-linux-gnu";
10679 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10680 return "/lib/powerpc64le-linux-gnu";
10681 #elif defined(__sparc__) && defined(__arch64__)
10682 return "/lib/sparc64-linux-gnu";
10683 #elif defined(__riscv) && __riscv_xlen == 64
10684 return "/lib/riscv64-linux-gnu";
10685 #else
10686 return NULL;
10687 #endif
10688 }
10689
10690 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)10691 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10692 {
10693 const char *search_paths[3] = {};
10694 int i, perm;
10695
10696 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10697 search_paths[0] = getenv("LD_LIBRARY_PATH");
10698 search_paths[1] = "/usr/lib64:/usr/lib";
10699 search_paths[2] = arch_specific_lib_paths();
10700 perm = R_OK;
10701 } else {
10702 search_paths[0] = getenv("PATH");
10703 search_paths[1] = "/usr/bin:/usr/sbin";
10704 perm = R_OK | X_OK;
10705 }
10706
10707 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10708 const char *s;
10709
10710 if (!search_paths[i])
10711 continue;
10712 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10713 char *next_path;
10714 int seg_len;
10715
10716 if (s[0] == ':')
10717 s++;
10718 next_path = strchr(s, ':');
10719 seg_len = next_path ? next_path - s : strlen(s);
10720 if (!seg_len)
10721 continue;
10722 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10723 /* ensure it has required permissions */
10724 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
10725 continue;
10726 pr_debug("resolved '%s' to '%s'\n", file, result);
10727 return 0;
10728 }
10729 }
10730 return -ENOENT;
10731 }
10732
10733 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)10734 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10735 const char *binary_path, size_t func_offset,
10736 const struct bpf_uprobe_opts *opts)
10737 {
10738 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10739 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10740 char full_binary_path[PATH_MAX];
10741 struct bpf_link *link;
10742 size_t ref_ctr_off;
10743 int pfd, err;
10744 bool retprobe, legacy;
10745 const char *func_name;
10746
10747 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10748 return libbpf_err_ptr(-EINVAL);
10749
10750 retprobe = OPTS_GET(opts, retprobe, false);
10751 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10752 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10753
10754 if (!binary_path)
10755 return libbpf_err_ptr(-EINVAL);
10756
10757 if (!strchr(binary_path, '/')) {
10758 err = resolve_full_path(binary_path, full_binary_path,
10759 sizeof(full_binary_path));
10760 if (err) {
10761 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10762 prog->name, binary_path, err);
10763 return libbpf_err_ptr(err);
10764 }
10765 binary_path = full_binary_path;
10766 }
10767 func_name = OPTS_GET(opts, func_name, NULL);
10768 if (func_name) {
10769 long sym_off;
10770
10771 sym_off = elf_find_func_offset(binary_path, func_name);
10772 if (sym_off < 0)
10773 return libbpf_err_ptr(sym_off);
10774 func_offset += sym_off;
10775 }
10776
10777 legacy = determine_uprobe_perf_type() < 0;
10778 if (!legacy) {
10779 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10780 func_offset, pid, ref_ctr_off);
10781 } else {
10782 char probe_name[PATH_MAX + 64];
10783
10784 if (ref_ctr_off)
10785 return libbpf_err_ptr(-EINVAL);
10786
10787 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10788 binary_path, func_offset);
10789
10790 legacy_probe = strdup(probe_name);
10791 if (!legacy_probe)
10792 return libbpf_err_ptr(-ENOMEM);
10793
10794 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10795 binary_path, func_offset, pid);
10796 }
10797 if (pfd < 0) {
10798 err = -errno;
10799 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10800 prog->name, retprobe ? "uretprobe" : "uprobe",
10801 binary_path, func_offset,
10802 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10803 goto err_out;
10804 }
10805
10806 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10807 err = libbpf_get_error(link);
10808 if (err) {
10809 close(pfd);
10810 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10811 prog->name, retprobe ? "uretprobe" : "uprobe",
10812 binary_path, func_offset,
10813 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10814 goto err_clean_legacy;
10815 }
10816 if (legacy) {
10817 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10818
10819 perf_link->legacy_probe_name = legacy_probe;
10820 perf_link->legacy_is_kprobe = false;
10821 perf_link->legacy_is_retprobe = retprobe;
10822 }
10823 return link;
10824
10825 err_clean_legacy:
10826 if (legacy)
10827 remove_uprobe_event_legacy(legacy_probe, retprobe);
10828 err_out:
10829 free(legacy_probe);
10830 return libbpf_err_ptr(err);
10831 }
10832
10833 /* Format of u[ret]probe section definition supporting auto-attach:
10834 * u[ret]probe/binary:function[+offset]
10835 *
10836 * binary can be an absolute/relative path or a filename; the latter is resolved to a
10837 * full binary path via bpf_program__attach_uprobe_opts.
10838 *
10839 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10840 * specified (and auto-attach is not possible) or the above format is specified for
10841 * auto-attach.
10842 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10843 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10844 {
10845 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10846 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10847 int n, ret = -EINVAL;
10848 long offset = 0;
10849
10850 *link = NULL;
10851
10852 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10853 &probe_type, &binary_path, &func_name, &offset);
10854 switch (n) {
10855 case 1:
10856 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10857 ret = 0;
10858 break;
10859 case 2:
10860 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10861 prog->name, prog->sec_name);
10862 break;
10863 case 3:
10864 case 4:
10865 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10866 strcmp(probe_type, "uretprobe.s") == 0;
10867 if (opts.retprobe && offset != 0) {
10868 pr_warn("prog '%s': uretprobes do not support offset specification\n",
10869 prog->name);
10870 break;
10871 }
10872 opts.func_name = func_name;
10873 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10874 ret = libbpf_get_error(*link);
10875 break;
10876 default:
10877 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10878 prog->sec_name);
10879 break;
10880 }
10881 free(probe_type);
10882 free(binary_path);
10883 free(func_name);
10884
10885 return ret;
10886 }
10887
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)10888 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10889 bool retprobe, pid_t pid,
10890 const char *binary_path,
10891 size_t func_offset)
10892 {
10893 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10894
10895 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10896 }
10897
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)10898 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10899 pid_t pid, const char *binary_path,
10900 const char *usdt_provider, const char *usdt_name,
10901 const struct bpf_usdt_opts *opts)
10902 {
10903 char resolved_path[512];
10904 struct bpf_object *obj = prog->obj;
10905 struct bpf_link *link;
10906 __u64 usdt_cookie;
10907 int err;
10908
10909 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10910 return libbpf_err_ptr(-EINVAL);
10911
10912 if (bpf_program__fd(prog) < 0) {
10913 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10914 prog->name);
10915 return libbpf_err_ptr(-EINVAL);
10916 }
10917
10918 if (!binary_path)
10919 return libbpf_err_ptr(-EINVAL);
10920
10921 if (!strchr(binary_path, '/')) {
10922 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10923 if (err) {
10924 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10925 prog->name, binary_path, err);
10926 return libbpf_err_ptr(err);
10927 }
10928 binary_path = resolved_path;
10929 }
10930
10931 /* USDT manager is instantiated lazily on first USDT attach. It will
10932 * be destroyed together with BPF object in bpf_object__close().
10933 */
10934 if (IS_ERR(obj->usdt_man))
10935 return libbpf_ptr(obj->usdt_man);
10936 if (!obj->usdt_man) {
10937 obj->usdt_man = usdt_manager_new(obj);
10938 if (IS_ERR(obj->usdt_man))
10939 return libbpf_ptr(obj->usdt_man);
10940 }
10941
10942 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
10943 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
10944 usdt_provider, usdt_name, usdt_cookie);
10945 err = libbpf_get_error(link);
10946 if (err)
10947 return libbpf_err_ptr(err);
10948 return link;
10949 }
10950
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10951 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10952 {
10953 char *path = NULL, *provider = NULL, *name = NULL;
10954 const char *sec_name;
10955 int n, err;
10956
10957 sec_name = bpf_program__section_name(prog);
10958 if (strcmp(sec_name, "usdt") == 0) {
10959 /* no auto-attach for just SEC("usdt") */
10960 *link = NULL;
10961 return 0;
10962 }
10963
10964 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
10965 if (n != 3) {
10966 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
10967 sec_name);
10968 err = -EINVAL;
10969 } else {
10970 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
10971 provider, name, NULL);
10972 err = libbpf_get_error(*link);
10973 }
10974 free(path);
10975 free(provider);
10976 free(name);
10977 return err;
10978 }
10979
determine_tracepoint_id(const char * tp_category,const char * tp_name)10980 static int determine_tracepoint_id(const char *tp_category,
10981 const char *tp_name)
10982 {
10983 char file[PATH_MAX];
10984 int ret;
10985
10986 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10987 tracefs_path(), tp_category, tp_name);
10988 if (ret < 0)
10989 return -errno;
10990 if (ret >= sizeof(file)) {
10991 pr_debug("tracepoint %s/%s path is too long\n",
10992 tp_category, tp_name);
10993 return -E2BIG;
10994 }
10995 return parse_uint_from_file(file, "%d\n");
10996 }
10997
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)10998 static int perf_event_open_tracepoint(const char *tp_category,
10999 const char *tp_name)
11000 {
11001 const size_t attr_sz = sizeof(struct perf_event_attr);
11002 struct perf_event_attr attr;
11003 char errmsg[STRERR_BUFSIZE];
11004 int tp_id, pfd, err;
11005
11006 tp_id = determine_tracepoint_id(tp_category, tp_name);
11007 if (tp_id < 0) {
11008 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11009 tp_category, tp_name,
11010 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11011 return tp_id;
11012 }
11013
11014 memset(&attr, 0, attr_sz);
11015 attr.type = PERF_TYPE_TRACEPOINT;
11016 attr.size = attr_sz;
11017 attr.config = tp_id;
11018
11019 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11020 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11021 if (pfd < 0) {
11022 err = -errno;
11023 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11024 tp_category, tp_name,
11025 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11026 return err;
11027 }
11028 return pfd;
11029 }
11030
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11031 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11032 const char *tp_category,
11033 const char *tp_name,
11034 const struct bpf_tracepoint_opts *opts)
11035 {
11036 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11037 char errmsg[STRERR_BUFSIZE];
11038 struct bpf_link *link;
11039 int pfd, err;
11040
11041 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11042 return libbpf_err_ptr(-EINVAL);
11043
11044 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11045
11046 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11047 if (pfd < 0) {
11048 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11049 prog->name, tp_category, tp_name,
11050 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11051 return libbpf_err_ptr(pfd);
11052 }
11053 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11054 err = libbpf_get_error(link);
11055 if (err) {
11056 close(pfd);
11057 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11058 prog->name, tp_category, tp_name,
11059 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11060 return libbpf_err_ptr(err);
11061 }
11062 return link;
11063 }
11064
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11065 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11066 const char *tp_category,
11067 const char *tp_name)
11068 {
11069 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11070 }
11071
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11072 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11073 {
11074 char *sec_name, *tp_cat, *tp_name;
11075
11076 *link = NULL;
11077
11078 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11079 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11080 return 0;
11081
11082 sec_name = strdup(prog->sec_name);
11083 if (!sec_name)
11084 return -ENOMEM;
11085
11086 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11087 if (str_has_pfx(prog->sec_name, "tp/"))
11088 tp_cat = sec_name + sizeof("tp/") - 1;
11089 else
11090 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11091 tp_name = strchr(tp_cat, '/');
11092 if (!tp_name) {
11093 free(sec_name);
11094 return -EINVAL;
11095 }
11096 *tp_name = '\0';
11097 tp_name++;
11098
11099 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11100 free(sec_name);
11101 return libbpf_get_error(*link);
11102 }
11103
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11104 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11105 const char *tp_name)
11106 {
11107 char errmsg[STRERR_BUFSIZE];
11108 struct bpf_link *link;
11109 int prog_fd, pfd;
11110
11111 prog_fd = bpf_program__fd(prog);
11112 if (prog_fd < 0) {
11113 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11114 return libbpf_err_ptr(-EINVAL);
11115 }
11116
11117 link = calloc(1, sizeof(*link));
11118 if (!link)
11119 return libbpf_err_ptr(-ENOMEM);
11120 link->detach = &bpf_link__detach_fd;
11121
11122 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11123 if (pfd < 0) {
11124 pfd = -errno;
11125 free(link);
11126 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11127 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11128 return libbpf_err_ptr(pfd);
11129 }
11130 link->fd = pfd;
11131 return link;
11132 }
11133
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11134 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11135 {
11136 static const char *const prefixes[] = {
11137 "raw_tp",
11138 "raw_tracepoint",
11139 "raw_tp.w",
11140 "raw_tracepoint.w",
11141 };
11142 size_t i;
11143 const char *tp_name = NULL;
11144
11145 *link = NULL;
11146
11147 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11148 size_t pfx_len;
11149
11150 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11151 continue;
11152
11153 pfx_len = strlen(prefixes[i]);
11154 /* no auto-attach case of, e.g., SEC("raw_tp") */
11155 if (prog->sec_name[pfx_len] == '\0')
11156 return 0;
11157
11158 if (prog->sec_name[pfx_len] != '/')
11159 continue;
11160
11161 tp_name = prog->sec_name + pfx_len + 1;
11162 break;
11163 }
11164
11165 if (!tp_name) {
11166 pr_warn("prog '%s': invalid section name '%s'\n",
11167 prog->name, prog->sec_name);
11168 return -EINVAL;
11169 }
11170
11171 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11172 return libbpf_get_error(*link);
11173 }
11174
11175 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11176 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11177 const struct bpf_trace_opts *opts)
11178 {
11179 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11180 char errmsg[STRERR_BUFSIZE];
11181 struct bpf_link *link;
11182 int prog_fd, pfd;
11183
11184 if (!OPTS_VALID(opts, bpf_trace_opts))
11185 return libbpf_err_ptr(-EINVAL);
11186
11187 prog_fd = bpf_program__fd(prog);
11188 if (prog_fd < 0) {
11189 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11190 return libbpf_err_ptr(-EINVAL);
11191 }
11192
11193 link = calloc(1, sizeof(*link));
11194 if (!link)
11195 return libbpf_err_ptr(-ENOMEM);
11196 link->detach = &bpf_link__detach_fd;
11197
11198 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11199 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11200 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11201 if (pfd < 0) {
11202 pfd = -errno;
11203 free(link);
11204 pr_warn("prog '%s': failed to attach: %s\n",
11205 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11206 return libbpf_err_ptr(pfd);
11207 }
11208 link->fd = pfd;
11209 return link;
11210 }
11211
bpf_program__attach_trace(const struct bpf_program * prog)11212 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11213 {
11214 return bpf_program__attach_btf_id(prog, NULL);
11215 }
11216
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11217 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11218 const struct bpf_trace_opts *opts)
11219 {
11220 return bpf_program__attach_btf_id(prog, opts);
11221 }
11222
bpf_program__attach_lsm(const struct bpf_program * prog)11223 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11224 {
11225 return bpf_program__attach_btf_id(prog, NULL);
11226 }
11227
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11228 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11229 {
11230 *link = bpf_program__attach_trace(prog);
11231 return libbpf_get_error(*link);
11232 }
11233
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11234 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11235 {
11236 *link = bpf_program__attach_lsm(prog);
11237 return libbpf_get_error(*link);
11238 }
11239
11240 static struct bpf_link *
bpf_program__attach_fd(const struct bpf_program * prog,int target_fd,int btf_id,const char * target_name)11241 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11242 const char *target_name)
11243 {
11244 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11245 .target_btf_id = btf_id);
11246 enum bpf_attach_type attach_type;
11247 char errmsg[STRERR_BUFSIZE];
11248 struct bpf_link *link;
11249 int prog_fd, link_fd;
11250
11251 prog_fd = bpf_program__fd(prog);
11252 if (prog_fd < 0) {
11253 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11254 return libbpf_err_ptr(-EINVAL);
11255 }
11256
11257 link = calloc(1, sizeof(*link));
11258 if (!link)
11259 return libbpf_err_ptr(-ENOMEM);
11260 link->detach = &bpf_link__detach_fd;
11261
11262 attach_type = bpf_program__expected_attach_type(prog);
11263 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11264 if (link_fd < 0) {
11265 link_fd = -errno;
11266 free(link);
11267 pr_warn("prog '%s': failed to attach to %s: %s\n",
11268 prog->name, target_name,
11269 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11270 return libbpf_err_ptr(link_fd);
11271 }
11272 link->fd = link_fd;
11273 return link;
11274 }
11275
11276 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11277 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11278 {
11279 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11280 }
11281
11282 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11283 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11284 {
11285 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11286 }
11287
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11288 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11289 {
11290 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11291 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11292 }
11293
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)11294 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11295 int target_fd,
11296 const char *attach_func_name)
11297 {
11298 int btf_id;
11299
11300 if (!!target_fd != !!attach_func_name) {
11301 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11302 prog->name);
11303 return libbpf_err_ptr(-EINVAL);
11304 }
11305
11306 if (prog->type != BPF_PROG_TYPE_EXT) {
11307 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11308 prog->name);
11309 return libbpf_err_ptr(-EINVAL);
11310 }
11311
11312 if (target_fd) {
11313 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11314 if (btf_id < 0)
11315 return libbpf_err_ptr(btf_id);
11316
11317 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11318 } else {
11319 /* no target, so use raw_tracepoint_open for compatibility
11320 * with old kernels
11321 */
11322 return bpf_program__attach_trace(prog);
11323 }
11324 }
11325
11326 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)11327 bpf_program__attach_iter(const struct bpf_program *prog,
11328 const struct bpf_iter_attach_opts *opts)
11329 {
11330 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11331 char errmsg[STRERR_BUFSIZE];
11332 struct bpf_link *link;
11333 int prog_fd, link_fd;
11334 __u32 target_fd = 0;
11335
11336 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11337 return libbpf_err_ptr(-EINVAL);
11338
11339 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11340 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11341
11342 prog_fd = bpf_program__fd(prog);
11343 if (prog_fd < 0) {
11344 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11345 return libbpf_err_ptr(-EINVAL);
11346 }
11347
11348 link = calloc(1, sizeof(*link));
11349 if (!link)
11350 return libbpf_err_ptr(-ENOMEM);
11351 link->detach = &bpf_link__detach_fd;
11352
11353 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11354 &link_create_opts);
11355 if (link_fd < 0) {
11356 link_fd = -errno;
11357 free(link);
11358 pr_warn("prog '%s': failed to attach to iterator: %s\n",
11359 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11360 return libbpf_err_ptr(link_fd);
11361 }
11362 link->fd = link_fd;
11363 return link;
11364 }
11365
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11366 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11367 {
11368 *link = bpf_program__attach_iter(prog, NULL);
11369 return libbpf_get_error(*link);
11370 }
11371
bpf_program__attach(const struct bpf_program * prog)11372 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11373 {
11374 struct bpf_link *link = NULL;
11375 int err;
11376
11377 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11378 return libbpf_err_ptr(-EOPNOTSUPP);
11379
11380 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11381 if (err)
11382 return libbpf_err_ptr(err);
11383
11384 /* When calling bpf_program__attach() explicitly, auto-attach support
11385 * is expected to work, so NULL returned link is considered an error.
11386 * This is different for skeleton's attach, see comment in
11387 * bpf_object__attach_skeleton().
11388 */
11389 if (!link)
11390 return libbpf_err_ptr(-EOPNOTSUPP);
11391
11392 return link;
11393 }
11394
bpf_link__detach_struct_ops(struct bpf_link * link)11395 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11396 {
11397 __u32 zero = 0;
11398
11399 if (bpf_map_delete_elem(link->fd, &zero))
11400 return -errno;
11401
11402 return 0;
11403 }
11404
bpf_map__attach_struct_ops(const struct bpf_map * map)11405 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11406 {
11407 struct bpf_struct_ops *st_ops;
11408 struct bpf_link *link;
11409 __u32 i, zero = 0;
11410 int err;
11411
11412 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11413 return libbpf_err_ptr(-EINVAL);
11414
11415 link = calloc(1, sizeof(*link));
11416 if (!link)
11417 return libbpf_err_ptr(-EINVAL);
11418
11419 st_ops = map->st_ops;
11420 for (i = 0; i < btf_vlen(st_ops->type); i++) {
11421 struct bpf_program *prog = st_ops->progs[i];
11422 void *kern_data;
11423 int prog_fd;
11424
11425 if (!prog)
11426 continue;
11427
11428 prog_fd = bpf_program__fd(prog);
11429 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11430 *(unsigned long *)kern_data = prog_fd;
11431 }
11432
11433 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11434 if (err) {
11435 err = -errno;
11436 free(link);
11437 return libbpf_err_ptr(err);
11438 }
11439
11440 link->detach = bpf_link__detach_struct_ops;
11441 link->fd = map->fd;
11442
11443 return link;
11444 }
11445
11446 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11447 void *private_data);
11448
11449 static enum bpf_perf_event_ret
11450 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11451 void **copy_mem, size_t *copy_size,
11452 bpf_perf_event_print_t fn, void *private_data)
11453 {
11454 struct perf_event_mmap_page *header = mmap_mem;
11455 __u64 data_head = ring_buffer_read_head(header);
11456 __u64 data_tail = header->data_tail;
11457 void *base = ((__u8 *)header) + page_size;
11458 int ret = LIBBPF_PERF_EVENT_CONT;
11459 struct perf_event_header *ehdr;
11460 size_t ehdr_size;
11461
11462 while (data_head != data_tail) {
11463 ehdr = base + (data_tail & (mmap_size - 1));
11464 ehdr_size = ehdr->size;
11465
11466 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11467 void *copy_start = ehdr;
11468 size_t len_first = base + mmap_size - copy_start;
11469 size_t len_secnd = ehdr_size - len_first;
11470
11471 if (*copy_size < ehdr_size) {
11472 free(*copy_mem);
11473 *copy_mem = malloc(ehdr_size);
11474 if (!*copy_mem) {
11475 *copy_size = 0;
11476 ret = LIBBPF_PERF_EVENT_ERROR;
11477 break;
11478 }
11479 *copy_size = ehdr_size;
11480 }
11481
11482 memcpy(*copy_mem, copy_start, len_first);
11483 memcpy(*copy_mem + len_first, base, len_secnd);
11484 ehdr = *copy_mem;
11485 }
11486
11487 ret = fn(ehdr, private_data);
11488 data_tail += ehdr_size;
11489 if (ret != LIBBPF_PERF_EVENT_CONT)
11490 break;
11491 }
11492
11493 ring_buffer_write_tail(header, data_tail);
11494 return libbpf_err(ret);
11495 }
11496
11497 struct perf_buffer;
11498
11499 struct perf_buffer_params {
11500 struct perf_event_attr *attr;
11501 /* if event_cb is specified, it takes precendence */
11502 perf_buffer_event_fn event_cb;
11503 /* sample_cb and lost_cb are higher-level common-case callbacks */
11504 perf_buffer_sample_fn sample_cb;
11505 perf_buffer_lost_fn lost_cb;
11506 void *ctx;
11507 int cpu_cnt;
11508 int *cpus;
11509 int *map_keys;
11510 };
11511
11512 struct perf_cpu_buf {
11513 struct perf_buffer *pb;
11514 void *base; /* mmap()'ed memory */
11515 void *buf; /* for reconstructing segmented data */
11516 size_t buf_size;
11517 int fd;
11518 int cpu;
11519 int map_key;
11520 };
11521
11522 struct perf_buffer {
11523 perf_buffer_event_fn event_cb;
11524 perf_buffer_sample_fn sample_cb;
11525 perf_buffer_lost_fn lost_cb;
11526 void *ctx; /* passed into callbacks */
11527
11528 size_t page_size;
11529 size_t mmap_size;
11530 struct perf_cpu_buf **cpu_bufs;
11531 struct epoll_event *events;
11532 int cpu_cnt; /* number of allocated CPU buffers */
11533 int epoll_fd; /* perf event FD */
11534 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11535 };
11536
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)11537 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11538 struct perf_cpu_buf *cpu_buf)
11539 {
11540 if (!cpu_buf)
11541 return;
11542 if (cpu_buf->base &&
11543 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11544 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11545 if (cpu_buf->fd >= 0) {
11546 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11547 close(cpu_buf->fd);
11548 }
11549 free(cpu_buf->buf);
11550 free(cpu_buf);
11551 }
11552
perf_buffer__free(struct perf_buffer * pb)11553 void perf_buffer__free(struct perf_buffer *pb)
11554 {
11555 int i;
11556
11557 if (IS_ERR_OR_NULL(pb))
11558 return;
11559 if (pb->cpu_bufs) {
11560 for (i = 0; i < pb->cpu_cnt; i++) {
11561 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11562
11563 if (!cpu_buf)
11564 continue;
11565
11566 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11567 perf_buffer__free_cpu_buf(pb, cpu_buf);
11568 }
11569 free(pb->cpu_bufs);
11570 }
11571 if (pb->epoll_fd >= 0)
11572 close(pb->epoll_fd);
11573 free(pb->events);
11574 free(pb);
11575 }
11576
11577 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)11578 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11579 int cpu, int map_key)
11580 {
11581 struct perf_cpu_buf *cpu_buf;
11582 char msg[STRERR_BUFSIZE];
11583 int err;
11584
11585 cpu_buf = calloc(1, sizeof(*cpu_buf));
11586 if (!cpu_buf)
11587 return ERR_PTR(-ENOMEM);
11588
11589 cpu_buf->pb = pb;
11590 cpu_buf->cpu = cpu;
11591 cpu_buf->map_key = map_key;
11592
11593 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11594 -1, PERF_FLAG_FD_CLOEXEC);
11595 if (cpu_buf->fd < 0) {
11596 err = -errno;
11597 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11598 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11599 goto error;
11600 }
11601
11602 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11603 PROT_READ | PROT_WRITE, MAP_SHARED,
11604 cpu_buf->fd, 0);
11605 if (cpu_buf->base == MAP_FAILED) {
11606 cpu_buf->base = NULL;
11607 err = -errno;
11608 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11609 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11610 goto error;
11611 }
11612
11613 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11614 err = -errno;
11615 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11616 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11617 goto error;
11618 }
11619
11620 return cpu_buf;
11621
11622 error:
11623 perf_buffer__free_cpu_buf(pb, cpu_buf);
11624 return (struct perf_cpu_buf *)ERR_PTR(err);
11625 }
11626
11627 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11628 struct perf_buffer_params *p);
11629
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)11630 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11631 perf_buffer_sample_fn sample_cb,
11632 perf_buffer_lost_fn lost_cb,
11633 void *ctx,
11634 const struct perf_buffer_opts *opts)
11635 {
11636 const size_t attr_sz = sizeof(struct perf_event_attr);
11637 struct perf_buffer_params p = {};
11638 struct perf_event_attr attr;
11639
11640 if (!OPTS_VALID(opts, perf_buffer_opts))
11641 return libbpf_err_ptr(-EINVAL);
11642
11643 memset(&attr, 0, attr_sz);
11644 attr.size = attr_sz;
11645 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11646 attr.type = PERF_TYPE_SOFTWARE;
11647 attr.sample_type = PERF_SAMPLE_RAW;
11648 attr.sample_period = 1;
11649 attr.wakeup_events = 1;
11650
11651 p.attr = &attr;
11652 p.sample_cb = sample_cb;
11653 p.lost_cb = lost_cb;
11654 p.ctx = ctx;
11655
11656 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11657 }
11658
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)11659 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11660 struct perf_event_attr *attr,
11661 perf_buffer_event_fn event_cb, void *ctx,
11662 const struct perf_buffer_raw_opts *opts)
11663 {
11664 struct perf_buffer_params p = {};
11665
11666 if (!attr)
11667 return libbpf_err_ptr(-EINVAL);
11668
11669 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11670 return libbpf_err_ptr(-EINVAL);
11671
11672 p.attr = attr;
11673 p.event_cb = event_cb;
11674 p.ctx = ctx;
11675 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11676 p.cpus = OPTS_GET(opts, cpus, NULL);
11677 p.map_keys = OPTS_GET(opts, map_keys, NULL);
11678
11679 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11680 }
11681
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)11682 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11683 struct perf_buffer_params *p)
11684 {
11685 const char *online_cpus_file = "/sys/devices/system/cpu/online";
11686 struct bpf_map_info map;
11687 char msg[STRERR_BUFSIZE];
11688 struct perf_buffer *pb;
11689 bool *online = NULL;
11690 __u32 map_info_len;
11691 int err, i, j, n;
11692
11693 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11694 pr_warn("page count should be power of two, but is %zu\n",
11695 page_cnt);
11696 return ERR_PTR(-EINVAL);
11697 }
11698
11699 /* best-effort sanity checks */
11700 memset(&map, 0, sizeof(map));
11701 map_info_len = sizeof(map);
11702 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11703 if (err) {
11704 err = -errno;
11705 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11706 * -EBADFD, -EFAULT, or -E2BIG on real error
11707 */
11708 if (err != -EINVAL) {
11709 pr_warn("failed to get map info for map FD %d: %s\n",
11710 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11711 return ERR_PTR(err);
11712 }
11713 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11714 map_fd);
11715 } else {
11716 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11717 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11718 map.name);
11719 return ERR_PTR(-EINVAL);
11720 }
11721 }
11722
11723 pb = calloc(1, sizeof(*pb));
11724 if (!pb)
11725 return ERR_PTR(-ENOMEM);
11726
11727 pb->event_cb = p->event_cb;
11728 pb->sample_cb = p->sample_cb;
11729 pb->lost_cb = p->lost_cb;
11730 pb->ctx = p->ctx;
11731
11732 pb->page_size = getpagesize();
11733 pb->mmap_size = pb->page_size * page_cnt;
11734 pb->map_fd = map_fd;
11735
11736 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11737 if (pb->epoll_fd < 0) {
11738 err = -errno;
11739 pr_warn("failed to create epoll instance: %s\n",
11740 libbpf_strerror_r(err, msg, sizeof(msg)));
11741 goto error;
11742 }
11743
11744 if (p->cpu_cnt > 0) {
11745 pb->cpu_cnt = p->cpu_cnt;
11746 } else {
11747 pb->cpu_cnt = libbpf_num_possible_cpus();
11748 if (pb->cpu_cnt < 0) {
11749 err = pb->cpu_cnt;
11750 goto error;
11751 }
11752 if (map.max_entries && map.max_entries < pb->cpu_cnt)
11753 pb->cpu_cnt = map.max_entries;
11754 }
11755
11756 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11757 if (!pb->events) {
11758 err = -ENOMEM;
11759 pr_warn("failed to allocate events: out of memory\n");
11760 goto error;
11761 }
11762 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11763 if (!pb->cpu_bufs) {
11764 err = -ENOMEM;
11765 pr_warn("failed to allocate buffers: out of memory\n");
11766 goto error;
11767 }
11768
11769 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11770 if (err) {
11771 pr_warn("failed to get online CPU mask: %d\n", err);
11772 goto error;
11773 }
11774
11775 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11776 struct perf_cpu_buf *cpu_buf;
11777 int cpu, map_key;
11778
11779 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11780 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11781
11782 /* in case user didn't explicitly requested particular CPUs to
11783 * be attached to, skip offline/not present CPUs
11784 */
11785 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11786 continue;
11787
11788 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11789 if (IS_ERR(cpu_buf)) {
11790 err = PTR_ERR(cpu_buf);
11791 goto error;
11792 }
11793
11794 pb->cpu_bufs[j] = cpu_buf;
11795
11796 err = bpf_map_update_elem(pb->map_fd, &map_key,
11797 &cpu_buf->fd, 0);
11798 if (err) {
11799 err = -errno;
11800 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11801 cpu, map_key, cpu_buf->fd,
11802 libbpf_strerror_r(err, msg, sizeof(msg)));
11803 goto error;
11804 }
11805
11806 pb->events[j].events = EPOLLIN;
11807 pb->events[j].data.ptr = cpu_buf;
11808 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11809 &pb->events[j]) < 0) {
11810 err = -errno;
11811 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11812 cpu, cpu_buf->fd,
11813 libbpf_strerror_r(err, msg, sizeof(msg)));
11814 goto error;
11815 }
11816 j++;
11817 }
11818 pb->cpu_cnt = j;
11819 free(online);
11820
11821 return pb;
11822
11823 error:
11824 free(online);
11825 if (pb)
11826 perf_buffer__free(pb);
11827 return ERR_PTR(err);
11828 }
11829
11830 struct perf_sample_raw {
11831 struct perf_event_header header;
11832 uint32_t size;
11833 char data[];
11834 };
11835
11836 struct perf_sample_lost {
11837 struct perf_event_header header;
11838 uint64_t id;
11839 uint64_t lost;
11840 uint64_t sample_id;
11841 };
11842
11843 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)11844 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11845 {
11846 struct perf_cpu_buf *cpu_buf = ctx;
11847 struct perf_buffer *pb = cpu_buf->pb;
11848 void *data = e;
11849
11850 /* user wants full control over parsing perf event */
11851 if (pb->event_cb)
11852 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11853
11854 switch (e->type) {
11855 case PERF_RECORD_SAMPLE: {
11856 struct perf_sample_raw *s = data;
11857
11858 if (pb->sample_cb)
11859 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11860 break;
11861 }
11862 case PERF_RECORD_LOST: {
11863 struct perf_sample_lost *s = data;
11864
11865 if (pb->lost_cb)
11866 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11867 break;
11868 }
11869 default:
11870 pr_warn("unknown perf sample type %d\n", e->type);
11871 return LIBBPF_PERF_EVENT_ERROR;
11872 }
11873 return LIBBPF_PERF_EVENT_CONT;
11874 }
11875
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)11876 static int perf_buffer__process_records(struct perf_buffer *pb,
11877 struct perf_cpu_buf *cpu_buf)
11878 {
11879 enum bpf_perf_event_ret ret;
11880
11881 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11882 pb->page_size, &cpu_buf->buf,
11883 &cpu_buf->buf_size,
11884 perf_buffer__process_record, cpu_buf);
11885 if (ret != LIBBPF_PERF_EVENT_CONT)
11886 return ret;
11887 return 0;
11888 }
11889
perf_buffer__epoll_fd(const struct perf_buffer * pb)11890 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11891 {
11892 return pb->epoll_fd;
11893 }
11894
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)11895 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11896 {
11897 int i, cnt, err;
11898
11899 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11900 if (cnt < 0)
11901 return -errno;
11902
11903 for (i = 0; i < cnt; i++) {
11904 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11905
11906 err = perf_buffer__process_records(pb, cpu_buf);
11907 if (err) {
11908 pr_warn("error while processing records: %d\n", err);
11909 return libbpf_err(err);
11910 }
11911 }
11912 return cnt;
11913 }
11914
11915 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11916 * manager.
11917 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)11918 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11919 {
11920 return pb->cpu_cnt;
11921 }
11922
11923 /*
11924 * Return perf_event FD of a ring buffer in *buf_idx* slot of
11925 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11926 * select()/poll()/epoll() Linux syscalls.
11927 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)11928 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11929 {
11930 struct perf_cpu_buf *cpu_buf;
11931
11932 if (buf_idx >= pb->cpu_cnt)
11933 return libbpf_err(-EINVAL);
11934
11935 cpu_buf = pb->cpu_bufs[buf_idx];
11936 if (!cpu_buf)
11937 return libbpf_err(-ENOENT);
11938
11939 return cpu_buf->fd;
11940 }
11941
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)11942 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
11943 {
11944 struct perf_cpu_buf *cpu_buf;
11945
11946 if (buf_idx >= pb->cpu_cnt)
11947 return libbpf_err(-EINVAL);
11948
11949 cpu_buf = pb->cpu_bufs[buf_idx];
11950 if (!cpu_buf)
11951 return libbpf_err(-ENOENT);
11952
11953 *buf = cpu_buf->base;
11954 *buf_size = pb->mmap_size;
11955 return 0;
11956 }
11957
11958 /*
11959 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11960 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11961 * consume, do nothing and return success.
11962 * Returns:
11963 * - 0 on success;
11964 * - <0 on failure.
11965 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)11966 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11967 {
11968 struct perf_cpu_buf *cpu_buf;
11969
11970 if (buf_idx >= pb->cpu_cnt)
11971 return libbpf_err(-EINVAL);
11972
11973 cpu_buf = pb->cpu_bufs[buf_idx];
11974 if (!cpu_buf)
11975 return libbpf_err(-ENOENT);
11976
11977 return perf_buffer__process_records(pb, cpu_buf);
11978 }
11979
perf_buffer__consume(struct perf_buffer * pb)11980 int perf_buffer__consume(struct perf_buffer *pb)
11981 {
11982 int i, err;
11983
11984 for (i = 0; i < pb->cpu_cnt; i++) {
11985 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11986
11987 if (!cpu_buf)
11988 continue;
11989
11990 err = perf_buffer__process_records(pb, cpu_buf);
11991 if (err) {
11992 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11993 return libbpf_err(err);
11994 }
11995 }
11996 return 0;
11997 }
11998
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)11999 int bpf_program__set_attach_target(struct bpf_program *prog,
12000 int attach_prog_fd,
12001 const char *attach_func_name)
12002 {
12003 int btf_obj_fd = 0, btf_id = 0, err;
12004
12005 if (!prog || attach_prog_fd < 0)
12006 return libbpf_err(-EINVAL);
12007
12008 if (prog->obj->loaded)
12009 return libbpf_err(-EINVAL);
12010
12011 if (attach_prog_fd && !attach_func_name) {
12012 /* remember attach_prog_fd and let bpf_program__load() find
12013 * BTF ID during the program load
12014 */
12015 prog->attach_prog_fd = attach_prog_fd;
12016 return 0;
12017 }
12018
12019 if (attach_prog_fd) {
12020 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12021 attach_prog_fd);
12022 if (btf_id < 0)
12023 return libbpf_err(btf_id);
12024 } else {
12025 if (!attach_func_name)
12026 return libbpf_err(-EINVAL);
12027
12028 /* load btf_vmlinux, if not yet */
12029 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12030 if (err)
12031 return libbpf_err(err);
12032 err = find_kernel_btf_id(prog->obj, attach_func_name,
12033 prog->expected_attach_type,
12034 &btf_obj_fd, &btf_id);
12035 if (err)
12036 return libbpf_err(err);
12037 }
12038
12039 prog->attach_btf_id = btf_id;
12040 prog->attach_btf_obj_fd = btf_obj_fd;
12041 prog->attach_prog_fd = attach_prog_fd;
12042 return 0;
12043 }
12044
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12045 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12046 {
12047 int err = 0, n, len, start, end = -1;
12048 bool *tmp;
12049
12050 *mask = NULL;
12051 *mask_sz = 0;
12052
12053 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12054 while (*s) {
12055 if (*s == ',' || *s == '\n') {
12056 s++;
12057 continue;
12058 }
12059 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12060 if (n <= 0 || n > 2) {
12061 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12062 err = -EINVAL;
12063 goto cleanup;
12064 } else if (n == 1) {
12065 end = start;
12066 }
12067 if (start < 0 || start > end) {
12068 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12069 start, end, s);
12070 err = -EINVAL;
12071 goto cleanup;
12072 }
12073 tmp = realloc(*mask, end + 1);
12074 if (!tmp) {
12075 err = -ENOMEM;
12076 goto cleanup;
12077 }
12078 *mask = tmp;
12079 memset(tmp + *mask_sz, 0, start - *mask_sz);
12080 memset(tmp + start, 1, end - start + 1);
12081 *mask_sz = end + 1;
12082 s += len;
12083 }
12084 if (!*mask_sz) {
12085 pr_warn("Empty CPU range\n");
12086 return -EINVAL;
12087 }
12088 return 0;
12089 cleanup:
12090 free(*mask);
12091 *mask = NULL;
12092 return err;
12093 }
12094
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12095 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12096 {
12097 int fd, err = 0, len;
12098 char buf[128];
12099
12100 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12101 if (fd < 0) {
12102 err = -errno;
12103 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12104 return err;
12105 }
12106 len = read(fd, buf, sizeof(buf));
12107 close(fd);
12108 if (len <= 0) {
12109 err = len ? -errno : -EINVAL;
12110 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12111 return err;
12112 }
12113 if (len >= sizeof(buf)) {
12114 pr_warn("CPU mask is too big in file %s\n", fcpu);
12115 return -E2BIG;
12116 }
12117 buf[len] = '\0';
12118
12119 return parse_cpu_mask_str(buf, mask, mask_sz);
12120 }
12121
libbpf_num_possible_cpus(void)12122 int libbpf_num_possible_cpus(void)
12123 {
12124 static const char *fcpu = "/sys/devices/system/cpu/possible";
12125 static int cpus;
12126 int err, n, i, tmp_cpus;
12127 bool *mask;
12128
12129 tmp_cpus = READ_ONCE(cpus);
12130 if (tmp_cpus > 0)
12131 return tmp_cpus;
12132
12133 err = parse_cpu_mask_file(fcpu, &mask, &n);
12134 if (err)
12135 return libbpf_err(err);
12136
12137 tmp_cpus = 0;
12138 for (i = 0; i < n; i++) {
12139 if (mask[i])
12140 tmp_cpus++;
12141 }
12142 free(mask);
12143
12144 WRITE_ONCE(cpus, tmp_cpus);
12145 return tmp_cpus;
12146 }
12147
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12148 static int populate_skeleton_maps(const struct bpf_object *obj,
12149 struct bpf_map_skeleton *maps,
12150 size_t map_cnt)
12151 {
12152 int i;
12153
12154 for (i = 0; i < map_cnt; i++) {
12155 struct bpf_map **map = maps[i].map;
12156 const char *name = maps[i].name;
12157 void **mmaped = maps[i].mmaped;
12158
12159 *map = bpf_object__find_map_by_name(obj, name);
12160 if (!*map) {
12161 pr_warn("failed to find skeleton map '%s'\n", name);
12162 return -ESRCH;
12163 }
12164
12165 /* externs shouldn't be pre-setup from user code */
12166 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12167 *mmaped = (*map)->mmaped;
12168 }
12169 return 0;
12170 }
12171
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12172 static int populate_skeleton_progs(const struct bpf_object *obj,
12173 struct bpf_prog_skeleton *progs,
12174 size_t prog_cnt)
12175 {
12176 int i;
12177
12178 for (i = 0; i < prog_cnt; i++) {
12179 struct bpf_program **prog = progs[i].prog;
12180 const char *name = progs[i].name;
12181
12182 *prog = bpf_object__find_program_by_name(obj, name);
12183 if (!*prog) {
12184 pr_warn("failed to find skeleton program '%s'\n", name);
12185 return -ESRCH;
12186 }
12187 }
12188 return 0;
12189 }
12190
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)12191 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12192 const struct bpf_object_open_opts *opts)
12193 {
12194 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12195 .object_name = s->name,
12196 );
12197 struct bpf_object *obj;
12198 int err;
12199
12200 /* Attempt to preserve opts->object_name, unless overriden by user
12201 * explicitly. Overwriting object name for skeletons is discouraged,
12202 * as it breaks global data maps, because they contain object name
12203 * prefix as their own map name prefix. When skeleton is generated,
12204 * bpftool is making an assumption that this name will stay the same.
12205 */
12206 if (opts) {
12207 memcpy(&skel_opts, opts, sizeof(*opts));
12208 if (!opts->object_name)
12209 skel_opts.object_name = s->name;
12210 }
12211
12212 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12213 err = libbpf_get_error(obj);
12214 if (err) {
12215 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12216 s->name, err);
12217 return libbpf_err(err);
12218 }
12219
12220 *s->obj = obj;
12221 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12222 if (err) {
12223 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12224 return libbpf_err(err);
12225 }
12226
12227 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12228 if (err) {
12229 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12230 return libbpf_err(err);
12231 }
12232
12233 return 0;
12234 }
12235
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)12236 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12237 {
12238 int err, len, var_idx, i;
12239 const char *var_name;
12240 const struct bpf_map *map;
12241 struct btf *btf;
12242 __u32 map_type_id;
12243 const struct btf_type *map_type, *var_type;
12244 const struct bpf_var_skeleton *var_skel;
12245 struct btf_var_secinfo *var;
12246
12247 if (!s->obj)
12248 return libbpf_err(-EINVAL);
12249
12250 btf = bpf_object__btf(s->obj);
12251 if (!btf) {
12252 pr_warn("subskeletons require BTF at runtime (object %s)\n",
12253 bpf_object__name(s->obj));
12254 return libbpf_err(-errno);
12255 }
12256
12257 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12258 if (err) {
12259 pr_warn("failed to populate subskeleton maps: %d\n", err);
12260 return libbpf_err(err);
12261 }
12262
12263 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12264 if (err) {
12265 pr_warn("failed to populate subskeleton maps: %d\n", err);
12266 return libbpf_err(err);
12267 }
12268
12269 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12270 var_skel = &s->vars[var_idx];
12271 map = *var_skel->map;
12272 map_type_id = bpf_map__btf_value_type_id(map);
12273 map_type = btf__type_by_id(btf, map_type_id);
12274
12275 if (!btf_is_datasec(map_type)) {
12276 pr_warn("type for map '%1$s' is not a datasec: %2$s",
12277 bpf_map__name(map),
12278 __btf_kind_str(btf_kind(map_type)));
12279 return libbpf_err(-EINVAL);
12280 }
12281
12282 len = btf_vlen(map_type);
12283 var = btf_var_secinfos(map_type);
12284 for (i = 0; i < len; i++, var++) {
12285 var_type = btf__type_by_id(btf, var->type);
12286 var_name = btf__name_by_offset(btf, var_type->name_off);
12287 if (strcmp(var_name, var_skel->name) == 0) {
12288 *var_skel->addr = map->mmaped + var->offset;
12289 break;
12290 }
12291 }
12292 }
12293 return 0;
12294 }
12295
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)12296 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12297 {
12298 if (!s)
12299 return;
12300 free(s->maps);
12301 free(s->progs);
12302 free(s->vars);
12303 free(s);
12304 }
12305
bpf_object__load_skeleton(struct bpf_object_skeleton * s)12306 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12307 {
12308 int i, err;
12309
12310 err = bpf_object__load(*s->obj);
12311 if (err) {
12312 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12313 return libbpf_err(err);
12314 }
12315
12316 for (i = 0; i < s->map_cnt; i++) {
12317 struct bpf_map *map = *s->maps[i].map;
12318 size_t mmap_sz = bpf_map_mmap_sz(map);
12319 int prot, map_fd = bpf_map__fd(map);
12320 void **mmaped = s->maps[i].mmaped;
12321
12322 if (!mmaped)
12323 continue;
12324
12325 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12326 *mmaped = NULL;
12327 continue;
12328 }
12329
12330 if (map->def.map_flags & BPF_F_RDONLY_PROG)
12331 prot = PROT_READ;
12332 else
12333 prot = PROT_READ | PROT_WRITE;
12334
12335 /* Remap anonymous mmap()-ed "map initialization image" as
12336 * a BPF map-backed mmap()-ed memory, but preserving the same
12337 * memory address. This will cause kernel to change process'
12338 * page table to point to a different piece of kernel memory,
12339 * but from userspace point of view memory address (and its
12340 * contents, being identical at this point) will stay the
12341 * same. This mapping will be released by bpf_object__close()
12342 * as per normal clean up procedure, so we don't need to worry
12343 * about it from skeleton's clean up perspective.
12344 */
12345 *mmaped = mmap(map->mmaped, mmap_sz, prot,
12346 MAP_SHARED | MAP_FIXED, map_fd, 0);
12347 if (*mmaped == MAP_FAILED) {
12348 err = -errno;
12349 *mmaped = NULL;
12350 pr_warn("failed to re-mmap() map '%s': %d\n",
12351 bpf_map__name(map), err);
12352 return libbpf_err(err);
12353 }
12354 }
12355
12356 return 0;
12357 }
12358
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)12359 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12360 {
12361 int i, err;
12362
12363 for (i = 0; i < s->prog_cnt; i++) {
12364 struct bpf_program *prog = *s->progs[i].prog;
12365 struct bpf_link **link = s->progs[i].link;
12366
12367 if (!prog->autoload || !prog->autoattach)
12368 continue;
12369
12370 /* auto-attaching not supported for this program */
12371 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12372 continue;
12373
12374 /* if user already set the link manually, don't attempt auto-attach */
12375 if (*link)
12376 continue;
12377
12378 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12379 if (err) {
12380 pr_warn("prog '%s': failed to auto-attach: %d\n",
12381 bpf_program__name(prog), err);
12382 return libbpf_err(err);
12383 }
12384
12385 /* It's possible that for some SEC() definitions auto-attach
12386 * is supported in some cases (e.g., if definition completely
12387 * specifies target information), but is not in other cases.
12388 * SEC("uprobe") is one such case. If user specified target
12389 * binary and function name, such BPF program can be
12390 * auto-attached. But if not, it shouldn't trigger skeleton's
12391 * attach to fail. It should just be skipped.
12392 * attach_fn signals such case with returning 0 (no error) and
12393 * setting link to NULL.
12394 */
12395 }
12396
12397 return 0;
12398 }
12399
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)12400 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12401 {
12402 int i;
12403
12404 for (i = 0; i < s->prog_cnt; i++) {
12405 struct bpf_link **link = s->progs[i].link;
12406
12407 bpf_link__destroy(*link);
12408 *link = NULL;
12409 }
12410 }
12411
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)12412 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12413 {
12414 if (!s)
12415 return;
12416
12417 if (s->progs)
12418 bpf_object__detach_skeleton(s);
12419 if (s->obj)
12420 bpf_object__close(*s->obj);
12421 free(s->maps);
12422 free(s->progs);
12423 free(s);
12424 }
12425