1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17
18 #include "../../lib/kstrtox.h"
19
20 /* If kernel subsystem is allowing eBPF programs to call this function,
21 * inside its own verifier_ops->get_func_proto() callback it should return
22 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
23 *
24 * Different map implementations will rely on rcu in map methods
25 * lookup/update/delete, therefore eBPF programs must run under rcu lock
26 * if program is allowed to access maps, so check rcu_read_lock_held in
27 * all three functions.
28 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)29 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
30 {
31 WARN_ON_ONCE(!rcu_read_lock_held());
32 return (unsigned long) map->ops->map_lookup_elem(map, key);
33 }
34
35 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
36 .func = bpf_map_lookup_elem,
37 .gpl_only = false,
38 .pkt_access = true,
39 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
40 .arg1_type = ARG_CONST_MAP_PTR,
41 .arg2_type = ARG_PTR_TO_MAP_KEY,
42 };
43
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)44 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
45 void *, value, u64, flags)
46 {
47 WARN_ON_ONCE(!rcu_read_lock_held());
48 return map->ops->map_update_elem(map, key, value, flags);
49 }
50
51 const struct bpf_func_proto bpf_map_update_elem_proto = {
52 .func = bpf_map_update_elem,
53 .gpl_only = false,
54 .pkt_access = true,
55 .ret_type = RET_INTEGER,
56 .arg1_type = ARG_CONST_MAP_PTR,
57 .arg2_type = ARG_PTR_TO_MAP_KEY,
58 .arg3_type = ARG_PTR_TO_MAP_VALUE,
59 .arg4_type = ARG_ANYTHING,
60 };
61
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)62 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
63 {
64 WARN_ON_ONCE(!rcu_read_lock_held());
65 return map->ops->map_delete_elem(map, key);
66 }
67
68 const struct bpf_func_proto bpf_map_delete_elem_proto = {
69 .func = bpf_map_delete_elem,
70 .gpl_only = false,
71 .pkt_access = true,
72 .ret_type = RET_INTEGER,
73 .arg1_type = ARG_CONST_MAP_PTR,
74 .arg2_type = ARG_PTR_TO_MAP_KEY,
75 };
76
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)77 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
78 {
79 return map->ops->map_push_elem(map, value, flags);
80 }
81
82 const struct bpf_func_proto bpf_map_push_elem_proto = {
83 .func = bpf_map_push_elem,
84 .gpl_only = false,
85 .pkt_access = true,
86 .ret_type = RET_INTEGER,
87 .arg1_type = ARG_CONST_MAP_PTR,
88 .arg2_type = ARG_PTR_TO_MAP_VALUE,
89 .arg3_type = ARG_ANYTHING,
90 };
91
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)92 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
93 {
94 return map->ops->map_pop_elem(map, value);
95 }
96
97 const struct bpf_func_proto bpf_map_pop_elem_proto = {
98 .func = bpf_map_pop_elem,
99 .gpl_only = false,
100 .ret_type = RET_INTEGER,
101 .arg1_type = ARG_CONST_MAP_PTR,
102 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
103 };
104
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)105 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
106 {
107 return map->ops->map_peek_elem(map, value);
108 }
109
110 const struct bpf_func_proto bpf_map_peek_elem_proto = {
111 .func = bpf_map_pop_elem,
112 .gpl_only = false,
113 .ret_type = RET_INTEGER,
114 .arg1_type = ARG_CONST_MAP_PTR,
115 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
116 };
117
118 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
119 .func = bpf_user_rnd_u32,
120 .gpl_only = false,
121 .ret_type = RET_INTEGER,
122 };
123
BPF_CALL_0(bpf_get_smp_processor_id)124 BPF_CALL_0(bpf_get_smp_processor_id)
125 {
126 return smp_processor_id();
127 }
128
129 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
130 .func = bpf_get_smp_processor_id,
131 .gpl_only = false,
132 .ret_type = RET_INTEGER,
133 };
134
BPF_CALL_0(bpf_get_numa_node_id)135 BPF_CALL_0(bpf_get_numa_node_id)
136 {
137 return numa_node_id();
138 }
139
140 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
141 .func = bpf_get_numa_node_id,
142 .gpl_only = false,
143 .ret_type = RET_INTEGER,
144 };
145
BPF_CALL_0(bpf_ktime_get_ns)146 BPF_CALL_0(bpf_ktime_get_ns)
147 {
148 /* NMI safe access to clock monotonic */
149 return ktime_get_mono_fast_ns();
150 }
151
152 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
153 .func = bpf_ktime_get_ns,
154 .gpl_only = false,
155 .ret_type = RET_INTEGER,
156 };
157
BPF_CALL_0(bpf_ktime_get_boot_ns)158 BPF_CALL_0(bpf_ktime_get_boot_ns)
159 {
160 /* NMI safe access to clock boottime */
161 return ktime_get_boot_fast_ns();
162 }
163
164 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
165 .func = bpf_ktime_get_boot_ns,
166 .gpl_only = false,
167 .ret_type = RET_INTEGER,
168 };
169
BPF_CALL_0(bpf_get_current_pid_tgid)170 BPF_CALL_0(bpf_get_current_pid_tgid)
171 {
172 struct task_struct *task = current;
173
174 if (unlikely(!task))
175 return -EINVAL;
176
177 return (u64) task->tgid << 32 | task->pid;
178 }
179
180 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
181 .func = bpf_get_current_pid_tgid,
182 .gpl_only = false,
183 .ret_type = RET_INTEGER,
184 };
185
BPF_CALL_0(bpf_get_current_uid_gid)186 BPF_CALL_0(bpf_get_current_uid_gid)
187 {
188 struct task_struct *task = current;
189 kuid_t uid;
190 kgid_t gid;
191
192 if (unlikely(!task))
193 return -EINVAL;
194
195 current_uid_gid(&uid, &gid);
196 return (u64) from_kgid(&init_user_ns, gid) << 32 |
197 from_kuid(&init_user_ns, uid);
198 }
199
200 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
201 .func = bpf_get_current_uid_gid,
202 .gpl_only = false,
203 .ret_type = RET_INTEGER,
204 };
205
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)206 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
207 {
208 struct task_struct *task = current;
209
210 if (unlikely(!task))
211 goto err_clear;
212
213 strncpy(buf, task->comm, size);
214
215 /* Verifier guarantees that size > 0. For task->comm exceeding
216 * size, guarantee that buf is %NUL-terminated. Unconditionally
217 * done here to save the size test.
218 */
219 buf[size - 1] = 0;
220 return 0;
221 err_clear:
222 memset(buf, 0, size);
223 return -EINVAL;
224 }
225
226 const struct bpf_func_proto bpf_get_current_comm_proto = {
227 .func = bpf_get_current_comm,
228 .gpl_only = false,
229 .ret_type = RET_INTEGER,
230 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
231 .arg2_type = ARG_CONST_SIZE,
232 };
233
234 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
235
__bpf_spin_lock(struct bpf_spin_lock * lock)236 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
237 {
238 arch_spinlock_t *l = (void *)lock;
239 union {
240 __u32 val;
241 arch_spinlock_t lock;
242 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
243
244 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
245 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
246 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
247 arch_spin_lock(l);
248 }
249
__bpf_spin_unlock(struct bpf_spin_lock * lock)250 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
251 {
252 arch_spinlock_t *l = (void *)lock;
253
254 arch_spin_unlock(l);
255 }
256
257 #else
258
__bpf_spin_lock(struct bpf_spin_lock * lock)259 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
260 {
261 atomic_t *l = (void *)lock;
262
263 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
264 do {
265 atomic_cond_read_relaxed(l, !VAL);
266 } while (atomic_xchg(l, 1));
267 }
268
__bpf_spin_unlock(struct bpf_spin_lock * lock)269 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
270 {
271 atomic_t *l = (void *)lock;
272
273 atomic_set_release(l, 0);
274 }
275
276 #endif
277
278 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
279
BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)280 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
281 {
282 unsigned long flags;
283
284 local_irq_save(flags);
285 __bpf_spin_lock(lock);
286 __this_cpu_write(irqsave_flags, flags);
287 return 0;
288 }
289
290 const struct bpf_func_proto bpf_spin_lock_proto = {
291 .func = bpf_spin_lock,
292 .gpl_only = false,
293 .ret_type = RET_VOID,
294 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
295 };
296
BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)297 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
298 {
299 unsigned long flags;
300
301 flags = __this_cpu_read(irqsave_flags);
302 __bpf_spin_unlock(lock);
303 local_irq_restore(flags);
304 return 0;
305 }
306
307 const struct bpf_func_proto bpf_spin_unlock_proto = {
308 .func = bpf_spin_unlock,
309 .gpl_only = false,
310 .ret_type = RET_VOID,
311 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
312 };
313
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)314 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
315 bool lock_src)
316 {
317 struct bpf_spin_lock *lock;
318
319 if (lock_src)
320 lock = src + map->spin_lock_off;
321 else
322 lock = dst + map->spin_lock_off;
323 preempt_disable();
324 ____bpf_spin_lock(lock);
325 copy_map_value(map, dst, src);
326 ____bpf_spin_unlock(lock);
327 preempt_enable();
328 }
329
BPF_CALL_0(bpf_jiffies64)330 BPF_CALL_0(bpf_jiffies64)
331 {
332 return get_jiffies_64();
333 }
334
335 const struct bpf_func_proto bpf_jiffies64_proto = {
336 .func = bpf_jiffies64,
337 .gpl_only = false,
338 .ret_type = RET_INTEGER,
339 };
340
341 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)342 BPF_CALL_0(bpf_get_current_cgroup_id)
343 {
344 struct cgroup *cgrp = task_dfl_cgroup(current);
345
346 return cgroup_id(cgrp);
347 }
348
349 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
350 .func = bpf_get_current_cgroup_id,
351 .gpl_only = false,
352 .ret_type = RET_INTEGER,
353 };
354
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)355 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
356 {
357 struct cgroup *cgrp = task_dfl_cgroup(current);
358 struct cgroup *ancestor;
359
360 ancestor = cgroup_ancestor(cgrp, ancestor_level);
361 if (!ancestor)
362 return 0;
363 return cgroup_id(ancestor);
364 }
365
366 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
367 .func = bpf_get_current_ancestor_cgroup_id,
368 .gpl_only = false,
369 .ret_type = RET_INTEGER,
370 .arg1_type = ARG_ANYTHING,
371 };
372
373 #ifdef CONFIG_CGROUP_BPF
374 DECLARE_PER_CPU(struct bpf_cgroup_storage*,
375 bpf_cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]);
376
BPF_CALL_2(bpf_get_local_storage,struct bpf_map *,map,u64,flags)377 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
378 {
379 /* flags argument is not used now,
380 * but provides an ability to extend the API.
381 * verifier checks that its value is correct.
382 */
383 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
384 struct bpf_cgroup_storage *storage;
385 void *ptr;
386
387 storage = this_cpu_read(bpf_cgroup_storage[stype]);
388
389 if (stype == BPF_CGROUP_STORAGE_SHARED)
390 ptr = &READ_ONCE(storage->buf)->data[0];
391 else
392 ptr = this_cpu_ptr(storage->percpu_buf);
393
394 return (unsigned long)ptr;
395 }
396
397 const struct bpf_func_proto bpf_get_local_storage_proto = {
398 .func = bpf_get_local_storage,
399 .gpl_only = false,
400 .ret_type = RET_PTR_TO_MAP_VALUE,
401 .arg1_type = ARG_CONST_MAP_PTR,
402 .arg2_type = ARG_ANYTHING,
403 };
404 #endif
405
406 #define BPF_STRTOX_BASE_MASK 0x1F
407
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)408 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
409 unsigned long long *res, bool *is_negative)
410 {
411 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
412 const char *cur_buf = buf;
413 size_t cur_len = buf_len;
414 unsigned int consumed;
415 size_t val_len;
416 char str[64];
417
418 if (!buf || !buf_len || !res || !is_negative)
419 return -EINVAL;
420
421 if (base != 0 && base != 8 && base != 10 && base != 16)
422 return -EINVAL;
423
424 if (flags & ~BPF_STRTOX_BASE_MASK)
425 return -EINVAL;
426
427 while (cur_buf < buf + buf_len && isspace(*cur_buf))
428 ++cur_buf;
429
430 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
431 if (*is_negative)
432 ++cur_buf;
433
434 consumed = cur_buf - buf;
435 cur_len -= consumed;
436 if (!cur_len)
437 return -EINVAL;
438
439 cur_len = min(cur_len, sizeof(str) - 1);
440 memcpy(str, cur_buf, cur_len);
441 str[cur_len] = '\0';
442 cur_buf = str;
443
444 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
445 val_len = _parse_integer(cur_buf, base, res);
446
447 if (val_len & KSTRTOX_OVERFLOW)
448 return -ERANGE;
449
450 if (val_len == 0)
451 return -EINVAL;
452
453 cur_buf += val_len;
454 consumed += cur_buf - str;
455
456 return consumed;
457 }
458
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)459 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
460 long long *res)
461 {
462 unsigned long long _res;
463 bool is_negative;
464 int err;
465
466 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
467 if (err < 0)
468 return err;
469 if (is_negative) {
470 if ((long long)-_res > 0)
471 return -ERANGE;
472 *res = -_res;
473 } else {
474 if ((long long)_res < 0)
475 return -ERANGE;
476 *res = _res;
477 }
478 return err;
479 }
480
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,long *,res)481 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
482 long *, res)
483 {
484 long long _res;
485 int err;
486
487 err = __bpf_strtoll(buf, buf_len, flags, &_res);
488 if (err < 0)
489 return err;
490 if (_res != (long)_res)
491 return -ERANGE;
492 *res = _res;
493 return err;
494 }
495
496 const struct bpf_func_proto bpf_strtol_proto = {
497 .func = bpf_strtol,
498 .gpl_only = false,
499 .ret_type = RET_INTEGER,
500 .arg1_type = ARG_PTR_TO_MEM,
501 .arg2_type = ARG_CONST_SIZE,
502 .arg3_type = ARG_ANYTHING,
503 .arg4_type = ARG_PTR_TO_LONG,
504 };
505
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,unsigned long *,res)506 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
507 unsigned long *, res)
508 {
509 unsigned long long _res;
510 bool is_negative;
511 int err;
512
513 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
514 if (err < 0)
515 return err;
516 if (is_negative)
517 return -EINVAL;
518 if (_res != (unsigned long)_res)
519 return -ERANGE;
520 *res = _res;
521 return err;
522 }
523
524 const struct bpf_func_proto bpf_strtoul_proto = {
525 .func = bpf_strtoul,
526 .gpl_only = false,
527 .ret_type = RET_INTEGER,
528 .arg1_type = ARG_PTR_TO_MEM,
529 .arg2_type = ARG_CONST_SIZE,
530 .arg3_type = ARG_ANYTHING,
531 .arg4_type = ARG_PTR_TO_LONG,
532 };
533 #endif
534
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)535 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
536 struct bpf_pidns_info *, nsdata, u32, size)
537 {
538 struct task_struct *task = current;
539 struct pid_namespace *pidns;
540 int err = -EINVAL;
541
542 if (unlikely(size != sizeof(struct bpf_pidns_info)))
543 goto clear;
544
545 if (unlikely((u64)(dev_t)dev != dev))
546 goto clear;
547
548 if (unlikely(!task))
549 goto clear;
550
551 pidns = task_active_pid_ns(task);
552 if (unlikely(!pidns)) {
553 err = -ENOENT;
554 goto clear;
555 }
556
557 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
558 goto clear;
559
560 nsdata->pid = task_pid_nr_ns(task, pidns);
561 nsdata->tgid = task_tgid_nr_ns(task, pidns);
562 return 0;
563 clear:
564 memset((void *)nsdata, 0, (size_t) size);
565 return err;
566 }
567
568 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
569 .func = bpf_get_ns_current_pid_tgid,
570 .gpl_only = false,
571 .ret_type = RET_INTEGER,
572 .arg1_type = ARG_ANYTHING,
573 .arg2_type = ARG_ANYTHING,
574 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
575 .arg4_type = ARG_CONST_SIZE,
576 };
577
578 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
579 .func = bpf_get_raw_cpu_id,
580 .gpl_only = false,
581 .ret_type = RET_INTEGER,
582 };
583
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)584 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
585 u64, flags, void *, data, u64, size)
586 {
587 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
588 return -EINVAL;
589
590 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
591 }
592
593 const struct bpf_func_proto bpf_event_output_data_proto = {
594 .func = bpf_event_output_data,
595 .gpl_only = true,
596 .ret_type = RET_INTEGER,
597 .arg1_type = ARG_PTR_TO_CTX,
598 .arg2_type = ARG_CONST_MAP_PTR,
599 .arg3_type = ARG_ANYTHING,
600 .arg4_type = ARG_PTR_TO_MEM,
601 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
602 };
603
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)604 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
605 const void __user *, user_ptr)
606 {
607 int ret = copy_from_user(dst, user_ptr, size);
608
609 if (unlikely(ret)) {
610 memset(dst, 0, size);
611 ret = -EFAULT;
612 }
613
614 return ret;
615 }
616
617 const struct bpf_func_proto bpf_copy_from_user_proto = {
618 .func = bpf_copy_from_user,
619 .gpl_only = false,
620 .ret_type = RET_INTEGER,
621 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
622 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
623 .arg3_type = ARG_ANYTHING,
624 };
625
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)626 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
627 {
628 if (cpu >= nr_cpu_ids)
629 return (unsigned long)NULL;
630
631 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
632 }
633
634 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
635 .func = bpf_per_cpu_ptr,
636 .gpl_only = false,
637 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
638 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
639 .arg2_type = ARG_ANYTHING,
640 };
641
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)642 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
643 {
644 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
645 }
646
647 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
648 .func = bpf_this_cpu_ptr,
649 .gpl_only = false,
650 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID,
651 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
652 };
653
654 const struct bpf_func_proto bpf_get_current_task_proto __weak;
655 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
656 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
657 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
658 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
659
660 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)661 bpf_base_func_proto(enum bpf_func_id func_id)
662 {
663 switch (func_id) {
664 case BPF_FUNC_map_lookup_elem:
665 return &bpf_map_lookup_elem_proto;
666 case BPF_FUNC_map_update_elem:
667 return &bpf_map_update_elem_proto;
668 case BPF_FUNC_map_delete_elem:
669 return &bpf_map_delete_elem_proto;
670 case BPF_FUNC_map_push_elem:
671 return &bpf_map_push_elem_proto;
672 case BPF_FUNC_map_pop_elem:
673 return &bpf_map_pop_elem_proto;
674 case BPF_FUNC_map_peek_elem:
675 return &bpf_map_peek_elem_proto;
676 case BPF_FUNC_get_prandom_u32:
677 return &bpf_get_prandom_u32_proto;
678 case BPF_FUNC_get_smp_processor_id:
679 return &bpf_get_raw_smp_processor_id_proto;
680 case BPF_FUNC_get_numa_node_id:
681 return &bpf_get_numa_node_id_proto;
682 case BPF_FUNC_tail_call:
683 return &bpf_tail_call_proto;
684 case BPF_FUNC_ktime_get_ns:
685 return &bpf_ktime_get_ns_proto;
686 case BPF_FUNC_ktime_get_boot_ns:
687 return &bpf_ktime_get_boot_ns_proto;
688 case BPF_FUNC_ringbuf_output:
689 return &bpf_ringbuf_output_proto;
690 case BPF_FUNC_ringbuf_reserve:
691 return &bpf_ringbuf_reserve_proto;
692 case BPF_FUNC_ringbuf_submit:
693 return &bpf_ringbuf_submit_proto;
694 case BPF_FUNC_ringbuf_discard:
695 return &bpf_ringbuf_discard_proto;
696 case BPF_FUNC_ringbuf_query:
697 return &bpf_ringbuf_query_proto;
698 default:
699 break;
700 }
701
702 if (!bpf_capable())
703 return NULL;
704
705 switch (func_id) {
706 case BPF_FUNC_spin_lock:
707 return &bpf_spin_lock_proto;
708 case BPF_FUNC_spin_unlock:
709 return &bpf_spin_unlock_proto;
710 case BPF_FUNC_trace_printk:
711 if (!perfmon_capable())
712 return NULL;
713 return bpf_get_trace_printk_proto();
714 case BPF_FUNC_snprintf_btf:
715 if (!perfmon_capable())
716 return NULL;
717 return &bpf_snprintf_btf_proto;
718 case BPF_FUNC_jiffies64:
719 return &bpf_jiffies64_proto;
720 case BPF_FUNC_per_cpu_ptr:
721 return &bpf_per_cpu_ptr_proto;
722 case BPF_FUNC_this_cpu_ptr:
723 return &bpf_this_cpu_ptr_proto;
724 default:
725 break;
726 }
727
728 if (!perfmon_capable())
729 return NULL;
730
731 switch (func_id) {
732 case BPF_FUNC_get_current_task:
733 return &bpf_get_current_task_proto;
734 case BPF_FUNC_probe_read_user:
735 return &bpf_probe_read_user_proto;
736 case BPF_FUNC_probe_read_kernel:
737 return &bpf_probe_read_kernel_proto;
738 case BPF_FUNC_probe_read_user_str:
739 return &bpf_probe_read_user_str_proto;
740 case BPF_FUNC_probe_read_kernel_str:
741 return &bpf_probe_read_kernel_str_proto;
742 default:
743 return NULL;
744 }
745 }
746