1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2006-2014 Intel Corporation.
4 *
5 * Authors: David Woodhouse <dwmw2@infradead.org>,
6 * Ashok Raj <ashok.raj@intel.com>,
7 * Shaohua Li <shaohua.li@intel.com>,
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
9 * Fenghua Yu <fenghua.yu@intel.com>
10 * Joerg Roedel <jroedel@suse.de>
11 */
12
13 #define pr_fmt(fmt) "DMAR: " fmt
14 #define dev_fmt(fmt) pr_fmt(fmt)
15
16 #include <linux/init.h>
17 #include <linux/bitmap.h>
18 #include <linux/debugfs.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/irq.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/pci.h>
25 #include <linux/dmar.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/mempool.h>
28 #include <linux/memory.h>
29 #include <linux/cpu.h>
30 #include <linux/timer.h>
31 #include <linux/io.h>
32 #include <linux/iova.h>
33 #include <linux/iommu.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/pci-ats.h>
39 #include <linux/memblock.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/dma-direct.h>
42 #include <linux/crash_dump.h>
43 #include <linux/numa.h>
44 #include <linux/swiotlb.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48 #include <trace/events/intel_iommu.h>
49
50 #include "irq_remapping.h"
51 #include "intel-pasid.h"
52
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
81
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
83
84 /* page table handling */
85 #define LEVEL_STRIDE (9)
86 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
87
88 /*
89 * This bitmap is used to advertise the page sizes our hardware support
90 * to the IOMMU core, which will then use this information to split
91 * physically contiguous memory regions it is mapping into page sizes
92 * that we support.
93 *
94 * Traditionally the IOMMU core just handed us the mappings directly,
95 * after making sure the size is an order of a 4KiB page and that the
96 * mapping has natural alignment.
97 *
98 * To retain this behavior, we currently advertise that we support
99 * all page sizes that are an order of 4KiB.
100 *
101 * If at some point we'd like to utilize the IOMMU core's new behavior,
102 * we could change this to advertise the real page sizes we support.
103 */
104 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
105
agaw_to_level(int agaw)106 static inline int agaw_to_level(int agaw)
107 {
108 return agaw + 2;
109 }
110
agaw_to_width(int agaw)111 static inline int agaw_to_width(int agaw)
112 {
113 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 }
115
width_to_agaw(int width)116 static inline int width_to_agaw(int width)
117 {
118 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 }
120
level_to_offset_bits(int level)121 static inline unsigned int level_to_offset_bits(int level)
122 {
123 return (level - 1) * LEVEL_STRIDE;
124 }
125
pfn_level_offset(unsigned long pfn,int level)126 static inline int pfn_level_offset(unsigned long pfn, int level)
127 {
128 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
129 }
130
level_mask(int level)131 static inline unsigned long level_mask(int level)
132 {
133 return -1UL << level_to_offset_bits(level);
134 }
135
level_size(int level)136 static inline unsigned long level_size(int level)
137 {
138 return 1UL << level_to_offset_bits(level);
139 }
140
align_to_level(unsigned long pfn,int level)141 static inline unsigned long align_to_level(unsigned long pfn, int level)
142 {
143 return (pfn + level_size(level) - 1) & level_mask(level);
144 }
145
lvl_to_nr_pages(unsigned int lvl)146 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
147 {
148 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 }
150
151 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
152 are never going to work. */
dma_to_mm_pfn(unsigned long dma_pfn)153 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
154 {
155 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
156 }
157
mm_to_dma_pfn(unsigned long mm_pfn)158 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
159 {
160 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
161 }
page_to_dma_pfn(struct page * pg)162 static inline unsigned long page_to_dma_pfn(struct page *pg)
163 {
164 return mm_to_dma_pfn(page_to_pfn(pg));
165 }
virt_to_dma_pfn(void * p)166 static inline unsigned long virt_to_dma_pfn(void *p)
167 {
168 return page_to_dma_pfn(virt_to_page(p));
169 }
170
171 /* global iommu list, set NULL for ignored DMAR units */
172 static struct intel_iommu **g_iommus;
173
174 static void __init check_tylersburg_isoch(void);
175 static int rwbf_quirk;
176
177 /*
178 * set to 1 to panic kernel if can't successfully enable VT-d
179 * (used when kernel is launched w/ TXT)
180 */
181 static int force_on = 0;
182 int intel_iommu_tboot_noforce;
183 static int no_platform_optin;
184
185 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
186
187 /*
188 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
189 * if marked present.
190 */
root_entry_lctp(struct root_entry * re)191 static phys_addr_t root_entry_lctp(struct root_entry *re)
192 {
193 if (!(re->lo & 1))
194 return 0;
195
196 return re->lo & VTD_PAGE_MASK;
197 }
198
199 /*
200 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
201 * if marked present.
202 */
root_entry_uctp(struct root_entry * re)203 static phys_addr_t root_entry_uctp(struct root_entry *re)
204 {
205 if (!(re->hi & 1))
206 return 0;
207
208 return re->hi & VTD_PAGE_MASK;
209 }
210
context_clear_pasid_enable(struct context_entry * context)211 static inline void context_clear_pasid_enable(struct context_entry *context)
212 {
213 context->lo &= ~(1ULL << 11);
214 }
215
context_pasid_enabled(struct context_entry * context)216 static inline bool context_pasid_enabled(struct context_entry *context)
217 {
218 return !!(context->lo & (1ULL << 11));
219 }
220
context_set_copied(struct context_entry * context)221 static inline void context_set_copied(struct context_entry *context)
222 {
223 context->hi |= (1ull << 3);
224 }
225
context_copied(struct context_entry * context)226 static inline bool context_copied(struct context_entry *context)
227 {
228 return !!(context->hi & (1ULL << 3));
229 }
230
__context_present(struct context_entry * context)231 static inline bool __context_present(struct context_entry *context)
232 {
233 return (context->lo & 1);
234 }
235
context_present(struct context_entry * context)236 bool context_present(struct context_entry *context)
237 {
238 return context_pasid_enabled(context) ?
239 __context_present(context) :
240 __context_present(context) && !context_copied(context);
241 }
242
context_set_present(struct context_entry * context)243 static inline void context_set_present(struct context_entry *context)
244 {
245 context->lo |= 1;
246 }
247
context_set_fault_enable(struct context_entry * context)248 static inline void context_set_fault_enable(struct context_entry *context)
249 {
250 context->lo &= (((u64)-1) << 2) | 1;
251 }
252
context_set_translation_type(struct context_entry * context,unsigned long value)253 static inline void context_set_translation_type(struct context_entry *context,
254 unsigned long value)
255 {
256 context->lo &= (((u64)-1) << 4) | 3;
257 context->lo |= (value & 3) << 2;
258 }
259
context_set_address_root(struct context_entry * context,unsigned long value)260 static inline void context_set_address_root(struct context_entry *context,
261 unsigned long value)
262 {
263 context->lo &= ~VTD_PAGE_MASK;
264 context->lo |= value & VTD_PAGE_MASK;
265 }
266
context_set_address_width(struct context_entry * context,unsigned long value)267 static inline void context_set_address_width(struct context_entry *context,
268 unsigned long value)
269 {
270 context->hi |= value & 7;
271 }
272
context_set_domain_id(struct context_entry * context,unsigned long value)273 static inline void context_set_domain_id(struct context_entry *context,
274 unsigned long value)
275 {
276 context->hi |= (value & ((1 << 16) - 1)) << 8;
277 }
278
context_domain_id(struct context_entry * c)279 static inline int context_domain_id(struct context_entry *c)
280 {
281 return((c->hi >> 8) & 0xffff);
282 }
283
context_clear_entry(struct context_entry * context)284 static inline void context_clear_entry(struct context_entry *context)
285 {
286 context->lo = 0;
287 context->hi = 0;
288 }
289
290 /*
291 * This domain is a statically identity mapping domain.
292 * 1. This domain creats a static 1:1 mapping to all usable memory.
293 * 2. It maps to each iommu if successful.
294 * 3. Each iommu mapps to this domain if successful.
295 */
296 static struct dmar_domain *si_domain;
297 static int hw_pass_through = 1;
298
299 /* si_domain contains mulitple devices */
300 #define DOMAIN_FLAG_STATIC_IDENTITY BIT(0)
301
302 /*
303 * This is a DMA domain allocated through the iommu domain allocation
304 * interface. But one or more devices belonging to this domain have
305 * been chosen to use a private domain. We should avoid to use the
306 * map/unmap/iova_to_phys APIs on it.
307 */
308 #define DOMAIN_FLAG_LOSE_CHILDREN BIT(1)
309
310 #define for_each_domain_iommu(idx, domain) \
311 for (idx = 0; idx < g_num_of_iommus; idx++) \
312 if (domain->iommu_refcnt[idx])
313
314 struct dmar_rmrr_unit {
315 struct list_head list; /* list of rmrr units */
316 struct acpi_dmar_header *hdr; /* ACPI header */
317 u64 base_address; /* reserved base address*/
318 u64 end_address; /* reserved end address */
319 struct dmar_dev_scope *devices; /* target devices */
320 int devices_cnt; /* target device count */
321 };
322
323 struct dmar_atsr_unit {
324 struct list_head list; /* list of ATSR units */
325 struct acpi_dmar_header *hdr; /* ACPI header */
326 struct dmar_dev_scope *devices; /* target devices */
327 int devices_cnt; /* target device count */
328 u8 include_all:1; /* include all ports */
329 };
330
331 static LIST_HEAD(dmar_atsr_units);
332 static LIST_HEAD(dmar_rmrr_units);
333
334 #define for_each_rmrr_units(rmrr) \
335 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
336
337 /* bitmap for indexing intel_iommus */
338 static int g_num_of_iommus;
339
340 static void domain_exit(struct dmar_domain *domain);
341 static void domain_remove_dev_info(struct dmar_domain *domain);
342 static void dmar_remove_one_dev_info(struct device *dev);
343 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
344 static void domain_context_clear(struct intel_iommu *iommu,
345 struct device *dev);
346 static int domain_detach_iommu(struct dmar_domain *domain,
347 struct intel_iommu *iommu);
348 static bool device_is_rmrr_locked(struct device *dev);
349 static int intel_iommu_attach_device(struct iommu_domain *domain,
350 struct device *dev);
351 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
352 dma_addr_t iova);
353
354 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
355 int dmar_disabled = 0;
356 #else
357 int dmar_disabled = 1;
358 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
359
360 int intel_iommu_sm;
361 int intel_iommu_enabled = 0;
362 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
363
364 static int dmar_map_gfx = 1;
365 static int dmar_forcedac;
366 static int intel_iommu_strict;
367 static int intel_iommu_superpage = 1;
368 static int iommu_identity_mapping;
369 static int intel_no_bounce;
370
371 #define IDENTMAP_ALL 1
372 #define IDENTMAP_GFX 2
373 #define IDENTMAP_AZALIA 4
374
375 int intel_iommu_gfx_mapped;
376 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
377
378 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
379 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
380 static DEFINE_SPINLOCK(device_domain_lock);
381 static LIST_HEAD(device_domain_list);
382
383 #define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) && \
384 to_pci_dev(d)->untrusted)
385
386 /*
387 * Iterate over elements in device_domain_list and call the specified
388 * callback @fn against each element.
389 */
for_each_device_domain(int (* fn)(struct device_domain_info * info,void * data),void * data)390 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
391 void *data), void *data)
392 {
393 int ret = 0;
394 unsigned long flags;
395 struct device_domain_info *info;
396
397 spin_lock_irqsave(&device_domain_lock, flags);
398 list_for_each_entry(info, &device_domain_list, global) {
399 ret = fn(info, data);
400 if (ret) {
401 spin_unlock_irqrestore(&device_domain_lock, flags);
402 return ret;
403 }
404 }
405 spin_unlock_irqrestore(&device_domain_lock, flags);
406
407 return 0;
408 }
409
410 const struct iommu_ops intel_iommu_ops;
411
translation_pre_enabled(struct intel_iommu * iommu)412 static bool translation_pre_enabled(struct intel_iommu *iommu)
413 {
414 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
415 }
416
clear_translation_pre_enabled(struct intel_iommu * iommu)417 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
418 {
419 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
420 }
421
init_translation_status(struct intel_iommu * iommu)422 static void init_translation_status(struct intel_iommu *iommu)
423 {
424 u32 gsts;
425
426 gsts = readl(iommu->reg + DMAR_GSTS_REG);
427 if (gsts & DMA_GSTS_TES)
428 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
429 }
430
431 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
to_dmar_domain(struct iommu_domain * dom)432 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
433 {
434 return container_of(dom, struct dmar_domain, domain);
435 }
436
intel_iommu_setup(char * str)437 static int __init intel_iommu_setup(char *str)
438 {
439 if (!str)
440 return -EINVAL;
441 while (*str) {
442 if (!strncmp(str, "on", 2)) {
443 dmar_disabled = 0;
444 pr_info("IOMMU enabled\n");
445 } else if (!strncmp(str, "off", 3)) {
446 dmar_disabled = 1;
447 no_platform_optin = 1;
448 pr_info("IOMMU disabled\n");
449 } else if (!strncmp(str, "igfx_off", 8)) {
450 dmar_map_gfx = 0;
451 pr_info("Disable GFX device mapping\n");
452 } else if (!strncmp(str, "forcedac", 8)) {
453 pr_info("Forcing DAC for PCI devices\n");
454 dmar_forcedac = 1;
455 } else if (!strncmp(str, "strict", 6)) {
456 pr_info("Disable batched IOTLB flush\n");
457 intel_iommu_strict = 1;
458 } else if (!strncmp(str, "sp_off", 6)) {
459 pr_info("Disable supported super page\n");
460 intel_iommu_superpage = 0;
461 } else if (!strncmp(str, "sm_on", 5)) {
462 pr_info("Intel-IOMMU: scalable mode supported\n");
463 intel_iommu_sm = 1;
464 } else if (!strncmp(str, "tboot_noforce", 13)) {
465 printk(KERN_INFO
466 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
467 intel_iommu_tboot_noforce = 1;
468 } else if (!strncmp(str, "nobounce", 8)) {
469 pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
470 intel_no_bounce = 1;
471 }
472
473 str += strcspn(str, ",");
474 while (*str == ',')
475 str++;
476 }
477 return 0;
478 }
479 __setup("intel_iommu=", intel_iommu_setup);
480
481 static struct kmem_cache *iommu_domain_cache;
482 static struct kmem_cache *iommu_devinfo_cache;
483
get_iommu_domain(struct intel_iommu * iommu,u16 did)484 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
485 {
486 struct dmar_domain **domains;
487 int idx = did >> 8;
488
489 domains = iommu->domains[idx];
490 if (!domains)
491 return NULL;
492
493 return domains[did & 0xff];
494 }
495
set_iommu_domain(struct intel_iommu * iommu,u16 did,struct dmar_domain * domain)496 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
497 struct dmar_domain *domain)
498 {
499 struct dmar_domain **domains;
500 int idx = did >> 8;
501
502 if (!iommu->domains[idx]) {
503 size_t size = 256 * sizeof(struct dmar_domain *);
504 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
505 }
506
507 domains = iommu->domains[idx];
508 if (WARN_ON(!domains))
509 return;
510 else
511 domains[did & 0xff] = domain;
512 }
513
alloc_pgtable_page(int node)514 void *alloc_pgtable_page(int node)
515 {
516 struct page *page;
517 void *vaddr = NULL;
518
519 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
520 if (page)
521 vaddr = page_address(page);
522 return vaddr;
523 }
524
free_pgtable_page(void * vaddr)525 void free_pgtable_page(void *vaddr)
526 {
527 free_page((unsigned long)vaddr);
528 }
529
alloc_domain_mem(void)530 static inline void *alloc_domain_mem(void)
531 {
532 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
533 }
534
free_domain_mem(void * vaddr)535 static void free_domain_mem(void *vaddr)
536 {
537 kmem_cache_free(iommu_domain_cache, vaddr);
538 }
539
alloc_devinfo_mem(void)540 static inline void * alloc_devinfo_mem(void)
541 {
542 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
543 }
544
free_devinfo_mem(void * vaddr)545 static inline void free_devinfo_mem(void *vaddr)
546 {
547 kmem_cache_free(iommu_devinfo_cache, vaddr);
548 }
549
domain_type_is_si(struct dmar_domain * domain)550 static inline int domain_type_is_si(struct dmar_domain *domain)
551 {
552 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
553 }
554
domain_pfn_supported(struct dmar_domain * domain,unsigned long pfn)555 static inline int domain_pfn_supported(struct dmar_domain *domain,
556 unsigned long pfn)
557 {
558 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
559
560 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
561 }
562
__iommu_calculate_agaw(struct intel_iommu * iommu,int max_gaw)563 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
564 {
565 unsigned long sagaw;
566 int agaw = -1;
567
568 sagaw = cap_sagaw(iommu->cap);
569 for (agaw = width_to_agaw(max_gaw);
570 agaw >= 0; agaw--) {
571 if (test_bit(agaw, &sagaw))
572 break;
573 }
574
575 return agaw;
576 }
577
578 /*
579 * Calculate max SAGAW for each iommu.
580 */
iommu_calculate_max_sagaw(struct intel_iommu * iommu)581 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
582 {
583 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
584 }
585
586 /*
587 * calculate agaw for each iommu.
588 * "SAGAW" may be different across iommus, use a default agaw, and
589 * get a supported less agaw for iommus that don't support the default agaw.
590 */
iommu_calculate_agaw(struct intel_iommu * iommu)591 int iommu_calculate_agaw(struct intel_iommu *iommu)
592 {
593 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
594 }
595
596 /* This functionin only returns single iommu in a domain */
domain_get_iommu(struct dmar_domain * domain)597 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
598 {
599 int iommu_id;
600
601 /* si_domain and vm domain should not get here. */
602 if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
603 return NULL;
604
605 for_each_domain_iommu(iommu_id, domain)
606 break;
607
608 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
609 return NULL;
610
611 return g_iommus[iommu_id];
612 }
613
domain_update_iommu_coherency(struct dmar_domain * domain)614 static void domain_update_iommu_coherency(struct dmar_domain *domain)
615 {
616 struct dmar_drhd_unit *drhd;
617 struct intel_iommu *iommu;
618 bool found = false;
619 int i;
620
621 domain->iommu_coherency = 1;
622
623 for_each_domain_iommu(i, domain) {
624 found = true;
625 if (!ecap_coherent(g_iommus[i]->ecap)) {
626 domain->iommu_coherency = 0;
627 break;
628 }
629 }
630 if (found)
631 return;
632
633 /* No hardware attached; use lowest common denominator */
634 rcu_read_lock();
635 for_each_active_iommu(iommu, drhd) {
636 if (!ecap_coherent(iommu->ecap)) {
637 domain->iommu_coherency = 0;
638 break;
639 }
640 }
641 rcu_read_unlock();
642 }
643
domain_update_iommu_snooping(struct intel_iommu * skip)644 static int domain_update_iommu_snooping(struct intel_iommu *skip)
645 {
646 struct dmar_drhd_unit *drhd;
647 struct intel_iommu *iommu;
648 int ret = 1;
649
650 rcu_read_lock();
651 for_each_active_iommu(iommu, drhd) {
652 if (iommu != skip) {
653 if (!ecap_sc_support(iommu->ecap)) {
654 ret = 0;
655 break;
656 }
657 }
658 }
659 rcu_read_unlock();
660
661 return ret;
662 }
663
domain_update_iommu_superpage(struct intel_iommu * skip)664 static int domain_update_iommu_superpage(struct intel_iommu *skip)
665 {
666 struct dmar_drhd_unit *drhd;
667 struct intel_iommu *iommu;
668 int mask = 0xf;
669
670 if (!intel_iommu_superpage) {
671 return 0;
672 }
673
674 /* set iommu_superpage to the smallest common denominator */
675 rcu_read_lock();
676 for_each_active_iommu(iommu, drhd) {
677 if (iommu != skip) {
678 mask &= cap_super_page_val(iommu->cap);
679 if (!mask)
680 break;
681 }
682 }
683 rcu_read_unlock();
684
685 return fls(mask);
686 }
687
688 /* Some capabilities may be different across iommus */
domain_update_iommu_cap(struct dmar_domain * domain)689 static void domain_update_iommu_cap(struct dmar_domain *domain)
690 {
691 domain_update_iommu_coherency(domain);
692 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
693 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
694 }
695
iommu_context_addr(struct intel_iommu * iommu,u8 bus,u8 devfn,int alloc)696 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
697 u8 devfn, int alloc)
698 {
699 struct root_entry *root = &iommu->root_entry[bus];
700 struct context_entry *context;
701 u64 *entry;
702
703 entry = &root->lo;
704 if (sm_supported(iommu)) {
705 if (devfn >= 0x80) {
706 devfn -= 0x80;
707 entry = &root->hi;
708 }
709 devfn *= 2;
710 }
711 if (*entry & 1)
712 context = phys_to_virt(*entry & VTD_PAGE_MASK);
713 else {
714 unsigned long phy_addr;
715 if (!alloc)
716 return NULL;
717
718 context = alloc_pgtable_page(iommu->node);
719 if (!context)
720 return NULL;
721
722 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
723 phy_addr = virt_to_phys((void *)context);
724 *entry = phy_addr | 1;
725 __iommu_flush_cache(iommu, entry, sizeof(*entry));
726 }
727 return &context[devfn];
728 }
729
iommu_dummy(struct device * dev)730 static int iommu_dummy(struct device *dev)
731 {
732 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
733 }
734
735 /**
736 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
737 * sub-hierarchy of a candidate PCI-PCI bridge
738 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
739 * @bridge: the candidate PCI-PCI bridge
740 *
741 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
742 */
743 static bool
is_downstream_to_pci_bridge(struct device * dev,struct device * bridge)744 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
745 {
746 struct pci_dev *pdev, *pbridge;
747
748 if (!dev_is_pci(dev) || !dev_is_pci(bridge))
749 return false;
750
751 pdev = to_pci_dev(dev);
752 pbridge = to_pci_dev(bridge);
753
754 if (pbridge->subordinate &&
755 pbridge->subordinate->number <= pdev->bus->number &&
756 pbridge->subordinate->busn_res.end >= pdev->bus->number)
757 return true;
758
759 return false;
760 }
761
device_to_iommu(struct device * dev,u8 * bus,u8 * devfn)762 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
763 {
764 struct dmar_drhd_unit *drhd = NULL;
765 struct intel_iommu *iommu;
766 struct device *tmp;
767 struct pci_dev *pdev = NULL;
768 u16 segment = 0;
769 int i;
770
771 if (iommu_dummy(dev))
772 return NULL;
773
774 if (dev_is_pci(dev)) {
775 struct pci_dev *pf_pdev;
776
777 pdev = to_pci_dev(dev);
778
779 #ifdef CONFIG_X86
780 /* VMD child devices currently cannot be handled individually */
781 if (is_vmd(pdev->bus))
782 return NULL;
783 #endif
784
785 /* VFs aren't listed in scope tables; we need to look up
786 * the PF instead to find the IOMMU. */
787 pf_pdev = pci_physfn(pdev);
788 dev = &pf_pdev->dev;
789 segment = pci_domain_nr(pdev->bus);
790 } else if (has_acpi_companion(dev))
791 dev = &ACPI_COMPANION(dev)->dev;
792
793 rcu_read_lock();
794 for_each_active_iommu(iommu, drhd) {
795 if (pdev && segment != drhd->segment)
796 continue;
797
798 for_each_active_dev_scope(drhd->devices,
799 drhd->devices_cnt, i, tmp) {
800 if (tmp == dev) {
801 /* For a VF use its original BDF# not that of the PF
802 * which we used for the IOMMU lookup. Strictly speaking
803 * we could do this for all PCI devices; we only need to
804 * get the BDF# from the scope table for ACPI matches. */
805 if (pdev && pdev->is_virtfn)
806 goto got_pdev;
807
808 *bus = drhd->devices[i].bus;
809 *devfn = drhd->devices[i].devfn;
810 goto out;
811 }
812
813 if (is_downstream_to_pci_bridge(dev, tmp))
814 goto got_pdev;
815 }
816
817 if (pdev && drhd->include_all) {
818 got_pdev:
819 *bus = pdev->bus->number;
820 *devfn = pdev->devfn;
821 goto out;
822 }
823 }
824 iommu = NULL;
825 out:
826 rcu_read_unlock();
827
828 return iommu;
829 }
830
domain_flush_cache(struct dmar_domain * domain,void * addr,int size)831 static void domain_flush_cache(struct dmar_domain *domain,
832 void *addr, int size)
833 {
834 if (!domain->iommu_coherency)
835 clflush_cache_range(addr, size);
836 }
837
device_context_mapped(struct intel_iommu * iommu,u8 bus,u8 devfn)838 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
839 {
840 struct context_entry *context;
841 int ret = 0;
842 unsigned long flags;
843
844 spin_lock_irqsave(&iommu->lock, flags);
845 context = iommu_context_addr(iommu, bus, devfn, 0);
846 if (context)
847 ret = context_present(context);
848 spin_unlock_irqrestore(&iommu->lock, flags);
849 return ret;
850 }
851
free_context_table(struct intel_iommu * iommu)852 static void free_context_table(struct intel_iommu *iommu)
853 {
854 int i;
855 unsigned long flags;
856 struct context_entry *context;
857
858 spin_lock_irqsave(&iommu->lock, flags);
859 if (!iommu->root_entry) {
860 goto out;
861 }
862 for (i = 0; i < ROOT_ENTRY_NR; i++) {
863 context = iommu_context_addr(iommu, i, 0, 0);
864 if (context)
865 free_pgtable_page(context);
866
867 if (!sm_supported(iommu))
868 continue;
869
870 context = iommu_context_addr(iommu, i, 0x80, 0);
871 if (context)
872 free_pgtable_page(context);
873
874 }
875 free_pgtable_page(iommu->root_entry);
876 iommu->root_entry = NULL;
877 out:
878 spin_unlock_irqrestore(&iommu->lock, flags);
879 }
880
pfn_to_dma_pte(struct dmar_domain * domain,unsigned long pfn,int * target_level)881 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
882 unsigned long pfn, int *target_level)
883 {
884 struct dma_pte *parent, *pte;
885 int level = agaw_to_level(domain->agaw);
886 int offset;
887
888 BUG_ON(!domain->pgd);
889
890 if (!domain_pfn_supported(domain, pfn))
891 /* Address beyond IOMMU's addressing capabilities. */
892 return NULL;
893
894 parent = domain->pgd;
895
896 while (1) {
897 void *tmp_page;
898
899 offset = pfn_level_offset(pfn, level);
900 pte = &parent[offset];
901 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
902 break;
903 if (level == *target_level)
904 break;
905
906 if (!dma_pte_present(pte)) {
907 uint64_t pteval;
908
909 tmp_page = alloc_pgtable_page(domain->nid);
910
911 if (!tmp_page)
912 return NULL;
913
914 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
915 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
916 if (cmpxchg64(&pte->val, 0ULL, pteval))
917 /* Someone else set it while we were thinking; use theirs. */
918 free_pgtable_page(tmp_page);
919 else
920 domain_flush_cache(domain, pte, sizeof(*pte));
921 }
922 if (level == 1)
923 break;
924
925 parent = phys_to_virt(dma_pte_addr(pte));
926 level--;
927 }
928
929 if (!*target_level)
930 *target_level = level;
931
932 return pte;
933 }
934
935 /* return address's pte at specific level */
dma_pfn_level_pte(struct dmar_domain * domain,unsigned long pfn,int level,int * large_page)936 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
937 unsigned long pfn,
938 int level, int *large_page)
939 {
940 struct dma_pte *parent, *pte;
941 int total = agaw_to_level(domain->agaw);
942 int offset;
943
944 parent = domain->pgd;
945 while (level <= total) {
946 offset = pfn_level_offset(pfn, total);
947 pte = &parent[offset];
948 if (level == total)
949 return pte;
950
951 if (!dma_pte_present(pte)) {
952 *large_page = total;
953 break;
954 }
955
956 if (dma_pte_superpage(pte)) {
957 *large_page = total;
958 return pte;
959 }
960
961 parent = phys_to_virt(dma_pte_addr(pte));
962 total--;
963 }
964 return NULL;
965 }
966
967 /* clear last level pte, a tlb flush should be followed */
dma_pte_clear_range(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn)968 static void dma_pte_clear_range(struct dmar_domain *domain,
969 unsigned long start_pfn,
970 unsigned long last_pfn)
971 {
972 unsigned int large_page;
973 struct dma_pte *first_pte, *pte;
974
975 BUG_ON(!domain_pfn_supported(domain, start_pfn));
976 BUG_ON(!domain_pfn_supported(domain, last_pfn));
977 BUG_ON(start_pfn > last_pfn);
978
979 /* we don't need lock here; nobody else touches the iova range */
980 do {
981 large_page = 1;
982 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
983 if (!pte) {
984 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
985 continue;
986 }
987 do {
988 dma_clear_pte(pte);
989 start_pfn += lvl_to_nr_pages(large_page);
990 pte++;
991 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
992
993 domain_flush_cache(domain, first_pte,
994 (void *)pte - (void *)first_pte);
995
996 } while (start_pfn && start_pfn <= last_pfn);
997 }
998
dma_pte_free_level(struct dmar_domain * domain,int level,int retain_level,struct dma_pte * pte,unsigned long pfn,unsigned long start_pfn,unsigned long last_pfn)999 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1000 int retain_level, struct dma_pte *pte,
1001 unsigned long pfn, unsigned long start_pfn,
1002 unsigned long last_pfn)
1003 {
1004 pfn = max(start_pfn, pfn);
1005 pte = &pte[pfn_level_offset(pfn, level)];
1006
1007 do {
1008 unsigned long level_pfn;
1009 struct dma_pte *level_pte;
1010
1011 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1012 goto next;
1013
1014 level_pfn = pfn & level_mask(level);
1015 level_pte = phys_to_virt(dma_pte_addr(pte));
1016
1017 if (level > 2) {
1018 dma_pte_free_level(domain, level - 1, retain_level,
1019 level_pte, level_pfn, start_pfn,
1020 last_pfn);
1021 }
1022
1023 /*
1024 * Free the page table if we're below the level we want to
1025 * retain and the range covers the entire table.
1026 */
1027 if (level < retain_level && !(start_pfn > level_pfn ||
1028 last_pfn < level_pfn + level_size(level) - 1)) {
1029 dma_clear_pte(pte);
1030 domain_flush_cache(domain, pte, sizeof(*pte));
1031 free_pgtable_page(level_pte);
1032 }
1033 next:
1034 pfn += level_size(level);
1035 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1036 }
1037
1038 /*
1039 * clear last level (leaf) ptes and free page table pages below the
1040 * level we wish to keep intact.
1041 */
dma_pte_free_pagetable(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn,int retain_level)1042 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1043 unsigned long start_pfn,
1044 unsigned long last_pfn,
1045 int retain_level)
1046 {
1047 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1048 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1049 BUG_ON(start_pfn > last_pfn);
1050
1051 dma_pte_clear_range(domain, start_pfn, last_pfn);
1052
1053 /* We don't need lock here; nobody else touches the iova range */
1054 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1055 domain->pgd, 0, start_pfn, last_pfn);
1056
1057 /* free pgd */
1058 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1059 free_pgtable_page(domain->pgd);
1060 domain->pgd = NULL;
1061 }
1062 }
1063
1064 /* When a page at a given level is being unlinked from its parent, we don't
1065 need to *modify* it at all. All we need to do is make a list of all the
1066 pages which can be freed just as soon as we've flushed the IOTLB and we
1067 know the hardware page-walk will no longer touch them.
1068 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1069 be freed. */
dma_pte_list_pagetables(struct dmar_domain * domain,int level,struct dma_pte * pte,struct page * freelist)1070 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1071 int level, struct dma_pte *pte,
1072 struct page *freelist)
1073 {
1074 struct page *pg;
1075
1076 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1077 pg->freelist = freelist;
1078 freelist = pg;
1079
1080 if (level == 1)
1081 return freelist;
1082
1083 pte = page_address(pg);
1084 do {
1085 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1086 freelist = dma_pte_list_pagetables(domain, level - 1,
1087 pte, freelist);
1088 pte++;
1089 } while (!first_pte_in_page(pte));
1090
1091 return freelist;
1092 }
1093
dma_pte_clear_level(struct dmar_domain * domain,int level,struct dma_pte * pte,unsigned long pfn,unsigned long start_pfn,unsigned long last_pfn,struct page * freelist)1094 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1095 struct dma_pte *pte, unsigned long pfn,
1096 unsigned long start_pfn,
1097 unsigned long last_pfn,
1098 struct page *freelist)
1099 {
1100 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1101
1102 pfn = max(start_pfn, pfn);
1103 pte = &pte[pfn_level_offset(pfn, level)];
1104
1105 do {
1106 unsigned long level_pfn;
1107
1108 if (!dma_pte_present(pte))
1109 goto next;
1110
1111 level_pfn = pfn & level_mask(level);
1112
1113 /* If range covers entire pagetable, free it */
1114 if (start_pfn <= level_pfn &&
1115 last_pfn >= level_pfn + level_size(level) - 1) {
1116 /* These suborbinate page tables are going away entirely. Don't
1117 bother to clear them; we're just going to *free* them. */
1118 if (level > 1 && !dma_pte_superpage(pte))
1119 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1120
1121 dma_clear_pte(pte);
1122 if (!first_pte)
1123 first_pte = pte;
1124 last_pte = pte;
1125 } else if (level > 1) {
1126 /* Recurse down into a level that isn't *entirely* obsolete */
1127 freelist = dma_pte_clear_level(domain, level - 1,
1128 phys_to_virt(dma_pte_addr(pte)),
1129 level_pfn, start_pfn, last_pfn,
1130 freelist);
1131 }
1132 next:
1133 pfn += level_size(level);
1134 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1135
1136 if (first_pte)
1137 domain_flush_cache(domain, first_pte,
1138 (void *)++last_pte - (void *)first_pte);
1139
1140 return freelist;
1141 }
1142
1143 /* We can't just free the pages because the IOMMU may still be walking
1144 the page tables, and may have cached the intermediate levels. The
1145 pages can only be freed after the IOTLB flush has been done. */
domain_unmap(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn)1146 static struct page *domain_unmap(struct dmar_domain *domain,
1147 unsigned long start_pfn,
1148 unsigned long last_pfn)
1149 {
1150 struct page *freelist;
1151
1152 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1153 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1154 BUG_ON(start_pfn > last_pfn);
1155
1156 /* we don't need lock here; nobody else touches the iova range */
1157 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1158 domain->pgd, 0, start_pfn, last_pfn, NULL);
1159
1160 /* free pgd */
1161 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1162 struct page *pgd_page = virt_to_page(domain->pgd);
1163 pgd_page->freelist = freelist;
1164 freelist = pgd_page;
1165
1166 domain->pgd = NULL;
1167 }
1168
1169 return freelist;
1170 }
1171
dma_free_pagelist(struct page * freelist)1172 static void dma_free_pagelist(struct page *freelist)
1173 {
1174 struct page *pg;
1175
1176 while ((pg = freelist)) {
1177 freelist = pg->freelist;
1178 free_pgtable_page(page_address(pg));
1179 }
1180 }
1181
iova_entry_free(unsigned long data)1182 static void iova_entry_free(unsigned long data)
1183 {
1184 struct page *freelist = (struct page *)data;
1185
1186 dma_free_pagelist(freelist);
1187 }
1188
1189 /* iommu handling */
iommu_alloc_root_entry(struct intel_iommu * iommu)1190 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1191 {
1192 struct root_entry *root;
1193 unsigned long flags;
1194
1195 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1196 if (!root) {
1197 pr_err("Allocating root entry for %s failed\n",
1198 iommu->name);
1199 return -ENOMEM;
1200 }
1201
1202 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1203
1204 spin_lock_irqsave(&iommu->lock, flags);
1205 iommu->root_entry = root;
1206 spin_unlock_irqrestore(&iommu->lock, flags);
1207
1208 return 0;
1209 }
1210
iommu_set_root_entry(struct intel_iommu * iommu)1211 static void iommu_set_root_entry(struct intel_iommu *iommu)
1212 {
1213 u64 addr;
1214 u32 sts;
1215 unsigned long flag;
1216
1217 addr = virt_to_phys(iommu->root_entry);
1218 if (sm_supported(iommu))
1219 addr |= DMA_RTADDR_SMT;
1220
1221 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1222 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1223
1224 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1225
1226 /* Make sure hardware complete it */
1227 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1228 readl, (sts & DMA_GSTS_RTPS), sts);
1229
1230 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1231 }
1232
iommu_flush_write_buffer(struct intel_iommu * iommu)1233 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1234 {
1235 u32 val;
1236 unsigned long flag;
1237
1238 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1239 return;
1240
1241 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1242 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1243
1244 /* Make sure hardware complete it */
1245 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1246 readl, (!(val & DMA_GSTS_WBFS)), val);
1247
1248 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1249 }
1250
1251 /* return value determine if we need a write buffer flush */
__iommu_flush_context(struct intel_iommu * iommu,u16 did,u16 source_id,u8 function_mask,u64 type)1252 static void __iommu_flush_context(struct intel_iommu *iommu,
1253 u16 did, u16 source_id, u8 function_mask,
1254 u64 type)
1255 {
1256 u64 val = 0;
1257 unsigned long flag;
1258
1259 switch (type) {
1260 case DMA_CCMD_GLOBAL_INVL:
1261 val = DMA_CCMD_GLOBAL_INVL;
1262 break;
1263 case DMA_CCMD_DOMAIN_INVL:
1264 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1265 break;
1266 case DMA_CCMD_DEVICE_INVL:
1267 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1268 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1269 break;
1270 default:
1271 BUG();
1272 }
1273 val |= DMA_CCMD_ICC;
1274
1275 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1276 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1277
1278 /* Make sure hardware complete it */
1279 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1280 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1281
1282 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1283 }
1284
1285 /* return value determine if we need a write buffer flush */
__iommu_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1286 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1287 u64 addr, unsigned int size_order, u64 type)
1288 {
1289 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1290 u64 val = 0, val_iva = 0;
1291 unsigned long flag;
1292
1293 switch (type) {
1294 case DMA_TLB_GLOBAL_FLUSH:
1295 /* global flush doesn't need set IVA_REG */
1296 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1297 break;
1298 case DMA_TLB_DSI_FLUSH:
1299 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1300 break;
1301 case DMA_TLB_PSI_FLUSH:
1302 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1303 /* IH bit is passed in as part of address */
1304 val_iva = size_order | addr;
1305 break;
1306 default:
1307 BUG();
1308 }
1309 /* Note: set drain read/write */
1310 #if 0
1311 /*
1312 * This is probably to be super secure.. Looks like we can
1313 * ignore it without any impact.
1314 */
1315 if (cap_read_drain(iommu->cap))
1316 val |= DMA_TLB_READ_DRAIN;
1317 #endif
1318 if (cap_write_drain(iommu->cap))
1319 val |= DMA_TLB_WRITE_DRAIN;
1320
1321 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1322 /* Note: Only uses first TLB reg currently */
1323 if (val_iva)
1324 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1325 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1326
1327 /* Make sure hardware complete it */
1328 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1329 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1330
1331 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1332
1333 /* check IOTLB invalidation granularity */
1334 if (DMA_TLB_IAIG(val) == 0)
1335 pr_err("Flush IOTLB failed\n");
1336 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1337 pr_debug("TLB flush request %Lx, actual %Lx\n",
1338 (unsigned long long)DMA_TLB_IIRG(type),
1339 (unsigned long long)DMA_TLB_IAIG(val));
1340 }
1341
1342 static struct device_domain_info *
iommu_support_dev_iotlb(struct dmar_domain * domain,struct intel_iommu * iommu,u8 bus,u8 devfn)1343 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1344 u8 bus, u8 devfn)
1345 {
1346 struct device_domain_info *info;
1347
1348 assert_spin_locked(&device_domain_lock);
1349
1350 if (!iommu->qi)
1351 return NULL;
1352
1353 list_for_each_entry(info, &domain->devices, link)
1354 if (info->iommu == iommu && info->bus == bus &&
1355 info->devfn == devfn) {
1356 if (info->ats_supported && info->dev)
1357 return info;
1358 break;
1359 }
1360
1361 return NULL;
1362 }
1363
domain_update_iotlb(struct dmar_domain * domain)1364 static void domain_update_iotlb(struct dmar_domain *domain)
1365 {
1366 struct device_domain_info *info;
1367 bool has_iotlb_device = false;
1368
1369 assert_spin_locked(&device_domain_lock);
1370
1371 list_for_each_entry(info, &domain->devices, link) {
1372 struct pci_dev *pdev;
1373
1374 if (!info->dev || !dev_is_pci(info->dev))
1375 continue;
1376
1377 pdev = to_pci_dev(info->dev);
1378 if (pdev->ats_enabled) {
1379 has_iotlb_device = true;
1380 break;
1381 }
1382 }
1383
1384 domain->has_iotlb_device = has_iotlb_device;
1385 }
1386
iommu_enable_dev_iotlb(struct device_domain_info * info)1387 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1388 {
1389 struct pci_dev *pdev;
1390
1391 assert_spin_locked(&device_domain_lock);
1392
1393 if (!info || !dev_is_pci(info->dev))
1394 return;
1395
1396 pdev = to_pci_dev(info->dev);
1397 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1398 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1399 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1400 * reserved, which should be set to 0.
1401 */
1402 if (!ecap_dit(info->iommu->ecap))
1403 info->pfsid = 0;
1404 else {
1405 struct pci_dev *pf_pdev;
1406
1407 /* pdev will be returned if device is not a vf */
1408 pf_pdev = pci_physfn(pdev);
1409 info->pfsid = pci_dev_id(pf_pdev);
1410 }
1411
1412 #ifdef CONFIG_INTEL_IOMMU_SVM
1413 /* The PCIe spec, in its wisdom, declares that the behaviour of
1414 the device if you enable PASID support after ATS support is
1415 undefined. So always enable PASID support on devices which
1416 have it, even if we can't yet know if we're ever going to
1417 use it. */
1418 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1419 info->pasid_enabled = 1;
1420
1421 if (info->pri_supported &&
1422 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) &&
1423 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1424 info->pri_enabled = 1;
1425 #endif
1426 if (!pdev->untrusted && info->ats_supported &&
1427 pci_ats_page_aligned(pdev) &&
1428 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1429 info->ats_enabled = 1;
1430 domain_update_iotlb(info->domain);
1431 info->ats_qdep = pci_ats_queue_depth(pdev);
1432 }
1433 }
1434
iommu_disable_dev_iotlb(struct device_domain_info * info)1435 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1436 {
1437 struct pci_dev *pdev;
1438
1439 assert_spin_locked(&device_domain_lock);
1440
1441 if (!dev_is_pci(info->dev))
1442 return;
1443
1444 pdev = to_pci_dev(info->dev);
1445
1446 if (info->ats_enabled) {
1447 pci_disable_ats(pdev);
1448 info->ats_enabled = 0;
1449 domain_update_iotlb(info->domain);
1450 }
1451 #ifdef CONFIG_INTEL_IOMMU_SVM
1452 if (info->pri_enabled) {
1453 pci_disable_pri(pdev);
1454 info->pri_enabled = 0;
1455 }
1456 if (info->pasid_enabled) {
1457 pci_disable_pasid(pdev);
1458 info->pasid_enabled = 0;
1459 }
1460 #endif
1461 }
1462
iommu_flush_dev_iotlb(struct dmar_domain * domain,u64 addr,unsigned mask)1463 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1464 u64 addr, unsigned mask)
1465 {
1466 u16 sid, qdep;
1467 unsigned long flags;
1468 struct device_domain_info *info;
1469
1470 if (!domain->has_iotlb_device)
1471 return;
1472
1473 spin_lock_irqsave(&device_domain_lock, flags);
1474 list_for_each_entry(info, &domain->devices, link) {
1475 if (!info->ats_enabled)
1476 continue;
1477
1478 sid = info->bus << 8 | info->devfn;
1479 qdep = info->ats_qdep;
1480 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1481 qdep, addr, mask);
1482 }
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1484 }
1485
iommu_flush_iotlb_psi(struct intel_iommu * iommu,struct dmar_domain * domain,unsigned long pfn,unsigned int pages,int ih,int map)1486 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487 struct dmar_domain *domain,
1488 unsigned long pfn, unsigned int pages,
1489 int ih, int map)
1490 {
1491 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1492 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1493 u16 did = domain->iommu_did[iommu->seq_id];
1494
1495 BUG_ON(pages == 0);
1496
1497 if (ih)
1498 ih = 1 << 6;
1499 /*
1500 * Fallback to domain selective flush if no PSI support or the size is
1501 * too big.
1502 * PSI requires page size to be 2 ^ x, and the base address is naturally
1503 * aligned to the size
1504 */
1505 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1507 DMA_TLB_DSI_FLUSH);
1508 else
1509 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1510 DMA_TLB_PSI_FLUSH);
1511
1512 /*
1513 * In caching mode, changes of pages from non-present to present require
1514 * flush. However, device IOTLB doesn't need to be flushed in this case.
1515 */
1516 if (!cap_caching_mode(iommu->cap) || !map)
1517 iommu_flush_dev_iotlb(domain, addr, mask);
1518 }
1519
1520 /* Notification for newly created mappings */
__mapping_notify_one(struct intel_iommu * iommu,struct dmar_domain * domain,unsigned long pfn,unsigned int pages)1521 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1522 struct dmar_domain *domain,
1523 unsigned long pfn, unsigned int pages)
1524 {
1525 /* It's a non-present to present mapping. Only flush if caching mode */
1526 if (cap_caching_mode(iommu->cap))
1527 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1528 else
1529 iommu_flush_write_buffer(iommu);
1530 }
1531
iommu_flush_iova(struct iova_domain * iovad)1532 static void iommu_flush_iova(struct iova_domain *iovad)
1533 {
1534 struct dmar_domain *domain;
1535 int idx;
1536
1537 domain = container_of(iovad, struct dmar_domain, iovad);
1538
1539 for_each_domain_iommu(idx, domain) {
1540 struct intel_iommu *iommu = g_iommus[idx];
1541 u16 did = domain->iommu_did[iommu->seq_id];
1542
1543 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1544
1545 if (!cap_caching_mode(iommu->cap))
1546 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1547 0, MAX_AGAW_PFN_WIDTH);
1548 }
1549 }
1550
iommu_disable_protect_mem_regions(struct intel_iommu * iommu)1551 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1552 {
1553 u32 pmen;
1554 unsigned long flags;
1555
1556 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1557 return;
1558
1559 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1560 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1561 pmen &= ~DMA_PMEN_EPM;
1562 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1563
1564 /* wait for the protected region status bit to clear */
1565 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1566 readl, !(pmen & DMA_PMEN_PRS), pmen);
1567
1568 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1569 }
1570
iommu_enable_translation(struct intel_iommu * iommu)1571 static void iommu_enable_translation(struct intel_iommu *iommu)
1572 {
1573 u32 sts;
1574 unsigned long flags;
1575
1576 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1577 iommu->gcmd |= DMA_GCMD_TE;
1578 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1579
1580 /* Make sure hardware complete it */
1581 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1582 readl, (sts & DMA_GSTS_TES), sts);
1583
1584 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1585 }
1586
iommu_disable_translation(struct intel_iommu * iommu)1587 static void iommu_disable_translation(struct intel_iommu *iommu)
1588 {
1589 u32 sts;
1590 unsigned long flag;
1591
1592 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1593 iommu->gcmd &= ~DMA_GCMD_TE;
1594 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1595
1596 /* Make sure hardware complete it */
1597 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1598 readl, (!(sts & DMA_GSTS_TES)), sts);
1599
1600 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1601 }
1602
iommu_init_domains(struct intel_iommu * iommu)1603 static int iommu_init_domains(struct intel_iommu *iommu)
1604 {
1605 u32 ndomains, nlongs;
1606 size_t size;
1607
1608 ndomains = cap_ndoms(iommu->cap);
1609 pr_debug("%s: Number of Domains supported <%d>\n",
1610 iommu->name, ndomains);
1611 nlongs = BITS_TO_LONGS(ndomains);
1612
1613 spin_lock_init(&iommu->lock);
1614
1615 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1616 if (!iommu->domain_ids) {
1617 pr_err("%s: Allocating domain id array failed\n",
1618 iommu->name);
1619 return -ENOMEM;
1620 }
1621
1622 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1623 iommu->domains = kzalloc(size, GFP_KERNEL);
1624
1625 if (iommu->domains) {
1626 size = 256 * sizeof(struct dmar_domain *);
1627 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1628 }
1629
1630 if (!iommu->domains || !iommu->domains[0]) {
1631 pr_err("%s: Allocating domain array failed\n",
1632 iommu->name);
1633 kfree(iommu->domain_ids);
1634 kfree(iommu->domains);
1635 iommu->domain_ids = NULL;
1636 iommu->domains = NULL;
1637 return -ENOMEM;
1638 }
1639
1640 /*
1641 * If Caching mode is set, then invalid translations are tagged
1642 * with domain-id 0, hence we need to pre-allocate it. We also
1643 * use domain-id 0 as a marker for non-allocated domain-id, so
1644 * make sure it is not used for a real domain.
1645 */
1646 set_bit(0, iommu->domain_ids);
1647
1648 /*
1649 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1650 * entry for first-level or pass-through translation modes should
1651 * be programmed with a domain id different from those used for
1652 * second-level or nested translation. We reserve a domain id for
1653 * this purpose.
1654 */
1655 if (sm_supported(iommu))
1656 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1657
1658 return 0;
1659 }
1660
disable_dmar_iommu(struct intel_iommu * iommu)1661 static void disable_dmar_iommu(struct intel_iommu *iommu)
1662 {
1663 struct device_domain_info *info, *tmp;
1664 unsigned long flags;
1665
1666 if (!iommu->domains || !iommu->domain_ids)
1667 return;
1668
1669 spin_lock_irqsave(&device_domain_lock, flags);
1670 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1671 if (info->iommu != iommu)
1672 continue;
1673
1674 if (!info->dev || !info->domain)
1675 continue;
1676
1677 __dmar_remove_one_dev_info(info);
1678 }
1679 spin_unlock_irqrestore(&device_domain_lock, flags);
1680
1681 if (iommu->gcmd & DMA_GCMD_TE)
1682 iommu_disable_translation(iommu);
1683 }
1684
free_dmar_iommu(struct intel_iommu * iommu)1685 static void free_dmar_iommu(struct intel_iommu *iommu)
1686 {
1687 if ((iommu->domains) && (iommu->domain_ids)) {
1688 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1689 int i;
1690
1691 for (i = 0; i < elems; i++)
1692 kfree(iommu->domains[i]);
1693 kfree(iommu->domains);
1694 kfree(iommu->domain_ids);
1695 iommu->domains = NULL;
1696 iommu->domain_ids = NULL;
1697 }
1698
1699 g_iommus[iommu->seq_id] = NULL;
1700
1701 /* free context mapping */
1702 free_context_table(iommu);
1703
1704 #ifdef CONFIG_INTEL_IOMMU_SVM
1705 if (pasid_supported(iommu)) {
1706 if (ecap_prs(iommu->ecap))
1707 intel_svm_finish_prq(iommu);
1708 }
1709 #endif
1710 }
1711
alloc_domain(int flags)1712 static struct dmar_domain *alloc_domain(int flags)
1713 {
1714 struct dmar_domain *domain;
1715
1716 domain = alloc_domain_mem();
1717 if (!domain)
1718 return NULL;
1719
1720 memset(domain, 0, sizeof(*domain));
1721 domain->nid = NUMA_NO_NODE;
1722 domain->flags = flags;
1723 domain->has_iotlb_device = false;
1724 INIT_LIST_HEAD(&domain->devices);
1725
1726 return domain;
1727 }
1728
1729 /* Must be called with iommu->lock */
domain_attach_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)1730 static int domain_attach_iommu(struct dmar_domain *domain,
1731 struct intel_iommu *iommu)
1732 {
1733 unsigned long ndomains;
1734 int num;
1735
1736 assert_spin_locked(&device_domain_lock);
1737 assert_spin_locked(&iommu->lock);
1738
1739 domain->iommu_refcnt[iommu->seq_id] += 1;
1740 domain->iommu_count += 1;
1741 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1742 ndomains = cap_ndoms(iommu->cap);
1743 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1744
1745 if (num >= ndomains) {
1746 pr_err("%s: No free domain ids\n", iommu->name);
1747 domain->iommu_refcnt[iommu->seq_id] -= 1;
1748 domain->iommu_count -= 1;
1749 return -ENOSPC;
1750 }
1751
1752 set_bit(num, iommu->domain_ids);
1753 set_iommu_domain(iommu, num, domain);
1754
1755 domain->iommu_did[iommu->seq_id] = num;
1756 domain->nid = iommu->node;
1757
1758 domain_update_iommu_cap(domain);
1759 }
1760
1761 return 0;
1762 }
1763
domain_detach_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)1764 static int domain_detach_iommu(struct dmar_domain *domain,
1765 struct intel_iommu *iommu)
1766 {
1767 int num, count;
1768
1769 assert_spin_locked(&device_domain_lock);
1770 assert_spin_locked(&iommu->lock);
1771
1772 domain->iommu_refcnt[iommu->seq_id] -= 1;
1773 count = --domain->iommu_count;
1774 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1775 num = domain->iommu_did[iommu->seq_id];
1776 clear_bit(num, iommu->domain_ids);
1777 set_iommu_domain(iommu, num, NULL);
1778
1779 domain_update_iommu_cap(domain);
1780 domain->iommu_did[iommu->seq_id] = 0;
1781 }
1782
1783 return count;
1784 }
1785
1786 static struct iova_domain reserved_iova_list;
1787 static struct lock_class_key reserved_rbtree_key;
1788
dmar_init_reserved_ranges(void)1789 static int dmar_init_reserved_ranges(void)
1790 {
1791 struct pci_dev *pdev = NULL;
1792 struct iova *iova;
1793 int i;
1794
1795 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1796
1797 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1798 &reserved_rbtree_key);
1799
1800 /* IOAPIC ranges shouldn't be accessed by DMA */
1801 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1802 IOVA_PFN(IOAPIC_RANGE_END));
1803 if (!iova) {
1804 pr_err("Reserve IOAPIC range failed\n");
1805 return -ENODEV;
1806 }
1807
1808 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1809 for_each_pci_dev(pdev) {
1810 struct resource *r;
1811
1812 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1813 r = &pdev->resource[i];
1814 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1815 continue;
1816 iova = reserve_iova(&reserved_iova_list,
1817 IOVA_PFN(r->start),
1818 IOVA_PFN(r->end));
1819 if (!iova) {
1820 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1821 return -ENODEV;
1822 }
1823 }
1824 }
1825 return 0;
1826 }
1827
domain_reserve_special_ranges(struct dmar_domain * domain)1828 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1829 {
1830 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1831 }
1832
guestwidth_to_adjustwidth(int gaw)1833 static inline int guestwidth_to_adjustwidth(int gaw)
1834 {
1835 int agaw;
1836 int r = (gaw - 12) % 9;
1837
1838 if (r == 0)
1839 agaw = gaw;
1840 else
1841 agaw = gaw + 9 - r;
1842 if (agaw > 64)
1843 agaw = 64;
1844 return agaw;
1845 }
1846
domain_init(struct dmar_domain * domain,struct intel_iommu * iommu,int guest_width)1847 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1848 int guest_width)
1849 {
1850 int adjust_width, agaw;
1851 unsigned long sagaw;
1852 int err;
1853
1854 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1855
1856 err = init_iova_flush_queue(&domain->iovad,
1857 iommu_flush_iova, iova_entry_free);
1858 if (err)
1859 return err;
1860
1861 domain_reserve_special_ranges(domain);
1862
1863 /* calculate AGAW */
1864 if (guest_width > cap_mgaw(iommu->cap))
1865 guest_width = cap_mgaw(iommu->cap);
1866 domain->gaw = guest_width;
1867 adjust_width = guestwidth_to_adjustwidth(guest_width);
1868 agaw = width_to_agaw(adjust_width);
1869 sagaw = cap_sagaw(iommu->cap);
1870 if (!test_bit(agaw, &sagaw)) {
1871 /* hardware doesn't support it, choose a bigger one */
1872 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1873 agaw = find_next_bit(&sagaw, 5, agaw);
1874 if (agaw >= 5)
1875 return -ENODEV;
1876 }
1877 domain->agaw = agaw;
1878
1879 if (ecap_coherent(iommu->ecap))
1880 domain->iommu_coherency = 1;
1881 else
1882 domain->iommu_coherency = 0;
1883
1884 if (ecap_sc_support(iommu->ecap))
1885 domain->iommu_snooping = 1;
1886 else
1887 domain->iommu_snooping = 0;
1888
1889 if (intel_iommu_superpage)
1890 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1891 else
1892 domain->iommu_superpage = 0;
1893
1894 domain->nid = iommu->node;
1895
1896 /* always allocate the top pgd */
1897 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1898 if (!domain->pgd)
1899 return -ENOMEM;
1900 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1901 return 0;
1902 }
1903
domain_exit(struct dmar_domain * domain)1904 static void domain_exit(struct dmar_domain *domain)
1905 {
1906
1907 /* Remove associated devices and clear attached or cached domains */
1908 domain_remove_dev_info(domain);
1909
1910 /* destroy iovas */
1911 put_iova_domain(&domain->iovad);
1912
1913 if (domain->pgd) {
1914 struct page *freelist;
1915
1916 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1917 dma_free_pagelist(freelist);
1918 }
1919
1920 free_domain_mem(domain);
1921 }
1922
1923 /*
1924 * Get the PASID directory size for scalable mode context entry.
1925 * Value of X in the PDTS field of a scalable mode context entry
1926 * indicates PASID directory with 2^(X + 7) entries.
1927 */
context_get_sm_pds(struct pasid_table * table)1928 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1929 {
1930 int pds, max_pde;
1931
1932 max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1933 pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1934 if (pds < 7)
1935 return 0;
1936
1937 return pds - 7;
1938 }
1939
1940 /*
1941 * Set the RID_PASID field of a scalable mode context entry. The
1942 * IOMMU hardware will use the PASID value set in this field for
1943 * DMA translations of DMA requests without PASID.
1944 */
1945 static inline void
context_set_sm_rid2pasid(struct context_entry * context,unsigned long pasid)1946 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1947 {
1948 context->hi |= pasid & ((1 << 20) - 1);
1949 context->hi |= (1 << 20);
1950 }
1951
1952 /*
1953 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1954 * entry.
1955 */
context_set_sm_dte(struct context_entry * context)1956 static inline void context_set_sm_dte(struct context_entry *context)
1957 {
1958 context->lo |= (1 << 2);
1959 }
1960
1961 /*
1962 * Set the PRE(Page Request Enable) field of a scalable mode context
1963 * entry.
1964 */
context_set_sm_pre(struct context_entry * context)1965 static inline void context_set_sm_pre(struct context_entry *context)
1966 {
1967 context->lo |= (1 << 4);
1968 }
1969
1970 /* Convert value to context PASID directory size field coding. */
1971 #define context_pdts(pds) (((pds) & 0x7) << 9)
1972
domain_context_mapping_one(struct dmar_domain * domain,struct intel_iommu * iommu,struct pasid_table * table,u8 bus,u8 devfn)1973 static int domain_context_mapping_one(struct dmar_domain *domain,
1974 struct intel_iommu *iommu,
1975 struct pasid_table *table,
1976 u8 bus, u8 devfn)
1977 {
1978 u16 did = domain->iommu_did[iommu->seq_id];
1979 int translation = CONTEXT_TT_MULTI_LEVEL;
1980 struct device_domain_info *info = NULL;
1981 struct context_entry *context;
1982 unsigned long flags;
1983 int ret;
1984
1985 WARN_ON(did == 0);
1986
1987 if (hw_pass_through && domain_type_is_si(domain))
1988 translation = CONTEXT_TT_PASS_THROUGH;
1989
1990 pr_debug("Set context mapping for %02x:%02x.%d\n",
1991 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1992
1993 BUG_ON(!domain->pgd);
1994
1995 spin_lock_irqsave(&device_domain_lock, flags);
1996 spin_lock(&iommu->lock);
1997
1998 ret = -ENOMEM;
1999 context = iommu_context_addr(iommu, bus, devfn, 1);
2000 if (!context)
2001 goto out_unlock;
2002
2003 ret = 0;
2004 if (context_present(context))
2005 goto out_unlock;
2006
2007 /*
2008 * For kdump cases, old valid entries may be cached due to the
2009 * in-flight DMA and copied pgtable, but there is no unmapping
2010 * behaviour for them, thus we need an explicit cache flush for
2011 * the newly-mapped device. For kdump, at this point, the device
2012 * is supposed to finish reset at its driver probe stage, so no
2013 * in-flight DMA will exist, and we don't need to worry anymore
2014 * hereafter.
2015 */
2016 if (context_copied(context)) {
2017 u16 did_old = context_domain_id(context);
2018
2019 if (did_old < cap_ndoms(iommu->cap)) {
2020 iommu->flush.flush_context(iommu, did_old,
2021 (((u16)bus) << 8) | devfn,
2022 DMA_CCMD_MASK_NOBIT,
2023 DMA_CCMD_DEVICE_INVL);
2024 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2025 DMA_TLB_DSI_FLUSH);
2026 }
2027 }
2028
2029 context_clear_entry(context);
2030
2031 if (sm_supported(iommu)) {
2032 unsigned long pds;
2033
2034 WARN_ON(!table);
2035
2036 /* Setup the PASID DIR pointer: */
2037 pds = context_get_sm_pds(table);
2038 context->lo = (u64)virt_to_phys(table->table) |
2039 context_pdts(pds);
2040
2041 /* Setup the RID_PASID field: */
2042 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2043
2044 /*
2045 * Setup the Device-TLB enable bit and Page request
2046 * Enable bit:
2047 */
2048 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2049 if (info && info->ats_supported)
2050 context_set_sm_dte(context);
2051 if (info && info->pri_supported)
2052 context_set_sm_pre(context);
2053 } else {
2054 struct dma_pte *pgd = domain->pgd;
2055 int agaw;
2056
2057 context_set_domain_id(context, did);
2058
2059 if (translation != CONTEXT_TT_PASS_THROUGH) {
2060 /*
2061 * Skip top levels of page tables for iommu which has
2062 * less agaw than default. Unnecessary for PT mode.
2063 */
2064 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2065 ret = -ENOMEM;
2066 pgd = phys_to_virt(dma_pte_addr(pgd));
2067 if (!dma_pte_present(pgd))
2068 goto out_unlock;
2069 }
2070
2071 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2072 if (info && info->ats_supported)
2073 translation = CONTEXT_TT_DEV_IOTLB;
2074 else
2075 translation = CONTEXT_TT_MULTI_LEVEL;
2076
2077 context_set_address_root(context, virt_to_phys(pgd));
2078 context_set_address_width(context, agaw);
2079 } else {
2080 /*
2081 * In pass through mode, AW must be programmed to
2082 * indicate the largest AGAW value supported by
2083 * hardware. And ASR is ignored by hardware.
2084 */
2085 context_set_address_width(context, iommu->msagaw);
2086 }
2087
2088 context_set_translation_type(context, translation);
2089 }
2090
2091 context_set_fault_enable(context);
2092 context_set_present(context);
2093 domain_flush_cache(domain, context, sizeof(*context));
2094
2095 /*
2096 * It's a non-present to present mapping. If hardware doesn't cache
2097 * non-present entry we only need to flush the write-buffer. If the
2098 * _does_ cache non-present entries, then it does so in the special
2099 * domain #0, which we have to flush:
2100 */
2101 if (cap_caching_mode(iommu->cap)) {
2102 iommu->flush.flush_context(iommu, 0,
2103 (((u16)bus) << 8) | devfn,
2104 DMA_CCMD_MASK_NOBIT,
2105 DMA_CCMD_DEVICE_INVL);
2106 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2107 } else {
2108 iommu_flush_write_buffer(iommu);
2109 }
2110 iommu_enable_dev_iotlb(info);
2111
2112 ret = 0;
2113
2114 out_unlock:
2115 spin_unlock(&iommu->lock);
2116 spin_unlock_irqrestore(&device_domain_lock, flags);
2117
2118 return ret;
2119 }
2120
2121 struct domain_context_mapping_data {
2122 struct dmar_domain *domain;
2123 struct intel_iommu *iommu;
2124 struct pasid_table *table;
2125 };
2126
domain_context_mapping_cb(struct pci_dev * pdev,u16 alias,void * opaque)2127 static int domain_context_mapping_cb(struct pci_dev *pdev,
2128 u16 alias, void *opaque)
2129 {
2130 struct domain_context_mapping_data *data = opaque;
2131
2132 return domain_context_mapping_one(data->domain, data->iommu,
2133 data->table, PCI_BUS_NUM(alias),
2134 alias & 0xff);
2135 }
2136
2137 static int
domain_context_mapping(struct dmar_domain * domain,struct device * dev)2138 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2139 {
2140 struct domain_context_mapping_data data;
2141 struct pasid_table *table;
2142 struct intel_iommu *iommu;
2143 u8 bus, devfn;
2144
2145 iommu = device_to_iommu(dev, &bus, &devfn);
2146 if (!iommu)
2147 return -ENODEV;
2148
2149 table = intel_pasid_get_table(dev);
2150
2151 if (!dev_is_pci(dev))
2152 return domain_context_mapping_one(domain, iommu, table,
2153 bus, devfn);
2154
2155 data.domain = domain;
2156 data.iommu = iommu;
2157 data.table = table;
2158
2159 return pci_for_each_dma_alias(to_pci_dev(dev),
2160 &domain_context_mapping_cb, &data);
2161 }
2162
domain_context_mapped_cb(struct pci_dev * pdev,u16 alias,void * opaque)2163 static int domain_context_mapped_cb(struct pci_dev *pdev,
2164 u16 alias, void *opaque)
2165 {
2166 struct intel_iommu *iommu = opaque;
2167
2168 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2169 }
2170
domain_context_mapped(struct device * dev)2171 static int domain_context_mapped(struct device *dev)
2172 {
2173 struct intel_iommu *iommu;
2174 u8 bus, devfn;
2175
2176 iommu = device_to_iommu(dev, &bus, &devfn);
2177 if (!iommu)
2178 return -ENODEV;
2179
2180 if (!dev_is_pci(dev))
2181 return device_context_mapped(iommu, bus, devfn);
2182
2183 return !pci_for_each_dma_alias(to_pci_dev(dev),
2184 domain_context_mapped_cb, iommu);
2185 }
2186
2187 /* Returns a number of VTD pages, but aligned to MM page size */
aligned_nrpages(unsigned long host_addr,size_t size)2188 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2189 size_t size)
2190 {
2191 host_addr &= ~PAGE_MASK;
2192 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2193 }
2194
2195 /* Return largest possible superpage level for a given mapping */
hardware_largepage_caps(struct dmar_domain * domain,unsigned long iov_pfn,unsigned long phy_pfn,unsigned long pages)2196 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2197 unsigned long iov_pfn,
2198 unsigned long phy_pfn,
2199 unsigned long pages)
2200 {
2201 int support, level = 1;
2202 unsigned long pfnmerge;
2203
2204 support = domain->iommu_superpage;
2205
2206 /* To use a large page, the virtual *and* physical addresses
2207 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2208 of them will mean we have to use smaller pages. So just
2209 merge them and check both at once. */
2210 pfnmerge = iov_pfn | phy_pfn;
2211
2212 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2213 pages >>= VTD_STRIDE_SHIFT;
2214 if (!pages)
2215 break;
2216 pfnmerge >>= VTD_STRIDE_SHIFT;
2217 level++;
2218 support--;
2219 }
2220 return level;
2221 }
2222
__domain_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long phys_pfn,unsigned long nr_pages,int prot)2223 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2224 struct scatterlist *sg, unsigned long phys_pfn,
2225 unsigned long nr_pages, int prot)
2226 {
2227 struct dma_pte *first_pte = NULL, *pte = NULL;
2228 phys_addr_t uninitialized_var(pteval);
2229 unsigned long sg_res = 0;
2230 unsigned int largepage_lvl = 0;
2231 unsigned long lvl_pages = 0;
2232
2233 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2234
2235 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2236 return -EINVAL;
2237
2238 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2239
2240 if (!sg) {
2241 sg_res = nr_pages;
2242 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2243 }
2244
2245 while (nr_pages > 0) {
2246 uint64_t tmp;
2247
2248 if (!sg_res) {
2249 unsigned int pgoff = sg->offset & ~PAGE_MASK;
2250
2251 sg_res = aligned_nrpages(sg->offset, sg->length);
2252 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2253 sg->dma_length = sg->length;
2254 pteval = (sg_phys(sg) - pgoff) | prot;
2255 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2256 }
2257
2258 if (!pte) {
2259 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2260
2261 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2262 if (!pte)
2263 return -ENOMEM;
2264 /* It is large page*/
2265 if (largepage_lvl > 1) {
2266 unsigned long nr_superpages, end_pfn;
2267
2268 pteval |= DMA_PTE_LARGE_PAGE;
2269 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2270
2271 nr_superpages = sg_res / lvl_pages;
2272 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2273
2274 /*
2275 * Ensure that old small page tables are
2276 * removed to make room for superpage(s).
2277 * We're adding new large pages, so make sure
2278 * we don't remove their parent tables.
2279 */
2280 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2281 largepage_lvl + 1);
2282 } else {
2283 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2284 }
2285
2286 }
2287 /* We don't need lock here, nobody else
2288 * touches the iova range
2289 */
2290 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2291 if (tmp) {
2292 static int dumps = 5;
2293 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2294 iov_pfn, tmp, (unsigned long long)pteval);
2295 if (dumps) {
2296 dumps--;
2297 debug_dma_dump_mappings(NULL);
2298 }
2299 WARN_ON(1);
2300 }
2301
2302 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2303
2304 BUG_ON(nr_pages < lvl_pages);
2305 BUG_ON(sg_res < lvl_pages);
2306
2307 nr_pages -= lvl_pages;
2308 iov_pfn += lvl_pages;
2309 phys_pfn += lvl_pages;
2310 pteval += lvl_pages * VTD_PAGE_SIZE;
2311 sg_res -= lvl_pages;
2312
2313 /* If the next PTE would be the first in a new page, then we
2314 need to flush the cache on the entries we've just written.
2315 And then we'll need to recalculate 'pte', so clear it and
2316 let it get set again in the if (!pte) block above.
2317
2318 If we're done (!nr_pages) we need to flush the cache too.
2319
2320 Also if we've been setting superpages, we may need to
2321 recalculate 'pte' and switch back to smaller pages for the
2322 end of the mapping, if the trailing size is not enough to
2323 use another superpage (i.e. sg_res < lvl_pages). */
2324 pte++;
2325 if (!nr_pages || first_pte_in_page(pte) ||
2326 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2327 domain_flush_cache(domain, first_pte,
2328 (void *)pte - (void *)first_pte);
2329 pte = NULL;
2330 }
2331
2332 if (!sg_res && nr_pages)
2333 sg = sg_next(sg);
2334 }
2335 return 0;
2336 }
2337
domain_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long phys_pfn,unsigned long nr_pages,int prot)2338 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2339 struct scatterlist *sg, unsigned long phys_pfn,
2340 unsigned long nr_pages, int prot)
2341 {
2342 int iommu_id, ret;
2343 struct intel_iommu *iommu;
2344
2345 /* Do the real mapping first */
2346 ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2347 if (ret)
2348 return ret;
2349
2350 for_each_domain_iommu(iommu_id, domain) {
2351 iommu = g_iommus[iommu_id];
2352 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2353 }
2354
2355 return 0;
2356 }
2357
domain_sg_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long nr_pages,int prot)2358 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2359 struct scatterlist *sg, unsigned long nr_pages,
2360 int prot)
2361 {
2362 return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2363 }
2364
domain_pfn_mapping(struct dmar_domain * domain,unsigned long iov_pfn,unsigned long phys_pfn,unsigned long nr_pages,int prot)2365 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2366 unsigned long phys_pfn, unsigned long nr_pages,
2367 int prot)
2368 {
2369 return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2370 }
2371
domain_context_clear_one(struct intel_iommu * iommu,u8 bus,u8 devfn)2372 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2373 {
2374 unsigned long flags;
2375 struct context_entry *context;
2376 u16 did_old;
2377
2378 if (!iommu)
2379 return;
2380
2381 spin_lock_irqsave(&iommu->lock, flags);
2382 context = iommu_context_addr(iommu, bus, devfn, 0);
2383 if (!context) {
2384 spin_unlock_irqrestore(&iommu->lock, flags);
2385 return;
2386 }
2387 did_old = context_domain_id(context);
2388 context_clear_entry(context);
2389 __iommu_flush_cache(iommu, context, sizeof(*context));
2390 spin_unlock_irqrestore(&iommu->lock, flags);
2391 iommu->flush.flush_context(iommu,
2392 did_old,
2393 (((u16)bus) << 8) | devfn,
2394 DMA_CCMD_MASK_NOBIT,
2395 DMA_CCMD_DEVICE_INVL);
2396 iommu->flush.flush_iotlb(iommu,
2397 did_old,
2398 0,
2399 0,
2400 DMA_TLB_DSI_FLUSH);
2401 }
2402
unlink_domain_info(struct device_domain_info * info)2403 static inline void unlink_domain_info(struct device_domain_info *info)
2404 {
2405 assert_spin_locked(&device_domain_lock);
2406 list_del(&info->link);
2407 list_del(&info->global);
2408 if (info->dev)
2409 info->dev->archdata.iommu = NULL;
2410 }
2411
domain_remove_dev_info(struct dmar_domain * domain)2412 static void domain_remove_dev_info(struct dmar_domain *domain)
2413 {
2414 struct device_domain_info *info, *tmp;
2415 unsigned long flags;
2416
2417 spin_lock_irqsave(&device_domain_lock, flags);
2418 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2419 __dmar_remove_one_dev_info(info);
2420 spin_unlock_irqrestore(&device_domain_lock, flags);
2421 }
2422
2423 /*
2424 * find_domain
2425 * Note: we use struct device->archdata.iommu stores the info
2426 */
find_domain(struct device * dev)2427 static struct dmar_domain *find_domain(struct device *dev)
2428 {
2429 struct device_domain_info *info;
2430
2431 if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
2432 struct iommu_domain *domain;
2433
2434 dev->archdata.iommu = NULL;
2435 domain = iommu_get_domain_for_dev(dev);
2436 if (domain)
2437 intel_iommu_attach_device(domain, dev);
2438 }
2439
2440 /* No lock here, assumes no domain exit in normal case */
2441 info = dev->archdata.iommu;
2442
2443 if (likely(info))
2444 return info->domain;
2445 return NULL;
2446 }
2447
2448 static inline struct device_domain_info *
dmar_search_domain_by_dev_info(int segment,int bus,int devfn)2449 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2450 {
2451 struct device_domain_info *info;
2452
2453 list_for_each_entry(info, &device_domain_list, global)
2454 if (info->iommu->segment == segment && info->bus == bus &&
2455 info->devfn == devfn)
2456 return info;
2457
2458 return NULL;
2459 }
2460
dmar_insert_one_dev_info(struct intel_iommu * iommu,int bus,int devfn,struct device * dev,struct dmar_domain * domain)2461 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2462 int bus, int devfn,
2463 struct device *dev,
2464 struct dmar_domain *domain)
2465 {
2466 struct dmar_domain *found = NULL;
2467 struct device_domain_info *info;
2468 unsigned long flags;
2469 int ret;
2470
2471 info = alloc_devinfo_mem();
2472 if (!info)
2473 return NULL;
2474
2475 info->bus = bus;
2476 info->devfn = devfn;
2477 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2478 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2479 info->ats_qdep = 0;
2480 info->dev = dev;
2481 info->domain = domain;
2482 info->iommu = iommu;
2483 info->pasid_table = NULL;
2484 info->auxd_enabled = 0;
2485 INIT_LIST_HEAD(&info->auxiliary_domains);
2486
2487 if (dev && dev_is_pci(dev)) {
2488 struct pci_dev *pdev = to_pci_dev(info->dev);
2489
2490 if (!pdev->untrusted &&
2491 !pci_ats_disabled() &&
2492 ecap_dev_iotlb_support(iommu->ecap) &&
2493 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2494 dmar_find_matched_atsr_unit(pdev))
2495 info->ats_supported = 1;
2496
2497 if (sm_supported(iommu)) {
2498 if (pasid_supported(iommu)) {
2499 int features = pci_pasid_features(pdev);
2500 if (features >= 0)
2501 info->pasid_supported = features | 1;
2502 }
2503
2504 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2505 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2506 info->pri_supported = 1;
2507 }
2508 }
2509
2510 spin_lock_irqsave(&device_domain_lock, flags);
2511 if (dev)
2512 found = find_domain(dev);
2513
2514 if (!found) {
2515 struct device_domain_info *info2;
2516 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2517 if (info2) {
2518 found = info2->domain;
2519 info2->dev = dev;
2520 }
2521 }
2522
2523 if (found) {
2524 spin_unlock_irqrestore(&device_domain_lock, flags);
2525 free_devinfo_mem(info);
2526 /* Caller must free the original domain */
2527 return found;
2528 }
2529
2530 spin_lock(&iommu->lock);
2531 ret = domain_attach_iommu(domain, iommu);
2532 spin_unlock(&iommu->lock);
2533
2534 if (ret) {
2535 spin_unlock_irqrestore(&device_domain_lock, flags);
2536 free_devinfo_mem(info);
2537 return NULL;
2538 }
2539
2540 list_add(&info->link, &domain->devices);
2541 list_add(&info->global, &device_domain_list);
2542 if (dev)
2543 dev->archdata.iommu = info;
2544 spin_unlock_irqrestore(&device_domain_lock, flags);
2545
2546 /* PASID table is mandatory for a PCI device in scalable mode. */
2547 if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2548 ret = intel_pasid_alloc_table(dev);
2549 if (ret) {
2550 dev_err(dev, "PASID table allocation failed\n");
2551 dmar_remove_one_dev_info(dev);
2552 return NULL;
2553 }
2554
2555 /* Setup the PASID entry for requests without PASID: */
2556 spin_lock(&iommu->lock);
2557 if (hw_pass_through && domain_type_is_si(domain))
2558 ret = intel_pasid_setup_pass_through(iommu, domain,
2559 dev, PASID_RID2PASID);
2560 else
2561 ret = intel_pasid_setup_second_level(iommu, domain,
2562 dev, PASID_RID2PASID);
2563 spin_unlock(&iommu->lock);
2564 if (ret) {
2565 dev_err(dev, "Setup RID2PASID failed\n");
2566 dmar_remove_one_dev_info(dev);
2567 return NULL;
2568 }
2569 }
2570
2571 if (dev && domain_context_mapping(domain, dev)) {
2572 dev_err(dev, "Domain context map failed\n");
2573 dmar_remove_one_dev_info(dev);
2574 return NULL;
2575 }
2576
2577 return domain;
2578 }
2579
get_last_alias(struct pci_dev * pdev,u16 alias,void * opaque)2580 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2581 {
2582 *(u16 *)opaque = alias;
2583 return 0;
2584 }
2585
find_or_alloc_domain(struct device * dev,int gaw)2586 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2587 {
2588 struct device_domain_info *info;
2589 struct dmar_domain *domain = NULL;
2590 struct intel_iommu *iommu;
2591 u16 dma_alias;
2592 unsigned long flags;
2593 u8 bus, devfn;
2594
2595 iommu = device_to_iommu(dev, &bus, &devfn);
2596 if (!iommu)
2597 return NULL;
2598
2599 if (dev_is_pci(dev)) {
2600 struct pci_dev *pdev = to_pci_dev(dev);
2601
2602 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2603
2604 spin_lock_irqsave(&device_domain_lock, flags);
2605 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2606 PCI_BUS_NUM(dma_alias),
2607 dma_alias & 0xff);
2608 if (info) {
2609 iommu = info->iommu;
2610 domain = info->domain;
2611 }
2612 spin_unlock_irqrestore(&device_domain_lock, flags);
2613
2614 /* DMA alias already has a domain, use it */
2615 if (info)
2616 goto out;
2617 }
2618
2619 /* Allocate and initialize new domain for the device */
2620 domain = alloc_domain(0);
2621 if (!domain)
2622 return NULL;
2623 if (domain_init(domain, iommu, gaw)) {
2624 domain_exit(domain);
2625 return NULL;
2626 }
2627
2628 out:
2629 return domain;
2630 }
2631
set_domain_for_dev(struct device * dev,struct dmar_domain * domain)2632 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2633 struct dmar_domain *domain)
2634 {
2635 struct intel_iommu *iommu;
2636 struct dmar_domain *tmp;
2637 u16 req_id, dma_alias;
2638 u8 bus, devfn;
2639
2640 iommu = device_to_iommu(dev, &bus, &devfn);
2641 if (!iommu)
2642 return NULL;
2643
2644 req_id = ((u16)bus << 8) | devfn;
2645
2646 if (dev_is_pci(dev)) {
2647 struct pci_dev *pdev = to_pci_dev(dev);
2648
2649 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2650
2651 /* register PCI DMA alias device */
2652 if (req_id != dma_alias) {
2653 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2654 dma_alias & 0xff, NULL, domain);
2655
2656 if (!tmp || tmp != domain)
2657 return tmp;
2658 }
2659 }
2660
2661 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2662 if (!tmp || tmp != domain)
2663 return tmp;
2664
2665 return domain;
2666 }
2667
iommu_domain_identity_map(struct dmar_domain * domain,unsigned long long start,unsigned long long end)2668 static int iommu_domain_identity_map(struct dmar_domain *domain,
2669 unsigned long long start,
2670 unsigned long long end)
2671 {
2672 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2673 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2674
2675 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2676 dma_to_mm_pfn(last_vpfn))) {
2677 pr_err("Reserving iova failed\n");
2678 return -ENOMEM;
2679 }
2680
2681 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2682 /*
2683 * RMRR range might have overlap with physical memory range,
2684 * clear it first
2685 */
2686 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2687
2688 return __domain_mapping(domain, first_vpfn, NULL,
2689 first_vpfn, last_vpfn - first_vpfn + 1,
2690 DMA_PTE_READ|DMA_PTE_WRITE);
2691 }
2692
domain_prepare_identity_map(struct device * dev,struct dmar_domain * domain,unsigned long long start,unsigned long long end)2693 static int domain_prepare_identity_map(struct device *dev,
2694 struct dmar_domain *domain,
2695 unsigned long long start,
2696 unsigned long long end)
2697 {
2698 /* For _hardware_ passthrough, don't bother. But for software
2699 passthrough, we do it anyway -- it may indicate a memory
2700 range which is reserved in E820, so which didn't get set
2701 up to start with in si_domain */
2702 if (domain == si_domain && hw_pass_through) {
2703 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2704 start, end);
2705 return 0;
2706 }
2707
2708 dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
2709
2710 if (end < start) {
2711 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2712 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2713 dmi_get_system_info(DMI_BIOS_VENDOR),
2714 dmi_get_system_info(DMI_BIOS_VERSION),
2715 dmi_get_system_info(DMI_PRODUCT_VERSION));
2716 return -EIO;
2717 }
2718
2719 if (end >> agaw_to_width(domain->agaw)) {
2720 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2721 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2722 agaw_to_width(domain->agaw),
2723 dmi_get_system_info(DMI_BIOS_VENDOR),
2724 dmi_get_system_info(DMI_BIOS_VERSION),
2725 dmi_get_system_info(DMI_PRODUCT_VERSION));
2726 return -EIO;
2727 }
2728
2729 return iommu_domain_identity_map(domain, start, end);
2730 }
2731
2732 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2733
si_domain_init(int hw)2734 static int __init si_domain_init(int hw)
2735 {
2736 struct dmar_rmrr_unit *rmrr;
2737 struct device *dev;
2738 int i, nid, ret;
2739
2740 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2741 if (!si_domain)
2742 return -EFAULT;
2743
2744 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2745 domain_exit(si_domain);
2746 return -EFAULT;
2747 }
2748
2749 if (hw)
2750 return 0;
2751
2752 for_each_online_node(nid) {
2753 unsigned long start_pfn, end_pfn;
2754 int i;
2755
2756 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2757 ret = iommu_domain_identity_map(si_domain,
2758 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2759 if (ret)
2760 return ret;
2761 }
2762 }
2763
2764 /*
2765 * Normally we use DMA domains for devices which have RMRRs. But we
2766 * loose this requirement for graphic and usb devices. Identity map
2767 * the RMRRs for graphic and USB devices so that they could use the
2768 * si_domain.
2769 */
2770 for_each_rmrr_units(rmrr) {
2771 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2772 i, dev) {
2773 unsigned long long start = rmrr->base_address;
2774 unsigned long long end = rmrr->end_address;
2775
2776 if (device_is_rmrr_locked(dev))
2777 continue;
2778
2779 if (WARN_ON(end < start ||
2780 end >> agaw_to_width(si_domain->agaw)))
2781 continue;
2782
2783 ret = iommu_domain_identity_map(si_domain, start, end);
2784 if (ret)
2785 return ret;
2786 }
2787 }
2788
2789 return 0;
2790 }
2791
identity_mapping(struct device * dev)2792 static int identity_mapping(struct device *dev)
2793 {
2794 struct device_domain_info *info;
2795
2796 info = dev->archdata.iommu;
2797 if (info && info != DUMMY_DEVICE_DOMAIN_INFO && info != DEFER_DEVICE_DOMAIN_INFO)
2798 return (info->domain == si_domain);
2799
2800 return 0;
2801 }
2802
domain_add_dev_info(struct dmar_domain * domain,struct device * dev)2803 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2804 {
2805 struct dmar_domain *ndomain;
2806 struct intel_iommu *iommu;
2807 u8 bus, devfn;
2808
2809 iommu = device_to_iommu(dev, &bus, &devfn);
2810 if (!iommu)
2811 return -ENODEV;
2812
2813 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2814 if (ndomain != domain)
2815 return -EBUSY;
2816
2817 return 0;
2818 }
2819
device_has_rmrr(struct device * dev)2820 static bool device_has_rmrr(struct device *dev)
2821 {
2822 struct dmar_rmrr_unit *rmrr;
2823 struct device *tmp;
2824 int i;
2825
2826 rcu_read_lock();
2827 for_each_rmrr_units(rmrr) {
2828 /*
2829 * Return TRUE if this RMRR contains the device that
2830 * is passed in.
2831 */
2832 for_each_active_dev_scope(rmrr->devices,
2833 rmrr->devices_cnt, i, tmp)
2834 if (tmp == dev ||
2835 is_downstream_to_pci_bridge(dev, tmp)) {
2836 rcu_read_unlock();
2837 return true;
2838 }
2839 }
2840 rcu_read_unlock();
2841 return false;
2842 }
2843
2844 /**
2845 * device_rmrr_is_relaxable - Test whether the RMRR of this device
2846 * is relaxable (ie. is allowed to be not enforced under some conditions)
2847 * @dev: device handle
2848 *
2849 * We assume that PCI USB devices with RMRRs have them largely
2850 * for historical reasons and that the RMRR space is not actively used post
2851 * boot. This exclusion may change if vendors begin to abuse it.
2852 *
2853 * The same exception is made for graphics devices, with the requirement that
2854 * any use of the RMRR regions will be torn down before assigning the device
2855 * to a guest.
2856 *
2857 * Return: true if the RMRR is relaxable, false otherwise
2858 */
device_rmrr_is_relaxable(struct device * dev)2859 static bool device_rmrr_is_relaxable(struct device *dev)
2860 {
2861 struct pci_dev *pdev;
2862
2863 if (!dev_is_pci(dev))
2864 return false;
2865
2866 pdev = to_pci_dev(dev);
2867 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2868 return true;
2869 else
2870 return false;
2871 }
2872
2873 /*
2874 * There are a couple cases where we need to restrict the functionality of
2875 * devices associated with RMRRs. The first is when evaluating a device for
2876 * identity mapping because problems exist when devices are moved in and out
2877 * of domains and their respective RMRR information is lost. This means that
2878 * a device with associated RMRRs will never be in a "passthrough" domain.
2879 * The second is use of the device through the IOMMU API. This interface
2880 * expects to have full control of the IOVA space for the device. We cannot
2881 * satisfy both the requirement that RMRR access is maintained and have an
2882 * unencumbered IOVA space. We also have no ability to quiesce the device's
2883 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2884 * We therefore prevent devices associated with an RMRR from participating in
2885 * the IOMMU API, which eliminates them from device assignment.
2886 *
2887 * In both cases, devices which have relaxable RMRRs are not concerned by this
2888 * restriction. See device_rmrr_is_relaxable comment.
2889 */
device_is_rmrr_locked(struct device * dev)2890 static bool device_is_rmrr_locked(struct device *dev)
2891 {
2892 if (!device_has_rmrr(dev))
2893 return false;
2894
2895 if (device_rmrr_is_relaxable(dev))
2896 return false;
2897
2898 return true;
2899 }
2900
2901 /*
2902 * Return the required default domain type for a specific device.
2903 *
2904 * @dev: the device in query
2905 * @startup: true if this is during early boot
2906 *
2907 * Returns:
2908 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2909 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2910 * - 0: both identity and dynamic domains work for this device
2911 */
device_def_domain_type(struct device * dev)2912 static int device_def_domain_type(struct device *dev)
2913 {
2914 if (dev_is_pci(dev)) {
2915 struct pci_dev *pdev = to_pci_dev(dev);
2916
2917 if (device_is_rmrr_locked(dev))
2918 return IOMMU_DOMAIN_DMA;
2919
2920 /*
2921 * Prevent any device marked as untrusted from getting
2922 * placed into the statically identity mapping domain.
2923 */
2924 if (pdev->untrusted)
2925 return IOMMU_DOMAIN_DMA;
2926
2927 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2928 return IOMMU_DOMAIN_IDENTITY;
2929
2930 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2931 return IOMMU_DOMAIN_IDENTITY;
2932
2933 /*
2934 * We want to start off with all devices in the 1:1 domain, and
2935 * take them out later if we find they can't access all of memory.
2936 *
2937 * However, we can't do this for PCI devices behind bridges,
2938 * because all PCI devices behind the same bridge will end up
2939 * with the same source-id on their transactions.
2940 *
2941 * Practically speaking, we can't change things around for these
2942 * devices at run-time, because we can't be sure there'll be no
2943 * DMA transactions in flight for any of their siblings.
2944 *
2945 * So PCI devices (unless they're on the root bus) as well as
2946 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2947 * the 1:1 domain, just in _case_ one of their siblings turns out
2948 * not to be able to map all of memory.
2949 */
2950 if (!pci_is_pcie(pdev)) {
2951 if (!pci_is_root_bus(pdev->bus))
2952 return IOMMU_DOMAIN_DMA;
2953 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2954 return IOMMU_DOMAIN_DMA;
2955 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2956 return IOMMU_DOMAIN_DMA;
2957 } else {
2958 if (device_has_rmrr(dev))
2959 return IOMMU_DOMAIN_DMA;
2960 }
2961
2962 return (iommu_identity_mapping & IDENTMAP_ALL) ?
2963 IOMMU_DOMAIN_IDENTITY : 0;
2964 }
2965
intel_iommu_init_qi(struct intel_iommu * iommu)2966 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2967 {
2968 /*
2969 * Start from the sane iommu hardware state.
2970 * If the queued invalidation is already initialized by us
2971 * (for example, while enabling interrupt-remapping) then
2972 * we got the things already rolling from a sane state.
2973 */
2974 if (!iommu->qi) {
2975 /*
2976 * Clear any previous faults.
2977 */
2978 dmar_fault(-1, iommu);
2979 /*
2980 * Disable queued invalidation if supported and already enabled
2981 * before OS handover.
2982 */
2983 dmar_disable_qi(iommu);
2984 }
2985
2986 if (dmar_enable_qi(iommu)) {
2987 /*
2988 * Queued Invalidate not enabled, use Register Based Invalidate
2989 */
2990 iommu->flush.flush_context = __iommu_flush_context;
2991 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2992 pr_info("%s: Using Register based invalidation\n",
2993 iommu->name);
2994 } else {
2995 iommu->flush.flush_context = qi_flush_context;
2996 iommu->flush.flush_iotlb = qi_flush_iotlb;
2997 pr_info("%s: Using Queued invalidation\n", iommu->name);
2998 }
2999 }
3000
copy_context_table(struct intel_iommu * iommu,struct root_entry * old_re,struct context_entry ** tbl,int bus,bool ext)3001 static int copy_context_table(struct intel_iommu *iommu,
3002 struct root_entry *old_re,
3003 struct context_entry **tbl,
3004 int bus, bool ext)
3005 {
3006 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3007 struct context_entry *new_ce = NULL, ce;
3008 struct context_entry *old_ce = NULL;
3009 struct root_entry re;
3010 phys_addr_t old_ce_phys;
3011
3012 tbl_idx = ext ? bus * 2 : bus;
3013 memcpy(&re, old_re, sizeof(re));
3014
3015 for (devfn = 0; devfn < 256; devfn++) {
3016 /* First calculate the correct index */
3017 idx = (ext ? devfn * 2 : devfn) % 256;
3018
3019 if (idx == 0) {
3020 /* First save what we may have and clean up */
3021 if (new_ce) {
3022 tbl[tbl_idx] = new_ce;
3023 __iommu_flush_cache(iommu, new_ce,
3024 VTD_PAGE_SIZE);
3025 pos = 1;
3026 }
3027
3028 if (old_ce)
3029 memunmap(old_ce);
3030
3031 ret = 0;
3032 if (devfn < 0x80)
3033 old_ce_phys = root_entry_lctp(&re);
3034 else
3035 old_ce_phys = root_entry_uctp(&re);
3036
3037 if (!old_ce_phys) {
3038 if (ext && devfn == 0) {
3039 /* No LCTP, try UCTP */
3040 devfn = 0x7f;
3041 continue;
3042 } else {
3043 goto out;
3044 }
3045 }
3046
3047 ret = -ENOMEM;
3048 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3049 MEMREMAP_WB);
3050 if (!old_ce)
3051 goto out;
3052
3053 new_ce = alloc_pgtable_page(iommu->node);
3054 if (!new_ce)
3055 goto out_unmap;
3056
3057 ret = 0;
3058 }
3059
3060 /* Now copy the context entry */
3061 memcpy(&ce, old_ce + idx, sizeof(ce));
3062
3063 if (!__context_present(&ce))
3064 continue;
3065
3066 did = context_domain_id(&ce);
3067 if (did >= 0 && did < cap_ndoms(iommu->cap))
3068 set_bit(did, iommu->domain_ids);
3069
3070 /*
3071 * We need a marker for copied context entries. This
3072 * marker needs to work for the old format as well as
3073 * for extended context entries.
3074 *
3075 * Bit 67 of the context entry is used. In the old
3076 * format this bit is available to software, in the
3077 * extended format it is the PGE bit, but PGE is ignored
3078 * by HW if PASIDs are disabled (and thus still
3079 * available).
3080 *
3081 * So disable PASIDs first and then mark the entry
3082 * copied. This means that we don't copy PASID
3083 * translations from the old kernel, but this is fine as
3084 * faults there are not fatal.
3085 */
3086 context_clear_pasid_enable(&ce);
3087 context_set_copied(&ce);
3088
3089 new_ce[idx] = ce;
3090 }
3091
3092 tbl[tbl_idx + pos] = new_ce;
3093
3094 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3095
3096 out_unmap:
3097 memunmap(old_ce);
3098
3099 out:
3100 return ret;
3101 }
3102
copy_translation_tables(struct intel_iommu * iommu)3103 static int copy_translation_tables(struct intel_iommu *iommu)
3104 {
3105 struct context_entry **ctxt_tbls;
3106 struct root_entry *old_rt;
3107 phys_addr_t old_rt_phys;
3108 int ctxt_table_entries;
3109 unsigned long flags;
3110 u64 rtaddr_reg;
3111 int bus, ret;
3112 bool new_ext, ext;
3113
3114 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3115 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3116 new_ext = !!ecap_ecs(iommu->ecap);
3117
3118 /*
3119 * The RTT bit can only be changed when translation is disabled,
3120 * but disabling translation means to open a window for data
3121 * corruption. So bail out and don't copy anything if we would
3122 * have to change the bit.
3123 */
3124 if (new_ext != ext)
3125 return -EINVAL;
3126
3127 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3128 if (!old_rt_phys)
3129 return -EINVAL;
3130
3131 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3132 if (!old_rt)
3133 return -ENOMEM;
3134
3135 /* This is too big for the stack - allocate it from slab */
3136 ctxt_table_entries = ext ? 512 : 256;
3137 ret = -ENOMEM;
3138 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3139 if (!ctxt_tbls)
3140 goto out_unmap;
3141
3142 for (bus = 0; bus < 256; bus++) {
3143 ret = copy_context_table(iommu, &old_rt[bus],
3144 ctxt_tbls, bus, ext);
3145 if (ret) {
3146 pr_err("%s: Failed to copy context table for bus %d\n",
3147 iommu->name, bus);
3148 continue;
3149 }
3150 }
3151
3152 spin_lock_irqsave(&iommu->lock, flags);
3153
3154 /* Context tables are copied, now write them to the root_entry table */
3155 for (bus = 0; bus < 256; bus++) {
3156 int idx = ext ? bus * 2 : bus;
3157 u64 val;
3158
3159 if (ctxt_tbls[idx]) {
3160 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3161 iommu->root_entry[bus].lo = val;
3162 }
3163
3164 if (!ext || !ctxt_tbls[idx + 1])
3165 continue;
3166
3167 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3168 iommu->root_entry[bus].hi = val;
3169 }
3170
3171 spin_unlock_irqrestore(&iommu->lock, flags);
3172
3173 kfree(ctxt_tbls);
3174
3175 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3176
3177 ret = 0;
3178
3179 out_unmap:
3180 memunmap(old_rt);
3181
3182 return ret;
3183 }
3184
init_dmars(void)3185 static int __init init_dmars(void)
3186 {
3187 struct dmar_drhd_unit *drhd;
3188 struct intel_iommu *iommu;
3189 int ret;
3190
3191 /*
3192 * for each drhd
3193 * allocate root
3194 * initialize and program root entry to not present
3195 * endfor
3196 */
3197 for_each_drhd_unit(drhd) {
3198 /*
3199 * lock not needed as this is only incremented in the single
3200 * threaded kernel __init code path all other access are read
3201 * only
3202 */
3203 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3204 g_num_of_iommus++;
3205 continue;
3206 }
3207 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3208 }
3209
3210 /* Preallocate enough resources for IOMMU hot-addition */
3211 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3212 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3213
3214 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3215 GFP_KERNEL);
3216 if (!g_iommus) {
3217 pr_err("Allocating global iommu array failed\n");
3218 ret = -ENOMEM;
3219 goto error;
3220 }
3221
3222 for_each_iommu(iommu, drhd) {
3223 if (drhd->ignored) {
3224 iommu_disable_translation(iommu);
3225 continue;
3226 }
3227
3228 /*
3229 * Find the max pasid size of all IOMMU's in the system.
3230 * We need to ensure the system pasid table is no bigger
3231 * than the smallest supported.
3232 */
3233 if (pasid_supported(iommu)) {
3234 u32 temp = 2 << ecap_pss(iommu->ecap);
3235
3236 intel_pasid_max_id = min_t(u32, temp,
3237 intel_pasid_max_id);
3238 }
3239
3240 g_iommus[iommu->seq_id] = iommu;
3241
3242 intel_iommu_init_qi(iommu);
3243
3244 ret = iommu_init_domains(iommu);
3245 if (ret)
3246 goto free_iommu;
3247
3248 init_translation_status(iommu);
3249
3250 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3251 iommu_disable_translation(iommu);
3252 clear_translation_pre_enabled(iommu);
3253 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3254 iommu->name);
3255 }
3256
3257 /*
3258 * TBD:
3259 * we could share the same root & context tables
3260 * among all IOMMU's. Need to Split it later.
3261 */
3262 ret = iommu_alloc_root_entry(iommu);
3263 if (ret)
3264 goto free_iommu;
3265
3266 if (translation_pre_enabled(iommu)) {
3267 pr_info("Translation already enabled - trying to copy translation structures\n");
3268
3269 ret = copy_translation_tables(iommu);
3270 if (ret) {
3271 /*
3272 * We found the IOMMU with translation
3273 * enabled - but failed to copy over the
3274 * old root-entry table. Try to proceed
3275 * by disabling translation now and
3276 * allocating a clean root-entry table.
3277 * This might cause DMAR faults, but
3278 * probably the dump will still succeed.
3279 */
3280 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3281 iommu->name);
3282 iommu_disable_translation(iommu);
3283 clear_translation_pre_enabled(iommu);
3284 } else {
3285 pr_info("Copied translation tables from previous kernel for %s\n",
3286 iommu->name);
3287 }
3288 }
3289
3290 if (!ecap_pass_through(iommu->ecap))
3291 hw_pass_through = 0;
3292 #ifdef CONFIG_INTEL_IOMMU_SVM
3293 if (pasid_supported(iommu))
3294 intel_svm_init(iommu);
3295 #endif
3296 }
3297
3298 /*
3299 * Now that qi is enabled on all iommus, set the root entry and flush
3300 * caches. This is required on some Intel X58 chipsets, otherwise the
3301 * flush_context function will loop forever and the boot hangs.
3302 */
3303 for_each_active_iommu(iommu, drhd) {
3304 iommu_flush_write_buffer(iommu);
3305 iommu_set_root_entry(iommu);
3306 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3307 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3308 }
3309
3310 if (iommu_default_passthrough())
3311 iommu_identity_mapping |= IDENTMAP_ALL;
3312
3313 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3314 dmar_map_gfx = 0;
3315 #endif
3316
3317 if (!dmar_map_gfx)
3318 iommu_identity_mapping |= IDENTMAP_GFX;
3319
3320 check_tylersburg_isoch();
3321
3322 ret = si_domain_init(hw_pass_through);
3323 if (ret)
3324 goto free_iommu;
3325
3326 /*
3327 * for each drhd
3328 * enable fault log
3329 * global invalidate context cache
3330 * global invalidate iotlb
3331 * enable translation
3332 */
3333 for_each_iommu(iommu, drhd) {
3334 if (drhd->ignored) {
3335 /*
3336 * we always have to disable PMRs or DMA may fail on
3337 * this device
3338 */
3339 if (force_on)
3340 iommu_disable_protect_mem_regions(iommu);
3341 continue;
3342 }
3343
3344 iommu_flush_write_buffer(iommu);
3345
3346 #ifdef CONFIG_INTEL_IOMMU_SVM
3347 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3348 /*
3349 * Call dmar_alloc_hwirq() with dmar_global_lock held,
3350 * could cause possible lock race condition.
3351 */
3352 up_write(&dmar_global_lock);
3353 ret = intel_svm_enable_prq(iommu);
3354 down_write(&dmar_global_lock);
3355 if (ret)
3356 goto free_iommu;
3357 }
3358 #endif
3359 ret = dmar_set_interrupt(iommu);
3360 if (ret)
3361 goto free_iommu;
3362 }
3363
3364 return 0;
3365
3366 free_iommu:
3367 for_each_active_iommu(iommu, drhd) {
3368 disable_dmar_iommu(iommu);
3369 free_dmar_iommu(iommu);
3370 }
3371
3372 kfree(g_iommus);
3373
3374 error:
3375 return ret;
3376 }
3377
3378 /* This takes a number of _MM_ pages, not VTD pages */
intel_alloc_iova(struct device * dev,struct dmar_domain * domain,unsigned long nrpages,uint64_t dma_mask)3379 static unsigned long intel_alloc_iova(struct device *dev,
3380 struct dmar_domain *domain,
3381 unsigned long nrpages, uint64_t dma_mask)
3382 {
3383 unsigned long iova_pfn;
3384
3385 /* Restrict dma_mask to the width that the iommu can handle */
3386 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3387 /* Ensure we reserve the whole size-aligned region */
3388 nrpages = __roundup_pow_of_two(nrpages);
3389
3390 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3391 /*
3392 * First try to allocate an io virtual address in
3393 * DMA_BIT_MASK(32) and if that fails then try allocating
3394 * from higher range
3395 */
3396 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3397 IOVA_PFN(DMA_BIT_MASK(32)), false);
3398 if (iova_pfn)
3399 return iova_pfn;
3400 }
3401 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3402 IOVA_PFN(dma_mask), true);
3403 if (unlikely(!iova_pfn)) {
3404 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3405 return 0;
3406 }
3407
3408 return iova_pfn;
3409 }
3410
get_private_domain_for_dev(struct device * dev)3411 static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3412 {
3413 struct dmar_domain *domain, *tmp;
3414 struct dmar_rmrr_unit *rmrr;
3415 struct device *i_dev;
3416 int i, ret;
3417
3418 /* Device shouldn't be attached by any domains. */
3419 domain = find_domain(dev);
3420 if (domain)
3421 return NULL;
3422
3423 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3424 if (!domain)
3425 goto out;
3426
3427 /* We have a new domain - setup possible RMRRs for the device */
3428 rcu_read_lock();
3429 for_each_rmrr_units(rmrr) {
3430 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3431 i, i_dev) {
3432 if (i_dev != dev)
3433 continue;
3434
3435 ret = domain_prepare_identity_map(dev, domain,
3436 rmrr->base_address,
3437 rmrr->end_address);
3438 if (ret)
3439 dev_err(dev, "Mapping reserved region failed\n");
3440 }
3441 }
3442 rcu_read_unlock();
3443
3444 tmp = set_domain_for_dev(dev, domain);
3445 if (!tmp || domain != tmp) {
3446 domain_exit(domain);
3447 domain = tmp;
3448 }
3449
3450 out:
3451 if (!domain)
3452 dev_err(dev, "Allocating domain failed\n");
3453 else
3454 domain->domain.type = IOMMU_DOMAIN_DMA;
3455
3456 return domain;
3457 }
3458
3459 /* Check if the dev needs to go through non-identity map and unmap process.*/
iommu_need_mapping(struct device * dev)3460 static bool iommu_need_mapping(struct device *dev)
3461 {
3462 int ret;
3463
3464 if (iommu_dummy(dev))
3465 return false;
3466
3467 ret = identity_mapping(dev);
3468 if (ret) {
3469 u64 dma_mask = *dev->dma_mask;
3470
3471 if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
3472 dma_mask = dev->coherent_dma_mask;
3473
3474 if (dma_mask >= dma_direct_get_required_mask(dev))
3475 return false;
3476
3477 /*
3478 * 32 bit DMA is removed from si_domain and fall back to
3479 * non-identity mapping.
3480 */
3481 dmar_remove_one_dev_info(dev);
3482 ret = iommu_request_dma_domain_for_dev(dev);
3483 if (ret) {
3484 struct iommu_domain *domain;
3485 struct dmar_domain *dmar_domain;
3486
3487 domain = iommu_get_domain_for_dev(dev);
3488 if (domain) {
3489 dmar_domain = to_dmar_domain(domain);
3490 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
3491 }
3492 dmar_remove_one_dev_info(dev);
3493 get_private_domain_for_dev(dev);
3494 }
3495
3496 dev_info(dev, "32bit DMA uses non-identity mapping\n");
3497 }
3498
3499 return true;
3500 }
3501
__intel_map_single(struct device * dev,phys_addr_t paddr,size_t size,int dir,u64 dma_mask)3502 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3503 size_t size, int dir, u64 dma_mask)
3504 {
3505 struct dmar_domain *domain;
3506 phys_addr_t start_paddr;
3507 unsigned long iova_pfn;
3508 int prot = 0;
3509 int ret;
3510 struct intel_iommu *iommu;
3511 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3512
3513 BUG_ON(dir == DMA_NONE);
3514
3515 domain = find_domain(dev);
3516 if (!domain)
3517 return DMA_MAPPING_ERROR;
3518
3519 iommu = domain_get_iommu(domain);
3520 size = aligned_nrpages(paddr, size);
3521
3522 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3523 if (!iova_pfn)
3524 goto error;
3525
3526 /*
3527 * Check if DMAR supports zero-length reads on write only
3528 * mappings..
3529 */
3530 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3531 !cap_zlr(iommu->cap))
3532 prot |= DMA_PTE_READ;
3533 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3534 prot |= DMA_PTE_WRITE;
3535 /*
3536 * paddr - (paddr + size) might be partial page, we should map the whole
3537 * page. Note: if two part of one page are separately mapped, we
3538 * might have two guest_addr mapping to the same host paddr, but this
3539 * is not a big problem
3540 */
3541 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3542 mm_to_dma_pfn(paddr_pfn), size, prot);
3543 if (ret)
3544 goto error;
3545
3546 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3547 start_paddr += paddr & ~PAGE_MASK;
3548
3549 trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);
3550
3551 return start_paddr;
3552
3553 error:
3554 if (iova_pfn)
3555 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3556 dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3557 size, (unsigned long long)paddr, dir);
3558 return DMA_MAPPING_ERROR;
3559 }
3560
intel_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)3561 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3562 unsigned long offset, size_t size,
3563 enum dma_data_direction dir,
3564 unsigned long attrs)
3565 {
3566 if (iommu_need_mapping(dev))
3567 return __intel_map_single(dev, page_to_phys(page) + offset,
3568 size, dir, *dev->dma_mask);
3569 return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3570 }
3571
intel_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3572 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3573 size_t size, enum dma_data_direction dir,
3574 unsigned long attrs)
3575 {
3576 if (iommu_need_mapping(dev))
3577 return __intel_map_single(dev, phys_addr, size, dir,
3578 *dev->dma_mask);
3579 return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3580 }
3581
intel_unmap(struct device * dev,dma_addr_t dev_addr,size_t size)3582 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3583 {
3584 struct dmar_domain *domain;
3585 unsigned long start_pfn, last_pfn;
3586 unsigned long nrpages;
3587 unsigned long iova_pfn;
3588 struct intel_iommu *iommu;
3589 struct page *freelist;
3590 struct pci_dev *pdev = NULL;
3591
3592 domain = find_domain(dev);
3593 BUG_ON(!domain);
3594
3595 iommu = domain_get_iommu(domain);
3596
3597 iova_pfn = IOVA_PFN(dev_addr);
3598
3599 nrpages = aligned_nrpages(dev_addr, size);
3600 start_pfn = mm_to_dma_pfn(iova_pfn);
3601 last_pfn = start_pfn + nrpages - 1;
3602
3603 if (dev_is_pci(dev))
3604 pdev = to_pci_dev(dev);
3605
3606 freelist = domain_unmap(domain, start_pfn, last_pfn);
3607 if (intel_iommu_strict || (pdev && pdev->untrusted) ||
3608 !has_iova_flush_queue(&domain->iovad)) {
3609 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3610 nrpages, !freelist, 0);
3611 /* free iova */
3612 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3613 dma_free_pagelist(freelist);
3614 } else {
3615 queue_iova(&domain->iovad, iova_pfn, nrpages,
3616 (unsigned long)freelist);
3617 /*
3618 * queue up the release of the unmap to save the 1/6th of the
3619 * cpu used up by the iotlb flush operation...
3620 */
3621 }
3622
3623 trace_unmap_single(dev, dev_addr, size);
3624 }
3625
intel_unmap_page(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3626 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3627 size_t size, enum dma_data_direction dir,
3628 unsigned long attrs)
3629 {
3630 if (iommu_need_mapping(dev))
3631 intel_unmap(dev, dev_addr, size);
3632 else
3633 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3634 }
3635
intel_unmap_resource(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3636 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3637 size_t size, enum dma_data_direction dir, unsigned long attrs)
3638 {
3639 if (iommu_need_mapping(dev))
3640 intel_unmap(dev, dev_addr, size);
3641 }
3642
intel_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)3643 static void *intel_alloc_coherent(struct device *dev, size_t size,
3644 dma_addr_t *dma_handle, gfp_t flags,
3645 unsigned long attrs)
3646 {
3647 struct page *page = NULL;
3648 int order;
3649
3650 if (!iommu_need_mapping(dev))
3651 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3652
3653 size = PAGE_ALIGN(size);
3654 order = get_order(size);
3655
3656 if (gfpflags_allow_blocking(flags)) {
3657 unsigned int count = size >> PAGE_SHIFT;
3658
3659 page = dma_alloc_from_contiguous(dev, count, order,
3660 flags & __GFP_NOWARN);
3661 }
3662
3663 if (!page)
3664 page = alloc_pages(flags, order);
3665 if (!page)
3666 return NULL;
3667 memset(page_address(page), 0, size);
3668
3669 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3670 DMA_BIDIRECTIONAL,
3671 dev->coherent_dma_mask);
3672 if (*dma_handle != DMA_MAPPING_ERROR)
3673 return page_address(page);
3674 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3675 __free_pages(page, order);
3676
3677 return NULL;
3678 }
3679
intel_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)3680 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3681 dma_addr_t dma_handle, unsigned long attrs)
3682 {
3683 int order;
3684 struct page *page = virt_to_page(vaddr);
3685
3686 if (!iommu_need_mapping(dev))
3687 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3688
3689 size = PAGE_ALIGN(size);
3690 order = get_order(size);
3691
3692 intel_unmap(dev, dma_handle, size);
3693 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3694 __free_pages(page, order);
3695 }
3696
intel_unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)3697 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3698 int nelems, enum dma_data_direction dir,
3699 unsigned long attrs)
3700 {
3701 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3702 unsigned long nrpages = 0;
3703 struct scatterlist *sg;
3704 int i;
3705
3706 if (!iommu_need_mapping(dev))
3707 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3708
3709 for_each_sg(sglist, sg, nelems, i) {
3710 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3711 }
3712
3713 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3714
3715 trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3716 }
3717
intel_map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)3718 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3719 enum dma_data_direction dir, unsigned long attrs)
3720 {
3721 int i;
3722 struct dmar_domain *domain;
3723 size_t size = 0;
3724 int prot = 0;
3725 unsigned long iova_pfn;
3726 int ret;
3727 struct scatterlist *sg;
3728 unsigned long start_vpfn;
3729 struct intel_iommu *iommu;
3730
3731 BUG_ON(dir == DMA_NONE);
3732 if (!iommu_need_mapping(dev))
3733 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3734
3735 domain = find_domain(dev);
3736 if (!domain)
3737 return 0;
3738
3739 iommu = domain_get_iommu(domain);
3740
3741 for_each_sg(sglist, sg, nelems, i)
3742 size += aligned_nrpages(sg->offset, sg->length);
3743
3744 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3745 *dev->dma_mask);
3746 if (!iova_pfn) {
3747 sglist->dma_length = 0;
3748 return 0;
3749 }
3750
3751 /*
3752 * Check if DMAR supports zero-length reads on write only
3753 * mappings..
3754 */
3755 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3756 !cap_zlr(iommu->cap))
3757 prot |= DMA_PTE_READ;
3758 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3759 prot |= DMA_PTE_WRITE;
3760
3761 start_vpfn = mm_to_dma_pfn(iova_pfn);
3762
3763 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3764 if (unlikely(ret)) {
3765 dma_pte_free_pagetable(domain, start_vpfn,
3766 start_vpfn + size - 1,
3767 agaw_to_level(domain->agaw) + 1);
3768 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3769 return 0;
3770 }
3771
3772 trace_map_sg(dev, iova_pfn << PAGE_SHIFT,
3773 sg_phys(sglist), size << VTD_PAGE_SHIFT);
3774
3775 return nelems;
3776 }
3777
intel_get_required_mask(struct device * dev)3778 static u64 intel_get_required_mask(struct device *dev)
3779 {
3780 if (!iommu_need_mapping(dev))
3781 return dma_direct_get_required_mask(dev);
3782 return DMA_BIT_MASK(32);
3783 }
3784
3785 static const struct dma_map_ops intel_dma_ops = {
3786 .alloc = intel_alloc_coherent,
3787 .free = intel_free_coherent,
3788 .map_sg = intel_map_sg,
3789 .unmap_sg = intel_unmap_sg,
3790 .map_page = intel_map_page,
3791 .unmap_page = intel_unmap_page,
3792 .map_resource = intel_map_resource,
3793 .unmap_resource = intel_unmap_resource,
3794 .dma_supported = dma_direct_supported,
3795 .mmap = dma_common_mmap,
3796 .get_sgtable = dma_common_get_sgtable,
3797 .get_required_mask = intel_get_required_mask,
3798 };
3799
3800 static void
bounce_sync_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)3801 bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
3802 enum dma_data_direction dir, enum dma_sync_target target)
3803 {
3804 struct dmar_domain *domain;
3805 phys_addr_t tlb_addr;
3806
3807 domain = find_domain(dev);
3808 if (WARN_ON(!domain))
3809 return;
3810
3811 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
3812 if (is_swiotlb_buffer(tlb_addr))
3813 swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
3814 }
3815
3816 static dma_addr_t
bounce_map_single(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs,u64 dma_mask)3817 bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
3818 enum dma_data_direction dir, unsigned long attrs,
3819 u64 dma_mask)
3820 {
3821 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3822 struct dmar_domain *domain;
3823 struct intel_iommu *iommu;
3824 unsigned long iova_pfn;
3825 unsigned long nrpages;
3826 phys_addr_t tlb_addr;
3827 int prot = 0;
3828 int ret;
3829
3830 domain = find_domain(dev);
3831 if (WARN_ON(dir == DMA_NONE || !domain))
3832 return DMA_MAPPING_ERROR;
3833
3834 iommu = domain_get_iommu(domain);
3835 if (WARN_ON(!iommu))
3836 return DMA_MAPPING_ERROR;
3837
3838 nrpages = aligned_nrpages(0, size);
3839 iova_pfn = intel_alloc_iova(dev, domain,
3840 dma_to_mm_pfn(nrpages), dma_mask);
3841 if (!iova_pfn)
3842 return DMA_MAPPING_ERROR;
3843
3844 /*
3845 * Check if DMAR supports zero-length reads on write only
3846 * mappings..
3847 */
3848 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
3849 !cap_zlr(iommu->cap))
3850 prot |= DMA_PTE_READ;
3851 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3852 prot |= DMA_PTE_WRITE;
3853
3854 /*
3855 * If both the physical buffer start address and size are
3856 * page aligned, we don't need to use a bounce page.
3857 */
3858 if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
3859 tlb_addr = swiotlb_tbl_map_single(dev,
3860 __phys_to_dma(dev, io_tlb_start),
3861 paddr, size, aligned_size, dir, attrs);
3862 if (tlb_addr == DMA_MAPPING_ERROR) {
3863 goto swiotlb_error;
3864 } else {
3865 /* Cleanup the padding area. */
3866 void *padding_start = phys_to_virt(tlb_addr);
3867 size_t padding_size = aligned_size;
3868
3869 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
3870 (dir == DMA_TO_DEVICE ||
3871 dir == DMA_BIDIRECTIONAL)) {
3872 padding_start += size;
3873 padding_size -= size;
3874 }
3875
3876 memset(padding_start, 0, padding_size);
3877 }
3878 } else {
3879 tlb_addr = paddr;
3880 }
3881
3882 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3883 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
3884 if (ret)
3885 goto mapping_error;
3886
3887 trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);
3888
3889 return (phys_addr_t)iova_pfn << PAGE_SHIFT;
3890
3891 mapping_error:
3892 if (is_swiotlb_buffer(tlb_addr))
3893 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3894 aligned_size, dir, attrs);
3895 swiotlb_error:
3896 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3897 dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
3898 size, (unsigned long long)paddr, dir);
3899
3900 return DMA_MAPPING_ERROR;
3901 }
3902
3903 static void
bounce_unmap_single(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3904 bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
3905 enum dma_data_direction dir, unsigned long attrs)
3906 {
3907 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3908 struct dmar_domain *domain;
3909 phys_addr_t tlb_addr;
3910
3911 domain = find_domain(dev);
3912 if (WARN_ON(!domain))
3913 return;
3914
3915 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
3916 if (WARN_ON(!tlb_addr))
3917 return;
3918
3919 intel_unmap(dev, dev_addr, size);
3920 if (is_swiotlb_buffer(tlb_addr))
3921 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3922 aligned_size, dir, attrs);
3923
3924 trace_bounce_unmap_single(dev, dev_addr, size);
3925 }
3926
3927 static dma_addr_t
bounce_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)3928 bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
3929 size_t size, enum dma_data_direction dir, unsigned long attrs)
3930 {
3931 return bounce_map_single(dev, page_to_phys(page) + offset,
3932 size, dir, attrs, *dev->dma_mask);
3933 }
3934
3935 static dma_addr_t
bounce_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3936 bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
3937 enum dma_data_direction dir, unsigned long attrs)
3938 {
3939 return bounce_map_single(dev, phys_addr, size,
3940 dir, attrs, *dev->dma_mask);
3941 }
3942
3943 static void
bounce_unmap_page(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3944 bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
3945 enum dma_data_direction dir, unsigned long attrs)
3946 {
3947 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3948 }
3949
3950 static void
bounce_unmap_resource(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3951 bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
3952 enum dma_data_direction dir, unsigned long attrs)
3953 {
3954 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3955 }
3956
3957 static void
bounce_unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)3958 bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3959 enum dma_data_direction dir, unsigned long attrs)
3960 {
3961 struct scatterlist *sg;
3962 int i;
3963
3964 for_each_sg(sglist, sg, nelems, i)
3965 bounce_unmap_page(dev, sg->dma_address,
3966 sg_dma_len(sg), dir, attrs);
3967 }
3968
3969 static int
bounce_map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)3970 bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3971 enum dma_data_direction dir, unsigned long attrs)
3972 {
3973 int i;
3974 struct scatterlist *sg;
3975
3976 for_each_sg(sglist, sg, nelems, i) {
3977 sg->dma_address = bounce_map_page(dev, sg_page(sg),
3978 sg->offset, sg->length,
3979 dir, attrs);
3980 if (sg->dma_address == DMA_MAPPING_ERROR)
3981 goto out_unmap;
3982 sg_dma_len(sg) = sg->length;
3983 }
3984
3985 return nelems;
3986
3987 out_unmap:
3988 bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
3989 return 0;
3990 }
3991
3992 static void
bounce_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)3993 bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
3994 size_t size, enum dma_data_direction dir)
3995 {
3996 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
3997 }
3998
3999 static void
bounce_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)4000 bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
4001 size_t size, enum dma_data_direction dir)
4002 {
4003 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
4004 }
4005
4006 static void
bounce_sync_sg_for_cpu(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir)4007 bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
4008 int nelems, enum dma_data_direction dir)
4009 {
4010 struct scatterlist *sg;
4011 int i;
4012
4013 for_each_sg(sglist, sg, nelems, i)
4014 bounce_sync_single(dev, sg_dma_address(sg),
4015 sg_dma_len(sg), dir, SYNC_FOR_CPU);
4016 }
4017
4018 static void
bounce_sync_sg_for_device(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir)4019 bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
4020 int nelems, enum dma_data_direction dir)
4021 {
4022 struct scatterlist *sg;
4023 int i;
4024
4025 for_each_sg(sglist, sg, nelems, i)
4026 bounce_sync_single(dev, sg_dma_address(sg),
4027 sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
4028 }
4029
4030 static const struct dma_map_ops bounce_dma_ops = {
4031 .alloc = intel_alloc_coherent,
4032 .free = intel_free_coherent,
4033 .map_sg = bounce_map_sg,
4034 .unmap_sg = bounce_unmap_sg,
4035 .map_page = bounce_map_page,
4036 .unmap_page = bounce_unmap_page,
4037 .sync_single_for_cpu = bounce_sync_single_for_cpu,
4038 .sync_single_for_device = bounce_sync_single_for_device,
4039 .sync_sg_for_cpu = bounce_sync_sg_for_cpu,
4040 .sync_sg_for_device = bounce_sync_sg_for_device,
4041 .map_resource = bounce_map_resource,
4042 .unmap_resource = bounce_unmap_resource,
4043 .dma_supported = dma_direct_supported,
4044 };
4045
iommu_domain_cache_init(void)4046 static inline int iommu_domain_cache_init(void)
4047 {
4048 int ret = 0;
4049
4050 iommu_domain_cache = kmem_cache_create("iommu_domain",
4051 sizeof(struct dmar_domain),
4052 0,
4053 SLAB_HWCACHE_ALIGN,
4054
4055 NULL);
4056 if (!iommu_domain_cache) {
4057 pr_err("Couldn't create iommu_domain cache\n");
4058 ret = -ENOMEM;
4059 }
4060
4061 return ret;
4062 }
4063
iommu_devinfo_cache_init(void)4064 static inline int iommu_devinfo_cache_init(void)
4065 {
4066 int ret = 0;
4067
4068 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4069 sizeof(struct device_domain_info),
4070 0,
4071 SLAB_HWCACHE_ALIGN,
4072 NULL);
4073 if (!iommu_devinfo_cache) {
4074 pr_err("Couldn't create devinfo cache\n");
4075 ret = -ENOMEM;
4076 }
4077
4078 return ret;
4079 }
4080
iommu_init_mempool(void)4081 static int __init iommu_init_mempool(void)
4082 {
4083 int ret;
4084 ret = iova_cache_get();
4085 if (ret)
4086 return ret;
4087
4088 ret = iommu_domain_cache_init();
4089 if (ret)
4090 goto domain_error;
4091
4092 ret = iommu_devinfo_cache_init();
4093 if (!ret)
4094 return ret;
4095
4096 kmem_cache_destroy(iommu_domain_cache);
4097 domain_error:
4098 iova_cache_put();
4099
4100 return -ENOMEM;
4101 }
4102
iommu_exit_mempool(void)4103 static void __init iommu_exit_mempool(void)
4104 {
4105 kmem_cache_destroy(iommu_devinfo_cache);
4106 kmem_cache_destroy(iommu_domain_cache);
4107 iova_cache_put();
4108 }
4109
quirk_ioat_snb_local_iommu(struct pci_dev * pdev)4110 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4111 {
4112 struct dmar_drhd_unit *drhd;
4113 u32 vtbar;
4114 int rc;
4115
4116 /* We know that this device on this chipset has its own IOMMU.
4117 * If we find it under a different IOMMU, then the BIOS is lying
4118 * to us. Hope that the IOMMU for this device is actually
4119 * disabled, and it needs no translation...
4120 */
4121 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4122 if (rc) {
4123 /* "can't" happen */
4124 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4125 return;
4126 }
4127 vtbar &= 0xffff0000;
4128
4129 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4130 drhd = dmar_find_matched_drhd_unit(pdev);
4131 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4132 TAINT_FIRMWARE_WORKAROUND,
4133 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4134 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4135 }
4136 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4137
init_no_remapping_devices(void)4138 static void __init init_no_remapping_devices(void)
4139 {
4140 struct dmar_drhd_unit *drhd;
4141 struct device *dev;
4142 int i;
4143
4144 for_each_drhd_unit(drhd) {
4145 if (!drhd->include_all) {
4146 for_each_active_dev_scope(drhd->devices,
4147 drhd->devices_cnt, i, dev)
4148 break;
4149 /* ignore DMAR unit if no devices exist */
4150 if (i == drhd->devices_cnt)
4151 drhd->ignored = 1;
4152 }
4153 }
4154
4155 for_each_active_drhd_unit(drhd) {
4156 if (drhd->include_all)
4157 continue;
4158
4159 for_each_active_dev_scope(drhd->devices,
4160 drhd->devices_cnt, i, dev)
4161 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4162 break;
4163 if (i < drhd->devices_cnt)
4164 continue;
4165
4166 /* This IOMMU has *only* gfx devices. Either bypass it or
4167 set the gfx_mapped flag, as appropriate */
4168 if (!dmar_map_gfx) {
4169 drhd->ignored = 1;
4170 for_each_active_dev_scope(drhd->devices,
4171 drhd->devices_cnt, i, dev)
4172 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4173 }
4174 }
4175 }
4176
4177 #ifdef CONFIG_SUSPEND
init_iommu_hw(void)4178 static int init_iommu_hw(void)
4179 {
4180 struct dmar_drhd_unit *drhd;
4181 struct intel_iommu *iommu = NULL;
4182
4183 for_each_active_iommu(iommu, drhd)
4184 if (iommu->qi)
4185 dmar_reenable_qi(iommu);
4186
4187 for_each_iommu(iommu, drhd) {
4188 if (drhd->ignored) {
4189 /*
4190 * we always have to disable PMRs or DMA may fail on
4191 * this device
4192 */
4193 if (force_on)
4194 iommu_disable_protect_mem_regions(iommu);
4195 continue;
4196 }
4197
4198 iommu_flush_write_buffer(iommu);
4199
4200 iommu_set_root_entry(iommu);
4201
4202 iommu->flush.flush_context(iommu, 0, 0, 0,
4203 DMA_CCMD_GLOBAL_INVL);
4204 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4205 iommu_enable_translation(iommu);
4206 iommu_disable_protect_mem_regions(iommu);
4207 }
4208
4209 return 0;
4210 }
4211
iommu_flush_all(void)4212 static void iommu_flush_all(void)
4213 {
4214 struct dmar_drhd_unit *drhd;
4215 struct intel_iommu *iommu;
4216
4217 for_each_active_iommu(iommu, drhd) {
4218 iommu->flush.flush_context(iommu, 0, 0, 0,
4219 DMA_CCMD_GLOBAL_INVL);
4220 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4221 DMA_TLB_GLOBAL_FLUSH);
4222 }
4223 }
4224
iommu_suspend(void)4225 static int iommu_suspend(void)
4226 {
4227 struct dmar_drhd_unit *drhd;
4228 struct intel_iommu *iommu = NULL;
4229 unsigned long flag;
4230
4231 for_each_active_iommu(iommu, drhd) {
4232 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4233 GFP_ATOMIC);
4234 if (!iommu->iommu_state)
4235 goto nomem;
4236 }
4237
4238 iommu_flush_all();
4239
4240 for_each_active_iommu(iommu, drhd) {
4241 iommu_disable_translation(iommu);
4242
4243 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4244
4245 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4246 readl(iommu->reg + DMAR_FECTL_REG);
4247 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4248 readl(iommu->reg + DMAR_FEDATA_REG);
4249 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4250 readl(iommu->reg + DMAR_FEADDR_REG);
4251 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4252 readl(iommu->reg + DMAR_FEUADDR_REG);
4253
4254 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4255 }
4256 return 0;
4257
4258 nomem:
4259 for_each_active_iommu(iommu, drhd)
4260 kfree(iommu->iommu_state);
4261
4262 return -ENOMEM;
4263 }
4264
iommu_resume(void)4265 static void iommu_resume(void)
4266 {
4267 struct dmar_drhd_unit *drhd;
4268 struct intel_iommu *iommu = NULL;
4269 unsigned long flag;
4270
4271 if (init_iommu_hw()) {
4272 if (force_on)
4273 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4274 else
4275 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4276 return;
4277 }
4278
4279 for_each_active_iommu(iommu, drhd) {
4280
4281 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4282
4283 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4284 iommu->reg + DMAR_FECTL_REG);
4285 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4286 iommu->reg + DMAR_FEDATA_REG);
4287 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4288 iommu->reg + DMAR_FEADDR_REG);
4289 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4290 iommu->reg + DMAR_FEUADDR_REG);
4291
4292 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4293 }
4294
4295 for_each_active_iommu(iommu, drhd)
4296 kfree(iommu->iommu_state);
4297 }
4298
4299 static struct syscore_ops iommu_syscore_ops = {
4300 .resume = iommu_resume,
4301 .suspend = iommu_suspend,
4302 };
4303
init_iommu_pm_ops(void)4304 static void __init init_iommu_pm_ops(void)
4305 {
4306 register_syscore_ops(&iommu_syscore_ops);
4307 }
4308
4309 #else
init_iommu_pm_ops(void)4310 static inline void init_iommu_pm_ops(void) {}
4311 #endif /* CONFIG_PM */
4312
dmar_parse_one_rmrr(struct acpi_dmar_header * header,void * arg)4313 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4314 {
4315 struct acpi_dmar_reserved_memory *rmrr;
4316 struct dmar_rmrr_unit *rmrru;
4317
4318 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4319 if (!rmrru)
4320 goto out;
4321
4322 rmrru->hdr = header;
4323 rmrr = (struct acpi_dmar_reserved_memory *)header;
4324 rmrru->base_address = rmrr->base_address;
4325 rmrru->end_address = rmrr->end_address;
4326
4327 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4328 ((void *)rmrr) + rmrr->header.length,
4329 &rmrru->devices_cnt);
4330 if (rmrru->devices_cnt && rmrru->devices == NULL)
4331 goto free_rmrru;
4332
4333 list_add(&rmrru->list, &dmar_rmrr_units);
4334
4335 return 0;
4336 free_rmrru:
4337 kfree(rmrru);
4338 out:
4339 return -ENOMEM;
4340 }
4341
dmar_find_atsr(struct acpi_dmar_atsr * atsr)4342 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4343 {
4344 struct dmar_atsr_unit *atsru;
4345 struct acpi_dmar_atsr *tmp;
4346
4347 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4348 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4349 if (atsr->segment != tmp->segment)
4350 continue;
4351 if (atsr->header.length != tmp->header.length)
4352 continue;
4353 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4354 return atsru;
4355 }
4356
4357 return NULL;
4358 }
4359
dmar_parse_one_atsr(struct acpi_dmar_header * hdr,void * arg)4360 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4361 {
4362 struct acpi_dmar_atsr *atsr;
4363 struct dmar_atsr_unit *atsru;
4364
4365 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4366 return 0;
4367
4368 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4369 atsru = dmar_find_atsr(atsr);
4370 if (atsru)
4371 return 0;
4372
4373 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4374 if (!atsru)
4375 return -ENOMEM;
4376
4377 /*
4378 * If memory is allocated from slab by ACPI _DSM method, we need to
4379 * copy the memory content because the memory buffer will be freed
4380 * on return.
4381 */
4382 atsru->hdr = (void *)(atsru + 1);
4383 memcpy(atsru->hdr, hdr, hdr->length);
4384 atsru->include_all = atsr->flags & 0x1;
4385 if (!atsru->include_all) {
4386 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4387 (void *)atsr + atsr->header.length,
4388 &atsru->devices_cnt);
4389 if (atsru->devices_cnt && atsru->devices == NULL) {
4390 kfree(atsru);
4391 return -ENOMEM;
4392 }
4393 }
4394
4395 list_add_rcu(&atsru->list, &dmar_atsr_units);
4396
4397 return 0;
4398 }
4399
intel_iommu_free_atsr(struct dmar_atsr_unit * atsru)4400 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4401 {
4402 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4403 kfree(atsru);
4404 }
4405
dmar_release_one_atsr(struct acpi_dmar_header * hdr,void * arg)4406 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4407 {
4408 struct acpi_dmar_atsr *atsr;
4409 struct dmar_atsr_unit *atsru;
4410
4411 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4412 atsru = dmar_find_atsr(atsr);
4413 if (atsru) {
4414 list_del_rcu(&atsru->list);
4415 synchronize_rcu();
4416 intel_iommu_free_atsr(atsru);
4417 }
4418
4419 return 0;
4420 }
4421
dmar_check_one_atsr(struct acpi_dmar_header * hdr,void * arg)4422 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4423 {
4424 int i;
4425 struct device *dev;
4426 struct acpi_dmar_atsr *atsr;
4427 struct dmar_atsr_unit *atsru;
4428
4429 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4430 atsru = dmar_find_atsr(atsr);
4431 if (!atsru)
4432 return 0;
4433
4434 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4435 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4436 i, dev)
4437 return -EBUSY;
4438 }
4439
4440 return 0;
4441 }
4442
intel_iommu_add(struct dmar_drhd_unit * dmaru)4443 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4444 {
4445 int sp, ret;
4446 struct intel_iommu *iommu = dmaru->iommu;
4447
4448 if (g_iommus[iommu->seq_id])
4449 return 0;
4450
4451 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4452 pr_warn("%s: Doesn't support hardware pass through.\n",
4453 iommu->name);
4454 return -ENXIO;
4455 }
4456 if (!ecap_sc_support(iommu->ecap) &&
4457 domain_update_iommu_snooping(iommu)) {
4458 pr_warn("%s: Doesn't support snooping.\n",
4459 iommu->name);
4460 return -ENXIO;
4461 }
4462 sp = domain_update_iommu_superpage(iommu) - 1;
4463 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4464 pr_warn("%s: Doesn't support large page.\n",
4465 iommu->name);
4466 return -ENXIO;
4467 }
4468
4469 /*
4470 * Disable translation if already enabled prior to OS handover.
4471 */
4472 if (iommu->gcmd & DMA_GCMD_TE)
4473 iommu_disable_translation(iommu);
4474
4475 g_iommus[iommu->seq_id] = iommu;
4476 ret = iommu_init_domains(iommu);
4477 if (ret == 0)
4478 ret = iommu_alloc_root_entry(iommu);
4479 if (ret)
4480 goto out;
4481
4482 #ifdef CONFIG_INTEL_IOMMU_SVM
4483 if (pasid_supported(iommu))
4484 intel_svm_init(iommu);
4485 #endif
4486
4487 if (dmaru->ignored) {
4488 /*
4489 * we always have to disable PMRs or DMA may fail on this device
4490 */
4491 if (force_on)
4492 iommu_disable_protect_mem_regions(iommu);
4493 return 0;
4494 }
4495
4496 intel_iommu_init_qi(iommu);
4497 iommu_flush_write_buffer(iommu);
4498
4499 #ifdef CONFIG_INTEL_IOMMU_SVM
4500 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4501 ret = intel_svm_enable_prq(iommu);
4502 if (ret)
4503 goto disable_iommu;
4504 }
4505 #endif
4506 ret = dmar_set_interrupt(iommu);
4507 if (ret)
4508 goto disable_iommu;
4509
4510 iommu_set_root_entry(iommu);
4511 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4512 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4513 iommu_enable_translation(iommu);
4514
4515 iommu_disable_protect_mem_regions(iommu);
4516 return 0;
4517
4518 disable_iommu:
4519 disable_dmar_iommu(iommu);
4520 out:
4521 free_dmar_iommu(iommu);
4522 return ret;
4523 }
4524
dmar_iommu_hotplug(struct dmar_drhd_unit * dmaru,bool insert)4525 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4526 {
4527 int ret = 0;
4528 struct intel_iommu *iommu = dmaru->iommu;
4529
4530 if (!intel_iommu_enabled)
4531 return 0;
4532 if (iommu == NULL)
4533 return -EINVAL;
4534
4535 if (insert) {
4536 ret = intel_iommu_add(dmaru);
4537 } else {
4538 disable_dmar_iommu(iommu);
4539 free_dmar_iommu(iommu);
4540 }
4541
4542 return ret;
4543 }
4544
intel_iommu_free_dmars(void)4545 static void intel_iommu_free_dmars(void)
4546 {
4547 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4548 struct dmar_atsr_unit *atsru, *atsr_n;
4549
4550 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4551 list_del(&rmrru->list);
4552 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4553 kfree(rmrru);
4554 }
4555
4556 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4557 list_del(&atsru->list);
4558 intel_iommu_free_atsr(atsru);
4559 }
4560 }
4561
dmar_find_matched_atsr_unit(struct pci_dev * dev)4562 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4563 {
4564 int i, ret = 1;
4565 struct pci_bus *bus;
4566 struct pci_dev *bridge = NULL;
4567 struct device *tmp;
4568 struct acpi_dmar_atsr *atsr;
4569 struct dmar_atsr_unit *atsru;
4570
4571 dev = pci_physfn(dev);
4572 for (bus = dev->bus; bus; bus = bus->parent) {
4573 bridge = bus->self;
4574 /* If it's an integrated device, allow ATS */
4575 if (!bridge)
4576 return 1;
4577 /* Connected via non-PCIe: no ATS */
4578 if (!pci_is_pcie(bridge) ||
4579 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4580 return 0;
4581 /* If we found the root port, look it up in the ATSR */
4582 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4583 break;
4584 }
4585
4586 rcu_read_lock();
4587 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4588 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4589 if (atsr->segment != pci_domain_nr(dev->bus))
4590 continue;
4591
4592 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4593 if (tmp == &bridge->dev)
4594 goto out;
4595
4596 if (atsru->include_all)
4597 goto out;
4598 }
4599 ret = 0;
4600 out:
4601 rcu_read_unlock();
4602
4603 return ret;
4604 }
4605
dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info * info)4606 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4607 {
4608 int ret;
4609 struct dmar_rmrr_unit *rmrru;
4610 struct dmar_atsr_unit *atsru;
4611 struct acpi_dmar_atsr *atsr;
4612 struct acpi_dmar_reserved_memory *rmrr;
4613
4614 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4615 return 0;
4616
4617 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4618 rmrr = container_of(rmrru->hdr,
4619 struct acpi_dmar_reserved_memory, header);
4620 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4621 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4622 ((void *)rmrr) + rmrr->header.length,
4623 rmrr->segment, rmrru->devices,
4624 rmrru->devices_cnt);
4625 if (ret < 0)
4626 return ret;
4627 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4628 dmar_remove_dev_scope(info, rmrr->segment,
4629 rmrru->devices, rmrru->devices_cnt);
4630 }
4631 }
4632
4633 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4634 if (atsru->include_all)
4635 continue;
4636
4637 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4638 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4639 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4640 (void *)atsr + atsr->header.length,
4641 atsr->segment, atsru->devices,
4642 atsru->devices_cnt);
4643 if (ret > 0)
4644 break;
4645 else if (ret < 0)
4646 return ret;
4647 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4648 if (dmar_remove_dev_scope(info, atsr->segment,
4649 atsru->devices, atsru->devices_cnt))
4650 break;
4651 }
4652 }
4653
4654 return 0;
4655 }
4656
intel_iommu_memory_notifier(struct notifier_block * nb,unsigned long val,void * v)4657 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4658 unsigned long val, void *v)
4659 {
4660 struct memory_notify *mhp = v;
4661 unsigned long long start, end;
4662 unsigned long start_vpfn, last_vpfn;
4663
4664 switch (val) {
4665 case MEM_GOING_ONLINE:
4666 start = mhp->start_pfn << PAGE_SHIFT;
4667 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4668 if (iommu_domain_identity_map(si_domain, start, end)) {
4669 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4670 start, end);
4671 return NOTIFY_BAD;
4672 }
4673 break;
4674
4675 case MEM_OFFLINE:
4676 case MEM_CANCEL_ONLINE:
4677 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4678 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4679 while (start_vpfn <= last_vpfn) {
4680 struct iova *iova;
4681 struct dmar_drhd_unit *drhd;
4682 struct intel_iommu *iommu;
4683 struct page *freelist;
4684
4685 iova = find_iova(&si_domain->iovad, start_vpfn);
4686 if (iova == NULL) {
4687 pr_debug("Failed get IOVA for PFN %lx\n",
4688 start_vpfn);
4689 break;
4690 }
4691
4692 iova = split_and_remove_iova(&si_domain->iovad, iova,
4693 start_vpfn, last_vpfn);
4694 if (iova == NULL) {
4695 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4696 start_vpfn, last_vpfn);
4697 return NOTIFY_BAD;
4698 }
4699
4700 freelist = domain_unmap(si_domain, iova->pfn_lo,
4701 iova->pfn_hi);
4702
4703 rcu_read_lock();
4704 for_each_active_iommu(iommu, drhd)
4705 iommu_flush_iotlb_psi(iommu, si_domain,
4706 iova->pfn_lo, iova_size(iova),
4707 !freelist, 0);
4708 rcu_read_unlock();
4709 dma_free_pagelist(freelist);
4710
4711 start_vpfn = iova->pfn_hi + 1;
4712 free_iova_mem(iova);
4713 }
4714 break;
4715 }
4716
4717 return NOTIFY_OK;
4718 }
4719
4720 static struct notifier_block intel_iommu_memory_nb = {
4721 .notifier_call = intel_iommu_memory_notifier,
4722 .priority = 0
4723 };
4724
free_all_cpu_cached_iovas(unsigned int cpu)4725 static void free_all_cpu_cached_iovas(unsigned int cpu)
4726 {
4727 int i;
4728
4729 for (i = 0; i < g_num_of_iommus; i++) {
4730 struct intel_iommu *iommu = g_iommus[i];
4731 struct dmar_domain *domain;
4732 int did;
4733
4734 if (!iommu)
4735 continue;
4736
4737 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4738 domain = get_iommu_domain(iommu, (u16)did);
4739
4740 if (!domain)
4741 continue;
4742 free_cpu_cached_iovas(cpu, &domain->iovad);
4743 }
4744 }
4745 }
4746
intel_iommu_cpu_dead(unsigned int cpu)4747 static int intel_iommu_cpu_dead(unsigned int cpu)
4748 {
4749 free_all_cpu_cached_iovas(cpu);
4750 return 0;
4751 }
4752
intel_disable_iommus(void)4753 static void intel_disable_iommus(void)
4754 {
4755 struct intel_iommu *iommu = NULL;
4756 struct dmar_drhd_unit *drhd;
4757
4758 for_each_iommu(iommu, drhd)
4759 iommu_disable_translation(iommu);
4760 }
4761
dev_to_intel_iommu(struct device * dev)4762 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4763 {
4764 struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4765
4766 return container_of(iommu_dev, struct intel_iommu, iommu);
4767 }
4768
intel_iommu_show_version(struct device * dev,struct device_attribute * attr,char * buf)4769 static ssize_t intel_iommu_show_version(struct device *dev,
4770 struct device_attribute *attr,
4771 char *buf)
4772 {
4773 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4774 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4775 return sprintf(buf, "%d:%d\n",
4776 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4777 }
4778 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4779
intel_iommu_show_address(struct device * dev,struct device_attribute * attr,char * buf)4780 static ssize_t intel_iommu_show_address(struct device *dev,
4781 struct device_attribute *attr,
4782 char *buf)
4783 {
4784 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4785 return sprintf(buf, "%llx\n", iommu->reg_phys);
4786 }
4787 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4788
intel_iommu_show_cap(struct device * dev,struct device_attribute * attr,char * buf)4789 static ssize_t intel_iommu_show_cap(struct device *dev,
4790 struct device_attribute *attr,
4791 char *buf)
4792 {
4793 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4794 return sprintf(buf, "%llx\n", iommu->cap);
4795 }
4796 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4797
intel_iommu_show_ecap(struct device * dev,struct device_attribute * attr,char * buf)4798 static ssize_t intel_iommu_show_ecap(struct device *dev,
4799 struct device_attribute *attr,
4800 char *buf)
4801 {
4802 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4803 return sprintf(buf, "%llx\n", iommu->ecap);
4804 }
4805 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4806
intel_iommu_show_ndoms(struct device * dev,struct device_attribute * attr,char * buf)4807 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4808 struct device_attribute *attr,
4809 char *buf)
4810 {
4811 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4812 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4813 }
4814 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4815
intel_iommu_show_ndoms_used(struct device * dev,struct device_attribute * attr,char * buf)4816 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4817 struct device_attribute *attr,
4818 char *buf)
4819 {
4820 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4821 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4822 cap_ndoms(iommu->cap)));
4823 }
4824 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4825
4826 static struct attribute *intel_iommu_attrs[] = {
4827 &dev_attr_version.attr,
4828 &dev_attr_address.attr,
4829 &dev_attr_cap.attr,
4830 &dev_attr_ecap.attr,
4831 &dev_attr_domains_supported.attr,
4832 &dev_attr_domains_used.attr,
4833 NULL,
4834 };
4835
4836 static struct attribute_group intel_iommu_group = {
4837 .name = "intel-iommu",
4838 .attrs = intel_iommu_attrs,
4839 };
4840
4841 const struct attribute_group *intel_iommu_groups[] = {
4842 &intel_iommu_group,
4843 NULL,
4844 };
4845
has_untrusted_dev(void)4846 static inline bool has_untrusted_dev(void)
4847 {
4848 struct pci_dev *pdev = NULL;
4849
4850 for_each_pci_dev(pdev)
4851 if (pdev->untrusted)
4852 return true;
4853
4854 return false;
4855 }
4856
platform_optin_force_iommu(void)4857 static int __init platform_optin_force_iommu(void)
4858 {
4859 if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4860 return 0;
4861
4862 if (no_iommu || dmar_disabled)
4863 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4864
4865 /*
4866 * If Intel-IOMMU is disabled by default, we will apply identity
4867 * map for all devices except those marked as being untrusted.
4868 */
4869 if (dmar_disabled)
4870 iommu_identity_mapping |= IDENTMAP_ALL;
4871
4872 dmar_disabled = 0;
4873 no_iommu = 0;
4874
4875 return 1;
4876 }
4877
probe_acpi_namespace_devices(void)4878 static int __init probe_acpi_namespace_devices(void)
4879 {
4880 struct dmar_drhd_unit *drhd;
4881 /* To avoid a -Wunused-but-set-variable warning. */
4882 struct intel_iommu *iommu __maybe_unused;
4883 struct device *dev;
4884 int i, ret = 0;
4885
4886 for_each_active_iommu(iommu, drhd) {
4887 for_each_active_dev_scope(drhd->devices,
4888 drhd->devices_cnt, i, dev) {
4889 struct acpi_device_physical_node *pn;
4890 struct iommu_group *group;
4891 struct acpi_device *adev;
4892
4893 if (dev->bus != &acpi_bus_type)
4894 continue;
4895
4896 adev = to_acpi_device(dev);
4897 mutex_lock(&adev->physical_node_lock);
4898 list_for_each_entry(pn,
4899 &adev->physical_node_list, node) {
4900 group = iommu_group_get(pn->dev);
4901 if (group) {
4902 iommu_group_put(group);
4903 continue;
4904 }
4905
4906 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4907 ret = iommu_probe_device(pn->dev);
4908 if (ret)
4909 break;
4910 }
4911 mutex_unlock(&adev->physical_node_lock);
4912
4913 if (ret)
4914 return ret;
4915 }
4916 }
4917
4918 return 0;
4919 }
4920
intel_iommu_init(void)4921 int __init intel_iommu_init(void)
4922 {
4923 int ret = -ENODEV;
4924 struct dmar_drhd_unit *drhd;
4925 struct intel_iommu *iommu;
4926
4927 /*
4928 * Intel IOMMU is required for a TXT/tboot launch or platform
4929 * opt in, so enforce that.
4930 */
4931 force_on = tboot_force_iommu() || platform_optin_force_iommu();
4932
4933 if (iommu_init_mempool()) {
4934 if (force_on)
4935 panic("tboot: Failed to initialize iommu memory\n");
4936 return -ENOMEM;
4937 }
4938
4939 down_write(&dmar_global_lock);
4940 if (dmar_table_init()) {
4941 if (force_on)
4942 panic("tboot: Failed to initialize DMAR table\n");
4943 goto out_free_dmar;
4944 }
4945
4946 if (dmar_dev_scope_init() < 0) {
4947 if (force_on)
4948 panic("tboot: Failed to initialize DMAR device scope\n");
4949 goto out_free_dmar;
4950 }
4951
4952 up_write(&dmar_global_lock);
4953
4954 /*
4955 * The bus notifier takes the dmar_global_lock, so lockdep will
4956 * complain later when we register it under the lock.
4957 */
4958 dmar_register_bus_notifier();
4959
4960 down_write(&dmar_global_lock);
4961
4962 if (no_iommu || dmar_disabled) {
4963 /*
4964 * We exit the function here to ensure IOMMU's remapping and
4965 * mempool aren't setup, which means that the IOMMU's PMRs
4966 * won't be disabled via the call to init_dmars(). So disable
4967 * it explicitly here. The PMRs were setup by tboot prior to
4968 * calling SENTER, but the kernel is expected to reset/tear
4969 * down the PMRs.
4970 */
4971 if (intel_iommu_tboot_noforce) {
4972 for_each_iommu(iommu, drhd)
4973 iommu_disable_protect_mem_regions(iommu);
4974 }
4975
4976 /*
4977 * Make sure the IOMMUs are switched off, even when we
4978 * boot into a kexec kernel and the previous kernel left
4979 * them enabled
4980 */
4981 intel_disable_iommus();
4982 goto out_free_dmar;
4983 }
4984
4985 if (list_empty(&dmar_rmrr_units))
4986 pr_info("No RMRR found\n");
4987
4988 if (list_empty(&dmar_atsr_units))
4989 pr_info("No ATSR found\n");
4990
4991 if (dmar_init_reserved_ranges()) {
4992 if (force_on)
4993 panic("tboot: Failed to reserve iommu ranges\n");
4994 goto out_free_reserved_range;
4995 }
4996
4997 if (dmar_map_gfx)
4998 intel_iommu_gfx_mapped = 1;
4999
5000 init_no_remapping_devices();
5001
5002 ret = init_dmars();
5003 if (ret) {
5004 if (force_on)
5005 panic("tboot: Failed to initialize DMARs\n");
5006 pr_err("Initialization failed\n");
5007 goto out_free_reserved_range;
5008 }
5009 up_write(&dmar_global_lock);
5010
5011 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
5012 /*
5013 * If the system has no untrusted device or the user has decided
5014 * to disable the bounce page mechanisms, we don't need swiotlb.
5015 * Mark this and the pre-allocated bounce pages will be released
5016 * later.
5017 */
5018 if (!has_untrusted_dev() || intel_no_bounce)
5019 swiotlb = 0;
5020 #endif
5021 dma_ops = &intel_dma_ops;
5022
5023 init_iommu_pm_ops();
5024
5025 for_each_active_iommu(iommu, drhd) {
5026 iommu_device_sysfs_add(&iommu->iommu, NULL,
5027 intel_iommu_groups,
5028 "%s", iommu->name);
5029 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
5030 iommu_device_register(&iommu->iommu);
5031 }
5032
5033 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
5034 if (si_domain && !hw_pass_through)
5035 register_memory_notifier(&intel_iommu_memory_nb);
5036 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
5037 intel_iommu_cpu_dead);
5038
5039 down_read(&dmar_global_lock);
5040 if (probe_acpi_namespace_devices())
5041 pr_warn("ACPI name space devices didn't probe correctly\n");
5042 up_read(&dmar_global_lock);
5043
5044 /* Finally, we enable the DMA remapping hardware. */
5045 for_each_iommu(iommu, drhd) {
5046 if (!drhd->ignored && !translation_pre_enabled(iommu))
5047 iommu_enable_translation(iommu);
5048
5049 iommu_disable_protect_mem_regions(iommu);
5050 }
5051 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
5052
5053 intel_iommu_enabled = 1;
5054 intel_iommu_debugfs_init();
5055
5056 return 0;
5057
5058 out_free_reserved_range:
5059 put_iova_domain(&reserved_iova_list);
5060 out_free_dmar:
5061 intel_iommu_free_dmars();
5062 up_write(&dmar_global_lock);
5063 iommu_exit_mempool();
5064 return ret;
5065 }
5066
domain_context_clear_one_cb(struct pci_dev * pdev,u16 alias,void * opaque)5067 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
5068 {
5069 struct intel_iommu *iommu = opaque;
5070
5071 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
5072 return 0;
5073 }
5074
5075 /*
5076 * NB - intel-iommu lacks any sort of reference counting for the users of
5077 * dependent devices. If multiple endpoints have intersecting dependent
5078 * devices, unbinding the driver from any one of them will possibly leave
5079 * the others unable to operate.
5080 */
domain_context_clear(struct intel_iommu * iommu,struct device * dev)5081 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
5082 {
5083 if (!iommu || !dev || !dev_is_pci(dev))
5084 return;
5085
5086 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
5087 }
5088
__dmar_remove_one_dev_info(struct device_domain_info * info)5089 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5090 {
5091 struct dmar_domain *domain;
5092 struct intel_iommu *iommu;
5093 unsigned long flags;
5094
5095 assert_spin_locked(&device_domain_lock);
5096
5097 if (WARN_ON(!info))
5098 return;
5099
5100 iommu = info->iommu;
5101 domain = info->domain;
5102
5103 if (info->dev) {
5104 if (dev_is_pci(info->dev) && sm_supported(iommu))
5105 intel_pasid_tear_down_entry(iommu, info->dev,
5106 PASID_RID2PASID);
5107
5108 iommu_disable_dev_iotlb(info);
5109 domain_context_clear(iommu, info->dev);
5110 intel_pasid_free_table(info->dev);
5111 }
5112
5113 unlink_domain_info(info);
5114
5115 spin_lock_irqsave(&iommu->lock, flags);
5116 domain_detach_iommu(domain, iommu);
5117 spin_unlock_irqrestore(&iommu->lock, flags);
5118
5119 /* free the private domain */
5120 if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
5121 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
5122 list_empty(&domain->devices))
5123 domain_exit(info->domain);
5124
5125 free_devinfo_mem(info);
5126 }
5127
dmar_remove_one_dev_info(struct device * dev)5128 static void dmar_remove_one_dev_info(struct device *dev)
5129 {
5130 struct device_domain_info *info;
5131 unsigned long flags;
5132
5133 spin_lock_irqsave(&device_domain_lock, flags);
5134 info = dev->archdata.iommu;
5135 if (info)
5136 __dmar_remove_one_dev_info(info);
5137 spin_unlock_irqrestore(&device_domain_lock, flags);
5138 }
5139
md_domain_init(struct dmar_domain * domain,int guest_width)5140 static int md_domain_init(struct dmar_domain *domain, int guest_width)
5141 {
5142 int adjust_width;
5143
5144 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
5145 domain_reserve_special_ranges(domain);
5146
5147 /* calculate AGAW */
5148 domain->gaw = guest_width;
5149 adjust_width = guestwidth_to_adjustwidth(guest_width);
5150 domain->agaw = width_to_agaw(adjust_width);
5151
5152 domain->iommu_coherency = 0;
5153 domain->iommu_snooping = 0;
5154 domain->iommu_superpage = 0;
5155 domain->max_addr = 0;
5156
5157 /* always allocate the top pgd */
5158 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5159 if (!domain->pgd)
5160 return -ENOMEM;
5161 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5162 return 0;
5163 }
5164
intel_iommu_domain_alloc(unsigned type)5165 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5166 {
5167 struct dmar_domain *dmar_domain;
5168 struct iommu_domain *domain;
5169
5170 switch (type) {
5171 case IOMMU_DOMAIN_DMA:
5172 /* fallthrough */
5173 case IOMMU_DOMAIN_UNMANAGED:
5174 dmar_domain = alloc_domain(0);
5175 if (!dmar_domain) {
5176 pr_err("Can't allocate dmar_domain\n");
5177 return NULL;
5178 }
5179 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5180 pr_err("Domain initialization failed\n");
5181 domain_exit(dmar_domain);
5182 return NULL;
5183 }
5184
5185 if (type == IOMMU_DOMAIN_DMA &&
5186 init_iova_flush_queue(&dmar_domain->iovad,
5187 iommu_flush_iova, iova_entry_free)) {
5188 pr_warn("iova flush queue initialization failed\n");
5189 intel_iommu_strict = 1;
5190 }
5191
5192 domain_update_iommu_cap(dmar_domain);
5193
5194 domain = &dmar_domain->domain;
5195 domain->geometry.aperture_start = 0;
5196 domain->geometry.aperture_end =
5197 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5198 domain->geometry.force_aperture = true;
5199
5200 return domain;
5201 case IOMMU_DOMAIN_IDENTITY:
5202 return &si_domain->domain;
5203 default:
5204 return NULL;
5205 }
5206
5207 return NULL;
5208 }
5209
intel_iommu_domain_free(struct iommu_domain * domain)5210 static void intel_iommu_domain_free(struct iommu_domain *domain)
5211 {
5212 if (domain != &si_domain->domain)
5213 domain_exit(to_dmar_domain(domain));
5214 }
5215
5216 /*
5217 * Check whether a @domain could be attached to the @dev through the
5218 * aux-domain attach/detach APIs.
5219 */
5220 static inline bool
is_aux_domain(struct device * dev,struct iommu_domain * domain)5221 is_aux_domain(struct device *dev, struct iommu_domain *domain)
5222 {
5223 struct device_domain_info *info = dev->archdata.iommu;
5224
5225 return info && info->auxd_enabled &&
5226 domain->type == IOMMU_DOMAIN_UNMANAGED;
5227 }
5228
auxiliary_link_device(struct dmar_domain * domain,struct device * dev)5229 static void auxiliary_link_device(struct dmar_domain *domain,
5230 struct device *dev)
5231 {
5232 struct device_domain_info *info = dev->archdata.iommu;
5233
5234 assert_spin_locked(&device_domain_lock);
5235 if (WARN_ON(!info))
5236 return;
5237
5238 domain->auxd_refcnt++;
5239 list_add(&domain->auxd, &info->auxiliary_domains);
5240 }
5241
auxiliary_unlink_device(struct dmar_domain * domain,struct device * dev)5242 static void auxiliary_unlink_device(struct dmar_domain *domain,
5243 struct device *dev)
5244 {
5245 struct device_domain_info *info = dev->archdata.iommu;
5246
5247 assert_spin_locked(&device_domain_lock);
5248 if (WARN_ON(!info))
5249 return;
5250
5251 list_del(&domain->auxd);
5252 domain->auxd_refcnt--;
5253
5254 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5255 intel_pasid_free_id(domain->default_pasid);
5256 }
5257
aux_domain_add_dev(struct dmar_domain * domain,struct device * dev)5258 static int aux_domain_add_dev(struct dmar_domain *domain,
5259 struct device *dev)
5260 {
5261 int ret;
5262 u8 bus, devfn;
5263 unsigned long flags;
5264 struct intel_iommu *iommu;
5265
5266 iommu = device_to_iommu(dev, &bus, &devfn);
5267 if (!iommu)
5268 return -ENODEV;
5269
5270 if (domain->default_pasid <= 0) {
5271 int pasid;
5272
5273 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
5274 pci_max_pasids(to_pci_dev(dev)),
5275 GFP_KERNEL);
5276 if (pasid <= 0) {
5277 pr_err("Can't allocate default pasid\n");
5278 return -ENODEV;
5279 }
5280 domain->default_pasid = pasid;
5281 }
5282
5283 spin_lock_irqsave(&device_domain_lock, flags);
5284 /*
5285 * iommu->lock must be held to attach domain to iommu and setup the
5286 * pasid entry for second level translation.
5287 */
5288 spin_lock(&iommu->lock);
5289 ret = domain_attach_iommu(domain, iommu);
5290 if (ret)
5291 goto attach_failed;
5292
5293 /* Setup the PASID entry for mediated devices: */
5294 ret = intel_pasid_setup_second_level(iommu, domain, dev,
5295 domain->default_pasid);
5296 if (ret)
5297 goto table_failed;
5298 spin_unlock(&iommu->lock);
5299
5300 auxiliary_link_device(domain, dev);
5301
5302 spin_unlock_irqrestore(&device_domain_lock, flags);
5303
5304 return 0;
5305
5306 table_failed:
5307 domain_detach_iommu(domain, iommu);
5308 attach_failed:
5309 spin_unlock(&iommu->lock);
5310 spin_unlock_irqrestore(&device_domain_lock, flags);
5311 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5312 intel_pasid_free_id(domain->default_pasid);
5313
5314 return ret;
5315 }
5316
aux_domain_remove_dev(struct dmar_domain * domain,struct device * dev)5317 static void aux_domain_remove_dev(struct dmar_domain *domain,
5318 struct device *dev)
5319 {
5320 struct device_domain_info *info;
5321 struct intel_iommu *iommu;
5322 unsigned long flags;
5323
5324 if (!is_aux_domain(dev, &domain->domain))
5325 return;
5326
5327 spin_lock_irqsave(&device_domain_lock, flags);
5328 info = dev->archdata.iommu;
5329 iommu = info->iommu;
5330
5331 auxiliary_unlink_device(domain, dev);
5332
5333 spin_lock(&iommu->lock);
5334 intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5335 domain_detach_iommu(domain, iommu);
5336 spin_unlock(&iommu->lock);
5337
5338 spin_unlock_irqrestore(&device_domain_lock, flags);
5339 }
5340
prepare_domain_attach_device(struct iommu_domain * domain,struct device * dev)5341 static int prepare_domain_attach_device(struct iommu_domain *domain,
5342 struct device *dev)
5343 {
5344 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5345 struct intel_iommu *iommu;
5346 int addr_width;
5347 u8 bus, devfn;
5348
5349 iommu = device_to_iommu(dev, &bus, &devfn);
5350 if (!iommu)
5351 return -ENODEV;
5352
5353 /* check if this iommu agaw is sufficient for max mapped address */
5354 addr_width = agaw_to_width(iommu->agaw);
5355 if (addr_width > cap_mgaw(iommu->cap))
5356 addr_width = cap_mgaw(iommu->cap);
5357
5358 if (dmar_domain->max_addr > (1LL << addr_width)) {
5359 dev_err(dev, "%s: iommu width (%d) is not "
5360 "sufficient for the mapped address (%llx)\n",
5361 __func__, addr_width, dmar_domain->max_addr);
5362 return -EFAULT;
5363 }
5364 dmar_domain->gaw = addr_width;
5365
5366 /*
5367 * Knock out extra levels of page tables if necessary
5368 */
5369 while (iommu->agaw < dmar_domain->agaw) {
5370 struct dma_pte *pte;
5371
5372 pte = dmar_domain->pgd;
5373 if (dma_pte_present(pte)) {
5374 dmar_domain->pgd = (struct dma_pte *)
5375 phys_to_virt(dma_pte_addr(pte));
5376 free_pgtable_page(pte);
5377 }
5378 dmar_domain->agaw--;
5379 }
5380
5381 return 0;
5382 }
5383
intel_iommu_attach_device(struct iommu_domain * domain,struct device * dev)5384 static int intel_iommu_attach_device(struct iommu_domain *domain,
5385 struct device *dev)
5386 {
5387 int ret;
5388
5389 if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
5390 device_is_rmrr_locked(dev)) {
5391 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5392 return -EPERM;
5393 }
5394
5395 if (is_aux_domain(dev, domain))
5396 return -EPERM;
5397
5398 /* normally dev is not mapped */
5399 if (unlikely(domain_context_mapped(dev))) {
5400 struct dmar_domain *old_domain;
5401
5402 old_domain = find_domain(dev);
5403 if (old_domain)
5404 dmar_remove_one_dev_info(dev);
5405 }
5406
5407 ret = prepare_domain_attach_device(domain, dev);
5408 if (ret)
5409 return ret;
5410
5411 return domain_add_dev_info(to_dmar_domain(domain), dev);
5412 }
5413
intel_iommu_aux_attach_device(struct iommu_domain * domain,struct device * dev)5414 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5415 struct device *dev)
5416 {
5417 int ret;
5418
5419 if (!is_aux_domain(dev, domain))
5420 return -EPERM;
5421
5422 ret = prepare_domain_attach_device(domain, dev);
5423 if (ret)
5424 return ret;
5425
5426 return aux_domain_add_dev(to_dmar_domain(domain), dev);
5427 }
5428
intel_iommu_detach_device(struct iommu_domain * domain,struct device * dev)5429 static void intel_iommu_detach_device(struct iommu_domain *domain,
5430 struct device *dev)
5431 {
5432 dmar_remove_one_dev_info(dev);
5433 }
5434
intel_iommu_aux_detach_device(struct iommu_domain * domain,struct device * dev)5435 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5436 struct device *dev)
5437 {
5438 aux_domain_remove_dev(to_dmar_domain(domain), dev);
5439 }
5440
intel_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t hpa,size_t size,int iommu_prot)5441 static int intel_iommu_map(struct iommu_domain *domain,
5442 unsigned long iova, phys_addr_t hpa,
5443 size_t size, int iommu_prot)
5444 {
5445 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5446 u64 max_addr;
5447 int prot = 0;
5448 int ret;
5449
5450 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5451 return -EINVAL;
5452
5453 if (iommu_prot & IOMMU_READ)
5454 prot |= DMA_PTE_READ;
5455 if (iommu_prot & IOMMU_WRITE)
5456 prot |= DMA_PTE_WRITE;
5457 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5458 prot |= DMA_PTE_SNP;
5459
5460 max_addr = iova + size;
5461 if (dmar_domain->max_addr < max_addr) {
5462 u64 end;
5463
5464 /* check if minimum agaw is sufficient for mapped address */
5465 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5466 if (end < max_addr) {
5467 pr_err("%s: iommu width (%d) is not "
5468 "sufficient for the mapped address (%llx)\n",
5469 __func__, dmar_domain->gaw, max_addr);
5470 return -EFAULT;
5471 }
5472 dmar_domain->max_addr = max_addr;
5473 }
5474 /* Round up size to next multiple of PAGE_SIZE, if it and
5475 the low bits of hpa would take us onto the next page */
5476 size = aligned_nrpages(hpa, size);
5477 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5478 hpa >> VTD_PAGE_SHIFT, size, prot);
5479 return ret;
5480 }
5481
intel_iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * gather)5482 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5483 unsigned long iova, size_t size,
5484 struct iommu_iotlb_gather *gather)
5485 {
5486 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5487 struct page *freelist = NULL;
5488 unsigned long start_pfn, last_pfn;
5489 unsigned int npages;
5490 int iommu_id, level = 0;
5491
5492 /* Cope with horrid API which requires us to unmap more than the
5493 size argument if it happens to be a large-page mapping. */
5494 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5495 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5496 return 0;
5497
5498 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5499 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5500
5501 start_pfn = iova >> VTD_PAGE_SHIFT;
5502 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5503
5504 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5505
5506 npages = last_pfn - start_pfn + 1;
5507
5508 for_each_domain_iommu(iommu_id, dmar_domain)
5509 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5510 start_pfn, npages, !freelist, 0);
5511
5512 dma_free_pagelist(freelist);
5513
5514 if (dmar_domain->max_addr == iova + size)
5515 dmar_domain->max_addr = iova;
5516
5517 return size;
5518 }
5519
intel_iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)5520 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5521 dma_addr_t iova)
5522 {
5523 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5524 struct dma_pte *pte;
5525 int level = 0;
5526 u64 phys = 0;
5527
5528 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5529 return 0;
5530
5531 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5532 if (pte)
5533 phys = dma_pte_addr(pte);
5534
5535 return phys;
5536 }
5537
scalable_mode_support(void)5538 static inline bool scalable_mode_support(void)
5539 {
5540 struct dmar_drhd_unit *drhd;
5541 struct intel_iommu *iommu;
5542 bool ret = true;
5543
5544 rcu_read_lock();
5545 for_each_active_iommu(iommu, drhd) {
5546 if (!sm_supported(iommu)) {
5547 ret = false;
5548 break;
5549 }
5550 }
5551 rcu_read_unlock();
5552
5553 return ret;
5554 }
5555
iommu_pasid_support(void)5556 static inline bool iommu_pasid_support(void)
5557 {
5558 struct dmar_drhd_unit *drhd;
5559 struct intel_iommu *iommu;
5560 bool ret = true;
5561
5562 rcu_read_lock();
5563 for_each_active_iommu(iommu, drhd) {
5564 if (!pasid_supported(iommu)) {
5565 ret = false;
5566 break;
5567 }
5568 }
5569 rcu_read_unlock();
5570
5571 return ret;
5572 }
5573
intel_iommu_capable(enum iommu_cap cap)5574 static bool intel_iommu_capable(enum iommu_cap cap)
5575 {
5576 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5577 return domain_update_iommu_snooping(NULL) == 1;
5578 if (cap == IOMMU_CAP_INTR_REMAP)
5579 return irq_remapping_enabled == 1;
5580
5581 return false;
5582 }
5583
intel_iommu_add_device(struct device * dev)5584 static int intel_iommu_add_device(struct device *dev)
5585 {
5586 struct dmar_domain *dmar_domain;
5587 struct iommu_domain *domain;
5588 struct intel_iommu *iommu;
5589 struct iommu_group *group;
5590 u8 bus, devfn;
5591 int ret;
5592
5593 iommu = device_to_iommu(dev, &bus, &devfn);
5594 if (!iommu)
5595 return -ENODEV;
5596
5597 iommu_device_link(&iommu->iommu, dev);
5598
5599 if (translation_pre_enabled(iommu))
5600 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5601
5602 group = iommu_group_get_for_dev(dev);
5603
5604 if (IS_ERR(group))
5605 return PTR_ERR(group);
5606
5607 iommu_group_put(group);
5608
5609 domain = iommu_get_domain_for_dev(dev);
5610 dmar_domain = to_dmar_domain(domain);
5611 if (domain->type == IOMMU_DOMAIN_DMA) {
5612 if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5613 ret = iommu_request_dm_for_dev(dev);
5614 if (ret) {
5615 dmar_remove_one_dev_info(dev);
5616 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5617 domain_add_dev_info(si_domain, dev);
5618 dev_info(dev,
5619 "Device uses a private identity domain.\n");
5620 }
5621 }
5622 } else {
5623 if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5624 ret = iommu_request_dma_domain_for_dev(dev);
5625 if (ret) {
5626 dmar_remove_one_dev_info(dev);
5627 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5628 if (!get_private_domain_for_dev(dev)) {
5629 dev_warn(dev,
5630 "Failed to get a private domain.\n");
5631 return -ENOMEM;
5632 }
5633
5634 dev_info(dev,
5635 "Device uses a private dma domain.\n");
5636 }
5637 }
5638 }
5639
5640 if (device_needs_bounce(dev)) {
5641 dev_info(dev, "Use Intel IOMMU bounce page dma_ops\n");
5642 set_dma_ops(dev, &bounce_dma_ops);
5643 }
5644
5645 return 0;
5646 }
5647
intel_iommu_remove_device(struct device * dev)5648 static void intel_iommu_remove_device(struct device *dev)
5649 {
5650 struct intel_iommu *iommu;
5651 u8 bus, devfn;
5652
5653 iommu = device_to_iommu(dev, &bus, &devfn);
5654 if (!iommu)
5655 return;
5656
5657 dmar_remove_one_dev_info(dev);
5658
5659 iommu_group_remove_device(dev);
5660
5661 iommu_device_unlink(&iommu->iommu, dev);
5662
5663 if (device_needs_bounce(dev))
5664 set_dma_ops(dev, NULL);
5665 }
5666
intel_iommu_get_resv_regions(struct device * device,struct list_head * head)5667 static void intel_iommu_get_resv_regions(struct device *device,
5668 struct list_head *head)
5669 {
5670 int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5671 struct iommu_resv_region *reg;
5672 struct dmar_rmrr_unit *rmrr;
5673 struct device *i_dev;
5674 int i;
5675
5676 down_read(&dmar_global_lock);
5677 for_each_rmrr_units(rmrr) {
5678 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5679 i, i_dev) {
5680 struct iommu_resv_region *resv;
5681 enum iommu_resv_type type;
5682 size_t length;
5683
5684 if (i_dev != device &&
5685 !is_downstream_to_pci_bridge(device, i_dev))
5686 continue;
5687
5688 length = rmrr->end_address - rmrr->base_address + 1;
5689
5690 type = device_rmrr_is_relaxable(device) ?
5691 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
5692
5693 resv = iommu_alloc_resv_region(rmrr->base_address,
5694 length, prot, type);
5695 if (!resv)
5696 break;
5697
5698 list_add_tail(&resv->list, head);
5699 }
5700 }
5701 up_read(&dmar_global_lock);
5702
5703 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5704 if (dev_is_pci(device)) {
5705 struct pci_dev *pdev = to_pci_dev(device);
5706
5707 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5708 reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5709 IOMMU_RESV_DIRECT);
5710 if (reg)
5711 list_add_tail(®->list, head);
5712 }
5713 }
5714 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5715
5716 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5717 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5718 0, IOMMU_RESV_MSI);
5719 if (!reg)
5720 return;
5721 list_add_tail(®->list, head);
5722 }
5723
intel_iommu_put_resv_regions(struct device * dev,struct list_head * head)5724 static void intel_iommu_put_resv_regions(struct device *dev,
5725 struct list_head *head)
5726 {
5727 struct iommu_resv_region *entry, *next;
5728
5729 list_for_each_entry_safe(entry, next, head, list)
5730 kfree(entry);
5731 }
5732
intel_iommu_enable_pasid(struct intel_iommu * iommu,struct device * dev)5733 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5734 {
5735 struct device_domain_info *info;
5736 struct context_entry *context;
5737 struct dmar_domain *domain;
5738 unsigned long flags;
5739 u64 ctx_lo;
5740 int ret;
5741
5742 domain = find_domain(dev);
5743 if (!domain)
5744 return -EINVAL;
5745
5746 spin_lock_irqsave(&device_domain_lock, flags);
5747 spin_lock(&iommu->lock);
5748
5749 ret = -EINVAL;
5750 info = dev->archdata.iommu;
5751 if (!info || !info->pasid_supported)
5752 goto out;
5753
5754 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5755 if (WARN_ON(!context))
5756 goto out;
5757
5758 ctx_lo = context[0].lo;
5759
5760 if (!(ctx_lo & CONTEXT_PASIDE)) {
5761 ctx_lo |= CONTEXT_PASIDE;
5762 context[0].lo = ctx_lo;
5763 wmb();
5764 iommu->flush.flush_context(iommu,
5765 domain->iommu_did[iommu->seq_id],
5766 PCI_DEVID(info->bus, info->devfn),
5767 DMA_CCMD_MASK_NOBIT,
5768 DMA_CCMD_DEVICE_INVL);
5769 }
5770
5771 /* Enable PASID support in the device, if it wasn't already */
5772 if (!info->pasid_enabled)
5773 iommu_enable_dev_iotlb(info);
5774
5775 ret = 0;
5776
5777 out:
5778 spin_unlock(&iommu->lock);
5779 spin_unlock_irqrestore(&device_domain_lock, flags);
5780
5781 return ret;
5782 }
5783
intel_iommu_apply_resv_region(struct device * dev,struct iommu_domain * domain,struct iommu_resv_region * region)5784 static void intel_iommu_apply_resv_region(struct device *dev,
5785 struct iommu_domain *domain,
5786 struct iommu_resv_region *region)
5787 {
5788 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5789 unsigned long start, end;
5790
5791 start = IOVA_PFN(region->start);
5792 end = IOVA_PFN(region->start + region->length - 1);
5793
5794 WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5795 }
5796
5797 #ifdef CONFIG_INTEL_IOMMU_SVM
intel_svm_device_to_iommu(struct device * dev)5798 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5799 {
5800 struct intel_iommu *iommu;
5801 u8 bus, devfn;
5802
5803 if (iommu_dummy(dev)) {
5804 dev_warn(dev,
5805 "No IOMMU translation for device; cannot enable SVM\n");
5806 return NULL;
5807 }
5808
5809 iommu = device_to_iommu(dev, &bus, &devfn);
5810 if ((!iommu)) {
5811 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5812 return NULL;
5813 }
5814
5815 return iommu;
5816 }
5817 #endif /* CONFIG_INTEL_IOMMU_SVM */
5818
intel_iommu_enable_auxd(struct device * dev)5819 static int intel_iommu_enable_auxd(struct device *dev)
5820 {
5821 struct device_domain_info *info;
5822 struct intel_iommu *iommu;
5823 unsigned long flags;
5824 u8 bus, devfn;
5825 int ret;
5826
5827 iommu = device_to_iommu(dev, &bus, &devfn);
5828 if (!iommu || dmar_disabled)
5829 return -EINVAL;
5830
5831 if (!sm_supported(iommu) || !pasid_supported(iommu))
5832 return -EINVAL;
5833
5834 ret = intel_iommu_enable_pasid(iommu, dev);
5835 if (ret)
5836 return -ENODEV;
5837
5838 spin_lock_irqsave(&device_domain_lock, flags);
5839 info = dev->archdata.iommu;
5840 info->auxd_enabled = 1;
5841 spin_unlock_irqrestore(&device_domain_lock, flags);
5842
5843 return 0;
5844 }
5845
intel_iommu_disable_auxd(struct device * dev)5846 static int intel_iommu_disable_auxd(struct device *dev)
5847 {
5848 struct device_domain_info *info;
5849 unsigned long flags;
5850
5851 spin_lock_irqsave(&device_domain_lock, flags);
5852 info = dev->archdata.iommu;
5853 if (!WARN_ON(!info))
5854 info->auxd_enabled = 0;
5855 spin_unlock_irqrestore(&device_domain_lock, flags);
5856
5857 return 0;
5858 }
5859
5860 /*
5861 * A PCI express designated vendor specific extended capability is defined
5862 * in the section 3.7 of Intel scalable I/O virtualization technical spec
5863 * for system software and tools to detect endpoint devices supporting the
5864 * Intel scalable IO virtualization without host driver dependency.
5865 *
5866 * Returns the address of the matching extended capability structure within
5867 * the device's PCI configuration space or 0 if the device does not support
5868 * it.
5869 */
siov_find_pci_dvsec(struct pci_dev * pdev)5870 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5871 {
5872 int pos;
5873 u16 vendor, id;
5874
5875 pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5876 while (pos) {
5877 pci_read_config_word(pdev, pos + 4, &vendor);
5878 pci_read_config_word(pdev, pos + 8, &id);
5879 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5880 return pos;
5881
5882 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5883 }
5884
5885 return 0;
5886 }
5887
5888 static bool
intel_iommu_dev_has_feat(struct device * dev,enum iommu_dev_features feat)5889 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5890 {
5891 if (feat == IOMMU_DEV_FEAT_AUX) {
5892 int ret;
5893
5894 if (!dev_is_pci(dev) || dmar_disabled ||
5895 !scalable_mode_support() || !iommu_pasid_support())
5896 return false;
5897
5898 ret = pci_pasid_features(to_pci_dev(dev));
5899 if (ret < 0)
5900 return false;
5901
5902 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5903 }
5904
5905 return false;
5906 }
5907
5908 static int
intel_iommu_dev_enable_feat(struct device * dev,enum iommu_dev_features feat)5909 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5910 {
5911 if (feat == IOMMU_DEV_FEAT_AUX)
5912 return intel_iommu_enable_auxd(dev);
5913
5914 return -ENODEV;
5915 }
5916
5917 static int
intel_iommu_dev_disable_feat(struct device * dev,enum iommu_dev_features feat)5918 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5919 {
5920 if (feat == IOMMU_DEV_FEAT_AUX)
5921 return intel_iommu_disable_auxd(dev);
5922
5923 return -ENODEV;
5924 }
5925
5926 static bool
intel_iommu_dev_feat_enabled(struct device * dev,enum iommu_dev_features feat)5927 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5928 {
5929 struct device_domain_info *info = dev->archdata.iommu;
5930
5931 if (feat == IOMMU_DEV_FEAT_AUX)
5932 return scalable_mode_support() && info && info->auxd_enabled;
5933
5934 return false;
5935 }
5936
5937 static int
intel_iommu_aux_get_pasid(struct iommu_domain * domain,struct device * dev)5938 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5939 {
5940 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5941
5942 return dmar_domain->default_pasid > 0 ?
5943 dmar_domain->default_pasid : -EINVAL;
5944 }
5945
intel_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)5946 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5947 struct device *dev)
5948 {
5949 return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
5950 }
5951
5952 const struct iommu_ops intel_iommu_ops = {
5953 .capable = intel_iommu_capable,
5954 .domain_alloc = intel_iommu_domain_alloc,
5955 .domain_free = intel_iommu_domain_free,
5956 .attach_dev = intel_iommu_attach_device,
5957 .detach_dev = intel_iommu_detach_device,
5958 .aux_attach_dev = intel_iommu_aux_attach_device,
5959 .aux_detach_dev = intel_iommu_aux_detach_device,
5960 .aux_get_pasid = intel_iommu_aux_get_pasid,
5961 .map = intel_iommu_map,
5962 .unmap = intel_iommu_unmap,
5963 .iova_to_phys = intel_iommu_iova_to_phys,
5964 .add_device = intel_iommu_add_device,
5965 .remove_device = intel_iommu_remove_device,
5966 .get_resv_regions = intel_iommu_get_resv_regions,
5967 .put_resv_regions = intel_iommu_put_resv_regions,
5968 .apply_resv_region = intel_iommu_apply_resv_region,
5969 .device_group = pci_device_group,
5970 .dev_has_feat = intel_iommu_dev_has_feat,
5971 .dev_feat_enabled = intel_iommu_dev_feat_enabled,
5972 .dev_enable_feat = intel_iommu_dev_enable_feat,
5973 .dev_disable_feat = intel_iommu_dev_disable_feat,
5974 .is_attach_deferred = intel_iommu_is_attach_deferred,
5975 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5976 };
5977
quirk_iommu_igfx(struct pci_dev * dev)5978 static void quirk_iommu_igfx(struct pci_dev *dev)
5979 {
5980 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5981 dmar_map_gfx = 0;
5982 }
5983
5984 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5985 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
5986 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
5987 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
5988 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
5989 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
5990 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
5991 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
5992
5993 /* Broadwell igfx malfunctions with dmar */
5994 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
5995 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
5996 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
5997 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
5998 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
5999 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
6000 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
6001 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
6002 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
6003 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
6004 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
6005 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
6006 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
6007 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
6008 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
6009 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
6010 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
6011 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
6012 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
6013 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
6014 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
6015 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
6016 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
6017 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6018
quirk_iommu_rwbf(struct pci_dev * dev)6019 static void quirk_iommu_rwbf(struct pci_dev *dev)
6020 {
6021 /*
6022 * Mobile 4 Series Chipset neglects to set RWBF capability,
6023 * but needs it. Same seems to hold for the desktop versions.
6024 */
6025 pci_info(dev, "Forcing write-buffer flush capability\n");
6026 rwbf_quirk = 1;
6027 }
6028
6029 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6030 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
6031 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
6032 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
6033 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
6034 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
6035 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6036
6037 #define GGC 0x52
6038 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
6039 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
6040 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
6041 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
6042 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
6043 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
6044 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
6045 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
6046
quirk_calpella_no_shadow_gtt(struct pci_dev * dev)6047 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6048 {
6049 unsigned short ggc;
6050
6051 if (pci_read_config_word(dev, GGC, &ggc))
6052 return;
6053
6054 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6055 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6056 dmar_map_gfx = 0;
6057 } else if (dmar_map_gfx) {
6058 /* we have to ensure the gfx device is idle before we flush */
6059 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6060 intel_iommu_strict = 1;
6061 }
6062 }
6063 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
6064 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
6065 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
6066 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
6067
6068 /* On Tylersburg chipsets, some BIOSes have been known to enable the
6069 ISOCH DMAR unit for the Azalia sound device, but not give it any
6070 TLB entries, which causes it to deadlock. Check for that. We do
6071 this in a function called from init_dmars(), instead of in a PCI
6072 quirk, because we don't want to print the obnoxious "BIOS broken"
6073 message if VT-d is actually disabled.
6074 */
check_tylersburg_isoch(void)6075 static void __init check_tylersburg_isoch(void)
6076 {
6077 struct pci_dev *pdev;
6078 uint32_t vtisochctrl;
6079
6080 /* If there's no Azalia in the system anyway, forget it. */
6081 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
6082 if (!pdev)
6083 return;
6084 pci_dev_put(pdev);
6085
6086 /* System Management Registers. Might be hidden, in which case
6087 we can't do the sanity check. But that's OK, because the
6088 known-broken BIOSes _don't_ actually hide it, so far. */
6089 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
6090 if (!pdev)
6091 return;
6092
6093 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
6094 pci_dev_put(pdev);
6095 return;
6096 }
6097
6098 pci_dev_put(pdev);
6099
6100 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
6101 if (vtisochctrl & 1)
6102 return;
6103
6104 /* Drop all bits other than the number of TLB entries */
6105 vtisochctrl &= 0x1c;
6106
6107 /* If we have the recommended number of TLB entries (16), fine. */
6108 if (vtisochctrl == 0x10)
6109 return;
6110
6111 /* Zero TLB entries? You get to ride the short bus to school. */
6112 if (!vtisochctrl) {
6113 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
6114 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
6115 dmi_get_system_info(DMI_BIOS_VENDOR),
6116 dmi_get_system_info(DMI_BIOS_VERSION),
6117 dmi_get_system_info(DMI_PRODUCT_VERSION));
6118 iommu_identity_mapping |= IDENTMAP_AZALIA;
6119 return;
6120 }
6121
6122 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6123 vtisochctrl);
6124 }
6125