1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39
bnx2x_add_all_napi_cnic(struct bnx2x * bp)40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 int i;
43
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp, i) {
46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 bnx2x_poll, NAPI_POLL_WEIGHT);
48 }
49 }
50
bnx2x_add_all_napi(struct bnx2x * bp)51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 int i;
54
55 /* Add NAPI objects */
56 for_each_eth_queue(bp, i) {
57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 bnx2x_poll, NAPI_POLL_WEIGHT);
59 }
60 }
61
bnx2x_calc_num_queues(struct bnx2x * bp)62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
68 nq = 1;
69
70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 return nq;
72 }
73
74 /**
75 * bnx2x_move_fp - move content of the fastpath structure.
76 *
77 * @bp: driver handle
78 * @from: source FP index
79 * @to: destination FP index
80 *
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
85 * content.
86 */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 int old_max_eth_txqs, new_max_eth_txqs;
96 int old_txdata_index = 0, new_txdata_index = 0;
97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp->napi = to_fp->napi;
101
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp, from_fp, sizeof(*to_fp));
104 to_fp->index = to;
105
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
108 */
109 to_fp->tpa_info = old_tpa_info;
110
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
120 */
121
122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 (bp)->max_cos;
125 if (from == FCOE_IDX(bp)) {
126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 }
129
130 memcpy(&bp->bnx2x_txq[new_txdata_index],
131 &bp->bnx2x_txq[old_txdata_index],
132 sizeof(struct bnx2x_fp_txdata));
133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135
136 /**
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
138 *
139 * @bp: driver handle
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
142 *
143 */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 if (IS_PF(bp)) {
147 u8 phy_fw_ver[PHY_FW_VER_LEN];
148
149 phy_fw_ver[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 phy_fw_ver, PHY_FW_VER_LEN);
152 strlcpy(buf, bp->fw_ver, buf_len);
153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 "bc %d.%d.%d%s%s",
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 /* Skip second parse bd... */
232 --nbd;
233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 }
235
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 --nbd;
241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 }
243
244 /* unmap first bd */
245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 DMA_TO_DEVICE);
248
249 /* now free frags */
250 while (nbd > 0) {
251
252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 if (--nbd)
256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 }
258
259 /* release skb */
260 WARN_ON(!skb);
261 if (likely(skb)) {
262 (*pkts_compl)++;
263 (*bytes_compl) += skb->len;
264 dev_kfree_skb_any(skb);
265 }
266
267 tx_buf->first_bd = 0;
268 tx_buf->skb = NULL;
269
270 return new_cons;
271 }
272
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 struct netdev_queue *txq;
276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 unsigned int pkts_compl = 0, bytes_compl = 0;
278
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp->panic))
281 return -1;
282 #endif
283
284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 sw_cons = txdata->tx_pkt_cons;
287
288 /* Ensure subsequent loads occur after hw_cons */
289 smp_rmb();
290
291 while (sw_cons != hw_cons) {
292 u16 pkt_cons;
293
294 pkt_cons = TX_BD(sw_cons);
295
296 DP(NETIF_MSG_TX_DONE,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299
300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 &pkts_compl, &bytes_compl);
302
303 sw_cons++;
304 }
305
306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307
308 txdata->tx_pkt_cons = sw_cons;
309 txdata->tx_bd_cons = bd_cons;
310
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
315 * forever.
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
319 */
320 smp_mb();
321
322 if (unlikely(netif_tx_queue_stopped(txq))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 *
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
330 * stops the queue
331 */
332
333 __netif_tx_lock(txq, smp_processor_id());
334
335 if ((netif_tx_queue_stopped(txq)) &&
336 (bp->state == BNX2X_STATE_OPEN) &&
337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 netif_tx_wake_queue(txq);
339
340 __netif_tx_unlock(txq);
341 }
342 return 0;
343 }
344
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 u16 idx)
347 {
348 u16 last_max = fp->last_max_sge;
349
350 if (SUB_S16(idx, last_max) > 0)
351 fp->last_max_sge = idx;
352 }
353
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 u16 sge_len,
356 struct eth_end_agg_rx_cqe *cqe)
357 {
358 struct bnx2x *bp = fp->bp;
359 u16 last_max, last_elem, first_elem;
360 u16 delta = 0;
361 u16 i;
362
363 if (!sge_len)
364 return;
365
366 /* First mark all used pages */
367 for (i = 0; i < sge_len; i++)
368 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370
371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp->sge_mask));
376 bnx2x_update_last_max_sge(fp,
377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378
379 last_max = RX_SGE(fp->last_max_sge);
380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382
383 /* If ring is not full */
384 if (last_elem + 1 != first_elem)
385 last_elem++;
386
387 /* Now update the prod */
388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 if (likely(fp->sge_mask[i]))
390 break;
391
392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 delta += BIT_VEC64_ELEM_SZ;
394 }
395
396 if (delta > 0) {
397 fp->rx_sge_prod += delta;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp);
400 }
401
402 DP(NETIF_MSG_RX_STATUS,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp->last_max_sge, fp->rx_sge_prod);
405 }
406
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
409 */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 const struct eth_fast_path_rx_cqe *cqe,
412 enum pkt_hash_types *rxhash_type)
413 {
414 /* Get Toeplitz hash from CQE */
415 if ((bp->dev->features & NETIF_F_RXHASH) &&
416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 enum eth_rss_hash_type htype;
418
419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 (htype == TCP_IPV6_HASH_TYPE)) ?
422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423
424 return le32_to_cpu(cqe->rss_hash_result);
425 }
426 *rxhash_type = PKT_HASH_TYPE_NONE;
427 return 0;
428 }
429
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 u16 cons, u16 prod,
432 struct eth_fast_path_rx_cqe *cqe)
433 {
434 struct bnx2x *bp = fp->bp;
435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 dma_addr_t mapping;
439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441
442 /* print error if current state != stop */
443 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping = dma_map_single(&bp->pdev->dev,
448 first_buf->data + NET_SKB_PAD,
449 fp->rx_buf_size, DMA_FROM_DEVICE);
450 /*
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
454 */
455
456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp, cons, prod);
459 tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 return;
461 }
462
463 /* move empty data from pool to prod */
464 prod_rx_buf->data = first_buf->data;
465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 /* point prod_bd to new data */
467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf = *cons_rx_buf;
472
473 /* mark bin state as START */
474 tpa_info->parsing_flags =
475 le16_to_cpu(cqe->pars_flags.flags);
476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 tpa_info->tpa_state = BNX2X_TPA_START;
478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 tpa_info->placement_offset = cqe->placement_offset;
480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 if (fp->mode == TPA_MODE_GRO) {
482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 tpa_info->gro_size = gro_size;
485 }
486
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp->tpa_queue_used |= (1 << queue);
489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 fp->tpa_queue_used);
491 #endif
492 }
493
494 /* Timestamp option length allowed for TPA aggregation:
495 *
496 * nop nop kind length echo val
497 */
498 #define TPA_TSTAMP_OPT_LEN 12
499 /**
500 * bnx2x_set_gro_params - compute GRO values
501 *
502 * @skb: packet skb
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
505 * aggregation.
506 * @pkt_len: length of all segments
507 * @num_of_coalesced_segs: count of segments
508 *
509 * Approximate value of the MSS for this aggregation calculated using
510 * the first packet of it.
511 * Compute number of aggregated segments, and gso_type.
512 */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
514 u16 len_on_bd, unsigned int pkt_len,
515 u16 num_of_coalesced_segs)
516 {
517 /* TPA aggregation won't have either IP options or TCP options
518 * other than timestamp or IPv6 extension headers.
519 */
520 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
521
522 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
523 PRS_FLAG_OVERETH_IPV6) {
524 hdrs_len += sizeof(struct ipv6hdr);
525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
526 } else {
527 hdrs_len += sizeof(struct iphdr);
528 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
529 }
530
531 /* Check if there was a TCP timestamp, if there is it's will
532 * always be 12 bytes length: nop nop kind length echo val.
533 *
534 * Otherwise FW would close the aggregation.
535 */
536 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
537 hdrs_len += TPA_TSTAMP_OPT_LEN;
538
539 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
540
541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 * to skb_shinfo(skb)->gso_segs
543 */
544 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
545 }
546
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
548 u16 index, gfp_t gfp_mask)
549 {
550 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
551 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
552 struct bnx2x_alloc_pool *pool = &fp->page_pool;
553 dma_addr_t mapping;
554
555 if (!pool->page) {
556 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
557 if (unlikely(!pool->page))
558 return -ENOMEM;
559
560 pool->offset = 0;
561 }
562
563 mapping = dma_map_page(&bp->pdev->dev, pool->page,
564 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
565 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
566 BNX2X_ERR("Can't map sge\n");
567 return -ENOMEM;
568 }
569
570 sw_buf->page = pool->page;
571 sw_buf->offset = pool->offset;
572
573 dma_unmap_addr_set(sw_buf, mapping, mapping);
574
575 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
576 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
577
578 pool->offset += SGE_PAGE_SIZE;
579 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
580 get_page(pool->page);
581 else
582 pool->page = NULL;
583 return 0;
584 }
585
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)586 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
587 struct bnx2x_agg_info *tpa_info,
588 u16 pages,
589 struct sk_buff *skb,
590 struct eth_end_agg_rx_cqe *cqe,
591 u16 cqe_idx)
592 {
593 struct sw_rx_page *rx_pg, old_rx_pg;
594 u32 i, frag_len, frag_size;
595 int err, j, frag_id = 0;
596 u16 len_on_bd = tpa_info->len_on_bd;
597 u16 full_page = 0, gro_size = 0;
598
599 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
600
601 if (fp->mode == TPA_MODE_GRO) {
602 gro_size = tpa_info->gro_size;
603 full_page = tpa_info->full_page;
604 }
605
606 /* This is needed in order to enable forwarding support */
607 if (frag_size)
608 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
609 le16_to_cpu(cqe->pkt_len),
610 le16_to_cpu(cqe->num_of_coalesced_segs));
611
612 #ifdef BNX2X_STOP_ON_ERROR
613 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
614 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 pages, cqe_idx);
616 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
617 bnx2x_panic();
618 return -EINVAL;
619 }
620 #endif
621
622 /* Run through the SGL and compose the fragmented skb */
623 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
624 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
625
626 /* FW gives the indices of the SGE as if the ring is an array
627 (meaning that "next" element will consume 2 indices) */
628 if (fp->mode == TPA_MODE_GRO)
629 frag_len = min_t(u32, frag_size, (u32)full_page);
630 else /* LRO */
631 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
632
633 rx_pg = &fp->rx_page_ring[sge_idx];
634 old_rx_pg = *rx_pg;
635
636 /* If we fail to allocate a substitute page, we simply stop
637 where we are and drop the whole packet */
638 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
639 if (unlikely(err)) {
640 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
641 return err;
642 }
643
644 dma_unmap_page(&bp->pdev->dev,
645 dma_unmap_addr(&old_rx_pg, mapping),
646 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
647 /* Add one frag and update the appropriate fields in the skb */
648 if (fp->mode == TPA_MODE_LRO)
649 skb_fill_page_desc(skb, j, old_rx_pg.page,
650 old_rx_pg.offset, frag_len);
651 else { /* GRO */
652 int rem;
653 int offset = 0;
654 for (rem = frag_len; rem > 0; rem -= gro_size) {
655 int len = rem > gro_size ? gro_size : rem;
656 skb_fill_page_desc(skb, frag_id++,
657 old_rx_pg.page,
658 old_rx_pg.offset + offset,
659 len);
660 if (offset)
661 get_page(old_rx_pg.page);
662 offset += len;
663 }
664 }
665
666 skb->data_len += frag_len;
667 skb->truesize += SGE_PAGES;
668 skb->len += frag_len;
669
670 frag_size -= frag_len;
671 }
672
673 return 0;
674 }
675
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)676 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
677 {
678 if (fp->rx_frag_size)
679 skb_free_frag(data);
680 else
681 kfree(data);
682 }
683
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
685 {
686 if (fp->rx_frag_size) {
687 /* GFP_KERNEL allocations are used only during initialization */
688 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
689 return (void *)__get_free_page(gfp_mask);
690
691 return napi_alloc_frag(fp->rx_frag_size);
692 }
693
694 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
695 }
696
697 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)698 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
699 {
700 const struct iphdr *iph = ip_hdr(skb);
701 struct tcphdr *th;
702
703 skb_set_transport_header(skb, sizeof(struct iphdr));
704 th = tcp_hdr(skb);
705
706 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
707 iph->saddr, iph->daddr, 0);
708 }
709
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)710 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
711 {
712 struct ipv6hdr *iph = ipv6_hdr(skb);
713 struct tcphdr *th;
714
715 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
716 th = tcp_hdr(skb);
717
718 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
719 &iph->saddr, &iph->daddr, 0);
720 }
721
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))722 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
723 void (*gro_func)(struct bnx2x*, struct sk_buff*))
724 {
725 skb_reset_network_header(skb);
726 gro_func(bp, skb);
727 tcp_gro_complete(skb);
728 }
729 #endif
730
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)731 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
732 struct sk_buff *skb)
733 {
734 #ifdef CONFIG_INET
735 if (skb_shinfo(skb)->gso_size) {
736 switch (be16_to_cpu(skb->protocol)) {
737 case ETH_P_IP:
738 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
739 break;
740 case ETH_P_IPV6:
741 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
742 break;
743 default:
744 netdev_WARN_ONCE(bp->dev,
745 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
746 be16_to_cpu(skb->protocol));
747 }
748 }
749 #endif
750 skb_record_rx_queue(skb, fp->rx_queue);
751 napi_gro_receive(&fp->napi, skb);
752 }
753
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)754 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
755 struct bnx2x_agg_info *tpa_info,
756 u16 pages,
757 struct eth_end_agg_rx_cqe *cqe,
758 u16 cqe_idx)
759 {
760 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
761 u8 pad = tpa_info->placement_offset;
762 u16 len = tpa_info->len_on_bd;
763 struct sk_buff *skb = NULL;
764 u8 *new_data, *data = rx_buf->data;
765 u8 old_tpa_state = tpa_info->tpa_state;
766
767 tpa_info->tpa_state = BNX2X_TPA_STOP;
768
769 /* If we there was an error during the handling of the TPA_START -
770 * drop this aggregation.
771 */
772 if (old_tpa_state == BNX2X_TPA_ERROR)
773 goto drop;
774
775 /* Try to allocate the new data */
776 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
777 /* Unmap skb in the pool anyway, as we are going to change
778 pool entry status to BNX2X_TPA_STOP even if new skb allocation
779 fails. */
780 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
781 fp->rx_buf_size, DMA_FROM_DEVICE);
782 if (likely(new_data))
783 skb = build_skb(data, fp->rx_frag_size);
784
785 if (likely(skb)) {
786 #ifdef BNX2X_STOP_ON_ERROR
787 if (pad + len > fp->rx_buf_size) {
788 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
789 pad, len, fp->rx_buf_size);
790 bnx2x_panic();
791 return;
792 }
793 #endif
794
795 skb_reserve(skb, pad + NET_SKB_PAD);
796 skb_put(skb, len);
797 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
798
799 skb->protocol = eth_type_trans(skb, bp->dev);
800 skb->ip_summed = CHECKSUM_UNNECESSARY;
801
802 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
803 skb, cqe, cqe_idx)) {
804 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
805 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
806 bnx2x_gro_receive(bp, fp, skb);
807 } else {
808 DP(NETIF_MSG_RX_STATUS,
809 "Failed to allocate new pages - dropping packet!\n");
810 dev_kfree_skb_any(skb);
811 }
812
813 /* put new data in bin */
814 rx_buf->data = new_data;
815
816 return;
817 }
818 if (new_data)
819 bnx2x_frag_free(fp, new_data);
820 drop:
821 /* drop the packet and keep the buffer in the bin */
822 DP(NETIF_MSG_RX_STATUS,
823 "Failed to allocate or map a new skb - dropping packet!\n");
824 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
825 }
826
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)827 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
828 u16 index, gfp_t gfp_mask)
829 {
830 u8 *data;
831 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
832 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
833 dma_addr_t mapping;
834
835 data = bnx2x_frag_alloc(fp, gfp_mask);
836 if (unlikely(data == NULL))
837 return -ENOMEM;
838
839 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
840 fp->rx_buf_size,
841 DMA_FROM_DEVICE);
842 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
843 bnx2x_frag_free(fp, data);
844 BNX2X_ERR("Can't map rx data\n");
845 return -ENOMEM;
846 }
847
848 rx_buf->data = data;
849 dma_unmap_addr_set(rx_buf, mapping, mapping);
850
851 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
852 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
853
854 return 0;
855 }
856
857 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)858 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
859 struct bnx2x_fastpath *fp,
860 struct bnx2x_eth_q_stats *qstats)
861 {
862 /* Do nothing if no L4 csum validation was done.
863 * We do not check whether IP csum was validated. For IPv4 we assume
864 * that if the card got as far as validating the L4 csum, it also
865 * validated the IP csum. IPv6 has no IP csum.
866 */
867 if (cqe->fast_path_cqe.status_flags &
868 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
869 return;
870
871 /* If L4 validation was done, check if an error was found. */
872
873 if (cqe->fast_path_cqe.type_error_flags &
874 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
875 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
876 qstats->hw_csum_err++;
877 else
878 skb->ip_summed = CHECKSUM_UNNECESSARY;
879 }
880
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)881 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
882 {
883 struct bnx2x *bp = fp->bp;
884 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
885 u16 sw_comp_cons, sw_comp_prod;
886 int rx_pkt = 0;
887 union eth_rx_cqe *cqe;
888 struct eth_fast_path_rx_cqe *cqe_fp;
889
890 #ifdef BNX2X_STOP_ON_ERROR
891 if (unlikely(bp->panic))
892 return 0;
893 #endif
894 if (budget <= 0)
895 return rx_pkt;
896
897 bd_cons = fp->rx_bd_cons;
898 bd_prod = fp->rx_bd_prod;
899 bd_prod_fw = bd_prod;
900 sw_comp_cons = fp->rx_comp_cons;
901 sw_comp_prod = fp->rx_comp_prod;
902
903 comp_ring_cons = RCQ_BD(sw_comp_cons);
904 cqe = &fp->rx_comp_ring[comp_ring_cons];
905 cqe_fp = &cqe->fast_path_cqe;
906
907 DP(NETIF_MSG_RX_STATUS,
908 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
909
910 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
911 struct sw_rx_bd *rx_buf = NULL;
912 struct sk_buff *skb;
913 u8 cqe_fp_flags;
914 enum eth_rx_cqe_type cqe_fp_type;
915 u16 len, pad, queue;
916 u8 *data;
917 u32 rxhash;
918 enum pkt_hash_types rxhash_type;
919
920 #ifdef BNX2X_STOP_ON_ERROR
921 if (unlikely(bp->panic))
922 return 0;
923 #endif
924
925 bd_prod = RX_BD(bd_prod);
926 bd_cons = RX_BD(bd_cons);
927
928 /* A rmb() is required to ensure that the CQE is not read
929 * before it is written by the adapter DMA. PCI ordering
930 * rules will make sure the other fields are written before
931 * the marker at the end of struct eth_fast_path_rx_cqe
932 * but without rmb() a weakly ordered processor can process
933 * stale data. Without the barrier TPA state-machine might
934 * enter inconsistent state and kernel stack might be
935 * provided with incorrect packet description - these lead
936 * to various kernel crashed.
937 */
938 rmb();
939
940 cqe_fp_flags = cqe_fp->type_error_flags;
941 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
942
943 DP(NETIF_MSG_RX_STATUS,
944 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
945 CQE_TYPE(cqe_fp_flags),
946 cqe_fp_flags, cqe_fp->status_flags,
947 le32_to_cpu(cqe_fp->rss_hash_result),
948 le16_to_cpu(cqe_fp->vlan_tag),
949 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
950
951 /* is this a slowpath msg? */
952 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
953 bnx2x_sp_event(fp, cqe);
954 goto next_cqe;
955 }
956
957 rx_buf = &fp->rx_buf_ring[bd_cons];
958 data = rx_buf->data;
959
960 if (!CQE_TYPE_FAST(cqe_fp_type)) {
961 struct bnx2x_agg_info *tpa_info;
962 u16 frag_size, pages;
963 #ifdef BNX2X_STOP_ON_ERROR
964 /* sanity check */
965 if (fp->mode == TPA_MODE_DISABLED &&
966 (CQE_TYPE_START(cqe_fp_type) ||
967 CQE_TYPE_STOP(cqe_fp_type)))
968 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
969 CQE_TYPE(cqe_fp_type));
970 #endif
971
972 if (CQE_TYPE_START(cqe_fp_type)) {
973 u16 queue = cqe_fp->queue_index;
974 DP(NETIF_MSG_RX_STATUS,
975 "calling tpa_start on queue %d\n",
976 queue);
977
978 bnx2x_tpa_start(fp, queue,
979 bd_cons, bd_prod,
980 cqe_fp);
981
982 goto next_rx;
983 }
984 queue = cqe->end_agg_cqe.queue_index;
985 tpa_info = &fp->tpa_info[queue];
986 DP(NETIF_MSG_RX_STATUS,
987 "calling tpa_stop on queue %d\n",
988 queue);
989
990 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
991 tpa_info->len_on_bd;
992
993 if (fp->mode == TPA_MODE_GRO)
994 pages = (frag_size + tpa_info->full_page - 1) /
995 tpa_info->full_page;
996 else
997 pages = SGE_PAGE_ALIGN(frag_size) >>
998 SGE_PAGE_SHIFT;
999
1000 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1001 &cqe->end_agg_cqe, comp_ring_cons);
1002 #ifdef BNX2X_STOP_ON_ERROR
1003 if (bp->panic)
1004 return 0;
1005 #endif
1006
1007 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1008 goto next_cqe;
1009 }
1010 /* non TPA */
1011 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1012 pad = cqe_fp->placement_offset;
1013 dma_sync_single_for_cpu(&bp->pdev->dev,
1014 dma_unmap_addr(rx_buf, mapping),
1015 pad + RX_COPY_THRESH,
1016 DMA_FROM_DEVICE);
1017 pad += NET_SKB_PAD;
1018 prefetch(data + pad); /* speedup eth_type_trans() */
1019 /* is this an error packet? */
1020 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1021 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1022 "ERROR flags %x rx packet %u\n",
1023 cqe_fp_flags, sw_comp_cons);
1024 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1025 goto reuse_rx;
1026 }
1027
1028 /* Since we don't have a jumbo ring
1029 * copy small packets if mtu > 1500
1030 */
1031 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1032 (len <= RX_COPY_THRESH)) {
1033 skb = napi_alloc_skb(&fp->napi, len);
1034 if (skb == NULL) {
1035 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1036 "ERROR packet dropped because of alloc failure\n");
1037 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1038 goto reuse_rx;
1039 }
1040 memcpy(skb->data, data + pad, len);
1041 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1042 } else {
1043 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1044 GFP_ATOMIC) == 0)) {
1045 dma_unmap_single(&bp->pdev->dev,
1046 dma_unmap_addr(rx_buf, mapping),
1047 fp->rx_buf_size,
1048 DMA_FROM_DEVICE);
1049 skb = build_skb(data, fp->rx_frag_size);
1050 if (unlikely(!skb)) {
1051 bnx2x_frag_free(fp, data);
1052 bnx2x_fp_qstats(bp, fp)->
1053 rx_skb_alloc_failed++;
1054 goto next_rx;
1055 }
1056 skb_reserve(skb, pad);
1057 } else {
1058 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1059 "ERROR packet dropped because of alloc failure\n");
1060 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1061 reuse_rx:
1062 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1063 goto next_rx;
1064 }
1065 }
1066
1067 skb_put(skb, len);
1068 skb->protocol = eth_type_trans(skb, bp->dev);
1069
1070 /* Set Toeplitz hash for a none-LRO skb */
1071 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1072 skb_set_hash(skb, rxhash, rxhash_type);
1073
1074 skb_checksum_none_assert(skb);
1075
1076 if (bp->dev->features & NETIF_F_RXCSUM)
1077 bnx2x_csum_validate(skb, cqe, fp,
1078 bnx2x_fp_qstats(bp, fp));
1079
1080 skb_record_rx_queue(skb, fp->rx_queue);
1081
1082 /* Check if this packet was timestamped */
1083 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1084 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1085 bnx2x_set_rx_ts(bp, skb);
1086
1087 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1088 PARSING_FLAGS_VLAN)
1089 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1090 le16_to_cpu(cqe_fp->vlan_tag));
1091
1092 napi_gro_receive(&fp->napi, skb);
1093 next_rx:
1094 rx_buf->data = NULL;
1095
1096 bd_cons = NEXT_RX_IDX(bd_cons);
1097 bd_prod = NEXT_RX_IDX(bd_prod);
1098 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1099 rx_pkt++;
1100 next_cqe:
1101 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1102 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1103
1104 /* mark CQE as free */
1105 BNX2X_SEED_CQE(cqe_fp);
1106
1107 if (rx_pkt == budget)
1108 break;
1109
1110 comp_ring_cons = RCQ_BD(sw_comp_cons);
1111 cqe = &fp->rx_comp_ring[comp_ring_cons];
1112 cqe_fp = &cqe->fast_path_cqe;
1113 } /* while */
1114
1115 fp->rx_bd_cons = bd_cons;
1116 fp->rx_bd_prod = bd_prod_fw;
1117 fp->rx_comp_cons = sw_comp_cons;
1118 fp->rx_comp_prod = sw_comp_prod;
1119
1120 /* Update producers */
1121 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1122 fp->rx_sge_prod);
1123
1124 return rx_pkt;
1125 }
1126
bnx2x_msix_fp_int(int irq,void * fp_cookie)1127 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1128 {
1129 struct bnx2x_fastpath *fp = fp_cookie;
1130 struct bnx2x *bp = fp->bp;
1131 u8 cos;
1132
1133 DP(NETIF_MSG_INTR,
1134 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1135 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1136
1137 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1138
1139 #ifdef BNX2X_STOP_ON_ERROR
1140 if (unlikely(bp->panic))
1141 return IRQ_HANDLED;
1142 #endif
1143
1144 /* Handle Rx and Tx according to MSI-X vector */
1145 for_each_cos_in_tx_queue(fp, cos)
1146 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1147
1148 prefetch(&fp->sb_running_index[SM_RX_ID]);
1149 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1150
1151 return IRQ_HANDLED;
1152 }
1153
1154 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1155 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1156 {
1157 mutex_lock(&bp->port.phy_mutex);
1158
1159 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1160 }
1161
bnx2x_release_phy_lock(struct bnx2x * bp)1162 void bnx2x_release_phy_lock(struct bnx2x *bp)
1163 {
1164 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1165
1166 mutex_unlock(&bp->port.phy_mutex);
1167 }
1168
1169 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1170 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1171 {
1172 u16 line_speed = bp->link_vars.line_speed;
1173 if (IS_MF(bp)) {
1174 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1175 bp->mf_config[BP_VN(bp)]);
1176
1177 /* Calculate the current MAX line speed limit for the MF
1178 * devices
1179 */
1180 if (IS_MF_PERCENT_BW(bp))
1181 line_speed = (line_speed * maxCfg) / 100;
1182 else { /* SD mode */
1183 u16 vn_max_rate = maxCfg * 100;
1184
1185 if (vn_max_rate < line_speed)
1186 line_speed = vn_max_rate;
1187 }
1188 }
1189
1190 return line_speed;
1191 }
1192
1193 /**
1194 * bnx2x_fill_report_data - fill link report data to report
1195 *
1196 * @bp: driver handle
1197 * @data: link state to update
1198 *
1199 * It uses a none-atomic bit operations because is called under the mutex.
1200 */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1201 static void bnx2x_fill_report_data(struct bnx2x *bp,
1202 struct bnx2x_link_report_data *data)
1203 {
1204 memset(data, 0, sizeof(*data));
1205
1206 if (IS_PF(bp)) {
1207 /* Fill the report data: effective line speed */
1208 data->line_speed = bnx2x_get_mf_speed(bp);
1209
1210 /* Link is down */
1211 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1212 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 &data->link_report_flags);
1214
1215 if (!BNX2X_NUM_ETH_QUEUES(bp))
1216 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1217 &data->link_report_flags);
1218
1219 /* Full DUPLEX */
1220 if (bp->link_vars.duplex == DUPLEX_FULL)
1221 __set_bit(BNX2X_LINK_REPORT_FD,
1222 &data->link_report_flags);
1223
1224 /* Rx Flow Control is ON */
1225 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1226 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1227 &data->link_report_flags);
1228
1229 /* Tx Flow Control is ON */
1230 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1231 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1232 &data->link_report_flags);
1233 } else { /* VF */
1234 *data = bp->vf_link_vars;
1235 }
1236 }
1237
1238 /**
1239 * bnx2x_link_report - report link status to OS.
1240 *
1241 * @bp: driver handle
1242 *
1243 * Calls the __bnx2x_link_report() under the same locking scheme
1244 * as a link/PHY state managing code to ensure a consistent link
1245 * reporting.
1246 */
1247
bnx2x_link_report(struct bnx2x * bp)1248 void bnx2x_link_report(struct bnx2x *bp)
1249 {
1250 bnx2x_acquire_phy_lock(bp);
1251 __bnx2x_link_report(bp);
1252 bnx2x_release_phy_lock(bp);
1253 }
1254
1255 /**
1256 * __bnx2x_link_report - report link status to OS.
1257 *
1258 * @bp: driver handle
1259 *
1260 * None atomic implementation.
1261 * Should be called under the phy_lock.
1262 */
__bnx2x_link_report(struct bnx2x * bp)1263 void __bnx2x_link_report(struct bnx2x *bp)
1264 {
1265 struct bnx2x_link_report_data cur_data;
1266
1267 if (bp->force_link_down) {
1268 bp->link_vars.link_up = 0;
1269 return;
1270 }
1271
1272 /* reread mf_cfg */
1273 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1274 bnx2x_read_mf_cfg(bp);
1275
1276 /* Read the current link report info */
1277 bnx2x_fill_report_data(bp, &cur_data);
1278
1279 /* Don't report link down or exactly the same link status twice */
1280 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1281 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1282 &bp->last_reported_link.link_report_flags) &&
1283 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1284 &cur_data.link_report_flags)))
1285 return;
1286
1287 bp->link_cnt++;
1288
1289 /* We are going to report a new link parameters now -
1290 * remember the current data for the next time.
1291 */
1292 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1293
1294 /* propagate status to VFs */
1295 if (IS_PF(bp))
1296 bnx2x_iov_link_update(bp);
1297
1298 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1299 &cur_data.link_report_flags)) {
1300 netif_carrier_off(bp->dev);
1301 netdev_err(bp->dev, "NIC Link is Down\n");
1302 return;
1303 } else {
1304 const char *duplex;
1305 const char *flow;
1306
1307 netif_carrier_on(bp->dev);
1308
1309 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1310 &cur_data.link_report_flags))
1311 duplex = "full";
1312 else
1313 duplex = "half";
1314
1315 /* Handle the FC at the end so that only these flags would be
1316 * possibly set. This way we may easily check if there is no FC
1317 * enabled.
1318 */
1319 if (cur_data.link_report_flags) {
1320 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1321 &cur_data.link_report_flags)) {
1322 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1323 &cur_data.link_report_flags))
1324 flow = "ON - receive & transmit";
1325 else
1326 flow = "ON - receive";
1327 } else {
1328 flow = "ON - transmit";
1329 }
1330 } else {
1331 flow = "none";
1332 }
1333 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1334 cur_data.line_speed, duplex, flow);
1335 }
1336 }
1337
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1338 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1339 {
1340 int i;
1341
1342 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1343 struct eth_rx_sge *sge;
1344
1345 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1346 sge->addr_hi =
1347 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1348 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349
1350 sge->addr_lo =
1351 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1352 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1353 }
1354 }
1355
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1356 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1357 struct bnx2x_fastpath *fp, int last)
1358 {
1359 int i;
1360
1361 for (i = 0; i < last; i++) {
1362 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1363 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1364 u8 *data = first_buf->data;
1365
1366 if (data == NULL) {
1367 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1368 continue;
1369 }
1370 if (tpa_info->tpa_state == BNX2X_TPA_START)
1371 dma_unmap_single(&bp->pdev->dev,
1372 dma_unmap_addr(first_buf, mapping),
1373 fp->rx_buf_size, DMA_FROM_DEVICE);
1374 bnx2x_frag_free(fp, data);
1375 first_buf->data = NULL;
1376 }
1377 }
1378
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1379 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1380 {
1381 int j;
1382
1383 for_each_rx_queue_cnic(bp, j) {
1384 struct bnx2x_fastpath *fp = &bp->fp[j];
1385
1386 fp->rx_bd_cons = 0;
1387
1388 /* Activate BD ring */
1389 /* Warning!
1390 * this will generate an interrupt (to the TSTORM)
1391 * must only be done after chip is initialized
1392 */
1393 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1394 fp->rx_sge_prod);
1395 }
1396 }
1397
bnx2x_init_rx_rings(struct bnx2x * bp)1398 void bnx2x_init_rx_rings(struct bnx2x *bp)
1399 {
1400 int func = BP_FUNC(bp);
1401 u16 ring_prod;
1402 int i, j;
1403
1404 /* Allocate TPA resources */
1405 for_each_eth_queue(bp, j) {
1406 struct bnx2x_fastpath *fp = &bp->fp[j];
1407
1408 DP(NETIF_MSG_IFUP,
1409 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1410
1411 if (fp->mode != TPA_MODE_DISABLED) {
1412 /* Fill the per-aggregation pool */
1413 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1414 struct bnx2x_agg_info *tpa_info =
1415 &fp->tpa_info[i];
1416 struct sw_rx_bd *first_buf =
1417 &tpa_info->first_buf;
1418
1419 first_buf->data =
1420 bnx2x_frag_alloc(fp, GFP_KERNEL);
1421 if (!first_buf->data) {
1422 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1423 j);
1424 bnx2x_free_tpa_pool(bp, fp, i);
1425 fp->mode = TPA_MODE_DISABLED;
1426 break;
1427 }
1428 dma_unmap_addr_set(first_buf, mapping, 0);
1429 tpa_info->tpa_state = BNX2X_TPA_STOP;
1430 }
1431
1432 /* "next page" elements initialization */
1433 bnx2x_set_next_page_sgl(fp);
1434
1435 /* set SGEs bit mask */
1436 bnx2x_init_sge_ring_bit_mask(fp);
1437
1438 /* Allocate SGEs and initialize the ring elements */
1439 for (i = 0, ring_prod = 0;
1440 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1441
1442 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1443 GFP_KERNEL) < 0) {
1444 BNX2X_ERR("was only able to allocate %d rx sges\n",
1445 i);
1446 BNX2X_ERR("disabling TPA for queue[%d]\n",
1447 j);
1448 /* Cleanup already allocated elements */
1449 bnx2x_free_rx_sge_range(bp, fp,
1450 ring_prod);
1451 bnx2x_free_tpa_pool(bp, fp,
1452 MAX_AGG_QS(bp));
1453 fp->mode = TPA_MODE_DISABLED;
1454 ring_prod = 0;
1455 break;
1456 }
1457 ring_prod = NEXT_SGE_IDX(ring_prod);
1458 }
1459
1460 fp->rx_sge_prod = ring_prod;
1461 }
1462 }
1463
1464 for_each_eth_queue(bp, j) {
1465 struct bnx2x_fastpath *fp = &bp->fp[j];
1466
1467 fp->rx_bd_cons = 0;
1468
1469 /* Activate BD ring */
1470 /* Warning!
1471 * this will generate an interrupt (to the TSTORM)
1472 * must only be done after chip is initialized
1473 */
1474 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1475 fp->rx_sge_prod);
1476
1477 if (j != 0)
1478 continue;
1479
1480 if (CHIP_IS_E1(bp)) {
1481 REG_WR(bp, BAR_USTRORM_INTMEM +
1482 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1483 U64_LO(fp->rx_comp_mapping));
1484 REG_WR(bp, BAR_USTRORM_INTMEM +
1485 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1486 U64_HI(fp->rx_comp_mapping));
1487 }
1488 }
1489 }
1490
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1491 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1492 {
1493 u8 cos;
1494 struct bnx2x *bp = fp->bp;
1495
1496 for_each_cos_in_tx_queue(fp, cos) {
1497 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1498 unsigned pkts_compl = 0, bytes_compl = 0;
1499
1500 u16 sw_prod = txdata->tx_pkt_prod;
1501 u16 sw_cons = txdata->tx_pkt_cons;
1502
1503 while (sw_cons != sw_prod) {
1504 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1505 &pkts_compl, &bytes_compl);
1506 sw_cons++;
1507 }
1508
1509 netdev_tx_reset_queue(
1510 netdev_get_tx_queue(bp->dev,
1511 txdata->txq_index));
1512 }
1513 }
1514
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1515 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1516 {
1517 int i;
1518
1519 for_each_tx_queue_cnic(bp, i) {
1520 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1521 }
1522 }
1523
bnx2x_free_tx_skbs(struct bnx2x * bp)1524 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1525 {
1526 int i;
1527
1528 for_each_eth_queue(bp, i) {
1529 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1530 }
1531 }
1532
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1533 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1534 {
1535 struct bnx2x *bp = fp->bp;
1536 int i;
1537
1538 /* ring wasn't allocated */
1539 if (fp->rx_buf_ring == NULL)
1540 return;
1541
1542 for (i = 0; i < NUM_RX_BD; i++) {
1543 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1544 u8 *data = rx_buf->data;
1545
1546 if (data == NULL)
1547 continue;
1548 dma_unmap_single(&bp->pdev->dev,
1549 dma_unmap_addr(rx_buf, mapping),
1550 fp->rx_buf_size, DMA_FROM_DEVICE);
1551
1552 rx_buf->data = NULL;
1553 bnx2x_frag_free(fp, data);
1554 }
1555 }
1556
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1557 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1558 {
1559 int j;
1560
1561 for_each_rx_queue_cnic(bp, j) {
1562 bnx2x_free_rx_bds(&bp->fp[j]);
1563 }
1564 }
1565
bnx2x_free_rx_skbs(struct bnx2x * bp)1566 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1567 {
1568 int j;
1569
1570 for_each_eth_queue(bp, j) {
1571 struct bnx2x_fastpath *fp = &bp->fp[j];
1572
1573 bnx2x_free_rx_bds(fp);
1574
1575 if (fp->mode != TPA_MODE_DISABLED)
1576 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1577 }
1578 }
1579
bnx2x_free_skbs_cnic(struct bnx2x * bp)1580 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1581 {
1582 bnx2x_free_tx_skbs_cnic(bp);
1583 bnx2x_free_rx_skbs_cnic(bp);
1584 }
1585
bnx2x_free_skbs(struct bnx2x * bp)1586 void bnx2x_free_skbs(struct bnx2x *bp)
1587 {
1588 bnx2x_free_tx_skbs(bp);
1589 bnx2x_free_rx_skbs(bp);
1590 }
1591
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1592 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1593 {
1594 /* load old values */
1595 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1596
1597 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1598 /* leave all but MAX value */
1599 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1600
1601 /* set new MAX value */
1602 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1603 & FUNC_MF_CFG_MAX_BW_MASK;
1604
1605 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1606 }
1607 }
1608
1609 /**
1610 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1611 *
1612 * @bp: driver handle
1613 * @nvecs: number of vectors to be released
1614 */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1615 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1616 {
1617 int i, offset = 0;
1618
1619 if (nvecs == offset)
1620 return;
1621
1622 /* VFs don't have a default SB */
1623 if (IS_PF(bp)) {
1624 free_irq(bp->msix_table[offset].vector, bp->dev);
1625 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1626 bp->msix_table[offset].vector);
1627 offset++;
1628 }
1629
1630 if (CNIC_SUPPORT(bp)) {
1631 if (nvecs == offset)
1632 return;
1633 offset++;
1634 }
1635
1636 for_each_eth_queue(bp, i) {
1637 if (nvecs == offset)
1638 return;
1639 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1640 i, bp->msix_table[offset].vector);
1641
1642 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1643 }
1644 }
1645
bnx2x_free_irq(struct bnx2x * bp)1646 void bnx2x_free_irq(struct bnx2x *bp)
1647 {
1648 if (bp->flags & USING_MSIX_FLAG &&
1649 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1650 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1651
1652 /* vfs don't have a default status block */
1653 if (IS_PF(bp))
1654 nvecs++;
1655
1656 bnx2x_free_msix_irqs(bp, nvecs);
1657 } else {
1658 free_irq(bp->dev->irq, bp->dev);
1659 }
1660 }
1661
bnx2x_enable_msix(struct bnx2x * bp)1662 int bnx2x_enable_msix(struct bnx2x *bp)
1663 {
1664 int msix_vec = 0, i, rc;
1665
1666 /* VFs don't have a default status block */
1667 if (IS_PF(bp)) {
1668 bp->msix_table[msix_vec].entry = msix_vec;
1669 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1670 bp->msix_table[0].entry);
1671 msix_vec++;
1672 }
1673
1674 /* Cnic requires an msix vector for itself */
1675 if (CNIC_SUPPORT(bp)) {
1676 bp->msix_table[msix_vec].entry = msix_vec;
1677 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1678 msix_vec, bp->msix_table[msix_vec].entry);
1679 msix_vec++;
1680 }
1681
1682 /* We need separate vectors for ETH queues only (not FCoE) */
1683 for_each_eth_queue(bp, i) {
1684 bp->msix_table[msix_vec].entry = msix_vec;
1685 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1686 msix_vec, msix_vec, i);
1687 msix_vec++;
1688 }
1689
1690 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1691 msix_vec);
1692
1693 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1694 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1695 /*
1696 * reconfigure number of tx/rx queues according to available
1697 * MSI-X vectors
1698 */
1699 if (rc == -ENOSPC) {
1700 /* Get by with single vector */
1701 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1702 if (rc < 0) {
1703 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1704 rc);
1705 goto no_msix;
1706 }
1707
1708 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1709 bp->flags |= USING_SINGLE_MSIX_FLAG;
1710
1711 BNX2X_DEV_INFO("set number of queues to 1\n");
1712 bp->num_ethernet_queues = 1;
1713 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1714 } else if (rc < 0) {
1715 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1716 goto no_msix;
1717 } else if (rc < msix_vec) {
1718 /* how less vectors we will have? */
1719 int diff = msix_vec - rc;
1720
1721 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1722
1723 /*
1724 * decrease number of queues by number of unallocated entries
1725 */
1726 bp->num_ethernet_queues -= diff;
1727 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1728
1729 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1730 bp->num_queues);
1731 }
1732
1733 bp->flags |= USING_MSIX_FLAG;
1734
1735 return 0;
1736
1737 no_msix:
1738 /* fall to INTx if not enough memory */
1739 if (rc == -ENOMEM)
1740 bp->flags |= DISABLE_MSI_FLAG;
1741
1742 return rc;
1743 }
1744
bnx2x_req_msix_irqs(struct bnx2x * bp)1745 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1746 {
1747 int i, rc, offset = 0;
1748
1749 /* no default status block for vf */
1750 if (IS_PF(bp)) {
1751 rc = request_irq(bp->msix_table[offset++].vector,
1752 bnx2x_msix_sp_int, 0,
1753 bp->dev->name, bp->dev);
1754 if (rc) {
1755 BNX2X_ERR("request sp irq failed\n");
1756 return -EBUSY;
1757 }
1758 }
1759
1760 if (CNIC_SUPPORT(bp))
1761 offset++;
1762
1763 for_each_eth_queue(bp, i) {
1764 struct bnx2x_fastpath *fp = &bp->fp[i];
1765 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1766 bp->dev->name, i);
1767
1768 rc = request_irq(bp->msix_table[offset].vector,
1769 bnx2x_msix_fp_int, 0, fp->name, fp);
1770 if (rc) {
1771 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1772 bp->msix_table[offset].vector, rc);
1773 bnx2x_free_msix_irqs(bp, offset);
1774 return -EBUSY;
1775 }
1776
1777 offset++;
1778 }
1779
1780 i = BNX2X_NUM_ETH_QUEUES(bp);
1781 if (IS_PF(bp)) {
1782 offset = 1 + CNIC_SUPPORT(bp);
1783 netdev_info(bp->dev,
1784 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1785 bp->msix_table[0].vector,
1786 0, bp->msix_table[offset].vector,
1787 i - 1, bp->msix_table[offset + i - 1].vector);
1788 } else {
1789 offset = CNIC_SUPPORT(bp);
1790 netdev_info(bp->dev,
1791 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1792 0, bp->msix_table[offset].vector,
1793 i - 1, bp->msix_table[offset + i - 1].vector);
1794 }
1795 return 0;
1796 }
1797
bnx2x_enable_msi(struct bnx2x * bp)1798 int bnx2x_enable_msi(struct bnx2x *bp)
1799 {
1800 int rc;
1801
1802 rc = pci_enable_msi(bp->pdev);
1803 if (rc) {
1804 BNX2X_DEV_INFO("MSI is not attainable\n");
1805 return -1;
1806 }
1807 bp->flags |= USING_MSI_FLAG;
1808
1809 return 0;
1810 }
1811
bnx2x_req_irq(struct bnx2x * bp)1812 static int bnx2x_req_irq(struct bnx2x *bp)
1813 {
1814 unsigned long flags;
1815 unsigned int irq;
1816
1817 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1818 flags = 0;
1819 else
1820 flags = IRQF_SHARED;
1821
1822 if (bp->flags & USING_MSIX_FLAG)
1823 irq = bp->msix_table[0].vector;
1824 else
1825 irq = bp->pdev->irq;
1826
1827 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1828 }
1829
bnx2x_setup_irqs(struct bnx2x * bp)1830 static int bnx2x_setup_irqs(struct bnx2x *bp)
1831 {
1832 int rc = 0;
1833 if (bp->flags & USING_MSIX_FLAG &&
1834 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1835 rc = bnx2x_req_msix_irqs(bp);
1836 if (rc)
1837 return rc;
1838 } else {
1839 rc = bnx2x_req_irq(bp);
1840 if (rc) {
1841 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1842 return rc;
1843 }
1844 if (bp->flags & USING_MSI_FLAG) {
1845 bp->dev->irq = bp->pdev->irq;
1846 netdev_info(bp->dev, "using MSI IRQ %d\n",
1847 bp->dev->irq);
1848 }
1849 if (bp->flags & USING_MSIX_FLAG) {
1850 bp->dev->irq = bp->msix_table[0].vector;
1851 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1852 bp->dev->irq);
1853 }
1854 }
1855
1856 return 0;
1857 }
1858
bnx2x_napi_enable_cnic(struct bnx2x * bp)1859 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1860 {
1861 int i;
1862
1863 for_each_rx_queue_cnic(bp, i) {
1864 napi_enable(&bnx2x_fp(bp, i, napi));
1865 }
1866 }
1867
bnx2x_napi_enable(struct bnx2x * bp)1868 static void bnx2x_napi_enable(struct bnx2x *bp)
1869 {
1870 int i;
1871
1872 for_each_eth_queue(bp, i) {
1873 napi_enable(&bnx2x_fp(bp, i, napi));
1874 }
1875 }
1876
bnx2x_napi_disable_cnic(struct bnx2x * bp)1877 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1878 {
1879 int i;
1880
1881 for_each_rx_queue_cnic(bp, i) {
1882 napi_disable(&bnx2x_fp(bp, i, napi));
1883 }
1884 }
1885
bnx2x_napi_disable(struct bnx2x * bp)1886 static void bnx2x_napi_disable(struct bnx2x *bp)
1887 {
1888 int i;
1889
1890 for_each_eth_queue(bp, i) {
1891 napi_disable(&bnx2x_fp(bp, i, napi));
1892 }
1893 }
1894
bnx2x_netif_start(struct bnx2x * bp)1895 void bnx2x_netif_start(struct bnx2x *bp)
1896 {
1897 if (netif_running(bp->dev)) {
1898 bnx2x_napi_enable(bp);
1899 if (CNIC_LOADED(bp))
1900 bnx2x_napi_enable_cnic(bp);
1901 bnx2x_int_enable(bp);
1902 if (bp->state == BNX2X_STATE_OPEN)
1903 netif_tx_wake_all_queues(bp->dev);
1904 }
1905 }
1906
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1907 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1908 {
1909 bnx2x_int_disable_sync(bp, disable_hw);
1910 bnx2x_napi_disable(bp);
1911 if (CNIC_LOADED(bp))
1912 bnx2x_napi_disable_cnic(bp);
1913 }
1914
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1915 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1916 struct net_device *sb_dev)
1917 {
1918 struct bnx2x *bp = netdev_priv(dev);
1919
1920 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1921 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1922 u16 ether_type = ntohs(hdr->h_proto);
1923
1924 /* Skip VLAN tag if present */
1925 if (ether_type == ETH_P_8021Q) {
1926 struct vlan_ethhdr *vhdr =
1927 (struct vlan_ethhdr *)skb->data;
1928
1929 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1930 }
1931
1932 /* If ethertype is FCoE or FIP - use FCoE ring */
1933 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1934 return bnx2x_fcoe_tx(bp, txq_index);
1935 }
1936
1937 /* select a non-FCoE queue */
1938 return netdev_pick_tx(dev, skb, NULL) %
1939 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1940 }
1941
bnx2x_set_num_queues(struct bnx2x * bp)1942 void bnx2x_set_num_queues(struct bnx2x *bp)
1943 {
1944 /* RSS queues */
1945 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1946
1947 /* override in STORAGE SD modes */
1948 if (IS_MF_STORAGE_ONLY(bp))
1949 bp->num_ethernet_queues = 1;
1950
1951 /* Add special queues */
1952 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1953 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1954
1955 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1956 }
1957
1958 /**
1959 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1960 *
1961 * @bp: Driver handle
1962 * @include_cnic: handle cnic case
1963 *
1964 * We currently support for at most 16 Tx queues for each CoS thus we will
1965 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1966 * bp->max_cos.
1967 *
1968 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1969 * index after all ETH L2 indices.
1970 *
1971 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1972 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1973 * 16..31,...) with indices that are not coupled with any real Tx queue.
1974 *
1975 * The proper configuration of skb->queue_mapping is handled by
1976 * bnx2x_select_queue() and __skb_tx_hash().
1977 *
1978 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1979 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1980 */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1981 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1982 {
1983 int rc, tx, rx;
1984
1985 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1986 rx = BNX2X_NUM_ETH_QUEUES(bp);
1987
1988 /* account for fcoe queue */
1989 if (include_cnic && !NO_FCOE(bp)) {
1990 rx++;
1991 tx++;
1992 }
1993
1994 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1995 if (rc) {
1996 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1997 return rc;
1998 }
1999 rc = netif_set_real_num_rx_queues(bp->dev, rx);
2000 if (rc) {
2001 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2002 return rc;
2003 }
2004
2005 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2006 tx, rx);
2007
2008 return rc;
2009 }
2010
bnx2x_set_rx_buf_size(struct bnx2x * bp)2011 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2012 {
2013 int i;
2014
2015 for_each_queue(bp, i) {
2016 struct bnx2x_fastpath *fp = &bp->fp[i];
2017 u32 mtu;
2018
2019 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2020 if (IS_FCOE_IDX(i))
2021 /*
2022 * Although there are no IP frames expected to arrive to
2023 * this ring we still want to add an
2024 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2025 * overrun attack.
2026 */
2027 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2028 else
2029 mtu = bp->dev->mtu;
2030 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2031 IP_HEADER_ALIGNMENT_PADDING +
2032 ETH_OVERHEAD +
2033 mtu +
2034 BNX2X_FW_RX_ALIGN_END;
2035 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2036 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2037 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2038 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2039 else
2040 fp->rx_frag_size = 0;
2041 }
2042 }
2043
bnx2x_init_rss(struct bnx2x * bp)2044 static int bnx2x_init_rss(struct bnx2x *bp)
2045 {
2046 int i;
2047 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2048
2049 /* Prepare the initial contents for the indirection table if RSS is
2050 * enabled
2051 */
2052 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2053 bp->rss_conf_obj.ind_table[i] =
2054 bp->fp->cl_id +
2055 ethtool_rxfh_indir_default(i, num_eth_queues);
2056
2057 /*
2058 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2059 * per-port, so if explicit configuration is needed , do it only
2060 * for a PMF.
2061 *
2062 * For 57712 and newer on the other hand it's a per-function
2063 * configuration.
2064 */
2065 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2066 }
2067
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2068 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2069 bool config_hash, bool enable)
2070 {
2071 struct bnx2x_config_rss_params params = {NULL};
2072
2073 /* Although RSS is meaningless when there is a single HW queue we
2074 * still need it enabled in order to have HW Rx hash generated.
2075 *
2076 * if (!is_eth_multi(bp))
2077 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2078 */
2079
2080 params.rss_obj = rss_obj;
2081
2082 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
2083
2084 if (enable) {
2085 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
2086
2087 /* RSS configuration */
2088 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
2089 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
2090 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
2091 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
2092 if (rss_obj->udp_rss_v4)
2093 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
2094 if (rss_obj->udp_rss_v6)
2095 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
2096
2097 if (!CHIP_IS_E1x(bp)) {
2098 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2099 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags);
2100 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags);
2101
2102 /* valid only for TUNN_MODE_GRE tunnel mode */
2103 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags);
2104 }
2105 } else {
2106 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags);
2107 }
2108
2109 /* Hash bits */
2110 params.rss_result_mask = MULTI_MASK;
2111
2112 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2113
2114 if (config_hash) {
2115 /* RSS keys */
2116 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2117 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
2118 }
2119
2120 if (IS_PF(bp))
2121 return bnx2x_config_rss(bp, ¶ms);
2122 else
2123 return bnx2x_vfpf_config_rss(bp, ¶ms);
2124 }
2125
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2126 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2127 {
2128 struct bnx2x_func_state_params func_params = {NULL};
2129
2130 /* Prepare parameters for function state transitions */
2131 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2132
2133 func_params.f_obj = &bp->func_obj;
2134 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2135
2136 func_params.params.hw_init.load_phase = load_code;
2137
2138 return bnx2x_func_state_change(bp, &func_params);
2139 }
2140
2141 /*
2142 * Cleans the object that have internal lists without sending
2143 * ramrods. Should be run when interrupts are disabled.
2144 */
bnx2x_squeeze_objects(struct bnx2x * bp)2145 void bnx2x_squeeze_objects(struct bnx2x *bp)
2146 {
2147 int rc;
2148 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2149 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2150 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2151
2152 /***************** Cleanup MACs' object first *************************/
2153
2154 /* Wait for completion of requested */
2155 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2156 /* Perform a dry cleanup */
2157 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2158
2159 /* Clean ETH primary MAC */
2160 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2161 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2162 &ramrod_flags);
2163 if (rc != 0)
2164 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2165
2166 /* Cleanup UC list */
2167 vlan_mac_flags = 0;
2168 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2169 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2170 &ramrod_flags);
2171 if (rc != 0)
2172 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2173
2174 /***************** Now clean mcast object *****************************/
2175 rparam.mcast_obj = &bp->mcast_obj;
2176 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2177
2178 /* Add a DEL command... - Since we're doing a driver cleanup only,
2179 * we take a lock surrounding both the initial send and the CONTs,
2180 * as we don't want a true completion to disrupt us in the middle.
2181 */
2182 netif_addr_lock_bh(bp->dev);
2183 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2184 if (rc < 0)
2185 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2186 rc);
2187
2188 /* ...and wait until all pending commands are cleared */
2189 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2190 while (rc != 0) {
2191 if (rc < 0) {
2192 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2193 rc);
2194 netif_addr_unlock_bh(bp->dev);
2195 return;
2196 }
2197
2198 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2199 }
2200 netif_addr_unlock_bh(bp->dev);
2201 }
2202
2203 #ifndef BNX2X_STOP_ON_ERROR
2204 #define LOAD_ERROR_EXIT(bp, label) \
2205 do { \
2206 (bp)->state = BNX2X_STATE_ERROR; \
2207 goto label; \
2208 } while (0)
2209
2210 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2211 do { \
2212 bp->cnic_loaded = false; \
2213 goto label; \
2214 } while (0)
2215 #else /*BNX2X_STOP_ON_ERROR*/
2216 #define LOAD_ERROR_EXIT(bp, label) \
2217 do { \
2218 (bp)->state = BNX2X_STATE_ERROR; \
2219 (bp)->panic = 1; \
2220 return -EBUSY; \
2221 } while (0)
2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2223 do { \
2224 bp->cnic_loaded = false; \
2225 (bp)->panic = 1; \
2226 return -EBUSY; \
2227 } while (0)
2228 #endif /*BNX2X_STOP_ON_ERROR*/
2229
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2230 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2231 {
2232 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2233 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2234 return;
2235 }
2236
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2237 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2238 {
2239 int num_groups, vf_headroom = 0;
2240 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2241
2242 /* number of queues for statistics is number of eth queues + FCoE */
2243 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2244
2245 /* Total number of FW statistics requests =
2246 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2247 * and fcoe l2 queue) stats + num of queues (which includes another 1
2248 * for fcoe l2 queue if applicable)
2249 */
2250 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2251
2252 /* vf stats appear in the request list, but their data is allocated by
2253 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2254 * it is used to determine where to place the vf stats queries in the
2255 * request struct
2256 */
2257 if (IS_SRIOV(bp))
2258 vf_headroom = bnx2x_vf_headroom(bp);
2259
2260 /* Request is built from stats_query_header and an array of
2261 * stats_query_cmd_group each of which contains
2262 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2263 * configured in the stats_query_header.
2264 */
2265 num_groups =
2266 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2267 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2268 1 : 0));
2269
2270 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2271 bp->fw_stats_num, vf_headroom, num_groups);
2272 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2273 num_groups * sizeof(struct stats_query_cmd_group);
2274
2275 /* Data for statistics requests + stats_counter
2276 * stats_counter holds per-STORM counters that are incremented
2277 * when STORM has finished with the current request.
2278 * memory for FCoE offloaded statistics are counted anyway,
2279 * even if they will not be sent.
2280 * VF stats are not accounted for here as the data of VF stats is stored
2281 * in memory allocated by the VF, not here.
2282 */
2283 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2284 sizeof(struct per_pf_stats) +
2285 sizeof(struct fcoe_statistics_params) +
2286 sizeof(struct per_queue_stats) * num_queue_stats +
2287 sizeof(struct stats_counter);
2288
2289 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2290 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2291 if (!bp->fw_stats)
2292 goto alloc_mem_err;
2293
2294 /* Set shortcuts */
2295 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2296 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2297 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2298 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2299 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2300 bp->fw_stats_req_sz;
2301
2302 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2303 U64_HI(bp->fw_stats_req_mapping),
2304 U64_LO(bp->fw_stats_req_mapping));
2305 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2306 U64_HI(bp->fw_stats_data_mapping),
2307 U64_LO(bp->fw_stats_data_mapping));
2308 return 0;
2309
2310 alloc_mem_err:
2311 bnx2x_free_fw_stats_mem(bp);
2312 BNX2X_ERR("Can't allocate FW stats memory\n");
2313 return -ENOMEM;
2314 }
2315
2316 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2317 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2318 {
2319 u32 param;
2320
2321 /* init fw_seq */
2322 bp->fw_seq =
2323 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2324 DRV_MSG_SEQ_NUMBER_MASK);
2325 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2326
2327 /* Get current FW pulse sequence */
2328 bp->fw_drv_pulse_wr_seq =
2329 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2330 DRV_PULSE_SEQ_MASK);
2331 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2332
2333 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2334
2335 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2336 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2337
2338 /* load request */
2339 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2340
2341 /* if mcp fails to respond we must abort */
2342 if (!(*load_code)) {
2343 BNX2X_ERR("MCP response failure, aborting\n");
2344 return -EBUSY;
2345 }
2346
2347 /* If mcp refused (e.g. other port is in diagnostic mode) we
2348 * must abort
2349 */
2350 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2351 BNX2X_ERR("MCP refused load request, aborting\n");
2352 return -EBUSY;
2353 }
2354 return 0;
2355 }
2356
2357 /* check whether another PF has already loaded FW to chip. In
2358 * virtualized environments a pf from another VM may have already
2359 * initialized the device including loading FW
2360 */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2361 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2362 {
2363 /* is another pf loaded on this engine? */
2364 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2365 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2366 /* build my FW version dword */
2367 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2368 (BCM_5710_FW_MINOR_VERSION << 8) +
2369 (BCM_5710_FW_REVISION_VERSION << 16) +
2370 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2371
2372 /* read loaded FW from chip */
2373 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2374
2375 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2376 loaded_fw, my_fw);
2377
2378 /* abort nic load if version mismatch */
2379 if (my_fw != loaded_fw) {
2380 if (print_err)
2381 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2382 loaded_fw, my_fw);
2383 else
2384 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2385 loaded_fw, my_fw);
2386 return -EBUSY;
2387 }
2388 }
2389 return 0;
2390 }
2391
2392 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2393 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2394 {
2395 int path = BP_PATH(bp);
2396
2397 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2398 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2399 bnx2x_load_count[path][2]);
2400 bnx2x_load_count[path][0]++;
2401 bnx2x_load_count[path][1 + port]++;
2402 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2403 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2404 bnx2x_load_count[path][2]);
2405 if (bnx2x_load_count[path][0] == 1)
2406 return FW_MSG_CODE_DRV_LOAD_COMMON;
2407 else if (bnx2x_load_count[path][1 + port] == 1)
2408 return FW_MSG_CODE_DRV_LOAD_PORT;
2409 else
2410 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2411 }
2412
2413 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2414 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2415 {
2416 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2417 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2418 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2419 bp->port.pmf = 1;
2420 /* We need the barrier to ensure the ordering between the
2421 * writing to bp->port.pmf here and reading it from the
2422 * bnx2x_periodic_task().
2423 */
2424 smp_mb();
2425 } else {
2426 bp->port.pmf = 0;
2427 }
2428
2429 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2430 }
2431
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2432 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2433 {
2434 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2435 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2436 (bp->common.shmem2_base)) {
2437 if (SHMEM2_HAS(bp, dcc_support))
2438 SHMEM2_WR(bp, dcc_support,
2439 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2440 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2441 if (SHMEM2_HAS(bp, afex_driver_support))
2442 SHMEM2_WR(bp, afex_driver_support,
2443 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2444 }
2445
2446 /* Set AFEX default VLAN tag to an invalid value */
2447 bp->afex_def_vlan_tag = -1;
2448 }
2449
2450 /**
2451 * bnx2x_bz_fp - zero content of the fastpath structure.
2452 *
2453 * @bp: driver handle
2454 * @index: fastpath index to be zeroed
2455 *
2456 * Makes sure the contents of the bp->fp[index].napi is kept
2457 * intact.
2458 */
bnx2x_bz_fp(struct bnx2x * bp,int index)2459 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2460 {
2461 struct bnx2x_fastpath *fp = &bp->fp[index];
2462 int cos;
2463 struct napi_struct orig_napi = fp->napi;
2464 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2465
2466 /* bzero bnx2x_fastpath contents */
2467 if (fp->tpa_info)
2468 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2469 sizeof(struct bnx2x_agg_info));
2470 memset(fp, 0, sizeof(*fp));
2471
2472 /* Restore the NAPI object as it has been already initialized */
2473 fp->napi = orig_napi;
2474 fp->tpa_info = orig_tpa_info;
2475 fp->bp = bp;
2476 fp->index = index;
2477 if (IS_ETH_FP(fp))
2478 fp->max_cos = bp->max_cos;
2479 else
2480 /* Special queues support only one CoS */
2481 fp->max_cos = 1;
2482
2483 /* Init txdata pointers */
2484 if (IS_FCOE_FP(fp))
2485 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2486 if (IS_ETH_FP(fp))
2487 for_each_cos_in_tx_queue(fp, cos)
2488 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2489 BNX2X_NUM_ETH_QUEUES(bp) + index];
2490
2491 /* set the tpa flag for each queue. The tpa flag determines the queue
2492 * minimal size so it must be set prior to queue memory allocation
2493 */
2494 if (bp->dev->features & NETIF_F_LRO)
2495 fp->mode = TPA_MODE_LRO;
2496 else if (bp->dev->features & NETIF_F_GRO_HW)
2497 fp->mode = TPA_MODE_GRO;
2498 else
2499 fp->mode = TPA_MODE_DISABLED;
2500
2501 /* We don't want TPA if it's disabled in bp
2502 * or if this is an FCoE L2 ring.
2503 */
2504 if (bp->disable_tpa || IS_FCOE_FP(fp))
2505 fp->mode = TPA_MODE_DISABLED;
2506 }
2507
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2508 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2509 {
2510 u32 cur;
2511
2512 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2513 return;
2514
2515 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2516 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2517 cur, state);
2518
2519 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2520 }
2521
bnx2x_load_cnic(struct bnx2x * bp)2522 int bnx2x_load_cnic(struct bnx2x *bp)
2523 {
2524 int i, rc, port = BP_PORT(bp);
2525
2526 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2527
2528 mutex_init(&bp->cnic_mutex);
2529
2530 if (IS_PF(bp)) {
2531 rc = bnx2x_alloc_mem_cnic(bp);
2532 if (rc) {
2533 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2534 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2535 }
2536 }
2537
2538 rc = bnx2x_alloc_fp_mem_cnic(bp);
2539 if (rc) {
2540 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2541 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2542 }
2543
2544 /* Update the number of queues with the cnic queues */
2545 rc = bnx2x_set_real_num_queues(bp, 1);
2546 if (rc) {
2547 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2548 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2549 }
2550
2551 /* Add all CNIC NAPI objects */
2552 bnx2x_add_all_napi_cnic(bp);
2553 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2554 bnx2x_napi_enable_cnic(bp);
2555
2556 rc = bnx2x_init_hw_func_cnic(bp);
2557 if (rc)
2558 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2559
2560 bnx2x_nic_init_cnic(bp);
2561
2562 if (IS_PF(bp)) {
2563 /* Enable Timer scan */
2564 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2565
2566 /* setup cnic queues */
2567 for_each_cnic_queue(bp, i) {
2568 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2569 if (rc) {
2570 BNX2X_ERR("Queue setup failed\n");
2571 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2572 }
2573 }
2574 }
2575
2576 /* Initialize Rx filter. */
2577 bnx2x_set_rx_mode_inner(bp);
2578
2579 /* re-read iscsi info */
2580 bnx2x_get_iscsi_info(bp);
2581 bnx2x_setup_cnic_irq_info(bp);
2582 bnx2x_setup_cnic_info(bp);
2583 bp->cnic_loaded = true;
2584 if (bp->state == BNX2X_STATE_OPEN)
2585 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2586
2587 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2588
2589 return 0;
2590
2591 #ifndef BNX2X_STOP_ON_ERROR
2592 load_error_cnic2:
2593 /* Disable Timer scan */
2594 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2595
2596 load_error_cnic1:
2597 bnx2x_napi_disable_cnic(bp);
2598 /* Update the number of queues without the cnic queues */
2599 if (bnx2x_set_real_num_queues(bp, 0))
2600 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2601 load_error_cnic0:
2602 BNX2X_ERR("CNIC-related load failed\n");
2603 bnx2x_free_fp_mem_cnic(bp);
2604 bnx2x_free_mem_cnic(bp);
2605 return rc;
2606 #endif /* ! BNX2X_STOP_ON_ERROR */
2607 }
2608
2609 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2610 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2611 {
2612 int port = BP_PORT(bp);
2613 int i, rc = 0, load_code = 0;
2614
2615 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2616 DP(NETIF_MSG_IFUP,
2617 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2618
2619 #ifdef BNX2X_STOP_ON_ERROR
2620 if (unlikely(bp->panic)) {
2621 BNX2X_ERR("Can't load NIC when there is panic\n");
2622 return -EPERM;
2623 }
2624 #endif
2625
2626 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2627
2628 /* zero the structure w/o any lock, before SP handler is initialized */
2629 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2630 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2631 &bp->last_reported_link.link_report_flags);
2632
2633 if (IS_PF(bp))
2634 /* must be called before memory allocation and HW init */
2635 bnx2x_ilt_set_info(bp);
2636
2637 /*
2638 * Zero fastpath structures preserving invariants like napi, which are
2639 * allocated only once, fp index, max_cos, bp pointer.
2640 * Also set fp->mode and txdata_ptr.
2641 */
2642 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2643 for_each_queue(bp, i)
2644 bnx2x_bz_fp(bp, i);
2645 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2646 bp->num_cnic_queues) *
2647 sizeof(struct bnx2x_fp_txdata));
2648
2649 bp->fcoe_init = false;
2650
2651 /* Set the receive queues buffer size */
2652 bnx2x_set_rx_buf_size(bp);
2653
2654 if (IS_PF(bp)) {
2655 rc = bnx2x_alloc_mem(bp);
2656 if (rc) {
2657 BNX2X_ERR("Unable to allocate bp memory\n");
2658 return rc;
2659 }
2660 }
2661
2662 /* need to be done after alloc mem, since it's self adjusting to amount
2663 * of memory available for RSS queues
2664 */
2665 rc = bnx2x_alloc_fp_mem(bp);
2666 if (rc) {
2667 BNX2X_ERR("Unable to allocate memory for fps\n");
2668 LOAD_ERROR_EXIT(bp, load_error0);
2669 }
2670
2671 /* Allocated memory for FW statistics */
2672 rc = bnx2x_alloc_fw_stats_mem(bp);
2673 if (rc)
2674 LOAD_ERROR_EXIT(bp, load_error0);
2675
2676 /* request pf to initialize status blocks */
2677 if (IS_VF(bp)) {
2678 rc = bnx2x_vfpf_init(bp);
2679 if (rc)
2680 LOAD_ERROR_EXIT(bp, load_error0);
2681 }
2682
2683 /* As long as bnx2x_alloc_mem() may possibly update
2684 * bp->num_queues, bnx2x_set_real_num_queues() should always
2685 * come after it. At this stage cnic queues are not counted.
2686 */
2687 rc = bnx2x_set_real_num_queues(bp, 0);
2688 if (rc) {
2689 BNX2X_ERR("Unable to set real_num_queues\n");
2690 LOAD_ERROR_EXIT(bp, load_error0);
2691 }
2692
2693 /* configure multi cos mappings in kernel.
2694 * this configuration may be overridden by a multi class queue
2695 * discipline or by a dcbx negotiation result.
2696 */
2697 bnx2x_setup_tc(bp->dev, bp->max_cos);
2698
2699 /* Add all NAPI objects */
2700 bnx2x_add_all_napi(bp);
2701 DP(NETIF_MSG_IFUP, "napi added\n");
2702 bnx2x_napi_enable(bp);
2703
2704 if (IS_PF(bp)) {
2705 /* set pf load just before approaching the MCP */
2706 bnx2x_set_pf_load(bp);
2707
2708 /* if mcp exists send load request and analyze response */
2709 if (!BP_NOMCP(bp)) {
2710 /* attempt to load pf */
2711 rc = bnx2x_nic_load_request(bp, &load_code);
2712 if (rc)
2713 LOAD_ERROR_EXIT(bp, load_error1);
2714
2715 /* what did mcp say? */
2716 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2717 if (rc) {
2718 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2719 LOAD_ERROR_EXIT(bp, load_error2);
2720 }
2721 } else {
2722 load_code = bnx2x_nic_load_no_mcp(bp, port);
2723 }
2724
2725 /* mark pmf if applicable */
2726 bnx2x_nic_load_pmf(bp, load_code);
2727
2728 /* Init Function state controlling object */
2729 bnx2x__init_func_obj(bp);
2730
2731 /* Initialize HW */
2732 rc = bnx2x_init_hw(bp, load_code);
2733 if (rc) {
2734 BNX2X_ERR("HW init failed, aborting\n");
2735 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2736 LOAD_ERROR_EXIT(bp, load_error2);
2737 }
2738 }
2739
2740 bnx2x_pre_irq_nic_init(bp);
2741
2742 /* Connect to IRQs */
2743 rc = bnx2x_setup_irqs(bp);
2744 if (rc) {
2745 BNX2X_ERR("setup irqs failed\n");
2746 if (IS_PF(bp))
2747 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2748 LOAD_ERROR_EXIT(bp, load_error2);
2749 }
2750
2751 /* Init per-function objects */
2752 if (IS_PF(bp)) {
2753 /* Setup NIC internals and enable interrupts */
2754 bnx2x_post_irq_nic_init(bp, load_code);
2755
2756 bnx2x_init_bp_objs(bp);
2757 bnx2x_iov_nic_init(bp);
2758
2759 /* Set AFEX default VLAN tag to an invalid value */
2760 bp->afex_def_vlan_tag = -1;
2761 bnx2x_nic_load_afex_dcc(bp, load_code);
2762 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2763 rc = bnx2x_func_start(bp);
2764 if (rc) {
2765 BNX2X_ERR("Function start failed!\n");
2766 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2767
2768 LOAD_ERROR_EXIT(bp, load_error3);
2769 }
2770
2771 /* Send LOAD_DONE command to MCP */
2772 if (!BP_NOMCP(bp)) {
2773 load_code = bnx2x_fw_command(bp,
2774 DRV_MSG_CODE_LOAD_DONE, 0);
2775 if (!load_code) {
2776 BNX2X_ERR("MCP response failure, aborting\n");
2777 rc = -EBUSY;
2778 LOAD_ERROR_EXIT(bp, load_error3);
2779 }
2780 }
2781
2782 /* initialize FW coalescing state machines in RAM */
2783 bnx2x_update_coalesce(bp);
2784 }
2785
2786 /* setup the leading queue */
2787 rc = bnx2x_setup_leading(bp);
2788 if (rc) {
2789 BNX2X_ERR("Setup leading failed!\n");
2790 LOAD_ERROR_EXIT(bp, load_error3);
2791 }
2792
2793 /* set up the rest of the queues */
2794 for_each_nondefault_eth_queue(bp, i) {
2795 if (IS_PF(bp))
2796 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2797 else /* VF */
2798 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2799 if (rc) {
2800 BNX2X_ERR("Queue %d setup failed\n", i);
2801 LOAD_ERROR_EXIT(bp, load_error3);
2802 }
2803 }
2804
2805 /* setup rss */
2806 rc = bnx2x_init_rss(bp);
2807 if (rc) {
2808 BNX2X_ERR("PF RSS init failed\n");
2809 LOAD_ERROR_EXIT(bp, load_error3);
2810 }
2811
2812 /* Now when Clients are configured we are ready to work */
2813 bp->state = BNX2X_STATE_OPEN;
2814
2815 /* Configure a ucast MAC */
2816 if (IS_PF(bp))
2817 rc = bnx2x_set_eth_mac(bp, true);
2818 else /* vf */
2819 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2820 true);
2821 if (rc) {
2822 BNX2X_ERR("Setting Ethernet MAC failed\n");
2823 LOAD_ERROR_EXIT(bp, load_error3);
2824 }
2825
2826 if (IS_PF(bp) && bp->pending_max) {
2827 bnx2x_update_max_mf_config(bp, bp->pending_max);
2828 bp->pending_max = 0;
2829 }
2830
2831 bp->force_link_down = false;
2832 if (bp->port.pmf) {
2833 rc = bnx2x_initial_phy_init(bp, load_mode);
2834 if (rc)
2835 LOAD_ERROR_EXIT(bp, load_error3);
2836 }
2837 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2838
2839 /* Start fast path */
2840
2841 /* Re-configure vlan filters */
2842 rc = bnx2x_vlan_reconfigure_vid(bp);
2843 if (rc)
2844 LOAD_ERROR_EXIT(bp, load_error3);
2845
2846 /* Initialize Rx filter. */
2847 bnx2x_set_rx_mode_inner(bp);
2848
2849 if (bp->flags & PTP_SUPPORTED) {
2850 bnx2x_register_phc(bp);
2851 bnx2x_init_ptp(bp);
2852 bnx2x_configure_ptp_filters(bp);
2853 }
2854 /* Start Tx */
2855 switch (load_mode) {
2856 case LOAD_NORMAL:
2857 /* Tx queue should be only re-enabled */
2858 netif_tx_wake_all_queues(bp->dev);
2859 break;
2860
2861 case LOAD_OPEN:
2862 netif_tx_start_all_queues(bp->dev);
2863 smp_mb__after_atomic();
2864 break;
2865
2866 case LOAD_DIAG:
2867 case LOAD_LOOPBACK_EXT:
2868 bp->state = BNX2X_STATE_DIAG;
2869 break;
2870
2871 default:
2872 break;
2873 }
2874
2875 if (bp->port.pmf)
2876 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2877 else
2878 bnx2x__link_status_update(bp);
2879
2880 /* start the timer */
2881 mod_timer(&bp->timer, jiffies + bp->current_interval);
2882
2883 if (CNIC_ENABLED(bp))
2884 bnx2x_load_cnic(bp);
2885
2886 if (IS_PF(bp))
2887 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2888
2889 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2890 /* mark driver is loaded in shmem2 */
2891 u32 val;
2892 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2893 val &= ~DRV_FLAGS_MTU_MASK;
2894 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2895 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2896 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2897 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2898 }
2899
2900 /* Wait for all pending SP commands to complete */
2901 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2902 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2903 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2904 return -EBUSY;
2905 }
2906
2907 /* Update driver data for On-Chip MFW dump. */
2908 if (IS_PF(bp))
2909 bnx2x_update_mfw_dump(bp);
2910
2911 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2912 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2913 bnx2x_dcbx_init(bp, false);
2914
2915 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2916 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2917
2918 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2919
2920 return 0;
2921
2922 #ifndef BNX2X_STOP_ON_ERROR
2923 load_error3:
2924 if (IS_PF(bp)) {
2925 bnx2x_int_disable_sync(bp, 1);
2926
2927 /* Clean queueable objects */
2928 bnx2x_squeeze_objects(bp);
2929 }
2930
2931 /* Free SKBs, SGEs, TPA pool and driver internals */
2932 bnx2x_free_skbs(bp);
2933 for_each_rx_queue(bp, i)
2934 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2935
2936 /* Release IRQs */
2937 bnx2x_free_irq(bp);
2938 load_error2:
2939 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2940 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2941 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2942 }
2943
2944 bp->port.pmf = 0;
2945 load_error1:
2946 bnx2x_napi_disable(bp);
2947 bnx2x_del_all_napi(bp);
2948
2949 /* clear pf_load status, as it was already set */
2950 if (IS_PF(bp))
2951 bnx2x_clear_pf_load(bp);
2952 load_error0:
2953 bnx2x_free_fw_stats_mem(bp);
2954 bnx2x_free_fp_mem(bp);
2955 bnx2x_free_mem(bp);
2956
2957 return rc;
2958 #endif /* ! BNX2X_STOP_ON_ERROR */
2959 }
2960
bnx2x_drain_tx_queues(struct bnx2x * bp)2961 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2962 {
2963 u8 rc = 0, cos, i;
2964
2965 /* Wait until tx fastpath tasks complete */
2966 for_each_tx_queue(bp, i) {
2967 struct bnx2x_fastpath *fp = &bp->fp[i];
2968
2969 for_each_cos_in_tx_queue(fp, cos)
2970 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2971 if (rc)
2972 return rc;
2973 }
2974 return 0;
2975 }
2976
2977 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2978 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2979 {
2980 int i;
2981 bool global = false;
2982
2983 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2984
2985 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2986 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2987
2988 /* mark driver is unloaded in shmem2 */
2989 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2990 u32 val;
2991 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2992 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2993 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2994 }
2995
2996 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2997 (bp->state == BNX2X_STATE_CLOSED ||
2998 bp->state == BNX2X_STATE_ERROR)) {
2999 /* We can get here if the driver has been unloaded
3000 * during parity error recovery and is either waiting for a
3001 * leader to complete or for other functions to unload and
3002 * then ifdown has been issued. In this case we want to
3003 * unload and let other functions to complete a recovery
3004 * process.
3005 */
3006 bp->recovery_state = BNX2X_RECOVERY_DONE;
3007 bp->is_leader = 0;
3008 bnx2x_release_leader_lock(bp);
3009 smp_mb();
3010
3011 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3012 BNX2X_ERR("Can't unload in closed or error state\n");
3013 return -EINVAL;
3014 }
3015
3016 /* Nothing to do during unload if previous bnx2x_nic_load()
3017 * have not completed successfully - all resources are released.
3018 *
3019 * we can get here only after unsuccessful ndo_* callback, during which
3020 * dev->IFF_UP flag is still on.
3021 */
3022 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3023 return 0;
3024
3025 /* It's important to set the bp->state to the value different from
3026 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3027 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3028 */
3029 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3030 smp_mb();
3031
3032 /* indicate to VFs that the PF is going down */
3033 bnx2x_iov_channel_down(bp);
3034
3035 if (CNIC_LOADED(bp))
3036 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3037
3038 /* Stop Tx */
3039 bnx2x_tx_disable(bp);
3040 netdev_reset_tc(bp->dev);
3041
3042 bp->rx_mode = BNX2X_RX_MODE_NONE;
3043
3044 del_timer_sync(&bp->timer);
3045
3046 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3047 /* Set ALWAYS_ALIVE bit in shmem */
3048 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3049 bnx2x_drv_pulse(bp);
3050 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3051 bnx2x_save_statistics(bp);
3052 }
3053
3054 /* wait till consumers catch up with producers in all queues.
3055 * If we're recovering, FW can't write to host so no reason
3056 * to wait for the queues to complete all Tx.
3057 */
3058 if (unload_mode != UNLOAD_RECOVERY)
3059 bnx2x_drain_tx_queues(bp);
3060
3061 /* if VF indicate to PF this function is going down (PF will delete sp
3062 * elements and clear initializations
3063 */
3064 if (IS_VF(bp)) {
3065 bnx2x_clear_vlan_info(bp);
3066 bnx2x_vfpf_close_vf(bp);
3067 } else if (unload_mode != UNLOAD_RECOVERY) {
3068 /* if this is a normal/close unload need to clean up chip*/
3069 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3070 } else {
3071 /* Send the UNLOAD_REQUEST to the MCP */
3072 bnx2x_send_unload_req(bp, unload_mode);
3073
3074 /* Prevent transactions to host from the functions on the
3075 * engine that doesn't reset global blocks in case of global
3076 * attention once global blocks are reset and gates are opened
3077 * (the engine which leader will perform the recovery
3078 * last).
3079 */
3080 if (!CHIP_IS_E1x(bp))
3081 bnx2x_pf_disable(bp);
3082
3083 /* Disable HW interrupts, NAPI */
3084 bnx2x_netif_stop(bp, 1);
3085 /* Delete all NAPI objects */
3086 bnx2x_del_all_napi(bp);
3087 if (CNIC_LOADED(bp))
3088 bnx2x_del_all_napi_cnic(bp);
3089 /* Release IRQs */
3090 bnx2x_free_irq(bp);
3091
3092 /* Report UNLOAD_DONE to MCP */
3093 bnx2x_send_unload_done(bp, false);
3094 }
3095
3096 /*
3097 * At this stage no more interrupts will arrive so we may safely clean
3098 * the queueable objects here in case they failed to get cleaned so far.
3099 */
3100 if (IS_PF(bp))
3101 bnx2x_squeeze_objects(bp);
3102
3103 /* There should be no more pending SP commands at this stage */
3104 bp->sp_state = 0;
3105
3106 bp->port.pmf = 0;
3107
3108 /* clear pending work in rtnl task */
3109 bp->sp_rtnl_state = 0;
3110 smp_mb();
3111
3112 /* Free SKBs, SGEs, TPA pool and driver internals */
3113 bnx2x_free_skbs(bp);
3114 if (CNIC_LOADED(bp))
3115 bnx2x_free_skbs_cnic(bp);
3116 for_each_rx_queue(bp, i)
3117 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3118
3119 bnx2x_free_fp_mem(bp);
3120 if (CNIC_LOADED(bp))
3121 bnx2x_free_fp_mem_cnic(bp);
3122
3123 if (IS_PF(bp)) {
3124 if (CNIC_LOADED(bp))
3125 bnx2x_free_mem_cnic(bp);
3126 }
3127 bnx2x_free_mem(bp);
3128
3129 bp->state = BNX2X_STATE_CLOSED;
3130 bp->cnic_loaded = false;
3131
3132 /* Clear driver version indication in shmem */
3133 if (IS_PF(bp) && !BP_NOMCP(bp))
3134 bnx2x_update_mng_version(bp);
3135
3136 /* Check if there are pending parity attentions. If there are - set
3137 * RECOVERY_IN_PROGRESS.
3138 */
3139 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3140 bnx2x_set_reset_in_progress(bp);
3141
3142 /* Set RESET_IS_GLOBAL if needed */
3143 if (global)
3144 bnx2x_set_reset_global(bp);
3145 }
3146
3147 /* The last driver must disable a "close the gate" if there is no
3148 * parity attention or "process kill" pending.
3149 */
3150 if (IS_PF(bp) &&
3151 !bnx2x_clear_pf_load(bp) &&
3152 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3153 bnx2x_disable_close_the_gate(bp);
3154
3155 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3156
3157 return 0;
3158 }
3159
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3160 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3161 {
3162 u16 pmcsr;
3163
3164 /* If there is no power capability, silently succeed */
3165 if (!bp->pdev->pm_cap) {
3166 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3167 return 0;
3168 }
3169
3170 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3171
3172 switch (state) {
3173 case PCI_D0:
3174 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3175 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3176 PCI_PM_CTRL_PME_STATUS));
3177
3178 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3179 /* delay required during transition out of D3hot */
3180 msleep(20);
3181 break;
3182
3183 case PCI_D3hot:
3184 /* If there are other clients above don't
3185 shut down the power */
3186 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3187 return 0;
3188 /* Don't shut down the power for emulation and FPGA */
3189 if (CHIP_REV_IS_SLOW(bp))
3190 return 0;
3191
3192 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3193 pmcsr |= 3;
3194
3195 if (bp->wol)
3196 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3197
3198 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3199 pmcsr);
3200
3201 /* No more memory access after this point until
3202 * device is brought back to D0.
3203 */
3204 break;
3205
3206 default:
3207 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3208 return -EINVAL;
3209 }
3210 return 0;
3211 }
3212
3213 /*
3214 * net_device service functions
3215 */
bnx2x_poll(struct napi_struct * napi,int budget)3216 static int bnx2x_poll(struct napi_struct *napi, int budget)
3217 {
3218 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3219 napi);
3220 struct bnx2x *bp = fp->bp;
3221 int rx_work_done;
3222 u8 cos;
3223
3224 #ifdef BNX2X_STOP_ON_ERROR
3225 if (unlikely(bp->panic)) {
3226 napi_complete(napi);
3227 return 0;
3228 }
3229 #endif
3230 for_each_cos_in_tx_queue(fp, cos)
3231 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3232 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3233
3234 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3235
3236 if (rx_work_done < budget) {
3237 /* No need to update SB for FCoE L2 ring as long as
3238 * it's connected to the default SB and the SB
3239 * has been updated when NAPI was scheduled.
3240 */
3241 if (IS_FCOE_FP(fp)) {
3242 napi_complete_done(napi, rx_work_done);
3243 } else {
3244 bnx2x_update_fpsb_idx(fp);
3245 /* bnx2x_has_rx_work() reads the status block,
3246 * thus we need to ensure that status block indices
3247 * have been actually read (bnx2x_update_fpsb_idx)
3248 * prior to this check (bnx2x_has_rx_work) so that
3249 * we won't write the "newer" value of the status block
3250 * to IGU (if there was a DMA right after
3251 * bnx2x_has_rx_work and if there is no rmb, the memory
3252 * reading (bnx2x_update_fpsb_idx) may be postponed
3253 * to right before bnx2x_ack_sb). In this case there
3254 * will never be another interrupt until there is
3255 * another update of the status block, while there
3256 * is still unhandled work.
3257 */
3258 rmb();
3259
3260 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3261 if (napi_complete_done(napi, rx_work_done)) {
3262 /* Re-enable interrupts */
3263 DP(NETIF_MSG_RX_STATUS,
3264 "Update index to %d\n", fp->fp_hc_idx);
3265 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3266 le16_to_cpu(fp->fp_hc_idx),
3267 IGU_INT_ENABLE, 1);
3268 }
3269 } else {
3270 rx_work_done = budget;
3271 }
3272 }
3273 }
3274
3275 return rx_work_done;
3276 }
3277
3278 /* we split the first BD into headers and data BDs
3279 * to ease the pain of our fellow microcode engineers
3280 * we use one mapping for both BDs
3281 */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3282 static u16 bnx2x_tx_split(struct bnx2x *bp,
3283 struct bnx2x_fp_txdata *txdata,
3284 struct sw_tx_bd *tx_buf,
3285 struct eth_tx_start_bd **tx_bd, u16 hlen,
3286 u16 bd_prod)
3287 {
3288 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3289 struct eth_tx_bd *d_tx_bd;
3290 dma_addr_t mapping;
3291 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3292
3293 /* first fix first BD */
3294 h_tx_bd->nbytes = cpu_to_le16(hlen);
3295
3296 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3297 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3298
3299 /* now get a new data BD
3300 * (after the pbd) and fill it */
3301 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3302 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3303
3304 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3305 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3306
3307 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3308 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3309 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3310
3311 /* this marks the BD as one that has no individual mapping */
3312 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3313
3314 DP(NETIF_MSG_TX_QUEUED,
3315 "TSO split data size is %d (%x:%x)\n",
3316 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3317
3318 /* update tx_bd */
3319 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3320
3321 return bd_prod;
3322 }
3323
3324 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3325 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3326 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3327 {
3328 __sum16 tsum = (__force __sum16) csum;
3329
3330 if (fix > 0)
3331 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3332 csum_partial(t_header - fix, fix, 0)));
3333
3334 else if (fix < 0)
3335 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3336 csum_partial(t_header, -fix, 0)));
3337
3338 return bswab16(tsum);
3339 }
3340
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3341 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3342 {
3343 u32 rc;
3344 __u8 prot = 0;
3345 __be16 protocol;
3346
3347 if (skb->ip_summed != CHECKSUM_PARTIAL)
3348 return XMIT_PLAIN;
3349
3350 protocol = vlan_get_protocol(skb);
3351 if (protocol == htons(ETH_P_IPV6)) {
3352 rc = XMIT_CSUM_V6;
3353 prot = ipv6_hdr(skb)->nexthdr;
3354 } else {
3355 rc = XMIT_CSUM_V4;
3356 prot = ip_hdr(skb)->protocol;
3357 }
3358
3359 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3360 if (inner_ip_hdr(skb)->version == 6) {
3361 rc |= XMIT_CSUM_ENC_V6;
3362 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3363 rc |= XMIT_CSUM_TCP;
3364 } else {
3365 rc |= XMIT_CSUM_ENC_V4;
3366 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3367 rc |= XMIT_CSUM_TCP;
3368 }
3369 }
3370 if (prot == IPPROTO_TCP)
3371 rc |= XMIT_CSUM_TCP;
3372
3373 if (skb_is_gso(skb)) {
3374 if (skb_is_gso_v6(skb)) {
3375 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3376 if (rc & XMIT_CSUM_ENC)
3377 rc |= XMIT_GSO_ENC_V6;
3378 } else {
3379 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3380 if (rc & XMIT_CSUM_ENC)
3381 rc |= XMIT_GSO_ENC_V4;
3382 }
3383 }
3384
3385 return rc;
3386 }
3387
3388 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3389 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3390
3391 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3392 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3393
3394 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3395 /* check if packet requires linearization (packet is too fragmented)
3396 no need to check fragmentation if page size > 8K (there will be no
3397 violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3398 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3399 u32 xmit_type)
3400 {
3401 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3402 int to_copy = 0, hlen = 0;
3403
3404 if (xmit_type & XMIT_GSO_ENC)
3405 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3406
3407 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3408 if (xmit_type & XMIT_GSO) {
3409 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3410 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3411 /* Number of windows to check */
3412 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3413 int wnd_idx = 0;
3414 int frag_idx = 0;
3415 u32 wnd_sum = 0;
3416
3417 /* Headers length */
3418 if (xmit_type & XMIT_GSO_ENC)
3419 hlen = (int)(skb_inner_transport_header(skb) -
3420 skb->data) +
3421 inner_tcp_hdrlen(skb);
3422 else
3423 hlen = (int)(skb_transport_header(skb) -
3424 skb->data) + tcp_hdrlen(skb);
3425
3426 /* Amount of data (w/o headers) on linear part of SKB*/
3427 first_bd_sz = skb_headlen(skb) - hlen;
3428
3429 wnd_sum = first_bd_sz;
3430
3431 /* Calculate the first sum - it's special */
3432 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3433 wnd_sum +=
3434 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3435
3436 /* If there was data on linear skb data - check it */
3437 if (first_bd_sz > 0) {
3438 if (unlikely(wnd_sum < lso_mss)) {
3439 to_copy = 1;
3440 goto exit_lbl;
3441 }
3442
3443 wnd_sum -= first_bd_sz;
3444 }
3445
3446 /* Others are easier: run through the frag list and
3447 check all windows */
3448 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3449 wnd_sum +=
3450 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3451
3452 if (unlikely(wnd_sum < lso_mss)) {
3453 to_copy = 1;
3454 break;
3455 }
3456 wnd_sum -=
3457 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3458 }
3459 } else {
3460 /* in non-LSO too fragmented packet should always
3461 be linearized */
3462 to_copy = 1;
3463 }
3464 }
3465
3466 exit_lbl:
3467 if (unlikely(to_copy))
3468 DP(NETIF_MSG_TX_QUEUED,
3469 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3470 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3471 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3472
3473 return to_copy;
3474 }
3475 #endif
3476
3477 /**
3478 * bnx2x_set_pbd_gso - update PBD in GSO case.
3479 *
3480 * @skb: packet skb
3481 * @pbd: parse BD
3482 * @xmit_type: xmit flags
3483 */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3484 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3485 struct eth_tx_parse_bd_e1x *pbd,
3486 u32 xmit_type)
3487 {
3488 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3489 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3490 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3491
3492 if (xmit_type & XMIT_GSO_V4) {
3493 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3494 pbd->tcp_pseudo_csum =
3495 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3496 ip_hdr(skb)->daddr,
3497 0, IPPROTO_TCP, 0));
3498 } else {
3499 pbd->tcp_pseudo_csum =
3500 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3501 &ipv6_hdr(skb)->daddr,
3502 0, IPPROTO_TCP, 0));
3503 }
3504
3505 pbd->global_data |=
3506 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3507 }
3508
3509 /**
3510 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3511 *
3512 * @bp: driver handle
3513 * @skb: packet skb
3514 * @parsing_data: data to be updated
3515 * @xmit_type: xmit flags
3516 *
3517 * 57712/578xx related, when skb has encapsulation
3518 */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3519 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3520 u32 *parsing_data, u32 xmit_type)
3521 {
3522 *parsing_data |=
3523 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3524 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3525 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3526
3527 if (xmit_type & XMIT_CSUM_TCP) {
3528 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3529 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3530 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3531
3532 return skb_inner_transport_header(skb) +
3533 inner_tcp_hdrlen(skb) - skb->data;
3534 }
3535
3536 /* We support checksum offload for TCP and UDP only.
3537 * No need to pass the UDP header length - it's a constant.
3538 */
3539 return skb_inner_transport_header(skb) +
3540 sizeof(struct udphdr) - skb->data;
3541 }
3542
3543 /**
3544 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3545 *
3546 * @bp: driver handle
3547 * @skb: packet skb
3548 * @parsing_data: data to be updated
3549 * @xmit_type: xmit flags
3550 *
3551 * 57712/578xx related
3552 */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3553 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3554 u32 *parsing_data, u32 xmit_type)
3555 {
3556 *parsing_data |=
3557 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3558 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3559 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3560
3561 if (xmit_type & XMIT_CSUM_TCP) {
3562 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3563 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3564 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3565
3566 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3567 }
3568 /* We support checksum offload for TCP and UDP only.
3569 * No need to pass the UDP header length - it's a constant.
3570 */
3571 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3572 }
3573
3574 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3575 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3576 struct eth_tx_start_bd *tx_start_bd,
3577 u32 xmit_type)
3578 {
3579 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3580
3581 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3582 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3583
3584 if (!(xmit_type & XMIT_CSUM_TCP))
3585 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3586 }
3587
3588 /**
3589 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3590 *
3591 * @bp: driver handle
3592 * @skb: packet skb
3593 * @pbd: parse BD to be updated
3594 * @xmit_type: xmit flags
3595 */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3596 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3597 struct eth_tx_parse_bd_e1x *pbd,
3598 u32 xmit_type)
3599 {
3600 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3601
3602 /* for now NS flag is not used in Linux */
3603 pbd->global_data =
3604 cpu_to_le16(hlen |
3605 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3606 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3607
3608 pbd->ip_hlen_w = (skb_transport_header(skb) -
3609 skb_network_header(skb)) >> 1;
3610
3611 hlen += pbd->ip_hlen_w;
3612
3613 /* We support checksum offload for TCP and UDP only */
3614 if (xmit_type & XMIT_CSUM_TCP)
3615 hlen += tcp_hdrlen(skb) / 2;
3616 else
3617 hlen += sizeof(struct udphdr) / 2;
3618
3619 pbd->total_hlen_w = cpu_to_le16(hlen);
3620 hlen = hlen*2;
3621
3622 if (xmit_type & XMIT_CSUM_TCP) {
3623 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3624
3625 } else {
3626 s8 fix = SKB_CS_OFF(skb); /* signed! */
3627
3628 DP(NETIF_MSG_TX_QUEUED,
3629 "hlen %d fix %d csum before fix %x\n",
3630 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3631
3632 /* HW bug: fixup the CSUM */
3633 pbd->tcp_pseudo_csum =
3634 bnx2x_csum_fix(skb_transport_header(skb),
3635 SKB_CS(skb), fix);
3636
3637 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3638 pbd->tcp_pseudo_csum);
3639 }
3640
3641 return hlen;
3642 }
3643
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3644 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3645 struct eth_tx_parse_bd_e2 *pbd_e2,
3646 struct eth_tx_parse_2nd_bd *pbd2,
3647 u16 *global_data,
3648 u32 xmit_type)
3649 {
3650 u16 hlen_w = 0;
3651 u8 outerip_off, outerip_len = 0;
3652
3653 /* from outer IP to transport */
3654 hlen_w = (skb_inner_transport_header(skb) -
3655 skb_network_header(skb)) >> 1;
3656
3657 /* transport len */
3658 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3659
3660 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3661
3662 /* outer IP header info */
3663 if (xmit_type & XMIT_CSUM_V4) {
3664 struct iphdr *iph = ip_hdr(skb);
3665 u32 csum = (__force u32)(~iph->check) -
3666 (__force u32)iph->tot_len -
3667 (__force u32)iph->frag_off;
3668
3669 outerip_len = iph->ihl << 1;
3670
3671 pbd2->fw_ip_csum_wo_len_flags_frag =
3672 bswab16(csum_fold((__force __wsum)csum));
3673 } else {
3674 pbd2->fw_ip_hdr_to_payload_w =
3675 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3676 pbd_e2->data.tunnel_data.flags |=
3677 ETH_TUNNEL_DATA_IPV6_OUTER;
3678 }
3679
3680 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3681
3682 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3683
3684 /* inner IP header info */
3685 if (xmit_type & XMIT_CSUM_ENC_V4) {
3686 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3687
3688 pbd_e2->data.tunnel_data.pseudo_csum =
3689 bswab16(~csum_tcpudp_magic(
3690 inner_ip_hdr(skb)->saddr,
3691 inner_ip_hdr(skb)->daddr,
3692 0, IPPROTO_TCP, 0));
3693 } else {
3694 pbd_e2->data.tunnel_data.pseudo_csum =
3695 bswab16(~csum_ipv6_magic(
3696 &inner_ipv6_hdr(skb)->saddr,
3697 &inner_ipv6_hdr(skb)->daddr,
3698 0, IPPROTO_TCP, 0));
3699 }
3700
3701 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3702
3703 *global_data |=
3704 outerip_off |
3705 (outerip_len <<
3706 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3707 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3708 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3709
3710 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3711 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3712 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3713 }
3714 }
3715
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3716 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3717 u32 xmit_type)
3718 {
3719 struct ipv6hdr *ipv6;
3720
3721 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3722 return;
3723
3724 if (xmit_type & XMIT_GSO_ENC_V6)
3725 ipv6 = inner_ipv6_hdr(skb);
3726 else /* XMIT_GSO_V6 */
3727 ipv6 = ipv6_hdr(skb);
3728
3729 if (ipv6->nexthdr == NEXTHDR_IPV6)
3730 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3731 }
3732
3733 /* called with netif_tx_lock
3734 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3735 * netif_wake_queue()
3736 */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3737 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3738 {
3739 struct bnx2x *bp = netdev_priv(dev);
3740
3741 struct netdev_queue *txq;
3742 struct bnx2x_fp_txdata *txdata;
3743 struct sw_tx_bd *tx_buf;
3744 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3745 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3746 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3747 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3748 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3749 u32 pbd_e2_parsing_data = 0;
3750 u16 pkt_prod, bd_prod;
3751 int nbd, txq_index;
3752 dma_addr_t mapping;
3753 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3754 int i;
3755 u8 hlen = 0;
3756 __le16 pkt_size = 0;
3757 struct ethhdr *eth;
3758 u8 mac_type = UNICAST_ADDRESS;
3759
3760 #ifdef BNX2X_STOP_ON_ERROR
3761 if (unlikely(bp->panic))
3762 return NETDEV_TX_BUSY;
3763 #endif
3764
3765 txq_index = skb_get_queue_mapping(skb);
3766 txq = netdev_get_tx_queue(dev, txq_index);
3767
3768 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3769
3770 txdata = &bp->bnx2x_txq[txq_index];
3771
3772 /* enable this debug print to view the transmission queue being used
3773 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3774 txq_index, fp_index, txdata_index); */
3775
3776 /* enable this debug print to view the transmission details
3777 DP(NETIF_MSG_TX_QUEUED,
3778 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3779 txdata->cid, fp_index, txdata_index, txdata, fp); */
3780
3781 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3782 skb_shinfo(skb)->nr_frags +
3783 BDS_PER_TX_PKT +
3784 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3785 /* Handle special storage cases separately */
3786 if (txdata->tx_ring_size == 0) {
3787 struct bnx2x_eth_q_stats *q_stats =
3788 bnx2x_fp_qstats(bp, txdata->parent_fp);
3789 q_stats->driver_filtered_tx_pkt++;
3790 dev_kfree_skb(skb);
3791 return NETDEV_TX_OK;
3792 }
3793 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3794 netif_tx_stop_queue(txq);
3795 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3796
3797 return NETDEV_TX_BUSY;
3798 }
3799
3800 DP(NETIF_MSG_TX_QUEUED,
3801 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3802 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3803 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3804 skb->len);
3805
3806 eth = (struct ethhdr *)skb->data;
3807
3808 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3809 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3810 if (is_broadcast_ether_addr(eth->h_dest))
3811 mac_type = BROADCAST_ADDRESS;
3812 else
3813 mac_type = MULTICAST_ADDRESS;
3814 }
3815
3816 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3817 /* First, check if we need to linearize the skb (due to FW
3818 restrictions). No need to check fragmentation if page size > 8K
3819 (there will be no violation to FW restrictions) */
3820 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3821 /* Statistics of linearization */
3822 bp->lin_cnt++;
3823 if (skb_linearize(skb) != 0) {
3824 DP(NETIF_MSG_TX_QUEUED,
3825 "SKB linearization failed - silently dropping this SKB\n");
3826 dev_kfree_skb_any(skb);
3827 return NETDEV_TX_OK;
3828 }
3829 }
3830 #endif
3831 /* Map skb linear data for DMA */
3832 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3833 skb_headlen(skb), DMA_TO_DEVICE);
3834 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3835 DP(NETIF_MSG_TX_QUEUED,
3836 "SKB mapping failed - silently dropping this SKB\n");
3837 dev_kfree_skb_any(skb);
3838 return NETDEV_TX_OK;
3839 }
3840 /*
3841 Please read carefully. First we use one BD which we mark as start,
3842 then we have a parsing info BD (used for TSO or xsum),
3843 and only then we have the rest of the TSO BDs.
3844 (don't forget to mark the last one as last,
3845 and to unmap only AFTER you write to the BD ...)
3846 And above all, all pdb sizes are in words - NOT DWORDS!
3847 */
3848
3849 /* get current pkt produced now - advance it just before sending packet
3850 * since mapping of pages may fail and cause packet to be dropped
3851 */
3852 pkt_prod = txdata->tx_pkt_prod;
3853 bd_prod = TX_BD(txdata->tx_bd_prod);
3854
3855 /* get a tx_buf and first BD
3856 * tx_start_bd may be changed during SPLIT,
3857 * but first_bd will always stay first
3858 */
3859 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3860 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3861 first_bd = tx_start_bd;
3862
3863 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3864
3865 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3866 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3867 bp->eth_stats.ptp_skip_tx_ts++;
3868 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3869 } else if (bp->ptp_tx_skb) {
3870 bp->eth_stats.ptp_skip_tx_ts++;
3871 netdev_err_once(bp->dev,
3872 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3873 } else {
3874 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3875 /* schedule check for Tx timestamp */
3876 bp->ptp_tx_skb = skb_get(skb);
3877 bp->ptp_tx_start = jiffies;
3878 schedule_work(&bp->ptp_task);
3879 }
3880 }
3881
3882 /* header nbd: indirectly zero other flags! */
3883 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3884
3885 /* remember the first BD of the packet */
3886 tx_buf->first_bd = txdata->tx_bd_prod;
3887 tx_buf->skb = skb;
3888 tx_buf->flags = 0;
3889
3890 DP(NETIF_MSG_TX_QUEUED,
3891 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3892 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3893
3894 if (skb_vlan_tag_present(skb)) {
3895 tx_start_bd->vlan_or_ethertype =
3896 cpu_to_le16(skb_vlan_tag_get(skb));
3897 tx_start_bd->bd_flags.as_bitfield |=
3898 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3899 } else {
3900 /* when transmitting in a vf, start bd must hold the ethertype
3901 * for fw to enforce it
3902 */
3903 u16 vlan_tci = 0;
3904 #ifndef BNX2X_STOP_ON_ERROR
3905 if (IS_VF(bp)) {
3906 #endif
3907 /* Still need to consider inband vlan for enforced */
3908 if (__vlan_get_tag(skb, &vlan_tci)) {
3909 tx_start_bd->vlan_or_ethertype =
3910 cpu_to_le16(ntohs(eth->h_proto));
3911 } else {
3912 tx_start_bd->bd_flags.as_bitfield |=
3913 (X_ETH_INBAND_VLAN <<
3914 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3915 tx_start_bd->vlan_or_ethertype =
3916 cpu_to_le16(vlan_tci);
3917 }
3918 #ifndef BNX2X_STOP_ON_ERROR
3919 } else {
3920 /* used by FW for packet accounting */
3921 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3922 }
3923 #endif
3924 }
3925
3926 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3927
3928 /* turn on parsing and get a BD */
3929 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3930
3931 if (xmit_type & XMIT_CSUM)
3932 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3933
3934 if (!CHIP_IS_E1x(bp)) {
3935 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3936 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3937
3938 if (xmit_type & XMIT_CSUM_ENC) {
3939 u16 global_data = 0;
3940
3941 /* Set PBD in enc checksum offload case */
3942 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3943 &pbd_e2_parsing_data,
3944 xmit_type);
3945
3946 /* turn on 2nd parsing and get a BD */
3947 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3948
3949 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3950
3951 memset(pbd2, 0, sizeof(*pbd2));
3952
3953 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3954 (skb_inner_network_header(skb) -
3955 skb->data) >> 1;
3956
3957 if (xmit_type & XMIT_GSO_ENC)
3958 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3959 &global_data,
3960 xmit_type);
3961
3962 pbd2->global_data = cpu_to_le16(global_data);
3963
3964 /* add addition parse BD indication to start BD */
3965 SET_FLAG(tx_start_bd->general_data,
3966 ETH_TX_START_BD_PARSE_NBDS, 1);
3967 /* set encapsulation flag in start BD */
3968 SET_FLAG(tx_start_bd->general_data,
3969 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3970
3971 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3972
3973 nbd++;
3974 } else if (xmit_type & XMIT_CSUM) {
3975 /* Set PBD in checksum offload case w/o encapsulation */
3976 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3977 &pbd_e2_parsing_data,
3978 xmit_type);
3979 }
3980
3981 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3982 /* Add the macs to the parsing BD if this is a vf or if
3983 * Tx Switching is enabled.
3984 */
3985 if (IS_VF(bp)) {
3986 /* override GRE parameters in BD */
3987 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3988 &pbd_e2->data.mac_addr.src_mid,
3989 &pbd_e2->data.mac_addr.src_lo,
3990 eth->h_source);
3991
3992 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3993 &pbd_e2->data.mac_addr.dst_mid,
3994 &pbd_e2->data.mac_addr.dst_lo,
3995 eth->h_dest);
3996 } else {
3997 if (bp->flags & TX_SWITCHING)
3998 bnx2x_set_fw_mac_addr(
3999 &pbd_e2->data.mac_addr.dst_hi,
4000 &pbd_e2->data.mac_addr.dst_mid,
4001 &pbd_e2->data.mac_addr.dst_lo,
4002 eth->h_dest);
4003 #ifdef BNX2X_STOP_ON_ERROR
4004 /* Enforce security is always set in Stop on Error -
4005 * source mac should be present in the parsing BD
4006 */
4007 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4008 &pbd_e2->data.mac_addr.src_mid,
4009 &pbd_e2->data.mac_addr.src_lo,
4010 eth->h_source);
4011 #endif
4012 }
4013
4014 SET_FLAG(pbd_e2_parsing_data,
4015 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4016 } else {
4017 u16 global_data = 0;
4018 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4019 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4020 /* Set PBD in checksum offload case */
4021 if (xmit_type & XMIT_CSUM)
4022 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4023
4024 SET_FLAG(global_data,
4025 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4026 pbd_e1x->global_data |= cpu_to_le16(global_data);
4027 }
4028
4029 /* Setup the data pointer of the first BD of the packet */
4030 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4031 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4032 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4033 pkt_size = tx_start_bd->nbytes;
4034
4035 DP(NETIF_MSG_TX_QUEUED,
4036 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4037 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4038 le16_to_cpu(tx_start_bd->nbytes),
4039 tx_start_bd->bd_flags.as_bitfield,
4040 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4041
4042 if (xmit_type & XMIT_GSO) {
4043
4044 DP(NETIF_MSG_TX_QUEUED,
4045 "TSO packet len %d hlen %d total len %d tso size %d\n",
4046 skb->len, hlen, skb_headlen(skb),
4047 skb_shinfo(skb)->gso_size);
4048
4049 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4050
4051 if (unlikely(skb_headlen(skb) > hlen)) {
4052 nbd++;
4053 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4054 &tx_start_bd, hlen,
4055 bd_prod);
4056 }
4057 if (!CHIP_IS_E1x(bp))
4058 pbd_e2_parsing_data |=
4059 (skb_shinfo(skb)->gso_size <<
4060 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4061 ETH_TX_PARSE_BD_E2_LSO_MSS;
4062 else
4063 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4064 }
4065
4066 /* Set the PBD's parsing_data field if not zero
4067 * (for the chips newer than 57711).
4068 */
4069 if (pbd_e2_parsing_data)
4070 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4071
4072 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4073
4074 /* Handle fragmented skb */
4075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4077
4078 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4079 skb_frag_size(frag), DMA_TO_DEVICE);
4080 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4081 unsigned int pkts_compl = 0, bytes_compl = 0;
4082
4083 DP(NETIF_MSG_TX_QUEUED,
4084 "Unable to map page - dropping packet...\n");
4085
4086 /* we need unmap all buffers already mapped
4087 * for this SKB;
4088 * first_bd->nbd need to be properly updated
4089 * before call to bnx2x_free_tx_pkt
4090 */
4091 first_bd->nbd = cpu_to_le16(nbd);
4092 bnx2x_free_tx_pkt(bp, txdata,
4093 TX_BD(txdata->tx_pkt_prod),
4094 &pkts_compl, &bytes_compl);
4095 return NETDEV_TX_OK;
4096 }
4097
4098 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4099 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4100 if (total_pkt_bd == NULL)
4101 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4102
4103 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4104 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4105 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4106 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4107 nbd++;
4108
4109 DP(NETIF_MSG_TX_QUEUED,
4110 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4111 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4112 le16_to_cpu(tx_data_bd->nbytes));
4113 }
4114
4115 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4116
4117 /* update with actual num BDs */
4118 first_bd->nbd = cpu_to_le16(nbd);
4119
4120 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4121
4122 /* now send a tx doorbell, counting the next BD
4123 * if the packet contains or ends with it
4124 */
4125 if (TX_BD_POFF(bd_prod) < nbd)
4126 nbd++;
4127
4128 /* total_pkt_bytes should be set on the first data BD if
4129 * it's not an LSO packet and there is more than one
4130 * data BD. In this case pkt_size is limited by an MTU value.
4131 * However we prefer to set it for an LSO packet (while we don't
4132 * have to) in order to save some CPU cycles in a none-LSO
4133 * case, when we much more care about them.
4134 */
4135 if (total_pkt_bd != NULL)
4136 total_pkt_bd->total_pkt_bytes = pkt_size;
4137
4138 if (pbd_e1x)
4139 DP(NETIF_MSG_TX_QUEUED,
4140 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4141 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4142 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4143 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4144 le16_to_cpu(pbd_e1x->total_hlen_w));
4145 if (pbd_e2)
4146 DP(NETIF_MSG_TX_QUEUED,
4147 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4148 pbd_e2,
4149 pbd_e2->data.mac_addr.dst_hi,
4150 pbd_e2->data.mac_addr.dst_mid,
4151 pbd_e2->data.mac_addr.dst_lo,
4152 pbd_e2->data.mac_addr.src_hi,
4153 pbd_e2->data.mac_addr.src_mid,
4154 pbd_e2->data.mac_addr.src_lo,
4155 pbd_e2->parsing_data);
4156 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4157
4158 netdev_tx_sent_queue(txq, skb->len);
4159
4160 skb_tx_timestamp(skb);
4161
4162 txdata->tx_pkt_prod++;
4163 /*
4164 * Make sure that the BD data is updated before updating the producer
4165 * since FW might read the BD right after the producer is updated.
4166 * This is only applicable for weak-ordered memory model archs such
4167 * as IA-64. The following barrier is also mandatory since FW will
4168 * assumes packets must have BDs.
4169 */
4170 wmb();
4171
4172 txdata->tx_db.data.prod += nbd;
4173 /* make sure descriptor update is observed by HW */
4174 wmb();
4175
4176 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4177
4178 txdata->tx_bd_prod += nbd;
4179
4180 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4181 netif_tx_stop_queue(txq);
4182
4183 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4184 * ordering of set_bit() in netif_tx_stop_queue() and read of
4185 * fp->bd_tx_cons */
4186 smp_mb();
4187
4188 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4189 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4190 netif_tx_wake_queue(txq);
4191 }
4192 txdata->tx_pkt++;
4193
4194 return NETDEV_TX_OK;
4195 }
4196
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4197 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4198 {
4199 int mfw_vn = BP_FW_MB_IDX(bp);
4200 u32 tmp;
4201
4202 /* If the shmem shouldn't affect configuration, reflect */
4203 if (!IS_MF_BD(bp)) {
4204 int i;
4205
4206 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4207 c2s_map[i] = i;
4208 *c2s_default = 0;
4209
4210 return;
4211 }
4212
4213 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4214 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4215 c2s_map[0] = tmp & 0xff;
4216 c2s_map[1] = (tmp >> 8) & 0xff;
4217 c2s_map[2] = (tmp >> 16) & 0xff;
4218 c2s_map[3] = (tmp >> 24) & 0xff;
4219
4220 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4221 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4222 c2s_map[4] = tmp & 0xff;
4223 c2s_map[5] = (tmp >> 8) & 0xff;
4224 c2s_map[6] = (tmp >> 16) & 0xff;
4225 c2s_map[7] = (tmp >> 24) & 0xff;
4226
4227 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4228 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4229 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4230 }
4231
4232 /**
4233 * bnx2x_setup_tc - routine to configure net_device for multi tc
4234 *
4235 * @dev: net device to configure
4236 * @num_tc: number of traffic classes to enable
4237 *
4238 * callback connected to the ndo_setup_tc function pointer
4239 */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4240 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4241 {
4242 struct bnx2x *bp = netdev_priv(dev);
4243 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4244 int cos, prio, count, offset;
4245
4246 /* setup tc must be called under rtnl lock */
4247 ASSERT_RTNL();
4248
4249 /* no traffic classes requested. Aborting */
4250 if (!num_tc) {
4251 netdev_reset_tc(dev);
4252 return 0;
4253 }
4254
4255 /* requested to support too many traffic classes */
4256 if (num_tc > bp->max_cos) {
4257 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4258 num_tc, bp->max_cos);
4259 return -EINVAL;
4260 }
4261
4262 /* declare amount of supported traffic classes */
4263 if (netdev_set_num_tc(dev, num_tc)) {
4264 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4265 return -EINVAL;
4266 }
4267
4268 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4269
4270 /* configure priority to traffic class mapping */
4271 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4272 int outer_prio = c2s_map[prio];
4273
4274 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4275 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4276 "mapping priority %d to tc %d\n",
4277 outer_prio, bp->prio_to_cos[outer_prio]);
4278 }
4279
4280 /* Use this configuration to differentiate tc0 from other COSes
4281 This can be used for ets or pfc, and save the effort of setting
4282 up a multio class queue disc or negotiating DCBX with a switch
4283 netdev_set_prio_tc_map(dev, 0, 0);
4284 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4285 for (prio = 1; prio < 16; prio++) {
4286 netdev_set_prio_tc_map(dev, prio, 1);
4287 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4288 } */
4289
4290 /* configure traffic class to transmission queue mapping */
4291 for (cos = 0; cos < bp->max_cos; cos++) {
4292 count = BNX2X_NUM_ETH_QUEUES(bp);
4293 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4294 netdev_set_tc_queue(dev, cos, count, offset);
4295 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4296 "mapping tc %d to offset %d count %d\n",
4297 cos, offset, count);
4298 }
4299
4300 return 0;
4301 }
4302
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4303 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4304 void *type_data)
4305 {
4306 struct tc_mqprio_qopt *mqprio = type_data;
4307
4308 if (type != TC_SETUP_QDISC_MQPRIO)
4309 return -EOPNOTSUPP;
4310
4311 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4312
4313 return bnx2x_setup_tc(dev, mqprio->num_tc);
4314 }
4315
4316 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4317 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4318 {
4319 struct sockaddr *addr = p;
4320 struct bnx2x *bp = netdev_priv(dev);
4321 int rc = 0;
4322
4323 if (!is_valid_ether_addr(addr->sa_data)) {
4324 BNX2X_ERR("Requested MAC address is not valid\n");
4325 return -EINVAL;
4326 }
4327
4328 if (IS_MF_STORAGE_ONLY(bp)) {
4329 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4330 return -EINVAL;
4331 }
4332
4333 if (netif_running(dev)) {
4334 rc = bnx2x_set_eth_mac(bp, false);
4335 if (rc)
4336 return rc;
4337 }
4338
4339 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4340
4341 if (netif_running(dev))
4342 rc = bnx2x_set_eth_mac(bp, true);
4343
4344 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4345 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4346
4347 return rc;
4348 }
4349
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4350 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4351 {
4352 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4353 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4354 u8 cos;
4355
4356 /* Common */
4357
4358 if (IS_FCOE_IDX(fp_index)) {
4359 memset(sb, 0, sizeof(union host_hc_status_block));
4360 fp->status_blk_mapping = 0;
4361 } else {
4362 /* status blocks */
4363 if (!CHIP_IS_E1x(bp))
4364 BNX2X_PCI_FREE(sb->e2_sb,
4365 bnx2x_fp(bp, fp_index,
4366 status_blk_mapping),
4367 sizeof(struct host_hc_status_block_e2));
4368 else
4369 BNX2X_PCI_FREE(sb->e1x_sb,
4370 bnx2x_fp(bp, fp_index,
4371 status_blk_mapping),
4372 sizeof(struct host_hc_status_block_e1x));
4373 }
4374
4375 /* Rx */
4376 if (!skip_rx_queue(bp, fp_index)) {
4377 bnx2x_free_rx_bds(fp);
4378
4379 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4380 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4381 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4382 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4383 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4384
4385 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4386 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4387 sizeof(struct eth_fast_path_rx_cqe) *
4388 NUM_RCQ_BD);
4389
4390 /* SGE ring */
4391 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4392 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4393 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4394 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4395 }
4396
4397 /* Tx */
4398 if (!skip_tx_queue(bp, fp_index)) {
4399 /* fastpath tx rings: tx_buf tx_desc */
4400 for_each_cos_in_tx_queue(fp, cos) {
4401 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4402
4403 DP(NETIF_MSG_IFDOWN,
4404 "freeing tx memory of fp %d cos %d cid %d\n",
4405 fp_index, cos, txdata->cid);
4406
4407 BNX2X_FREE(txdata->tx_buf_ring);
4408 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4409 txdata->tx_desc_mapping,
4410 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4411 }
4412 }
4413 /* end of fastpath */
4414 }
4415
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4416 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4417 {
4418 int i;
4419 for_each_cnic_queue(bp, i)
4420 bnx2x_free_fp_mem_at(bp, i);
4421 }
4422
bnx2x_free_fp_mem(struct bnx2x * bp)4423 void bnx2x_free_fp_mem(struct bnx2x *bp)
4424 {
4425 int i;
4426 for_each_eth_queue(bp, i)
4427 bnx2x_free_fp_mem_at(bp, i);
4428 }
4429
set_sb_shortcuts(struct bnx2x * bp,int index)4430 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4431 {
4432 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4433 if (!CHIP_IS_E1x(bp)) {
4434 bnx2x_fp(bp, index, sb_index_values) =
4435 (__le16 *)status_blk.e2_sb->sb.index_values;
4436 bnx2x_fp(bp, index, sb_running_index) =
4437 (__le16 *)status_blk.e2_sb->sb.running_index;
4438 } else {
4439 bnx2x_fp(bp, index, sb_index_values) =
4440 (__le16 *)status_blk.e1x_sb->sb.index_values;
4441 bnx2x_fp(bp, index, sb_running_index) =
4442 (__le16 *)status_blk.e1x_sb->sb.running_index;
4443 }
4444 }
4445
4446 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4447 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4448 int rx_ring_size)
4449 {
4450 struct bnx2x *bp = fp->bp;
4451 u16 ring_prod, cqe_ring_prod;
4452 int i, failure_cnt = 0;
4453
4454 fp->rx_comp_cons = 0;
4455 cqe_ring_prod = ring_prod = 0;
4456
4457 /* This routine is called only during fo init so
4458 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4459 */
4460 for (i = 0; i < rx_ring_size; i++) {
4461 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4462 failure_cnt++;
4463 continue;
4464 }
4465 ring_prod = NEXT_RX_IDX(ring_prod);
4466 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4467 WARN_ON(ring_prod <= (i - failure_cnt));
4468 }
4469
4470 if (failure_cnt)
4471 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4472 i - failure_cnt, fp->index);
4473
4474 fp->rx_bd_prod = ring_prod;
4475 /* Limit the CQE producer by the CQE ring size */
4476 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4477 cqe_ring_prod);
4478
4479 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4480
4481 return i - failure_cnt;
4482 }
4483
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4484 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4485 {
4486 int i;
4487
4488 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4489 struct eth_rx_cqe_next_page *nextpg;
4490
4491 nextpg = (struct eth_rx_cqe_next_page *)
4492 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4493 nextpg->addr_hi =
4494 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4495 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4496 nextpg->addr_lo =
4497 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4498 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4499 }
4500 }
4501
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4502 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4503 {
4504 union host_hc_status_block *sb;
4505 struct bnx2x_fastpath *fp = &bp->fp[index];
4506 int ring_size = 0;
4507 u8 cos;
4508 int rx_ring_size = 0;
4509
4510 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4511 rx_ring_size = MIN_RX_SIZE_NONTPA;
4512 bp->rx_ring_size = rx_ring_size;
4513 } else if (!bp->rx_ring_size) {
4514 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4515
4516 if (CHIP_IS_E3(bp)) {
4517 u32 cfg = SHMEM_RD(bp,
4518 dev_info.port_hw_config[BP_PORT(bp)].
4519 default_cfg);
4520
4521 /* Decrease ring size for 1G functions */
4522 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4523 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4524 rx_ring_size /= 10;
4525 }
4526
4527 /* allocate at least number of buffers required by FW */
4528 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4529 MIN_RX_SIZE_TPA, rx_ring_size);
4530
4531 bp->rx_ring_size = rx_ring_size;
4532 } else /* if rx_ring_size specified - use it */
4533 rx_ring_size = bp->rx_ring_size;
4534
4535 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4536
4537 /* Common */
4538 sb = &bnx2x_fp(bp, index, status_blk);
4539
4540 if (!IS_FCOE_IDX(index)) {
4541 /* status blocks */
4542 if (!CHIP_IS_E1x(bp)) {
4543 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4544 sizeof(struct host_hc_status_block_e2));
4545 if (!sb->e2_sb)
4546 goto alloc_mem_err;
4547 } else {
4548 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4549 sizeof(struct host_hc_status_block_e1x));
4550 if (!sb->e1x_sb)
4551 goto alloc_mem_err;
4552 }
4553 }
4554
4555 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4556 * set shortcuts for it.
4557 */
4558 if (!IS_FCOE_IDX(index))
4559 set_sb_shortcuts(bp, index);
4560
4561 /* Tx */
4562 if (!skip_tx_queue(bp, index)) {
4563 /* fastpath tx rings: tx_buf tx_desc */
4564 for_each_cos_in_tx_queue(fp, cos) {
4565 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4566
4567 DP(NETIF_MSG_IFUP,
4568 "allocating tx memory of fp %d cos %d\n",
4569 index, cos);
4570
4571 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4572 sizeof(struct sw_tx_bd),
4573 GFP_KERNEL);
4574 if (!txdata->tx_buf_ring)
4575 goto alloc_mem_err;
4576 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4577 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4578 if (!txdata->tx_desc_ring)
4579 goto alloc_mem_err;
4580 }
4581 }
4582
4583 /* Rx */
4584 if (!skip_rx_queue(bp, index)) {
4585 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4586 bnx2x_fp(bp, index, rx_buf_ring) =
4587 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4588 if (!bnx2x_fp(bp, index, rx_buf_ring))
4589 goto alloc_mem_err;
4590 bnx2x_fp(bp, index, rx_desc_ring) =
4591 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4592 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4593 if (!bnx2x_fp(bp, index, rx_desc_ring))
4594 goto alloc_mem_err;
4595
4596 /* Seed all CQEs by 1s */
4597 bnx2x_fp(bp, index, rx_comp_ring) =
4598 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4599 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4600 if (!bnx2x_fp(bp, index, rx_comp_ring))
4601 goto alloc_mem_err;
4602
4603 /* SGE ring */
4604 bnx2x_fp(bp, index, rx_page_ring) =
4605 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4606 GFP_KERNEL);
4607 if (!bnx2x_fp(bp, index, rx_page_ring))
4608 goto alloc_mem_err;
4609 bnx2x_fp(bp, index, rx_sge_ring) =
4610 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4611 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4612 if (!bnx2x_fp(bp, index, rx_sge_ring))
4613 goto alloc_mem_err;
4614 /* RX BD ring */
4615 bnx2x_set_next_page_rx_bd(fp);
4616
4617 /* CQ ring */
4618 bnx2x_set_next_page_rx_cq(fp);
4619
4620 /* BDs */
4621 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4622 if (ring_size < rx_ring_size)
4623 goto alloc_mem_err;
4624 }
4625
4626 return 0;
4627
4628 /* handles low memory cases */
4629 alloc_mem_err:
4630 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4631 index, ring_size);
4632 /* FW will drop all packets if queue is not big enough,
4633 * In these cases we disable the queue
4634 * Min size is different for OOO, TPA and non-TPA queues
4635 */
4636 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4637 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4638 /* release memory allocated for this queue */
4639 bnx2x_free_fp_mem_at(bp, index);
4640 return -ENOMEM;
4641 }
4642 return 0;
4643 }
4644
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4645 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4646 {
4647 if (!NO_FCOE(bp))
4648 /* FCoE */
4649 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4650 /* we will fail load process instead of mark
4651 * NO_FCOE_FLAG
4652 */
4653 return -ENOMEM;
4654
4655 return 0;
4656 }
4657
bnx2x_alloc_fp_mem(struct bnx2x * bp)4658 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4659 {
4660 int i;
4661
4662 /* 1. Allocate FP for leading - fatal if error
4663 * 2. Allocate RSS - fix number of queues if error
4664 */
4665
4666 /* leading */
4667 if (bnx2x_alloc_fp_mem_at(bp, 0))
4668 return -ENOMEM;
4669
4670 /* RSS */
4671 for_each_nondefault_eth_queue(bp, i)
4672 if (bnx2x_alloc_fp_mem_at(bp, i))
4673 break;
4674
4675 /* handle memory failures */
4676 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4677 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4678
4679 WARN_ON(delta < 0);
4680 bnx2x_shrink_eth_fp(bp, delta);
4681 if (CNIC_SUPPORT(bp))
4682 /* move non eth FPs next to last eth FP
4683 * must be done in that order
4684 * FCOE_IDX < FWD_IDX < OOO_IDX
4685 */
4686
4687 /* move FCoE fp even NO_FCOE_FLAG is on */
4688 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4689 bp->num_ethernet_queues -= delta;
4690 bp->num_queues = bp->num_ethernet_queues +
4691 bp->num_cnic_queues;
4692 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4693 bp->num_queues + delta, bp->num_queues);
4694 }
4695
4696 return 0;
4697 }
4698
bnx2x_free_mem_bp(struct bnx2x * bp)4699 void bnx2x_free_mem_bp(struct bnx2x *bp)
4700 {
4701 int i;
4702
4703 for (i = 0; i < bp->fp_array_size; i++)
4704 kfree(bp->fp[i].tpa_info);
4705 kfree(bp->fp);
4706 kfree(bp->sp_objs);
4707 kfree(bp->fp_stats);
4708 kfree(bp->bnx2x_txq);
4709 kfree(bp->msix_table);
4710 kfree(bp->ilt);
4711 }
4712
bnx2x_alloc_mem_bp(struct bnx2x * bp)4713 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4714 {
4715 struct bnx2x_fastpath *fp;
4716 struct msix_entry *tbl;
4717 struct bnx2x_ilt *ilt;
4718 int msix_table_size = 0;
4719 int fp_array_size, txq_array_size;
4720 int i;
4721
4722 /*
4723 * The biggest MSI-X table we might need is as a maximum number of fast
4724 * path IGU SBs plus default SB (for PF only).
4725 */
4726 msix_table_size = bp->igu_sb_cnt;
4727 if (IS_PF(bp))
4728 msix_table_size++;
4729 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4730
4731 /* fp array: RSS plus CNIC related L2 queues */
4732 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4733 bp->fp_array_size = fp_array_size;
4734 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4735
4736 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4737 if (!fp)
4738 goto alloc_err;
4739 for (i = 0; i < bp->fp_array_size; i++) {
4740 fp[i].tpa_info =
4741 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4742 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4743 if (!(fp[i].tpa_info))
4744 goto alloc_err;
4745 }
4746
4747 bp->fp = fp;
4748
4749 /* allocate sp objs */
4750 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4751 GFP_KERNEL);
4752 if (!bp->sp_objs)
4753 goto alloc_err;
4754
4755 /* allocate fp_stats */
4756 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4757 GFP_KERNEL);
4758 if (!bp->fp_stats)
4759 goto alloc_err;
4760
4761 /* Allocate memory for the transmission queues array */
4762 txq_array_size =
4763 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4764 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4765
4766 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4767 GFP_KERNEL);
4768 if (!bp->bnx2x_txq)
4769 goto alloc_err;
4770
4771 /* msix table */
4772 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4773 if (!tbl)
4774 goto alloc_err;
4775 bp->msix_table = tbl;
4776
4777 /* ilt */
4778 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4779 if (!ilt)
4780 goto alloc_err;
4781 bp->ilt = ilt;
4782
4783 return 0;
4784 alloc_err:
4785 bnx2x_free_mem_bp(bp);
4786 return -ENOMEM;
4787 }
4788
bnx2x_reload_if_running(struct net_device * dev)4789 int bnx2x_reload_if_running(struct net_device *dev)
4790 {
4791 struct bnx2x *bp = netdev_priv(dev);
4792
4793 if (unlikely(!netif_running(dev)))
4794 return 0;
4795
4796 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4797 return bnx2x_nic_load(bp, LOAD_NORMAL);
4798 }
4799
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4800 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4801 {
4802 u32 sel_phy_idx = 0;
4803 if (bp->link_params.num_phys <= 1)
4804 return INT_PHY;
4805
4806 if (bp->link_vars.link_up) {
4807 sel_phy_idx = EXT_PHY1;
4808 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4809 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4810 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4811 sel_phy_idx = EXT_PHY2;
4812 } else {
4813
4814 switch (bnx2x_phy_selection(&bp->link_params)) {
4815 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4816 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4817 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4818 sel_phy_idx = EXT_PHY1;
4819 break;
4820 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4821 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4822 sel_phy_idx = EXT_PHY2;
4823 break;
4824 }
4825 }
4826
4827 return sel_phy_idx;
4828 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4829 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4830 {
4831 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4832 /*
4833 * The selected activated PHY is always after swapping (in case PHY
4834 * swapping is enabled). So when swapping is enabled, we need to reverse
4835 * the configuration
4836 */
4837
4838 if (bp->link_params.multi_phy_config &
4839 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4840 if (sel_phy_idx == EXT_PHY1)
4841 sel_phy_idx = EXT_PHY2;
4842 else if (sel_phy_idx == EXT_PHY2)
4843 sel_phy_idx = EXT_PHY1;
4844 }
4845 return LINK_CONFIG_IDX(sel_phy_idx);
4846 }
4847
4848 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4849 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4850 {
4851 struct bnx2x *bp = netdev_priv(dev);
4852 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4853
4854 switch (type) {
4855 case NETDEV_FCOE_WWNN:
4856 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4857 cp->fcoe_wwn_node_name_lo);
4858 break;
4859 case NETDEV_FCOE_WWPN:
4860 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4861 cp->fcoe_wwn_port_name_lo);
4862 break;
4863 default:
4864 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4865 return -EINVAL;
4866 }
4867
4868 return 0;
4869 }
4870 #endif
4871
4872 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4873 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4874 {
4875 struct bnx2x *bp = netdev_priv(dev);
4876
4877 if (pci_num_vf(bp->pdev)) {
4878 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4879 return -EPERM;
4880 }
4881
4882 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4883 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4884 return -EAGAIN;
4885 }
4886
4887 /* This does not race with packet allocation
4888 * because the actual alloc size is
4889 * only updated as part of load
4890 */
4891 dev->mtu = new_mtu;
4892
4893 if (!bnx2x_mtu_allows_gro(new_mtu))
4894 dev->features &= ~NETIF_F_GRO_HW;
4895
4896 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4897 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4898
4899 return bnx2x_reload_if_running(dev);
4900 }
4901
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4902 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4903 netdev_features_t features)
4904 {
4905 struct bnx2x *bp = netdev_priv(dev);
4906
4907 if (pci_num_vf(bp->pdev)) {
4908 netdev_features_t changed = dev->features ^ features;
4909
4910 /* Revert the requested changes in features if they
4911 * would require internal reload of PF in bnx2x_set_features().
4912 */
4913 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4914 features &= ~NETIF_F_RXCSUM;
4915 features |= dev->features & NETIF_F_RXCSUM;
4916 }
4917
4918 if (changed & NETIF_F_LOOPBACK) {
4919 features &= ~NETIF_F_LOOPBACK;
4920 features |= dev->features & NETIF_F_LOOPBACK;
4921 }
4922 }
4923
4924 /* TPA requires Rx CSUM offloading */
4925 if (!(features & NETIF_F_RXCSUM))
4926 features &= ~NETIF_F_LRO;
4927
4928 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4929 features &= ~NETIF_F_GRO_HW;
4930 if (features & NETIF_F_GRO_HW)
4931 features &= ~NETIF_F_LRO;
4932
4933 return features;
4934 }
4935
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4936 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4937 {
4938 struct bnx2x *bp = netdev_priv(dev);
4939 netdev_features_t changes = features ^ dev->features;
4940 bool bnx2x_reload = false;
4941 int rc;
4942
4943 /* VFs or non SRIOV PFs should be able to change loopback feature */
4944 if (!pci_num_vf(bp->pdev)) {
4945 if (features & NETIF_F_LOOPBACK) {
4946 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4947 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4948 bnx2x_reload = true;
4949 }
4950 } else {
4951 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4952 bp->link_params.loopback_mode = LOOPBACK_NONE;
4953 bnx2x_reload = true;
4954 }
4955 }
4956 }
4957
4958 /* Don't care about GRO changes */
4959 changes &= ~NETIF_F_GRO;
4960
4961 if (changes)
4962 bnx2x_reload = true;
4963
4964 if (bnx2x_reload) {
4965 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4966 dev->features = features;
4967 rc = bnx2x_reload_if_running(dev);
4968 return rc ? rc : 1;
4969 }
4970 /* else: bnx2x_nic_load() will be called at end of recovery */
4971 }
4972
4973 return 0;
4974 }
4975
bnx2x_tx_timeout(struct net_device * dev,unsigned int txqueue)4976 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4977 {
4978 struct bnx2x *bp = netdev_priv(dev);
4979
4980 /* We want the information of the dump logged,
4981 * but calling bnx2x_panic() would kill all chances of recovery.
4982 */
4983 if (!bp->panic)
4984 #ifndef BNX2X_STOP_ON_ERROR
4985 bnx2x_panic_dump(bp, false);
4986 #else
4987 bnx2x_panic();
4988 #endif
4989
4990 /* This allows the netif to be shutdown gracefully before resetting */
4991 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4992 }
4993
bnx2x_suspend(struct device * dev_d)4994 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
4995 {
4996 struct pci_dev *pdev = to_pci_dev(dev_d);
4997 struct net_device *dev = pci_get_drvdata(pdev);
4998 struct bnx2x *bp;
4999
5000 if (!dev) {
5001 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5002 return -ENODEV;
5003 }
5004 bp = netdev_priv(dev);
5005
5006 rtnl_lock();
5007
5008 if (!netif_running(dev)) {
5009 rtnl_unlock();
5010 return 0;
5011 }
5012
5013 netif_device_detach(dev);
5014
5015 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5016
5017 rtnl_unlock();
5018
5019 return 0;
5020 }
5021
bnx2x_resume(struct device * dev_d)5022 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5023 {
5024 struct pci_dev *pdev = to_pci_dev(dev_d);
5025 struct net_device *dev = pci_get_drvdata(pdev);
5026 struct bnx2x *bp;
5027 int rc;
5028
5029 if (!dev) {
5030 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5031 return -ENODEV;
5032 }
5033 bp = netdev_priv(dev);
5034
5035 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5036 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5037 return -EAGAIN;
5038 }
5039
5040 rtnl_lock();
5041
5042 if (!netif_running(dev)) {
5043 rtnl_unlock();
5044 return 0;
5045 }
5046
5047 netif_device_attach(dev);
5048
5049 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5050
5051 rtnl_unlock();
5052
5053 return rc;
5054 }
5055
5056 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5057
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5058 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5059 u32 cid)
5060 {
5061 if (!cxt) {
5062 BNX2X_ERR("bad context pointer %p\n", cxt);
5063 return;
5064 }
5065
5066 /* ustorm cxt validation */
5067 cxt->ustorm_ag_context.cdu_usage =
5068 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5069 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5070 /* xcontext validation */
5071 cxt->xstorm_ag_context.cdu_reserved =
5072 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5073 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5074 }
5075
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5076 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5077 u8 fw_sb_id, u8 sb_index,
5078 u8 ticks)
5079 {
5080 u32 addr = BAR_CSTRORM_INTMEM +
5081 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5082 REG_WR8(bp, addr, ticks);
5083 DP(NETIF_MSG_IFUP,
5084 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5085 port, fw_sb_id, sb_index, ticks);
5086 }
5087
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5088 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5089 u16 fw_sb_id, u8 sb_index,
5090 u8 disable)
5091 {
5092 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5093 u32 addr = BAR_CSTRORM_INTMEM +
5094 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5095 u8 flags = REG_RD8(bp, addr);
5096 /* clear and set */
5097 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5098 flags |= enable_flag;
5099 REG_WR8(bp, addr, flags);
5100 DP(NETIF_MSG_IFUP,
5101 "port %x fw_sb_id %d sb_index %d disable %d\n",
5102 port, fw_sb_id, sb_index, disable);
5103 }
5104
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5105 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5106 u8 sb_index, u8 disable, u16 usec)
5107 {
5108 int port = BP_PORT(bp);
5109 u8 ticks = usec / BNX2X_BTR;
5110
5111 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5112
5113 disable = disable ? 1 : (usec ? 0 : 1);
5114 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5115 }
5116
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5117 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5118 u32 verbose)
5119 {
5120 smp_mb__before_atomic();
5121 set_bit(flag, &bp->sp_rtnl_state);
5122 smp_mb__after_atomic();
5123 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5124 flag);
5125 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5126 }
5127