1 /* bnx2fc_hwi.c: QLogic Linux FCoE offload driver.
2  * This file contains the code that low level functions that interact
3  * with 57712 FCoE firmware.
4  *
5  * Copyright (c) 2008-2013 Broadcom Corporation
6  * Copyright (c) 2014-2016 QLogic Corporation
7  * Copyright (c) 2016-2017 Cavium Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation.
12  *
13  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
14  */
15 
16 #include "bnx2fc.h"
17 
18 DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
19 
20 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
21 					struct fcoe_kcqe *new_cqe_kcqe);
22 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
23 					struct fcoe_kcqe *ofld_kcqe);
24 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
25 						struct fcoe_kcqe *ofld_kcqe);
26 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
27 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
28 					struct fcoe_kcqe *destroy_kcqe);
29 
bnx2fc_send_stat_req(struct bnx2fc_hba * hba)30 int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
31 {
32 	struct fcoe_kwqe_stat stat_req;
33 	struct kwqe *kwqe_arr[2];
34 	int num_kwqes = 1;
35 	int rc = 0;
36 
37 	memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
38 	stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
39 	stat_req.hdr.flags =
40 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
41 
42 	stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
43 	stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
44 
45 	kwqe_arr[0] = (struct kwqe *) &stat_req;
46 
47 	if (hba->cnic && hba->cnic->submit_kwqes)
48 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
49 
50 	return rc;
51 }
52 
53 /**
54  * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
55  *
56  * @hba:	adapter structure pointer
57  *
58  * Send down FCoE firmware init KWQEs which initiates the initial handshake
59  *	with the f/w.
60  *
61  */
bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba * hba)62 int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
63 {
64 	struct fcoe_kwqe_init1 fcoe_init1;
65 	struct fcoe_kwqe_init2 fcoe_init2;
66 	struct fcoe_kwqe_init3 fcoe_init3;
67 	struct kwqe *kwqe_arr[3];
68 	int num_kwqes = 3;
69 	int rc = 0;
70 
71 	if (!hba->cnic) {
72 		printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
73 		return -ENODEV;
74 	}
75 
76 	/* fill init1 KWQE */
77 	memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
78 	fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
79 	fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
80 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
81 
82 	fcoe_init1.num_tasks = hba->max_tasks;
83 	fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
84 	fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
85 	fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
86 	fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
87 	fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
88 	fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
89 	fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
90 	fcoe_init1.task_list_pbl_addr_hi =
91 				(u32) ((u64) hba->task_ctx_bd_dma >> 32);
92 	fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
93 
94 	fcoe_init1.flags = (PAGE_SHIFT <<
95 				FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
96 
97 	fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
98 
99 	/* fill init2 KWQE */
100 	memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
101 	fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
102 	fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
103 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
104 
105 	fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
106 	fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
107 
108 
109 	fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
110 	fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
111 					   ((u64) hba->hash_tbl_pbl_dma >> 32);
112 
113 	fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
114 	fcoe_init2.t2_hash_tbl_addr_hi = (u32)
115 					  ((u64) hba->t2_hash_tbl_dma >> 32);
116 
117 	fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
118 	fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
119 					((u64) hba->t2_hash_tbl_ptr_dma >> 32);
120 
121 	fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
122 
123 	/* fill init3 KWQE */
124 	memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
125 	fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
126 	fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
127 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
128 	fcoe_init3.error_bit_map_lo = 0xffffffff;
129 	fcoe_init3.error_bit_map_hi = 0xffffffff;
130 
131 	/*
132 	 * enable both cached connection and cached tasks
133 	 * 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both
134 	 */
135 	fcoe_init3.perf_config = 3;
136 
137 	kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
138 	kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
139 	kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
140 
141 	if (hba->cnic && hba->cnic->submit_kwqes)
142 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
143 
144 	return rc;
145 }
bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba * hba)146 int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
147 {
148 	struct fcoe_kwqe_destroy fcoe_destroy;
149 	struct kwqe *kwqe_arr[2];
150 	int num_kwqes = 1;
151 	int rc = -1;
152 
153 	/* fill destroy KWQE */
154 	memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
155 	fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
156 	fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
157 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
158 	kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
159 
160 	if (hba->cnic && hba->cnic->submit_kwqes)
161 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
162 	return rc;
163 }
164 
165 /**
166  * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
167  *
168  * @port:		port structure pointer
169  * @tgt:		bnx2fc_rport structure pointer
170  */
bnx2fc_send_session_ofld_req(struct fcoe_port * port,struct bnx2fc_rport * tgt)171 int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
172 					struct bnx2fc_rport *tgt)
173 {
174 	struct fc_lport *lport = port->lport;
175 	struct bnx2fc_interface *interface = port->priv;
176 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
177 	struct bnx2fc_hba *hba = interface->hba;
178 	struct kwqe *kwqe_arr[4];
179 	struct fcoe_kwqe_conn_offload1 ofld_req1;
180 	struct fcoe_kwqe_conn_offload2 ofld_req2;
181 	struct fcoe_kwqe_conn_offload3 ofld_req3;
182 	struct fcoe_kwqe_conn_offload4 ofld_req4;
183 	struct fc_rport_priv *rdata = tgt->rdata;
184 	struct fc_rport *rport = tgt->rport;
185 	int num_kwqes = 4;
186 	u32 port_id;
187 	int rc = 0;
188 	u16 conn_id;
189 
190 	/* Initialize offload request 1 structure */
191 	memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
192 
193 	ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
194 	ofld_req1.hdr.flags =
195 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
196 
197 
198 	conn_id = (u16)tgt->fcoe_conn_id;
199 	ofld_req1.fcoe_conn_id = conn_id;
200 
201 
202 	ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
203 	ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
204 
205 	ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
206 	ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
207 
208 	ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
209 	ofld_req1.rq_first_pbe_addr_hi =
210 				(u32)((u64) tgt->rq_dma >> 32);
211 
212 	ofld_req1.rq_prod = 0x8000;
213 
214 	/* Initialize offload request 2 structure */
215 	memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
216 
217 	ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
218 	ofld_req2.hdr.flags =
219 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
220 
221 	ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
222 
223 	ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
224 	ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
225 
226 	ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
227 	ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
228 
229 	ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
230 	ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
231 
232 	/* Initialize offload request 3 structure */
233 	memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
234 
235 	ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
236 	ofld_req3.hdr.flags =
237 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
238 
239 	ofld_req3.vlan_tag = interface->vlan_id <<
240 				FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
241 	ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
242 
243 	port_id = fc_host_port_id(lport->host);
244 	if (port_id == 0) {
245 		BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
246 		return -EINVAL;
247 	}
248 
249 	/*
250 	 * Store s_id of the initiator for further reference. This will
251 	 * be used during disable/destroy during linkdown processing as
252 	 * when the lport is reset, the port_id also is reset to 0
253 	 */
254 	tgt->sid = port_id;
255 	ofld_req3.s_id[0] = (port_id & 0x000000FF);
256 	ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
257 	ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
258 
259 	port_id = rport->port_id;
260 	ofld_req3.d_id[0] = (port_id & 0x000000FF);
261 	ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
262 	ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
263 
264 	ofld_req3.tx_total_conc_seqs = rdata->max_seq;
265 
266 	ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
267 	ofld_req3.rx_max_fc_pay_len  = lport->mfs;
268 
269 	ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
270 	ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
271 	ofld_req3.rx_open_seqs_exch_c3 = 1;
272 
273 	ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
274 	ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
275 
276 	/* set mul_n_port_ids supported flag to 0, until it is supported */
277 	ofld_req3.flags = 0;
278 	/*
279 	ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
280 			    FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
281 	*/
282 	/* Info from PLOGI response */
283 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
284 			     FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
285 
286 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
287 			     FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
288 
289 	/*
290 	 * Info from PRLI response, this info is used for sequence level error
291 	 * recovery support
292 	 */
293 	if (tgt->dev_type == TYPE_TAPE) {
294 		ofld_req3.flags |= 1 <<
295 				    FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
296 		ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
297 				    ? 1 : 0) <<
298 				    FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
299 	}
300 
301 	/* vlan flag */
302 	ofld_req3.flags |= (interface->vlan_enabled <<
303 			    FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
304 
305 	/* C2_VALID and ACK flags are not set as they are not supported */
306 
307 
308 	/* Initialize offload request 4 structure */
309 	memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
310 	ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
311 	ofld_req4.hdr.flags =
312 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
313 
314 	ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
315 
316 
317 	ofld_req4.src_mac_addr_lo[0] =  port->data_src_addr[5];
318 							/* local mac */
319 	ofld_req4.src_mac_addr_lo[1] =  port->data_src_addr[4];
320 	ofld_req4.src_mac_addr_mid[0] =  port->data_src_addr[3];
321 	ofld_req4.src_mac_addr_mid[1] =  port->data_src_addr[2];
322 	ofld_req4.src_mac_addr_hi[0] =  port->data_src_addr[1];
323 	ofld_req4.src_mac_addr_hi[1] =  port->data_src_addr[0];
324 	ofld_req4.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
325 							/* fcf mac */
326 	ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
327 	ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
328 	ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
329 	ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
330 	ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
331 
332 	ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
333 	ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
334 
335 	ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
336 	ofld_req4.confq_pbl_base_addr_hi =
337 					(u32)((u64) tgt->confq_pbl_dma >> 32);
338 
339 	kwqe_arr[0] = (struct kwqe *) &ofld_req1;
340 	kwqe_arr[1] = (struct kwqe *) &ofld_req2;
341 	kwqe_arr[2] = (struct kwqe *) &ofld_req3;
342 	kwqe_arr[3] = (struct kwqe *) &ofld_req4;
343 
344 	if (hba->cnic && hba->cnic->submit_kwqes)
345 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
346 
347 	return rc;
348 }
349 
350 /**
351  * bnx2fc_send_session_enable_req - initiates FCoE Session enablement
352  *
353  * @port:		port structure pointer
354  * @tgt:		bnx2fc_rport structure pointer
355  */
bnx2fc_send_session_enable_req(struct fcoe_port * port,struct bnx2fc_rport * tgt)356 int bnx2fc_send_session_enable_req(struct fcoe_port *port,
357 					struct bnx2fc_rport *tgt)
358 {
359 	struct kwqe *kwqe_arr[2];
360 	struct bnx2fc_interface *interface = port->priv;
361 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
362 	struct bnx2fc_hba *hba = interface->hba;
363 	struct fcoe_kwqe_conn_enable_disable enbl_req;
364 	struct fc_lport *lport = port->lport;
365 	struct fc_rport *rport = tgt->rport;
366 	int num_kwqes = 1;
367 	int rc = 0;
368 	u32 port_id;
369 
370 	memset(&enbl_req, 0x00,
371 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
372 	enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
373 	enbl_req.hdr.flags =
374 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
375 
376 	enbl_req.src_mac_addr_lo[0] =  port->data_src_addr[5];
377 							/* local mac */
378 	enbl_req.src_mac_addr_lo[1] =  port->data_src_addr[4];
379 	enbl_req.src_mac_addr_mid[0] =  port->data_src_addr[3];
380 	enbl_req.src_mac_addr_mid[1] =  port->data_src_addr[2];
381 	enbl_req.src_mac_addr_hi[0] =  port->data_src_addr[1];
382 	enbl_req.src_mac_addr_hi[1] =  port->data_src_addr[0];
383 	memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
384 
385 	enbl_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
386 	enbl_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
387 	enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
388 	enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
389 	enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
390 	enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
391 
392 	port_id = fc_host_port_id(lport->host);
393 	if (port_id != tgt->sid) {
394 		printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
395 				"sid = 0x%x\n", port_id, tgt->sid);
396 		port_id = tgt->sid;
397 	}
398 	enbl_req.s_id[0] = (port_id & 0x000000FF);
399 	enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
400 	enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
401 
402 	port_id = rport->port_id;
403 	enbl_req.d_id[0] = (port_id & 0x000000FF);
404 	enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
405 	enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
406 	enbl_req.vlan_tag = interface->vlan_id <<
407 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
408 	enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
409 	enbl_req.vlan_flag = interface->vlan_enabled;
410 	enbl_req.context_id = tgt->context_id;
411 	enbl_req.conn_id = tgt->fcoe_conn_id;
412 
413 	kwqe_arr[0] = (struct kwqe *) &enbl_req;
414 
415 	if (hba->cnic && hba->cnic->submit_kwqes)
416 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
417 	return rc;
418 }
419 
420 /**
421  * bnx2fc_send_session_disable_req - initiates FCoE Session disable
422  *
423  * @port:		port structure pointer
424  * @tgt:		bnx2fc_rport structure pointer
425  */
bnx2fc_send_session_disable_req(struct fcoe_port * port,struct bnx2fc_rport * tgt)426 int bnx2fc_send_session_disable_req(struct fcoe_port *port,
427 				    struct bnx2fc_rport *tgt)
428 {
429 	struct bnx2fc_interface *interface = port->priv;
430 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
431 	struct bnx2fc_hba *hba = interface->hba;
432 	struct fcoe_kwqe_conn_enable_disable disable_req;
433 	struct kwqe *kwqe_arr[2];
434 	struct fc_rport *rport = tgt->rport;
435 	int num_kwqes = 1;
436 	int rc = 0;
437 	u32 port_id;
438 
439 	memset(&disable_req, 0x00,
440 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
441 	disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
442 	disable_req.hdr.flags =
443 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
444 
445 	disable_req.src_mac_addr_lo[0] =  tgt->src_addr[5];
446 	disable_req.src_mac_addr_lo[1] =  tgt->src_addr[4];
447 	disable_req.src_mac_addr_mid[0] =  tgt->src_addr[3];
448 	disable_req.src_mac_addr_mid[1] =  tgt->src_addr[2];
449 	disable_req.src_mac_addr_hi[0] =  tgt->src_addr[1];
450 	disable_req.src_mac_addr_hi[1] =  tgt->src_addr[0];
451 
452 	disable_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
453 	disable_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
454 	disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
455 	disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
456 	disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
457 	disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
458 
459 	port_id = tgt->sid;
460 	disable_req.s_id[0] = (port_id & 0x000000FF);
461 	disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
462 	disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
463 
464 
465 	port_id = rport->port_id;
466 	disable_req.d_id[0] = (port_id & 0x000000FF);
467 	disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
468 	disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
469 	disable_req.context_id = tgt->context_id;
470 	disable_req.conn_id = tgt->fcoe_conn_id;
471 	disable_req.vlan_tag = interface->vlan_id <<
472 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
473 	disable_req.vlan_tag |=
474 			3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
475 	disable_req.vlan_flag = interface->vlan_enabled;
476 
477 	kwqe_arr[0] = (struct kwqe *) &disable_req;
478 
479 	if (hba->cnic && hba->cnic->submit_kwqes)
480 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
481 
482 	return rc;
483 }
484 
485 /**
486  * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
487  *
488  * @port:		port structure pointer
489  * @tgt:		bnx2fc_rport structure pointer
490  */
bnx2fc_send_session_destroy_req(struct bnx2fc_hba * hba,struct bnx2fc_rport * tgt)491 int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
492 					struct bnx2fc_rport *tgt)
493 {
494 	struct fcoe_kwqe_conn_destroy destroy_req;
495 	struct kwqe *kwqe_arr[2];
496 	int num_kwqes = 1;
497 	int rc = 0;
498 
499 	memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
500 	destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
501 	destroy_req.hdr.flags =
502 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
503 
504 	destroy_req.context_id = tgt->context_id;
505 	destroy_req.conn_id = tgt->fcoe_conn_id;
506 
507 	kwqe_arr[0] = (struct kwqe *) &destroy_req;
508 
509 	if (hba->cnic && hba->cnic->submit_kwqes)
510 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
511 
512 	return rc;
513 }
514 
is_valid_lport(struct bnx2fc_hba * hba,struct fc_lport * lport)515 static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
516 {
517 	struct bnx2fc_lport *blport;
518 
519 	spin_lock_bh(&hba->hba_lock);
520 	list_for_each_entry(blport, &hba->vports, list) {
521 		if (blport->lport == lport) {
522 			spin_unlock_bh(&hba->hba_lock);
523 			return true;
524 		}
525 	}
526 	spin_unlock_bh(&hba->hba_lock);
527 	return false;
528 
529 }
530 
531 
bnx2fc_unsol_els_work(struct work_struct * work)532 static void bnx2fc_unsol_els_work(struct work_struct *work)
533 {
534 	struct bnx2fc_unsol_els *unsol_els;
535 	struct fc_lport *lport;
536 	struct bnx2fc_hba *hba;
537 	struct fc_frame *fp;
538 
539 	unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
540 	lport = unsol_els->lport;
541 	fp = unsol_els->fp;
542 	hba = unsol_els->hba;
543 	if (is_valid_lport(hba, lport))
544 		fc_exch_recv(lport, fp);
545 	kfree(unsol_els);
546 }
547 
bnx2fc_process_l2_frame_compl(struct bnx2fc_rport * tgt,unsigned char * buf,u32 frame_len,u16 l2_oxid)548 void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
549 				   unsigned char *buf,
550 				   u32 frame_len, u16 l2_oxid)
551 {
552 	struct fcoe_port *port = tgt->port;
553 	struct fc_lport *lport = port->lport;
554 	struct bnx2fc_interface *interface = port->priv;
555 	struct bnx2fc_unsol_els *unsol_els;
556 	struct fc_frame_header *fh;
557 	struct fc_frame *fp;
558 	struct sk_buff *skb;
559 	u32 payload_len;
560 	u32 crc;
561 	u8 op;
562 
563 
564 	unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
565 	if (!unsol_els) {
566 		BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
567 		return;
568 	}
569 
570 	BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
571 		l2_oxid, frame_len);
572 
573 	payload_len = frame_len - sizeof(struct fc_frame_header);
574 
575 	fp = fc_frame_alloc(lport, payload_len);
576 	if (!fp) {
577 		printk(KERN_ERR PFX "fc_frame_alloc failure\n");
578 		kfree(unsol_els);
579 		return;
580 	}
581 
582 	fh = (struct fc_frame_header *) fc_frame_header_get(fp);
583 	/* Copy FC Frame header and payload into the frame */
584 	memcpy(fh, buf, frame_len);
585 
586 	if (l2_oxid != FC_XID_UNKNOWN)
587 		fh->fh_ox_id = htons(l2_oxid);
588 
589 	skb = fp_skb(fp);
590 
591 	if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
592 	    (fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
593 
594 		if (fh->fh_type == FC_TYPE_ELS) {
595 			op = fc_frame_payload_op(fp);
596 			if ((op == ELS_TEST) ||	(op == ELS_ESTC) ||
597 			    (op == ELS_FAN) || (op == ELS_CSU)) {
598 				/*
599 				 * No need to reply for these
600 				 * ELS requests
601 				 */
602 				printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
603 				kfree_skb(skb);
604 				kfree(unsol_els);
605 				return;
606 			}
607 		}
608 		crc = fcoe_fc_crc(fp);
609 		fc_frame_init(fp);
610 		fr_dev(fp) = lport;
611 		fr_sof(fp) = FC_SOF_I3;
612 		fr_eof(fp) = FC_EOF_T;
613 		fr_crc(fp) = cpu_to_le32(~crc);
614 		unsol_els->lport = lport;
615 		unsol_els->hba = interface->hba;
616 		unsol_els->fp = fp;
617 		INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
618 		queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
619 	} else {
620 		BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
621 		kfree_skb(skb);
622 		kfree(unsol_els);
623 	}
624 }
625 
bnx2fc_process_unsol_compl(struct bnx2fc_rport * tgt,u16 wqe)626 static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
627 {
628 	u8 num_rq;
629 	struct fcoe_err_report_entry *err_entry;
630 	unsigned char *rq_data;
631 	unsigned char *buf = NULL, *buf1;
632 	int i;
633 	u16 xid;
634 	u32 frame_len, len;
635 	struct bnx2fc_cmd *io_req = NULL;
636 	struct bnx2fc_interface *interface = tgt->port->priv;
637 	struct bnx2fc_hba *hba = interface->hba;
638 	int task_idx, index;
639 	int rc = 0;
640 	u64 err_warn_bit_map;
641 	u8 err_warn = 0xff;
642 
643 
644 	BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
645 	switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
646 	case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
647 		frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
648 			     FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
649 
650 		num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
651 
652 		spin_lock_bh(&tgt->tgt_lock);
653 		rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
654 		spin_unlock_bh(&tgt->tgt_lock);
655 
656 		if (rq_data) {
657 			buf = rq_data;
658 		} else {
659 			buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
660 					      GFP_ATOMIC);
661 
662 			if (!buf1) {
663 				BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
664 				break;
665 			}
666 
667 			for (i = 0; i < num_rq; i++) {
668 				spin_lock_bh(&tgt->tgt_lock);
669 				rq_data = (unsigned char *)
670 					   bnx2fc_get_next_rqe(tgt, 1);
671 				spin_unlock_bh(&tgt->tgt_lock);
672 				len = BNX2FC_RQ_BUF_SZ;
673 				memcpy(buf1, rq_data, len);
674 				buf1 += len;
675 			}
676 		}
677 		bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
678 					      FC_XID_UNKNOWN);
679 
680 		if (buf != rq_data)
681 			kfree(buf);
682 		spin_lock_bh(&tgt->tgt_lock);
683 		bnx2fc_return_rqe(tgt, num_rq);
684 		spin_unlock_bh(&tgt->tgt_lock);
685 		break;
686 
687 	case FCOE_ERROR_DETECTION_CQE_TYPE:
688 		/*
689 		 * In case of error reporting CQE a single RQ entry
690 		 * is consumed.
691 		 */
692 		spin_lock_bh(&tgt->tgt_lock);
693 		num_rq = 1;
694 		err_entry = (struct fcoe_err_report_entry *)
695 			     bnx2fc_get_next_rqe(tgt, 1);
696 		xid = err_entry->fc_hdr.ox_id;
697 		BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
698 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
699 			err_entry->data.err_warn_bitmap_hi,
700 			err_entry->data.err_warn_bitmap_lo);
701 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
702 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
703 
704 
705 		if (xid > hba->max_xid) {
706 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
707 				   xid);
708 			goto ret_err_rqe;
709 		}
710 
711 		task_idx = xid / BNX2FC_TASKS_PER_PAGE;
712 		index = xid % BNX2FC_TASKS_PER_PAGE;
713 
714 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
715 		if (!io_req)
716 			goto ret_err_rqe;
717 
718 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
719 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
720 			goto ret_err_rqe;
721 		}
722 
723 		if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
724 				       &io_req->req_flags)) {
725 			BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
726 					    "progress.. ignore unsol err\n");
727 			goto ret_err_rqe;
728 		}
729 
730 		err_warn_bit_map = (u64)
731 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
732 			(u64)err_entry->data.err_warn_bitmap_lo;
733 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
734 			if (err_warn_bit_map & (u64)((u64)1 << i)) {
735 				err_warn = i;
736 				break;
737 			}
738 		}
739 
740 		/*
741 		 * If ABTS is already in progress, and FW error is
742 		 * received after that, do not cancel the timeout_work
743 		 * and let the error recovery continue by explicitly
744 		 * logging out the target, when the ABTS eventually
745 		 * times out.
746 		 */
747 		if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
748 			printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
749 					    "in ABTS processing\n", xid);
750 			goto ret_err_rqe;
751 		}
752 		BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
753 		if (tgt->dev_type != TYPE_TAPE)
754 			goto skip_rec;
755 		switch (err_warn) {
756 		case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
757 		case FCOE_ERROR_CODE_DATA_OOO_RO:
758 		case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
759 		case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
760 		case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
761 		case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
762 			BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
763 				   xid);
764 			memcpy(&io_req->err_entry, err_entry,
765 			       sizeof(struct fcoe_err_report_entry));
766 			if (!test_bit(BNX2FC_FLAG_SRR_SENT,
767 				      &io_req->req_flags)) {
768 				spin_unlock_bh(&tgt->tgt_lock);
769 				rc = bnx2fc_send_rec(io_req);
770 				spin_lock_bh(&tgt->tgt_lock);
771 
772 				if (rc)
773 					goto skip_rec;
774 			} else
775 				printk(KERN_ERR PFX "SRR in progress\n");
776 			goto ret_err_rqe;
777 			break;
778 		default:
779 			break;
780 		}
781 
782 skip_rec:
783 		set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
784 		/*
785 		 * Cancel the timeout_work, as we received IO
786 		 * completion with FW error.
787 		 */
788 		if (cancel_delayed_work(&io_req->timeout_work))
789 			kref_put(&io_req->refcount, bnx2fc_cmd_release);
790 
791 		rc = bnx2fc_initiate_abts(io_req);
792 		if (rc != SUCCESS) {
793 			printk(KERN_ERR PFX "err_warn: initiate_abts "
794 				"failed xid = 0x%x. issue cleanup\n",
795 				io_req->xid);
796 			bnx2fc_initiate_cleanup(io_req);
797 		}
798 ret_err_rqe:
799 		bnx2fc_return_rqe(tgt, 1);
800 		spin_unlock_bh(&tgt->tgt_lock);
801 		break;
802 
803 	case FCOE_WARNING_DETECTION_CQE_TYPE:
804 		/*
805 		 *In case of warning reporting CQE a single RQ entry
806 		 * is consumes.
807 		 */
808 		spin_lock_bh(&tgt->tgt_lock);
809 		num_rq = 1;
810 		err_entry = (struct fcoe_err_report_entry *)
811 			     bnx2fc_get_next_rqe(tgt, 1);
812 		xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
813 		BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
814 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
815 			err_entry->data.err_warn_bitmap_hi,
816 			err_entry->data.err_warn_bitmap_lo);
817 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
818 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
819 
820 		if (xid > hba->max_xid) {
821 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
822 			goto ret_warn_rqe;
823 		}
824 
825 		err_warn_bit_map = (u64)
826 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
827 			(u64)err_entry->data.err_warn_bitmap_lo;
828 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
829 			if (err_warn_bit_map & ((u64)1 << i)) {
830 				err_warn = i;
831 				break;
832 			}
833 		}
834 		BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
835 
836 		task_idx = xid / BNX2FC_TASKS_PER_PAGE;
837 		index = xid % BNX2FC_TASKS_PER_PAGE;
838 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
839 		if (!io_req)
840 			goto ret_warn_rqe;
841 
842 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
843 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
844 			goto ret_warn_rqe;
845 		}
846 
847 		memcpy(&io_req->err_entry, err_entry,
848 		       sizeof(struct fcoe_err_report_entry));
849 
850 		if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
851 			/* REC_TOV is not a warning code */
852 			BUG_ON(1);
853 		else
854 			BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
855 ret_warn_rqe:
856 		bnx2fc_return_rqe(tgt, 1);
857 		spin_unlock_bh(&tgt->tgt_lock);
858 		break;
859 
860 	default:
861 		printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
862 		break;
863 	}
864 }
865 
bnx2fc_process_cq_compl(struct bnx2fc_rport * tgt,u16 wqe)866 void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe)
867 {
868 	struct fcoe_task_ctx_entry *task;
869 	struct fcoe_task_ctx_entry *task_page;
870 	struct fcoe_port *port = tgt->port;
871 	struct bnx2fc_interface *interface = port->priv;
872 	struct bnx2fc_hba *hba = interface->hba;
873 	struct bnx2fc_cmd *io_req;
874 	int task_idx, index;
875 	u16 xid;
876 	u8  cmd_type;
877 	u8 rx_state = 0;
878 	u8 num_rq;
879 
880 	spin_lock_bh(&tgt->tgt_lock);
881 	xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
882 	if (xid >= hba->max_tasks) {
883 		printk(KERN_ERR PFX "ERROR:xid out of range\n");
884 		spin_unlock_bh(&tgt->tgt_lock);
885 		return;
886 	}
887 	task_idx = xid / BNX2FC_TASKS_PER_PAGE;
888 	index = xid % BNX2FC_TASKS_PER_PAGE;
889 	task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
890 	task = &(task_page[index]);
891 
892 	num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
893 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
894 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
895 
896 	io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
897 
898 	if (io_req == NULL) {
899 		printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
900 		spin_unlock_bh(&tgt->tgt_lock);
901 		return;
902 	}
903 
904 	/* Timestamp IO completion time */
905 	cmd_type = io_req->cmd_type;
906 
907 	rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
908 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
909 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
910 
911 	/* Process other IO completion types */
912 	switch (cmd_type) {
913 	case BNX2FC_SCSI_CMD:
914 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
915 			bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq);
916 			spin_unlock_bh(&tgt->tgt_lock);
917 			return;
918 		}
919 
920 		if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
921 			bnx2fc_process_abts_compl(io_req, task, num_rq);
922 		else if (rx_state ==
923 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
924 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
925 		else
926 			printk(KERN_ERR PFX "Invalid rx state - %d\n",
927 				rx_state);
928 		break;
929 
930 	case BNX2FC_TASK_MGMT_CMD:
931 		BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
932 		bnx2fc_process_tm_compl(io_req, task, num_rq);
933 		break;
934 
935 	case BNX2FC_ABTS:
936 		/*
937 		 * ABTS request received by firmware. ABTS response
938 		 * will be delivered to the task belonging to the IO
939 		 * that was aborted
940 		 */
941 		BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
942 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
943 		break;
944 
945 	case BNX2FC_ELS:
946 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
947 			bnx2fc_process_els_compl(io_req, task, num_rq);
948 		else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
949 			bnx2fc_process_abts_compl(io_req, task, num_rq);
950 		else if (rx_state ==
951 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
952 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
953 		else
954 			printk(KERN_ERR PFX "Invalid rx state =  %d\n",
955 				rx_state);
956 		break;
957 
958 	case BNX2FC_CLEANUP:
959 		BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
960 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
961 		break;
962 
963 	case BNX2FC_SEQ_CLEANUP:
964 		BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
965 			      io_req->xid);
966 		bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
967 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
968 		break;
969 
970 	default:
971 		printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
972 		break;
973 	}
974 	spin_unlock_bh(&tgt->tgt_lock);
975 }
976 
bnx2fc_arm_cq(struct bnx2fc_rport * tgt)977 void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
978 {
979 	struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
980 	u32 msg;
981 
982 	wmb();
983 	rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
984 			FCOE_CQE_TOGGLE_BIT_SHIFT);
985 	msg = *((u32 *)rx_db);
986 	writel(cpu_to_le32(msg), tgt->ctx_base);
987 
988 }
989 
bnx2fc_alloc_work(struct bnx2fc_rport * tgt,u16 wqe)990 static struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe)
991 {
992 	struct bnx2fc_work *work;
993 	work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
994 	if (!work)
995 		return NULL;
996 
997 	INIT_LIST_HEAD(&work->list);
998 	work->tgt = tgt;
999 	work->wqe = wqe;
1000 	return work;
1001 }
1002 
1003 /* Pending work request completion */
bnx2fc_pending_work(struct bnx2fc_rport * tgt,unsigned int wqe)1004 static void bnx2fc_pending_work(struct bnx2fc_rport *tgt, unsigned int wqe)
1005 {
1006 	unsigned int cpu = wqe % num_possible_cpus();
1007 	struct bnx2fc_percpu_s *fps;
1008 	struct bnx2fc_work *work;
1009 
1010 	fps = &per_cpu(bnx2fc_percpu, cpu);
1011 	spin_lock_bh(&fps->fp_work_lock);
1012 	if (fps->iothread) {
1013 		work = bnx2fc_alloc_work(tgt, wqe);
1014 		if (work) {
1015 			list_add_tail(&work->list, &fps->work_list);
1016 			wake_up_process(fps->iothread);
1017 			spin_unlock_bh(&fps->fp_work_lock);
1018 			return;
1019 		}
1020 	}
1021 	spin_unlock_bh(&fps->fp_work_lock);
1022 	bnx2fc_process_cq_compl(tgt, wqe);
1023 }
1024 
bnx2fc_process_new_cqes(struct bnx2fc_rport * tgt)1025 int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
1026 {
1027 	struct fcoe_cqe *cq;
1028 	u32 cq_cons;
1029 	struct fcoe_cqe *cqe;
1030 	u32 num_free_sqes = 0;
1031 	u32 num_cqes = 0;
1032 	u16 wqe;
1033 
1034 	/*
1035 	 * cq_lock is a low contention lock used to protect
1036 	 * the CQ data structure from being freed up during
1037 	 * the upload operation
1038 	 */
1039 	spin_lock_bh(&tgt->cq_lock);
1040 
1041 	if (!tgt->cq) {
1042 		printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
1043 		spin_unlock_bh(&tgt->cq_lock);
1044 		return 0;
1045 	}
1046 	cq = tgt->cq;
1047 	cq_cons = tgt->cq_cons_idx;
1048 	cqe = &cq[cq_cons];
1049 
1050 	while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
1051 	       (tgt->cq_curr_toggle_bit <<
1052 	       FCOE_CQE_TOGGLE_BIT_SHIFT)) {
1053 
1054 		/* new entry on the cq */
1055 		if (wqe & FCOE_CQE_CQE_TYPE) {
1056 			/* Unsolicited event notification */
1057 			bnx2fc_process_unsol_compl(tgt, wqe);
1058 		} else {
1059 			bnx2fc_pending_work(tgt, wqe);
1060 			num_free_sqes++;
1061 		}
1062 		cqe++;
1063 		tgt->cq_cons_idx++;
1064 		num_cqes++;
1065 
1066 		if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
1067 			tgt->cq_cons_idx = 0;
1068 			cqe = cq;
1069 			tgt->cq_curr_toggle_bit =
1070 				1 - tgt->cq_curr_toggle_bit;
1071 		}
1072 	}
1073 	if (num_cqes) {
1074 		/* Arm CQ only if doorbell is mapped */
1075 		if (tgt->ctx_base)
1076 			bnx2fc_arm_cq(tgt);
1077 		atomic_add(num_free_sqes, &tgt->free_sqes);
1078 	}
1079 	spin_unlock_bh(&tgt->cq_lock);
1080 	return 0;
1081 }
1082 
1083 /**
1084  * bnx2fc_fastpath_notification - process global event queue (KCQ)
1085  *
1086  * @hba:		adapter structure pointer
1087  * @new_cqe_kcqe:	pointer to newly DMA'd KCQ entry
1088  *
1089  * Fast path event notification handler
1090  */
bnx2fc_fastpath_notification(struct bnx2fc_hba * hba,struct fcoe_kcqe * new_cqe_kcqe)1091 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
1092 					struct fcoe_kcqe *new_cqe_kcqe)
1093 {
1094 	u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
1095 	struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
1096 
1097 	if (!tgt) {
1098 		printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
1099 		return;
1100 	}
1101 
1102 	bnx2fc_process_new_cqes(tgt);
1103 }
1104 
1105 /**
1106  * bnx2fc_process_ofld_cmpl - process FCoE session offload completion
1107  *
1108  * @hba:	adapter structure pointer
1109  * @ofld_kcqe:	connection offload kcqe pointer
1110  *
1111  * handle session offload completion, enable the session if offload is
1112  * successful.
1113  */
bnx2fc_process_ofld_cmpl(struct bnx2fc_hba * hba,struct fcoe_kcqe * ofld_kcqe)1114 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
1115 					struct fcoe_kcqe *ofld_kcqe)
1116 {
1117 	struct bnx2fc_rport		*tgt;
1118 	struct bnx2fc_interface		*interface;
1119 	u32				conn_id;
1120 	u32				context_id;
1121 
1122 	conn_id = ofld_kcqe->fcoe_conn_id;
1123 	context_id = ofld_kcqe->fcoe_conn_context_id;
1124 	tgt = hba->tgt_ofld_list[conn_id];
1125 	if (!tgt) {
1126 		printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
1127 		return;
1128 	}
1129 	BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
1130 		ofld_kcqe->fcoe_conn_context_id);
1131 	interface = tgt->port->priv;
1132 	if (hba != interface->hba) {
1133 		printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
1134 		goto ofld_cmpl_err;
1135 	}
1136 	/*
1137 	 * cnic has allocated a context_id for this session; use this
1138 	 * while enabling the session.
1139 	 */
1140 	tgt->context_id = context_id;
1141 	if (ofld_kcqe->completion_status) {
1142 		if (ofld_kcqe->completion_status ==
1143 				FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
1144 			printk(KERN_ERR PFX "unable to allocate FCoE context "
1145 				"resources\n");
1146 			set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
1147 		}
1148 	} else {
1149 		/* FW offload request successfully completed */
1150 		set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1151 	}
1152 ofld_cmpl_err:
1153 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1154 	wake_up_interruptible(&tgt->ofld_wait);
1155 }
1156 
1157 /**
1158  * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
1159  *
1160  * @hba:	adapter structure pointer
1161  * @ofld_kcqe:	connection offload kcqe pointer
1162  *
1163  * handle session enable completion, mark the rport as ready
1164  */
1165 
bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba * hba,struct fcoe_kcqe * ofld_kcqe)1166 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
1167 						struct fcoe_kcqe *ofld_kcqe)
1168 {
1169 	struct bnx2fc_rport		*tgt;
1170 	struct bnx2fc_interface		*interface;
1171 	u32				conn_id;
1172 	u32				context_id;
1173 
1174 	context_id = ofld_kcqe->fcoe_conn_context_id;
1175 	conn_id = ofld_kcqe->fcoe_conn_id;
1176 	tgt = hba->tgt_ofld_list[conn_id];
1177 	if (!tgt) {
1178 		printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
1179 		return;
1180 	}
1181 
1182 	BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
1183 		ofld_kcqe->fcoe_conn_context_id);
1184 
1185 	/*
1186 	 * context_id should be the same for this target during offload
1187 	 * and enable
1188 	 */
1189 	if (tgt->context_id != context_id) {
1190 		printk(KERN_ERR PFX "context id mis-match\n");
1191 		return;
1192 	}
1193 	interface = tgt->port->priv;
1194 	if (hba != interface->hba) {
1195 		printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
1196 		goto enbl_cmpl_err;
1197 	}
1198 	if (!ofld_kcqe->completion_status)
1199 		/* enable successful - rport ready for issuing IOs */
1200 		set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1201 
1202 enbl_cmpl_err:
1203 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1204 	wake_up_interruptible(&tgt->ofld_wait);
1205 }
1206 
bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba * hba,struct fcoe_kcqe * disable_kcqe)1207 static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
1208 					struct fcoe_kcqe *disable_kcqe)
1209 {
1210 
1211 	struct bnx2fc_rport		*tgt;
1212 	u32				conn_id;
1213 
1214 	conn_id = disable_kcqe->fcoe_conn_id;
1215 	tgt = hba->tgt_ofld_list[conn_id];
1216 	if (!tgt) {
1217 		printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
1218 		return;
1219 	}
1220 
1221 	BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
1222 
1223 	if (disable_kcqe->completion_status) {
1224 		printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
1225 			disable_kcqe->completion_status);
1226 		set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags);
1227 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1228 		wake_up_interruptible(&tgt->upld_wait);
1229 	} else {
1230 		/* disable successful */
1231 		BNX2FC_TGT_DBG(tgt, "disable successful\n");
1232 		clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1233 		clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1234 		set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1235 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1236 		wake_up_interruptible(&tgt->upld_wait);
1237 	}
1238 }
1239 
bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba * hba,struct fcoe_kcqe * destroy_kcqe)1240 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
1241 					struct fcoe_kcqe *destroy_kcqe)
1242 {
1243 	struct bnx2fc_rport		*tgt;
1244 	u32				conn_id;
1245 
1246 	conn_id = destroy_kcqe->fcoe_conn_id;
1247 	tgt = hba->tgt_ofld_list[conn_id];
1248 	if (!tgt) {
1249 		printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
1250 		return;
1251 	}
1252 
1253 	BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
1254 
1255 	if (destroy_kcqe->completion_status) {
1256 		printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
1257 			destroy_kcqe->completion_status);
1258 		return;
1259 	} else {
1260 		/* destroy successful */
1261 		BNX2FC_TGT_DBG(tgt, "upload successful\n");
1262 		clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1263 		set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
1264 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1265 		wake_up_interruptible(&tgt->upld_wait);
1266 	}
1267 }
1268 
bnx2fc_init_failure(struct bnx2fc_hba * hba,u32 err_code)1269 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
1270 {
1271 	switch (err_code) {
1272 	case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
1273 		printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
1274 		break;
1275 
1276 	case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
1277 		printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
1278 		break;
1279 
1280 	case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
1281 		printk(KERN_ERR PFX "init_failure due to NIC error\n");
1282 		break;
1283 	case FCOE_KCQE_COMPLETION_STATUS_ERROR:
1284 		printk(KERN_ERR PFX "init failure due to compl status err\n");
1285 		break;
1286 	case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
1287 		printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
1288 		break;
1289 	default:
1290 		printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
1291 	}
1292 }
1293 
1294 /**
1295  * bnx2fc_indicae_kcqe - process KCQE
1296  *
1297  * @hba:	adapter structure pointer
1298  * @kcqe:	kcqe pointer
1299  * @num_cqe:	Number of completion queue elements
1300  *
1301  * Generic KCQ event handler
1302  */
bnx2fc_indicate_kcqe(void * context,struct kcqe * kcq[],u32 num_cqe)1303 void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
1304 					u32 num_cqe)
1305 {
1306 	struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
1307 	int i = 0;
1308 	struct fcoe_kcqe *kcqe = NULL;
1309 
1310 	while (i < num_cqe) {
1311 		kcqe = (struct fcoe_kcqe *) kcq[i++];
1312 
1313 		switch (kcqe->op_code) {
1314 		case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
1315 			bnx2fc_fastpath_notification(hba, kcqe);
1316 			break;
1317 
1318 		case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
1319 			bnx2fc_process_ofld_cmpl(hba, kcqe);
1320 			break;
1321 
1322 		case FCOE_KCQE_OPCODE_ENABLE_CONN:
1323 			bnx2fc_process_enable_conn_cmpl(hba, kcqe);
1324 			break;
1325 
1326 		case FCOE_KCQE_OPCODE_INIT_FUNC:
1327 			if (kcqe->completion_status !=
1328 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1329 				bnx2fc_init_failure(hba,
1330 						kcqe->completion_status);
1331 			} else {
1332 				set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
1333 				bnx2fc_get_link_state(hba);
1334 				printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
1335 					(u8)hba->pcidev->bus->number);
1336 			}
1337 			break;
1338 
1339 		case FCOE_KCQE_OPCODE_DESTROY_FUNC:
1340 			if (kcqe->completion_status !=
1341 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1342 
1343 				printk(KERN_ERR PFX "DESTROY failed\n");
1344 			} else {
1345 				printk(KERN_ERR PFX "DESTROY success\n");
1346 			}
1347 			set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
1348 			wake_up_interruptible(&hba->destroy_wait);
1349 			break;
1350 
1351 		case FCOE_KCQE_OPCODE_DISABLE_CONN:
1352 			bnx2fc_process_conn_disable_cmpl(hba, kcqe);
1353 			break;
1354 
1355 		case FCOE_KCQE_OPCODE_DESTROY_CONN:
1356 			bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
1357 			break;
1358 
1359 		case FCOE_KCQE_OPCODE_STAT_FUNC:
1360 			if (kcqe->completion_status !=
1361 			    FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
1362 				printk(KERN_ERR PFX "STAT failed\n");
1363 			complete(&hba->stat_req_done);
1364 			break;
1365 
1366 		case FCOE_KCQE_OPCODE_FCOE_ERROR:
1367 			/* fall thru */
1368 		default:
1369 			printk(KERN_ERR PFX "unknown opcode 0x%x\n",
1370 								kcqe->op_code);
1371 		}
1372 	}
1373 }
1374 
bnx2fc_add_2_sq(struct bnx2fc_rport * tgt,u16 xid)1375 void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
1376 {
1377 	struct fcoe_sqe *sqe;
1378 
1379 	sqe = &tgt->sq[tgt->sq_prod_idx];
1380 
1381 	/* Fill SQ WQE */
1382 	sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
1383 	sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
1384 
1385 	/* Advance SQ Prod Idx */
1386 	if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
1387 		tgt->sq_prod_idx = 0;
1388 		tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
1389 	}
1390 }
1391 
bnx2fc_ring_doorbell(struct bnx2fc_rport * tgt)1392 void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
1393 {
1394 	struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
1395 	u32 msg;
1396 
1397 	wmb();
1398 	sq_db->prod = tgt->sq_prod_idx |
1399 				(tgt->sq_curr_toggle_bit << 15);
1400 	msg = *((u32 *)sq_db);
1401 	writel(cpu_to_le32(msg), tgt->ctx_base);
1402 
1403 }
1404 
bnx2fc_map_doorbell(struct bnx2fc_rport * tgt)1405 int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
1406 {
1407 	u32 context_id = tgt->context_id;
1408 	struct fcoe_port *port = tgt->port;
1409 	u32 reg_off;
1410 	resource_size_t reg_base;
1411 	struct bnx2fc_interface *interface = port->priv;
1412 	struct bnx2fc_hba *hba = interface->hba;
1413 
1414 	reg_base = pci_resource_start(hba->pcidev,
1415 					BNX2X_DOORBELL_PCI_BAR);
1416 	reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF);
1417 	tgt->ctx_base = ioremap_nocache(reg_base + reg_off, 4);
1418 	if (!tgt->ctx_base)
1419 		return -ENOMEM;
1420 	return 0;
1421 }
1422 
bnx2fc_get_next_rqe(struct bnx2fc_rport * tgt,u8 num_items)1423 char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1424 {
1425 	char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
1426 
1427 	if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
1428 		return NULL;
1429 
1430 	tgt->rq_cons_idx += num_items;
1431 
1432 	if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
1433 		tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
1434 
1435 	return buf;
1436 }
1437 
bnx2fc_return_rqe(struct bnx2fc_rport * tgt,u8 num_items)1438 void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1439 {
1440 	/* return the rq buffer */
1441 	u32 next_prod_idx = tgt->rq_prod_idx + num_items;
1442 	if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
1443 		/* Wrap around RQ */
1444 		next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
1445 	}
1446 	tgt->rq_prod_idx = next_prod_idx;
1447 	tgt->conn_db->rq_prod = tgt->rq_prod_idx;
1448 }
1449 
bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd * seq_clnp_req,struct fcoe_task_ctx_entry * task,struct bnx2fc_cmd * orig_io_req,u32 offset)1450 void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
1451 				  struct fcoe_task_ctx_entry *task,
1452 				  struct bnx2fc_cmd *orig_io_req,
1453 				  u32 offset)
1454 {
1455 	struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
1456 	struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
1457 	struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
1458 	struct fcoe_ext_mul_sges_ctx *sgl;
1459 	u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
1460 	u8 orig_task_type;
1461 	u16 orig_xid = orig_io_req->xid;
1462 	u32 context_id = tgt->context_id;
1463 	u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
1464 	u32 orig_offset = offset;
1465 	int bd_count;
1466 	int orig_task_idx, index;
1467 	int i;
1468 
1469 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1470 
1471 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1472 		orig_task_type = FCOE_TASK_TYPE_WRITE;
1473 	else
1474 		orig_task_type = FCOE_TASK_TYPE_READ;
1475 
1476 	/* Tx flags */
1477 	task->txwr_rxrd.const_ctx.tx_flags =
1478 				FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
1479 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1480 	/* init flags */
1481 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1482 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1483 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1484 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1485 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1486 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1487 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1488 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1489 
1490 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1491 
1492 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
1493 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
1494 
1495 	bd_count = orig_io_req->bd_tbl->bd_valid;
1496 
1497 	/* obtain the appropriate bd entry from relative offset */
1498 	for (i = 0; i < bd_count; i++) {
1499 		if (offset < bd[i].buf_len)
1500 			break;
1501 		offset -= bd[i].buf_len;
1502 	}
1503 	phys_addr += (i * sizeof(struct fcoe_bd_ctx));
1504 
1505 	if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
1506 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1507 				(u32)phys_addr;
1508 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1509 				(u32)((u64)phys_addr >> 32);
1510 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1511 				bd_count;
1512 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
1513 				offset; /* adjusted offset */
1514 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
1515 	} else {
1516 		orig_task_idx = orig_xid / BNX2FC_TASKS_PER_PAGE;
1517 		index = orig_xid % BNX2FC_TASKS_PER_PAGE;
1518 
1519 		/* Multiple SGEs were used for this IO */
1520 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1521 		sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
1522 		sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
1523 		sgl->mul_sgl.sgl_size = bd_count;
1524 		sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
1525 		sgl->mul_sgl.cur_sge_idx = i;
1526 
1527 		memset(&task->rxwr_only.rx_seq_ctx, 0,
1528 		       sizeof(struct fcoe_rx_seq_ctx));
1529 		task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
1530 		task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
1531 	}
1532 }
bnx2fc_init_cleanup_task(struct bnx2fc_cmd * io_req,struct fcoe_task_ctx_entry * task,u16 orig_xid)1533 void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
1534 			      struct fcoe_task_ctx_entry *task,
1535 			      u16 orig_xid)
1536 {
1537 	u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
1538 	struct bnx2fc_rport *tgt = io_req->tgt;
1539 	u32 context_id = tgt->context_id;
1540 
1541 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1542 
1543 	/* Tx Write Rx Read */
1544 	/* init flags */
1545 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1546 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1547 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1548 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1549 	if (tgt->dev_type == TYPE_TAPE)
1550 		task->txwr_rxrd.const_ctx.init_flags |=
1551 				FCOE_TASK_DEV_TYPE_TAPE <<
1552 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1553 	else
1554 		task->txwr_rxrd.const_ctx.init_flags |=
1555 				FCOE_TASK_DEV_TYPE_DISK <<
1556 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1557 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1558 
1559 	/* Tx flags */
1560 	task->txwr_rxrd.const_ctx.tx_flags =
1561 				FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
1562 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1563 
1564 	/* Rx Read Tx Write */
1565 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1566 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1567 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1568 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1569 }
1570 
bnx2fc_init_mp_task(struct bnx2fc_cmd * io_req,struct fcoe_task_ctx_entry * task)1571 void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
1572 				struct fcoe_task_ctx_entry *task)
1573 {
1574 	struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
1575 	struct bnx2fc_rport *tgt = io_req->tgt;
1576 	struct fc_frame_header *fc_hdr;
1577 	struct fcoe_ext_mul_sges_ctx *sgl;
1578 	u8 task_type = 0;
1579 	u64 *hdr;
1580 	u64 temp_hdr[3];
1581 	u32 context_id;
1582 
1583 
1584 	/* Obtain task_type */
1585 	if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
1586 	    (io_req->cmd_type == BNX2FC_ELS)) {
1587 		task_type = FCOE_TASK_TYPE_MIDPATH;
1588 	} else if (io_req->cmd_type == BNX2FC_ABTS) {
1589 		task_type = FCOE_TASK_TYPE_ABTS;
1590 	}
1591 
1592 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1593 
1594 	/* Setup the task from io_req for easy reference */
1595 	io_req->task = task;
1596 
1597 	BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
1598 		io_req->cmd_type, task_type);
1599 
1600 	/* Tx only */
1601 	if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
1602 	    (task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
1603 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1604 				(u32)mp_req->mp_req_bd_dma;
1605 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1606 				(u32)((u64)mp_req->mp_req_bd_dma >> 32);
1607 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
1608 	}
1609 
1610 	/* Tx Write Rx Read */
1611 	/* init flags */
1612 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1613 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1614 	if (tgt->dev_type == TYPE_TAPE)
1615 		task->txwr_rxrd.const_ctx.init_flags |=
1616 				FCOE_TASK_DEV_TYPE_TAPE <<
1617 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1618 	else
1619 		task->txwr_rxrd.const_ctx.init_flags |=
1620 				FCOE_TASK_DEV_TYPE_DISK <<
1621 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1622 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1623 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1624 
1625 	/* tx flags */
1626 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
1627 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1628 
1629 	/* Rx Write Tx Read */
1630 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1631 
1632 	/* rx flags */
1633 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1634 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1635 
1636 	context_id = tgt->context_id;
1637 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1638 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1639 
1640 	fc_hdr = &(mp_req->req_fc_hdr);
1641 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1642 		fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
1643 		fc_hdr->fh_rx_id = htons(0xffff);
1644 		task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1645 	} else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
1646 		fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
1647 	}
1648 
1649 	/* Fill FC Header into middle path buffer */
1650 	hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
1651 	memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
1652 	hdr[0] = cpu_to_be64(temp_hdr[0]);
1653 	hdr[1] = cpu_to_be64(temp_hdr[1]);
1654 	hdr[2] = cpu_to_be64(temp_hdr[2]);
1655 
1656 	/* Rx Only */
1657 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1658 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1659 
1660 		sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
1661 		sgl->mul_sgl.cur_sge_addr.hi =
1662 				(u32)((u64)mp_req->mp_resp_bd_dma >> 32);
1663 		sgl->mul_sgl.sgl_size = 1;
1664 	}
1665 }
1666 
bnx2fc_init_task(struct bnx2fc_cmd * io_req,struct fcoe_task_ctx_entry * task)1667 void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
1668 			     struct fcoe_task_ctx_entry *task)
1669 {
1670 	u8 task_type;
1671 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1672 	struct io_bdt *bd_tbl = io_req->bd_tbl;
1673 	struct bnx2fc_rport *tgt = io_req->tgt;
1674 	struct fcoe_cached_sge_ctx *cached_sge;
1675 	struct fcoe_ext_mul_sges_ctx *sgl;
1676 	int dev_type = tgt->dev_type;
1677 	u64 *fcp_cmnd;
1678 	u64 tmp_fcp_cmnd[4];
1679 	u32 context_id;
1680 	int cnt, i;
1681 	int bd_count;
1682 
1683 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1684 
1685 	/* Setup the task from io_req for easy reference */
1686 	io_req->task = task;
1687 
1688 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1689 		task_type = FCOE_TASK_TYPE_WRITE;
1690 	else
1691 		task_type = FCOE_TASK_TYPE_READ;
1692 
1693 	/* Tx only */
1694 	bd_count = bd_tbl->bd_valid;
1695 	cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
1696 	if (task_type == FCOE_TASK_TYPE_WRITE) {
1697 		if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
1698 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1699 
1700 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
1701 			cached_sge->cur_buf_addr.lo =
1702 					fcoe_bd_tbl->buf_addr_lo;
1703 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
1704 			cached_sge->cur_buf_addr.hi =
1705 					fcoe_bd_tbl->buf_addr_hi;
1706 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
1707 			cached_sge->cur_buf_rem =
1708 					fcoe_bd_tbl->buf_len;
1709 
1710 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1711 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1712 		} else {
1713 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1714 					(u32)bd_tbl->bd_tbl_dma;
1715 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1716 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1717 			task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1718 					bd_tbl->bd_valid;
1719 		}
1720 	}
1721 
1722 	/*Tx Write Rx Read */
1723 	/* Init state to NORMAL */
1724 	task->txwr_rxrd.const_ctx.init_flags |= task_type <<
1725 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1726 	if (dev_type == TYPE_TAPE) {
1727 		task->txwr_rxrd.const_ctx.init_flags |=
1728 				FCOE_TASK_DEV_TYPE_TAPE <<
1729 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1730 		io_req->rec_retry = 0;
1731 		io_req->rec_retry = 0;
1732 	} else
1733 		task->txwr_rxrd.const_ctx.init_flags |=
1734 				FCOE_TASK_DEV_TYPE_DISK <<
1735 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1736 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1737 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1738 	/* tx flags */
1739 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
1740 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1741 
1742 	/* Set initial seq counter */
1743 	task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
1744 
1745 	/* Fill FCP_CMND IU */
1746 	fcp_cmnd = (u64 *)
1747 		    task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
1748 	bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
1749 
1750 	/* swap fcp_cmnd */
1751 	cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
1752 
1753 	for (i = 0; i < cnt; i++) {
1754 		*fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
1755 		fcp_cmnd++;
1756 	}
1757 
1758 	/* Rx Write Tx Read */
1759 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1760 
1761 	context_id = tgt->context_id;
1762 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1763 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1764 
1765 	/* rx flags */
1766 	/* Set state to "waiting for the first packet" */
1767 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1768 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1769 
1770 	task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1771 
1772 	/* Rx Only */
1773 	if (task_type != FCOE_TASK_TYPE_READ)
1774 		return;
1775 
1776 	sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1777 	bd_count = bd_tbl->bd_valid;
1778 
1779 	if (dev_type == TYPE_DISK) {
1780 		if (bd_count == 1) {
1781 
1782 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1783 
1784 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1785 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1786 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1787 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1788 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1789 		} else if (bd_count == 2) {
1790 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1791 
1792 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1793 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1794 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1795 
1796 			fcoe_bd_tbl++;
1797 			cached_sge->second_buf_addr.lo =
1798 						 fcoe_bd_tbl->buf_addr_lo;
1799 			cached_sge->second_buf_addr.hi =
1800 						fcoe_bd_tbl->buf_addr_hi;
1801 			cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
1802 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1803 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1804 		} else {
1805 
1806 			sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1807 			sgl->mul_sgl.cur_sge_addr.hi =
1808 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1809 			sgl->mul_sgl.sgl_size = bd_count;
1810 		}
1811 	} else {
1812 		sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1813 		sgl->mul_sgl.cur_sge_addr.hi =
1814 				(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1815 		sgl->mul_sgl.sgl_size = bd_count;
1816 	}
1817 }
1818 
1819 /**
1820  * bnx2fc_setup_task_ctx - allocate and map task context
1821  *
1822  * @hba:	pointer to adapter structure
1823  *
1824  * allocate memory for task context, and associated BD table to be used
1825  * by firmware
1826  *
1827  */
bnx2fc_setup_task_ctx(struct bnx2fc_hba * hba)1828 int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
1829 {
1830 	int rc = 0;
1831 	struct regpair *task_ctx_bdt;
1832 	dma_addr_t addr;
1833 	int task_ctx_arr_sz;
1834 	int i;
1835 
1836 	/*
1837 	 * Allocate task context bd table. A page size of bd table
1838 	 * can map 256 buffers. Each buffer contains 32 task context
1839 	 * entries. Hence the limit with one page is 8192 task context
1840 	 * entries.
1841 	 */
1842 	hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
1843 						  PAGE_SIZE,
1844 						  &hba->task_ctx_bd_dma,
1845 						  GFP_KERNEL);
1846 	if (!hba->task_ctx_bd_tbl) {
1847 		printk(KERN_ERR PFX "unable to allocate task context BDT\n");
1848 		rc = -1;
1849 		goto out;
1850 	}
1851 
1852 	/*
1853 	 * Allocate task_ctx which is an array of pointers pointing to
1854 	 * a page containing 32 task contexts
1855 	 */
1856 	task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1857 	hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)),
1858 				 GFP_KERNEL);
1859 	if (!hba->task_ctx) {
1860 		printk(KERN_ERR PFX "unable to allocate task context array\n");
1861 		rc = -1;
1862 		goto out1;
1863 	}
1864 
1865 	/*
1866 	 * Allocate task_ctx_dma which is an array of dma addresses
1867 	 */
1868 	hba->task_ctx_dma = kmalloc((task_ctx_arr_sz *
1869 					sizeof(dma_addr_t)), GFP_KERNEL);
1870 	if (!hba->task_ctx_dma) {
1871 		printk(KERN_ERR PFX "unable to alloc context mapping array\n");
1872 		rc = -1;
1873 		goto out2;
1874 	}
1875 
1876 	task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
1877 	for (i = 0; i < task_ctx_arr_sz; i++) {
1878 
1879 		hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
1880 						      PAGE_SIZE,
1881 						      &hba->task_ctx_dma[i],
1882 						      GFP_KERNEL);
1883 		if (!hba->task_ctx[i]) {
1884 			printk(KERN_ERR PFX "unable to alloc task context\n");
1885 			rc = -1;
1886 			goto out3;
1887 		}
1888 		addr = (u64)hba->task_ctx_dma[i];
1889 		task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
1890 		task_ctx_bdt->lo = cpu_to_le32((u32)addr);
1891 		task_ctx_bdt++;
1892 	}
1893 	return 0;
1894 
1895 out3:
1896 	for (i = 0; i < task_ctx_arr_sz; i++) {
1897 		if (hba->task_ctx[i]) {
1898 
1899 			dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1900 				hba->task_ctx[i], hba->task_ctx_dma[i]);
1901 			hba->task_ctx[i] = NULL;
1902 		}
1903 	}
1904 
1905 	kfree(hba->task_ctx_dma);
1906 	hba->task_ctx_dma = NULL;
1907 out2:
1908 	kfree(hba->task_ctx);
1909 	hba->task_ctx = NULL;
1910 out1:
1911 	dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1912 			hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
1913 	hba->task_ctx_bd_tbl = NULL;
1914 out:
1915 	return rc;
1916 }
1917 
bnx2fc_free_task_ctx(struct bnx2fc_hba * hba)1918 void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
1919 {
1920 	int task_ctx_arr_sz;
1921 	int i;
1922 
1923 	if (hba->task_ctx_bd_tbl) {
1924 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1925 				    hba->task_ctx_bd_tbl,
1926 				    hba->task_ctx_bd_dma);
1927 		hba->task_ctx_bd_tbl = NULL;
1928 	}
1929 
1930 	task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1931 	if (hba->task_ctx) {
1932 		for (i = 0; i < task_ctx_arr_sz; i++) {
1933 			if (hba->task_ctx[i]) {
1934 				dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1935 						    hba->task_ctx[i],
1936 						    hba->task_ctx_dma[i]);
1937 				hba->task_ctx[i] = NULL;
1938 			}
1939 		}
1940 		kfree(hba->task_ctx);
1941 		hba->task_ctx = NULL;
1942 	}
1943 
1944 	kfree(hba->task_ctx_dma);
1945 	hba->task_ctx_dma = NULL;
1946 }
1947 
bnx2fc_free_hash_table(struct bnx2fc_hba * hba)1948 static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
1949 {
1950 	int i;
1951 	int segment_count;
1952 	u32 *pbl;
1953 
1954 	if (hba->hash_tbl_segments) {
1955 
1956 		pbl = hba->hash_tbl_pbl;
1957 		if (pbl) {
1958 			segment_count = hba->hash_tbl_segment_count;
1959 			for (i = 0; i < segment_count; ++i) {
1960 				dma_addr_t dma_address;
1961 
1962 				dma_address = le32_to_cpu(*pbl);
1963 				++pbl;
1964 				dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
1965 				++pbl;
1966 				dma_free_coherent(&hba->pcidev->dev,
1967 						  BNX2FC_HASH_TBL_CHUNK_SIZE,
1968 						  hba->hash_tbl_segments[i],
1969 						  dma_address);
1970 			}
1971 		}
1972 
1973 		kfree(hba->hash_tbl_segments);
1974 		hba->hash_tbl_segments = NULL;
1975 	}
1976 
1977 	if (hba->hash_tbl_pbl) {
1978 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1979 				    hba->hash_tbl_pbl,
1980 				    hba->hash_tbl_pbl_dma);
1981 		hba->hash_tbl_pbl = NULL;
1982 	}
1983 }
1984 
bnx2fc_allocate_hash_table(struct bnx2fc_hba * hba)1985 static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
1986 {
1987 	int i;
1988 	int hash_table_size;
1989 	int segment_count;
1990 	int segment_array_size;
1991 	int dma_segment_array_size;
1992 	dma_addr_t *dma_segment_array;
1993 	u32 *pbl;
1994 
1995 	hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
1996 		sizeof(struct fcoe_hash_table_entry);
1997 
1998 	segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
1999 	segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
2000 	hba->hash_tbl_segment_count = segment_count;
2001 
2002 	segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
2003 	hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
2004 	if (!hba->hash_tbl_segments) {
2005 		printk(KERN_ERR PFX "hash table pointers alloc failed\n");
2006 		return -ENOMEM;
2007 	}
2008 	dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
2009 	dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
2010 	if (!dma_segment_array) {
2011 		printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
2012 		goto cleanup_ht;
2013 	}
2014 
2015 	for (i = 0; i < segment_count; ++i) {
2016 		hba->hash_tbl_segments[i] = dma_alloc_coherent(&hba->pcidev->dev,
2017 							       BNX2FC_HASH_TBL_CHUNK_SIZE,
2018 							       &dma_segment_array[i],
2019 							       GFP_KERNEL);
2020 		if (!hba->hash_tbl_segments[i]) {
2021 			printk(KERN_ERR PFX "hash segment alloc failed\n");
2022 			goto cleanup_dma;
2023 		}
2024 	}
2025 
2026 	hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2027 					       &hba->hash_tbl_pbl_dma,
2028 					       GFP_KERNEL);
2029 	if (!hba->hash_tbl_pbl) {
2030 		printk(KERN_ERR PFX "hash table pbl alloc failed\n");
2031 		goto cleanup_dma;
2032 	}
2033 
2034 	pbl = hba->hash_tbl_pbl;
2035 	for (i = 0; i < segment_count; ++i) {
2036 		u64 paddr = dma_segment_array[i];
2037 		*pbl = cpu_to_le32((u32) paddr);
2038 		++pbl;
2039 		*pbl = cpu_to_le32((u32) (paddr >> 32));
2040 		++pbl;
2041 	}
2042 	pbl = hba->hash_tbl_pbl;
2043 	i = 0;
2044 	while (*pbl && *(pbl + 1)) {
2045 		u32 lo;
2046 		u32 hi;
2047 		lo = *pbl;
2048 		++pbl;
2049 		hi = *pbl;
2050 		++pbl;
2051 		++i;
2052 	}
2053 	kfree(dma_segment_array);
2054 	return 0;
2055 
2056 cleanup_dma:
2057 	for (i = 0; i < segment_count; ++i) {
2058 		if (hba->hash_tbl_segments[i])
2059 			dma_free_coherent(&hba->pcidev->dev,
2060 					    BNX2FC_HASH_TBL_CHUNK_SIZE,
2061 					    hba->hash_tbl_segments[i],
2062 					    dma_segment_array[i]);
2063 	}
2064 
2065 	kfree(dma_segment_array);
2066 
2067 cleanup_ht:
2068 	kfree(hba->hash_tbl_segments);
2069 	hba->hash_tbl_segments = NULL;
2070 	return -ENOMEM;
2071 }
2072 
2073 /**
2074  * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
2075  *
2076  * @hba:	Pointer to adapter structure
2077  *
2078  */
bnx2fc_setup_fw_resc(struct bnx2fc_hba * hba)2079 int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
2080 {
2081 	u64 addr;
2082 	u32 mem_size;
2083 	int i;
2084 
2085 	if (bnx2fc_allocate_hash_table(hba))
2086 		return -ENOMEM;
2087 
2088 	mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2089 	hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2090 						  &hba->t2_hash_tbl_ptr_dma,
2091 						  GFP_KERNEL);
2092 	if (!hba->t2_hash_tbl_ptr) {
2093 		printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
2094 		bnx2fc_free_fw_resc(hba);
2095 		return -ENOMEM;
2096 	}
2097 
2098 	mem_size = BNX2FC_NUM_MAX_SESS *
2099 				sizeof(struct fcoe_t2_hash_table_entry);
2100 	hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2101 					      &hba->t2_hash_tbl_dma,
2102 					      GFP_KERNEL);
2103 	if (!hba->t2_hash_tbl) {
2104 		printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
2105 		bnx2fc_free_fw_resc(hba);
2106 		return -ENOMEM;
2107 	}
2108 	for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
2109 		addr = (unsigned long) hba->t2_hash_tbl_dma +
2110 			 ((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
2111 		hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
2112 		hba->t2_hash_tbl[i].next.hi = addr >> 32;
2113 	}
2114 
2115 	hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2116 					       PAGE_SIZE, &hba->dummy_buf_dma,
2117 					       GFP_KERNEL);
2118 	if (!hba->dummy_buffer) {
2119 		printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
2120 		bnx2fc_free_fw_resc(hba);
2121 		return -ENOMEM;
2122 	}
2123 
2124 	hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2125 					       &hba->stats_buf_dma,
2126 					       GFP_KERNEL);
2127 	if (!hba->stats_buffer) {
2128 		printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
2129 		bnx2fc_free_fw_resc(hba);
2130 		return -ENOMEM;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
bnx2fc_free_fw_resc(struct bnx2fc_hba * hba)2136 void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
2137 {
2138 	u32 mem_size;
2139 
2140 	if (hba->stats_buffer) {
2141 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2142 				  hba->stats_buffer, hba->stats_buf_dma);
2143 		hba->stats_buffer = NULL;
2144 	}
2145 
2146 	if (hba->dummy_buffer) {
2147 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2148 				  hba->dummy_buffer, hba->dummy_buf_dma);
2149 		hba->dummy_buffer = NULL;
2150 	}
2151 
2152 	if (hba->t2_hash_tbl_ptr) {
2153 		mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2154 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2155 				    hba->t2_hash_tbl_ptr,
2156 				    hba->t2_hash_tbl_ptr_dma);
2157 		hba->t2_hash_tbl_ptr = NULL;
2158 	}
2159 
2160 	if (hba->t2_hash_tbl) {
2161 		mem_size = BNX2FC_NUM_MAX_SESS *
2162 			    sizeof(struct fcoe_t2_hash_table_entry);
2163 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2164 				    hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
2165 		hba->t2_hash_tbl = NULL;
2166 	}
2167 	bnx2fc_free_hash_table(hba);
2168 }
2169