1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31
32 static const struct ttm_place vram_placement_flags = {
33 .fpfn = 0,
34 .lpfn = 0,
35 .mem_type = TTM_PL_VRAM,
36 .flags = 0
37 };
38
39 static const struct ttm_place sys_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .mem_type = TTM_PL_SYSTEM,
43 .flags = 0
44 };
45
46 static const struct ttm_place gmr_placement_flags = {
47 .fpfn = 0,
48 .lpfn = 0,
49 .mem_type = VMW_PL_GMR,
50 .flags = 0
51 };
52
53 static const struct ttm_place mob_placement_flags = {
54 .fpfn = 0,
55 .lpfn = 0,
56 .mem_type = VMW_PL_MOB,
57 .flags = 0
58 };
59
60 struct ttm_placement vmw_vram_placement = {
61 .num_placement = 1,
62 .placement = &vram_placement_flags,
63 .num_busy_placement = 1,
64 .busy_placement = &vram_placement_flags
65 };
66
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 {
69 .fpfn = 0,
70 .lpfn = 0,
71 .mem_type = TTM_PL_VRAM,
72 .flags = 0
73 }, {
74 .fpfn = 0,
75 .lpfn = 0,
76 .mem_type = VMW_PL_GMR,
77 .flags = 0
78 }
79 };
80
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 {
83 .fpfn = 0,
84 .lpfn = 0,
85 .mem_type = VMW_PL_GMR,
86 .flags = 0
87 }, {
88 .fpfn = 0,
89 .lpfn = 0,
90 .mem_type = TTM_PL_VRAM,
91 .flags = 0
92 }
93 };
94
95 struct ttm_placement vmw_vram_gmr_placement = {
96 .num_placement = 2,
97 .placement = vram_gmr_placement_flags,
98 .num_busy_placement = 1,
99 .busy_placement = &gmr_placement_flags
100 };
101
102 struct ttm_placement vmw_vram_sys_placement = {
103 .num_placement = 1,
104 .placement = &vram_placement_flags,
105 .num_busy_placement = 1,
106 .busy_placement = &sys_placement_flags
107 };
108
109 struct ttm_placement vmw_sys_placement = {
110 .num_placement = 1,
111 .placement = &sys_placement_flags,
112 .num_busy_placement = 1,
113 .busy_placement = &sys_placement_flags
114 };
115
116 static const struct ttm_place evictable_placement_flags[] = {
117 {
118 .fpfn = 0,
119 .lpfn = 0,
120 .mem_type = TTM_PL_SYSTEM,
121 .flags = 0
122 }, {
123 .fpfn = 0,
124 .lpfn = 0,
125 .mem_type = TTM_PL_VRAM,
126 .flags = 0
127 }, {
128 .fpfn = 0,
129 .lpfn = 0,
130 .mem_type = VMW_PL_GMR,
131 .flags = 0
132 }, {
133 .fpfn = 0,
134 .lpfn = 0,
135 .mem_type = VMW_PL_MOB,
136 .flags = 0
137 }
138 };
139
140 static const struct ttm_place nonfixed_placement_flags[] = {
141 {
142 .fpfn = 0,
143 .lpfn = 0,
144 .mem_type = TTM_PL_SYSTEM,
145 .flags = 0
146 }, {
147 .fpfn = 0,
148 .lpfn = 0,
149 .mem_type = VMW_PL_GMR,
150 .flags = 0
151 }, {
152 .fpfn = 0,
153 .lpfn = 0,
154 .mem_type = VMW_PL_MOB,
155 .flags = 0
156 }
157 };
158
159 struct ttm_placement vmw_evictable_placement = {
160 .num_placement = 4,
161 .placement = evictable_placement_flags,
162 .num_busy_placement = 1,
163 .busy_placement = &sys_placement_flags
164 };
165
166 struct ttm_placement vmw_srf_placement = {
167 .num_placement = 1,
168 .num_busy_placement = 2,
169 .placement = &gmr_placement_flags,
170 .busy_placement = gmr_vram_placement_flags
171 };
172
173 struct ttm_placement vmw_mob_placement = {
174 .num_placement = 1,
175 .num_busy_placement = 1,
176 .placement = &mob_placement_flags,
177 .busy_placement = &mob_placement_flags
178 };
179
180 struct ttm_placement vmw_nonfixed_placement = {
181 .num_placement = 3,
182 .placement = nonfixed_placement_flags,
183 .num_busy_placement = 1,
184 .busy_placement = &sys_placement_flags
185 };
186
187 struct vmw_ttm_tt {
188 struct ttm_tt dma_ttm;
189 struct vmw_private *dev_priv;
190 int gmr_id;
191 struct vmw_mob *mob;
192 int mem_type;
193 struct sg_table sgt;
194 struct vmw_sg_table vsgt;
195 uint64_t sg_alloc_size;
196 bool mapped;
197 bool bound;
198 };
199
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201
202 /**
203 * __vmw_piter_non_sg_next: Helper functions to advance
204 * a struct vmw_piter iterator.
205 *
206 * @viter: Pointer to the iterator.
207 *
208 * These functions return false if past the end of the list,
209 * true otherwise. Functions are selected depending on the current
210 * DMA mapping mode.
211 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 {
214 return ++(viter->i) < viter->num_pages;
215 }
216
__vmw_piter_sg_next(struct vmw_piter * viter)217 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 {
219 bool ret = __vmw_piter_non_sg_next(viter);
220
221 return __sg_page_iter_dma_next(&viter->iter) && ret;
222 }
223
224
__vmw_piter_dma_addr(struct vmw_piter * viter)225 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
226 {
227 return viter->addrs[viter->i];
228 }
229
__vmw_piter_sg_addr(struct vmw_piter * viter)230 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
231 {
232 return sg_page_iter_dma_address(&viter->iter);
233 }
234
235
236 /**
237 * vmw_piter_start - Initialize a struct vmw_piter.
238 *
239 * @viter: Pointer to the iterator to initialize
240 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
241 * @p_offset: Pointer offset used to update current array position
242 *
243 * Note that we're following the convention of __sg_page_iter_start, so that
244 * the iterator doesn't point to a valid page after initialization; it has
245 * to be advanced one step first.
246 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)247 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
248 unsigned long p_offset)
249 {
250 viter->i = p_offset - 1;
251 viter->num_pages = vsgt->num_pages;
252 viter->pages = vsgt->pages;
253 switch (vsgt->mode) {
254 case vmw_dma_alloc_coherent:
255 viter->next = &__vmw_piter_non_sg_next;
256 viter->dma_address = &__vmw_piter_dma_addr;
257 viter->addrs = vsgt->addrs;
258 break;
259 case vmw_dma_map_populate:
260 case vmw_dma_map_bind:
261 viter->next = &__vmw_piter_sg_next;
262 viter->dma_address = &__vmw_piter_sg_addr;
263 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
264 vsgt->sgt->orig_nents, p_offset);
265 break;
266 default:
267 BUG();
268 }
269 }
270
271 /**
272 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
273 * TTM pages
274 *
275 * @vmw_tt: Pointer to a struct vmw_ttm_backend
276 *
277 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
278 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)279 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
280 {
281 struct device *dev = vmw_tt->dev_priv->drm.dev;
282
283 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
284 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
285 }
286
287 /**
288 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
289 *
290 * @vmw_tt: Pointer to a struct vmw_ttm_backend
291 *
292 * This function is used to get device addresses from the kernel DMA layer.
293 * However, it's violating the DMA API in that when this operation has been
294 * performed, it's illegal for the CPU to write to the pages without first
295 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
296 * therefore only legal to call this function if we know that the function
297 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
298 * a CPU write buffer flush.
299 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)300 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
301 {
302 struct device *dev = vmw_tt->dev_priv->drm.dev;
303
304 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
305 }
306
307 /**
308 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
309 *
310 * @vmw_tt: Pointer to a struct vmw_ttm_tt
311 *
312 * Select the correct function for and make sure the TTM pages are
313 * visible to the device. Allocate storage for the device mappings.
314 * If a mapping has already been performed, indicated by the storage
315 * pointer being non NULL, the function returns success.
316 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)317 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
318 {
319 struct vmw_private *dev_priv = vmw_tt->dev_priv;
320 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
321 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
322 struct ttm_operation_ctx ctx = {
323 .interruptible = true,
324 .no_wait_gpu = false
325 };
326 struct vmw_piter iter;
327 dma_addr_t old;
328 int ret = 0;
329 static size_t sgl_size;
330 static size_t sgt_size;
331
332 if (vmw_tt->mapped)
333 return 0;
334
335 vsgt->mode = dev_priv->map_mode;
336 vsgt->pages = vmw_tt->dma_ttm.pages;
337 vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
338 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
339 vsgt->sgt = &vmw_tt->sgt;
340
341 switch (dev_priv->map_mode) {
342 case vmw_dma_map_bind:
343 case vmw_dma_map_populate:
344 if (unlikely(!sgl_size)) {
345 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
346 sgt_size = ttm_round_pot(sizeof(struct sg_table));
347 }
348 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
349 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
350 if (unlikely(ret != 0))
351 return ret;
352
353 ret = sg_alloc_table_from_pages_segment(
354 &vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
355 (unsigned long)vsgt->num_pages << PAGE_SHIFT,
356 dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
357 if (ret)
358 goto out_sg_alloc_fail;
359
360 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
361 uint64_t over_alloc =
362 sgl_size * (vsgt->num_pages -
363 vmw_tt->sgt.orig_nents);
364
365 ttm_mem_global_free(glob, over_alloc);
366 vmw_tt->sg_alloc_size -= over_alloc;
367 }
368
369 ret = vmw_ttm_map_for_dma(vmw_tt);
370 if (unlikely(ret != 0))
371 goto out_map_fail;
372
373 break;
374 default:
375 break;
376 }
377
378 old = ~((dma_addr_t) 0);
379 vmw_tt->vsgt.num_regions = 0;
380 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
381 dma_addr_t cur = vmw_piter_dma_addr(&iter);
382
383 if (cur != old + PAGE_SIZE)
384 vmw_tt->vsgt.num_regions++;
385 old = cur;
386 }
387
388 vmw_tt->mapped = true;
389 return 0;
390
391 out_map_fail:
392 sg_free_table(vmw_tt->vsgt.sgt);
393 vmw_tt->vsgt.sgt = NULL;
394 out_sg_alloc_fail:
395 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
396 return ret;
397 }
398
399 /**
400 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
401 *
402 * @vmw_tt: Pointer to a struct vmw_ttm_tt
403 *
404 * Tear down any previously set up device DMA mappings and free
405 * any storage space allocated for them. If there are no mappings set up,
406 * this function is a NOP.
407 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)408 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
409 {
410 struct vmw_private *dev_priv = vmw_tt->dev_priv;
411
412 if (!vmw_tt->vsgt.sgt)
413 return;
414
415 switch (dev_priv->map_mode) {
416 case vmw_dma_map_bind:
417 case vmw_dma_map_populate:
418 vmw_ttm_unmap_from_dma(vmw_tt);
419 sg_free_table(vmw_tt->vsgt.sgt);
420 vmw_tt->vsgt.sgt = NULL;
421 ttm_mem_global_free(vmw_mem_glob(dev_priv),
422 vmw_tt->sg_alloc_size);
423 break;
424 default:
425 break;
426 }
427 vmw_tt->mapped = false;
428 }
429
430 /**
431 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
432 * TTM buffer object
433 *
434 * @bo: Pointer to a struct ttm_buffer_object
435 *
436 * Returns a pointer to a struct vmw_sg_table object. The object should
437 * not be freed after use.
438 * Note that for the device addresses to be valid, the buffer object must
439 * either be reserved or pinned.
440 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)441 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
442 {
443 struct vmw_ttm_tt *vmw_tt =
444 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
445
446 return &vmw_tt->vsgt;
447 }
448
449
vmw_ttm_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)450 static int vmw_ttm_bind(struct ttm_device *bdev,
451 struct ttm_tt *ttm, struct ttm_resource *bo_mem)
452 {
453 struct vmw_ttm_tt *vmw_be =
454 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
455 int ret = 0;
456
457 if (!bo_mem)
458 return -EINVAL;
459
460 if (vmw_be->bound)
461 return 0;
462
463 ret = vmw_ttm_map_dma(vmw_be);
464 if (unlikely(ret != 0))
465 return ret;
466
467 vmw_be->gmr_id = bo_mem->start;
468 vmw_be->mem_type = bo_mem->mem_type;
469
470 switch (bo_mem->mem_type) {
471 case VMW_PL_GMR:
472 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
473 ttm->num_pages, vmw_be->gmr_id);
474 break;
475 case VMW_PL_MOB:
476 if (unlikely(vmw_be->mob == NULL)) {
477 vmw_be->mob =
478 vmw_mob_create(ttm->num_pages);
479 if (unlikely(vmw_be->mob == NULL))
480 return -ENOMEM;
481 }
482
483 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
484 &vmw_be->vsgt, ttm->num_pages,
485 vmw_be->gmr_id);
486 break;
487 default:
488 BUG();
489 }
490 vmw_be->bound = true;
491 return ret;
492 }
493
vmw_ttm_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)494 static void vmw_ttm_unbind(struct ttm_device *bdev,
495 struct ttm_tt *ttm)
496 {
497 struct vmw_ttm_tt *vmw_be =
498 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
499
500 if (!vmw_be->bound)
501 return;
502
503 switch (vmw_be->mem_type) {
504 case VMW_PL_GMR:
505 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
506 break;
507 case VMW_PL_MOB:
508 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
509 break;
510 default:
511 BUG();
512 }
513
514 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
515 vmw_ttm_unmap_dma(vmw_be);
516 vmw_be->bound = false;
517 }
518
519
vmw_ttm_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)520 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
521 {
522 struct vmw_ttm_tt *vmw_be =
523 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
524
525 vmw_ttm_unbind(bdev, ttm);
526 ttm_tt_destroy_common(bdev, ttm);
527 vmw_ttm_unmap_dma(vmw_be);
528 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
529 ttm_tt_fini(&vmw_be->dma_ttm);
530 else
531 ttm_tt_fini(ttm);
532
533 if (vmw_be->mob)
534 vmw_mob_destroy(vmw_be->mob);
535
536 kfree(vmw_be);
537 }
538
539
vmw_ttm_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)540 static int vmw_ttm_populate(struct ttm_device *bdev,
541 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
542 {
543 unsigned int i;
544 int ret;
545
546 /* TODO: maybe completely drop this ? */
547 if (ttm_tt_is_populated(ttm))
548 return 0;
549
550 ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
551 if (ret)
552 return ret;
553
554 for (i = 0; i < ttm->num_pages; ++i) {
555 ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
556 PAGE_SIZE, ctx);
557 if (ret)
558 goto error;
559 }
560 return 0;
561
562 error:
563 while (i--)
564 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
565 PAGE_SIZE);
566 ttm_pool_free(&bdev->pool, ttm);
567 return ret;
568 }
569
vmw_ttm_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)570 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
571 struct ttm_tt *ttm)
572 {
573 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
574 dma_ttm);
575 unsigned int i;
576
577 if (vmw_tt->mob) {
578 vmw_mob_destroy(vmw_tt->mob);
579 vmw_tt->mob = NULL;
580 }
581
582 vmw_ttm_unmap_dma(vmw_tt);
583
584 for (i = 0; i < ttm->num_pages; ++i)
585 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
586 PAGE_SIZE);
587
588 ttm_pool_free(&bdev->pool, ttm);
589 }
590
vmw_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)591 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
592 uint32_t page_flags)
593 {
594 struct vmw_ttm_tt *vmw_be;
595 int ret;
596
597 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
598 if (!vmw_be)
599 return NULL;
600
601 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
602 vmw_be->mob = NULL;
603
604 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
605 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
606 ttm_cached);
607 else
608 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
609 ttm_cached);
610 if (unlikely(ret != 0))
611 goto out_no_init;
612
613 return &vmw_be->dma_ttm;
614 out_no_init:
615 kfree(vmw_be);
616 return NULL;
617 }
618
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)619 static void vmw_evict_flags(struct ttm_buffer_object *bo,
620 struct ttm_placement *placement)
621 {
622 *placement = vmw_sys_placement;
623 }
624
vmw_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)625 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
626 {
627 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
628
629 switch (mem->mem_type) {
630 case TTM_PL_SYSTEM:
631 case VMW_PL_GMR:
632 case VMW_PL_MOB:
633 return 0;
634 case TTM_PL_VRAM:
635 mem->bus.offset = (mem->start << PAGE_SHIFT) +
636 dev_priv->vram_start;
637 mem->bus.is_iomem = true;
638 mem->bus.caching = ttm_cached;
639 break;
640 default:
641 return -EINVAL;
642 }
643 return 0;
644 }
645
646 /**
647 * vmw_move_notify - TTM move_notify_callback
648 *
649 * @bo: The TTM buffer object about to move.
650 * @old_mem: The old memory where we move from
651 * @new_mem: The struct ttm_resource indicating to what memory
652 * region the move is taking place.
653 *
654 * Calls move_notify for all subsystems needing it.
655 * (currently only resources).
656 */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_resource * old_mem,struct ttm_resource * new_mem)657 static void vmw_move_notify(struct ttm_buffer_object *bo,
658 struct ttm_resource *old_mem,
659 struct ttm_resource *new_mem)
660 {
661 vmw_bo_move_notify(bo, new_mem);
662 vmw_query_move_notify(bo, old_mem, new_mem);
663 }
664
665
666 /**
667 * vmw_swap_notify - TTM move_notify_callback
668 *
669 * @bo: The TTM buffer object about to be swapped out.
670 */
vmw_swap_notify(struct ttm_buffer_object * bo)671 static void vmw_swap_notify(struct ttm_buffer_object *bo)
672 {
673 vmw_bo_swap_notify(bo);
674 (void) ttm_bo_wait(bo, false, false);
675 }
676
vmw_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)677 static int vmw_move(struct ttm_buffer_object *bo,
678 bool evict,
679 struct ttm_operation_ctx *ctx,
680 struct ttm_resource *new_mem,
681 struct ttm_place *hop)
682 {
683 struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
684 struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
685 int ret;
686
687 if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
688 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
689 if (ret)
690 return ret;
691 }
692
693 vmw_move_notify(bo, bo->resource, new_mem);
694
695 if (old_man->use_tt && new_man->use_tt) {
696 if (bo->resource->mem_type == TTM_PL_SYSTEM) {
697 ttm_bo_move_null(bo, new_mem);
698 return 0;
699 }
700 ret = ttm_bo_wait_ctx(bo, ctx);
701 if (ret)
702 goto fail;
703
704 vmw_ttm_unbind(bo->bdev, bo->ttm);
705 ttm_resource_free(bo, &bo->resource);
706 ttm_bo_assign_mem(bo, new_mem);
707 return 0;
708 } else {
709 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
710 if (ret)
711 goto fail;
712 }
713 return 0;
714 fail:
715 vmw_move_notify(bo, new_mem, bo->resource);
716 return ret;
717 }
718
719 struct ttm_device_funcs vmw_bo_driver = {
720 .ttm_tt_create = &vmw_ttm_tt_create,
721 .ttm_tt_populate = &vmw_ttm_populate,
722 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
723 .ttm_tt_destroy = &vmw_ttm_destroy,
724 .eviction_valuable = ttm_bo_eviction_valuable,
725 .evict_flags = vmw_evict_flags,
726 .move = vmw_move,
727 .swap_notify = vmw_swap_notify,
728 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
729 };
730
vmw_bo_create_and_populate(struct vmw_private * dev_priv,unsigned long bo_size,struct ttm_buffer_object ** bo_p)731 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
732 unsigned long bo_size,
733 struct ttm_buffer_object **bo_p)
734 {
735 struct ttm_operation_ctx ctx = {
736 .interruptible = false,
737 .no_wait_gpu = false
738 };
739 struct ttm_buffer_object *bo;
740 int ret;
741
742 ret = vmw_bo_create_kernel(dev_priv, bo_size,
743 &vmw_sys_placement,
744 &bo);
745 if (unlikely(ret != 0))
746 return ret;
747
748 ret = ttm_bo_reserve(bo, false, true, NULL);
749 BUG_ON(ret != 0);
750 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
751 if (likely(ret == 0)) {
752 struct vmw_ttm_tt *vmw_tt =
753 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
754 ret = vmw_ttm_map_dma(vmw_tt);
755 }
756
757 ttm_bo_unreserve(bo);
758
759 if (likely(ret == 0))
760 *bo_p = bo;
761 return ret;
762 }
763