1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 
30 #include <asm/time.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/pmon.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mipsregs.h>
38 #include <asm/bmips.h>
39 #include <asm/traps.h>
40 #include <asm/barrier.h>
41 #include <asm/cpu-features.h>
42 
43 static int __maybe_unused max_cpus = 1;
44 
45 /* these may be configured by the platform code */
46 int bmips_smp_enabled = 1;
47 int bmips_cpu_offset;
48 cpumask_t bmips_booted_mask;
49 unsigned long bmips_tp1_irqs = IE_IRQ1;
50 
51 #define RESET_FROM_KSEG0		0x80080800
52 #define RESET_FROM_KSEG1		0xa0080800
53 
54 static void bmips_set_reset_vec(int cpu, u32 val);
55 
56 #ifdef CONFIG_SMP
57 
58 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
59 unsigned long bmips_smp_boot_sp;
60 unsigned long bmips_smp_boot_gp;
61 
62 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
63 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
64 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
65 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
66 
67 /* SW interrupts 0,1 are used for interprocessor signaling */
68 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
69 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
70 
71 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
72 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
74 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
75 
bmips_smp_setup(void)76 static void __init bmips_smp_setup(void)
77 {
78 	int i, cpu = 1, boot_cpu = 0;
79 	int cpu_hw_intr;
80 
81 	switch (current_cpu_type()) {
82 	case CPU_BMIPS4350:
83 	case CPU_BMIPS4380:
84 		/* arbitration priority */
85 		clear_c0_brcm_cmt_ctrl(0x30);
86 
87 		/* NBK and weak order flags */
88 		set_c0_brcm_config_0(0x30000);
89 
90 		/* Find out if we are running on TP0 or TP1 */
91 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
92 
93 		/*
94 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
95 		 * thread
96 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
97 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
98 		 */
99 		if (boot_cpu == 0)
100 			cpu_hw_intr = 0x02;
101 		else
102 			cpu_hw_intr = 0x1d;
103 
104 		change_c0_brcm_cmt_intr(0xf8018000,
105 					(cpu_hw_intr << 27) | (0x03 << 15));
106 
107 		/* single core, 2 threads (2 pipelines) */
108 		max_cpus = 2;
109 
110 		break;
111 	case CPU_BMIPS5000:
112 		/* enable raceless SW interrupts */
113 		set_c0_brcm_config(0x03 << 22);
114 
115 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
116 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
117 
118 		/* N cores, 2 threads per core */
119 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
120 
121 		/* clear any pending SW interrupts */
122 		for (i = 0; i < max_cpus; i++) {
123 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
124 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
125 		}
126 
127 		break;
128 	default:
129 		max_cpus = 1;
130 	}
131 
132 	if (!bmips_smp_enabled)
133 		max_cpus = 1;
134 
135 	/* this can be overridden by the BSP */
136 	if (!board_ebase_setup)
137 		board_ebase_setup = &bmips_ebase_setup;
138 
139 	__cpu_number_map[boot_cpu] = 0;
140 	__cpu_logical_map[0] = boot_cpu;
141 
142 	for (i = 0; i < max_cpus; i++) {
143 		if (i != boot_cpu) {
144 			__cpu_number_map[i] = cpu;
145 			__cpu_logical_map[cpu] = i;
146 			cpu++;
147 		}
148 		set_cpu_possible(i, 1);
149 		set_cpu_present(i, 1);
150 	}
151 }
152 
153 /*
154  * IPI IRQ setup - runs on CPU0
155  */
bmips_prepare_cpus(unsigned int max_cpus)156 static void bmips_prepare_cpus(unsigned int max_cpus)
157 {
158 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
159 
160 	switch (current_cpu_type()) {
161 	case CPU_BMIPS4350:
162 	case CPU_BMIPS4380:
163 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
164 		break;
165 	case CPU_BMIPS5000:
166 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
167 		break;
168 	default:
169 		return;
170 	}
171 
172 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
173 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
174 		panic("Can't request IPI0 interrupt");
175 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
176 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
177 		panic("Can't request IPI1 interrupt");
178 }
179 
180 /*
181  * Tell the hardware to boot CPUx - runs on CPU0
182  */
bmips_boot_secondary(int cpu,struct task_struct * idle)183 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
184 {
185 	bmips_smp_boot_sp = __KSTK_TOS(idle);
186 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
187 	mb();
188 
189 	/*
190 	 * Initial boot sequence for secondary CPU:
191 	 *   bmips_reset_nmi_vec @ a000_0000 ->
192 	 *   bmips_smp_entry ->
193 	 *   plat_wired_tlb_setup (cached function call; optional) ->
194 	 *   start_secondary (cached jump)
195 	 *
196 	 * Warm restart sequence:
197 	 *   play_dead WAIT loop ->
198 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
199 	 *   eret to play_dead ->
200 	 *   bmips_secondary_reentry ->
201 	 *   start_secondary
202 	 */
203 
204 	pr_info("SMP: Booting CPU%d...\n", cpu);
205 
206 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
207 		/* kseg1 might not exist if this CPU enabled XKS01 */
208 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
209 
210 		switch (current_cpu_type()) {
211 		case CPU_BMIPS4350:
212 		case CPU_BMIPS4380:
213 			bmips43xx_send_ipi_single(cpu, 0);
214 			break;
215 		case CPU_BMIPS5000:
216 			bmips5000_send_ipi_single(cpu, 0);
217 			break;
218 		}
219 	} else {
220 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
221 
222 		switch (current_cpu_type()) {
223 		case CPU_BMIPS4350:
224 		case CPU_BMIPS4380:
225 			/* Reset slave TP1 if booting from TP0 */
226 			if (cpu_logical_map(cpu) == 1)
227 				set_c0_brcm_cmt_ctrl(0x01);
228 			break;
229 		case CPU_BMIPS5000:
230 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
231 			break;
232 		}
233 		cpumask_set_cpu(cpu, &bmips_booted_mask);
234 	}
235 
236 	return 0;
237 }
238 
239 /*
240  * Early setup - runs on secondary CPU after cache probe
241  */
bmips_init_secondary(void)242 static void bmips_init_secondary(void)
243 {
244 	switch (current_cpu_type()) {
245 	case CPU_BMIPS4350:
246 	case CPU_BMIPS4380:
247 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248 		break;
249 	case CPU_BMIPS5000:
250 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251 		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252 		break;
253 	}
254 }
255 
256 /*
257  * Late setup - runs on secondary CPU before entering the idle loop
258  */
bmips_smp_finish(void)259 static void bmips_smp_finish(void)
260 {
261 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
262 
263 	/* make sure there won't be a timer interrupt for a little while */
264 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
265 
266 	irq_enable_hazard();
267 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268 	irq_enable_hazard();
269 }
270 
271 /*
272  * BMIPS5000 raceless IPIs
273  *
274  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276  * IPI1 is used for SMP_CALL_FUNCTION
277  */
278 
bmips5000_send_ipi_single(int cpu,unsigned int action)279 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
280 {
281 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
282 }
283 
bmips5000_ipi_interrupt(int irq,void * dev_id)284 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
285 {
286 	int action = irq - IPI0_IRQ;
287 
288 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
289 
290 	if (action == 0)
291 		scheduler_ipi();
292 	else
293 		generic_smp_call_function_interrupt();
294 
295 	return IRQ_HANDLED;
296 }
297 
bmips5000_send_ipi_mask(const struct cpumask * mask,unsigned int action)298 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299 	unsigned int action)
300 {
301 	unsigned int i;
302 
303 	for_each_cpu(i, mask)
304 		bmips5000_send_ipi_single(i, action);
305 }
306 
307 /*
308  * BMIPS43xx racey IPIs
309  *
310  * We use one inbound SW IRQ for each CPU.
311  *
312  * A spinlock must be held in order to keep CPUx from accidentally clearing
313  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
314  * same spinlock is used to protect the action masks.
315  */
316 
317 static DEFINE_SPINLOCK(ipi_lock);
318 static DEFINE_PER_CPU(int, ipi_action_mask);
319 
bmips43xx_send_ipi_single(int cpu,unsigned int action)320 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
321 {
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(&ipi_lock, flags);
325 	set_c0_cause(cpu ? C_SW1 : C_SW0);
326 	per_cpu(ipi_action_mask, cpu) |= action;
327 	irq_enable_hazard();
328 	spin_unlock_irqrestore(&ipi_lock, flags);
329 }
330 
bmips43xx_ipi_interrupt(int irq,void * dev_id)331 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
332 {
333 	unsigned long flags;
334 	int action, cpu = irq - IPI0_IRQ;
335 
336 	spin_lock_irqsave(&ipi_lock, flags);
337 	action = __this_cpu_read(ipi_action_mask);
338 	per_cpu(ipi_action_mask, cpu) = 0;
339 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
340 	spin_unlock_irqrestore(&ipi_lock, flags);
341 
342 	if (action & SMP_RESCHEDULE_YOURSELF)
343 		scheduler_ipi();
344 	if (action & SMP_CALL_FUNCTION)
345 		generic_smp_call_function_interrupt();
346 
347 	return IRQ_HANDLED;
348 }
349 
bmips43xx_send_ipi_mask(const struct cpumask * mask,unsigned int action)350 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351 	unsigned int action)
352 {
353 	unsigned int i;
354 
355 	for_each_cpu(i, mask)
356 		bmips43xx_send_ipi_single(i, action);
357 }
358 
359 #ifdef CONFIG_HOTPLUG_CPU
360 
bmips_cpu_disable(void)361 static int bmips_cpu_disable(void)
362 {
363 	unsigned int cpu = smp_processor_id();
364 
365 	if (cpu == 0)
366 		return -EBUSY;
367 
368 	pr_info("SMP: CPU%d is offline\n", cpu);
369 
370 	set_cpu_online(cpu, false);
371 	calculate_cpu_foreign_map();
372 	irq_cpu_offline();
373 	clear_c0_status(IE_IRQ5);
374 
375 	local_flush_tlb_all();
376 	local_flush_icache_range(0, ~0);
377 
378 	return 0;
379 }
380 
bmips_cpu_die(unsigned int cpu)381 static void bmips_cpu_die(unsigned int cpu)
382 {
383 }
384 
play_dead(void)385 void __ref play_dead(void)
386 {
387 	idle_task_exit();
388 
389 	/* flush data cache */
390 	_dma_cache_wback_inv(0, ~0);
391 
392 	/*
393 	 * Wakeup is on SW0 or SW1; disable everything else
394 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
395 	 * IRQ handlers; this clears ST0_IE and returns immediately.
396 	 */
397 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
398 	change_c0_status(
399 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
400 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
401 	irq_disable_hazard();
402 
403 	/*
404 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
405 	 * back to start_secondary()
406 	 */
407 	__asm__ __volatile__(
408 	"	wait\n"
409 	"	j	bmips_secondary_reentry\n"
410 	: : : "memory");
411 }
412 
413 #endif /* CONFIG_HOTPLUG_CPU */
414 
415 const struct plat_smp_ops bmips43xx_smp_ops = {
416 	.smp_setup		= bmips_smp_setup,
417 	.prepare_cpus		= bmips_prepare_cpus,
418 	.boot_secondary		= bmips_boot_secondary,
419 	.smp_finish		= bmips_smp_finish,
420 	.init_secondary		= bmips_init_secondary,
421 	.send_ipi_single	= bmips43xx_send_ipi_single,
422 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
423 #ifdef CONFIG_HOTPLUG_CPU
424 	.cpu_disable		= bmips_cpu_disable,
425 	.cpu_die		= bmips_cpu_die,
426 #endif
427 #ifdef CONFIG_KEXEC
428 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
429 #endif
430 };
431 
432 const struct plat_smp_ops bmips5000_smp_ops = {
433 	.smp_setup		= bmips_smp_setup,
434 	.prepare_cpus		= bmips_prepare_cpus,
435 	.boot_secondary		= bmips_boot_secondary,
436 	.smp_finish		= bmips_smp_finish,
437 	.init_secondary		= bmips_init_secondary,
438 	.send_ipi_single	= bmips5000_send_ipi_single,
439 	.send_ipi_mask		= bmips5000_send_ipi_mask,
440 #ifdef CONFIG_HOTPLUG_CPU
441 	.cpu_disable		= bmips_cpu_disable,
442 	.cpu_die		= bmips_cpu_die,
443 #endif
444 #ifdef CONFIG_KEXEC
445 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
446 #endif
447 };
448 
449 #endif /* CONFIG_SMP */
450 
451 /***********************************************************************
452  * BMIPS vector relocation
453  * This is primarily used for SMP boot, but it is applicable to some
454  * UP BMIPS systems as well.
455  ***********************************************************************/
456 
bmips_wr_vec(unsigned long dst,char * start,char * end)457 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
458 {
459 	memcpy((void *)dst, start, end - start);
460 	dma_cache_wback(dst, end - start);
461 	local_flush_icache_range(dst, dst + (end - start));
462 	instruction_hazard();
463 }
464 
bmips_nmi_handler_setup(void)465 static inline void bmips_nmi_handler_setup(void)
466 {
467 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
468 		bmips_reset_nmi_vec_end);
469 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
470 		bmips_smp_int_vec_end);
471 }
472 
473 struct reset_vec_info {
474 	int cpu;
475 	u32 val;
476 };
477 
bmips_set_reset_vec_remote(void * vinfo)478 static void bmips_set_reset_vec_remote(void *vinfo)
479 {
480 	struct reset_vec_info *info = vinfo;
481 	int shift = info->cpu & 0x01 ? 16 : 0;
482 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
483 
484 	preempt_disable();
485 	if (smp_processor_id() > 0) {
486 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
487 					 info, 1);
488 	} else {
489 		if (info->cpu & 0x02) {
490 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
491 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
492 			bmips_read_zscm_reg(0xa0);
493 		} else {
494 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
495 					      (val << shift));
496 		}
497 	}
498 	preempt_enable();
499 }
500 
bmips_set_reset_vec(int cpu,u32 val)501 static void bmips_set_reset_vec(int cpu, u32 val)
502 {
503 	struct reset_vec_info info;
504 
505 	if (current_cpu_type() == CPU_BMIPS5000) {
506 		/* this needs to run from CPU0 (which is always online) */
507 		info.cpu = cpu;
508 		info.val = val;
509 		bmips_set_reset_vec_remote(&info);
510 	} else {
511 		void __iomem *cbr = BMIPS_GET_CBR();
512 
513 		if (cpu == 0)
514 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
515 		else {
516 			if (current_cpu_type() != CPU_BMIPS4380)
517 				return;
518 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
519 		}
520 	}
521 	__sync();
522 	back_to_back_c0_hazard();
523 }
524 
bmips_ebase_setup(void)525 void bmips_ebase_setup(void)
526 {
527 	unsigned long new_ebase = ebase;
528 
529 	BUG_ON(ebase != CKSEG0);
530 
531 	switch (current_cpu_type()) {
532 	case CPU_BMIPS4350:
533 		/*
534 		 * BMIPS4350 cannot relocate the normal vectors, but it
535 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
536 		 * the relocated BEV=1, IV=0 general exception vector @
537 		 * 0xa000_0380.
538 		 *
539 		 * set_uncached_handler() is used here because:
540 		 *  - CPU1 will run this from uncached space
541 		 *  - None of the cacheflush functions are set up yet
542 		 */
543 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
544 			&bmips_smp_int_vec, 0x80);
545 		__sync();
546 		return;
547 	case CPU_BMIPS3300:
548 	case CPU_BMIPS4380:
549 		/*
550 		 * 0x8000_0000: reset/NMI (initially in kseg1)
551 		 * 0x8000_0400: normal vectors
552 		 */
553 		new_ebase = 0x80000400;
554 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
555 		break;
556 	case CPU_BMIPS5000:
557 		/*
558 		 * 0x8000_0000: reset/NMI (initially in kseg1)
559 		 * 0x8000_1000: normal vectors
560 		 */
561 		new_ebase = 0x80001000;
562 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
563 		write_c0_ebase(new_ebase);
564 		break;
565 	default:
566 		return;
567 	}
568 
569 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
570 	ebase = new_ebase;
571 }
572 
plat_wired_tlb_setup(void)573 asmlinkage void __weak plat_wired_tlb_setup(void)
574 {
575 	/*
576 	 * Called when starting/restarting a secondary CPU.
577 	 * Kernel stacks and other important data might only be accessible
578 	 * once the wired entries are present.
579 	 */
580 }
581 
bmips_cpu_setup(void)582 void bmips_cpu_setup(void)
583 {
584 	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
585 	u32 __maybe_unused cfg;
586 
587 	switch (current_cpu_type()) {
588 	case CPU_BMIPS3300:
589 		/* Set BIU to async mode */
590 		set_c0_brcm_bus_pll(BIT(22));
591 		__sync();
592 
593 		/* put the BIU back in sync mode */
594 		clear_c0_brcm_bus_pll(BIT(22));
595 
596 		/* clear BHTD to enable branch history table */
597 		clear_c0_brcm_reset(BIT(16));
598 
599 		/* Flush and enable RAC */
600 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
601 		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
602 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
603 
604 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605 		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
606 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
607 
608 		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
609 		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
610 		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
611 		break;
612 
613 	case CPU_BMIPS4380:
614 		/* CBG workaround for early BMIPS4380 CPUs */
615 		switch (read_c0_prid()) {
616 		case 0x2a040:
617 		case 0x2a042:
618 		case 0x2a044:
619 		case 0x2a060:
620 			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
621 			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
622 			__raw_readl(cbr + BMIPS_L2_CONFIG);
623 		}
624 
625 		/* clear BHTD to enable branch history table */
626 		clear_c0_brcm_config_0(BIT(21));
627 
628 		/* XI/ROTR enable */
629 		set_c0_brcm_config_0(BIT(23));
630 		set_c0_brcm_cmt_ctrl(BIT(15));
631 		break;
632 
633 	case CPU_BMIPS5000:
634 		/* enable RDHWR, BRDHWR */
635 		set_c0_brcm_config(BIT(17) | BIT(21));
636 
637 		/* Disable JTB */
638 		__asm__ __volatile__(
639 		"	.set	noreorder\n"
640 		"	li	$8, 0x5a455048\n"
641 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
642 		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
643 		"	li	$9, 0x00008000\n"
644 		"	or	$8, $8, $9\n"
645 		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
646 		"	sync\n"
647 		"	li	$8, 0x0\n"
648 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
649 		"	.set	reorder\n"
650 		: : : "$8", "$9");
651 
652 		/* XI enable */
653 		set_c0_brcm_config(BIT(27));
654 
655 		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
656 		__asm__ __volatile__(
657 		"	li	$8, 0x5a455048\n"
658 		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
659 		"	nop; nop; nop\n"
660 		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
661 		"	lui	$9, 0x0100\n"
662 		"	or	$8, $9\n"
663 		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
664 		: : : "$8", "$9");
665 		break;
666 	}
667 }
668