1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
71 #include <asm/uasm.h>
72 
73 extern void check_wait(void);
74 extern asmlinkage void rollback_handle_int(void);
75 extern asmlinkage void handle_int(void);
76 extern asmlinkage void handle_adel(void);
77 extern asmlinkage void handle_ades(void);
78 extern asmlinkage void handle_ibe(void);
79 extern asmlinkage void handle_dbe(void);
80 extern asmlinkage void handle_sys(void);
81 extern asmlinkage void handle_bp(void);
82 extern asmlinkage void handle_ri(void);
83 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
84 extern asmlinkage void handle_ri_rdhwr(void);
85 extern asmlinkage void handle_cpu(void);
86 extern asmlinkage void handle_ov(void);
87 extern asmlinkage void handle_tr(void);
88 extern asmlinkage void handle_msa_fpe(void);
89 extern asmlinkage void handle_fpe(void);
90 extern asmlinkage void handle_ftlb(void);
91 extern asmlinkage void handle_msa(void);
92 extern asmlinkage void handle_mdmx(void);
93 extern asmlinkage void handle_watch(void);
94 extern asmlinkage void handle_mt(void);
95 extern asmlinkage void handle_dsp(void);
96 extern asmlinkage void handle_mcheck(void);
97 extern asmlinkage void handle_reserved(void);
98 extern void tlb_do_page_fault_0(void);
99 
100 void (*board_be_init)(void);
101 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
102 void (*board_nmi_handler_setup)(void);
103 void (*board_ejtag_handler_setup)(void);
104 void (*board_bind_eic_interrupt)(int irq, int regset);
105 void (*board_ebase_setup)(void);
106 void(*board_cache_error_setup)(void);
107 
show_raw_backtrace(unsigned long reg29)108 static void show_raw_backtrace(unsigned long reg29)
109 {
110 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
111 	unsigned long addr;
112 
113 	printk("Call Trace:");
114 #ifdef CONFIG_KALLSYMS
115 	printk("\n");
116 #endif
117 	while (!kstack_end(sp)) {
118 		unsigned long __user *p =
119 			(unsigned long __user *)(unsigned long)sp++;
120 		if (__get_user(addr, p)) {
121 			printk(" (Bad stack address)");
122 			break;
123 		}
124 		if (__kernel_text_address(addr))
125 			print_ip_sym(addr);
126 	}
127 	printk("\n");
128 }
129 
130 #ifdef CONFIG_KALLSYMS
131 int raw_show_trace;
set_raw_show_trace(char * str)132 static int __init set_raw_show_trace(char *str)
133 {
134 	raw_show_trace = 1;
135 	return 1;
136 }
137 __setup("raw_show_trace", set_raw_show_trace);
138 #endif
139 
show_backtrace(struct task_struct * task,const struct pt_regs * regs)140 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
141 {
142 	unsigned long sp = regs->regs[29];
143 	unsigned long ra = regs->regs[31];
144 	unsigned long pc = regs->cp0_epc;
145 
146 	if (!task)
147 		task = current;
148 
149 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
150 		show_raw_backtrace(sp);
151 		return;
152 	}
153 	printk("Call Trace:\n");
154 	do {
155 		print_ip_sym(pc);
156 		pc = unwind_stack(task, &sp, pc, &ra);
157 	} while (pc);
158 	pr_cont("\n");
159 }
160 
161 /*
162  * This routine abuses get_user()/put_user() to reference pointers
163  * with at least a bit of error checking ...
164  */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)165 static void show_stacktrace(struct task_struct *task,
166 	const struct pt_regs *regs)
167 {
168 	const int field = 2 * sizeof(unsigned long);
169 	long stackdata;
170 	int i;
171 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
172 
173 	printk("Stack :");
174 	i = 0;
175 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
176 		if (i && ((i % (64 / field)) == 0)) {
177 			pr_cont("\n");
178 			printk("       ");
179 		}
180 		if (i > 39) {
181 			pr_cont(" ...");
182 			break;
183 		}
184 
185 		if (__get_user(stackdata, sp++)) {
186 			pr_cont(" (Bad stack address)");
187 			break;
188 		}
189 
190 		pr_cont(" %0*lx", field, stackdata);
191 		i++;
192 	}
193 	pr_cont("\n");
194 	show_backtrace(task, regs);
195 }
196 
show_stack(struct task_struct * task,unsigned long * sp)197 void show_stack(struct task_struct *task, unsigned long *sp)
198 {
199 	struct pt_regs regs;
200 	mm_segment_t old_fs = get_fs();
201 
202 	regs.cp0_status = KSU_KERNEL;
203 	if (sp) {
204 		regs.regs[29] = (unsigned long)sp;
205 		regs.regs[31] = 0;
206 		regs.cp0_epc = 0;
207 	} else {
208 		if (task && task != current) {
209 			regs.regs[29] = task->thread.reg29;
210 			regs.regs[31] = 0;
211 			regs.cp0_epc = task->thread.reg31;
212 #ifdef CONFIG_KGDB_KDB
213 		} else if (atomic_read(&kgdb_active) != -1 &&
214 			   kdb_current_regs) {
215 			memcpy(&regs, kdb_current_regs, sizeof(regs));
216 #endif /* CONFIG_KGDB_KDB */
217 		} else {
218 			prepare_frametrace(&regs);
219 		}
220 	}
221 	/*
222 	 * show_stack() deals exclusively with kernel mode, so be sure to access
223 	 * the stack in the kernel (not user) address space.
224 	 */
225 	set_fs(KERNEL_DS);
226 	show_stacktrace(task, &regs);
227 	set_fs(old_fs);
228 }
229 
show_code(unsigned int __user * pc)230 static void show_code(unsigned int __user *pc)
231 {
232 	long i;
233 	unsigned short __user *pc16 = NULL;
234 
235 	printk("Code:");
236 
237 	if ((unsigned long)pc & 1)
238 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
239 	for(i = -3 ; i < 6 ; i++) {
240 		unsigned int insn;
241 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
242 			pr_cont(" (Bad address in epc)\n");
243 			break;
244 		}
245 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
246 	}
247 	pr_cont("\n");
248 }
249 
__show_regs(const struct pt_regs * regs)250 static void __show_regs(const struct pt_regs *regs)
251 {
252 	const int field = 2 * sizeof(unsigned long);
253 	unsigned int cause = regs->cp0_cause;
254 	unsigned int exccode;
255 	int i;
256 
257 	show_regs_print_info(KERN_DEFAULT);
258 
259 	/*
260 	 * Saved main processor registers
261 	 */
262 	for (i = 0; i < 32; ) {
263 		if ((i % 4) == 0)
264 			printk("$%2d   :", i);
265 		if (i == 0)
266 			pr_cont(" %0*lx", field, 0UL);
267 		else if (i == 26 || i == 27)
268 			pr_cont(" %*s", field, "");
269 		else
270 			pr_cont(" %0*lx", field, regs->regs[i]);
271 
272 		i++;
273 		if ((i % 4) == 0)
274 			pr_cont("\n");
275 	}
276 
277 #ifdef CONFIG_CPU_HAS_SMARTMIPS
278 	printk("Acx    : %0*lx\n", field, regs->acx);
279 #endif
280 	printk("Hi    : %0*lx\n", field, regs->hi);
281 	printk("Lo    : %0*lx\n", field, regs->lo);
282 
283 	/*
284 	 * Saved cp0 registers
285 	 */
286 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
287 	       (void *) regs->cp0_epc);
288 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
289 	       (void *) regs->regs[31]);
290 
291 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
292 
293 	if (cpu_has_3kex) {
294 		if (regs->cp0_status & ST0_KUO)
295 			pr_cont("KUo ");
296 		if (regs->cp0_status & ST0_IEO)
297 			pr_cont("IEo ");
298 		if (regs->cp0_status & ST0_KUP)
299 			pr_cont("KUp ");
300 		if (regs->cp0_status & ST0_IEP)
301 			pr_cont("IEp ");
302 		if (regs->cp0_status & ST0_KUC)
303 			pr_cont("KUc ");
304 		if (regs->cp0_status & ST0_IEC)
305 			pr_cont("IEc ");
306 	} else if (cpu_has_4kex) {
307 		if (regs->cp0_status & ST0_KX)
308 			pr_cont("KX ");
309 		if (regs->cp0_status & ST0_SX)
310 			pr_cont("SX ");
311 		if (regs->cp0_status & ST0_UX)
312 			pr_cont("UX ");
313 		switch (regs->cp0_status & ST0_KSU) {
314 		case KSU_USER:
315 			pr_cont("USER ");
316 			break;
317 		case KSU_SUPERVISOR:
318 			pr_cont("SUPERVISOR ");
319 			break;
320 		case KSU_KERNEL:
321 			pr_cont("KERNEL ");
322 			break;
323 		default:
324 			pr_cont("BAD_MODE ");
325 			break;
326 		}
327 		if (regs->cp0_status & ST0_ERL)
328 			pr_cont("ERL ");
329 		if (regs->cp0_status & ST0_EXL)
330 			pr_cont("EXL ");
331 		if (regs->cp0_status & ST0_IE)
332 			pr_cont("IE ");
333 	}
334 	pr_cont("\n");
335 
336 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
337 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
338 
339 	if (1 <= exccode && exccode <= 5)
340 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
341 
342 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
343 	       cpu_name_string());
344 }
345 
346 /*
347  * FIXME: really the generic show_regs should take a const pointer argument.
348  */
show_regs(struct pt_regs * regs)349 void show_regs(struct pt_regs *regs)
350 {
351 	__show_regs((struct pt_regs *)regs);
352 	dump_stack();
353 }
354 
show_registers(struct pt_regs * regs)355 void show_registers(struct pt_regs *regs)
356 {
357 	const int field = 2 * sizeof(unsigned long);
358 	mm_segment_t old_fs = get_fs();
359 
360 	__show_regs(regs);
361 	print_modules();
362 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
363 	       current->comm, current->pid, current_thread_info(), current,
364 	      field, current_thread_info()->tp_value);
365 	if (cpu_has_userlocal) {
366 		unsigned long tls;
367 
368 		tls = read_c0_userlocal();
369 		if (tls != current_thread_info()->tp_value)
370 			printk("*HwTLS: %0*lx\n", field, tls);
371 	}
372 
373 	if (!user_mode(regs))
374 		/* Necessary for getting the correct stack content */
375 		set_fs(KERNEL_DS);
376 	show_stacktrace(current, regs);
377 	show_code((unsigned int __user *) regs->cp0_epc);
378 	printk("\n");
379 	set_fs(old_fs);
380 }
381 
382 static DEFINE_RAW_SPINLOCK(die_lock);
383 
die(const char * str,struct pt_regs * regs)384 void __noreturn die(const char *str, struct pt_regs *regs)
385 {
386 	static int die_counter;
387 	int sig = SIGSEGV;
388 
389 	oops_enter();
390 
391 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
392 		       SIGSEGV) == NOTIFY_STOP)
393 		sig = 0;
394 
395 	console_verbose();
396 	raw_spin_lock_irq(&die_lock);
397 	bust_spinlocks(1);
398 
399 	printk("%s[#%d]:\n", str, ++die_counter);
400 	show_registers(regs);
401 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
402 	raw_spin_unlock_irq(&die_lock);
403 
404 	oops_exit();
405 
406 	if (in_interrupt())
407 		panic("Fatal exception in interrupt");
408 
409 	if (panic_on_oops)
410 		panic("Fatal exception");
411 
412 	if (regs && kexec_should_crash(current))
413 		crash_kexec(regs);
414 
415 	do_exit(sig);
416 }
417 
418 extern struct exception_table_entry __start___dbe_table[];
419 extern struct exception_table_entry __stop___dbe_table[];
420 
421 __asm__(
422 "	.section	__dbe_table, \"a\"\n"
423 "	.previous			\n");
424 
425 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)426 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
427 {
428 	const struct exception_table_entry *e;
429 
430 	e = search_extable(__start___dbe_table,
431 			   __stop___dbe_table - __start___dbe_table, addr);
432 	if (!e)
433 		e = search_module_dbetables(addr);
434 	return e;
435 }
436 
do_be(struct pt_regs * regs)437 asmlinkage void do_be(struct pt_regs *regs)
438 {
439 	const int field = 2 * sizeof(unsigned long);
440 	const struct exception_table_entry *fixup = NULL;
441 	int data = regs->cp0_cause & 4;
442 	int action = MIPS_BE_FATAL;
443 	enum ctx_state prev_state;
444 
445 	prev_state = exception_enter();
446 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
447 	if (data && !user_mode(regs))
448 		fixup = search_dbe_tables(exception_epc(regs));
449 
450 	if (fixup)
451 		action = MIPS_BE_FIXUP;
452 
453 	if (board_be_handler)
454 		action = board_be_handler(regs, fixup != NULL);
455 	else
456 		mips_cm_error_report();
457 
458 	switch (action) {
459 	case MIPS_BE_DISCARD:
460 		goto out;
461 	case MIPS_BE_FIXUP:
462 		if (fixup) {
463 			regs->cp0_epc = fixup->nextinsn;
464 			goto out;
465 		}
466 		break;
467 	default:
468 		break;
469 	}
470 
471 	/*
472 	 * Assume it would be too dangerous to continue ...
473 	 */
474 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
475 	       data ? "Data" : "Instruction",
476 	       field, regs->cp0_epc, field, regs->regs[31]);
477 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
478 		       SIGBUS) == NOTIFY_STOP)
479 		goto out;
480 
481 	die_if_kernel("Oops", regs);
482 	force_sig(SIGBUS, current);
483 
484 out:
485 	exception_exit(prev_state);
486 }
487 
488 /*
489  * ll/sc, rdhwr, sync emulation
490  */
491 
492 #define OPCODE 0xfc000000
493 #define BASE   0x03e00000
494 #define RT     0x001f0000
495 #define OFFSET 0x0000ffff
496 #define LL     0xc0000000
497 #define SC     0xe0000000
498 #define SPEC0  0x00000000
499 #define SPEC3  0x7c000000
500 #define RD     0x0000f800
501 #define FUNC   0x0000003f
502 #define SYNC   0x0000000f
503 #define RDHWR  0x0000003b
504 
505 /*  microMIPS definitions   */
506 #define MM_POOL32A_FUNC 0xfc00ffff
507 #define MM_RDHWR        0x00006b3c
508 #define MM_RS           0x001f0000
509 #define MM_RT           0x03e00000
510 
511 /*
512  * The ll_bit is cleared by r*_switch.S
513  */
514 
515 unsigned int ll_bit;
516 struct task_struct *ll_task;
517 
simulate_ll(struct pt_regs * regs,unsigned int opcode)518 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
519 {
520 	unsigned long value, __user *vaddr;
521 	long offset;
522 
523 	/*
524 	 * analyse the ll instruction that just caused a ri exception
525 	 * and put the referenced address to addr.
526 	 */
527 
528 	/* sign extend offset */
529 	offset = opcode & OFFSET;
530 	offset <<= 16;
531 	offset >>= 16;
532 
533 	vaddr = (unsigned long __user *)
534 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
535 
536 	if ((unsigned long)vaddr & 3)
537 		return SIGBUS;
538 	if (get_user(value, vaddr))
539 		return SIGSEGV;
540 
541 	preempt_disable();
542 
543 	if (ll_task == NULL || ll_task == current) {
544 		ll_bit = 1;
545 	} else {
546 		ll_bit = 0;
547 	}
548 	ll_task = current;
549 
550 	preempt_enable();
551 
552 	regs->regs[(opcode & RT) >> 16] = value;
553 
554 	return 0;
555 }
556 
simulate_sc(struct pt_regs * regs,unsigned int opcode)557 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
558 {
559 	unsigned long __user *vaddr;
560 	unsigned long reg;
561 	long offset;
562 
563 	/*
564 	 * analyse the sc instruction that just caused a ri exception
565 	 * and put the referenced address to addr.
566 	 */
567 
568 	/* sign extend offset */
569 	offset = opcode & OFFSET;
570 	offset <<= 16;
571 	offset >>= 16;
572 
573 	vaddr = (unsigned long __user *)
574 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
575 	reg = (opcode & RT) >> 16;
576 
577 	if ((unsigned long)vaddr & 3)
578 		return SIGBUS;
579 
580 	preempt_disable();
581 
582 	if (ll_bit == 0 || ll_task != current) {
583 		regs->regs[reg] = 0;
584 		preempt_enable();
585 		return 0;
586 	}
587 
588 	preempt_enable();
589 
590 	if (put_user(regs->regs[reg], vaddr))
591 		return SIGSEGV;
592 
593 	regs->regs[reg] = 1;
594 
595 	return 0;
596 }
597 
598 /*
599  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
600  * opcodes are supposed to result in coprocessor unusable exceptions if
601  * executed on ll/sc-less processors.  That's the theory.  In practice a
602  * few processors such as NEC's VR4100 throw reserved instruction exceptions
603  * instead, so we're doing the emulation thing in both exception handlers.
604  */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)605 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
606 {
607 	if ((opcode & OPCODE) == LL) {
608 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
609 				1, regs, 0);
610 		return simulate_ll(regs, opcode);
611 	}
612 	if ((opcode & OPCODE) == SC) {
613 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
614 				1, regs, 0);
615 		return simulate_sc(regs, opcode);
616 	}
617 
618 	return -1;			/* Must be something else ... */
619 }
620 
621 /*
622  * Simulate trapping 'rdhwr' instructions to provide user accessible
623  * registers not implemented in hardware.
624  */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)625 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
626 {
627 	struct thread_info *ti = task_thread_info(current);
628 
629 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
630 			1, regs, 0);
631 	switch (rd) {
632 	case MIPS_HWR_CPUNUM:		/* CPU number */
633 		regs->regs[rt] = smp_processor_id();
634 		return 0;
635 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
636 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
637 				     current_cpu_data.icache.linesz);
638 		return 0;
639 	case MIPS_HWR_CC:		/* Read count register */
640 		regs->regs[rt] = read_c0_count();
641 		return 0;
642 	case MIPS_HWR_CCRES:		/* Count register resolution */
643 		switch (current_cpu_type()) {
644 		case CPU_20KC:
645 		case CPU_25KF:
646 			regs->regs[rt] = 1;
647 			break;
648 		default:
649 			regs->regs[rt] = 2;
650 		}
651 		return 0;
652 	case MIPS_HWR_ULR:		/* Read UserLocal register */
653 		regs->regs[rt] = ti->tp_value;
654 		return 0;
655 	default:
656 		return -1;
657 	}
658 }
659 
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)660 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
661 {
662 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
663 		int rd = (opcode & RD) >> 11;
664 		int rt = (opcode & RT) >> 16;
665 
666 		simulate_rdhwr(regs, rd, rt);
667 		return 0;
668 	}
669 
670 	/* Not ours.  */
671 	return -1;
672 }
673 
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)674 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
675 {
676 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
677 		int rd = (opcode & MM_RS) >> 16;
678 		int rt = (opcode & MM_RT) >> 21;
679 		simulate_rdhwr(regs, rd, rt);
680 		return 0;
681 	}
682 
683 	/* Not ours.  */
684 	return -1;
685 }
686 
simulate_sync(struct pt_regs * regs,unsigned int opcode)687 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
688 {
689 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
690 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
691 				1, regs, 0);
692 		return 0;
693 	}
694 
695 	return -1;			/* Must be something else ... */
696 }
697 
do_ov(struct pt_regs * regs)698 asmlinkage void do_ov(struct pt_regs *regs)
699 {
700 	enum ctx_state prev_state;
701 
702 	prev_state = exception_enter();
703 	die_if_kernel("Integer overflow", regs);
704 
705 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
706 	exception_exit(prev_state);
707 }
708 
709 /*
710  * Send SIGFPE according to FCSR Cause bits, which must have already
711  * been masked against Enable bits.  This is impotant as Inexact can
712  * happen together with Overflow or Underflow, and `ptrace' can set
713  * any bits.
714  */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)715 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
716 		     struct task_struct *tsk)
717 {
718 	int si_code = FPE_FLTUNK;
719 
720 	if (fcr31 & FPU_CSR_INV_X)
721 		si_code = FPE_FLTINV;
722 	else if (fcr31 & FPU_CSR_DIV_X)
723 		si_code = FPE_FLTDIV;
724 	else if (fcr31 & FPU_CSR_OVF_X)
725 		si_code = FPE_FLTOVF;
726 	else if (fcr31 & FPU_CSR_UDF_X)
727 		si_code = FPE_FLTUND;
728 	else if (fcr31 & FPU_CSR_INE_X)
729 		si_code = FPE_FLTRES;
730 
731 	force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
732 }
733 
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)734 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
735 {
736 	int si_code;
737 	struct vm_area_struct *vma;
738 
739 	switch (sig) {
740 	case 0:
741 		return 0;
742 
743 	case SIGFPE:
744 		force_fcr31_sig(fcr31, fault_addr, current);
745 		return 1;
746 
747 	case SIGBUS:
748 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
749 		return 1;
750 
751 	case SIGSEGV:
752 		down_read(&current->mm->mmap_sem);
753 		vma = find_vma(current->mm, (unsigned long)fault_addr);
754 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
755 			si_code = SEGV_ACCERR;
756 		else
757 			si_code = SEGV_MAPERR;
758 		up_read(&current->mm->mmap_sem);
759 		force_sig_fault(SIGSEGV, si_code, fault_addr, current);
760 		return 1;
761 
762 	default:
763 		force_sig(sig, current);
764 		return 1;
765 	}
766 }
767 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)768 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
769 		       unsigned long old_epc, unsigned long old_ra)
770 {
771 	union mips_instruction inst = { .word = opcode };
772 	void __user *fault_addr;
773 	unsigned long fcr31;
774 	int sig;
775 
776 	/* If it's obviously not an FP instruction, skip it */
777 	switch (inst.i_format.opcode) {
778 	case cop1_op:
779 	case cop1x_op:
780 	case lwc1_op:
781 	case ldc1_op:
782 	case swc1_op:
783 	case sdc1_op:
784 		break;
785 
786 	default:
787 		return -1;
788 	}
789 
790 	/*
791 	 * do_ri skipped over the instruction via compute_return_epc, undo
792 	 * that for the FPU emulator.
793 	 */
794 	regs->cp0_epc = old_epc;
795 	regs->regs[31] = old_ra;
796 
797 	/* Save the FP context to struct thread_struct */
798 	lose_fpu(1);
799 
800 	/* Run the emulator */
801 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
802 				       &fault_addr);
803 
804 	/*
805 	 * We can't allow the emulated instruction to leave any
806 	 * enabled Cause bits set in $fcr31.
807 	 */
808 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
809 	current->thread.fpu.fcr31 &= ~fcr31;
810 
811 	/* Restore the hardware register state */
812 	own_fpu(1);
813 
814 	/* Send a signal if required.  */
815 	process_fpemu_return(sig, fault_addr, fcr31);
816 
817 	return 0;
818 }
819 
820 /*
821  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
822  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)823 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
824 {
825 	enum ctx_state prev_state;
826 	void __user *fault_addr;
827 	int sig;
828 
829 	prev_state = exception_enter();
830 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
831 		       SIGFPE) == NOTIFY_STOP)
832 		goto out;
833 
834 	/* Clear FCSR.Cause before enabling interrupts */
835 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
836 	local_irq_enable();
837 
838 	die_if_kernel("FP exception in kernel code", regs);
839 
840 	if (fcr31 & FPU_CSR_UNI_X) {
841 		/*
842 		 * Unimplemented operation exception.  If we've got the full
843 		 * software emulator on-board, let's use it...
844 		 *
845 		 * Force FPU to dump state into task/thread context.  We're
846 		 * moving a lot of data here for what is probably a single
847 		 * instruction, but the alternative is to pre-decode the FP
848 		 * register operands before invoking the emulator, which seems
849 		 * a bit extreme for what should be an infrequent event.
850 		 */
851 		/* Ensure 'resume' not overwrite saved fp context again. */
852 		lose_fpu(1);
853 
854 		/* Run the emulator */
855 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
856 					       &fault_addr);
857 
858 		/*
859 		 * We can't allow the emulated instruction to leave any
860 		 * enabled Cause bits set in $fcr31.
861 		 */
862 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
863 		current->thread.fpu.fcr31 &= ~fcr31;
864 
865 		/* Restore the hardware register state */
866 		own_fpu(1);	/* Using the FPU again.	 */
867 	} else {
868 		sig = SIGFPE;
869 		fault_addr = (void __user *) regs->cp0_epc;
870 	}
871 
872 	/* Send a signal if required.  */
873 	process_fpemu_return(sig, fault_addr, fcr31);
874 
875 out:
876 	exception_exit(prev_state);
877 }
878 
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)879 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
880 	const char *str)
881 {
882 	char b[40];
883 
884 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
885 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
886 			 SIGTRAP) == NOTIFY_STOP)
887 		return;
888 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
889 
890 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
891 		       SIGTRAP) == NOTIFY_STOP)
892 		return;
893 
894 	/*
895 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
896 	 * insns, even for trap and break codes that indicate arithmetic
897 	 * failures.  Weird ...
898 	 * But should we continue the brokenness???  --macro
899 	 */
900 	switch (code) {
901 	case BRK_OVERFLOW:
902 	case BRK_DIVZERO:
903 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
904 		die_if_kernel(b, regs);
905 		force_sig_fault(SIGFPE,
906 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
907 				(void __user *) regs->cp0_epc, current);
908 		break;
909 	case BRK_BUG:
910 		die_if_kernel("Kernel bug detected", regs);
911 		force_sig(SIGTRAP, current);
912 		break;
913 	case BRK_MEMU:
914 		/*
915 		 * This breakpoint code is used by the FPU emulator to retake
916 		 * control of the CPU after executing the instruction from the
917 		 * delay slot of an emulated branch.
918 		 *
919 		 * Terminate if exception was recognized as a delay slot return
920 		 * otherwise handle as normal.
921 		 */
922 		if (do_dsemulret(regs))
923 			return;
924 
925 		die_if_kernel("Math emu break/trap", regs);
926 		force_sig(SIGTRAP, current);
927 		break;
928 	default:
929 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
930 		die_if_kernel(b, regs);
931 		if (si_code) {
932 			force_sig_fault(SIGTRAP, si_code, NULL,	current);
933 		} else {
934 			force_sig(SIGTRAP, current);
935 		}
936 	}
937 }
938 
do_bp(struct pt_regs * regs)939 asmlinkage void do_bp(struct pt_regs *regs)
940 {
941 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
942 	unsigned int opcode, bcode;
943 	enum ctx_state prev_state;
944 	mm_segment_t seg;
945 
946 	seg = get_fs();
947 	if (!user_mode(regs))
948 		set_fs(KERNEL_DS);
949 
950 	prev_state = exception_enter();
951 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
952 	if (get_isa16_mode(regs->cp0_epc)) {
953 		u16 instr[2];
954 
955 		if (__get_user(instr[0], (u16 __user *)epc))
956 			goto out_sigsegv;
957 
958 		if (!cpu_has_mmips) {
959 			/* MIPS16e mode */
960 			bcode = (instr[0] >> 5) & 0x3f;
961 		} else if (mm_insn_16bit(instr[0])) {
962 			/* 16-bit microMIPS BREAK */
963 			bcode = instr[0] & 0xf;
964 		} else {
965 			/* 32-bit microMIPS BREAK */
966 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
967 				goto out_sigsegv;
968 			opcode = (instr[0] << 16) | instr[1];
969 			bcode = (opcode >> 6) & ((1 << 20) - 1);
970 		}
971 	} else {
972 		if (__get_user(opcode, (unsigned int __user *)epc))
973 			goto out_sigsegv;
974 		bcode = (opcode >> 6) & ((1 << 20) - 1);
975 	}
976 
977 	/*
978 	 * There is the ancient bug in the MIPS assemblers that the break
979 	 * code starts left to bit 16 instead to bit 6 in the opcode.
980 	 * Gas is bug-compatible, but not always, grrr...
981 	 * We handle both cases with a simple heuristics.  --macro
982 	 */
983 	if (bcode >= (1 << 10))
984 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
985 
986 	/*
987 	 * notify the kprobe handlers, if instruction is likely to
988 	 * pertain to them.
989 	 */
990 	switch (bcode) {
991 	case BRK_UPROBE:
992 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
993 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
994 			goto out;
995 		else
996 			break;
997 	case BRK_UPROBE_XOL:
998 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
999 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1000 			goto out;
1001 		else
1002 			break;
1003 	case BRK_KPROBE_BP:
1004 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1005 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1006 			goto out;
1007 		else
1008 			break;
1009 	case BRK_KPROBE_SSTEPBP:
1010 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1011 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 			goto out;
1013 		else
1014 			break;
1015 	default:
1016 		break;
1017 	}
1018 
1019 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1020 
1021 out:
1022 	set_fs(seg);
1023 	exception_exit(prev_state);
1024 	return;
1025 
1026 out_sigsegv:
1027 	force_sig(SIGSEGV, current);
1028 	goto out;
1029 }
1030 
do_tr(struct pt_regs * regs)1031 asmlinkage void do_tr(struct pt_regs *regs)
1032 {
1033 	u32 opcode, tcode = 0;
1034 	enum ctx_state prev_state;
1035 	u16 instr[2];
1036 	mm_segment_t seg;
1037 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1038 
1039 	seg = get_fs();
1040 	if (!user_mode(regs))
1041 		set_fs(get_ds());
1042 
1043 	prev_state = exception_enter();
1044 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1045 	if (get_isa16_mode(regs->cp0_epc)) {
1046 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1047 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1048 			goto out_sigsegv;
1049 		opcode = (instr[0] << 16) | instr[1];
1050 		/* Immediate versions don't provide a code.  */
1051 		if (!(opcode & OPCODE))
1052 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1053 	} else {
1054 		if (__get_user(opcode, (u32 __user *)epc))
1055 			goto out_sigsegv;
1056 		/* Immediate versions don't provide a code.  */
1057 		if (!(opcode & OPCODE))
1058 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1059 	}
1060 
1061 	do_trap_or_bp(regs, tcode, 0, "Trap");
1062 
1063 out:
1064 	set_fs(seg);
1065 	exception_exit(prev_state);
1066 	return;
1067 
1068 out_sigsegv:
1069 	force_sig(SIGSEGV, current);
1070 	goto out;
1071 }
1072 
do_ri(struct pt_regs * regs)1073 asmlinkage void do_ri(struct pt_regs *regs)
1074 {
1075 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1076 	unsigned long old_epc = regs->cp0_epc;
1077 	unsigned long old31 = regs->regs[31];
1078 	enum ctx_state prev_state;
1079 	unsigned int opcode = 0;
1080 	int status = -1;
1081 
1082 	/*
1083 	 * Avoid any kernel code. Just emulate the R2 instruction
1084 	 * as quickly as possible.
1085 	 */
1086 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1087 	    likely(user_mode(regs)) &&
1088 	    likely(get_user(opcode, epc) >= 0)) {
1089 		unsigned long fcr31 = 0;
1090 
1091 		status = mipsr2_decoder(regs, opcode, &fcr31);
1092 		switch (status) {
1093 		case 0:
1094 		case SIGEMT:
1095 			return;
1096 		case SIGILL:
1097 			goto no_r2_instr;
1098 		default:
1099 			process_fpemu_return(status,
1100 					     &current->thread.cp0_baduaddr,
1101 					     fcr31);
1102 			return;
1103 		}
1104 	}
1105 
1106 no_r2_instr:
1107 
1108 	prev_state = exception_enter();
1109 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1110 
1111 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1112 		       SIGILL) == NOTIFY_STOP)
1113 		goto out;
1114 
1115 	die_if_kernel("Reserved instruction in kernel code", regs);
1116 
1117 	if (unlikely(compute_return_epc(regs) < 0))
1118 		goto out;
1119 
1120 	if (!get_isa16_mode(regs->cp0_epc)) {
1121 		if (unlikely(get_user(opcode, epc) < 0))
1122 			status = SIGSEGV;
1123 
1124 		if (!cpu_has_llsc && status < 0)
1125 			status = simulate_llsc(regs, opcode);
1126 
1127 		if (status < 0)
1128 			status = simulate_rdhwr_normal(regs, opcode);
1129 
1130 		if (status < 0)
1131 			status = simulate_sync(regs, opcode);
1132 
1133 		if (status < 0)
1134 			status = simulate_fp(regs, opcode, old_epc, old31);
1135 	} else if (cpu_has_mmips) {
1136 		unsigned short mmop[2] = { 0 };
1137 
1138 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1139 			status = SIGSEGV;
1140 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1141 			status = SIGSEGV;
1142 		opcode = mmop[0];
1143 		opcode = (opcode << 16) | mmop[1];
1144 
1145 		if (status < 0)
1146 			status = simulate_rdhwr_mm(regs, opcode);
1147 	}
1148 
1149 	if (status < 0)
1150 		status = SIGILL;
1151 
1152 	if (unlikely(status > 0)) {
1153 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1154 		regs->regs[31] = old31;
1155 		force_sig(status, current);
1156 	}
1157 
1158 out:
1159 	exception_exit(prev_state);
1160 }
1161 
1162 /*
1163  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1164  * emulated more than some threshold number of instructions, force migration to
1165  * a "CPU" that has FP support.
1166  */
mt_ase_fp_affinity(void)1167 static void mt_ase_fp_affinity(void)
1168 {
1169 #ifdef CONFIG_MIPS_MT_FPAFF
1170 	if (mt_fpemul_threshold > 0 &&
1171 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1172 		/*
1173 		 * If there's no FPU present, or if the application has already
1174 		 * restricted the allowed set to exclude any CPUs with FPUs,
1175 		 * we'll skip the procedure.
1176 		 */
1177 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1178 			cpumask_t tmask;
1179 
1180 			current->thread.user_cpus_allowed
1181 				= current->cpus_allowed;
1182 			cpumask_and(&tmask, &current->cpus_allowed,
1183 				    &mt_fpu_cpumask);
1184 			set_cpus_allowed_ptr(current, &tmask);
1185 			set_thread_flag(TIF_FPUBOUND);
1186 		}
1187 	}
1188 #endif /* CONFIG_MIPS_MT_FPAFF */
1189 }
1190 
1191 /*
1192  * No lock; only written during early bootup by CPU 0.
1193  */
1194 static RAW_NOTIFIER_HEAD(cu2_chain);
1195 
register_cu2_notifier(struct notifier_block * nb)1196 int __ref register_cu2_notifier(struct notifier_block *nb)
1197 {
1198 	return raw_notifier_chain_register(&cu2_chain, nb);
1199 }
1200 
cu2_notifier_call_chain(unsigned long val,void * v)1201 int cu2_notifier_call_chain(unsigned long val, void *v)
1202 {
1203 	return raw_notifier_call_chain(&cu2_chain, val, v);
1204 }
1205 
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1206 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1207 	void *data)
1208 {
1209 	struct pt_regs *regs = data;
1210 
1211 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1212 			      "instruction", regs);
1213 	force_sig(SIGILL, current);
1214 
1215 	return NOTIFY_OK;
1216 }
1217 
enable_restore_fp_context(int msa)1218 static int enable_restore_fp_context(int msa)
1219 {
1220 	int err, was_fpu_owner, prior_msa;
1221 
1222 	if (!used_math()) {
1223 		/* First time FP context user. */
1224 		preempt_disable();
1225 		err = init_fpu();
1226 		if (msa && !err) {
1227 			enable_msa();
1228 			init_msa_upper();
1229 			set_thread_flag(TIF_USEDMSA);
1230 			set_thread_flag(TIF_MSA_CTX_LIVE);
1231 		}
1232 		preempt_enable();
1233 		if (!err)
1234 			set_used_math();
1235 		return err;
1236 	}
1237 
1238 	/*
1239 	 * This task has formerly used the FP context.
1240 	 *
1241 	 * If this thread has no live MSA vector context then we can simply
1242 	 * restore the scalar FP context. If it has live MSA vector context
1243 	 * (that is, it has or may have used MSA since last performing a
1244 	 * function call) then we'll need to restore the vector context. This
1245 	 * applies even if we're currently only executing a scalar FP
1246 	 * instruction. This is because if we were to later execute an MSA
1247 	 * instruction then we'd either have to:
1248 	 *
1249 	 *  - Restore the vector context & clobber any registers modified by
1250 	 *    scalar FP instructions between now & then.
1251 	 *
1252 	 * or
1253 	 *
1254 	 *  - Not restore the vector context & lose the most significant bits
1255 	 *    of all vector registers.
1256 	 *
1257 	 * Neither of those options is acceptable. We cannot restore the least
1258 	 * significant bits of the registers now & only restore the most
1259 	 * significant bits later because the most significant bits of any
1260 	 * vector registers whose aliased FP register is modified now will have
1261 	 * been zeroed. We'd have no way to know that when restoring the vector
1262 	 * context & thus may load an outdated value for the most significant
1263 	 * bits of a vector register.
1264 	 */
1265 	if (!msa && !thread_msa_context_live())
1266 		return own_fpu(1);
1267 
1268 	/*
1269 	 * This task is using or has previously used MSA. Thus we require
1270 	 * that Status.FR == 1.
1271 	 */
1272 	preempt_disable();
1273 	was_fpu_owner = is_fpu_owner();
1274 	err = own_fpu_inatomic(0);
1275 	if (err)
1276 		goto out;
1277 
1278 	enable_msa();
1279 	write_msa_csr(current->thread.fpu.msacsr);
1280 	set_thread_flag(TIF_USEDMSA);
1281 
1282 	/*
1283 	 * If this is the first time that the task is using MSA and it has
1284 	 * previously used scalar FP in this time slice then we already nave
1285 	 * FP context which we shouldn't clobber. We do however need to clear
1286 	 * the upper 64b of each vector register so that this task has no
1287 	 * opportunity to see data left behind by another.
1288 	 */
1289 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1290 	if (!prior_msa && was_fpu_owner) {
1291 		init_msa_upper();
1292 
1293 		goto out;
1294 	}
1295 
1296 	if (!prior_msa) {
1297 		/*
1298 		 * Restore the least significant 64b of each vector register
1299 		 * from the existing scalar FP context.
1300 		 */
1301 		_restore_fp(current);
1302 
1303 		/*
1304 		 * The task has not formerly used MSA, so clear the upper 64b
1305 		 * of each vector register such that it cannot see data left
1306 		 * behind by another task.
1307 		 */
1308 		init_msa_upper();
1309 	} else {
1310 		/* We need to restore the vector context. */
1311 		restore_msa(current);
1312 
1313 		/* Restore the scalar FP control & status register */
1314 		if (!was_fpu_owner)
1315 			write_32bit_cp1_register(CP1_STATUS,
1316 						 current->thread.fpu.fcr31);
1317 	}
1318 
1319 out:
1320 	preempt_enable();
1321 
1322 	return 0;
1323 }
1324 
do_cpu(struct pt_regs * regs)1325 asmlinkage void do_cpu(struct pt_regs *regs)
1326 {
1327 	enum ctx_state prev_state;
1328 	unsigned int __user *epc;
1329 	unsigned long old_epc, old31;
1330 	void __user *fault_addr;
1331 	unsigned int opcode;
1332 	unsigned long fcr31;
1333 	unsigned int cpid;
1334 	int status, err;
1335 	int sig;
1336 
1337 	prev_state = exception_enter();
1338 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1339 
1340 	if (cpid != 2)
1341 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1342 
1343 	switch (cpid) {
1344 	case 0:
1345 		epc = (unsigned int __user *)exception_epc(regs);
1346 		old_epc = regs->cp0_epc;
1347 		old31 = regs->regs[31];
1348 		opcode = 0;
1349 		status = -1;
1350 
1351 		if (unlikely(compute_return_epc(regs) < 0))
1352 			break;
1353 
1354 		if (!get_isa16_mode(regs->cp0_epc)) {
1355 			if (unlikely(get_user(opcode, epc) < 0))
1356 				status = SIGSEGV;
1357 
1358 			if (!cpu_has_llsc && status < 0)
1359 				status = simulate_llsc(regs, opcode);
1360 		}
1361 
1362 		if (status < 0)
1363 			status = SIGILL;
1364 
1365 		if (unlikely(status > 0)) {
1366 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1367 			regs->regs[31] = old31;
1368 			force_sig(status, current);
1369 		}
1370 
1371 		break;
1372 
1373 	case 3:
1374 		/*
1375 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1376 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1377 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1378 		 * up the space has been reused for COP1X instructions, that
1379 		 * are enabled by the CP0.Status.CU1 bit and consequently
1380 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1381 		 * exceptions.  Some FPU-less processors that implement one
1382 		 * of these ISAs however use this code erroneously for COP1X
1383 		 * instructions.  Therefore we redirect this trap to the FP
1384 		 * emulator too.
1385 		 */
1386 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1387 			force_sig(SIGILL, current);
1388 			break;
1389 		}
1390 		/* Fall through.  */
1391 
1392 	case 1:
1393 		err = enable_restore_fp_context(0);
1394 
1395 		if (raw_cpu_has_fpu && !err)
1396 			break;
1397 
1398 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1399 					       &fault_addr);
1400 
1401 		/*
1402 		 * We can't allow the emulated instruction to leave
1403 		 * any enabled Cause bits set in $fcr31.
1404 		 */
1405 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1406 		current->thread.fpu.fcr31 &= ~fcr31;
1407 
1408 		/* Send a signal if required.  */
1409 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1410 			mt_ase_fp_affinity();
1411 
1412 		break;
1413 
1414 	case 2:
1415 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1416 		break;
1417 	}
1418 
1419 	exception_exit(prev_state);
1420 }
1421 
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1422 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1423 {
1424 	enum ctx_state prev_state;
1425 
1426 	prev_state = exception_enter();
1427 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1428 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1429 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1430 		goto out;
1431 
1432 	/* Clear MSACSR.Cause before enabling interrupts */
1433 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1434 	local_irq_enable();
1435 
1436 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1437 	force_sig(SIGFPE, current);
1438 out:
1439 	exception_exit(prev_state);
1440 }
1441 
do_msa(struct pt_regs * regs)1442 asmlinkage void do_msa(struct pt_regs *regs)
1443 {
1444 	enum ctx_state prev_state;
1445 	int err;
1446 
1447 	prev_state = exception_enter();
1448 
1449 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1450 		force_sig(SIGILL, current);
1451 		goto out;
1452 	}
1453 
1454 	die_if_kernel("do_msa invoked from kernel context!", regs);
1455 
1456 	err = enable_restore_fp_context(1);
1457 	if (err)
1458 		force_sig(SIGILL, current);
1459 out:
1460 	exception_exit(prev_state);
1461 }
1462 
do_mdmx(struct pt_regs * regs)1463 asmlinkage void do_mdmx(struct pt_regs *regs)
1464 {
1465 	enum ctx_state prev_state;
1466 
1467 	prev_state = exception_enter();
1468 	force_sig(SIGILL, current);
1469 	exception_exit(prev_state);
1470 }
1471 
1472 /*
1473  * Called with interrupts disabled.
1474  */
do_watch(struct pt_regs * regs)1475 asmlinkage void do_watch(struct pt_regs *regs)
1476 {
1477 	enum ctx_state prev_state;
1478 
1479 	prev_state = exception_enter();
1480 	/*
1481 	 * Clear WP (bit 22) bit of cause register so we don't loop
1482 	 * forever.
1483 	 */
1484 	clear_c0_cause(CAUSEF_WP);
1485 
1486 	/*
1487 	 * If the current thread has the watch registers loaded, save
1488 	 * their values and send SIGTRAP.  Otherwise another thread
1489 	 * left the registers set, clear them and continue.
1490 	 */
1491 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1492 		mips_read_watch_registers();
1493 		local_irq_enable();
1494 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current);
1495 	} else {
1496 		mips_clear_watch_registers();
1497 		local_irq_enable();
1498 	}
1499 	exception_exit(prev_state);
1500 }
1501 
do_mcheck(struct pt_regs * regs)1502 asmlinkage void do_mcheck(struct pt_regs *regs)
1503 {
1504 	int multi_match = regs->cp0_status & ST0_TS;
1505 	enum ctx_state prev_state;
1506 	mm_segment_t old_fs = get_fs();
1507 
1508 	prev_state = exception_enter();
1509 	show_regs(regs);
1510 
1511 	if (multi_match) {
1512 		dump_tlb_regs();
1513 		pr_info("\n");
1514 		dump_tlb_all();
1515 	}
1516 
1517 	if (!user_mode(regs))
1518 		set_fs(KERNEL_DS);
1519 
1520 	show_code((unsigned int __user *) regs->cp0_epc);
1521 
1522 	set_fs(old_fs);
1523 
1524 	/*
1525 	 * Some chips may have other causes of machine check (e.g. SB1
1526 	 * graduation timer)
1527 	 */
1528 	panic("Caught Machine Check exception - %scaused by multiple "
1529 	      "matching entries in the TLB.",
1530 	      (multi_match) ? "" : "not ");
1531 }
1532 
do_mt(struct pt_regs * regs)1533 asmlinkage void do_mt(struct pt_regs *regs)
1534 {
1535 	int subcode;
1536 
1537 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1538 			>> VPECONTROL_EXCPT_SHIFT;
1539 	switch (subcode) {
1540 	case 0:
1541 		printk(KERN_DEBUG "Thread Underflow\n");
1542 		break;
1543 	case 1:
1544 		printk(KERN_DEBUG "Thread Overflow\n");
1545 		break;
1546 	case 2:
1547 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1548 		break;
1549 	case 3:
1550 		printk(KERN_DEBUG "Gating Storage Exception\n");
1551 		break;
1552 	case 4:
1553 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1554 		break;
1555 	case 5:
1556 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1557 		break;
1558 	default:
1559 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1560 			subcode);
1561 		break;
1562 	}
1563 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1564 
1565 	force_sig(SIGILL, current);
1566 }
1567 
1568 
do_dsp(struct pt_regs * regs)1569 asmlinkage void do_dsp(struct pt_regs *regs)
1570 {
1571 	if (cpu_has_dsp)
1572 		panic("Unexpected DSP exception");
1573 
1574 	force_sig(SIGILL, current);
1575 }
1576 
do_reserved(struct pt_regs * regs)1577 asmlinkage void do_reserved(struct pt_regs *regs)
1578 {
1579 	/*
1580 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1581 	 * caused by a new unknown cpu type or after another deadly
1582 	 * hard/software error.
1583 	 */
1584 	show_regs(regs);
1585 	panic("Caught reserved exception %ld - should not happen.",
1586 	      (regs->cp0_cause & 0x7f) >> 2);
1587 }
1588 
1589 static int __initdata l1parity = 1;
nol1parity(char * s)1590 static int __init nol1parity(char *s)
1591 {
1592 	l1parity = 0;
1593 	return 1;
1594 }
1595 __setup("nol1par", nol1parity);
1596 static int __initdata l2parity = 1;
nol2parity(char * s)1597 static int __init nol2parity(char *s)
1598 {
1599 	l2parity = 0;
1600 	return 1;
1601 }
1602 __setup("nol2par", nol2parity);
1603 
1604 /*
1605  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1606  * it different ways.
1607  */
parity_protection_init(void)1608 static inline void parity_protection_init(void)
1609 {
1610 #define ERRCTL_PE	0x80000000
1611 #define ERRCTL_L2P	0x00800000
1612 
1613 	if (mips_cm_revision() >= CM_REV_CM3) {
1614 		ulong gcr_ectl, cp0_ectl;
1615 
1616 		/*
1617 		 * With CM3 systems we need to ensure that the L1 & L2
1618 		 * parity enables are set to the same value, since this
1619 		 * is presumed by the hardware engineers.
1620 		 *
1621 		 * If the user disabled either of L1 or L2 ECC checking,
1622 		 * disable both.
1623 		 */
1624 		l1parity &= l2parity;
1625 		l2parity &= l1parity;
1626 
1627 		/* Probe L1 ECC support */
1628 		cp0_ectl = read_c0_ecc();
1629 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1630 		back_to_back_c0_hazard();
1631 		cp0_ectl = read_c0_ecc();
1632 
1633 		/* Probe L2 ECC support */
1634 		gcr_ectl = read_gcr_err_control();
1635 
1636 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1637 		    !(cp0_ectl & ERRCTL_PE)) {
1638 			/*
1639 			 * One of L1 or L2 ECC checking isn't supported,
1640 			 * so we cannot enable either.
1641 			 */
1642 			l1parity = l2parity = 0;
1643 		}
1644 
1645 		/* Configure L1 ECC checking */
1646 		if (l1parity)
1647 			cp0_ectl |= ERRCTL_PE;
1648 		else
1649 			cp0_ectl &= ~ERRCTL_PE;
1650 		write_c0_ecc(cp0_ectl);
1651 		back_to_back_c0_hazard();
1652 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1653 
1654 		/* Configure L2 ECC checking */
1655 		if (l2parity)
1656 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1657 		else
1658 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1659 		write_gcr_err_control(gcr_ectl);
1660 		gcr_ectl = read_gcr_err_control();
1661 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1662 		WARN_ON(!!gcr_ectl != l2parity);
1663 
1664 		pr_info("Cache parity protection %sabled\n",
1665 			l1parity ? "en" : "dis");
1666 		return;
1667 	}
1668 
1669 	switch (current_cpu_type()) {
1670 	case CPU_24K:
1671 	case CPU_34K:
1672 	case CPU_74K:
1673 	case CPU_1004K:
1674 	case CPU_1074K:
1675 	case CPU_INTERAPTIV:
1676 	case CPU_PROAPTIV:
1677 	case CPU_P5600:
1678 	case CPU_QEMU_GENERIC:
1679 	case CPU_P6600:
1680 		{
1681 			unsigned long errctl;
1682 			unsigned int l1parity_present, l2parity_present;
1683 
1684 			errctl = read_c0_ecc();
1685 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1686 
1687 			/* probe L1 parity support */
1688 			write_c0_ecc(errctl | ERRCTL_PE);
1689 			back_to_back_c0_hazard();
1690 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1691 
1692 			/* probe L2 parity support */
1693 			write_c0_ecc(errctl|ERRCTL_L2P);
1694 			back_to_back_c0_hazard();
1695 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1696 
1697 			if (l1parity_present && l2parity_present) {
1698 				if (l1parity)
1699 					errctl |= ERRCTL_PE;
1700 				if (l1parity ^ l2parity)
1701 					errctl |= ERRCTL_L2P;
1702 			} else if (l1parity_present) {
1703 				if (l1parity)
1704 					errctl |= ERRCTL_PE;
1705 			} else if (l2parity_present) {
1706 				if (l2parity)
1707 					errctl |= ERRCTL_L2P;
1708 			} else {
1709 				/* No parity available */
1710 			}
1711 
1712 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1713 
1714 			write_c0_ecc(errctl);
1715 			back_to_back_c0_hazard();
1716 			errctl = read_c0_ecc();
1717 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1718 
1719 			if (l1parity_present)
1720 				printk(KERN_INFO "Cache parity protection %sabled\n",
1721 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1722 
1723 			if (l2parity_present) {
1724 				if (l1parity_present && l1parity)
1725 					errctl ^= ERRCTL_L2P;
1726 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1727 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1728 			}
1729 		}
1730 		break;
1731 
1732 	case CPU_5KC:
1733 	case CPU_5KE:
1734 	case CPU_LOONGSON1:
1735 		write_c0_ecc(0x80000000);
1736 		back_to_back_c0_hazard();
1737 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1738 		printk(KERN_INFO "Cache parity protection %sabled\n",
1739 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1740 		break;
1741 	case CPU_20KC:
1742 	case CPU_25KF:
1743 		/* Clear the DE bit (bit 16) in the c0_status register. */
1744 		printk(KERN_INFO "Enable cache parity protection for "
1745 		       "MIPS 20KC/25KF CPUs.\n");
1746 		clear_c0_status(ST0_DE);
1747 		break;
1748 	default:
1749 		break;
1750 	}
1751 }
1752 
cache_parity_error(void)1753 asmlinkage void cache_parity_error(void)
1754 {
1755 	const int field = 2 * sizeof(unsigned long);
1756 	unsigned int reg_val;
1757 
1758 	/* For the moment, report the problem and hang. */
1759 	printk("Cache error exception:\n");
1760 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1761 	reg_val = read_c0_cacheerr();
1762 	printk("c0_cacheerr == %08x\n", reg_val);
1763 
1764 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1765 	       reg_val & (1<<30) ? "secondary" : "primary",
1766 	       reg_val & (1<<31) ? "data" : "insn");
1767 	if ((cpu_has_mips_r2_r6) &&
1768 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1769 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1770 			reg_val & (1<<29) ? "ED " : "",
1771 			reg_val & (1<<28) ? "ET " : "",
1772 			reg_val & (1<<27) ? "ES " : "",
1773 			reg_val & (1<<26) ? "EE " : "",
1774 			reg_val & (1<<25) ? "EB " : "",
1775 			reg_val & (1<<24) ? "EI " : "",
1776 			reg_val & (1<<23) ? "E1 " : "",
1777 			reg_val & (1<<22) ? "E0 " : "");
1778 	} else {
1779 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1780 			reg_val & (1<<29) ? "ED " : "",
1781 			reg_val & (1<<28) ? "ET " : "",
1782 			reg_val & (1<<26) ? "EE " : "",
1783 			reg_val & (1<<25) ? "EB " : "",
1784 			reg_val & (1<<24) ? "EI " : "",
1785 			reg_val & (1<<23) ? "E1 " : "",
1786 			reg_val & (1<<22) ? "E0 " : "");
1787 	}
1788 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1789 
1790 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1791 	if (reg_val & (1<<22))
1792 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1793 
1794 	if (reg_val & (1<<23))
1795 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1796 #endif
1797 
1798 	panic("Can't handle the cache error!");
1799 }
1800 
do_ftlb(void)1801 asmlinkage void do_ftlb(void)
1802 {
1803 	const int field = 2 * sizeof(unsigned long);
1804 	unsigned int reg_val;
1805 
1806 	/* For the moment, report the problem and hang. */
1807 	if ((cpu_has_mips_r2_r6) &&
1808 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1809 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1810 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1811 		       read_c0_ecc());
1812 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1813 		reg_val = read_c0_cacheerr();
1814 		pr_err("c0_cacheerr == %08x\n", reg_val);
1815 
1816 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1817 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1818 		} else {
1819 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1820 			       reg_val & (1<<30) ? "secondary" : "primary",
1821 			       reg_val & (1<<31) ? "data" : "insn");
1822 		}
1823 	} else {
1824 		pr_err("FTLB error exception\n");
1825 	}
1826 	/* Just print the cacheerr bits for now */
1827 	cache_parity_error();
1828 }
1829 
1830 /*
1831  * SDBBP EJTAG debug exception handler.
1832  * We skip the instruction and return to the next instruction.
1833  */
ejtag_exception_handler(struct pt_regs * regs)1834 void ejtag_exception_handler(struct pt_regs *regs)
1835 {
1836 	const int field = 2 * sizeof(unsigned long);
1837 	unsigned long depc, old_epc, old_ra;
1838 	unsigned int debug;
1839 
1840 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1841 	depc = read_c0_depc();
1842 	debug = read_c0_debug();
1843 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1844 	if (debug & 0x80000000) {
1845 		/*
1846 		 * In branch delay slot.
1847 		 * We cheat a little bit here and use EPC to calculate the
1848 		 * debug return address (DEPC). EPC is restored after the
1849 		 * calculation.
1850 		 */
1851 		old_epc = regs->cp0_epc;
1852 		old_ra = regs->regs[31];
1853 		regs->cp0_epc = depc;
1854 		compute_return_epc(regs);
1855 		depc = regs->cp0_epc;
1856 		regs->cp0_epc = old_epc;
1857 		regs->regs[31] = old_ra;
1858 	} else
1859 		depc += 4;
1860 	write_c0_depc(depc);
1861 
1862 #if 0
1863 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1864 	write_c0_debug(debug | 0x100);
1865 #endif
1866 }
1867 
1868 /*
1869  * NMI exception handler.
1870  * No lock; only written during early bootup by CPU 0.
1871  */
1872 static RAW_NOTIFIER_HEAD(nmi_chain);
1873 
register_nmi_notifier(struct notifier_block * nb)1874 int register_nmi_notifier(struct notifier_block *nb)
1875 {
1876 	return raw_notifier_chain_register(&nmi_chain, nb);
1877 }
1878 
nmi_exception_handler(struct pt_regs * regs)1879 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1880 {
1881 	char str[100];
1882 
1883 	nmi_enter();
1884 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1885 	bust_spinlocks(1);
1886 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1887 		 smp_processor_id(), regs->cp0_epc);
1888 	regs->cp0_epc = read_c0_errorepc();
1889 	die(str, regs);
1890 	nmi_exit();
1891 }
1892 
1893 #define VECTORSPACING 0x100	/* for EI/VI mode */
1894 
1895 unsigned long ebase;
1896 EXPORT_SYMBOL_GPL(ebase);
1897 unsigned long exception_handlers[32];
1898 unsigned long vi_handlers[64];
1899 
set_except_vector(int n,void * addr)1900 void __init *set_except_vector(int n, void *addr)
1901 {
1902 	unsigned long handler = (unsigned long) addr;
1903 	unsigned long old_handler;
1904 
1905 #ifdef CONFIG_CPU_MICROMIPS
1906 	/*
1907 	 * Only the TLB handlers are cache aligned with an even
1908 	 * address. All other handlers are on an odd address and
1909 	 * require no modification. Otherwise, MIPS32 mode will
1910 	 * be entered when handling any TLB exceptions. That
1911 	 * would be bad...since we must stay in microMIPS mode.
1912 	 */
1913 	if (!(handler & 0x1))
1914 		handler |= 1;
1915 #endif
1916 	old_handler = xchg(&exception_handlers[n], handler);
1917 
1918 	if (n == 0 && cpu_has_divec) {
1919 #ifdef CONFIG_CPU_MICROMIPS
1920 		unsigned long jump_mask = ~((1 << 27) - 1);
1921 #else
1922 		unsigned long jump_mask = ~((1 << 28) - 1);
1923 #endif
1924 		u32 *buf = (u32 *)(ebase + 0x200);
1925 		unsigned int k0 = 26;
1926 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1927 			uasm_i_j(&buf, handler & ~jump_mask);
1928 			uasm_i_nop(&buf);
1929 		} else {
1930 			UASM_i_LA(&buf, k0, handler);
1931 			uasm_i_jr(&buf, k0);
1932 			uasm_i_nop(&buf);
1933 		}
1934 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1935 	}
1936 	return (void *)old_handler;
1937 }
1938 
do_default_vi(void)1939 static void do_default_vi(void)
1940 {
1941 	show_regs(get_irq_regs());
1942 	panic("Caught unexpected vectored interrupt.");
1943 }
1944 
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1945 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1946 {
1947 	unsigned long handler;
1948 	unsigned long old_handler = vi_handlers[n];
1949 	int srssets = current_cpu_data.srsets;
1950 	u16 *h;
1951 	unsigned char *b;
1952 
1953 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1954 
1955 	if (addr == NULL) {
1956 		handler = (unsigned long) do_default_vi;
1957 		srs = 0;
1958 	} else
1959 		handler = (unsigned long) addr;
1960 	vi_handlers[n] = handler;
1961 
1962 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1963 
1964 	if (srs >= srssets)
1965 		panic("Shadow register set %d not supported", srs);
1966 
1967 	if (cpu_has_veic) {
1968 		if (board_bind_eic_interrupt)
1969 			board_bind_eic_interrupt(n, srs);
1970 	} else if (cpu_has_vint) {
1971 		/* SRSMap is only defined if shadow sets are implemented */
1972 		if (srssets > 1)
1973 			change_c0_srsmap(0xf << n*4, srs << n*4);
1974 	}
1975 
1976 	if (srs == 0) {
1977 		/*
1978 		 * If no shadow set is selected then use the default handler
1979 		 * that does normal register saving and standard interrupt exit
1980 		 */
1981 		extern char except_vec_vi, except_vec_vi_lui;
1982 		extern char except_vec_vi_ori, except_vec_vi_end;
1983 		extern char rollback_except_vec_vi;
1984 		char *vec_start = using_rollback_handler() ?
1985 			&rollback_except_vec_vi : &except_vec_vi;
1986 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1987 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1988 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1989 #else
1990 		const int lui_offset = &except_vec_vi_lui - vec_start;
1991 		const int ori_offset = &except_vec_vi_ori - vec_start;
1992 #endif
1993 		const int handler_len = &except_vec_vi_end - vec_start;
1994 
1995 		if (handler_len > VECTORSPACING) {
1996 			/*
1997 			 * Sigh... panicing won't help as the console
1998 			 * is probably not configured :(
1999 			 */
2000 			panic("VECTORSPACING too small");
2001 		}
2002 
2003 		set_handler(((unsigned long)b - ebase), vec_start,
2004 #ifdef CONFIG_CPU_MICROMIPS
2005 				(handler_len - 1));
2006 #else
2007 				handler_len);
2008 #endif
2009 		h = (u16 *)(b + lui_offset);
2010 		*h = (handler >> 16) & 0xffff;
2011 		h = (u16 *)(b + ori_offset);
2012 		*h = (handler & 0xffff);
2013 		local_flush_icache_range((unsigned long)b,
2014 					 (unsigned long)(b+handler_len));
2015 	}
2016 	else {
2017 		/*
2018 		 * In other cases jump directly to the interrupt handler. It
2019 		 * is the handler's responsibility to save registers if required
2020 		 * (eg hi/lo) and return from the exception using "eret".
2021 		 */
2022 		u32 insn;
2023 
2024 		h = (u16 *)b;
2025 		/* j handler */
2026 #ifdef CONFIG_CPU_MICROMIPS
2027 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2028 #else
2029 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2030 #endif
2031 		h[0] = (insn >> 16) & 0xffff;
2032 		h[1] = insn & 0xffff;
2033 		h[2] = 0;
2034 		h[3] = 0;
2035 		local_flush_icache_range((unsigned long)b,
2036 					 (unsigned long)(b+8));
2037 	}
2038 
2039 	return (void *)old_handler;
2040 }
2041 
set_vi_handler(int n,vi_handler_t addr)2042 void *set_vi_handler(int n, vi_handler_t addr)
2043 {
2044 	return set_vi_srs_handler(n, addr, 0);
2045 }
2046 
2047 extern void tlb_init(void);
2048 
2049 /*
2050  * Timer interrupt
2051  */
2052 int cp0_compare_irq;
2053 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2054 int cp0_compare_irq_shift;
2055 
2056 /*
2057  * Performance counter IRQ or -1 if shared with timer
2058  */
2059 int cp0_perfcount_irq;
2060 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2061 
2062 /*
2063  * Fast debug channel IRQ or -1 if not present
2064  */
2065 int cp0_fdc_irq;
2066 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2067 
2068 static int noulri;
2069 
ulri_disable(char * s)2070 static int __init ulri_disable(char *s)
2071 {
2072 	pr_info("Disabling ulri\n");
2073 	noulri = 1;
2074 
2075 	return 1;
2076 }
2077 __setup("noulri", ulri_disable);
2078 
2079 /* configure STATUS register */
configure_status(void)2080 static void configure_status(void)
2081 {
2082 	/*
2083 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2084 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2085 	 * flag that some firmware may have left set and the TS bit (for
2086 	 * IP27).  Set XX for ISA IV code to work.
2087 	 */
2088 	unsigned int status_set = ST0_CU0;
2089 #ifdef CONFIG_64BIT
2090 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2091 #endif
2092 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2093 		status_set |= ST0_XX;
2094 	if (cpu_has_dsp)
2095 		status_set |= ST0_MX;
2096 
2097 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2098 			 status_set);
2099 }
2100 
2101 unsigned int hwrena;
2102 EXPORT_SYMBOL_GPL(hwrena);
2103 
2104 /* configure HWRENA register */
configure_hwrena(void)2105 static void configure_hwrena(void)
2106 {
2107 	hwrena = cpu_hwrena_impl_bits;
2108 
2109 	if (cpu_has_mips_r2_r6)
2110 		hwrena |= MIPS_HWRENA_CPUNUM |
2111 			  MIPS_HWRENA_SYNCISTEP |
2112 			  MIPS_HWRENA_CC |
2113 			  MIPS_HWRENA_CCRES;
2114 
2115 	if (!noulri && cpu_has_userlocal)
2116 		hwrena |= MIPS_HWRENA_ULR;
2117 
2118 	if (hwrena)
2119 		write_c0_hwrena(hwrena);
2120 }
2121 
configure_exception_vector(void)2122 static void configure_exception_vector(void)
2123 {
2124 	if (cpu_has_veic || cpu_has_vint) {
2125 		unsigned long sr = set_c0_status(ST0_BEV);
2126 		/* If available, use WG to set top bits of EBASE */
2127 		if (cpu_has_ebase_wg) {
2128 #ifdef CONFIG_64BIT
2129 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2130 #else
2131 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2132 #endif
2133 		}
2134 		write_c0_ebase(ebase);
2135 		write_c0_status(sr);
2136 		/* Setting vector spacing enables EI/VI mode  */
2137 		change_c0_intctl(0x3e0, VECTORSPACING);
2138 	}
2139 	if (cpu_has_divec) {
2140 		if (cpu_has_mipsmt) {
2141 			unsigned int vpflags = dvpe();
2142 			set_c0_cause(CAUSEF_IV);
2143 			evpe(vpflags);
2144 		} else
2145 			set_c0_cause(CAUSEF_IV);
2146 	}
2147 }
2148 
per_cpu_trap_init(bool is_boot_cpu)2149 void per_cpu_trap_init(bool is_boot_cpu)
2150 {
2151 	unsigned int cpu = smp_processor_id();
2152 
2153 	configure_status();
2154 	configure_hwrena();
2155 
2156 	configure_exception_vector();
2157 
2158 	/*
2159 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2160 	 *
2161 	 *  o read IntCtl.IPTI to determine the timer interrupt
2162 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2163 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2164 	 */
2165 	if (cpu_has_mips_r2_r6) {
2166 		/*
2167 		 * We shouldn't trust a secondary core has a sane EBASE register
2168 		 * so use the one calculated by the boot CPU.
2169 		 */
2170 		if (!is_boot_cpu) {
2171 			/* If available, use WG to set top bits of EBASE */
2172 			if (cpu_has_ebase_wg) {
2173 #ifdef CONFIG_64BIT
2174 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2175 #else
2176 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2177 #endif
2178 			}
2179 			write_c0_ebase(ebase);
2180 		}
2181 
2182 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2183 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2184 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2185 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2186 		if (!cp0_fdc_irq)
2187 			cp0_fdc_irq = -1;
2188 
2189 	} else {
2190 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2191 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2192 		cp0_perfcount_irq = -1;
2193 		cp0_fdc_irq = -1;
2194 	}
2195 
2196 	if (!cpu_data[cpu].asid_cache)
2197 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2198 
2199 	mmgrab(&init_mm);
2200 	current->active_mm = &init_mm;
2201 	BUG_ON(current->mm);
2202 	enter_lazy_tlb(&init_mm, current);
2203 
2204 	/* Boot CPU's cache setup in setup_arch(). */
2205 	if (!is_boot_cpu)
2206 		cpu_cache_init();
2207 	tlb_init();
2208 	TLBMISS_HANDLER_SETUP();
2209 }
2210 
2211 /* Install CPU exception handler */
set_handler(unsigned long offset,void * addr,unsigned long size)2212 void set_handler(unsigned long offset, void *addr, unsigned long size)
2213 {
2214 #ifdef CONFIG_CPU_MICROMIPS
2215 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2216 #else
2217 	memcpy((void *)(ebase + offset), addr, size);
2218 #endif
2219 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2220 }
2221 
2222 static const char panic_null_cerr[] =
2223 	"Trying to set NULL cache error exception handler\n";
2224 
2225 /*
2226  * Install uncached CPU exception handler.
2227  * This is suitable only for the cache error exception which is the only
2228  * exception handler that is being run uncached.
2229  */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2230 void set_uncached_handler(unsigned long offset, void *addr,
2231 	unsigned long size)
2232 {
2233 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2234 
2235 	if (!addr)
2236 		panic(panic_null_cerr);
2237 
2238 	memcpy((void *)(uncached_ebase + offset), addr, size);
2239 }
2240 
2241 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2242 static int __init set_rdhwr_noopt(char *str)
2243 {
2244 	rdhwr_noopt = 1;
2245 	return 1;
2246 }
2247 
2248 __setup("rdhwr_noopt", set_rdhwr_noopt);
2249 
trap_init(void)2250 void __init trap_init(void)
2251 {
2252 	extern char except_vec3_generic;
2253 	extern char except_vec4;
2254 	extern char except_vec3_r4000;
2255 	unsigned long i;
2256 
2257 	check_wait();
2258 
2259 	if (cpu_has_veic || cpu_has_vint) {
2260 		unsigned long size = 0x200 + VECTORSPACING*64;
2261 		phys_addr_t ebase_pa;
2262 
2263 		ebase = (unsigned long)
2264 			__alloc_bootmem(size, 1 << fls(size), 0);
2265 
2266 		/*
2267 		 * Try to ensure ebase resides in KSeg0 if possible.
2268 		 *
2269 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2270 		 * hitting a poorly defined exception base for Cache Errors.
2271 		 * The allocation is likely to be in the low 512MB of physical,
2272 		 * in which case we should be able to convert to KSeg0.
2273 		 *
2274 		 * EVA is special though as it allows segments to be rearranged
2275 		 * and to become uncached during cache error handling.
2276 		 */
2277 		ebase_pa = __pa(ebase);
2278 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2279 			ebase = CKSEG0ADDR(ebase_pa);
2280 	} else {
2281 		ebase = CAC_BASE;
2282 
2283 		if (cpu_has_mips_r2_r6) {
2284 			if (cpu_has_ebase_wg) {
2285 #ifdef CONFIG_64BIT
2286 				ebase = (read_c0_ebase_64() & ~0xfff);
2287 #else
2288 				ebase = (read_c0_ebase() & ~0xfff);
2289 #endif
2290 			} else {
2291 				ebase += (read_c0_ebase() & 0x3ffff000);
2292 			}
2293 		}
2294 	}
2295 
2296 	if (cpu_has_mmips) {
2297 		unsigned int config3 = read_c0_config3();
2298 
2299 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2300 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2301 		else
2302 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2303 	}
2304 
2305 	if (board_ebase_setup)
2306 		board_ebase_setup();
2307 	per_cpu_trap_init(true);
2308 
2309 	/*
2310 	 * Copy the generic exception handlers to their final destination.
2311 	 * This will be overridden later as suitable for a particular
2312 	 * configuration.
2313 	 */
2314 	set_handler(0x180, &except_vec3_generic, 0x80);
2315 
2316 	/*
2317 	 * Setup default vectors
2318 	 */
2319 	for (i = 0; i <= 31; i++)
2320 		set_except_vector(i, handle_reserved);
2321 
2322 	/*
2323 	 * Copy the EJTAG debug exception vector handler code to it's final
2324 	 * destination.
2325 	 */
2326 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2327 		board_ejtag_handler_setup();
2328 
2329 	/*
2330 	 * Only some CPUs have the watch exceptions.
2331 	 */
2332 	if (cpu_has_watch)
2333 		set_except_vector(EXCCODE_WATCH, handle_watch);
2334 
2335 	/*
2336 	 * Initialise interrupt handlers
2337 	 */
2338 	if (cpu_has_veic || cpu_has_vint) {
2339 		int nvec = cpu_has_veic ? 64 : 8;
2340 		for (i = 0; i < nvec; i++)
2341 			set_vi_handler(i, NULL);
2342 	}
2343 	else if (cpu_has_divec)
2344 		set_handler(0x200, &except_vec4, 0x8);
2345 
2346 	/*
2347 	 * Some CPUs can enable/disable for cache parity detection, but does
2348 	 * it different ways.
2349 	 */
2350 	parity_protection_init();
2351 
2352 	/*
2353 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2354 	 * by external hardware.  Therefore these two exceptions
2355 	 * may have board specific handlers.
2356 	 */
2357 	if (board_be_init)
2358 		board_be_init();
2359 
2360 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2361 					rollback_handle_int : handle_int);
2362 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2363 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2364 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2365 
2366 	set_except_vector(EXCCODE_ADEL, handle_adel);
2367 	set_except_vector(EXCCODE_ADES, handle_ades);
2368 
2369 	set_except_vector(EXCCODE_IBE, handle_ibe);
2370 	set_except_vector(EXCCODE_DBE, handle_dbe);
2371 
2372 	set_except_vector(EXCCODE_SYS, handle_sys);
2373 	set_except_vector(EXCCODE_BP, handle_bp);
2374 
2375 	if (rdhwr_noopt)
2376 		set_except_vector(EXCCODE_RI, handle_ri);
2377 	else {
2378 		if (cpu_has_vtag_icache)
2379 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2380 		else if (current_cpu_type() == CPU_LOONGSON3)
2381 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2382 		else
2383 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2384 	}
2385 
2386 	set_except_vector(EXCCODE_CPU, handle_cpu);
2387 	set_except_vector(EXCCODE_OV, handle_ov);
2388 	set_except_vector(EXCCODE_TR, handle_tr);
2389 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2390 
2391 	if (board_nmi_handler_setup)
2392 		board_nmi_handler_setup();
2393 
2394 	if (cpu_has_fpu && !cpu_has_nofpuex)
2395 		set_except_vector(EXCCODE_FPE, handle_fpe);
2396 
2397 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2398 
2399 	if (cpu_has_rixiex) {
2400 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2401 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2402 	}
2403 
2404 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2405 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2406 
2407 	if (cpu_has_mcheck)
2408 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2409 
2410 	if (cpu_has_mipsmt)
2411 		set_except_vector(EXCCODE_THREAD, handle_mt);
2412 
2413 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2414 
2415 	if (board_cache_error_setup)
2416 		board_cache_error_setup();
2417 
2418 	if (cpu_has_vce)
2419 		/* Special exception: R4[04]00 uses also the divec space. */
2420 		set_handler(0x180, &except_vec3_r4000, 0x100);
2421 	else if (cpu_has_4kex)
2422 		set_handler(0x180, &except_vec3_generic, 0x80);
2423 	else
2424 		set_handler(0x080, &except_vec3_generic, 0x80);
2425 
2426 	local_flush_icache_range(ebase, ebase + 0x400);
2427 
2428 	sort_extable(__start___dbe_table, __stop___dbe_table);
2429 
2430 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2431 }
2432 
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2433 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2434 			    void *v)
2435 {
2436 	switch (cmd) {
2437 	case CPU_PM_ENTER_FAILED:
2438 	case CPU_PM_EXIT:
2439 		configure_status();
2440 		configure_hwrena();
2441 		configure_exception_vector();
2442 
2443 		/* Restore register with CPU number for TLB handlers */
2444 		TLBMISS_HANDLER_RESTORE();
2445 
2446 		break;
2447 	}
2448 
2449 	return NOTIFY_OK;
2450 }
2451 
2452 static struct notifier_block trap_pm_notifier_block = {
2453 	.notifier_call = trap_pm_notifier,
2454 };
2455 
trap_pm_init(void)2456 static int __init trap_pm_init(void)
2457 {
2458 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2459 }
2460 arch_initcall(trap_pm_init);
2461