1 /* bnx2x_sriov.c: QLogic Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
20 *
21 */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 struct bnx2x_virtf **vf,
31 struct pf_vf_bulletin_content **bulletin,
32 bool test_queue);
33
34 /* General service functions */
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 u16 pf_id)
37 {
38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 pf_id);
40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 pf_id);
42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 pf_id);
44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 pf_id);
46 }
47
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 u8 enable)
50 {
51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 enable);
53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 enable);
55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 enable);
57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 enable);
59 }
60
bnx2x_vf_idx_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 int idx;
64
65 for_each_vf(bp, idx)
66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 break;
68 return idx;
69 }
70
71 static
bnx2x_vf_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77
bnx2x_vf_igu_ack_sb(struct bnx2x * bp,struct bnx2x_virtf * vf,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 u8 update)
81 {
82 /* acking a VF sb through the PF - use the GRC */
83 u32 ctl;
84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 u32 func_encode = vf->abs_vfid;
87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 struct igu_regular cmd_data = {0};
89
90 cmd_data.sb_id_and_flags =
91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95
96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
97 func_encode << IGU_CTRL_REG_FID_SHIFT |
98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99
100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data.sb_id_and_flags, igu_addr_data);
102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 barrier();
104
105 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 ctl, igu_addr_ctl);
107 REG_WR(bp, igu_addr_ctl, ctl);
108 barrier();
109 }
110
bnx2x_validate_vf_sp_objs(struct bnx2x * bp,struct bnx2x_virtf * vf,bool print_err)111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 struct bnx2x_virtf *vf,
113 bool print_err)
114 {
115 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 if (print_err)
117 BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 else
119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 return false;
121 }
122 return true;
123 }
124
125 /* VFOP operations states */
bnx2x_vfop_qctor_dump_tx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 struct bnx2x_queue_init_params *init_params,
128 struct bnx2x_queue_setup_params *setup_params,
129 u16 q_idx, u16 sb_idx)
130 {
131 DP(BNX2X_MSG_IOV,
132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 vf->abs_vfid,
134 q_idx,
135 sb_idx,
136 init_params->tx.sb_cq_index,
137 init_params->tx.hc_rate,
138 setup_params->flags,
139 setup_params->txq_params.traffic_type);
140 }
141
bnx2x_vfop_qctor_dump_rx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 struct bnx2x_queue_init_params *init_params,
144 struct bnx2x_queue_setup_params *setup_params,
145 u16 q_idx, u16 sb_idx)
146 {
147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148
149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 vf->abs_vfid,
152 q_idx,
153 sb_idx,
154 init_params->rx.sb_cq_index,
155 init_params->rx.hc_rate,
156 setup_params->gen_params.mtu,
157 rxq_params->buf_sz,
158 rxq_params->sge_buf_sz,
159 rxq_params->max_sges_pkt,
160 rxq_params->tpa_agg_sz,
161 setup_params->flags,
162 rxq_params->drop_flags,
163 rxq_params->cache_line_log);
164 }
165
bnx2x_vfop_qctor_prep(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q,struct bnx2x_vf_queue_construct_params * p,unsigned long q_type)166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 struct bnx2x_virtf *vf,
168 struct bnx2x_vf_queue *q,
169 struct bnx2x_vf_queue_construct_params *p,
170 unsigned long q_type)
171 {
172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174
175 /* INIT */
176
177 /* Enable host coalescing in the transition to INIT state */
178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180
181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183
184 /* FW SB ID */
185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187
188 /* context */
189 init_p->cxts[0] = q->cxt;
190
191 /* SETUP */
192
193 /* Setup-op general parameters */
194 setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 setup_p->gen_params.fp_hsi = vf->fp_hsi;
197
198 /* Setup-op flags:
199 * collect statistics, zero statistics, local-switching, security,
200 * OV for Flex10, RSS and MCAST for leading
201 */
202 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204
205 /* for VFs, enable tx switching, bd coherency, and mac address
206 * anti-spoofing
207 */
208 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 if (vf->spoofchk)
211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 else
213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214
215 /* Setup-op rx parameters */
216 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218
219 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222
223 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 }
226
227 /* Setup-op tx parameters */
228 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 }
232 }
233
bnx2x_vf_queue_create(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 struct bnx2x_virtf *vf, int qid,
236 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 struct bnx2x_queue_state_params *q_params;
239 int rc = 0;
240
241 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242
243 /* Prepare ramrod information */
244 q_params = &qctor->qstate;
245 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247
248 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 goto out;
252 }
253
254 /* Run Queue 'construction' ramrods */
255 q_params->cmd = BNX2X_Q_CMD_INIT;
256 rc = bnx2x_queue_state_change(bp, q_params);
257 if (rc)
258 goto out;
259
260 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 sizeof(struct bnx2x_queue_setup_params));
262 q_params->cmd = BNX2X_Q_CMD_SETUP;
263 rc = bnx2x_queue_state_change(bp, q_params);
264 if (rc)
265 goto out;
266
267 /* enable interrupts */
268 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 return rc;
272 }
273
bnx2x_vf_queue_destroy(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 int qid)
276 {
277 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 BNX2X_Q_CMD_TERMINATE,
279 BNX2X_Q_CMD_CFC_DEL};
280 struct bnx2x_queue_state_params q_params;
281 int rc, i;
282
283 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284
285 /* Prepare ramrod information */
286 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289
290 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 goto out;
294 }
295
296 /* Run Queue 'destruction' ramrods */
297 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 q_params.cmd = cmds[i];
299 rc = bnx2x_queue_state_change(bp, &q_params);
300 if (rc) {
301 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 return rc;
303 }
304 }
305 out:
306 /* Clean Context */
307 if (bnx2x_vfq(vf, qid, cxt)) {
308 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 }
311
312 return 0;
313 }
314
315 static void
bnx2x_vf_set_igu_info(struct bnx2x * bp,u8 igu_sb_id,u8 abs_vfid)316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 if (vf) {
320 /* the first igu entry belonging to VFs of this PF */
321 if (!BP_VFDB(bp)->first_vf_igu_entry)
322 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323
324 /* the first igu entry belonging to this VF */
325 if (!vf_sb_count(vf))
326 vf->igu_base_id = igu_sb_id;
327
328 ++vf_sb_count(vf);
329 ++vf->sb_count;
330 }
331 BP_VFDB(bp)->vf_sbs_pool++;
332 }
333
bnx2x_vf_vlan_credit(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * obj,atomic_t * counter)334 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
335 struct bnx2x_vlan_mac_obj *obj,
336 atomic_t *counter)
337 {
338 struct list_head *pos;
339 int read_lock;
340 int cnt = 0;
341
342 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
343 if (read_lock)
344 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
345
346 list_for_each(pos, &obj->head)
347 cnt++;
348
349 if (!read_lock)
350 bnx2x_vlan_mac_h_read_unlock(bp, obj);
351
352 atomic_set(counter, cnt);
353 }
354
bnx2x_vf_vlan_mac_clear(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,bool drv_only,int type)355 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
356 int qid, bool drv_only, int type)
357 {
358 struct bnx2x_vlan_mac_ramrod_params ramrod;
359 int rc;
360
361 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
362 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
363 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
364
365 /* Prepare ramrod params */
366 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
367 if (type == BNX2X_VF_FILTER_VLAN_MAC) {
368 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
369 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
370 } else if (type == BNX2X_VF_FILTER_MAC) {
371 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
372 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
373 } else {
374 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
375 }
376 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
377
378 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
379 if (drv_only)
380 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
381 else
382 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
383
384 /* Start deleting */
385 rc = ramrod.vlan_mac_obj->delete_all(bp,
386 ramrod.vlan_mac_obj,
387 &ramrod.user_req.vlan_mac_flags,
388 &ramrod.ramrod_flags);
389 if (rc) {
390 BNX2X_ERR("Failed to delete all %s\n",
391 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
392 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
393 return rc;
394 }
395
396 return 0;
397 }
398
bnx2x_vf_mac_vlan_config(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_mac_vlan_filter * filter,bool drv_only)399 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
400 struct bnx2x_virtf *vf, int qid,
401 struct bnx2x_vf_mac_vlan_filter *filter,
402 bool drv_only)
403 {
404 struct bnx2x_vlan_mac_ramrod_params ramrod;
405 int rc;
406
407 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
408 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
409 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
410 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
411
412 /* Prepare ramrod params */
413 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
414 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
415 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
416 ramrod.user_req.u.vlan.vlan = filter->vid;
417 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
418 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
419 } else if (filter->type == BNX2X_VF_FILTER_VLAN) {
420 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
421 ramrod.user_req.u.vlan.vlan = filter->vid;
422 } else {
423 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
424 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
425 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
426 }
427 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
428 BNX2X_VLAN_MAC_DEL;
429
430 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
431 if (drv_only)
432 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
433 else
434 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
435
436 /* Add/Remove the filter */
437 rc = bnx2x_config_vlan_mac(bp, &ramrod);
438 if (rc == -EEXIST)
439 return 0;
440 if (rc) {
441 BNX2X_ERR("Failed to %s %s\n",
442 filter->add ? "add" : "delete",
443 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
444 "VLAN-MAC" :
445 (filter->type == BNX2X_VF_FILTER_MAC) ?
446 "MAC" : "VLAN");
447 return rc;
448 }
449
450 filter->applied = true;
451
452 return 0;
453 }
454
bnx2x_vf_mac_vlan_config_list(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_mac_vlan_filters * filters,int qid,bool drv_only)455 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
456 struct bnx2x_vf_mac_vlan_filters *filters,
457 int qid, bool drv_only)
458 {
459 int rc = 0, i;
460
461 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
462
463 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
464 return -EINVAL;
465
466 /* Prepare ramrod params */
467 for (i = 0; i < filters->count; i++) {
468 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
469 &filters->filters[i], drv_only);
470 if (rc)
471 break;
472 }
473
474 /* Rollback if needed */
475 if (i != filters->count) {
476 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
477 i, filters->count);
478 while (--i >= 0) {
479 if (!filters->filters[i].applied)
480 continue;
481 filters->filters[i].add = !filters->filters[i].add;
482 bnx2x_vf_mac_vlan_config(bp, vf, qid,
483 &filters->filters[i],
484 drv_only);
485 }
486 }
487
488 /* It's our responsibility to free the filters */
489 kfree(filters);
490
491 return rc;
492 }
493
bnx2x_vf_queue_setup(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)494 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
495 struct bnx2x_vf_queue_construct_params *qctor)
496 {
497 int rc;
498
499 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
500
501 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
502 if (rc)
503 goto op_err;
504
505 /* Schedule the configuration of any pending vlan filters */
506 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
507 BNX2X_MSG_IOV);
508 return 0;
509 op_err:
510 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
511 return rc;
512 }
513
bnx2x_vf_queue_flr(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)514 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
515 int qid)
516 {
517 int rc;
518
519 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
520
521 /* If needed, clean the filtering data base */
522 if ((qid == LEADING_IDX) &&
523 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
524 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
525 BNX2X_VF_FILTER_VLAN_MAC);
526 if (rc)
527 goto op_err;
528 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
529 BNX2X_VF_FILTER_VLAN);
530 if (rc)
531 goto op_err;
532 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
533 BNX2X_VF_FILTER_MAC);
534 if (rc)
535 goto op_err;
536 }
537
538 /* Terminate queue */
539 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
540 struct bnx2x_queue_state_params qstate;
541
542 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
543 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
544 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
545 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
546 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
547 rc = bnx2x_queue_state_change(bp, &qstate);
548 if (rc)
549 goto op_err;
550 }
551
552 return 0;
553 op_err:
554 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
555 return rc;
556 }
557
bnx2x_vf_mcast(struct bnx2x * bp,struct bnx2x_virtf * vf,bnx2x_mac_addr_t * mcasts,int mc_num,bool drv_only)558 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
559 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
560 {
561 struct bnx2x_mcast_list_elem *mc = NULL;
562 struct bnx2x_mcast_ramrod_params mcast;
563 int rc, i;
564
565 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
566
567 /* Prepare Multicast command */
568 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
569 mcast.mcast_obj = &vf->mcast_obj;
570 if (drv_only)
571 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
572 else
573 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
574 if (mc_num) {
575 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
576 GFP_KERNEL);
577 if (!mc) {
578 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
579 return -ENOMEM;
580 }
581 }
582
583 if (mc_num) {
584 INIT_LIST_HEAD(&mcast.mcast_list);
585 for (i = 0; i < mc_num; i++) {
586 mc[i].mac = mcasts[i];
587 list_add_tail(&mc[i].link,
588 &mcast.mcast_list);
589 }
590
591 /* add new mcasts */
592 mcast.mcast_list_len = mc_num;
593 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
594 if (rc)
595 BNX2X_ERR("Failed to set multicasts\n");
596 } else {
597 /* clear existing mcasts */
598 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
599 if (rc)
600 BNX2X_ERR("Failed to remove multicasts\n");
601 }
602
603 kfree(mc);
604
605 return rc;
606 }
607
bnx2x_vf_prep_rx_mode(struct bnx2x * bp,u8 qid,struct bnx2x_rx_mode_ramrod_params * ramrod,struct bnx2x_virtf * vf,unsigned long accept_flags)608 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
609 struct bnx2x_rx_mode_ramrod_params *ramrod,
610 struct bnx2x_virtf *vf,
611 unsigned long accept_flags)
612 {
613 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
614
615 memset(ramrod, 0, sizeof(*ramrod));
616 ramrod->cid = vfq->cid;
617 ramrod->cl_id = vfq_cl_id(vf, vfq);
618 ramrod->rx_mode_obj = &bp->rx_mode_obj;
619 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
620 ramrod->rx_accept_flags = accept_flags;
621 ramrod->tx_accept_flags = accept_flags;
622 ramrod->pstate = &vf->filter_state;
623 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
624
625 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
626 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
627 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
628
629 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
630 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
631 }
632
bnx2x_vf_rxmode(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,unsigned long accept_flags)633 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
634 int qid, unsigned long accept_flags)
635 {
636 struct bnx2x_rx_mode_ramrod_params ramrod;
637
638 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
639
640 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
641 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
642 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
643 return bnx2x_config_rx_mode(bp, &ramrod);
644 }
645
bnx2x_vf_queue_teardown(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)646 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
647 {
648 int rc;
649
650 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
651
652 /* Remove all classification configuration for leading queue */
653 if (qid == LEADING_IDX) {
654 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
655 if (rc)
656 goto op_err;
657
658 /* Remove filtering if feasible */
659 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
660 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
661 false,
662 BNX2X_VF_FILTER_VLAN_MAC);
663 if (rc)
664 goto op_err;
665 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
666 false,
667 BNX2X_VF_FILTER_VLAN);
668 if (rc)
669 goto op_err;
670 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
671 false,
672 BNX2X_VF_FILTER_MAC);
673 if (rc)
674 goto op_err;
675 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
676 if (rc)
677 goto op_err;
678 }
679 }
680
681 /* Destroy queue */
682 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
683 if (rc)
684 goto op_err;
685 return rc;
686 op_err:
687 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
688 vf->abs_vfid, qid, rc);
689 return rc;
690 }
691
692 /* VF enable primitives
693 * when pretend is required the caller is responsible
694 * for calling pretend prior to calling these routines
695 */
696
697 /* internal vf enable - until vf is enabled internally all transactions
698 * are blocked. This routine should always be called last with pretend.
699 */
bnx2x_vf_enable_internal(struct bnx2x * bp,u8 enable)700 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
701 {
702 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
703 }
704
705 /* clears vf error in all semi blocks */
bnx2x_vf_semi_clear_err(struct bnx2x * bp,u8 abs_vfid)706 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
707 {
708 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
709 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
710 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
711 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
712 }
713
bnx2x_vf_pglue_clear_err(struct bnx2x * bp,u8 abs_vfid)714 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
715 {
716 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
717 u32 was_err_reg = 0;
718
719 switch (was_err_group) {
720 case 0:
721 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
722 break;
723 case 1:
724 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
725 break;
726 case 2:
727 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
728 break;
729 case 3:
730 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
731 break;
732 }
733 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
734 }
735
bnx2x_vf_igu_reset(struct bnx2x * bp,struct bnx2x_virtf * vf)736 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
737 {
738 int i;
739 u32 val;
740
741 /* Set VF masks and configuration - pretend */
742 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
743
744 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
745 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
746 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
747 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
748 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
749 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
750
751 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
752 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
753 val &= ~IGU_VF_CONF_PARENT_MASK;
754 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
755 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
756
757 DP(BNX2X_MSG_IOV,
758 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
759 vf->abs_vfid, val);
760
761 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
762
763 /* iterate over all queues, clear sb consumer */
764 for (i = 0; i < vf_sb_count(vf); i++) {
765 u8 igu_sb_id = vf_igu_sb(vf, i);
766
767 /* zero prod memory */
768 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
769
770 /* clear sb state machine */
771 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
772 false /* VF */);
773
774 /* disable + update */
775 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
776 IGU_INT_DISABLE, 1);
777 }
778 }
779
bnx2x_vf_enable_access(struct bnx2x * bp,u8 abs_vfid)780 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
781 {
782 /* set the VF-PF association in the FW */
783 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
784 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
785
786 /* clear vf errors*/
787 bnx2x_vf_semi_clear_err(bp, abs_vfid);
788 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
789
790 /* internal vf-enable - pretend */
791 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
792 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
793 bnx2x_vf_enable_internal(bp, true);
794 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
795 }
796
bnx2x_vf_enable_traffic(struct bnx2x * bp,struct bnx2x_virtf * vf)797 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
798 {
799 /* Reset vf in IGU interrupts are still disabled */
800 bnx2x_vf_igu_reset(bp, vf);
801
802 /* pretend to enable the vf with the PBF */
803 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
804 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
805 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
806 }
807
bnx2x_vf_is_pcie_pending(struct bnx2x * bp,u8 abs_vfid)808 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
809 {
810 struct pci_dev *dev;
811 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
812
813 if (!vf)
814 return false;
815
816 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
817 if (dev)
818 return bnx2x_is_pcie_pending(dev);
819 return false;
820 }
821
bnx2x_vf_flr_clnup_epilog(struct bnx2x * bp,u8 abs_vfid)822 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
823 {
824 /* Verify no pending pci transactions */
825 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
826 BNX2X_ERR("PCIE Transactions still pending\n");
827
828 return 0;
829 }
830
831 /* must be called after the number of PF queues and the number of VFs are
832 * both known
833 */
834 static void
bnx2x_iov_static_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)835 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
836 {
837 struct vf_pf_resc_request *resc = &vf->alloc_resc;
838
839 /* will be set only during VF-ACQUIRE */
840 resc->num_rxqs = 0;
841 resc->num_txqs = 0;
842
843 resc->num_mac_filters = VF_MAC_CREDIT_CNT;
844 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
845
846 /* no real limitation */
847 resc->num_mc_filters = 0;
848
849 /* num_sbs already set */
850 resc->num_sbs = vf->sb_count;
851 }
852
853 /* FLR routines: */
bnx2x_vf_free_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)854 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
855 {
856 /* reset the state variables */
857 bnx2x_iov_static_resc(bp, vf);
858 vf->state = VF_FREE;
859 }
860
bnx2x_vf_flr_clnup_hw(struct bnx2x * bp,struct bnx2x_virtf * vf)861 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
862 {
863 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
864
865 /* DQ usage counter */
866 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
867 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
868 "DQ VF usage counter timed out",
869 poll_cnt);
870 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
871
872 /* FW cleanup command - poll for the results */
873 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
874 poll_cnt))
875 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
876
877 /* verify TX hw is flushed */
878 bnx2x_tx_hw_flushed(bp, poll_cnt);
879 }
880
bnx2x_vf_flr(struct bnx2x * bp,struct bnx2x_virtf * vf)881 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
882 {
883 int rc, i;
884
885 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
886
887 /* the cleanup operations are valid if and only if the VF
888 * was first acquired.
889 */
890 for (i = 0; i < vf_rxq_count(vf); i++) {
891 rc = bnx2x_vf_queue_flr(bp, vf, i);
892 if (rc)
893 goto out;
894 }
895
896 /* remove multicasts */
897 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
898
899 /* dispatch final cleanup and wait for HW queues to flush */
900 bnx2x_vf_flr_clnup_hw(bp, vf);
901
902 /* release VF resources */
903 bnx2x_vf_free_resc(bp, vf);
904
905 vf->malicious = false;
906
907 /* re-open the mailbox */
908 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
909 return;
910 out:
911 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
912 vf->abs_vfid, i, rc);
913 }
914
bnx2x_vf_flr_clnup(struct bnx2x * bp)915 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
916 {
917 struct bnx2x_virtf *vf;
918 int i;
919
920 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
921 /* VF should be RESET & in FLR cleanup states */
922 if (bnx2x_vf(bp, i, state) != VF_RESET ||
923 !bnx2x_vf(bp, i, flr_clnup_stage))
924 continue;
925
926 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
927 i, BNX2X_NR_VIRTFN(bp));
928
929 vf = BP_VF(bp, i);
930
931 /* lock the vf pf channel */
932 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
933
934 /* invoke the VF FLR SM */
935 bnx2x_vf_flr(bp, vf);
936
937 /* mark the VF to be ACKED and continue */
938 vf->flr_clnup_stage = false;
939 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
940 }
941
942 /* Acknowledge the handled VFs.
943 * we are acknowledge all the vfs which an flr was requested for, even
944 * if amongst them there are such that we never opened, since the mcp
945 * will interrupt us immediately again if we only ack some of the bits,
946 * resulting in an endless loop. This can happen for example in KVM
947 * where an 'all ones' flr request is sometimes given by hyper visor
948 */
949 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
950 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
951 for (i = 0; i < FLRD_VFS_DWORDS; i++)
952 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
953 bp->vfdb->flrd_vfs[i]);
954
955 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
956
957 /* clear the acked bits - better yet if the MCP implemented
958 * write to clear semantics
959 */
960 for (i = 0; i < FLRD_VFS_DWORDS; i++)
961 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
962 }
963
bnx2x_vf_handle_flr_event(struct bnx2x * bp)964 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
965 {
966 int i;
967
968 /* Read FLR'd VFs */
969 for (i = 0; i < FLRD_VFS_DWORDS; i++)
970 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
971
972 DP(BNX2X_MSG_MCP,
973 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
974 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
975
976 for_each_vf(bp, i) {
977 struct bnx2x_virtf *vf = BP_VF(bp, i);
978 u32 reset = 0;
979
980 if (vf->abs_vfid < 32)
981 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
982 else
983 reset = bp->vfdb->flrd_vfs[1] &
984 (1 << (vf->abs_vfid - 32));
985
986 if (reset) {
987 /* set as reset and ready for cleanup */
988 vf->state = VF_RESET;
989 vf->flr_clnup_stage = true;
990
991 DP(BNX2X_MSG_IOV,
992 "Initiating Final cleanup for VF %d\n",
993 vf->abs_vfid);
994 }
995 }
996
997 /* do the FLR cleanup for all marked VFs*/
998 bnx2x_vf_flr_clnup(bp);
999 }
1000
1001 /* IOV global initialization routines */
bnx2x_iov_init_dq(struct bnx2x * bp)1002 void bnx2x_iov_init_dq(struct bnx2x *bp)
1003 {
1004 if (!IS_SRIOV(bp))
1005 return;
1006
1007 /* Set the DQ such that the CID reflect the abs_vfid */
1008 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1009 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1010
1011 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1012 * the PF L2 queues
1013 */
1014 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1015
1016 /* The VF window size is the log2 of the max number of CIDs per VF */
1017 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1018
1019 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1020 * the Pf doorbell size although the 2 are independent.
1021 */
1022 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1023
1024 /* No security checks for now -
1025 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1026 * CID range 0 - 0x1ffff
1027 */
1028 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1029 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1030 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1031 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1032
1033 /* set the VF doorbell threshold. This threshold represents the amount
1034 * of doorbells allowed in the main DORQ fifo for a specific VF.
1035 */
1036 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1037 }
1038
bnx2x_iov_init_dmae(struct bnx2x * bp)1039 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1040 {
1041 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1042 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1043 }
1044
bnx2x_vf_domain(struct bnx2x * bp,int vfid)1045 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1046 {
1047 struct pci_dev *dev = bp->pdev;
1048
1049 return pci_domain_nr(dev->bus);
1050 }
1051
bnx2x_vf_bus(struct bnx2x * bp,int vfid)1052 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1053 {
1054 struct pci_dev *dev = bp->pdev;
1055 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1056
1057 return dev->bus->number + ((dev->devfn + iov->offset +
1058 iov->stride * vfid) >> 8);
1059 }
1060
bnx2x_vf_devfn(struct bnx2x * bp,int vfid)1061 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1062 {
1063 struct pci_dev *dev = bp->pdev;
1064 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1065
1066 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1067 }
1068
bnx2x_vf_set_bars(struct bnx2x * bp,struct bnx2x_virtf * vf)1069 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1070 {
1071 int i, n;
1072 struct pci_dev *dev = bp->pdev;
1073 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1074
1075 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1076 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1077 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1078
1079 size /= iov->total;
1080 vf->bars[n].bar = start + size * vf->abs_vfid;
1081 vf->bars[n].size = size;
1082 }
1083 }
1084
1085 static int
bnx2x_get_vf_igu_cam_info(struct bnx2x * bp)1086 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1087 {
1088 int sb_id;
1089 u32 val;
1090 u8 fid, current_pf = 0;
1091
1092 /* IGU in normal mode - read CAM */
1093 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1094 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1095 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1096 continue;
1097 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1098 if (fid & IGU_FID_ENCODE_IS_PF)
1099 current_pf = fid & IGU_FID_PF_NUM_MASK;
1100 else if (current_pf == BP_FUNC(bp))
1101 bnx2x_vf_set_igu_info(bp, sb_id,
1102 (fid & IGU_FID_VF_NUM_MASK));
1103 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1104 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1105 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1106 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1107 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1108 }
1109 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1110 return BP_VFDB(bp)->vf_sbs_pool;
1111 }
1112
__bnx2x_iov_free_vfdb(struct bnx2x * bp)1113 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1114 {
1115 if (bp->vfdb) {
1116 kfree(bp->vfdb->vfqs);
1117 kfree(bp->vfdb->vfs);
1118 kfree(bp->vfdb);
1119 }
1120 bp->vfdb = NULL;
1121 }
1122
bnx2x_sriov_pci_cfg_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1123 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1124 {
1125 int pos;
1126 struct pci_dev *dev = bp->pdev;
1127
1128 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1129 if (!pos) {
1130 BNX2X_ERR("failed to find SRIOV capability in device\n");
1131 return -ENODEV;
1132 }
1133
1134 iov->pos = pos;
1135 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1136 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1137 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1138 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1139 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1140 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1141 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1142 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1143 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1144
1145 return 0;
1146 }
1147
bnx2x_sriov_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1148 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1149 {
1150 u32 val;
1151
1152 /* read the SRIOV capability structure
1153 * The fields can be read via configuration read or
1154 * directly from the device (starting at offset PCICFG_OFFSET)
1155 */
1156 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1157 return -ENODEV;
1158
1159 /* get the number of SRIOV bars */
1160 iov->nres = 0;
1161
1162 /* read the first_vfid */
1163 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1164 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1165 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1166
1167 DP(BNX2X_MSG_IOV,
1168 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1169 BP_FUNC(bp),
1170 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1171 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1172
1173 return 0;
1174 }
1175
1176 /* must be called after PF bars are mapped */
bnx2x_iov_init_one(struct bnx2x * bp,int int_mode_param,int num_vfs_param)1177 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1178 int num_vfs_param)
1179 {
1180 int err, i;
1181 struct bnx2x_sriov *iov;
1182 struct pci_dev *dev = bp->pdev;
1183
1184 bp->vfdb = NULL;
1185
1186 /* verify is pf */
1187 if (IS_VF(bp))
1188 return 0;
1189
1190 /* verify sriov capability is present in configuration space */
1191 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1192 return 0;
1193
1194 /* verify chip revision */
1195 if (CHIP_IS_E1x(bp))
1196 return 0;
1197
1198 /* check if SRIOV support is turned off */
1199 if (!num_vfs_param)
1200 return 0;
1201
1202 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1203 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1204 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1205 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1206 return 0;
1207 }
1208
1209 /* SRIOV can be enabled only with MSIX */
1210 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1211 int_mode_param == BNX2X_INT_MODE_INTX) {
1212 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1213 return 0;
1214 }
1215
1216 err = -EIO;
1217 /* verify ari is enabled */
1218 if (!pci_ari_enabled(bp->pdev->bus)) {
1219 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1220 return 0;
1221 }
1222
1223 /* verify igu is in normal mode */
1224 if (CHIP_INT_MODE_IS_BC(bp)) {
1225 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1226 return 0;
1227 }
1228
1229 /* allocate the vfs database */
1230 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1231 if (!bp->vfdb) {
1232 BNX2X_ERR("failed to allocate vf database\n");
1233 err = -ENOMEM;
1234 goto failed;
1235 }
1236
1237 /* get the sriov info - Linux already collected all the pertinent
1238 * information, however the sriov structure is for the private use
1239 * of the pci module. Also we want this information regardless
1240 * of the hyper-visor.
1241 */
1242 iov = &(bp->vfdb->sriov);
1243 err = bnx2x_sriov_info(bp, iov);
1244 if (err)
1245 goto failed;
1246
1247 /* SR-IOV capability was enabled but there are no VFs*/
1248 if (iov->total == 0)
1249 goto failed;
1250
1251 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1252
1253 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1254 num_vfs_param, iov->nr_virtfn);
1255
1256 /* allocate the vf array */
1257 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1258 sizeof(struct bnx2x_virtf),
1259 GFP_KERNEL);
1260 if (!bp->vfdb->vfs) {
1261 BNX2X_ERR("failed to allocate vf array\n");
1262 err = -ENOMEM;
1263 goto failed;
1264 }
1265
1266 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1267 for_each_vf(bp, i) {
1268 bnx2x_vf(bp, i, index) = i;
1269 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1270 bnx2x_vf(bp, i, state) = VF_FREE;
1271 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1272 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1273 /* enable spoofchk by default */
1274 bnx2x_vf(bp, i, spoofchk) = 1;
1275 }
1276
1277 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1278 if (!bnx2x_get_vf_igu_cam_info(bp)) {
1279 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1280 err = -EINVAL;
1281 goto failed;
1282 }
1283
1284 /* allocate the queue arrays for all VFs */
1285 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1286 sizeof(struct bnx2x_vf_queue),
1287 GFP_KERNEL);
1288
1289 if (!bp->vfdb->vfqs) {
1290 BNX2X_ERR("failed to allocate vf queue array\n");
1291 err = -ENOMEM;
1292 goto failed;
1293 }
1294
1295 /* Prepare the VFs event synchronization mechanism */
1296 mutex_init(&bp->vfdb->event_mutex);
1297
1298 mutex_init(&bp->vfdb->bulletin_mutex);
1299
1300 if (SHMEM2_HAS(bp, sriov_switch_mode))
1301 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1302
1303 return 0;
1304 failed:
1305 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1306 __bnx2x_iov_free_vfdb(bp);
1307 return err;
1308 }
1309
bnx2x_iov_remove_one(struct bnx2x * bp)1310 void bnx2x_iov_remove_one(struct bnx2x *bp)
1311 {
1312 int vf_idx;
1313
1314 /* if SRIOV is not enabled there's nothing to do */
1315 if (!IS_SRIOV(bp))
1316 return;
1317
1318 bnx2x_disable_sriov(bp);
1319
1320 /* disable access to all VFs */
1321 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1322 bnx2x_pretend_func(bp,
1323 HW_VF_HANDLE(bp,
1324 bp->vfdb->sriov.first_vf_in_pf +
1325 vf_idx));
1326 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1327 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1328 bnx2x_vf_enable_internal(bp, 0);
1329 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1330 }
1331
1332 /* free vf database */
1333 __bnx2x_iov_free_vfdb(bp);
1334 }
1335
bnx2x_iov_free_mem(struct bnx2x * bp)1336 void bnx2x_iov_free_mem(struct bnx2x *bp)
1337 {
1338 int i;
1339
1340 if (!IS_SRIOV(bp))
1341 return;
1342
1343 /* free vfs hw contexts */
1344 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1345 struct hw_dma *cxt = &bp->vfdb->context[i];
1346 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1347 }
1348
1349 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1350 BP_VFDB(bp)->sp_dma.mapping,
1351 BP_VFDB(bp)->sp_dma.size);
1352
1353 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1354 BP_VF_MBX_DMA(bp)->mapping,
1355 BP_VF_MBX_DMA(bp)->size);
1356
1357 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1358 BP_VF_BULLETIN_DMA(bp)->mapping,
1359 BP_VF_BULLETIN_DMA(bp)->size);
1360 }
1361
bnx2x_iov_alloc_mem(struct bnx2x * bp)1362 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1363 {
1364 size_t tot_size;
1365 int i, rc = 0;
1366
1367 if (!IS_SRIOV(bp))
1368 return rc;
1369
1370 /* allocate vfs hw contexts */
1371 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1372 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1373
1374 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1375 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1376 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1377
1378 if (cxt->size) {
1379 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1380 if (!cxt->addr)
1381 goto alloc_mem_err;
1382 } else {
1383 cxt->addr = NULL;
1384 cxt->mapping = 0;
1385 }
1386 tot_size -= cxt->size;
1387 }
1388
1389 /* allocate vfs ramrods dma memory - client_init and set_mac */
1390 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1391 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1392 tot_size);
1393 if (!BP_VFDB(bp)->sp_dma.addr)
1394 goto alloc_mem_err;
1395 BP_VFDB(bp)->sp_dma.size = tot_size;
1396
1397 /* allocate mailboxes */
1398 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1399 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1400 tot_size);
1401 if (!BP_VF_MBX_DMA(bp)->addr)
1402 goto alloc_mem_err;
1403
1404 BP_VF_MBX_DMA(bp)->size = tot_size;
1405
1406 /* allocate local bulletin boards */
1407 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1408 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1409 tot_size);
1410 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1411 goto alloc_mem_err;
1412
1413 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1414
1415 return 0;
1416
1417 alloc_mem_err:
1418 return -ENOMEM;
1419 }
1420
bnx2x_vfq_init(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q)1421 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1422 struct bnx2x_vf_queue *q)
1423 {
1424 u8 cl_id = vfq_cl_id(vf, q);
1425 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1426 unsigned long q_type = 0;
1427
1428 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1429 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1430
1431 /* Queue State object */
1432 bnx2x_init_queue_obj(bp, &q->sp_obj,
1433 cl_id, &q->cid, 1, func_id,
1434 bnx2x_vf_sp(bp, vf, q_data),
1435 bnx2x_vf_sp_map(bp, vf, q_data),
1436 q_type);
1437
1438 /* sp indication is set only when vlan/mac/etc. are initialized */
1439 q->sp_initialized = false;
1440
1441 DP(BNX2X_MSG_IOV,
1442 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1443 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1444 }
1445
bnx2x_max_speed_cap(struct bnx2x * bp)1446 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1447 {
1448 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1449
1450 if (supported &
1451 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1452 return 20000;
1453
1454 return 10000; /* assume lowest supported speed is 10G */
1455 }
1456
bnx2x_iov_link_update_vf(struct bnx2x * bp,int idx)1457 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1458 {
1459 struct bnx2x_link_report_data *state = &bp->last_reported_link;
1460 struct pf_vf_bulletin_content *bulletin;
1461 struct bnx2x_virtf *vf;
1462 bool update = true;
1463 int rc = 0;
1464
1465 /* sanity and init */
1466 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1467 if (rc)
1468 return rc;
1469
1470 mutex_lock(&bp->vfdb->bulletin_mutex);
1471
1472 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1473 bulletin->valid_bitmap |= 1 << LINK_VALID;
1474
1475 bulletin->link_speed = state->line_speed;
1476 bulletin->link_flags = 0;
1477 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1478 &state->link_report_flags))
1479 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1480 if (test_bit(BNX2X_LINK_REPORT_FD,
1481 &state->link_report_flags))
1482 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1483 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1484 &state->link_report_flags))
1485 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1486 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1487 &state->link_report_flags))
1488 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1489 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1490 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1491 bulletin->valid_bitmap |= 1 << LINK_VALID;
1492 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1493 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1494 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1495 bulletin->valid_bitmap |= 1 << LINK_VALID;
1496 bulletin->link_speed = bnx2x_max_speed_cap(bp);
1497 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1498 } else {
1499 update = false;
1500 }
1501
1502 if (update) {
1503 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1504 "vf %d mode %u speed %d flags %x\n", idx,
1505 vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1506
1507 /* Post update on VF's bulletin board */
1508 rc = bnx2x_post_vf_bulletin(bp, idx);
1509 if (rc) {
1510 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1511 goto out;
1512 }
1513 }
1514
1515 out:
1516 mutex_unlock(&bp->vfdb->bulletin_mutex);
1517 return rc;
1518 }
1519
bnx2x_set_vf_link_state(struct net_device * dev,int idx,int link_state)1520 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1521 {
1522 struct bnx2x *bp = netdev_priv(dev);
1523 struct bnx2x_virtf *vf = BP_VF(bp, idx);
1524
1525 if (!vf)
1526 return -EINVAL;
1527
1528 if (vf->link_cfg == link_state)
1529 return 0; /* nothing todo */
1530
1531 vf->link_cfg = link_state;
1532
1533 return bnx2x_iov_link_update_vf(bp, idx);
1534 }
1535
bnx2x_iov_link_update(struct bnx2x * bp)1536 void bnx2x_iov_link_update(struct bnx2x *bp)
1537 {
1538 int vfid;
1539
1540 if (!IS_SRIOV(bp))
1541 return;
1542
1543 for_each_vf(bp, vfid)
1544 bnx2x_iov_link_update_vf(bp, vfid);
1545 }
1546
1547 /* called by bnx2x_nic_load */
bnx2x_iov_nic_init(struct bnx2x * bp)1548 int bnx2x_iov_nic_init(struct bnx2x *bp)
1549 {
1550 int vfid;
1551
1552 if (!IS_SRIOV(bp)) {
1553 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1554 return 0;
1555 }
1556
1557 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1558
1559 /* let FLR complete ... */
1560 msleep(100);
1561
1562 /* initialize vf database */
1563 for_each_vf(bp, vfid) {
1564 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1565
1566 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1567 BNX2X_CIDS_PER_VF;
1568
1569 union cdu_context *base_cxt = (union cdu_context *)
1570 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1571 (base_vf_cid & (ILT_PAGE_CIDS-1));
1572
1573 DP(BNX2X_MSG_IOV,
1574 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1575 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1576 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1577
1578 /* init statically provisioned resources */
1579 bnx2x_iov_static_resc(bp, vf);
1580
1581 /* queues are initialized during VF-ACQUIRE */
1582 vf->filter_state = 0;
1583 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1584
1585 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1586 vf_vlan_rules_cnt(vf));
1587 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1588 vf_mac_rules_cnt(vf));
1589
1590 /* init mcast object - This object will be re-initialized
1591 * during VF-ACQUIRE with the proper cl_id and cid.
1592 * It needs to be initialized here so that it can be safely
1593 * handled by a subsequent FLR flow.
1594 */
1595 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1596 0xFF, 0xFF, 0xFF,
1597 bnx2x_vf_sp(bp, vf, mcast_rdata),
1598 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1599 BNX2X_FILTER_MCAST_PENDING,
1600 &vf->filter_state,
1601 BNX2X_OBJ_TYPE_RX_TX);
1602
1603 /* set the mailbox message addresses */
1604 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1605 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1606 MBX_MSG_ALIGNED_SIZE);
1607
1608 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1609 vfid * MBX_MSG_ALIGNED_SIZE;
1610
1611 /* Enable vf mailbox */
1612 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1613 }
1614
1615 /* Final VF init */
1616 for_each_vf(bp, vfid) {
1617 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1618
1619 /* fill in the BDF and bars */
1620 vf->domain = bnx2x_vf_domain(bp, vfid);
1621 vf->bus = bnx2x_vf_bus(bp, vfid);
1622 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1623 bnx2x_vf_set_bars(bp, vf);
1624
1625 DP(BNX2X_MSG_IOV,
1626 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1627 vf->abs_vfid, vf->bus, vf->devfn,
1628 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1629 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1630 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1631 }
1632
1633 return 0;
1634 }
1635
1636 /* called by bnx2x_chip_cleanup */
bnx2x_iov_chip_cleanup(struct bnx2x * bp)1637 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1638 {
1639 int i;
1640
1641 if (!IS_SRIOV(bp))
1642 return 0;
1643
1644 /* release all the VFs */
1645 for_each_vf(bp, i)
1646 bnx2x_vf_release(bp, BP_VF(bp, i));
1647
1648 return 0;
1649 }
1650
1651 /* called by bnx2x_init_hw_func, returns the next ilt line */
bnx2x_iov_init_ilt(struct bnx2x * bp,u16 line)1652 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1653 {
1654 int i;
1655 struct bnx2x_ilt *ilt = BP_ILT(bp);
1656
1657 if (!IS_SRIOV(bp))
1658 return line;
1659
1660 /* set vfs ilt lines */
1661 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1662 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1663
1664 ilt->lines[line+i].page = hw_cxt->addr;
1665 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1666 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1667 }
1668 return line + i;
1669 }
1670
bnx2x_iov_is_vf_cid(struct bnx2x * bp,u16 cid)1671 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1672 {
1673 return ((cid >= BNX2X_FIRST_VF_CID) &&
1674 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1675 }
1676
1677 static
bnx2x_vf_handle_classification_eqe(struct bnx2x * bp,struct bnx2x_vf_queue * vfq,union event_ring_elem * elem)1678 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1679 struct bnx2x_vf_queue *vfq,
1680 union event_ring_elem *elem)
1681 {
1682 unsigned long ramrod_flags = 0;
1683 int rc = 0;
1684 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1685
1686 /* Always push next commands out, don't wait here */
1687 set_bit(RAMROD_CONT, &ramrod_flags);
1688
1689 switch (echo >> BNX2X_SWCID_SHIFT) {
1690 case BNX2X_FILTER_MAC_PENDING:
1691 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1692 &ramrod_flags);
1693 break;
1694 case BNX2X_FILTER_VLAN_PENDING:
1695 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1696 &ramrod_flags);
1697 break;
1698 default:
1699 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1700 return;
1701 }
1702 if (rc < 0)
1703 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1704 else if (rc > 0)
1705 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1706 }
1707
1708 static
bnx2x_vf_handle_mcast_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1709 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1710 struct bnx2x_virtf *vf)
1711 {
1712 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1713 int rc;
1714
1715 rparam.mcast_obj = &vf->mcast_obj;
1716 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1717
1718 /* If there are pending mcast commands - send them */
1719 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1720 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1721 if (rc < 0)
1722 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1723 rc);
1724 }
1725 }
1726
1727 static
bnx2x_vf_handle_filters_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1728 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1729 struct bnx2x_virtf *vf)
1730 {
1731 smp_mb__before_atomic();
1732 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1733 smp_mb__after_atomic();
1734 }
1735
bnx2x_vf_handle_rss_update_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1736 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1737 struct bnx2x_virtf *vf)
1738 {
1739 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1740 }
1741
bnx2x_iov_eq_sp_event(struct bnx2x * bp,union event_ring_elem * elem)1742 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1743 {
1744 struct bnx2x_virtf *vf;
1745 int qidx = 0, abs_vfid;
1746 u8 opcode;
1747 u16 cid = 0xffff;
1748
1749 if (!IS_SRIOV(bp))
1750 return 1;
1751
1752 /* first get the cid - the only events we handle here are cfc-delete
1753 * and set-mac completion
1754 */
1755 opcode = elem->message.opcode;
1756
1757 switch (opcode) {
1758 case EVENT_RING_OPCODE_CFC_DEL:
1759 cid = SW_CID(elem->message.data.cfc_del_event.cid);
1760 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1761 break;
1762 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1763 case EVENT_RING_OPCODE_MULTICAST_RULES:
1764 case EVENT_RING_OPCODE_FILTERS_RULES:
1765 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1766 cid = SW_CID(elem->message.data.eth_event.echo);
1767 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1768 break;
1769 case EVENT_RING_OPCODE_VF_FLR:
1770 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1771 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1772 abs_vfid);
1773 goto get_vf;
1774 case EVENT_RING_OPCODE_MALICIOUS_VF:
1775 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1776 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1777 abs_vfid,
1778 elem->message.data.malicious_vf_event.err_id);
1779 goto get_vf;
1780 default:
1781 return 1;
1782 }
1783
1784 /* check if the cid is the VF range */
1785 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1786 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1787 return 1;
1788 }
1789
1790 /* extract vf and rxq index from vf_cid - relies on the following:
1791 * 1. vfid on cid reflects the true abs_vfid
1792 * 2. The max number of VFs (per path) is 64
1793 */
1794 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1795 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1796 get_vf:
1797 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1798
1799 if (!vf) {
1800 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1801 cid, abs_vfid);
1802 return 0;
1803 }
1804
1805 switch (opcode) {
1806 case EVENT_RING_OPCODE_CFC_DEL:
1807 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1808 vf->abs_vfid, qidx);
1809 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1810 &vfq_get(vf,
1811 qidx)->sp_obj,
1812 BNX2X_Q_CMD_CFC_DEL);
1813 break;
1814 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1815 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1816 vf->abs_vfid, qidx);
1817 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1818 break;
1819 case EVENT_RING_OPCODE_MULTICAST_RULES:
1820 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1821 vf->abs_vfid, qidx);
1822 bnx2x_vf_handle_mcast_eqe(bp, vf);
1823 break;
1824 case EVENT_RING_OPCODE_FILTERS_RULES:
1825 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1826 vf->abs_vfid, qidx);
1827 bnx2x_vf_handle_filters_eqe(bp, vf);
1828 break;
1829 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1830 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1831 vf->abs_vfid, qidx);
1832 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1833 /* fall through */
1834 case EVENT_RING_OPCODE_VF_FLR:
1835 /* Do nothing for now */
1836 return 0;
1837 case EVENT_RING_OPCODE_MALICIOUS_VF:
1838 vf->malicious = true;
1839 return 0;
1840 }
1841
1842 return 0;
1843 }
1844
bnx2x_vf_by_cid(struct bnx2x * bp,int vf_cid)1845 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1846 {
1847 /* extract the vf from vf_cid - relies on the following:
1848 * 1. vfid on cid reflects the true abs_vfid
1849 * 2. The max number of VFs (per path) is 64
1850 */
1851 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1852 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1853 }
1854
bnx2x_iov_set_queue_sp_obj(struct bnx2x * bp,int vf_cid,struct bnx2x_queue_sp_obj ** q_obj)1855 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1856 struct bnx2x_queue_sp_obj **q_obj)
1857 {
1858 struct bnx2x_virtf *vf;
1859
1860 if (!IS_SRIOV(bp))
1861 return;
1862
1863 vf = bnx2x_vf_by_cid(bp, vf_cid);
1864
1865 if (vf) {
1866 /* extract queue index from vf_cid - relies on the following:
1867 * 1. vfid on cid reflects the true abs_vfid
1868 * 2. The max number of VFs (per path) is 64
1869 */
1870 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1871 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1872 } else {
1873 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1874 }
1875 }
1876
bnx2x_iov_adjust_stats_req(struct bnx2x * bp)1877 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1878 {
1879 int i;
1880 int first_queue_query_index, num_queues_req;
1881 dma_addr_t cur_data_offset;
1882 struct stats_query_entry *cur_query_entry;
1883 u8 stats_count = 0;
1884 bool is_fcoe = false;
1885
1886 if (!IS_SRIOV(bp))
1887 return;
1888
1889 if (!NO_FCOE(bp))
1890 is_fcoe = true;
1891
1892 /* fcoe adds one global request and one queue request */
1893 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1894 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1895 (is_fcoe ? 0 : 1);
1896
1897 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1898 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1899 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1900 first_queue_query_index + num_queues_req);
1901
1902 cur_data_offset = bp->fw_stats_data_mapping +
1903 offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1904 num_queues_req * sizeof(struct per_queue_stats);
1905
1906 cur_query_entry = &bp->fw_stats_req->
1907 query[first_queue_query_index + num_queues_req];
1908
1909 for_each_vf(bp, i) {
1910 int j;
1911 struct bnx2x_virtf *vf = BP_VF(bp, i);
1912
1913 if (vf->state != VF_ENABLED) {
1914 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1915 "vf %d not enabled so no stats for it\n",
1916 vf->abs_vfid);
1917 continue;
1918 }
1919
1920 if (vf->malicious) {
1921 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1922 "vf %d malicious so no stats for it\n",
1923 vf->abs_vfid);
1924 continue;
1925 }
1926
1927 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1928 "add addresses for vf %d\n", vf->abs_vfid);
1929 for_each_vfq(vf, j) {
1930 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1931
1932 dma_addr_t q_stats_addr =
1933 vf->fw_stat_map + j * vf->stats_stride;
1934
1935 /* collect stats fro active queues only */
1936 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1937 BNX2X_Q_LOGICAL_STATE_STOPPED)
1938 continue;
1939
1940 /* create stats query entry for this queue */
1941 cur_query_entry->kind = STATS_TYPE_QUEUE;
1942 cur_query_entry->index = vfq_stat_id(vf, rxq);
1943 cur_query_entry->funcID =
1944 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1945 cur_query_entry->address.hi =
1946 cpu_to_le32(U64_HI(q_stats_addr));
1947 cur_query_entry->address.lo =
1948 cpu_to_le32(U64_LO(q_stats_addr));
1949 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1950 "added address %x %x for vf %d queue %d client %d\n",
1951 cur_query_entry->address.hi,
1952 cur_query_entry->address.lo,
1953 cur_query_entry->funcID,
1954 j, cur_query_entry->index);
1955 cur_query_entry++;
1956 cur_data_offset += sizeof(struct per_queue_stats);
1957 stats_count++;
1958
1959 /* all stats are coalesced to the leading queue */
1960 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1961 break;
1962 }
1963 }
1964 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1965 }
1966
1967 /* VF API helpers */
bnx2x_vf_qtbl_set_q(struct bnx2x * bp,u8 abs_vfid,u8 qid,u8 enable)1968 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1969 u8 enable)
1970 {
1971 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1972 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1973
1974 REG_WR(bp, reg, val);
1975 }
1976
bnx2x_vf_clr_qtbl(struct bnx2x * bp,struct bnx2x_virtf * vf)1977 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1978 {
1979 int i;
1980
1981 for_each_vfq(vf, i)
1982 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1983 vfq_qzone_id(vf, vfq_get(vf, i)), false);
1984 }
1985
bnx2x_vf_igu_disable(struct bnx2x * bp,struct bnx2x_virtf * vf)1986 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1987 {
1988 u32 val;
1989
1990 /* clear the VF configuration - pretend */
1991 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1992 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1993 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1994 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1995 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1996 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1997 }
1998
bnx2x_vf_max_queue_cnt(struct bnx2x * bp,struct bnx2x_virtf * vf)1999 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
2000 {
2001 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
2002 BNX2X_VF_MAX_QUEUES);
2003 }
2004
2005 static
bnx2x_vf_chk_avail_resc(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * req_resc)2006 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2007 struct vf_pf_resc_request *req_resc)
2008 {
2009 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2010 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2011
2012 return ((req_resc->num_rxqs <= rxq_cnt) &&
2013 (req_resc->num_txqs <= txq_cnt) &&
2014 (req_resc->num_sbs <= vf_sb_count(vf)) &&
2015 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2016 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2017 }
2018
2019 /* CORE VF API */
bnx2x_vf_acquire(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * resc)2020 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2021 struct vf_pf_resc_request *resc)
2022 {
2023 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2024 BNX2X_CIDS_PER_VF;
2025
2026 union cdu_context *base_cxt = (union cdu_context *)
2027 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2028 (base_vf_cid & (ILT_PAGE_CIDS-1));
2029 int i;
2030
2031 /* if state is 'acquired' the VF was not released or FLR'd, in
2032 * this case the returned resources match the acquired already
2033 * acquired resources. Verify that the requested numbers do
2034 * not exceed the already acquired numbers.
2035 */
2036 if (vf->state == VF_ACQUIRED) {
2037 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2038 vf->abs_vfid);
2039
2040 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2041 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2042 vf->abs_vfid);
2043 return -EINVAL;
2044 }
2045 return 0;
2046 }
2047
2048 /* Otherwise vf state must be 'free' or 'reset' */
2049 if (vf->state != VF_FREE && vf->state != VF_RESET) {
2050 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2051 vf->abs_vfid, vf->state);
2052 return -EINVAL;
2053 }
2054
2055 /* static allocation:
2056 * the global maximum number are fixed per VF. Fail the request if
2057 * requested number exceed these globals
2058 */
2059 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2060 DP(BNX2X_MSG_IOV,
2061 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2062 /* set the max resource in the vf */
2063 return -ENOMEM;
2064 }
2065
2066 /* Set resources counters - 0 request means max available */
2067 vf_sb_count(vf) = resc->num_sbs;
2068 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2069 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2070
2071 DP(BNX2X_MSG_IOV,
2072 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2073 vf_sb_count(vf), vf_rxq_count(vf),
2074 vf_txq_count(vf), vf_mac_rules_cnt(vf),
2075 vf_vlan_rules_cnt(vf));
2076
2077 /* Initialize the queues */
2078 if (!vf->vfqs) {
2079 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2080 return -EINVAL;
2081 }
2082
2083 for_each_vfq(vf, i) {
2084 struct bnx2x_vf_queue *q = vfq_get(vf, i);
2085
2086 if (!q) {
2087 BNX2X_ERR("q number %d was not allocated\n", i);
2088 return -EINVAL;
2089 }
2090
2091 q->index = i;
2092 q->cxt = &((base_cxt + i)->eth);
2093 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2094
2095 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2096 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2097
2098 /* init SP objects */
2099 bnx2x_vfq_init(bp, vf, q);
2100 }
2101 vf->state = VF_ACQUIRED;
2102 return 0;
2103 }
2104
bnx2x_vf_init(struct bnx2x * bp,struct bnx2x_virtf * vf,dma_addr_t * sb_map)2105 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2106 {
2107 struct bnx2x_func_init_params func_init = {0};
2108 int i;
2109
2110 /* the sb resources are initialized at this point, do the
2111 * FW/HW initializations
2112 */
2113 for_each_vf_sb(vf, i)
2114 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2115 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2116
2117 /* Sanity checks */
2118 if (vf->state != VF_ACQUIRED) {
2119 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2120 vf->abs_vfid, vf->state);
2121 return -EINVAL;
2122 }
2123
2124 /* let FLR complete ... */
2125 msleep(100);
2126
2127 /* FLR cleanup epilogue */
2128 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2129 return -EBUSY;
2130
2131 /* reset IGU VF statistics: MSIX */
2132 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2133
2134 /* function setup */
2135 func_init.pf_id = BP_FUNC(bp);
2136 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2137 bnx2x_func_init(bp, &func_init);
2138
2139 /* Enable the vf */
2140 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2141 bnx2x_vf_enable_traffic(bp, vf);
2142
2143 /* queue protection table */
2144 for_each_vfq(vf, i)
2145 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2146 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2147
2148 vf->state = VF_ENABLED;
2149
2150 /* update vf bulletin board */
2151 bnx2x_post_vf_bulletin(bp, vf->index);
2152
2153 return 0;
2154 }
2155
2156 struct set_vf_state_cookie {
2157 struct bnx2x_virtf *vf;
2158 u8 state;
2159 };
2160
bnx2x_set_vf_state(void * cookie)2161 static void bnx2x_set_vf_state(void *cookie)
2162 {
2163 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2164
2165 p->vf->state = p->state;
2166 }
2167
bnx2x_vf_close(struct bnx2x * bp,struct bnx2x_virtf * vf)2168 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2169 {
2170 int rc = 0, i;
2171
2172 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2173
2174 /* Close all queues */
2175 for (i = 0; i < vf_rxq_count(vf); i++) {
2176 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2177 if (rc)
2178 goto op_err;
2179 }
2180
2181 /* disable the interrupts */
2182 DP(BNX2X_MSG_IOV, "disabling igu\n");
2183 bnx2x_vf_igu_disable(bp, vf);
2184
2185 /* disable the VF */
2186 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2187 bnx2x_vf_clr_qtbl(bp, vf);
2188
2189 /* need to make sure there are no outstanding stats ramrods which may
2190 * cause the device to access the VF's stats buffer which it will free
2191 * as soon as we return from the close flow.
2192 */
2193 {
2194 struct set_vf_state_cookie cookie;
2195
2196 cookie.vf = vf;
2197 cookie.state = VF_ACQUIRED;
2198 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2199 if (rc)
2200 goto op_err;
2201 }
2202
2203 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2204
2205 return 0;
2206 op_err:
2207 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2208 return rc;
2209 }
2210
2211 /* VF release can be called either: 1. The VF was acquired but
2212 * not enabled 2. the vf was enabled or in the process of being
2213 * enabled
2214 */
bnx2x_vf_free(struct bnx2x * bp,struct bnx2x_virtf * vf)2215 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2216 {
2217 int rc;
2218
2219 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2220 vf->state == VF_FREE ? "Free" :
2221 vf->state == VF_ACQUIRED ? "Acquired" :
2222 vf->state == VF_ENABLED ? "Enabled" :
2223 vf->state == VF_RESET ? "Reset" :
2224 "Unknown");
2225
2226 switch (vf->state) {
2227 case VF_ENABLED:
2228 rc = bnx2x_vf_close(bp, vf);
2229 if (rc)
2230 goto op_err;
2231 /* Fall through - to release resources */
2232 case VF_ACQUIRED:
2233 DP(BNX2X_MSG_IOV, "about to free resources\n");
2234 bnx2x_vf_free_resc(bp, vf);
2235 break;
2236
2237 case VF_FREE:
2238 case VF_RESET:
2239 default:
2240 break;
2241 }
2242 return 0;
2243 op_err:
2244 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2245 return rc;
2246 }
2247
bnx2x_vf_rss_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_config_rss_params * rss)2248 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2249 struct bnx2x_config_rss_params *rss)
2250 {
2251 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2252 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2253 return bnx2x_config_rss(bp, rss);
2254 }
2255
bnx2x_vf_tpa_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vfpf_tpa_tlv * tlv,struct bnx2x_queue_update_tpa_params * params)2256 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2257 struct vfpf_tpa_tlv *tlv,
2258 struct bnx2x_queue_update_tpa_params *params)
2259 {
2260 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2261 struct bnx2x_queue_state_params qstate;
2262 int qid, rc = 0;
2263
2264 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2265
2266 /* Set ramrod params */
2267 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2268 memcpy(&qstate.params.update_tpa, params,
2269 sizeof(struct bnx2x_queue_update_tpa_params));
2270 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2271 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2272
2273 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2274 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2275 qstate.params.update_tpa.sge_map = sge_addr[qid];
2276 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2277 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2278 U64_LO(sge_addr[qid]));
2279 rc = bnx2x_queue_state_change(bp, &qstate);
2280 if (rc) {
2281 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2282 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2283 vf->abs_vfid, qid);
2284 return rc;
2285 }
2286 }
2287
2288 return rc;
2289 }
2290
2291 /* VF release ~ VF close + VF release-resources
2292 * Release is the ultimate SW shutdown and is called whenever an
2293 * irrecoverable error is encountered.
2294 */
bnx2x_vf_release(struct bnx2x * bp,struct bnx2x_virtf * vf)2295 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2296 {
2297 int rc;
2298
2299 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2300 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2301
2302 rc = bnx2x_vf_free(bp, vf);
2303 if (rc)
2304 WARN(rc,
2305 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2306 vf->abs_vfid, rc);
2307 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2308 return rc;
2309 }
2310
bnx2x_lock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs tlv)2311 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2312 enum channel_tlvs tlv)
2313 {
2314 /* we don't lock the channel for unsupported tlvs */
2315 if (!bnx2x_tlv_supported(tlv)) {
2316 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2317 return;
2318 }
2319
2320 /* lock the channel */
2321 mutex_lock(&vf->op_mutex);
2322
2323 /* record the locking op */
2324 vf->op_current = tlv;
2325
2326 /* log the lock */
2327 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2328 vf->abs_vfid, tlv);
2329 }
2330
bnx2x_unlock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs expected_tlv)2331 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2332 enum channel_tlvs expected_tlv)
2333 {
2334 enum channel_tlvs current_tlv;
2335
2336 if (!vf) {
2337 BNX2X_ERR("VF was %p\n", vf);
2338 return;
2339 }
2340
2341 current_tlv = vf->op_current;
2342
2343 /* we don't unlock the channel for unsupported tlvs */
2344 if (!bnx2x_tlv_supported(expected_tlv))
2345 return;
2346
2347 WARN(expected_tlv != vf->op_current,
2348 "lock mismatch: expected %d found %d", expected_tlv,
2349 vf->op_current);
2350
2351 /* record the locking op */
2352 vf->op_current = CHANNEL_TLV_NONE;
2353
2354 /* lock the channel */
2355 mutex_unlock(&vf->op_mutex);
2356
2357 /* log the unlock */
2358 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2359 vf->abs_vfid, current_tlv);
2360 }
2361
bnx2x_set_pf_tx_switching(struct bnx2x * bp,bool enable)2362 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2363 {
2364 struct bnx2x_queue_state_params q_params;
2365 u32 prev_flags;
2366 int i, rc;
2367
2368 /* Verify changes are needed and record current Tx switching state */
2369 prev_flags = bp->flags;
2370 if (enable)
2371 bp->flags |= TX_SWITCHING;
2372 else
2373 bp->flags &= ~TX_SWITCHING;
2374 if (prev_flags == bp->flags)
2375 return 0;
2376
2377 /* Verify state enables the sending of queue ramrods */
2378 if ((bp->state != BNX2X_STATE_OPEN) ||
2379 (bnx2x_get_q_logical_state(bp,
2380 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2381 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2382 return 0;
2383
2384 /* send q. update ramrod to configure Tx switching */
2385 memset(&q_params, 0, sizeof(q_params));
2386 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2387 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2388 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2389 &q_params.params.update.update_flags);
2390 if (enable)
2391 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2392 &q_params.params.update.update_flags);
2393 else
2394 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2395 &q_params.params.update.update_flags);
2396
2397 /* send the ramrod on all the queues of the PF */
2398 for_each_eth_queue(bp, i) {
2399 struct bnx2x_fastpath *fp = &bp->fp[i];
2400
2401 /* Set the appropriate Queue object */
2402 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2403
2404 /* Update the Queue state */
2405 rc = bnx2x_queue_state_change(bp, &q_params);
2406 if (rc) {
2407 BNX2X_ERR("Failed to configure Tx switching\n");
2408 return rc;
2409 }
2410 }
2411
2412 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2413 return 0;
2414 }
2415
bnx2x_sriov_configure(struct pci_dev * dev,int num_vfs_param)2416 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2417 {
2418 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2419
2420 if (!IS_SRIOV(bp)) {
2421 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2422 return -EINVAL;
2423 }
2424
2425 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2426 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2427
2428 /* HW channel is only operational when PF is up */
2429 if (bp->state != BNX2X_STATE_OPEN) {
2430 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2431 return -EINVAL;
2432 }
2433
2434 /* we are always bound by the total_vfs in the configuration space */
2435 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2436 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2437 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2438 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2439 }
2440
2441 bp->requested_nr_virtfn = num_vfs_param;
2442 if (num_vfs_param == 0) {
2443 bnx2x_set_pf_tx_switching(bp, false);
2444 bnx2x_disable_sriov(bp);
2445 return 0;
2446 } else {
2447 return bnx2x_enable_sriov(bp);
2448 }
2449 }
2450
2451 #define IGU_ENTRY_SIZE 4
2452
bnx2x_enable_sriov(struct bnx2x * bp)2453 int bnx2x_enable_sriov(struct bnx2x *bp)
2454 {
2455 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2456 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2457 u32 igu_entry, address;
2458 u16 num_vf_queues;
2459
2460 if (req_vfs == 0)
2461 return 0;
2462
2463 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2464
2465 /* statically distribute vf sb pool between VFs */
2466 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2467 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2468
2469 /* zero previous values learned from igu cam */
2470 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2471 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2472
2473 vf->sb_count = 0;
2474 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2475 }
2476 bp->vfdb->vf_sbs_pool = 0;
2477
2478 /* prepare IGU cam */
2479 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2480 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2481 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2482 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2483 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2484 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2485 IGU_REG_MAPPING_MEMORY_VALID;
2486 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2487 sb_idx, vf_idx);
2488 REG_WR(bp, address, igu_entry);
2489 sb_idx++;
2490 address += IGU_ENTRY_SIZE;
2491 }
2492 }
2493
2494 /* Reinitialize vf database according to igu cam */
2495 bnx2x_get_vf_igu_cam_info(bp);
2496
2497 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2498 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2499
2500 qcount = 0;
2501 for_each_vf(bp, vf_idx) {
2502 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2503
2504 /* set local queue arrays */
2505 vf->vfqs = &bp->vfdb->vfqs[qcount];
2506 qcount += vf_sb_count(vf);
2507 bnx2x_iov_static_resc(bp, vf);
2508 }
2509
2510 /* prepare msix vectors in VF configuration space - the value in the
2511 * PCI configuration space should be the index of the last entry,
2512 * namely one less than the actual size of the table
2513 */
2514 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2515 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2516 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2517 num_vf_queues - 1);
2518 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2519 vf_idx, num_vf_queues - 1);
2520 }
2521 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2522
2523 /* enable sriov. This will probe all the VFs, and consequentially cause
2524 * the "acquire" messages to appear on the VF PF channel.
2525 */
2526 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2527 bnx2x_disable_sriov(bp);
2528
2529 rc = bnx2x_set_pf_tx_switching(bp, true);
2530 if (rc)
2531 return rc;
2532
2533 rc = pci_enable_sriov(bp->pdev, req_vfs);
2534 if (rc) {
2535 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2536 return rc;
2537 }
2538 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2539 return req_vfs;
2540 }
2541
bnx2x_pf_set_vfs_vlan(struct bnx2x * bp)2542 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2543 {
2544 int vfidx;
2545 struct pf_vf_bulletin_content *bulletin;
2546
2547 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2548 for_each_vf(bp, vfidx) {
2549 bulletin = BP_VF_BULLETIN(bp, vfidx);
2550 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2551 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2552 htons(ETH_P_8021Q));
2553 }
2554 }
2555
bnx2x_disable_sriov(struct bnx2x * bp)2556 void bnx2x_disable_sriov(struct bnx2x *bp)
2557 {
2558 if (pci_vfs_assigned(bp->pdev)) {
2559 DP(BNX2X_MSG_IOV,
2560 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2561 return;
2562 }
2563
2564 pci_disable_sriov(bp->pdev);
2565 }
2566
bnx2x_vf_op_prep(struct bnx2x * bp,int vfidx,struct bnx2x_virtf ** vf,struct pf_vf_bulletin_content ** bulletin,bool test_queue)2567 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2568 struct bnx2x_virtf **vf,
2569 struct pf_vf_bulletin_content **bulletin,
2570 bool test_queue)
2571 {
2572 if (bp->state != BNX2X_STATE_OPEN) {
2573 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2574 return -EINVAL;
2575 }
2576
2577 if (!IS_SRIOV(bp)) {
2578 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2579 return -EINVAL;
2580 }
2581
2582 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2583 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2584 vfidx, BNX2X_NR_VIRTFN(bp));
2585 return -EINVAL;
2586 }
2587
2588 /* init members */
2589 *vf = BP_VF(bp, vfidx);
2590 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2591
2592 if (!*vf) {
2593 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2594 return -EINVAL;
2595 }
2596
2597 if (test_queue && !(*vf)->vfqs) {
2598 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2599 vfidx);
2600 return -EINVAL;
2601 }
2602
2603 if (!*bulletin) {
2604 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2605 vfidx);
2606 return -EINVAL;
2607 }
2608
2609 return 0;
2610 }
2611
bnx2x_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)2612 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2613 struct ifla_vf_info *ivi)
2614 {
2615 struct bnx2x *bp = netdev_priv(dev);
2616 struct bnx2x_virtf *vf = NULL;
2617 struct pf_vf_bulletin_content *bulletin = NULL;
2618 struct bnx2x_vlan_mac_obj *mac_obj;
2619 struct bnx2x_vlan_mac_obj *vlan_obj;
2620 int rc;
2621
2622 /* sanity and init */
2623 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2624 if (rc)
2625 return rc;
2626
2627 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2628 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2629 if (!mac_obj || !vlan_obj) {
2630 BNX2X_ERR("VF partially initialized\n");
2631 return -EINVAL;
2632 }
2633
2634 ivi->vf = vfidx;
2635 ivi->qos = 0;
2636 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2637 ivi->min_tx_rate = 0;
2638 ivi->spoofchk = vf->spoofchk ? 1 : 0;
2639 ivi->linkstate = vf->link_cfg;
2640 if (vf->state == VF_ENABLED) {
2641 /* mac and vlan are in vlan_mac objects */
2642 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2643 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2644 0, ETH_ALEN);
2645 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2646 (u8 *)&ivi->vlan, 0,
2647 VLAN_HLEN);
2648 }
2649 } else {
2650 mutex_lock(&bp->vfdb->bulletin_mutex);
2651 /* mac */
2652 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2653 /* mac configured by ndo so its in bulletin board */
2654 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2655 else
2656 /* function has not been loaded yet. Show mac as 0s */
2657 eth_zero_addr(ivi->mac);
2658
2659 /* vlan */
2660 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2661 /* vlan configured by ndo so its in bulletin board */
2662 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2663 else
2664 /* function has not been loaded yet. Show vlans as 0s */
2665 memset(&ivi->vlan, 0, VLAN_HLEN);
2666
2667 mutex_unlock(&bp->vfdb->bulletin_mutex);
2668 }
2669
2670 return 0;
2671 }
2672
2673 /* New mac for VF. Consider these cases:
2674 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2675 * supply at acquire.
2676 * 2. VF has already been acquired but has not yet initialized - store in local
2677 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2678 * will configure this mac when it is ready.
2679 * 3. VF has already initialized but has not yet setup a queue - post the new
2680 * mac on VF's bulletin board right now. VF will configure this mac when it
2681 * is ready.
2682 * 4. VF has already set a queue - delete any macs already configured for this
2683 * queue and manually config the new mac.
2684 * In any event, once this function has been called refuse any attempts by the
2685 * VF to configure any mac for itself except for this mac. In case of a race
2686 * where the VF fails to see the new post on its bulletin board before sending a
2687 * mac configuration request, the PF will simply fail the request and VF can try
2688 * again after consulting its bulletin board.
2689 */
bnx2x_set_vf_mac(struct net_device * dev,int vfidx,u8 * mac)2690 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2691 {
2692 struct bnx2x *bp = netdev_priv(dev);
2693 int rc, q_logical_state;
2694 struct bnx2x_virtf *vf = NULL;
2695 struct pf_vf_bulletin_content *bulletin = NULL;
2696
2697 if (!is_valid_ether_addr(mac)) {
2698 BNX2X_ERR("mac address invalid\n");
2699 return -EINVAL;
2700 }
2701
2702 /* sanity and init */
2703 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2704 if (rc)
2705 return rc;
2706
2707 mutex_lock(&bp->vfdb->bulletin_mutex);
2708
2709 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2710 * configuration requests from vf unless match this mac
2711 */
2712 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2713 memcpy(bulletin->mac, mac, ETH_ALEN);
2714
2715 /* Post update on VF's bulletin board */
2716 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2717
2718 /* release lock before checking return code */
2719 mutex_unlock(&bp->vfdb->bulletin_mutex);
2720
2721 if (rc) {
2722 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2723 return rc;
2724 }
2725
2726 q_logical_state =
2727 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2728 if (vf->state == VF_ENABLED &&
2729 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2730 /* configure the mac in device on this vf's queue */
2731 unsigned long ramrod_flags = 0;
2732 struct bnx2x_vlan_mac_obj *mac_obj;
2733
2734 /* User should be able to see failure reason in system logs */
2735 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2736 return -EINVAL;
2737
2738 /* must lock vfpf channel to protect against vf flows */
2739 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2740
2741 /* remove existing eth macs */
2742 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2743 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2744 if (rc) {
2745 BNX2X_ERR("failed to delete eth macs\n");
2746 rc = -EINVAL;
2747 goto out;
2748 }
2749
2750 /* remove existing uc list macs */
2751 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2752 if (rc) {
2753 BNX2X_ERR("failed to delete uc_list macs\n");
2754 rc = -EINVAL;
2755 goto out;
2756 }
2757
2758 /* configure the new mac to device */
2759 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2760 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2761 BNX2X_ETH_MAC, &ramrod_flags);
2762
2763 out:
2764 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2765 }
2766
2767 return rc;
2768 }
2769
bnx2x_set_vf_vlan_acceptance(struct bnx2x * bp,struct bnx2x_virtf * vf,bool accept)2770 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2771 struct bnx2x_virtf *vf, bool accept)
2772 {
2773 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2774 unsigned long accept_flags;
2775
2776 /* need to remove/add the VF's accept_any_vlan bit */
2777 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2778 if (accept)
2779 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2780 else
2781 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2782
2783 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2784 accept_flags);
2785 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2786 bnx2x_config_rx_mode(bp, &rx_ramrod);
2787 }
2788
bnx2x_set_vf_vlan_filter(struct bnx2x * bp,struct bnx2x_virtf * vf,u16 vlan,bool add)2789 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2790 u16 vlan, bool add)
2791 {
2792 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2793 unsigned long ramrod_flags = 0;
2794 int rc = 0;
2795
2796 /* configure the new vlan to device */
2797 memset(&ramrod_param, 0, sizeof(ramrod_param));
2798 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2799 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2800 ramrod_param.ramrod_flags = ramrod_flags;
2801 ramrod_param.user_req.u.vlan.vlan = vlan;
2802 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2803 : BNX2X_VLAN_MAC_DEL;
2804 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2805 if (rc) {
2806 BNX2X_ERR("failed to configure vlan\n");
2807 return -EINVAL;
2808 }
2809
2810 return 0;
2811 }
2812
bnx2x_set_vf_vlan(struct net_device * dev,int vfidx,u16 vlan,u8 qos,__be16 vlan_proto)2813 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2814 __be16 vlan_proto)
2815 {
2816 struct pf_vf_bulletin_content *bulletin = NULL;
2817 struct bnx2x *bp = netdev_priv(dev);
2818 struct bnx2x_vlan_mac_obj *vlan_obj;
2819 unsigned long vlan_mac_flags = 0;
2820 unsigned long ramrod_flags = 0;
2821 struct bnx2x_virtf *vf = NULL;
2822 int i, rc;
2823
2824 if (vlan > 4095) {
2825 BNX2X_ERR("illegal vlan value %d\n", vlan);
2826 return -EINVAL;
2827 }
2828
2829 if (vlan_proto != htons(ETH_P_8021Q))
2830 return -EPROTONOSUPPORT;
2831
2832 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2833 vfidx, vlan, 0);
2834
2835 /* sanity and init */
2836 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2837 if (rc)
2838 return rc;
2839
2840 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2841 * to the VF since it doesn't have anything to do with it. But it useful
2842 * to store it here in case the VF is not up yet and we can only
2843 * configure the vlan later when it does. Treat vlan id 0 as remove the
2844 * Host tag.
2845 */
2846 mutex_lock(&bp->vfdb->bulletin_mutex);
2847
2848 if (vlan > 0)
2849 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2850 else
2851 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2852 bulletin->vlan = vlan;
2853
2854 /* Post update on VF's bulletin board */
2855 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2856 if (rc)
2857 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2858 mutex_unlock(&bp->vfdb->bulletin_mutex);
2859
2860 /* is vf initialized and queue set up? */
2861 if (vf->state != VF_ENABLED ||
2862 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2863 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2864 return rc;
2865
2866 /* User should be able to see error in system logs */
2867 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2868 return -EINVAL;
2869
2870 /* must lock vfpf channel to protect against vf flows */
2871 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2872
2873 /* remove existing vlans */
2874 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2875 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2876 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2877 &ramrod_flags);
2878 if (rc) {
2879 BNX2X_ERR("failed to delete vlans\n");
2880 rc = -EINVAL;
2881 goto out;
2882 }
2883
2884 /* clear accept_any_vlan when HV forces vlan, otherwise
2885 * according to VF capabilities
2886 */
2887 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2888 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2889
2890 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2891 if (rc)
2892 goto out;
2893
2894 /* send queue update ramrods to configure default vlan and
2895 * silent vlan removal
2896 */
2897 for_each_vfq(vf, i) {
2898 struct bnx2x_queue_state_params q_params = {NULL};
2899 struct bnx2x_queue_update_params *update_params;
2900
2901 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2902
2903 /* validate the Q is UP */
2904 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2905 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2906 continue;
2907
2908 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2909 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2910 update_params = &q_params.params.update;
2911 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2912 &update_params->update_flags);
2913 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2914 &update_params->update_flags);
2915 if (vlan == 0) {
2916 /* if vlan is 0 then we want to leave the VF traffic
2917 * untagged, and leave the incoming traffic untouched
2918 * (i.e. do not remove any vlan tags).
2919 */
2920 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2921 &update_params->update_flags);
2922 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2923 &update_params->update_flags);
2924 } else {
2925 /* configure default vlan to vf queue and set silent
2926 * vlan removal (the vf remains unaware of this vlan).
2927 */
2928 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2929 &update_params->update_flags);
2930 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2931 &update_params->update_flags);
2932 update_params->def_vlan = vlan;
2933 update_params->silent_removal_value =
2934 vlan & VLAN_VID_MASK;
2935 update_params->silent_removal_mask = VLAN_VID_MASK;
2936 }
2937
2938 /* Update the Queue state */
2939 rc = bnx2x_queue_state_change(bp, &q_params);
2940 if (rc) {
2941 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2942 i);
2943 goto out;
2944 }
2945 }
2946 out:
2947 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2948
2949 if (rc)
2950 DP(BNX2X_MSG_IOV,
2951 "updated VF[%d] vlan configuration (vlan = %d)\n",
2952 vfidx, vlan);
2953
2954 return rc;
2955 }
2956
bnx2x_set_vf_spoofchk(struct net_device * dev,int idx,bool val)2957 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2958 {
2959 struct bnx2x *bp = netdev_priv(dev);
2960 struct bnx2x_virtf *vf;
2961 int i, rc = 0;
2962
2963 vf = BP_VF(bp, idx);
2964 if (!vf)
2965 return -EINVAL;
2966
2967 /* nothing to do */
2968 if (vf->spoofchk == val)
2969 return 0;
2970
2971 vf->spoofchk = val ? 1 : 0;
2972
2973 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2974 val ? "enabling" : "disabling", idx);
2975
2976 /* is vf initialized and queue set up? */
2977 if (vf->state != VF_ENABLED ||
2978 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2979 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2980 return rc;
2981
2982 /* User should be able to see error in system logs */
2983 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2984 return -EINVAL;
2985
2986 /* send queue update ramrods to configure spoofchk */
2987 for_each_vfq(vf, i) {
2988 struct bnx2x_queue_state_params q_params = {NULL};
2989 struct bnx2x_queue_update_params *update_params;
2990
2991 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2992
2993 /* validate the Q is UP */
2994 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2995 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2996 continue;
2997
2998 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2999 q_params.cmd = BNX2X_Q_CMD_UPDATE;
3000 update_params = &q_params.params.update;
3001 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
3002 &update_params->update_flags);
3003 if (val) {
3004 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3005 &update_params->update_flags);
3006 } else {
3007 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3008 &update_params->update_flags);
3009 }
3010
3011 /* Update the Queue state */
3012 rc = bnx2x_queue_state_change(bp, &q_params);
3013 if (rc) {
3014 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3015 val ? "enable" : "disable", idx, i);
3016 goto out;
3017 }
3018 }
3019 out:
3020 if (!rc)
3021 DP(BNX2X_MSG_IOV,
3022 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3023 idx);
3024
3025 return rc;
3026 }
3027
3028 /* crc is the first field in the bulletin board. Compute the crc over the
3029 * entire bulletin board excluding the crc field itself. Use the length field
3030 * as the Bulletin Board was posted by a PF with possibly a different version
3031 * from the vf which will sample it. Therefore, the length is computed by the
3032 * PF and then used blindly by the VF.
3033 */
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content * bulletin)3034 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3035 {
3036 return crc32(BULLETIN_CRC_SEED,
3037 ((u8 *)bulletin) + sizeof(bulletin->crc),
3038 bulletin->length - sizeof(bulletin->crc));
3039 }
3040
3041 /* Check for new posts on the bulletin board */
bnx2x_sample_bulletin(struct bnx2x * bp)3042 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3043 {
3044 struct pf_vf_bulletin_content *bulletin;
3045 int attempts;
3046
3047 /* sampling structure in mid post may result with corrupted data
3048 * validate crc to ensure coherency.
3049 */
3050 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3051 u32 crc;
3052
3053 /* sample the bulletin board */
3054 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3055 sizeof(union pf_vf_bulletin));
3056
3057 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3058
3059 if (bp->shadow_bulletin.content.crc == crc)
3060 break;
3061
3062 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3063 bp->shadow_bulletin.content.crc, crc);
3064 }
3065
3066 if (attempts >= BULLETIN_ATTEMPTS) {
3067 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3068 attempts);
3069 return PFVF_BULLETIN_CRC_ERR;
3070 }
3071 bulletin = &bp->shadow_bulletin.content;
3072
3073 /* bulletin board hasn't changed since last sample */
3074 if (bp->old_bulletin.version == bulletin->version)
3075 return PFVF_BULLETIN_UNCHANGED;
3076
3077 /* the mac address in bulletin board is valid and is new */
3078 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3079 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3080 /* update new mac to net device */
3081 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3082 }
3083
3084 if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3085 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3086 bulletin->link_speed, bulletin->link_flags);
3087
3088 bp->vf_link_vars.line_speed = bulletin->link_speed;
3089 bp->vf_link_vars.link_report_flags = 0;
3090 /* Link is down */
3091 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3092 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3093 &bp->vf_link_vars.link_report_flags);
3094 /* Full DUPLEX */
3095 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3096 __set_bit(BNX2X_LINK_REPORT_FD,
3097 &bp->vf_link_vars.link_report_flags);
3098 /* Rx Flow Control is ON */
3099 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3100 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3101 &bp->vf_link_vars.link_report_flags);
3102 /* Tx Flow Control is ON */
3103 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3104 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3105 &bp->vf_link_vars.link_report_flags);
3106 __bnx2x_link_report(bp);
3107 }
3108
3109 /* copy new bulletin board to bp */
3110 memcpy(&bp->old_bulletin, bulletin,
3111 sizeof(struct pf_vf_bulletin_content));
3112
3113 return PFVF_BULLETIN_UPDATED;
3114 }
3115
bnx2x_timer_sriov(struct bnx2x * bp)3116 void bnx2x_timer_sriov(struct bnx2x *bp)
3117 {
3118 bnx2x_sample_bulletin(bp);
3119
3120 /* if channel is down we need to self destruct */
3121 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3122 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3123 BNX2X_MSG_IOV);
3124 }
3125
bnx2x_vf_doorbells(struct bnx2x * bp)3126 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3127 {
3128 /* vf doorbells are embedded within the regview */
3129 return bp->regview + PXP_VF_ADDR_DB_START;
3130 }
3131
bnx2x_vf_pci_dealloc(struct bnx2x * bp)3132 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3133 {
3134 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3135 sizeof(struct bnx2x_vf_mbx_msg));
3136 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3137 sizeof(union pf_vf_bulletin));
3138 }
3139
bnx2x_vf_pci_alloc(struct bnx2x * bp)3140 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3141 {
3142 mutex_init(&bp->vf2pf_mutex);
3143
3144 /* allocate vf2pf mailbox for vf to pf channel */
3145 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3146 sizeof(struct bnx2x_vf_mbx_msg));
3147 if (!bp->vf2pf_mbox)
3148 goto alloc_mem_err;
3149
3150 /* allocate pf 2 vf bulletin board */
3151 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3152 sizeof(union pf_vf_bulletin));
3153 if (!bp->pf2vf_bulletin)
3154 goto alloc_mem_err;
3155
3156 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3157
3158 return 0;
3159
3160 alloc_mem_err:
3161 bnx2x_vf_pci_dealloc(bp);
3162 return -ENOMEM;
3163 }
3164
bnx2x_iov_channel_down(struct bnx2x * bp)3165 void bnx2x_iov_channel_down(struct bnx2x *bp)
3166 {
3167 int vf_idx;
3168 struct pf_vf_bulletin_content *bulletin;
3169
3170 if (!IS_SRIOV(bp))
3171 return;
3172
3173 for_each_vf(bp, vf_idx) {
3174 /* locate this VFs bulletin board and update the channel down
3175 * bit
3176 */
3177 bulletin = BP_VF_BULLETIN(bp, vf_idx);
3178 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3179
3180 /* update vf bulletin board */
3181 bnx2x_post_vf_bulletin(bp, vf_idx);
3182 }
3183 }
3184
bnx2x_iov_task(struct work_struct * work)3185 void bnx2x_iov_task(struct work_struct *work)
3186 {
3187 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3188
3189 if (!netif_running(bp->dev))
3190 return;
3191
3192 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3193 &bp->iov_task_state))
3194 bnx2x_vf_handle_flr_event(bp);
3195
3196 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3197 &bp->iov_task_state))
3198 bnx2x_vf_mbx(bp);
3199 }
3200
bnx2x_schedule_iov_task(struct bnx2x * bp,enum bnx2x_iov_flag flag)3201 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3202 {
3203 smp_mb__before_atomic();
3204 set_bit(flag, &bp->iov_task_state);
3205 smp_mb__after_atomic();
3206 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3207 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3208 }
3209