1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39
bnx2x_add_all_napi_cnic(struct bnx2x * bp)40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 int i;
43
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp, i) {
46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 bnx2x_poll, NAPI_POLL_WEIGHT);
48 }
49 }
50
bnx2x_add_all_napi(struct bnx2x * bp)51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 int i;
54
55 /* Add NAPI objects */
56 for_each_eth_queue(bp, i) {
57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 bnx2x_poll, NAPI_POLL_WEIGHT);
59 }
60 }
61
bnx2x_calc_num_queues(struct bnx2x * bp)62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
68 nq = 1;
69
70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 return nq;
72 }
73
74 /**
75 * bnx2x_move_fp - move content of the fastpath structure.
76 *
77 * @bp: driver handle
78 * @from: source FP index
79 * @to: destination FP index
80 *
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
85 * content.
86 */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 int old_max_eth_txqs, new_max_eth_txqs;
96 int old_txdata_index = 0, new_txdata_index = 0;
97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp->napi = to_fp->napi;
101
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp, from_fp, sizeof(*to_fp));
104 to_fp->index = to;
105
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
108 */
109 to_fp->tpa_info = old_tpa_info;
110
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
120 */
121
122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 (bp)->max_cos;
125 if (from == FCOE_IDX(bp)) {
126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 }
129
130 memcpy(&bp->bnx2x_txq[new_txdata_index],
131 &bp->bnx2x_txq[old_txdata_index],
132 sizeof(struct bnx2x_fp_txdata));
133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135
136 /**
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
138 *
139 * @bp: driver handle
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
142 *
143 */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 if (IS_PF(bp)) {
147 u8 phy_fw_ver[PHY_FW_VER_LEN];
148
149 phy_fw_ver[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 phy_fw_ver, PHY_FW_VER_LEN);
152 strlcpy(buf, bp->fw_ver, buf_len);
153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 "bc %d.%d.%d%s%s",
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 /* Skip second parse bd... */
232 --nbd;
233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 }
235
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 --nbd;
241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 }
243
244 /* unmap first bd */
245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 DMA_TO_DEVICE);
248
249 /* now free frags */
250 while (nbd > 0) {
251
252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 if (--nbd)
256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 }
258
259 /* release skb */
260 WARN_ON(!skb);
261 if (likely(skb)) {
262 (*pkts_compl)++;
263 (*bytes_compl) += skb->len;
264 dev_kfree_skb_any(skb);
265 }
266
267 tx_buf->first_bd = 0;
268 tx_buf->skb = NULL;
269
270 return new_cons;
271 }
272
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 struct netdev_queue *txq;
276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 unsigned int pkts_compl = 0, bytes_compl = 0;
278
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp->panic))
281 return -1;
282 #endif
283
284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 sw_cons = txdata->tx_pkt_cons;
287
288 /* Ensure subsequent loads occur after hw_cons */
289 smp_rmb();
290
291 while (sw_cons != hw_cons) {
292 u16 pkt_cons;
293
294 pkt_cons = TX_BD(sw_cons);
295
296 DP(NETIF_MSG_TX_DONE,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299
300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 &pkts_compl, &bytes_compl);
302
303 sw_cons++;
304 }
305
306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307
308 txdata->tx_pkt_cons = sw_cons;
309 txdata->tx_bd_cons = bd_cons;
310
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
315 * forever.
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
319 */
320 smp_mb();
321
322 if (unlikely(netif_tx_queue_stopped(txq))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 *
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
330 * stops the queue
331 */
332
333 __netif_tx_lock(txq, smp_processor_id());
334
335 if ((netif_tx_queue_stopped(txq)) &&
336 (bp->state == BNX2X_STATE_OPEN) &&
337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 netif_tx_wake_queue(txq);
339
340 __netif_tx_unlock(txq);
341 }
342 return 0;
343 }
344
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 u16 idx)
347 {
348 u16 last_max = fp->last_max_sge;
349
350 if (SUB_S16(idx, last_max) > 0)
351 fp->last_max_sge = idx;
352 }
353
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 u16 sge_len,
356 struct eth_end_agg_rx_cqe *cqe)
357 {
358 struct bnx2x *bp = fp->bp;
359 u16 last_max, last_elem, first_elem;
360 u16 delta = 0;
361 u16 i;
362
363 if (!sge_len)
364 return;
365
366 /* First mark all used pages */
367 for (i = 0; i < sge_len; i++)
368 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370
371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp->sge_mask));
376 bnx2x_update_last_max_sge(fp,
377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378
379 last_max = RX_SGE(fp->last_max_sge);
380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382
383 /* If ring is not full */
384 if (last_elem + 1 != first_elem)
385 last_elem++;
386
387 /* Now update the prod */
388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 if (likely(fp->sge_mask[i]))
390 break;
391
392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 delta += BIT_VEC64_ELEM_SZ;
394 }
395
396 if (delta > 0) {
397 fp->rx_sge_prod += delta;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp);
400 }
401
402 DP(NETIF_MSG_RX_STATUS,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp->last_max_sge, fp->rx_sge_prod);
405 }
406
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
409 */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 const struct eth_fast_path_rx_cqe *cqe,
412 enum pkt_hash_types *rxhash_type)
413 {
414 /* Get Toeplitz hash from CQE */
415 if ((bp->dev->features & NETIF_F_RXHASH) &&
416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 enum eth_rss_hash_type htype;
418
419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 (htype == TCP_IPV6_HASH_TYPE)) ?
422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423
424 return le32_to_cpu(cqe->rss_hash_result);
425 }
426 *rxhash_type = PKT_HASH_TYPE_NONE;
427 return 0;
428 }
429
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 u16 cons, u16 prod,
432 struct eth_fast_path_rx_cqe *cqe)
433 {
434 struct bnx2x *bp = fp->bp;
435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 dma_addr_t mapping;
439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441
442 /* print error if current state != stop */
443 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping = dma_map_single(&bp->pdev->dev,
448 first_buf->data + NET_SKB_PAD,
449 fp->rx_buf_size, DMA_FROM_DEVICE);
450 /*
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
454 */
455
456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp, cons, prod);
459 tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 return;
461 }
462
463 /* move empty data from pool to prod */
464 prod_rx_buf->data = first_buf->data;
465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 /* point prod_bd to new data */
467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf = *cons_rx_buf;
472
473 /* mark bin state as START */
474 tpa_info->parsing_flags =
475 le16_to_cpu(cqe->pars_flags.flags);
476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 tpa_info->tpa_state = BNX2X_TPA_START;
478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 tpa_info->placement_offset = cqe->placement_offset;
480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 if (fp->mode == TPA_MODE_GRO) {
482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 tpa_info->gro_size = gro_size;
485 }
486
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp->tpa_queue_used |= (1 << queue);
489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 fp->tpa_queue_used);
491 #endif
492 }
493
494 /* Timestamp option length allowed for TPA aggregation:
495 *
496 * nop nop kind length echo val
497 */
498 #define TPA_TSTAMP_OPT_LEN 12
499 /**
500 * bnx2x_set_gro_params - compute GRO values
501 *
502 * @skb: packet skb
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
505 * aggregation.
506 * @pkt_len: length of all segments
507 * @num_of_coalesced_segs: count of segments
508 *
509 * Approximate value of the MSS for this aggregation calculated using
510 * the first packet of it.
511 * Compute number of aggregated segments, and gso_type.
512 */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
514 u16 len_on_bd, unsigned int pkt_len,
515 u16 num_of_coalesced_segs)
516 {
517 /* TPA aggregation won't have either IP options or TCP options
518 * other than timestamp or IPv6 extension headers.
519 */
520 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
521
522 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
523 PRS_FLAG_OVERETH_IPV6) {
524 hdrs_len += sizeof(struct ipv6hdr);
525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
526 } else {
527 hdrs_len += sizeof(struct iphdr);
528 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
529 }
530
531 /* Check if there was a TCP timestamp, if there is it's will
532 * always be 12 bytes length: nop nop kind length echo val.
533 *
534 * Otherwise FW would close the aggregation.
535 */
536 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
537 hdrs_len += TPA_TSTAMP_OPT_LEN;
538
539 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
540
541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 * to skb_shinfo(skb)->gso_segs
543 */
544 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
545 }
546
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
548 u16 index, gfp_t gfp_mask)
549 {
550 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
551 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
552 struct bnx2x_alloc_pool *pool = &fp->page_pool;
553 dma_addr_t mapping;
554
555 if (!pool->page) {
556 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
557 if (unlikely(!pool->page))
558 return -ENOMEM;
559
560 pool->offset = 0;
561 }
562
563 mapping = dma_map_page(&bp->pdev->dev, pool->page,
564 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
565 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
566 BNX2X_ERR("Can't map sge\n");
567 return -ENOMEM;
568 }
569
570 sw_buf->page = pool->page;
571 sw_buf->offset = pool->offset;
572
573 dma_unmap_addr_set(sw_buf, mapping, mapping);
574
575 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
576 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
577
578 pool->offset += SGE_PAGE_SIZE;
579 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
580 get_page(pool->page);
581 else
582 pool->page = NULL;
583 return 0;
584 }
585
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)586 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
587 struct bnx2x_agg_info *tpa_info,
588 u16 pages,
589 struct sk_buff *skb,
590 struct eth_end_agg_rx_cqe *cqe,
591 u16 cqe_idx)
592 {
593 struct sw_rx_page *rx_pg, old_rx_pg;
594 u32 i, frag_len, frag_size;
595 int err, j, frag_id = 0;
596 u16 len_on_bd = tpa_info->len_on_bd;
597 u16 full_page = 0, gro_size = 0;
598
599 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
600
601 if (fp->mode == TPA_MODE_GRO) {
602 gro_size = tpa_info->gro_size;
603 full_page = tpa_info->full_page;
604 }
605
606 /* This is needed in order to enable forwarding support */
607 if (frag_size)
608 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
609 le16_to_cpu(cqe->pkt_len),
610 le16_to_cpu(cqe->num_of_coalesced_segs));
611
612 #ifdef BNX2X_STOP_ON_ERROR
613 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
614 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 pages, cqe_idx);
616 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
617 bnx2x_panic();
618 return -EINVAL;
619 }
620 #endif
621
622 /* Run through the SGL and compose the fragmented skb */
623 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
624 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
625
626 /* FW gives the indices of the SGE as if the ring is an array
627 (meaning that "next" element will consume 2 indices) */
628 if (fp->mode == TPA_MODE_GRO)
629 frag_len = min_t(u32, frag_size, (u32)full_page);
630 else /* LRO */
631 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
632
633 rx_pg = &fp->rx_page_ring[sge_idx];
634 old_rx_pg = *rx_pg;
635
636 /* If we fail to allocate a substitute page, we simply stop
637 where we are and drop the whole packet */
638 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
639 if (unlikely(err)) {
640 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
641 return err;
642 }
643
644 dma_unmap_page(&bp->pdev->dev,
645 dma_unmap_addr(&old_rx_pg, mapping),
646 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
647 /* Add one frag and update the appropriate fields in the skb */
648 if (fp->mode == TPA_MODE_LRO)
649 skb_fill_page_desc(skb, j, old_rx_pg.page,
650 old_rx_pg.offset, frag_len);
651 else { /* GRO */
652 int rem;
653 int offset = 0;
654 for (rem = frag_len; rem > 0; rem -= gro_size) {
655 int len = rem > gro_size ? gro_size : rem;
656 skb_fill_page_desc(skb, frag_id++,
657 old_rx_pg.page,
658 old_rx_pg.offset + offset,
659 len);
660 if (offset)
661 get_page(old_rx_pg.page);
662 offset += len;
663 }
664 }
665
666 skb->data_len += frag_len;
667 skb->truesize += SGE_PAGES;
668 skb->len += frag_len;
669
670 frag_size -= frag_len;
671 }
672
673 return 0;
674 }
675
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)676 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
677 {
678 if (fp->rx_frag_size)
679 skb_free_frag(data);
680 else
681 kfree(data);
682 }
683
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
685 {
686 if (fp->rx_frag_size) {
687 /* GFP_KERNEL allocations are used only during initialization */
688 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
689 return (void *)__get_free_page(gfp_mask);
690
691 return napi_alloc_frag(fp->rx_frag_size);
692 }
693
694 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
695 }
696
697 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)698 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
699 {
700 const struct iphdr *iph = ip_hdr(skb);
701 struct tcphdr *th;
702
703 skb_set_transport_header(skb, sizeof(struct iphdr));
704 th = tcp_hdr(skb);
705
706 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
707 iph->saddr, iph->daddr, 0);
708 }
709
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)710 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
711 {
712 struct ipv6hdr *iph = ipv6_hdr(skb);
713 struct tcphdr *th;
714
715 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
716 th = tcp_hdr(skb);
717
718 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
719 &iph->saddr, &iph->daddr, 0);
720 }
721
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))722 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
723 void (*gro_func)(struct bnx2x*, struct sk_buff*))
724 {
725 skb_reset_network_header(skb);
726 gro_func(bp, skb);
727 tcp_gro_complete(skb);
728 }
729 #endif
730
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)731 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
732 struct sk_buff *skb)
733 {
734 #ifdef CONFIG_INET
735 if (skb_shinfo(skb)->gso_size) {
736 switch (be16_to_cpu(skb->protocol)) {
737 case ETH_P_IP:
738 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
739 break;
740 case ETH_P_IPV6:
741 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
742 break;
743 default:
744 netdev_WARN_ONCE(bp->dev,
745 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
746 be16_to_cpu(skb->protocol));
747 }
748 }
749 #endif
750 skb_record_rx_queue(skb, fp->rx_queue);
751 napi_gro_receive(&fp->napi, skb);
752 }
753
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)754 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
755 struct bnx2x_agg_info *tpa_info,
756 u16 pages,
757 struct eth_end_agg_rx_cqe *cqe,
758 u16 cqe_idx)
759 {
760 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
761 u8 pad = tpa_info->placement_offset;
762 u16 len = tpa_info->len_on_bd;
763 struct sk_buff *skb = NULL;
764 u8 *new_data, *data = rx_buf->data;
765 u8 old_tpa_state = tpa_info->tpa_state;
766
767 tpa_info->tpa_state = BNX2X_TPA_STOP;
768
769 /* If we there was an error during the handling of the TPA_START -
770 * drop this aggregation.
771 */
772 if (old_tpa_state == BNX2X_TPA_ERROR)
773 goto drop;
774
775 /* Try to allocate the new data */
776 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
777 /* Unmap skb in the pool anyway, as we are going to change
778 pool entry status to BNX2X_TPA_STOP even if new skb allocation
779 fails. */
780 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
781 fp->rx_buf_size, DMA_FROM_DEVICE);
782 if (likely(new_data))
783 skb = build_skb(data, fp->rx_frag_size);
784
785 if (likely(skb)) {
786 #ifdef BNX2X_STOP_ON_ERROR
787 if (pad + len > fp->rx_buf_size) {
788 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
789 pad, len, fp->rx_buf_size);
790 bnx2x_panic();
791 return;
792 }
793 #endif
794
795 skb_reserve(skb, pad + NET_SKB_PAD);
796 skb_put(skb, len);
797 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
798
799 skb->protocol = eth_type_trans(skb, bp->dev);
800 skb->ip_summed = CHECKSUM_UNNECESSARY;
801
802 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
803 skb, cqe, cqe_idx)) {
804 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
805 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
806 bnx2x_gro_receive(bp, fp, skb);
807 } else {
808 DP(NETIF_MSG_RX_STATUS,
809 "Failed to allocate new pages - dropping packet!\n");
810 dev_kfree_skb_any(skb);
811 }
812
813 /* put new data in bin */
814 rx_buf->data = new_data;
815
816 return;
817 }
818 if (new_data)
819 bnx2x_frag_free(fp, new_data);
820 drop:
821 /* drop the packet and keep the buffer in the bin */
822 DP(NETIF_MSG_RX_STATUS,
823 "Failed to allocate or map a new skb - dropping packet!\n");
824 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
825 }
826
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)827 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
828 u16 index, gfp_t gfp_mask)
829 {
830 u8 *data;
831 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
832 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
833 dma_addr_t mapping;
834
835 data = bnx2x_frag_alloc(fp, gfp_mask);
836 if (unlikely(data == NULL))
837 return -ENOMEM;
838
839 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
840 fp->rx_buf_size,
841 DMA_FROM_DEVICE);
842 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
843 bnx2x_frag_free(fp, data);
844 BNX2X_ERR("Can't map rx data\n");
845 return -ENOMEM;
846 }
847
848 rx_buf->data = data;
849 dma_unmap_addr_set(rx_buf, mapping, mapping);
850
851 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
852 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
853
854 return 0;
855 }
856
857 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)858 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
859 struct bnx2x_fastpath *fp,
860 struct bnx2x_eth_q_stats *qstats)
861 {
862 /* Do nothing if no L4 csum validation was done.
863 * We do not check whether IP csum was validated. For IPv4 we assume
864 * that if the card got as far as validating the L4 csum, it also
865 * validated the IP csum. IPv6 has no IP csum.
866 */
867 if (cqe->fast_path_cqe.status_flags &
868 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
869 return;
870
871 /* If L4 validation was done, check if an error was found. */
872
873 if (cqe->fast_path_cqe.type_error_flags &
874 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
875 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
876 qstats->hw_csum_err++;
877 else
878 skb->ip_summed = CHECKSUM_UNNECESSARY;
879 }
880
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)881 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
882 {
883 struct bnx2x *bp = fp->bp;
884 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
885 u16 sw_comp_cons, sw_comp_prod;
886 int rx_pkt = 0;
887 union eth_rx_cqe *cqe;
888 struct eth_fast_path_rx_cqe *cqe_fp;
889
890 #ifdef BNX2X_STOP_ON_ERROR
891 if (unlikely(bp->panic))
892 return 0;
893 #endif
894 if (budget <= 0)
895 return rx_pkt;
896
897 bd_cons = fp->rx_bd_cons;
898 bd_prod = fp->rx_bd_prod;
899 bd_prod_fw = bd_prod;
900 sw_comp_cons = fp->rx_comp_cons;
901 sw_comp_prod = fp->rx_comp_prod;
902
903 comp_ring_cons = RCQ_BD(sw_comp_cons);
904 cqe = &fp->rx_comp_ring[comp_ring_cons];
905 cqe_fp = &cqe->fast_path_cqe;
906
907 DP(NETIF_MSG_RX_STATUS,
908 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
909
910 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
911 struct sw_rx_bd *rx_buf = NULL;
912 struct sk_buff *skb;
913 u8 cqe_fp_flags;
914 enum eth_rx_cqe_type cqe_fp_type;
915 u16 len, pad, queue;
916 u8 *data;
917 u32 rxhash;
918 enum pkt_hash_types rxhash_type;
919
920 #ifdef BNX2X_STOP_ON_ERROR
921 if (unlikely(bp->panic))
922 return 0;
923 #endif
924
925 bd_prod = RX_BD(bd_prod);
926 bd_cons = RX_BD(bd_cons);
927
928 /* A rmb() is required to ensure that the CQE is not read
929 * before it is written by the adapter DMA. PCI ordering
930 * rules will make sure the other fields are written before
931 * the marker at the end of struct eth_fast_path_rx_cqe
932 * but without rmb() a weakly ordered processor can process
933 * stale data. Without the barrier TPA state-machine might
934 * enter inconsistent state and kernel stack might be
935 * provided with incorrect packet description - these lead
936 * to various kernel crashed.
937 */
938 rmb();
939
940 cqe_fp_flags = cqe_fp->type_error_flags;
941 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
942
943 DP(NETIF_MSG_RX_STATUS,
944 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
945 CQE_TYPE(cqe_fp_flags),
946 cqe_fp_flags, cqe_fp->status_flags,
947 le32_to_cpu(cqe_fp->rss_hash_result),
948 le16_to_cpu(cqe_fp->vlan_tag),
949 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
950
951 /* is this a slowpath msg? */
952 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
953 bnx2x_sp_event(fp, cqe);
954 goto next_cqe;
955 }
956
957 rx_buf = &fp->rx_buf_ring[bd_cons];
958 data = rx_buf->data;
959
960 if (!CQE_TYPE_FAST(cqe_fp_type)) {
961 struct bnx2x_agg_info *tpa_info;
962 u16 frag_size, pages;
963 #ifdef BNX2X_STOP_ON_ERROR
964 /* sanity check */
965 if (fp->mode == TPA_MODE_DISABLED &&
966 (CQE_TYPE_START(cqe_fp_type) ||
967 CQE_TYPE_STOP(cqe_fp_type)))
968 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
969 CQE_TYPE(cqe_fp_type));
970 #endif
971
972 if (CQE_TYPE_START(cqe_fp_type)) {
973 u16 queue = cqe_fp->queue_index;
974 DP(NETIF_MSG_RX_STATUS,
975 "calling tpa_start on queue %d\n",
976 queue);
977
978 bnx2x_tpa_start(fp, queue,
979 bd_cons, bd_prod,
980 cqe_fp);
981
982 goto next_rx;
983 }
984 queue = cqe->end_agg_cqe.queue_index;
985 tpa_info = &fp->tpa_info[queue];
986 DP(NETIF_MSG_RX_STATUS,
987 "calling tpa_stop on queue %d\n",
988 queue);
989
990 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
991 tpa_info->len_on_bd;
992
993 if (fp->mode == TPA_MODE_GRO)
994 pages = (frag_size + tpa_info->full_page - 1) /
995 tpa_info->full_page;
996 else
997 pages = SGE_PAGE_ALIGN(frag_size) >>
998 SGE_PAGE_SHIFT;
999
1000 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1001 &cqe->end_agg_cqe, comp_ring_cons);
1002 #ifdef BNX2X_STOP_ON_ERROR
1003 if (bp->panic)
1004 return 0;
1005 #endif
1006
1007 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1008 goto next_cqe;
1009 }
1010 /* non TPA */
1011 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1012 pad = cqe_fp->placement_offset;
1013 dma_sync_single_for_cpu(&bp->pdev->dev,
1014 dma_unmap_addr(rx_buf, mapping),
1015 pad + RX_COPY_THRESH,
1016 DMA_FROM_DEVICE);
1017 pad += NET_SKB_PAD;
1018 prefetch(data + pad); /* speedup eth_type_trans() */
1019 /* is this an error packet? */
1020 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1021 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1022 "ERROR flags %x rx packet %u\n",
1023 cqe_fp_flags, sw_comp_cons);
1024 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1025 goto reuse_rx;
1026 }
1027
1028 /* Since we don't have a jumbo ring
1029 * copy small packets if mtu > 1500
1030 */
1031 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1032 (len <= RX_COPY_THRESH)) {
1033 skb = napi_alloc_skb(&fp->napi, len);
1034 if (skb == NULL) {
1035 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1036 "ERROR packet dropped because of alloc failure\n");
1037 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1038 goto reuse_rx;
1039 }
1040 memcpy(skb->data, data + pad, len);
1041 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1042 } else {
1043 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1044 GFP_ATOMIC) == 0)) {
1045 dma_unmap_single(&bp->pdev->dev,
1046 dma_unmap_addr(rx_buf, mapping),
1047 fp->rx_buf_size,
1048 DMA_FROM_DEVICE);
1049 skb = build_skb(data, fp->rx_frag_size);
1050 if (unlikely(!skb)) {
1051 bnx2x_frag_free(fp, data);
1052 bnx2x_fp_qstats(bp, fp)->
1053 rx_skb_alloc_failed++;
1054 goto next_rx;
1055 }
1056 skb_reserve(skb, pad);
1057 } else {
1058 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1059 "ERROR packet dropped because of alloc failure\n");
1060 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1061 reuse_rx:
1062 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1063 goto next_rx;
1064 }
1065 }
1066
1067 skb_put(skb, len);
1068 skb->protocol = eth_type_trans(skb, bp->dev);
1069
1070 /* Set Toeplitz hash for a none-LRO skb */
1071 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1072 skb_set_hash(skb, rxhash, rxhash_type);
1073
1074 skb_checksum_none_assert(skb);
1075
1076 if (bp->dev->features & NETIF_F_RXCSUM)
1077 bnx2x_csum_validate(skb, cqe, fp,
1078 bnx2x_fp_qstats(bp, fp));
1079
1080 skb_record_rx_queue(skb, fp->rx_queue);
1081
1082 /* Check if this packet was timestamped */
1083 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1084 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1085 bnx2x_set_rx_ts(bp, skb);
1086
1087 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1088 PARSING_FLAGS_VLAN)
1089 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1090 le16_to_cpu(cqe_fp->vlan_tag));
1091
1092 napi_gro_receive(&fp->napi, skb);
1093 next_rx:
1094 rx_buf->data = NULL;
1095
1096 bd_cons = NEXT_RX_IDX(bd_cons);
1097 bd_prod = NEXT_RX_IDX(bd_prod);
1098 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1099 rx_pkt++;
1100 next_cqe:
1101 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1102 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1103
1104 /* mark CQE as free */
1105 BNX2X_SEED_CQE(cqe_fp);
1106
1107 if (rx_pkt == budget)
1108 break;
1109
1110 comp_ring_cons = RCQ_BD(sw_comp_cons);
1111 cqe = &fp->rx_comp_ring[comp_ring_cons];
1112 cqe_fp = &cqe->fast_path_cqe;
1113 } /* while */
1114
1115 fp->rx_bd_cons = bd_cons;
1116 fp->rx_bd_prod = bd_prod_fw;
1117 fp->rx_comp_cons = sw_comp_cons;
1118 fp->rx_comp_prod = sw_comp_prod;
1119
1120 /* Update producers */
1121 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1122 fp->rx_sge_prod);
1123
1124 return rx_pkt;
1125 }
1126
bnx2x_msix_fp_int(int irq,void * fp_cookie)1127 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1128 {
1129 struct bnx2x_fastpath *fp = fp_cookie;
1130 struct bnx2x *bp = fp->bp;
1131 u8 cos;
1132
1133 DP(NETIF_MSG_INTR,
1134 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1135 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1136
1137 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1138
1139 #ifdef BNX2X_STOP_ON_ERROR
1140 if (unlikely(bp->panic))
1141 return IRQ_HANDLED;
1142 #endif
1143
1144 /* Handle Rx and Tx according to MSI-X vector */
1145 for_each_cos_in_tx_queue(fp, cos)
1146 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1147
1148 prefetch(&fp->sb_running_index[SM_RX_ID]);
1149 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1150
1151 return IRQ_HANDLED;
1152 }
1153
1154 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1155 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1156 {
1157 mutex_lock(&bp->port.phy_mutex);
1158
1159 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1160 }
1161
bnx2x_release_phy_lock(struct bnx2x * bp)1162 void bnx2x_release_phy_lock(struct bnx2x *bp)
1163 {
1164 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1165
1166 mutex_unlock(&bp->port.phy_mutex);
1167 }
1168
1169 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1170 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1171 {
1172 u16 line_speed = bp->link_vars.line_speed;
1173 if (IS_MF(bp)) {
1174 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1175 bp->mf_config[BP_VN(bp)]);
1176
1177 /* Calculate the current MAX line speed limit for the MF
1178 * devices
1179 */
1180 if (IS_MF_PERCENT_BW(bp))
1181 line_speed = (line_speed * maxCfg) / 100;
1182 else { /* SD mode */
1183 u16 vn_max_rate = maxCfg * 100;
1184
1185 if (vn_max_rate < line_speed)
1186 line_speed = vn_max_rate;
1187 }
1188 }
1189
1190 return line_speed;
1191 }
1192
1193 /**
1194 * bnx2x_fill_report_data - fill link report data to report
1195 *
1196 * @bp: driver handle
1197 * @data: link state to update
1198 *
1199 * It uses a none-atomic bit operations because is called under the mutex.
1200 */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1201 static void bnx2x_fill_report_data(struct bnx2x *bp,
1202 struct bnx2x_link_report_data *data)
1203 {
1204 memset(data, 0, sizeof(*data));
1205
1206 if (IS_PF(bp)) {
1207 /* Fill the report data: effective line speed */
1208 data->line_speed = bnx2x_get_mf_speed(bp);
1209
1210 /* Link is down */
1211 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1212 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 &data->link_report_flags);
1214
1215 if (!BNX2X_NUM_ETH_QUEUES(bp))
1216 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1217 &data->link_report_flags);
1218
1219 /* Full DUPLEX */
1220 if (bp->link_vars.duplex == DUPLEX_FULL)
1221 __set_bit(BNX2X_LINK_REPORT_FD,
1222 &data->link_report_flags);
1223
1224 /* Rx Flow Control is ON */
1225 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1226 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1227 &data->link_report_flags);
1228
1229 /* Tx Flow Control is ON */
1230 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1231 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1232 &data->link_report_flags);
1233 } else { /* VF */
1234 *data = bp->vf_link_vars;
1235 }
1236 }
1237
1238 /**
1239 * bnx2x_link_report - report link status to OS.
1240 *
1241 * @bp: driver handle
1242 *
1243 * Calls the __bnx2x_link_report() under the same locking scheme
1244 * as a link/PHY state managing code to ensure a consistent link
1245 * reporting.
1246 */
1247
bnx2x_link_report(struct bnx2x * bp)1248 void bnx2x_link_report(struct bnx2x *bp)
1249 {
1250 bnx2x_acquire_phy_lock(bp);
1251 __bnx2x_link_report(bp);
1252 bnx2x_release_phy_lock(bp);
1253 }
1254
1255 /**
1256 * __bnx2x_link_report - report link status to OS.
1257 *
1258 * @bp: driver handle
1259 *
1260 * None atomic implementation.
1261 * Should be called under the phy_lock.
1262 */
__bnx2x_link_report(struct bnx2x * bp)1263 void __bnx2x_link_report(struct bnx2x *bp)
1264 {
1265 struct bnx2x_link_report_data cur_data;
1266
1267 if (bp->force_link_down) {
1268 bp->link_vars.link_up = 0;
1269 return;
1270 }
1271
1272 /* reread mf_cfg */
1273 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1274 bnx2x_read_mf_cfg(bp);
1275
1276 /* Read the current link report info */
1277 bnx2x_fill_report_data(bp, &cur_data);
1278
1279 /* Don't report link down or exactly the same link status twice */
1280 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1281 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1282 &bp->last_reported_link.link_report_flags) &&
1283 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1284 &cur_data.link_report_flags)))
1285 return;
1286
1287 bp->link_cnt++;
1288
1289 /* We are going to report a new link parameters now -
1290 * remember the current data for the next time.
1291 */
1292 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1293
1294 /* propagate status to VFs */
1295 if (IS_PF(bp))
1296 bnx2x_iov_link_update(bp);
1297
1298 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1299 &cur_data.link_report_flags)) {
1300 netif_carrier_off(bp->dev);
1301 netdev_err(bp->dev, "NIC Link is Down\n");
1302 return;
1303 } else {
1304 const char *duplex;
1305 const char *flow;
1306
1307 netif_carrier_on(bp->dev);
1308
1309 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1310 &cur_data.link_report_flags))
1311 duplex = "full";
1312 else
1313 duplex = "half";
1314
1315 /* Handle the FC at the end so that only these flags would be
1316 * possibly set. This way we may easily check if there is no FC
1317 * enabled.
1318 */
1319 if (cur_data.link_report_flags) {
1320 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1321 &cur_data.link_report_flags)) {
1322 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1323 &cur_data.link_report_flags))
1324 flow = "ON - receive & transmit";
1325 else
1326 flow = "ON - receive";
1327 } else {
1328 flow = "ON - transmit";
1329 }
1330 } else {
1331 flow = "none";
1332 }
1333 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1334 cur_data.line_speed, duplex, flow);
1335 }
1336 }
1337
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1338 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1339 {
1340 int i;
1341
1342 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1343 struct eth_rx_sge *sge;
1344
1345 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1346 sge->addr_hi =
1347 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1348 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349
1350 sge->addr_lo =
1351 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1352 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1353 }
1354 }
1355
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1356 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1357 struct bnx2x_fastpath *fp, int last)
1358 {
1359 int i;
1360
1361 for (i = 0; i < last; i++) {
1362 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1363 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1364 u8 *data = first_buf->data;
1365
1366 if (data == NULL) {
1367 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1368 continue;
1369 }
1370 if (tpa_info->tpa_state == BNX2X_TPA_START)
1371 dma_unmap_single(&bp->pdev->dev,
1372 dma_unmap_addr(first_buf, mapping),
1373 fp->rx_buf_size, DMA_FROM_DEVICE);
1374 bnx2x_frag_free(fp, data);
1375 first_buf->data = NULL;
1376 }
1377 }
1378
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1379 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1380 {
1381 int j;
1382
1383 for_each_rx_queue_cnic(bp, j) {
1384 struct bnx2x_fastpath *fp = &bp->fp[j];
1385
1386 fp->rx_bd_cons = 0;
1387
1388 /* Activate BD ring */
1389 /* Warning!
1390 * this will generate an interrupt (to the TSTORM)
1391 * must only be done after chip is initialized
1392 */
1393 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1394 fp->rx_sge_prod);
1395 }
1396 }
1397
bnx2x_init_rx_rings(struct bnx2x * bp)1398 void bnx2x_init_rx_rings(struct bnx2x *bp)
1399 {
1400 int func = BP_FUNC(bp);
1401 u16 ring_prod;
1402 int i, j;
1403
1404 /* Allocate TPA resources */
1405 for_each_eth_queue(bp, j) {
1406 struct bnx2x_fastpath *fp = &bp->fp[j];
1407
1408 DP(NETIF_MSG_IFUP,
1409 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1410
1411 if (fp->mode != TPA_MODE_DISABLED) {
1412 /* Fill the per-aggregation pool */
1413 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1414 struct bnx2x_agg_info *tpa_info =
1415 &fp->tpa_info[i];
1416 struct sw_rx_bd *first_buf =
1417 &tpa_info->first_buf;
1418
1419 first_buf->data =
1420 bnx2x_frag_alloc(fp, GFP_KERNEL);
1421 if (!first_buf->data) {
1422 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1423 j);
1424 bnx2x_free_tpa_pool(bp, fp, i);
1425 fp->mode = TPA_MODE_DISABLED;
1426 break;
1427 }
1428 dma_unmap_addr_set(first_buf, mapping, 0);
1429 tpa_info->tpa_state = BNX2X_TPA_STOP;
1430 }
1431
1432 /* "next page" elements initialization */
1433 bnx2x_set_next_page_sgl(fp);
1434
1435 /* set SGEs bit mask */
1436 bnx2x_init_sge_ring_bit_mask(fp);
1437
1438 /* Allocate SGEs and initialize the ring elements */
1439 for (i = 0, ring_prod = 0;
1440 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1441
1442 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1443 GFP_KERNEL) < 0) {
1444 BNX2X_ERR("was only able to allocate %d rx sges\n",
1445 i);
1446 BNX2X_ERR("disabling TPA for queue[%d]\n",
1447 j);
1448 /* Cleanup already allocated elements */
1449 bnx2x_free_rx_sge_range(bp, fp,
1450 ring_prod);
1451 bnx2x_free_tpa_pool(bp, fp,
1452 MAX_AGG_QS(bp));
1453 fp->mode = TPA_MODE_DISABLED;
1454 ring_prod = 0;
1455 break;
1456 }
1457 ring_prod = NEXT_SGE_IDX(ring_prod);
1458 }
1459
1460 fp->rx_sge_prod = ring_prod;
1461 }
1462 }
1463
1464 for_each_eth_queue(bp, j) {
1465 struct bnx2x_fastpath *fp = &bp->fp[j];
1466
1467 fp->rx_bd_cons = 0;
1468
1469 /* Activate BD ring */
1470 /* Warning!
1471 * this will generate an interrupt (to the TSTORM)
1472 * must only be done after chip is initialized
1473 */
1474 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1475 fp->rx_sge_prod);
1476
1477 if (j != 0)
1478 continue;
1479
1480 if (CHIP_IS_E1(bp)) {
1481 REG_WR(bp, BAR_USTRORM_INTMEM +
1482 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1483 U64_LO(fp->rx_comp_mapping));
1484 REG_WR(bp, BAR_USTRORM_INTMEM +
1485 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1486 U64_HI(fp->rx_comp_mapping));
1487 }
1488 }
1489 }
1490
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1491 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1492 {
1493 u8 cos;
1494 struct bnx2x *bp = fp->bp;
1495
1496 for_each_cos_in_tx_queue(fp, cos) {
1497 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1498 unsigned pkts_compl = 0, bytes_compl = 0;
1499
1500 u16 sw_prod = txdata->tx_pkt_prod;
1501 u16 sw_cons = txdata->tx_pkt_cons;
1502
1503 while (sw_cons != sw_prod) {
1504 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1505 &pkts_compl, &bytes_compl);
1506 sw_cons++;
1507 }
1508
1509 netdev_tx_reset_queue(
1510 netdev_get_tx_queue(bp->dev,
1511 txdata->txq_index));
1512 }
1513 }
1514
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1515 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1516 {
1517 int i;
1518
1519 for_each_tx_queue_cnic(bp, i) {
1520 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1521 }
1522 }
1523
bnx2x_free_tx_skbs(struct bnx2x * bp)1524 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1525 {
1526 int i;
1527
1528 for_each_eth_queue(bp, i) {
1529 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1530 }
1531 }
1532
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1533 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1534 {
1535 struct bnx2x *bp = fp->bp;
1536 int i;
1537
1538 /* ring wasn't allocated */
1539 if (fp->rx_buf_ring == NULL)
1540 return;
1541
1542 for (i = 0; i < NUM_RX_BD; i++) {
1543 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1544 u8 *data = rx_buf->data;
1545
1546 if (data == NULL)
1547 continue;
1548 dma_unmap_single(&bp->pdev->dev,
1549 dma_unmap_addr(rx_buf, mapping),
1550 fp->rx_buf_size, DMA_FROM_DEVICE);
1551
1552 rx_buf->data = NULL;
1553 bnx2x_frag_free(fp, data);
1554 }
1555 }
1556
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1557 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1558 {
1559 int j;
1560
1561 for_each_rx_queue_cnic(bp, j) {
1562 bnx2x_free_rx_bds(&bp->fp[j]);
1563 }
1564 }
1565
bnx2x_free_rx_skbs(struct bnx2x * bp)1566 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1567 {
1568 int j;
1569
1570 for_each_eth_queue(bp, j) {
1571 struct bnx2x_fastpath *fp = &bp->fp[j];
1572
1573 bnx2x_free_rx_bds(fp);
1574
1575 if (fp->mode != TPA_MODE_DISABLED)
1576 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1577 }
1578 }
1579
bnx2x_free_skbs_cnic(struct bnx2x * bp)1580 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1581 {
1582 bnx2x_free_tx_skbs_cnic(bp);
1583 bnx2x_free_rx_skbs_cnic(bp);
1584 }
1585
bnx2x_free_skbs(struct bnx2x * bp)1586 void bnx2x_free_skbs(struct bnx2x *bp)
1587 {
1588 bnx2x_free_tx_skbs(bp);
1589 bnx2x_free_rx_skbs(bp);
1590 }
1591
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1592 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1593 {
1594 /* load old values */
1595 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1596
1597 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1598 /* leave all but MAX value */
1599 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1600
1601 /* set new MAX value */
1602 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1603 & FUNC_MF_CFG_MAX_BW_MASK;
1604
1605 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1606 }
1607 }
1608
1609 /**
1610 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1611 *
1612 * @bp: driver handle
1613 * @nvecs: number of vectors to be released
1614 */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1615 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1616 {
1617 int i, offset = 0;
1618
1619 if (nvecs == offset)
1620 return;
1621
1622 /* VFs don't have a default SB */
1623 if (IS_PF(bp)) {
1624 free_irq(bp->msix_table[offset].vector, bp->dev);
1625 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1626 bp->msix_table[offset].vector);
1627 offset++;
1628 }
1629
1630 if (CNIC_SUPPORT(bp)) {
1631 if (nvecs == offset)
1632 return;
1633 offset++;
1634 }
1635
1636 for_each_eth_queue(bp, i) {
1637 if (nvecs == offset)
1638 return;
1639 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1640 i, bp->msix_table[offset].vector);
1641
1642 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1643 }
1644 }
1645
bnx2x_free_irq(struct bnx2x * bp)1646 void bnx2x_free_irq(struct bnx2x *bp)
1647 {
1648 if (bp->flags & USING_MSIX_FLAG &&
1649 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1650 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1651
1652 /* vfs don't have a default status block */
1653 if (IS_PF(bp))
1654 nvecs++;
1655
1656 bnx2x_free_msix_irqs(bp, nvecs);
1657 } else {
1658 free_irq(bp->dev->irq, bp->dev);
1659 }
1660 }
1661
bnx2x_enable_msix(struct bnx2x * bp)1662 int bnx2x_enable_msix(struct bnx2x *bp)
1663 {
1664 int msix_vec = 0, i, rc;
1665
1666 /* VFs don't have a default status block */
1667 if (IS_PF(bp)) {
1668 bp->msix_table[msix_vec].entry = msix_vec;
1669 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1670 bp->msix_table[0].entry);
1671 msix_vec++;
1672 }
1673
1674 /* Cnic requires an msix vector for itself */
1675 if (CNIC_SUPPORT(bp)) {
1676 bp->msix_table[msix_vec].entry = msix_vec;
1677 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1678 msix_vec, bp->msix_table[msix_vec].entry);
1679 msix_vec++;
1680 }
1681
1682 /* We need separate vectors for ETH queues only (not FCoE) */
1683 for_each_eth_queue(bp, i) {
1684 bp->msix_table[msix_vec].entry = msix_vec;
1685 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1686 msix_vec, msix_vec, i);
1687 msix_vec++;
1688 }
1689
1690 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1691 msix_vec);
1692
1693 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1694 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1695 /*
1696 * reconfigure number of tx/rx queues according to available
1697 * MSI-X vectors
1698 */
1699 if (rc == -ENOSPC) {
1700 /* Get by with single vector */
1701 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1702 if (rc < 0) {
1703 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1704 rc);
1705 goto no_msix;
1706 }
1707
1708 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1709 bp->flags |= USING_SINGLE_MSIX_FLAG;
1710
1711 BNX2X_DEV_INFO("set number of queues to 1\n");
1712 bp->num_ethernet_queues = 1;
1713 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1714 } else if (rc < 0) {
1715 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1716 goto no_msix;
1717 } else if (rc < msix_vec) {
1718 /* how less vectors we will have? */
1719 int diff = msix_vec - rc;
1720
1721 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1722
1723 /*
1724 * decrease number of queues by number of unallocated entries
1725 */
1726 bp->num_ethernet_queues -= diff;
1727 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1728
1729 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1730 bp->num_queues);
1731 }
1732
1733 bp->flags |= USING_MSIX_FLAG;
1734
1735 return 0;
1736
1737 no_msix:
1738 /* fall to INTx if not enough memory */
1739 if (rc == -ENOMEM)
1740 bp->flags |= DISABLE_MSI_FLAG;
1741
1742 return rc;
1743 }
1744
bnx2x_req_msix_irqs(struct bnx2x * bp)1745 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1746 {
1747 int i, rc, offset = 0;
1748
1749 /* no default status block for vf */
1750 if (IS_PF(bp)) {
1751 rc = request_irq(bp->msix_table[offset++].vector,
1752 bnx2x_msix_sp_int, 0,
1753 bp->dev->name, bp->dev);
1754 if (rc) {
1755 BNX2X_ERR("request sp irq failed\n");
1756 return -EBUSY;
1757 }
1758 }
1759
1760 if (CNIC_SUPPORT(bp))
1761 offset++;
1762
1763 for_each_eth_queue(bp, i) {
1764 struct bnx2x_fastpath *fp = &bp->fp[i];
1765 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1766 bp->dev->name, i);
1767
1768 rc = request_irq(bp->msix_table[offset].vector,
1769 bnx2x_msix_fp_int, 0, fp->name, fp);
1770 if (rc) {
1771 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1772 bp->msix_table[offset].vector, rc);
1773 bnx2x_free_msix_irqs(bp, offset);
1774 return -EBUSY;
1775 }
1776
1777 offset++;
1778 }
1779
1780 i = BNX2X_NUM_ETH_QUEUES(bp);
1781 if (IS_PF(bp)) {
1782 offset = 1 + CNIC_SUPPORT(bp);
1783 netdev_info(bp->dev,
1784 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1785 bp->msix_table[0].vector,
1786 0, bp->msix_table[offset].vector,
1787 i - 1, bp->msix_table[offset + i - 1].vector);
1788 } else {
1789 offset = CNIC_SUPPORT(bp);
1790 netdev_info(bp->dev,
1791 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1792 0, bp->msix_table[offset].vector,
1793 i - 1, bp->msix_table[offset + i - 1].vector);
1794 }
1795 return 0;
1796 }
1797
bnx2x_enable_msi(struct bnx2x * bp)1798 int bnx2x_enable_msi(struct bnx2x *bp)
1799 {
1800 int rc;
1801
1802 rc = pci_enable_msi(bp->pdev);
1803 if (rc) {
1804 BNX2X_DEV_INFO("MSI is not attainable\n");
1805 return -1;
1806 }
1807 bp->flags |= USING_MSI_FLAG;
1808
1809 return 0;
1810 }
1811
bnx2x_req_irq(struct bnx2x * bp)1812 static int bnx2x_req_irq(struct bnx2x *bp)
1813 {
1814 unsigned long flags;
1815 unsigned int irq;
1816
1817 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1818 flags = 0;
1819 else
1820 flags = IRQF_SHARED;
1821
1822 if (bp->flags & USING_MSIX_FLAG)
1823 irq = bp->msix_table[0].vector;
1824 else
1825 irq = bp->pdev->irq;
1826
1827 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1828 }
1829
bnx2x_setup_irqs(struct bnx2x * bp)1830 static int bnx2x_setup_irqs(struct bnx2x *bp)
1831 {
1832 int rc = 0;
1833 if (bp->flags & USING_MSIX_FLAG &&
1834 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1835 rc = bnx2x_req_msix_irqs(bp);
1836 if (rc)
1837 return rc;
1838 } else {
1839 rc = bnx2x_req_irq(bp);
1840 if (rc) {
1841 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1842 return rc;
1843 }
1844 if (bp->flags & USING_MSI_FLAG) {
1845 bp->dev->irq = bp->pdev->irq;
1846 netdev_info(bp->dev, "using MSI IRQ %d\n",
1847 bp->dev->irq);
1848 }
1849 if (bp->flags & USING_MSIX_FLAG) {
1850 bp->dev->irq = bp->msix_table[0].vector;
1851 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1852 bp->dev->irq);
1853 }
1854 }
1855
1856 return 0;
1857 }
1858
bnx2x_napi_enable_cnic(struct bnx2x * bp)1859 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1860 {
1861 int i;
1862
1863 for_each_rx_queue_cnic(bp, i) {
1864 napi_enable(&bnx2x_fp(bp, i, napi));
1865 }
1866 }
1867
bnx2x_napi_enable(struct bnx2x * bp)1868 static void bnx2x_napi_enable(struct bnx2x *bp)
1869 {
1870 int i;
1871
1872 for_each_eth_queue(bp, i) {
1873 napi_enable(&bnx2x_fp(bp, i, napi));
1874 }
1875 }
1876
bnx2x_napi_disable_cnic(struct bnx2x * bp)1877 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1878 {
1879 int i;
1880
1881 for_each_rx_queue_cnic(bp, i) {
1882 napi_disable(&bnx2x_fp(bp, i, napi));
1883 }
1884 }
1885
bnx2x_napi_disable(struct bnx2x * bp)1886 static void bnx2x_napi_disable(struct bnx2x *bp)
1887 {
1888 int i;
1889
1890 for_each_eth_queue(bp, i) {
1891 napi_disable(&bnx2x_fp(bp, i, napi));
1892 }
1893 }
1894
bnx2x_netif_start(struct bnx2x * bp)1895 void bnx2x_netif_start(struct bnx2x *bp)
1896 {
1897 if (netif_running(bp->dev)) {
1898 bnx2x_napi_enable(bp);
1899 if (CNIC_LOADED(bp))
1900 bnx2x_napi_enable_cnic(bp);
1901 bnx2x_int_enable(bp);
1902 if (bp->state == BNX2X_STATE_OPEN)
1903 netif_tx_wake_all_queues(bp->dev);
1904 }
1905 }
1906
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1907 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1908 {
1909 bnx2x_int_disable_sync(bp, disable_hw);
1910 bnx2x_napi_disable(bp);
1911 if (CNIC_LOADED(bp))
1912 bnx2x_napi_disable_cnic(bp);
1913 }
1914
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1915 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1916 struct net_device *sb_dev)
1917 {
1918 struct bnx2x *bp = netdev_priv(dev);
1919
1920 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1921 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1922 u16 ether_type = ntohs(hdr->h_proto);
1923
1924 /* Skip VLAN tag if present */
1925 if (ether_type == ETH_P_8021Q) {
1926 struct vlan_ethhdr *vhdr =
1927 (struct vlan_ethhdr *)skb->data;
1928
1929 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1930 }
1931
1932 /* If ethertype is FCoE or FIP - use FCoE ring */
1933 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1934 return bnx2x_fcoe_tx(bp, txq_index);
1935 }
1936
1937 /* select a non-FCoE queue */
1938 return netdev_pick_tx(dev, skb, NULL) %
1939 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1940 }
1941
bnx2x_set_num_queues(struct bnx2x * bp)1942 void bnx2x_set_num_queues(struct bnx2x *bp)
1943 {
1944 /* RSS queues */
1945 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1946
1947 /* override in STORAGE SD modes */
1948 if (IS_MF_STORAGE_ONLY(bp))
1949 bp->num_ethernet_queues = 1;
1950
1951 /* Add special queues */
1952 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1953 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1954
1955 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1956 }
1957
1958 /**
1959 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1960 *
1961 * @bp: Driver handle
1962 * @include_cnic: handle cnic case
1963 *
1964 * We currently support for at most 16 Tx queues for each CoS thus we will
1965 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1966 * bp->max_cos.
1967 *
1968 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1969 * index after all ETH L2 indices.
1970 *
1971 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1972 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1973 * 16..31,...) with indices that are not coupled with any real Tx queue.
1974 *
1975 * The proper configuration of skb->queue_mapping is handled by
1976 * bnx2x_select_queue() and __skb_tx_hash().
1977 *
1978 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1979 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1980 */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1981 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1982 {
1983 int rc, tx, rx;
1984
1985 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1986 rx = BNX2X_NUM_ETH_QUEUES(bp);
1987
1988 /* account for fcoe queue */
1989 if (include_cnic && !NO_FCOE(bp)) {
1990 rx++;
1991 tx++;
1992 }
1993
1994 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1995 if (rc) {
1996 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1997 return rc;
1998 }
1999 rc = netif_set_real_num_rx_queues(bp->dev, rx);
2000 if (rc) {
2001 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2002 return rc;
2003 }
2004
2005 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2006 tx, rx);
2007
2008 return rc;
2009 }
2010
bnx2x_set_rx_buf_size(struct bnx2x * bp)2011 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2012 {
2013 int i;
2014
2015 for_each_queue(bp, i) {
2016 struct bnx2x_fastpath *fp = &bp->fp[i];
2017 u32 mtu;
2018
2019 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2020 if (IS_FCOE_IDX(i))
2021 /*
2022 * Although there are no IP frames expected to arrive to
2023 * this ring we still want to add an
2024 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2025 * overrun attack.
2026 */
2027 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2028 else
2029 mtu = bp->dev->mtu;
2030 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2031 IP_HEADER_ALIGNMENT_PADDING +
2032 ETH_OVERHEAD +
2033 mtu +
2034 BNX2X_FW_RX_ALIGN_END;
2035 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2036 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2037 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2038 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2039 else
2040 fp->rx_frag_size = 0;
2041 }
2042 }
2043
bnx2x_init_rss(struct bnx2x * bp)2044 static int bnx2x_init_rss(struct bnx2x *bp)
2045 {
2046 int i;
2047 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2048
2049 /* Prepare the initial contents for the indirection table if RSS is
2050 * enabled
2051 */
2052 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2053 bp->rss_conf_obj.ind_table[i] =
2054 bp->fp->cl_id +
2055 ethtool_rxfh_indir_default(i, num_eth_queues);
2056
2057 /*
2058 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2059 * per-port, so if explicit configuration is needed , do it only
2060 * for a PMF.
2061 *
2062 * For 57712 and newer on the other hand it's a per-function
2063 * configuration.
2064 */
2065 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2066 }
2067
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2068 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2069 bool config_hash, bool enable)
2070 {
2071 struct bnx2x_config_rss_params params = {NULL};
2072
2073 /* Although RSS is meaningless when there is a single HW queue we
2074 * still need it enabled in order to have HW Rx hash generated.
2075 *
2076 * if (!is_eth_multi(bp))
2077 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2078 */
2079
2080 params.rss_obj = rss_obj;
2081
2082 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
2083
2084 if (enable) {
2085 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
2086
2087 /* RSS configuration */
2088 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
2089 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
2090 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
2091 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
2092 if (rss_obj->udp_rss_v4)
2093 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
2094 if (rss_obj->udp_rss_v6)
2095 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
2096
2097 if (!CHIP_IS_E1x(bp)) {
2098 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2099 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags);
2100 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags);
2101
2102 /* valid only for TUNN_MODE_GRE tunnel mode */
2103 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags);
2104 }
2105 } else {
2106 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags);
2107 }
2108
2109 /* Hash bits */
2110 params.rss_result_mask = MULTI_MASK;
2111
2112 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2113
2114 if (config_hash) {
2115 /* RSS keys */
2116 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2117 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
2118 }
2119
2120 if (IS_PF(bp))
2121 return bnx2x_config_rss(bp, ¶ms);
2122 else
2123 return bnx2x_vfpf_config_rss(bp, ¶ms);
2124 }
2125
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2126 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2127 {
2128 struct bnx2x_func_state_params func_params = {NULL};
2129
2130 /* Prepare parameters for function state transitions */
2131 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2132
2133 func_params.f_obj = &bp->func_obj;
2134 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2135
2136 func_params.params.hw_init.load_phase = load_code;
2137
2138 return bnx2x_func_state_change(bp, &func_params);
2139 }
2140
2141 /*
2142 * Cleans the object that have internal lists without sending
2143 * ramrods. Should be run when interrupts are disabled.
2144 */
bnx2x_squeeze_objects(struct bnx2x * bp)2145 void bnx2x_squeeze_objects(struct bnx2x *bp)
2146 {
2147 int rc;
2148 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2149 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2150 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2151
2152 /***************** Cleanup MACs' object first *************************/
2153
2154 /* Wait for completion of requested */
2155 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2156 /* Perform a dry cleanup */
2157 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2158
2159 /* Clean ETH primary MAC */
2160 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2161 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2162 &ramrod_flags);
2163 if (rc != 0)
2164 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2165
2166 /* Cleanup UC list */
2167 vlan_mac_flags = 0;
2168 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2169 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2170 &ramrod_flags);
2171 if (rc != 0)
2172 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2173
2174 /***************** Now clean mcast object *****************************/
2175 rparam.mcast_obj = &bp->mcast_obj;
2176 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2177
2178 /* Add a DEL command... - Since we're doing a driver cleanup only,
2179 * we take a lock surrounding both the initial send and the CONTs,
2180 * as we don't want a true completion to disrupt us in the middle.
2181 */
2182 netif_addr_lock_bh(bp->dev);
2183 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2184 if (rc < 0)
2185 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2186 rc);
2187
2188 /* ...and wait until all pending commands are cleared */
2189 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2190 while (rc != 0) {
2191 if (rc < 0) {
2192 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2193 rc);
2194 netif_addr_unlock_bh(bp->dev);
2195 return;
2196 }
2197
2198 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2199 }
2200 netif_addr_unlock_bh(bp->dev);
2201 }
2202
2203 #ifndef BNX2X_STOP_ON_ERROR
2204 #define LOAD_ERROR_EXIT(bp, label) \
2205 do { \
2206 (bp)->state = BNX2X_STATE_ERROR; \
2207 goto label; \
2208 } while (0)
2209
2210 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2211 do { \
2212 bp->cnic_loaded = false; \
2213 goto label; \
2214 } while (0)
2215 #else /*BNX2X_STOP_ON_ERROR*/
2216 #define LOAD_ERROR_EXIT(bp, label) \
2217 do { \
2218 (bp)->state = BNX2X_STATE_ERROR; \
2219 (bp)->panic = 1; \
2220 return -EBUSY; \
2221 } while (0)
2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2223 do { \
2224 bp->cnic_loaded = false; \
2225 (bp)->panic = 1; \
2226 return -EBUSY; \
2227 } while (0)
2228 #endif /*BNX2X_STOP_ON_ERROR*/
2229
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2230 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2231 {
2232 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2233 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2234 return;
2235 }
2236
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2237 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2238 {
2239 int num_groups, vf_headroom = 0;
2240 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2241
2242 /* number of queues for statistics is number of eth queues + FCoE */
2243 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2244
2245 /* Total number of FW statistics requests =
2246 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2247 * and fcoe l2 queue) stats + num of queues (which includes another 1
2248 * for fcoe l2 queue if applicable)
2249 */
2250 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2251
2252 /* vf stats appear in the request list, but their data is allocated by
2253 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2254 * it is used to determine where to place the vf stats queries in the
2255 * request struct
2256 */
2257 if (IS_SRIOV(bp))
2258 vf_headroom = bnx2x_vf_headroom(bp);
2259
2260 /* Request is built from stats_query_header and an array of
2261 * stats_query_cmd_group each of which contains
2262 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2263 * configured in the stats_query_header.
2264 */
2265 num_groups =
2266 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2267 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2268 1 : 0));
2269
2270 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2271 bp->fw_stats_num, vf_headroom, num_groups);
2272 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2273 num_groups * sizeof(struct stats_query_cmd_group);
2274
2275 /* Data for statistics requests + stats_counter
2276 * stats_counter holds per-STORM counters that are incremented
2277 * when STORM has finished with the current request.
2278 * memory for FCoE offloaded statistics are counted anyway,
2279 * even if they will not be sent.
2280 * VF stats are not accounted for here as the data of VF stats is stored
2281 * in memory allocated by the VF, not here.
2282 */
2283 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2284 sizeof(struct per_pf_stats) +
2285 sizeof(struct fcoe_statistics_params) +
2286 sizeof(struct per_queue_stats) * num_queue_stats +
2287 sizeof(struct stats_counter);
2288
2289 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2290 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2291 if (!bp->fw_stats)
2292 goto alloc_mem_err;
2293
2294 /* Set shortcuts */
2295 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2296 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2297 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2298 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2299 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2300 bp->fw_stats_req_sz;
2301
2302 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2303 U64_HI(bp->fw_stats_req_mapping),
2304 U64_LO(bp->fw_stats_req_mapping));
2305 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2306 U64_HI(bp->fw_stats_data_mapping),
2307 U64_LO(bp->fw_stats_data_mapping));
2308 return 0;
2309
2310 alloc_mem_err:
2311 bnx2x_free_fw_stats_mem(bp);
2312 BNX2X_ERR("Can't allocate FW stats memory\n");
2313 return -ENOMEM;
2314 }
2315
2316 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2317 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2318 {
2319 u32 param;
2320
2321 /* init fw_seq */
2322 bp->fw_seq =
2323 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2324 DRV_MSG_SEQ_NUMBER_MASK);
2325 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2326
2327 /* Get current FW pulse sequence */
2328 bp->fw_drv_pulse_wr_seq =
2329 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2330 DRV_PULSE_SEQ_MASK);
2331 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2332
2333 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2334
2335 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2336 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2337
2338 /* load request */
2339 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2340
2341 /* if mcp fails to respond we must abort */
2342 if (!(*load_code)) {
2343 BNX2X_ERR("MCP response failure, aborting\n");
2344 return -EBUSY;
2345 }
2346
2347 /* If mcp refused (e.g. other port is in diagnostic mode) we
2348 * must abort
2349 */
2350 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2351 BNX2X_ERR("MCP refused load request, aborting\n");
2352 return -EBUSY;
2353 }
2354 return 0;
2355 }
2356
2357 /* check whether another PF has already loaded FW to chip. In
2358 * virtualized environments a pf from another VM may have already
2359 * initialized the device including loading FW
2360 */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2361 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2362 {
2363 /* is another pf loaded on this engine? */
2364 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2365 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2366 /* build my FW version dword */
2367 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2368 (BCM_5710_FW_MINOR_VERSION << 8) +
2369 (BCM_5710_FW_REVISION_VERSION << 16) +
2370 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2371
2372 /* read loaded FW from chip */
2373 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2374
2375 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2376 loaded_fw, my_fw);
2377
2378 /* abort nic load if version mismatch */
2379 if (my_fw != loaded_fw) {
2380 if (print_err)
2381 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2382 loaded_fw, my_fw);
2383 else
2384 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2385 loaded_fw, my_fw);
2386 return -EBUSY;
2387 }
2388 }
2389 return 0;
2390 }
2391
2392 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2393 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2394 {
2395 int path = BP_PATH(bp);
2396
2397 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2398 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2399 bnx2x_load_count[path][2]);
2400 bnx2x_load_count[path][0]++;
2401 bnx2x_load_count[path][1 + port]++;
2402 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2403 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2404 bnx2x_load_count[path][2]);
2405 if (bnx2x_load_count[path][0] == 1)
2406 return FW_MSG_CODE_DRV_LOAD_COMMON;
2407 else if (bnx2x_load_count[path][1 + port] == 1)
2408 return FW_MSG_CODE_DRV_LOAD_PORT;
2409 else
2410 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2411 }
2412
2413 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2414 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2415 {
2416 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2417 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2418 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2419 bp->port.pmf = 1;
2420 /* We need the barrier to ensure the ordering between the
2421 * writing to bp->port.pmf here and reading it from the
2422 * bnx2x_periodic_task().
2423 */
2424 smp_mb();
2425 } else {
2426 bp->port.pmf = 0;
2427 }
2428
2429 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2430 }
2431
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2432 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2433 {
2434 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2435 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2436 (bp->common.shmem2_base)) {
2437 if (SHMEM2_HAS(bp, dcc_support))
2438 SHMEM2_WR(bp, dcc_support,
2439 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2440 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2441 if (SHMEM2_HAS(bp, afex_driver_support))
2442 SHMEM2_WR(bp, afex_driver_support,
2443 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2444 }
2445
2446 /* Set AFEX default VLAN tag to an invalid value */
2447 bp->afex_def_vlan_tag = -1;
2448 }
2449
2450 /**
2451 * bnx2x_bz_fp - zero content of the fastpath structure.
2452 *
2453 * @bp: driver handle
2454 * @index: fastpath index to be zeroed
2455 *
2456 * Makes sure the contents of the bp->fp[index].napi is kept
2457 * intact.
2458 */
bnx2x_bz_fp(struct bnx2x * bp,int index)2459 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2460 {
2461 struct bnx2x_fastpath *fp = &bp->fp[index];
2462 int cos;
2463 struct napi_struct orig_napi = fp->napi;
2464 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2465
2466 /* bzero bnx2x_fastpath contents */
2467 if (fp->tpa_info)
2468 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2469 sizeof(struct bnx2x_agg_info));
2470 memset(fp, 0, sizeof(*fp));
2471
2472 /* Restore the NAPI object as it has been already initialized */
2473 fp->napi = orig_napi;
2474 fp->tpa_info = orig_tpa_info;
2475 fp->bp = bp;
2476 fp->index = index;
2477 if (IS_ETH_FP(fp))
2478 fp->max_cos = bp->max_cos;
2479 else
2480 /* Special queues support only one CoS */
2481 fp->max_cos = 1;
2482
2483 /* Init txdata pointers */
2484 if (IS_FCOE_FP(fp))
2485 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2486 if (IS_ETH_FP(fp))
2487 for_each_cos_in_tx_queue(fp, cos)
2488 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2489 BNX2X_NUM_ETH_QUEUES(bp) + index];
2490
2491 /* set the tpa flag for each queue. The tpa flag determines the queue
2492 * minimal size so it must be set prior to queue memory allocation
2493 */
2494 if (bp->dev->features & NETIF_F_LRO)
2495 fp->mode = TPA_MODE_LRO;
2496 else if (bp->dev->features & NETIF_F_GRO_HW)
2497 fp->mode = TPA_MODE_GRO;
2498 else
2499 fp->mode = TPA_MODE_DISABLED;
2500
2501 /* We don't want TPA if it's disabled in bp
2502 * or if this is an FCoE L2 ring.
2503 */
2504 if (bp->disable_tpa || IS_FCOE_FP(fp))
2505 fp->mode = TPA_MODE_DISABLED;
2506 }
2507
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2508 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2509 {
2510 u32 cur;
2511
2512 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2513 return;
2514
2515 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2516 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2517 cur, state);
2518
2519 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2520 }
2521
bnx2x_load_cnic(struct bnx2x * bp)2522 int bnx2x_load_cnic(struct bnx2x *bp)
2523 {
2524 int i, rc, port = BP_PORT(bp);
2525
2526 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2527
2528 mutex_init(&bp->cnic_mutex);
2529
2530 if (IS_PF(bp)) {
2531 rc = bnx2x_alloc_mem_cnic(bp);
2532 if (rc) {
2533 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2534 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2535 }
2536 }
2537
2538 rc = bnx2x_alloc_fp_mem_cnic(bp);
2539 if (rc) {
2540 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2541 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2542 }
2543
2544 /* Update the number of queues with the cnic queues */
2545 rc = bnx2x_set_real_num_queues(bp, 1);
2546 if (rc) {
2547 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2548 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2549 }
2550
2551 /* Add all CNIC NAPI objects */
2552 bnx2x_add_all_napi_cnic(bp);
2553 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2554 bnx2x_napi_enable_cnic(bp);
2555
2556 rc = bnx2x_init_hw_func_cnic(bp);
2557 if (rc)
2558 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2559
2560 bnx2x_nic_init_cnic(bp);
2561
2562 if (IS_PF(bp)) {
2563 /* Enable Timer scan */
2564 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2565
2566 /* setup cnic queues */
2567 for_each_cnic_queue(bp, i) {
2568 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2569 if (rc) {
2570 BNX2X_ERR("Queue setup failed\n");
2571 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2572 }
2573 }
2574 }
2575
2576 /* Initialize Rx filter. */
2577 bnx2x_set_rx_mode_inner(bp);
2578
2579 /* re-read iscsi info */
2580 bnx2x_get_iscsi_info(bp);
2581 bnx2x_setup_cnic_irq_info(bp);
2582 bnx2x_setup_cnic_info(bp);
2583 bp->cnic_loaded = true;
2584 if (bp->state == BNX2X_STATE_OPEN)
2585 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2586
2587 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2588
2589 return 0;
2590
2591 #ifndef BNX2X_STOP_ON_ERROR
2592 load_error_cnic2:
2593 /* Disable Timer scan */
2594 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2595
2596 load_error_cnic1:
2597 bnx2x_napi_disable_cnic(bp);
2598 /* Update the number of queues without the cnic queues */
2599 if (bnx2x_set_real_num_queues(bp, 0))
2600 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2601 load_error_cnic0:
2602 BNX2X_ERR("CNIC-related load failed\n");
2603 bnx2x_free_fp_mem_cnic(bp);
2604 bnx2x_free_mem_cnic(bp);
2605 return rc;
2606 #endif /* ! BNX2X_STOP_ON_ERROR */
2607 }
2608
2609 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2610 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2611 {
2612 int port = BP_PORT(bp);
2613 int i, rc = 0, load_code = 0;
2614
2615 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2616 DP(NETIF_MSG_IFUP,
2617 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2618
2619 #ifdef BNX2X_STOP_ON_ERROR
2620 if (unlikely(bp->panic)) {
2621 BNX2X_ERR("Can't load NIC when there is panic\n");
2622 return -EPERM;
2623 }
2624 #endif
2625
2626 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2627
2628 /* zero the structure w/o any lock, before SP handler is initialized */
2629 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2630 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2631 &bp->last_reported_link.link_report_flags);
2632
2633 if (IS_PF(bp))
2634 /* must be called before memory allocation and HW init */
2635 bnx2x_ilt_set_info(bp);
2636
2637 /*
2638 * Zero fastpath structures preserving invariants like napi, which are
2639 * allocated only once, fp index, max_cos, bp pointer.
2640 * Also set fp->mode and txdata_ptr.
2641 */
2642 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2643 for_each_queue(bp, i)
2644 bnx2x_bz_fp(bp, i);
2645 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2646 bp->num_cnic_queues) *
2647 sizeof(struct bnx2x_fp_txdata));
2648
2649 bp->fcoe_init = false;
2650
2651 /* Set the receive queues buffer size */
2652 bnx2x_set_rx_buf_size(bp);
2653
2654 if (IS_PF(bp)) {
2655 rc = bnx2x_alloc_mem(bp);
2656 if (rc) {
2657 BNX2X_ERR("Unable to allocate bp memory\n");
2658 return rc;
2659 }
2660 }
2661
2662 /* need to be done after alloc mem, since it's self adjusting to amount
2663 * of memory available for RSS queues
2664 */
2665 rc = bnx2x_alloc_fp_mem(bp);
2666 if (rc) {
2667 BNX2X_ERR("Unable to allocate memory for fps\n");
2668 LOAD_ERROR_EXIT(bp, load_error0);
2669 }
2670
2671 /* Allocated memory for FW statistics */
2672 if (bnx2x_alloc_fw_stats_mem(bp))
2673 LOAD_ERROR_EXIT(bp, load_error0);
2674
2675 /* request pf to initialize status blocks */
2676 if (IS_VF(bp)) {
2677 rc = bnx2x_vfpf_init(bp);
2678 if (rc)
2679 LOAD_ERROR_EXIT(bp, load_error0);
2680 }
2681
2682 /* As long as bnx2x_alloc_mem() may possibly update
2683 * bp->num_queues, bnx2x_set_real_num_queues() should always
2684 * come after it. At this stage cnic queues are not counted.
2685 */
2686 rc = bnx2x_set_real_num_queues(bp, 0);
2687 if (rc) {
2688 BNX2X_ERR("Unable to set real_num_queues\n");
2689 LOAD_ERROR_EXIT(bp, load_error0);
2690 }
2691
2692 /* configure multi cos mappings in kernel.
2693 * this configuration may be overridden by a multi class queue
2694 * discipline or by a dcbx negotiation result.
2695 */
2696 bnx2x_setup_tc(bp->dev, bp->max_cos);
2697
2698 /* Add all NAPI objects */
2699 bnx2x_add_all_napi(bp);
2700 DP(NETIF_MSG_IFUP, "napi added\n");
2701 bnx2x_napi_enable(bp);
2702
2703 if (IS_PF(bp)) {
2704 /* set pf load just before approaching the MCP */
2705 bnx2x_set_pf_load(bp);
2706
2707 /* if mcp exists send load request and analyze response */
2708 if (!BP_NOMCP(bp)) {
2709 /* attempt to load pf */
2710 rc = bnx2x_nic_load_request(bp, &load_code);
2711 if (rc)
2712 LOAD_ERROR_EXIT(bp, load_error1);
2713
2714 /* what did mcp say? */
2715 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2716 if (rc) {
2717 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2718 LOAD_ERROR_EXIT(bp, load_error2);
2719 }
2720 } else {
2721 load_code = bnx2x_nic_load_no_mcp(bp, port);
2722 }
2723
2724 /* mark pmf if applicable */
2725 bnx2x_nic_load_pmf(bp, load_code);
2726
2727 /* Init Function state controlling object */
2728 bnx2x__init_func_obj(bp);
2729
2730 /* Initialize HW */
2731 rc = bnx2x_init_hw(bp, load_code);
2732 if (rc) {
2733 BNX2X_ERR("HW init failed, aborting\n");
2734 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2735 LOAD_ERROR_EXIT(bp, load_error2);
2736 }
2737 }
2738
2739 bnx2x_pre_irq_nic_init(bp);
2740
2741 /* Connect to IRQs */
2742 rc = bnx2x_setup_irqs(bp);
2743 if (rc) {
2744 BNX2X_ERR("setup irqs failed\n");
2745 if (IS_PF(bp))
2746 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2747 LOAD_ERROR_EXIT(bp, load_error2);
2748 }
2749
2750 /* Init per-function objects */
2751 if (IS_PF(bp)) {
2752 /* Setup NIC internals and enable interrupts */
2753 bnx2x_post_irq_nic_init(bp, load_code);
2754
2755 bnx2x_init_bp_objs(bp);
2756 bnx2x_iov_nic_init(bp);
2757
2758 /* Set AFEX default VLAN tag to an invalid value */
2759 bp->afex_def_vlan_tag = -1;
2760 bnx2x_nic_load_afex_dcc(bp, load_code);
2761 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2762 rc = bnx2x_func_start(bp);
2763 if (rc) {
2764 BNX2X_ERR("Function start failed!\n");
2765 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2766
2767 LOAD_ERROR_EXIT(bp, load_error3);
2768 }
2769
2770 /* Send LOAD_DONE command to MCP */
2771 if (!BP_NOMCP(bp)) {
2772 load_code = bnx2x_fw_command(bp,
2773 DRV_MSG_CODE_LOAD_DONE, 0);
2774 if (!load_code) {
2775 BNX2X_ERR("MCP response failure, aborting\n");
2776 rc = -EBUSY;
2777 LOAD_ERROR_EXIT(bp, load_error3);
2778 }
2779 }
2780
2781 /* initialize FW coalescing state machines in RAM */
2782 bnx2x_update_coalesce(bp);
2783 }
2784
2785 /* setup the leading queue */
2786 rc = bnx2x_setup_leading(bp);
2787 if (rc) {
2788 BNX2X_ERR("Setup leading failed!\n");
2789 LOAD_ERROR_EXIT(bp, load_error3);
2790 }
2791
2792 /* set up the rest of the queues */
2793 for_each_nondefault_eth_queue(bp, i) {
2794 if (IS_PF(bp))
2795 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2796 else /* VF */
2797 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2798 if (rc) {
2799 BNX2X_ERR("Queue %d setup failed\n", i);
2800 LOAD_ERROR_EXIT(bp, load_error3);
2801 }
2802 }
2803
2804 /* setup rss */
2805 rc = bnx2x_init_rss(bp);
2806 if (rc) {
2807 BNX2X_ERR("PF RSS init failed\n");
2808 LOAD_ERROR_EXIT(bp, load_error3);
2809 }
2810
2811 /* Now when Clients are configured we are ready to work */
2812 bp->state = BNX2X_STATE_OPEN;
2813
2814 /* Configure a ucast MAC */
2815 if (IS_PF(bp))
2816 rc = bnx2x_set_eth_mac(bp, true);
2817 else /* vf */
2818 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2819 true);
2820 if (rc) {
2821 BNX2X_ERR("Setting Ethernet MAC failed\n");
2822 LOAD_ERROR_EXIT(bp, load_error3);
2823 }
2824
2825 if (IS_PF(bp) && bp->pending_max) {
2826 bnx2x_update_max_mf_config(bp, bp->pending_max);
2827 bp->pending_max = 0;
2828 }
2829
2830 bp->force_link_down = false;
2831 if (bp->port.pmf) {
2832 rc = bnx2x_initial_phy_init(bp, load_mode);
2833 if (rc)
2834 LOAD_ERROR_EXIT(bp, load_error3);
2835 }
2836 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2837
2838 /* Start fast path */
2839
2840 /* Re-configure vlan filters */
2841 rc = bnx2x_vlan_reconfigure_vid(bp);
2842 if (rc)
2843 LOAD_ERROR_EXIT(bp, load_error3);
2844
2845 /* Initialize Rx filter. */
2846 bnx2x_set_rx_mode_inner(bp);
2847
2848 if (bp->flags & PTP_SUPPORTED) {
2849 bnx2x_register_phc(bp);
2850 bnx2x_init_ptp(bp);
2851 bnx2x_configure_ptp_filters(bp);
2852 }
2853 /* Start Tx */
2854 switch (load_mode) {
2855 case LOAD_NORMAL:
2856 /* Tx queue should be only re-enabled */
2857 netif_tx_wake_all_queues(bp->dev);
2858 break;
2859
2860 case LOAD_OPEN:
2861 netif_tx_start_all_queues(bp->dev);
2862 smp_mb__after_atomic();
2863 break;
2864
2865 case LOAD_DIAG:
2866 case LOAD_LOOPBACK_EXT:
2867 bp->state = BNX2X_STATE_DIAG;
2868 break;
2869
2870 default:
2871 break;
2872 }
2873
2874 if (bp->port.pmf)
2875 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2876 else
2877 bnx2x__link_status_update(bp);
2878
2879 /* start the timer */
2880 mod_timer(&bp->timer, jiffies + bp->current_interval);
2881
2882 if (CNIC_ENABLED(bp))
2883 bnx2x_load_cnic(bp);
2884
2885 if (IS_PF(bp))
2886 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2887
2888 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2889 /* mark driver is loaded in shmem2 */
2890 u32 val;
2891 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2892 val &= ~DRV_FLAGS_MTU_MASK;
2893 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2894 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2895 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2896 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2897 }
2898
2899 /* Wait for all pending SP commands to complete */
2900 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2901 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2902 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2903 return -EBUSY;
2904 }
2905
2906 /* Update driver data for On-Chip MFW dump. */
2907 if (IS_PF(bp))
2908 bnx2x_update_mfw_dump(bp);
2909
2910 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2911 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2912 bnx2x_dcbx_init(bp, false);
2913
2914 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2915 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2916
2917 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2918
2919 return 0;
2920
2921 #ifndef BNX2X_STOP_ON_ERROR
2922 load_error3:
2923 if (IS_PF(bp)) {
2924 bnx2x_int_disable_sync(bp, 1);
2925
2926 /* Clean queueable objects */
2927 bnx2x_squeeze_objects(bp);
2928 }
2929
2930 /* Free SKBs, SGEs, TPA pool and driver internals */
2931 bnx2x_free_skbs(bp);
2932 for_each_rx_queue(bp, i)
2933 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2934
2935 /* Release IRQs */
2936 bnx2x_free_irq(bp);
2937 load_error2:
2938 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2939 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2940 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2941 }
2942
2943 bp->port.pmf = 0;
2944 load_error1:
2945 bnx2x_napi_disable(bp);
2946 bnx2x_del_all_napi(bp);
2947
2948 /* clear pf_load status, as it was already set */
2949 if (IS_PF(bp))
2950 bnx2x_clear_pf_load(bp);
2951 load_error0:
2952 bnx2x_free_fw_stats_mem(bp);
2953 bnx2x_free_fp_mem(bp);
2954 bnx2x_free_mem(bp);
2955
2956 return rc;
2957 #endif /* ! BNX2X_STOP_ON_ERROR */
2958 }
2959
bnx2x_drain_tx_queues(struct bnx2x * bp)2960 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2961 {
2962 u8 rc = 0, cos, i;
2963
2964 /* Wait until tx fastpath tasks complete */
2965 for_each_tx_queue(bp, i) {
2966 struct bnx2x_fastpath *fp = &bp->fp[i];
2967
2968 for_each_cos_in_tx_queue(fp, cos)
2969 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2970 if (rc)
2971 return rc;
2972 }
2973 return 0;
2974 }
2975
2976 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2977 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2978 {
2979 int i;
2980 bool global = false;
2981
2982 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2983
2984 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2985 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2986
2987 /* mark driver is unloaded in shmem2 */
2988 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2989 u32 val;
2990 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2991 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2992 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2993 }
2994
2995 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2996 (bp->state == BNX2X_STATE_CLOSED ||
2997 bp->state == BNX2X_STATE_ERROR)) {
2998 /* We can get here if the driver has been unloaded
2999 * during parity error recovery and is either waiting for a
3000 * leader to complete or for other functions to unload and
3001 * then ifdown has been issued. In this case we want to
3002 * unload and let other functions to complete a recovery
3003 * process.
3004 */
3005 bp->recovery_state = BNX2X_RECOVERY_DONE;
3006 bp->is_leader = 0;
3007 bnx2x_release_leader_lock(bp);
3008 smp_mb();
3009
3010 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3011 BNX2X_ERR("Can't unload in closed or error state\n");
3012 return -EINVAL;
3013 }
3014
3015 /* Nothing to do during unload if previous bnx2x_nic_load()
3016 * have not completed successfully - all resources are released.
3017 *
3018 * we can get here only after unsuccessful ndo_* callback, during which
3019 * dev->IFF_UP flag is still on.
3020 */
3021 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3022 return 0;
3023
3024 /* It's important to set the bp->state to the value different from
3025 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3026 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3027 */
3028 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3029 smp_mb();
3030
3031 /* indicate to VFs that the PF is going down */
3032 bnx2x_iov_channel_down(bp);
3033
3034 if (CNIC_LOADED(bp))
3035 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3036
3037 /* Stop Tx */
3038 bnx2x_tx_disable(bp);
3039 netdev_reset_tc(bp->dev);
3040
3041 bp->rx_mode = BNX2X_RX_MODE_NONE;
3042
3043 del_timer_sync(&bp->timer);
3044
3045 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3046 /* Set ALWAYS_ALIVE bit in shmem */
3047 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3048 bnx2x_drv_pulse(bp);
3049 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3050 bnx2x_save_statistics(bp);
3051 }
3052
3053 /* wait till consumers catch up with producers in all queues.
3054 * If we're recovering, FW can't write to host so no reason
3055 * to wait for the queues to complete all Tx.
3056 */
3057 if (unload_mode != UNLOAD_RECOVERY)
3058 bnx2x_drain_tx_queues(bp);
3059
3060 /* if VF indicate to PF this function is going down (PF will delete sp
3061 * elements and clear initializations
3062 */
3063 if (IS_VF(bp)) {
3064 bnx2x_clear_vlan_info(bp);
3065 bnx2x_vfpf_close_vf(bp);
3066 } else if (unload_mode != UNLOAD_RECOVERY) {
3067 /* if this is a normal/close unload need to clean up chip*/
3068 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3069 } else {
3070 /* Send the UNLOAD_REQUEST to the MCP */
3071 bnx2x_send_unload_req(bp, unload_mode);
3072
3073 /* Prevent transactions to host from the functions on the
3074 * engine that doesn't reset global blocks in case of global
3075 * attention once global blocks are reset and gates are opened
3076 * (the engine which leader will perform the recovery
3077 * last).
3078 */
3079 if (!CHIP_IS_E1x(bp))
3080 bnx2x_pf_disable(bp);
3081
3082 /* Disable HW interrupts, NAPI */
3083 bnx2x_netif_stop(bp, 1);
3084 /* Delete all NAPI objects */
3085 bnx2x_del_all_napi(bp);
3086 if (CNIC_LOADED(bp))
3087 bnx2x_del_all_napi_cnic(bp);
3088 /* Release IRQs */
3089 bnx2x_free_irq(bp);
3090
3091 /* Report UNLOAD_DONE to MCP */
3092 bnx2x_send_unload_done(bp, false);
3093 }
3094
3095 /*
3096 * At this stage no more interrupts will arrive so we may safely clean
3097 * the queueable objects here in case they failed to get cleaned so far.
3098 */
3099 if (IS_PF(bp))
3100 bnx2x_squeeze_objects(bp);
3101
3102 /* There should be no more pending SP commands at this stage */
3103 bp->sp_state = 0;
3104
3105 bp->port.pmf = 0;
3106
3107 /* clear pending work in rtnl task */
3108 bp->sp_rtnl_state = 0;
3109 smp_mb();
3110
3111 /* Free SKBs, SGEs, TPA pool and driver internals */
3112 bnx2x_free_skbs(bp);
3113 if (CNIC_LOADED(bp))
3114 bnx2x_free_skbs_cnic(bp);
3115 for_each_rx_queue(bp, i)
3116 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3117
3118 bnx2x_free_fp_mem(bp);
3119 if (CNIC_LOADED(bp))
3120 bnx2x_free_fp_mem_cnic(bp);
3121
3122 if (IS_PF(bp)) {
3123 if (CNIC_LOADED(bp))
3124 bnx2x_free_mem_cnic(bp);
3125 }
3126 bnx2x_free_mem(bp);
3127
3128 bp->state = BNX2X_STATE_CLOSED;
3129 bp->cnic_loaded = false;
3130
3131 /* Clear driver version indication in shmem */
3132 if (IS_PF(bp) && !BP_NOMCP(bp))
3133 bnx2x_update_mng_version(bp);
3134
3135 /* Check if there are pending parity attentions. If there are - set
3136 * RECOVERY_IN_PROGRESS.
3137 */
3138 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3139 bnx2x_set_reset_in_progress(bp);
3140
3141 /* Set RESET_IS_GLOBAL if needed */
3142 if (global)
3143 bnx2x_set_reset_global(bp);
3144 }
3145
3146 /* The last driver must disable a "close the gate" if there is no
3147 * parity attention or "process kill" pending.
3148 */
3149 if (IS_PF(bp) &&
3150 !bnx2x_clear_pf_load(bp) &&
3151 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3152 bnx2x_disable_close_the_gate(bp);
3153
3154 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3155
3156 return 0;
3157 }
3158
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3159 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3160 {
3161 u16 pmcsr;
3162
3163 /* If there is no power capability, silently succeed */
3164 if (!bp->pdev->pm_cap) {
3165 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3166 return 0;
3167 }
3168
3169 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3170
3171 switch (state) {
3172 case PCI_D0:
3173 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3174 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3175 PCI_PM_CTRL_PME_STATUS));
3176
3177 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3178 /* delay required during transition out of D3hot */
3179 msleep(20);
3180 break;
3181
3182 case PCI_D3hot:
3183 /* If there are other clients above don't
3184 shut down the power */
3185 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3186 return 0;
3187 /* Don't shut down the power for emulation and FPGA */
3188 if (CHIP_REV_IS_SLOW(bp))
3189 return 0;
3190
3191 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3192 pmcsr |= 3;
3193
3194 if (bp->wol)
3195 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3196
3197 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3198 pmcsr);
3199
3200 /* No more memory access after this point until
3201 * device is brought back to D0.
3202 */
3203 break;
3204
3205 default:
3206 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3207 return -EINVAL;
3208 }
3209 return 0;
3210 }
3211
3212 /*
3213 * net_device service functions
3214 */
bnx2x_poll(struct napi_struct * napi,int budget)3215 static int bnx2x_poll(struct napi_struct *napi, int budget)
3216 {
3217 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3218 napi);
3219 struct bnx2x *bp = fp->bp;
3220 int rx_work_done;
3221 u8 cos;
3222
3223 #ifdef BNX2X_STOP_ON_ERROR
3224 if (unlikely(bp->panic)) {
3225 napi_complete(napi);
3226 return 0;
3227 }
3228 #endif
3229 for_each_cos_in_tx_queue(fp, cos)
3230 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3231 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3232
3233 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3234
3235 if (rx_work_done < budget) {
3236 /* No need to update SB for FCoE L2 ring as long as
3237 * it's connected to the default SB and the SB
3238 * has been updated when NAPI was scheduled.
3239 */
3240 if (IS_FCOE_FP(fp)) {
3241 napi_complete_done(napi, rx_work_done);
3242 } else {
3243 bnx2x_update_fpsb_idx(fp);
3244 /* bnx2x_has_rx_work() reads the status block,
3245 * thus we need to ensure that status block indices
3246 * have been actually read (bnx2x_update_fpsb_idx)
3247 * prior to this check (bnx2x_has_rx_work) so that
3248 * we won't write the "newer" value of the status block
3249 * to IGU (if there was a DMA right after
3250 * bnx2x_has_rx_work and if there is no rmb, the memory
3251 * reading (bnx2x_update_fpsb_idx) may be postponed
3252 * to right before bnx2x_ack_sb). In this case there
3253 * will never be another interrupt until there is
3254 * another update of the status block, while there
3255 * is still unhandled work.
3256 */
3257 rmb();
3258
3259 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3260 if (napi_complete_done(napi, rx_work_done)) {
3261 /* Re-enable interrupts */
3262 DP(NETIF_MSG_RX_STATUS,
3263 "Update index to %d\n", fp->fp_hc_idx);
3264 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3265 le16_to_cpu(fp->fp_hc_idx),
3266 IGU_INT_ENABLE, 1);
3267 }
3268 } else {
3269 rx_work_done = budget;
3270 }
3271 }
3272 }
3273
3274 return rx_work_done;
3275 }
3276
3277 /* we split the first BD into headers and data BDs
3278 * to ease the pain of our fellow microcode engineers
3279 * we use one mapping for both BDs
3280 */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3281 static u16 bnx2x_tx_split(struct bnx2x *bp,
3282 struct bnx2x_fp_txdata *txdata,
3283 struct sw_tx_bd *tx_buf,
3284 struct eth_tx_start_bd **tx_bd, u16 hlen,
3285 u16 bd_prod)
3286 {
3287 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3288 struct eth_tx_bd *d_tx_bd;
3289 dma_addr_t mapping;
3290 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3291
3292 /* first fix first BD */
3293 h_tx_bd->nbytes = cpu_to_le16(hlen);
3294
3295 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3296 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3297
3298 /* now get a new data BD
3299 * (after the pbd) and fill it */
3300 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3301 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3302
3303 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3304 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3305
3306 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3307 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3308 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3309
3310 /* this marks the BD as one that has no individual mapping */
3311 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3312
3313 DP(NETIF_MSG_TX_QUEUED,
3314 "TSO split data size is %d (%x:%x)\n",
3315 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3316
3317 /* update tx_bd */
3318 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3319
3320 return bd_prod;
3321 }
3322
3323 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3324 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3325 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3326 {
3327 __sum16 tsum = (__force __sum16) csum;
3328
3329 if (fix > 0)
3330 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3331 csum_partial(t_header - fix, fix, 0)));
3332
3333 else if (fix < 0)
3334 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3335 csum_partial(t_header, -fix, 0)));
3336
3337 return bswab16(tsum);
3338 }
3339
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3340 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3341 {
3342 u32 rc;
3343 __u8 prot = 0;
3344 __be16 protocol;
3345
3346 if (skb->ip_summed != CHECKSUM_PARTIAL)
3347 return XMIT_PLAIN;
3348
3349 protocol = vlan_get_protocol(skb);
3350 if (protocol == htons(ETH_P_IPV6)) {
3351 rc = XMIT_CSUM_V6;
3352 prot = ipv6_hdr(skb)->nexthdr;
3353 } else {
3354 rc = XMIT_CSUM_V4;
3355 prot = ip_hdr(skb)->protocol;
3356 }
3357
3358 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3359 if (inner_ip_hdr(skb)->version == 6) {
3360 rc |= XMIT_CSUM_ENC_V6;
3361 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3362 rc |= XMIT_CSUM_TCP;
3363 } else {
3364 rc |= XMIT_CSUM_ENC_V4;
3365 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3366 rc |= XMIT_CSUM_TCP;
3367 }
3368 }
3369 if (prot == IPPROTO_TCP)
3370 rc |= XMIT_CSUM_TCP;
3371
3372 if (skb_is_gso(skb)) {
3373 if (skb_is_gso_v6(skb)) {
3374 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3375 if (rc & XMIT_CSUM_ENC)
3376 rc |= XMIT_GSO_ENC_V6;
3377 } else {
3378 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3379 if (rc & XMIT_CSUM_ENC)
3380 rc |= XMIT_GSO_ENC_V4;
3381 }
3382 }
3383
3384 return rc;
3385 }
3386
3387 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3388 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3389
3390 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3391 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3392
3393 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3394 /* check if packet requires linearization (packet is too fragmented)
3395 no need to check fragmentation if page size > 8K (there will be no
3396 violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3397 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3398 u32 xmit_type)
3399 {
3400 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3401 int to_copy = 0, hlen = 0;
3402
3403 if (xmit_type & XMIT_GSO_ENC)
3404 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3405
3406 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3407 if (xmit_type & XMIT_GSO) {
3408 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3409 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3410 /* Number of windows to check */
3411 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3412 int wnd_idx = 0;
3413 int frag_idx = 0;
3414 u32 wnd_sum = 0;
3415
3416 /* Headers length */
3417 if (xmit_type & XMIT_GSO_ENC)
3418 hlen = (int)(skb_inner_transport_header(skb) -
3419 skb->data) +
3420 inner_tcp_hdrlen(skb);
3421 else
3422 hlen = (int)(skb_transport_header(skb) -
3423 skb->data) + tcp_hdrlen(skb);
3424
3425 /* Amount of data (w/o headers) on linear part of SKB*/
3426 first_bd_sz = skb_headlen(skb) - hlen;
3427
3428 wnd_sum = first_bd_sz;
3429
3430 /* Calculate the first sum - it's special */
3431 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3432 wnd_sum +=
3433 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3434
3435 /* If there was data on linear skb data - check it */
3436 if (first_bd_sz > 0) {
3437 if (unlikely(wnd_sum < lso_mss)) {
3438 to_copy = 1;
3439 goto exit_lbl;
3440 }
3441
3442 wnd_sum -= first_bd_sz;
3443 }
3444
3445 /* Others are easier: run through the frag list and
3446 check all windows */
3447 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3448 wnd_sum +=
3449 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3450
3451 if (unlikely(wnd_sum < lso_mss)) {
3452 to_copy = 1;
3453 break;
3454 }
3455 wnd_sum -=
3456 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3457 }
3458 } else {
3459 /* in non-LSO too fragmented packet should always
3460 be linearized */
3461 to_copy = 1;
3462 }
3463 }
3464
3465 exit_lbl:
3466 if (unlikely(to_copy))
3467 DP(NETIF_MSG_TX_QUEUED,
3468 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3469 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3470 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3471
3472 return to_copy;
3473 }
3474 #endif
3475
3476 /**
3477 * bnx2x_set_pbd_gso - update PBD in GSO case.
3478 *
3479 * @skb: packet skb
3480 * @pbd: parse BD
3481 * @xmit_type: xmit flags
3482 */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3483 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3484 struct eth_tx_parse_bd_e1x *pbd,
3485 u32 xmit_type)
3486 {
3487 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3488 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3489 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3490
3491 if (xmit_type & XMIT_GSO_V4) {
3492 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3493 pbd->tcp_pseudo_csum =
3494 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3495 ip_hdr(skb)->daddr,
3496 0, IPPROTO_TCP, 0));
3497 } else {
3498 pbd->tcp_pseudo_csum =
3499 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3500 &ipv6_hdr(skb)->daddr,
3501 0, IPPROTO_TCP, 0));
3502 }
3503
3504 pbd->global_data |=
3505 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3506 }
3507
3508 /**
3509 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3510 *
3511 * @bp: driver handle
3512 * @skb: packet skb
3513 * @parsing_data: data to be updated
3514 * @xmit_type: xmit flags
3515 *
3516 * 57712/578xx related, when skb has encapsulation
3517 */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3518 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3519 u32 *parsing_data, u32 xmit_type)
3520 {
3521 *parsing_data |=
3522 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3523 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3524 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3525
3526 if (xmit_type & XMIT_CSUM_TCP) {
3527 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3528 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3529 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3530
3531 return skb_inner_transport_header(skb) +
3532 inner_tcp_hdrlen(skb) - skb->data;
3533 }
3534
3535 /* We support checksum offload for TCP and UDP only.
3536 * No need to pass the UDP header length - it's a constant.
3537 */
3538 return skb_inner_transport_header(skb) +
3539 sizeof(struct udphdr) - skb->data;
3540 }
3541
3542 /**
3543 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3544 *
3545 * @bp: driver handle
3546 * @skb: packet skb
3547 * @parsing_data: data to be updated
3548 * @xmit_type: xmit flags
3549 *
3550 * 57712/578xx related
3551 */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3552 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3553 u32 *parsing_data, u32 xmit_type)
3554 {
3555 *parsing_data |=
3556 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3557 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3558 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3559
3560 if (xmit_type & XMIT_CSUM_TCP) {
3561 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3562 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3563 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3564
3565 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3566 }
3567 /* We support checksum offload for TCP and UDP only.
3568 * No need to pass the UDP header length - it's a constant.
3569 */
3570 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3571 }
3572
3573 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3574 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3575 struct eth_tx_start_bd *tx_start_bd,
3576 u32 xmit_type)
3577 {
3578 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3579
3580 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3581 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3582
3583 if (!(xmit_type & XMIT_CSUM_TCP))
3584 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3585 }
3586
3587 /**
3588 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3589 *
3590 * @bp: driver handle
3591 * @skb: packet skb
3592 * @pbd: parse BD to be updated
3593 * @xmit_type: xmit flags
3594 */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3595 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3596 struct eth_tx_parse_bd_e1x *pbd,
3597 u32 xmit_type)
3598 {
3599 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3600
3601 /* for now NS flag is not used in Linux */
3602 pbd->global_data =
3603 cpu_to_le16(hlen |
3604 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3605 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3606
3607 pbd->ip_hlen_w = (skb_transport_header(skb) -
3608 skb_network_header(skb)) >> 1;
3609
3610 hlen += pbd->ip_hlen_w;
3611
3612 /* We support checksum offload for TCP and UDP only */
3613 if (xmit_type & XMIT_CSUM_TCP)
3614 hlen += tcp_hdrlen(skb) / 2;
3615 else
3616 hlen += sizeof(struct udphdr) / 2;
3617
3618 pbd->total_hlen_w = cpu_to_le16(hlen);
3619 hlen = hlen*2;
3620
3621 if (xmit_type & XMIT_CSUM_TCP) {
3622 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3623
3624 } else {
3625 s8 fix = SKB_CS_OFF(skb); /* signed! */
3626
3627 DP(NETIF_MSG_TX_QUEUED,
3628 "hlen %d fix %d csum before fix %x\n",
3629 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3630
3631 /* HW bug: fixup the CSUM */
3632 pbd->tcp_pseudo_csum =
3633 bnx2x_csum_fix(skb_transport_header(skb),
3634 SKB_CS(skb), fix);
3635
3636 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3637 pbd->tcp_pseudo_csum);
3638 }
3639
3640 return hlen;
3641 }
3642
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3643 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3644 struct eth_tx_parse_bd_e2 *pbd_e2,
3645 struct eth_tx_parse_2nd_bd *pbd2,
3646 u16 *global_data,
3647 u32 xmit_type)
3648 {
3649 u16 hlen_w = 0;
3650 u8 outerip_off, outerip_len = 0;
3651
3652 /* from outer IP to transport */
3653 hlen_w = (skb_inner_transport_header(skb) -
3654 skb_network_header(skb)) >> 1;
3655
3656 /* transport len */
3657 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3658
3659 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3660
3661 /* outer IP header info */
3662 if (xmit_type & XMIT_CSUM_V4) {
3663 struct iphdr *iph = ip_hdr(skb);
3664 u32 csum = (__force u32)(~iph->check) -
3665 (__force u32)iph->tot_len -
3666 (__force u32)iph->frag_off;
3667
3668 outerip_len = iph->ihl << 1;
3669
3670 pbd2->fw_ip_csum_wo_len_flags_frag =
3671 bswab16(csum_fold((__force __wsum)csum));
3672 } else {
3673 pbd2->fw_ip_hdr_to_payload_w =
3674 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3675 pbd_e2->data.tunnel_data.flags |=
3676 ETH_TUNNEL_DATA_IPV6_OUTER;
3677 }
3678
3679 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3680
3681 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3682
3683 /* inner IP header info */
3684 if (xmit_type & XMIT_CSUM_ENC_V4) {
3685 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3686
3687 pbd_e2->data.tunnel_data.pseudo_csum =
3688 bswab16(~csum_tcpudp_magic(
3689 inner_ip_hdr(skb)->saddr,
3690 inner_ip_hdr(skb)->daddr,
3691 0, IPPROTO_TCP, 0));
3692 } else {
3693 pbd_e2->data.tunnel_data.pseudo_csum =
3694 bswab16(~csum_ipv6_magic(
3695 &inner_ipv6_hdr(skb)->saddr,
3696 &inner_ipv6_hdr(skb)->daddr,
3697 0, IPPROTO_TCP, 0));
3698 }
3699
3700 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3701
3702 *global_data |=
3703 outerip_off |
3704 (outerip_len <<
3705 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3706 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3707 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3708
3709 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3710 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3711 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3712 }
3713 }
3714
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3715 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3716 u32 xmit_type)
3717 {
3718 struct ipv6hdr *ipv6;
3719
3720 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3721 return;
3722
3723 if (xmit_type & XMIT_GSO_ENC_V6)
3724 ipv6 = inner_ipv6_hdr(skb);
3725 else /* XMIT_GSO_V6 */
3726 ipv6 = ipv6_hdr(skb);
3727
3728 if (ipv6->nexthdr == NEXTHDR_IPV6)
3729 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3730 }
3731
3732 /* called with netif_tx_lock
3733 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3734 * netif_wake_queue()
3735 */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3736 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3737 {
3738 struct bnx2x *bp = netdev_priv(dev);
3739
3740 struct netdev_queue *txq;
3741 struct bnx2x_fp_txdata *txdata;
3742 struct sw_tx_bd *tx_buf;
3743 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3744 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3745 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3746 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3747 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3748 u32 pbd_e2_parsing_data = 0;
3749 u16 pkt_prod, bd_prod;
3750 int nbd, txq_index;
3751 dma_addr_t mapping;
3752 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3753 int i;
3754 u8 hlen = 0;
3755 __le16 pkt_size = 0;
3756 struct ethhdr *eth;
3757 u8 mac_type = UNICAST_ADDRESS;
3758
3759 #ifdef BNX2X_STOP_ON_ERROR
3760 if (unlikely(bp->panic))
3761 return NETDEV_TX_BUSY;
3762 #endif
3763
3764 txq_index = skb_get_queue_mapping(skb);
3765 txq = netdev_get_tx_queue(dev, txq_index);
3766
3767 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3768
3769 txdata = &bp->bnx2x_txq[txq_index];
3770
3771 /* enable this debug print to view the transmission queue being used
3772 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3773 txq_index, fp_index, txdata_index); */
3774
3775 /* enable this debug print to view the transmission details
3776 DP(NETIF_MSG_TX_QUEUED,
3777 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3778 txdata->cid, fp_index, txdata_index, txdata, fp); */
3779
3780 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3781 skb_shinfo(skb)->nr_frags +
3782 BDS_PER_TX_PKT +
3783 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3784 /* Handle special storage cases separately */
3785 if (txdata->tx_ring_size == 0) {
3786 struct bnx2x_eth_q_stats *q_stats =
3787 bnx2x_fp_qstats(bp, txdata->parent_fp);
3788 q_stats->driver_filtered_tx_pkt++;
3789 dev_kfree_skb(skb);
3790 return NETDEV_TX_OK;
3791 }
3792 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3793 netif_tx_stop_queue(txq);
3794 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3795
3796 return NETDEV_TX_BUSY;
3797 }
3798
3799 DP(NETIF_MSG_TX_QUEUED,
3800 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3801 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3802 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3803 skb->len);
3804
3805 eth = (struct ethhdr *)skb->data;
3806
3807 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3808 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3809 if (is_broadcast_ether_addr(eth->h_dest))
3810 mac_type = BROADCAST_ADDRESS;
3811 else
3812 mac_type = MULTICAST_ADDRESS;
3813 }
3814
3815 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3816 /* First, check if we need to linearize the skb (due to FW
3817 restrictions). No need to check fragmentation if page size > 8K
3818 (there will be no violation to FW restrictions) */
3819 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3820 /* Statistics of linearization */
3821 bp->lin_cnt++;
3822 if (skb_linearize(skb) != 0) {
3823 DP(NETIF_MSG_TX_QUEUED,
3824 "SKB linearization failed - silently dropping this SKB\n");
3825 dev_kfree_skb_any(skb);
3826 return NETDEV_TX_OK;
3827 }
3828 }
3829 #endif
3830 /* Map skb linear data for DMA */
3831 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3832 skb_headlen(skb), DMA_TO_DEVICE);
3833 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3834 DP(NETIF_MSG_TX_QUEUED,
3835 "SKB mapping failed - silently dropping this SKB\n");
3836 dev_kfree_skb_any(skb);
3837 return NETDEV_TX_OK;
3838 }
3839 /*
3840 Please read carefully. First we use one BD which we mark as start,
3841 then we have a parsing info BD (used for TSO or xsum),
3842 and only then we have the rest of the TSO BDs.
3843 (don't forget to mark the last one as last,
3844 and to unmap only AFTER you write to the BD ...)
3845 And above all, all pdb sizes are in words - NOT DWORDS!
3846 */
3847
3848 /* get current pkt produced now - advance it just before sending packet
3849 * since mapping of pages may fail and cause packet to be dropped
3850 */
3851 pkt_prod = txdata->tx_pkt_prod;
3852 bd_prod = TX_BD(txdata->tx_bd_prod);
3853
3854 /* get a tx_buf and first BD
3855 * tx_start_bd may be changed during SPLIT,
3856 * but first_bd will always stay first
3857 */
3858 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3859 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3860 first_bd = tx_start_bd;
3861
3862 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3863
3864 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3865 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3866 bp->eth_stats.ptp_skip_tx_ts++;
3867 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3868 } else if (bp->ptp_tx_skb) {
3869 bp->eth_stats.ptp_skip_tx_ts++;
3870 netdev_err_once(bp->dev,
3871 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3872 } else {
3873 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3874 /* schedule check for Tx timestamp */
3875 bp->ptp_tx_skb = skb_get(skb);
3876 bp->ptp_tx_start = jiffies;
3877 schedule_work(&bp->ptp_task);
3878 }
3879 }
3880
3881 /* header nbd: indirectly zero other flags! */
3882 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3883
3884 /* remember the first BD of the packet */
3885 tx_buf->first_bd = txdata->tx_bd_prod;
3886 tx_buf->skb = skb;
3887 tx_buf->flags = 0;
3888
3889 DP(NETIF_MSG_TX_QUEUED,
3890 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3891 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3892
3893 if (skb_vlan_tag_present(skb)) {
3894 tx_start_bd->vlan_or_ethertype =
3895 cpu_to_le16(skb_vlan_tag_get(skb));
3896 tx_start_bd->bd_flags.as_bitfield |=
3897 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3898 } else {
3899 /* when transmitting in a vf, start bd must hold the ethertype
3900 * for fw to enforce it
3901 */
3902 u16 vlan_tci = 0;
3903 #ifndef BNX2X_STOP_ON_ERROR
3904 if (IS_VF(bp)) {
3905 #endif
3906 /* Still need to consider inband vlan for enforced */
3907 if (__vlan_get_tag(skb, &vlan_tci)) {
3908 tx_start_bd->vlan_or_ethertype =
3909 cpu_to_le16(ntohs(eth->h_proto));
3910 } else {
3911 tx_start_bd->bd_flags.as_bitfield |=
3912 (X_ETH_INBAND_VLAN <<
3913 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3914 tx_start_bd->vlan_or_ethertype =
3915 cpu_to_le16(vlan_tci);
3916 }
3917 #ifndef BNX2X_STOP_ON_ERROR
3918 } else {
3919 /* used by FW for packet accounting */
3920 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3921 }
3922 #endif
3923 }
3924
3925 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3926
3927 /* turn on parsing and get a BD */
3928 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3929
3930 if (xmit_type & XMIT_CSUM)
3931 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3932
3933 if (!CHIP_IS_E1x(bp)) {
3934 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3935 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3936
3937 if (xmit_type & XMIT_CSUM_ENC) {
3938 u16 global_data = 0;
3939
3940 /* Set PBD in enc checksum offload case */
3941 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3942 &pbd_e2_parsing_data,
3943 xmit_type);
3944
3945 /* turn on 2nd parsing and get a BD */
3946 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3947
3948 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3949
3950 memset(pbd2, 0, sizeof(*pbd2));
3951
3952 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3953 (skb_inner_network_header(skb) -
3954 skb->data) >> 1;
3955
3956 if (xmit_type & XMIT_GSO_ENC)
3957 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3958 &global_data,
3959 xmit_type);
3960
3961 pbd2->global_data = cpu_to_le16(global_data);
3962
3963 /* add addition parse BD indication to start BD */
3964 SET_FLAG(tx_start_bd->general_data,
3965 ETH_TX_START_BD_PARSE_NBDS, 1);
3966 /* set encapsulation flag in start BD */
3967 SET_FLAG(tx_start_bd->general_data,
3968 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3969
3970 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3971
3972 nbd++;
3973 } else if (xmit_type & XMIT_CSUM) {
3974 /* Set PBD in checksum offload case w/o encapsulation */
3975 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3976 &pbd_e2_parsing_data,
3977 xmit_type);
3978 }
3979
3980 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3981 /* Add the macs to the parsing BD if this is a vf or if
3982 * Tx Switching is enabled.
3983 */
3984 if (IS_VF(bp)) {
3985 /* override GRE parameters in BD */
3986 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3987 &pbd_e2->data.mac_addr.src_mid,
3988 &pbd_e2->data.mac_addr.src_lo,
3989 eth->h_source);
3990
3991 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3992 &pbd_e2->data.mac_addr.dst_mid,
3993 &pbd_e2->data.mac_addr.dst_lo,
3994 eth->h_dest);
3995 } else {
3996 if (bp->flags & TX_SWITCHING)
3997 bnx2x_set_fw_mac_addr(
3998 &pbd_e2->data.mac_addr.dst_hi,
3999 &pbd_e2->data.mac_addr.dst_mid,
4000 &pbd_e2->data.mac_addr.dst_lo,
4001 eth->h_dest);
4002 #ifdef BNX2X_STOP_ON_ERROR
4003 /* Enforce security is always set in Stop on Error -
4004 * source mac should be present in the parsing BD
4005 */
4006 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4007 &pbd_e2->data.mac_addr.src_mid,
4008 &pbd_e2->data.mac_addr.src_lo,
4009 eth->h_source);
4010 #endif
4011 }
4012
4013 SET_FLAG(pbd_e2_parsing_data,
4014 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4015 } else {
4016 u16 global_data = 0;
4017 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4018 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4019 /* Set PBD in checksum offload case */
4020 if (xmit_type & XMIT_CSUM)
4021 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4022
4023 SET_FLAG(global_data,
4024 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4025 pbd_e1x->global_data |= cpu_to_le16(global_data);
4026 }
4027
4028 /* Setup the data pointer of the first BD of the packet */
4029 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4030 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4031 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4032 pkt_size = tx_start_bd->nbytes;
4033
4034 DP(NETIF_MSG_TX_QUEUED,
4035 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4036 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4037 le16_to_cpu(tx_start_bd->nbytes),
4038 tx_start_bd->bd_flags.as_bitfield,
4039 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4040
4041 if (xmit_type & XMIT_GSO) {
4042
4043 DP(NETIF_MSG_TX_QUEUED,
4044 "TSO packet len %d hlen %d total len %d tso size %d\n",
4045 skb->len, hlen, skb_headlen(skb),
4046 skb_shinfo(skb)->gso_size);
4047
4048 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4049
4050 if (unlikely(skb_headlen(skb) > hlen)) {
4051 nbd++;
4052 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4053 &tx_start_bd, hlen,
4054 bd_prod);
4055 }
4056 if (!CHIP_IS_E1x(bp))
4057 pbd_e2_parsing_data |=
4058 (skb_shinfo(skb)->gso_size <<
4059 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4060 ETH_TX_PARSE_BD_E2_LSO_MSS;
4061 else
4062 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4063 }
4064
4065 /* Set the PBD's parsing_data field if not zero
4066 * (for the chips newer than 57711).
4067 */
4068 if (pbd_e2_parsing_data)
4069 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4070
4071 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4072
4073 /* Handle fragmented skb */
4074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4075 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4076
4077 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4078 skb_frag_size(frag), DMA_TO_DEVICE);
4079 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4080 unsigned int pkts_compl = 0, bytes_compl = 0;
4081
4082 DP(NETIF_MSG_TX_QUEUED,
4083 "Unable to map page - dropping packet...\n");
4084
4085 /* we need unmap all buffers already mapped
4086 * for this SKB;
4087 * first_bd->nbd need to be properly updated
4088 * before call to bnx2x_free_tx_pkt
4089 */
4090 first_bd->nbd = cpu_to_le16(nbd);
4091 bnx2x_free_tx_pkt(bp, txdata,
4092 TX_BD(txdata->tx_pkt_prod),
4093 &pkts_compl, &bytes_compl);
4094 return NETDEV_TX_OK;
4095 }
4096
4097 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4098 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4099 if (total_pkt_bd == NULL)
4100 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4101
4102 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4103 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4104 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4105 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4106 nbd++;
4107
4108 DP(NETIF_MSG_TX_QUEUED,
4109 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4110 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4111 le16_to_cpu(tx_data_bd->nbytes));
4112 }
4113
4114 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4115
4116 /* update with actual num BDs */
4117 first_bd->nbd = cpu_to_le16(nbd);
4118
4119 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4120
4121 /* now send a tx doorbell, counting the next BD
4122 * if the packet contains or ends with it
4123 */
4124 if (TX_BD_POFF(bd_prod) < nbd)
4125 nbd++;
4126
4127 /* total_pkt_bytes should be set on the first data BD if
4128 * it's not an LSO packet and there is more than one
4129 * data BD. In this case pkt_size is limited by an MTU value.
4130 * However we prefer to set it for an LSO packet (while we don't
4131 * have to) in order to save some CPU cycles in a none-LSO
4132 * case, when we much more care about them.
4133 */
4134 if (total_pkt_bd != NULL)
4135 total_pkt_bd->total_pkt_bytes = pkt_size;
4136
4137 if (pbd_e1x)
4138 DP(NETIF_MSG_TX_QUEUED,
4139 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4140 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4141 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4142 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4143 le16_to_cpu(pbd_e1x->total_hlen_w));
4144 if (pbd_e2)
4145 DP(NETIF_MSG_TX_QUEUED,
4146 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4147 pbd_e2,
4148 pbd_e2->data.mac_addr.dst_hi,
4149 pbd_e2->data.mac_addr.dst_mid,
4150 pbd_e2->data.mac_addr.dst_lo,
4151 pbd_e2->data.mac_addr.src_hi,
4152 pbd_e2->data.mac_addr.src_mid,
4153 pbd_e2->data.mac_addr.src_lo,
4154 pbd_e2->parsing_data);
4155 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4156
4157 netdev_tx_sent_queue(txq, skb->len);
4158
4159 skb_tx_timestamp(skb);
4160
4161 txdata->tx_pkt_prod++;
4162 /*
4163 * Make sure that the BD data is updated before updating the producer
4164 * since FW might read the BD right after the producer is updated.
4165 * This is only applicable for weak-ordered memory model archs such
4166 * as IA-64. The following barrier is also mandatory since FW will
4167 * assumes packets must have BDs.
4168 */
4169 wmb();
4170
4171 txdata->tx_db.data.prod += nbd;
4172 /* make sure descriptor update is observed by HW */
4173 wmb();
4174
4175 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4176
4177 txdata->tx_bd_prod += nbd;
4178
4179 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4180 netif_tx_stop_queue(txq);
4181
4182 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4183 * ordering of set_bit() in netif_tx_stop_queue() and read of
4184 * fp->bd_tx_cons */
4185 smp_mb();
4186
4187 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4188 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4189 netif_tx_wake_queue(txq);
4190 }
4191 txdata->tx_pkt++;
4192
4193 return NETDEV_TX_OK;
4194 }
4195
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4196 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4197 {
4198 int mfw_vn = BP_FW_MB_IDX(bp);
4199 u32 tmp;
4200
4201 /* If the shmem shouldn't affect configuration, reflect */
4202 if (!IS_MF_BD(bp)) {
4203 int i;
4204
4205 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4206 c2s_map[i] = i;
4207 *c2s_default = 0;
4208
4209 return;
4210 }
4211
4212 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4213 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4214 c2s_map[0] = tmp & 0xff;
4215 c2s_map[1] = (tmp >> 8) & 0xff;
4216 c2s_map[2] = (tmp >> 16) & 0xff;
4217 c2s_map[3] = (tmp >> 24) & 0xff;
4218
4219 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4220 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4221 c2s_map[4] = tmp & 0xff;
4222 c2s_map[5] = (tmp >> 8) & 0xff;
4223 c2s_map[6] = (tmp >> 16) & 0xff;
4224 c2s_map[7] = (tmp >> 24) & 0xff;
4225
4226 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4227 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4228 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4229 }
4230
4231 /**
4232 * bnx2x_setup_tc - routine to configure net_device for multi tc
4233 *
4234 * @dev: net device to configure
4235 * @num_tc: number of traffic classes to enable
4236 *
4237 * callback connected to the ndo_setup_tc function pointer
4238 */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4239 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4240 {
4241 struct bnx2x *bp = netdev_priv(dev);
4242 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4243 int cos, prio, count, offset;
4244
4245 /* setup tc must be called under rtnl lock */
4246 ASSERT_RTNL();
4247
4248 /* no traffic classes requested. Aborting */
4249 if (!num_tc) {
4250 netdev_reset_tc(dev);
4251 return 0;
4252 }
4253
4254 /* requested to support too many traffic classes */
4255 if (num_tc > bp->max_cos) {
4256 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4257 num_tc, bp->max_cos);
4258 return -EINVAL;
4259 }
4260
4261 /* declare amount of supported traffic classes */
4262 if (netdev_set_num_tc(dev, num_tc)) {
4263 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4264 return -EINVAL;
4265 }
4266
4267 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4268
4269 /* configure priority to traffic class mapping */
4270 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4271 int outer_prio = c2s_map[prio];
4272
4273 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4274 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4275 "mapping priority %d to tc %d\n",
4276 outer_prio, bp->prio_to_cos[outer_prio]);
4277 }
4278
4279 /* Use this configuration to differentiate tc0 from other COSes
4280 This can be used for ets or pfc, and save the effort of setting
4281 up a multio class queue disc or negotiating DCBX with a switch
4282 netdev_set_prio_tc_map(dev, 0, 0);
4283 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4284 for (prio = 1; prio < 16; prio++) {
4285 netdev_set_prio_tc_map(dev, prio, 1);
4286 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4287 } */
4288
4289 /* configure traffic class to transmission queue mapping */
4290 for (cos = 0; cos < bp->max_cos; cos++) {
4291 count = BNX2X_NUM_ETH_QUEUES(bp);
4292 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4293 netdev_set_tc_queue(dev, cos, count, offset);
4294 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4295 "mapping tc %d to offset %d count %d\n",
4296 cos, offset, count);
4297 }
4298
4299 return 0;
4300 }
4301
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4302 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4303 void *type_data)
4304 {
4305 struct tc_mqprio_qopt *mqprio = type_data;
4306
4307 if (type != TC_SETUP_QDISC_MQPRIO)
4308 return -EOPNOTSUPP;
4309
4310 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4311
4312 return bnx2x_setup_tc(dev, mqprio->num_tc);
4313 }
4314
4315 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4316 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4317 {
4318 struct sockaddr *addr = p;
4319 struct bnx2x *bp = netdev_priv(dev);
4320 int rc = 0;
4321
4322 if (!is_valid_ether_addr(addr->sa_data)) {
4323 BNX2X_ERR("Requested MAC address is not valid\n");
4324 return -EINVAL;
4325 }
4326
4327 if (IS_MF_STORAGE_ONLY(bp)) {
4328 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4329 return -EINVAL;
4330 }
4331
4332 if (netif_running(dev)) {
4333 rc = bnx2x_set_eth_mac(bp, false);
4334 if (rc)
4335 return rc;
4336 }
4337
4338 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4339
4340 if (netif_running(dev))
4341 rc = bnx2x_set_eth_mac(bp, true);
4342
4343 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4344 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4345
4346 return rc;
4347 }
4348
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4349 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4350 {
4351 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4352 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4353 u8 cos;
4354
4355 /* Common */
4356
4357 if (IS_FCOE_IDX(fp_index)) {
4358 memset(sb, 0, sizeof(union host_hc_status_block));
4359 fp->status_blk_mapping = 0;
4360 } else {
4361 /* status blocks */
4362 if (!CHIP_IS_E1x(bp))
4363 BNX2X_PCI_FREE(sb->e2_sb,
4364 bnx2x_fp(bp, fp_index,
4365 status_blk_mapping),
4366 sizeof(struct host_hc_status_block_e2));
4367 else
4368 BNX2X_PCI_FREE(sb->e1x_sb,
4369 bnx2x_fp(bp, fp_index,
4370 status_blk_mapping),
4371 sizeof(struct host_hc_status_block_e1x));
4372 }
4373
4374 /* Rx */
4375 if (!skip_rx_queue(bp, fp_index)) {
4376 bnx2x_free_rx_bds(fp);
4377
4378 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4379 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4380 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4381 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4382 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4383
4384 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4385 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4386 sizeof(struct eth_fast_path_rx_cqe) *
4387 NUM_RCQ_BD);
4388
4389 /* SGE ring */
4390 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4391 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4392 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4393 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4394 }
4395
4396 /* Tx */
4397 if (!skip_tx_queue(bp, fp_index)) {
4398 /* fastpath tx rings: tx_buf tx_desc */
4399 for_each_cos_in_tx_queue(fp, cos) {
4400 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4401
4402 DP(NETIF_MSG_IFDOWN,
4403 "freeing tx memory of fp %d cos %d cid %d\n",
4404 fp_index, cos, txdata->cid);
4405
4406 BNX2X_FREE(txdata->tx_buf_ring);
4407 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4408 txdata->tx_desc_mapping,
4409 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4410 }
4411 }
4412 /* end of fastpath */
4413 }
4414
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4415 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4416 {
4417 int i;
4418 for_each_cnic_queue(bp, i)
4419 bnx2x_free_fp_mem_at(bp, i);
4420 }
4421
bnx2x_free_fp_mem(struct bnx2x * bp)4422 void bnx2x_free_fp_mem(struct bnx2x *bp)
4423 {
4424 int i;
4425 for_each_eth_queue(bp, i)
4426 bnx2x_free_fp_mem_at(bp, i);
4427 }
4428
set_sb_shortcuts(struct bnx2x * bp,int index)4429 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4430 {
4431 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4432 if (!CHIP_IS_E1x(bp)) {
4433 bnx2x_fp(bp, index, sb_index_values) =
4434 (__le16 *)status_blk.e2_sb->sb.index_values;
4435 bnx2x_fp(bp, index, sb_running_index) =
4436 (__le16 *)status_blk.e2_sb->sb.running_index;
4437 } else {
4438 bnx2x_fp(bp, index, sb_index_values) =
4439 (__le16 *)status_blk.e1x_sb->sb.index_values;
4440 bnx2x_fp(bp, index, sb_running_index) =
4441 (__le16 *)status_blk.e1x_sb->sb.running_index;
4442 }
4443 }
4444
4445 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4446 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4447 int rx_ring_size)
4448 {
4449 struct bnx2x *bp = fp->bp;
4450 u16 ring_prod, cqe_ring_prod;
4451 int i, failure_cnt = 0;
4452
4453 fp->rx_comp_cons = 0;
4454 cqe_ring_prod = ring_prod = 0;
4455
4456 /* This routine is called only during fo init so
4457 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4458 */
4459 for (i = 0; i < rx_ring_size; i++) {
4460 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4461 failure_cnt++;
4462 continue;
4463 }
4464 ring_prod = NEXT_RX_IDX(ring_prod);
4465 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4466 WARN_ON(ring_prod <= (i - failure_cnt));
4467 }
4468
4469 if (failure_cnt)
4470 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4471 i - failure_cnt, fp->index);
4472
4473 fp->rx_bd_prod = ring_prod;
4474 /* Limit the CQE producer by the CQE ring size */
4475 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4476 cqe_ring_prod);
4477
4478 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4479
4480 return i - failure_cnt;
4481 }
4482
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4483 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4484 {
4485 int i;
4486
4487 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4488 struct eth_rx_cqe_next_page *nextpg;
4489
4490 nextpg = (struct eth_rx_cqe_next_page *)
4491 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4492 nextpg->addr_hi =
4493 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4494 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4495 nextpg->addr_lo =
4496 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4497 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4498 }
4499 }
4500
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4501 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4502 {
4503 union host_hc_status_block *sb;
4504 struct bnx2x_fastpath *fp = &bp->fp[index];
4505 int ring_size = 0;
4506 u8 cos;
4507 int rx_ring_size = 0;
4508
4509 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4510 rx_ring_size = MIN_RX_SIZE_NONTPA;
4511 bp->rx_ring_size = rx_ring_size;
4512 } else if (!bp->rx_ring_size) {
4513 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4514
4515 if (CHIP_IS_E3(bp)) {
4516 u32 cfg = SHMEM_RD(bp,
4517 dev_info.port_hw_config[BP_PORT(bp)].
4518 default_cfg);
4519
4520 /* Decrease ring size for 1G functions */
4521 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4522 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4523 rx_ring_size /= 10;
4524 }
4525
4526 /* allocate at least number of buffers required by FW */
4527 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4528 MIN_RX_SIZE_TPA, rx_ring_size);
4529
4530 bp->rx_ring_size = rx_ring_size;
4531 } else /* if rx_ring_size specified - use it */
4532 rx_ring_size = bp->rx_ring_size;
4533
4534 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4535
4536 /* Common */
4537 sb = &bnx2x_fp(bp, index, status_blk);
4538
4539 if (!IS_FCOE_IDX(index)) {
4540 /* status blocks */
4541 if (!CHIP_IS_E1x(bp)) {
4542 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4543 sizeof(struct host_hc_status_block_e2));
4544 if (!sb->e2_sb)
4545 goto alloc_mem_err;
4546 } else {
4547 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4548 sizeof(struct host_hc_status_block_e1x));
4549 if (!sb->e1x_sb)
4550 goto alloc_mem_err;
4551 }
4552 }
4553
4554 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4555 * set shortcuts for it.
4556 */
4557 if (!IS_FCOE_IDX(index))
4558 set_sb_shortcuts(bp, index);
4559
4560 /* Tx */
4561 if (!skip_tx_queue(bp, index)) {
4562 /* fastpath tx rings: tx_buf tx_desc */
4563 for_each_cos_in_tx_queue(fp, cos) {
4564 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4565
4566 DP(NETIF_MSG_IFUP,
4567 "allocating tx memory of fp %d cos %d\n",
4568 index, cos);
4569
4570 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4571 sizeof(struct sw_tx_bd),
4572 GFP_KERNEL);
4573 if (!txdata->tx_buf_ring)
4574 goto alloc_mem_err;
4575 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4576 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4577 if (!txdata->tx_desc_ring)
4578 goto alloc_mem_err;
4579 }
4580 }
4581
4582 /* Rx */
4583 if (!skip_rx_queue(bp, index)) {
4584 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4585 bnx2x_fp(bp, index, rx_buf_ring) =
4586 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4587 if (!bnx2x_fp(bp, index, rx_buf_ring))
4588 goto alloc_mem_err;
4589 bnx2x_fp(bp, index, rx_desc_ring) =
4590 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4591 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4592 if (!bnx2x_fp(bp, index, rx_desc_ring))
4593 goto alloc_mem_err;
4594
4595 /* Seed all CQEs by 1s */
4596 bnx2x_fp(bp, index, rx_comp_ring) =
4597 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4598 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4599 if (!bnx2x_fp(bp, index, rx_comp_ring))
4600 goto alloc_mem_err;
4601
4602 /* SGE ring */
4603 bnx2x_fp(bp, index, rx_page_ring) =
4604 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4605 GFP_KERNEL);
4606 if (!bnx2x_fp(bp, index, rx_page_ring))
4607 goto alloc_mem_err;
4608 bnx2x_fp(bp, index, rx_sge_ring) =
4609 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4610 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4611 if (!bnx2x_fp(bp, index, rx_sge_ring))
4612 goto alloc_mem_err;
4613 /* RX BD ring */
4614 bnx2x_set_next_page_rx_bd(fp);
4615
4616 /* CQ ring */
4617 bnx2x_set_next_page_rx_cq(fp);
4618
4619 /* BDs */
4620 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4621 if (ring_size < rx_ring_size)
4622 goto alloc_mem_err;
4623 }
4624
4625 return 0;
4626
4627 /* handles low memory cases */
4628 alloc_mem_err:
4629 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4630 index, ring_size);
4631 /* FW will drop all packets if queue is not big enough,
4632 * In these cases we disable the queue
4633 * Min size is different for OOO, TPA and non-TPA queues
4634 */
4635 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4636 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4637 /* release memory allocated for this queue */
4638 bnx2x_free_fp_mem_at(bp, index);
4639 return -ENOMEM;
4640 }
4641 return 0;
4642 }
4643
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4644 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4645 {
4646 if (!NO_FCOE(bp))
4647 /* FCoE */
4648 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4649 /* we will fail load process instead of mark
4650 * NO_FCOE_FLAG
4651 */
4652 return -ENOMEM;
4653
4654 return 0;
4655 }
4656
bnx2x_alloc_fp_mem(struct bnx2x * bp)4657 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4658 {
4659 int i;
4660
4661 /* 1. Allocate FP for leading - fatal if error
4662 * 2. Allocate RSS - fix number of queues if error
4663 */
4664
4665 /* leading */
4666 if (bnx2x_alloc_fp_mem_at(bp, 0))
4667 return -ENOMEM;
4668
4669 /* RSS */
4670 for_each_nondefault_eth_queue(bp, i)
4671 if (bnx2x_alloc_fp_mem_at(bp, i))
4672 break;
4673
4674 /* handle memory failures */
4675 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4676 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4677
4678 WARN_ON(delta < 0);
4679 bnx2x_shrink_eth_fp(bp, delta);
4680 if (CNIC_SUPPORT(bp))
4681 /* move non eth FPs next to last eth FP
4682 * must be done in that order
4683 * FCOE_IDX < FWD_IDX < OOO_IDX
4684 */
4685
4686 /* move FCoE fp even NO_FCOE_FLAG is on */
4687 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4688 bp->num_ethernet_queues -= delta;
4689 bp->num_queues = bp->num_ethernet_queues +
4690 bp->num_cnic_queues;
4691 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4692 bp->num_queues + delta, bp->num_queues);
4693 }
4694
4695 return 0;
4696 }
4697
bnx2x_free_mem_bp(struct bnx2x * bp)4698 void bnx2x_free_mem_bp(struct bnx2x *bp)
4699 {
4700 int i;
4701
4702 for (i = 0; i < bp->fp_array_size; i++)
4703 kfree(bp->fp[i].tpa_info);
4704 kfree(bp->fp);
4705 kfree(bp->sp_objs);
4706 kfree(bp->fp_stats);
4707 kfree(bp->bnx2x_txq);
4708 kfree(bp->msix_table);
4709 kfree(bp->ilt);
4710 }
4711
bnx2x_alloc_mem_bp(struct bnx2x * bp)4712 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4713 {
4714 struct bnx2x_fastpath *fp;
4715 struct msix_entry *tbl;
4716 struct bnx2x_ilt *ilt;
4717 int msix_table_size = 0;
4718 int fp_array_size, txq_array_size;
4719 int i;
4720
4721 /*
4722 * The biggest MSI-X table we might need is as a maximum number of fast
4723 * path IGU SBs plus default SB (for PF only).
4724 */
4725 msix_table_size = bp->igu_sb_cnt;
4726 if (IS_PF(bp))
4727 msix_table_size++;
4728 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4729
4730 /* fp array: RSS plus CNIC related L2 queues */
4731 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4732 bp->fp_array_size = fp_array_size;
4733 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4734
4735 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4736 if (!fp)
4737 goto alloc_err;
4738 for (i = 0; i < bp->fp_array_size; i++) {
4739 fp[i].tpa_info =
4740 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4741 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4742 if (!(fp[i].tpa_info))
4743 goto alloc_err;
4744 }
4745
4746 bp->fp = fp;
4747
4748 /* allocate sp objs */
4749 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4750 GFP_KERNEL);
4751 if (!bp->sp_objs)
4752 goto alloc_err;
4753
4754 /* allocate fp_stats */
4755 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4756 GFP_KERNEL);
4757 if (!bp->fp_stats)
4758 goto alloc_err;
4759
4760 /* Allocate memory for the transmission queues array */
4761 txq_array_size =
4762 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4763 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4764
4765 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4766 GFP_KERNEL);
4767 if (!bp->bnx2x_txq)
4768 goto alloc_err;
4769
4770 /* msix table */
4771 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4772 if (!tbl)
4773 goto alloc_err;
4774 bp->msix_table = tbl;
4775
4776 /* ilt */
4777 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4778 if (!ilt)
4779 goto alloc_err;
4780 bp->ilt = ilt;
4781
4782 return 0;
4783 alloc_err:
4784 bnx2x_free_mem_bp(bp);
4785 return -ENOMEM;
4786 }
4787
bnx2x_reload_if_running(struct net_device * dev)4788 int bnx2x_reload_if_running(struct net_device *dev)
4789 {
4790 struct bnx2x *bp = netdev_priv(dev);
4791
4792 if (unlikely(!netif_running(dev)))
4793 return 0;
4794
4795 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4796 return bnx2x_nic_load(bp, LOAD_NORMAL);
4797 }
4798
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4799 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4800 {
4801 u32 sel_phy_idx = 0;
4802 if (bp->link_params.num_phys <= 1)
4803 return INT_PHY;
4804
4805 if (bp->link_vars.link_up) {
4806 sel_phy_idx = EXT_PHY1;
4807 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4808 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4809 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4810 sel_phy_idx = EXT_PHY2;
4811 } else {
4812
4813 switch (bnx2x_phy_selection(&bp->link_params)) {
4814 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4815 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4816 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4817 sel_phy_idx = EXT_PHY1;
4818 break;
4819 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4820 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4821 sel_phy_idx = EXT_PHY2;
4822 break;
4823 }
4824 }
4825
4826 return sel_phy_idx;
4827 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4828 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4829 {
4830 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4831 /*
4832 * The selected activated PHY is always after swapping (in case PHY
4833 * swapping is enabled). So when swapping is enabled, we need to reverse
4834 * the configuration
4835 */
4836
4837 if (bp->link_params.multi_phy_config &
4838 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4839 if (sel_phy_idx == EXT_PHY1)
4840 sel_phy_idx = EXT_PHY2;
4841 else if (sel_phy_idx == EXT_PHY2)
4842 sel_phy_idx = EXT_PHY1;
4843 }
4844 return LINK_CONFIG_IDX(sel_phy_idx);
4845 }
4846
4847 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4848 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4849 {
4850 struct bnx2x *bp = netdev_priv(dev);
4851 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4852
4853 switch (type) {
4854 case NETDEV_FCOE_WWNN:
4855 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4856 cp->fcoe_wwn_node_name_lo);
4857 break;
4858 case NETDEV_FCOE_WWPN:
4859 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4860 cp->fcoe_wwn_port_name_lo);
4861 break;
4862 default:
4863 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4864 return -EINVAL;
4865 }
4866
4867 return 0;
4868 }
4869 #endif
4870
4871 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4872 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4873 {
4874 struct bnx2x *bp = netdev_priv(dev);
4875
4876 if (pci_num_vf(bp->pdev)) {
4877 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4878 return -EPERM;
4879 }
4880
4881 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4882 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4883 return -EAGAIN;
4884 }
4885
4886 /* This does not race with packet allocation
4887 * because the actual alloc size is
4888 * only updated as part of load
4889 */
4890 dev->mtu = new_mtu;
4891
4892 if (!bnx2x_mtu_allows_gro(new_mtu))
4893 dev->features &= ~NETIF_F_GRO_HW;
4894
4895 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4896 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4897
4898 return bnx2x_reload_if_running(dev);
4899 }
4900
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4901 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4902 netdev_features_t features)
4903 {
4904 struct bnx2x *bp = netdev_priv(dev);
4905
4906 if (pci_num_vf(bp->pdev)) {
4907 netdev_features_t changed = dev->features ^ features;
4908
4909 /* Revert the requested changes in features if they
4910 * would require internal reload of PF in bnx2x_set_features().
4911 */
4912 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4913 features &= ~NETIF_F_RXCSUM;
4914 features |= dev->features & NETIF_F_RXCSUM;
4915 }
4916
4917 if (changed & NETIF_F_LOOPBACK) {
4918 features &= ~NETIF_F_LOOPBACK;
4919 features |= dev->features & NETIF_F_LOOPBACK;
4920 }
4921 }
4922
4923 /* TPA requires Rx CSUM offloading */
4924 if (!(features & NETIF_F_RXCSUM))
4925 features &= ~NETIF_F_LRO;
4926
4927 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4928 features &= ~NETIF_F_GRO_HW;
4929 if (features & NETIF_F_GRO_HW)
4930 features &= ~NETIF_F_LRO;
4931
4932 return features;
4933 }
4934
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4935 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4936 {
4937 struct bnx2x *bp = netdev_priv(dev);
4938 netdev_features_t changes = features ^ dev->features;
4939 bool bnx2x_reload = false;
4940 int rc;
4941
4942 /* VFs or non SRIOV PFs should be able to change loopback feature */
4943 if (!pci_num_vf(bp->pdev)) {
4944 if (features & NETIF_F_LOOPBACK) {
4945 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4946 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4947 bnx2x_reload = true;
4948 }
4949 } else {
4950 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4951 bp->link_params.loopback_mode = LOOPBACK_NONE;
4952 bnx2x_reload = true;
4953 }
4954 }
4955 }
4956
4957 /* Don't care about GRO changes */
4958 changes &= ~NETIF_F_GRO;
4959
4960 if (changes)
4961 bnx2x_reload = true;
4962
4963 if (bnx2x_reload) {
4964 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4965 dev->features = features;
4966 rc = bnx2x_reload_if_running(dev);
4967 return rc ? rc : 1;
4968 }
4969 /* else: bnx2x_nic_load() will be called at end of recovery */
4970 }
4971
4972 return 0;
4973 }
4974
bnx2x_tx_timeout(struct net_device * dev,unsigned int txqueue)4975 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4976 {
4977 struct bnx2x *bp = netdev_priv(dev);
4978
4979 /* We want the information of the dump logged,
4980 * but calling bnx2x_panic() would kill all chances of recovery.
4981 */
4982 if (!bp->panic)
4983 #ifndef BNX2X_STOP_ON_ERROR
4984 bnx2x_panic_dump(bp, false);
4985 #else
4986 bnx2x_panic();
4987 #endif
4988
4989 /* This allows the netif to be shutdown gracefully before resetting */
4990 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4991 }
4992
bnx2x_suspend(struct device * dev_d)4993 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
4994 {
4995 struct pci_dev *pdev = to_pci_dev(dev_d);
4996 struct net_device *dev = pci_get_drvdata(pdev);
4997 struct bnx2x *bp;
4998
4999 if (!dev) {
5000 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5001 return -ENODEV;
5002 }
5003 bp = netdev_priv(dev);
5004
5005 rtnl_lock();
5006
5007 if (!netif_running(dev)) {
5008 rtnl_unlock();
5009 return 0;
5010 }
5011
5012 netif_device_detach(dev);
5013
5014 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5015
5016 rtnl_unlock();
5017
5018 return 0;
5019 }
5020
bnx2x_resume(struct device * dev_d)5021 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5022 {
5023 struct pci_dev *pdev = to_pci_dev(dev_d);
5024 struct net_device *dev = pci_get_drvdata(pdev);
5025 struct bnx2x *bp;
5026 int rc;
5027
5028 if (!dev) {
5029 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5030 return -ENODEV;
5031 }
5032 bp = netdev_priv(dev);
5033
5034 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5035 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5036 return -EAGAIN;
5037 }
5038
5039 rtnl_lock();
5040
5041 if (!netif_running(dev)) {
5042 rtnl_unlock();
5043 return 0;
5044 }
5045
5046 netif_device_attach(dev);
5047
5048 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5049
5050 rtnl_unlock();
5051
5052 return rc;
5053 }
5054
5055 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5056
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5057 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5058 u32 cid)
5059 {
5060 if (!cxt) {
5061 BNX2X_ERR("bad context pointer %p\n", cxt);
5062 return;
5063 }
5064
5065 /* ustorm cxt validation */
5066 cxt->ustorm_ag_context.cdu_usage =
5067 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5068 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5069 /* xcontext validation */
5070 cxt->xstorm_ag_context.cdu_reserved =
5071 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5072 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5073 }
5074
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5075 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5076 u8 fw_sb_id, u8 sb_index,
5077 u8 ticks)
5078 {
5079 u32 addr = BAR_CSTRORM_INTMEM +
5080 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5081 REG_WR8(bp, addr, ticks);
5082 DP(NETIF_MSG_IFUP,
5083 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5084 port, fw_sb_id, sb_index, ticks);
5085 }
5086
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5087 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5088 u16 fw_sb_id, u8 sb_index,
5089 u8 disable)
5090 {
5091 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5092 u32 addr = BAR_CSTRORM_INTMEM +
5093 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5094 u8 flags = REG_RD8(bp, addr);
5095 /* clear and set */
5096 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5097 flags |= enable_flag;
5098 REG_WR8(bp, addr, flags);
5099 DP(NETIF_MSG_IFUP,
5100 "port %x fw_sb_id %d sb_index %d disable %d\n",
5101 port, fw_sb_id, sb_index, disable);
5102 }
5103
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5104 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5105 u8 sb_index, u8 disable, u16 usec)
5106 {
5107 int port = BP_PORT(bp);
5108 u8 ticks = usec / BNX2X_BTR;
5109
5110 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5111
5112 disable = disable ? 1 : (usec ? 0 : 1);
5113 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5114 }
5115
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5116 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5117 u32 verbose)
5118 {
5119 smp_mb__before_atomic();
5120 set_bit(flag, &bp->sp_rtnl_state);
5121 smp_mb__after_atomic();
5122 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5123 flag);
5124 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5125 }
5126