1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
44
45 #include "blk.h"
46 #include "blk-mq.h"
47 #include "blk-mq-sched.h"
48 #include "blk-pm.h"
49 #include "blk-rq-qos.h"
50
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry *blk_debugfs_root;
53 #endif
54
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60
61 DEFINE_IDA(blk_queue_ida);
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 /**
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
76 * @q: request queue
77 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
79 {
80 set_bit(flag, &q->queue_flags);
81 }
82 EXPORT_SYMBOL(blk_queue_flag_set);
83
84 /**
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
87 * @q: request queue
88 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
90 {
91 clear_bit(flag, &q->queue_flags);
92 }
93 EXPORT_SYMBOL(blk_queue_flag_clear);
94
95 /**
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
98 * @q: request queue
99 *
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
102 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
104 {
105 return test_and_set_bit(flag, &q->queue_flags);
106 }
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
108
blk_rq_init(struct request_queue * q,struct request * rq)109 void blk_rq_init(struct request_queue *q, struct request *rq)
110 {
111 memset(rq, 0, sizeof(*rq));
112
113 INIT_LIST_HEAD(&rq->queuelist);
114 rq->q = q;
115 rq->__sector = (sector_t) -1;
116 INIT_HLIST_NODE(&rq->hash);
117 RB_CLEAR_NODE(&rq->rb_node);
118 rq->tag = -1;
119 rq->internal_tag = -1;
120 rq->start_time_ns = ktime_get_ns();
121 rq->part = NULL;
122 refcount_set(&rq->ref, 1);
123 }
124 EXPORT_SYMBOL(blk_rq_init);
125
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name[] = {
128 REQ_OP_NAME(READ),
129 REQ_OP_NAME(WRITE),
130 REQ_OP_NAME(FLUSH),
131 REQ_OP_NAME(DISCARD),
132 REQ_OP_NAME(SECURE_ERASE),
133 REQ_OP_NAME(ZONE_RESET),
134 REQ_OP_NAME(ZONE_RESET_ALL),
135 REQ_OP_NAME(WRITE_SAME),
136 REQ_OP_NAME(WRITE_ZEROES),
137 REQ_OP_NAME(SCSI_IN),
138 REQ_OP_NAME(SCSI_OUT),
139 REQ_OP_NAME(DRV_IN),
140 REQ_OP_NAME(DRV_OUT),
141 };
142 #undef REQ_OP_NAME
143
144 /**
145 * blk_op_str - Return string XXX in the REQ_OP_XXX.
146 * @op: REQ_OP_XXX.
147 *
148 * Description: Centralize block layer function to convert REQ_OP_XXX into
149 * string format. Useful in the debugging and tracing bio or request. For
150 * invalid REQ_OP_XXX it returns string "UNKNOWN".
151 */
blk_op_str(unsigned int op)152 inline const char *blk_op_str(unsigned int op)
153 {
154 const char *op_str = "UNKNOWN";
155
156 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
157 op_str = blk_op_name[op];
158
159 return op_str;
160 }
161 EXPORT_SYMBOL_GPL(blk_op_str);
162
163 static const struct {
164 int errno;
165 const char *name;
166 } blk_errors[] = {
167 [BLK_STS_OK] = { 0, "" },
168 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
169 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
170 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
171 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
172 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
173 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
174 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
175 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
176 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
177 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
178 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
179
180 /* device mapper special case, should not leak out: */
181 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
182
183 /* everything else not covered above: */
184 [BLK_STS_IOERR] = { -EIO, "I/O" },
185 };
186
errno_to_blk_status(int errno)187 blk_status_t errno_to_blk_status(int errno)
188 {
189 int i;
190
191 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
192 if (blk_errors[i].errno == errno)
193 return (__force blk_status_t)i;
194 }
195
196 return BLK_STS_IOERR;
197 }
198 EXPORT_SYMBOL_GPL(errno_to_blk_status);
199
blk_status_to_errno(blk_status_t status)200 int blk_status_to_errno(blk_status_t status)
201 {
202 int idx = (__force int)status;
203
204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 return -EIO;
206 return blk_errors[idx].errno;
207 }
208 EXPORT_SYMBOL_GPL(blk_status_to_errno);
209
print_req_error(struct request * req,blk_status_t status,const char * caller)210 static void print_req_error(struct request *req, blk_status_t status,
211 const char *caller)
212 {
213 int idx = (__force int)status;
214
215 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
216 return;
217
218 printk_ratelimited(KERN_ERR
219 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
220 "phys_seg %u prio class %u\n",
221 caller, blk_errors[idx].name,
222 req->rq_disk ? req->rq_disk->disk_name : "?",
223 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
224 req->cmd_flags & ~REQ_OP_MASK,
225 req->nr_phys_segments,
226 IOPRIO_PRIO_CLASS(req->ioprio));
227 }
228
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)229 static void req_bio_endio(struct request *rq, struct bio *bio,
230 unsigned int nbytes, blk_status_t error)
231 {
232 if (error)
233 bio->bi_status = error;
234
235 if (unlikely(rq->rq_flags & RQF_QUIET))
236 bio_set_flag(bio, BIO_QUIET);
237
238 bio_advance(bio, nbytes);
239
240 /* don't actually finish bio if it's part of flush sequence */
241 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
242 bio_endio(bio);
243 }
244
blk_dump_rq_flags(struct request * rq,char * msg)245 void blk_dump_rq_flags(struct request *rq, char *msg)
246 {
247 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
248 rq->rq_disk ? rq->rq_disk->disk_name : "?",
249 (unsigned long long) rq->cmd_flags);
250
251 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
252 (unsigned long long)blk_rq_pos(rq),
253 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
254 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
255 rq->bio, rq->biotail, blk_rq_bytes(rq));
256 }
257 EXPORT_SYMBOL(blk_dump_rq_flags);
258
259 /**
260 * blk_sync_queue - cancel any pending callbacks on a queue
261 * @q: the queue
262 *
263 * Description:
264 * The block layer may perform asynchronous callback activity
265 * on a queue, such as calling the unplug function after a timeout.
266 * A block device may call blk_sync_queue to ensure that any
267 * such activity is cancelled, thus allowing it to release resources
268 * that the callbacks might use. The caller must already have made sure
269 * that its ->make_request_fn will not re-add plugging prior to calling
270 * this function.
271 *
272 * This function does not cancel any asynchronous activity arising
273 * out of elevator or throttling code. That would require elevator_exit()
274 * and blkcg_exit_queue() to be called with queue lock initialized.
275 *
276 */
blk_sync_queue(struct request_queue * q)277 void blk_sync_queue(struct request_queue *q)
278 {
279 del_timer_sync(&q->timeout);
280 cancel_work_sync(&q->timeout_work);
281 }
282 EXPORT_SYMBOL(blk_sync_queue);
283
284 /**
285 * blk_set_pm_only - increment pm_only counter
286 * @q: request queue pointer
287 */
blk_set_pm_only(struct request_queue * q)288 void blk_set_pm_only(struct request_queue *q)
289 {
290 atomic_inc(&q->pm_only);
291 }
292 EXPORT_SYMBOL_GPL(blk_set_pm_only);
293
blk_clear_pm_only(struct request_queue * q)294 void blk_clear_pm_only(struct request_queue *q)
295 {
296 int pm_only;
297
298 pm_only = atomic_dec_return(&q->pm_only);
299 WARN_ON_ONCE(pm_only < 0);
300 if (pm_only == 0)
301 wake_up_all(&q->mq_freeze_wq);
302 }
303 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
304
blk_put_queue(struct request_queue * q)305 void blk_put_queue(struct request_queue *q)
306 {
307 kobject_put(&q->kobj);
308 }
309 EXPORT_SYMBOL(blk_put_queue);
310
blk_set_queue_dying(struct request_queue * q)311 void blk_set_queue_dying(struct request_queue *q)
312 {
313 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
314
315 /*
316 * When queue DYING flag is set, we need to block new req
317 * entering queue, so we call blk_freeze_queue_start() to
318 * prevent I/O from crossing blk_queue_enter().
319 */
320 blk_freeze_queue_start(q);
321
322 if (queue_is_mq(q))
323 blk_mq_wake_waiters(q);
324
325 /* Make blk_queue_enter() reexamine the DYING flag. */
326 wake_up_all(&q->mq_freeze_wq);
327 }
328 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
329
330 /**
331 * blk_cleanup_queue - shutdown a request queue
332 * @q: request queue to shutdown
333 *
334 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
335 * put it. All future requests will be failed immediately with -ENODEV.
336 */
blk_cleanup_queue(struct request_queue * q)337 void blk_cleanup_queue(struct request_queue *q)
338 {
339 /* mark @q DYING, no new request or merges will be allowed afterwards */
340 mutex_lock(&q->sysfs_lock);
341 blk_set_queue_dying(q);
342
343 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
344 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
345 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
346 mutex_unlock(&q->sysfs_lock);
347
348 /*
349 * Drain all requests queued before DYING marking. Set DEAD flag to
350 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
351 * after draining finished.
352 */
353 blk_freeze_queue(q);
354
355 rq_qos_exit(q);
356
357 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
358
359 /* for synchronous bio-based driver finish in-flight integrity i/o */
360 blk_flush_integrity();
361
362 /* @q won't process any more request, flush async actions */
363 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
364 blk_sync_queue(q);
365
366 if (queue_is_mq(q))
367 blk_mq_exit_queue(q);
368
369 /*
370 * In theory, request pool of sched_tags belongs to request queue.
371 * However, the current implementation requires tag_set for freeing
372 * requests, so free the pool now.
373 *
374 * Queue has become frozen, there can't be any in-queue requests, so
375 * it is safe to free requests now.
376 */
377 mutex_lock(&q->sysfs_lock);
378 if (q->elevator)
379 blk_mq_sched_free_requests(q);
380 mutex_unlock(&q->sysfs_lock);
381
382 percpu_ref_exit(&q->q_usage_counter);
383
384 /* @q is and will stay empty, shutdown and put */
385 blk_put_queue(q);
386 }
387 EXPORT_SYMBOL(blk_cleanup_queue);
388
blk_alloc_queue(gfp_t gfp_mask)389 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
390 {
391 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
392 }
393 EXPORT_SYMBOL(blk_alloc_queue);
394
395 /**
396 * blk_queue_enter() - try to increase q->q_usage_counter
397 * @q: request queue pointer
398 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
399 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)400 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
401 {
402 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
403
404 while (true) {
405 bool success = false;
406
407 rcu_read_lock();
408 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
409 /*
410 * The code that increments the pm_only counter is
411 * responsible for ensuring that that counter is
412 * globally visible before the queue is unfrozen.
413 */
414 if (pm || !blk_queue_pm_only(q)) {
415 success = true;
416 } else {
417 percpu_ref_put(&q->q_usage_counter);
418 }
419 }
420 rcu_read_unlock();
421
422 if (success)
423 return 0;
424
425 if (flags & BLK_MQ_REQ_NOWAIT)
426 return -EBUSY;
427
428 /*
429 * read pair of barrier in blk_freeze_queue_start(),
430 * we need to order reading __PERCPU_REF_DEAD flag of
431 * .q_usage_counter and reading .mq_freeze_depth or
432 * queue dying flag, otherwise the following wait may
433 * never return if the two reads are reordered.
434 */
435 smp_rmb();
436
437 wait_event(q->mq_freeze_wq,
438 (!q->mq_freeze_depth &&
439 (pm || (blk_pm_request_resume(q),
440 !blk_queue_pm_only(q)))) ||
441 blk_queue_dying(q));
442 if (blk_queue_dying(q))
443 return -ENODEV;
444 }
445 }
446
blk_queue_exit(struct request_queue * q)447 void blk_queue_exit(struct request_queue *q)
448 {
449 percpu_ref_put(&q->q_usage_counter);
450 }
451
blk_queue_usage_counter_release(struct percpu_ref * ref)452 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
453 {
454 struct request_queue *q =
455 container_of(ref, struct request_queue, q_usage_counter);
456
457 wake_up_all(&q->mq_freeze_wq);
458 }
459
blk_rq_timed_out_timer(struct timer_list * t)460 static void blk_rq_timed_out_timer(struct timer_list *t)
461 {
462 struct request_queue *q = from_timer(q, t, timeout);
463
464 kblockd_schedule_work(&q->timeout_work);
465 }
466
blk_timeout_work(struct work_struct * work)467 static void blk_timeout_work(struct work_struct *work)
468 {
469 }
470
471 /**
472 * blk_alloc_queue_node - allocate a request queue
473 * @gfp_mask: memory allocation flags
474 * @node_id: NUMA node to allocate memory from
475 */
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
477 {
478 struct request_queue *q;
479 int ret;
480
481 q = kmem_cache_alloc_node(blk_requestq_cachep,
482 gfp_mask | __GFP_ZERO, node_id);
483 if (!q)
484 return NULL;
485
486 q->last_merge = NULL;
487
488 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
489 if (q->id < 0)
490 goto fail_q;
491
492 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
493 if (ret)
494 goto fail_id;
495
496 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
497 if (!q->backing_dev_info)
498 goto fail_split;
499
500 q->stats = blk_alloc_queue_stats();
501 if (!q->stats)
502 goto fail_stats;
503
504 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
505 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
506 q->backing_dev_info->name = "block";
507 q->node = node_id;
508
509 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
510 laptop_mode_timer_fn, 0);
511 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
512 INIT_WORK(&q->timeout_work, blk_timeout_work);
513 INIT_LIST_HEAD(&q->icq_list);
514 #ifdef CONFIG_BLK_CGROUP
515 INIT_LIST_HEAD(&q->blkg_list);
516 #endif
517
518 kobject_init(&q->kobj, &blk_queue_ktype);
519
520 #ifdef CONFIG_BLK_DEV_IO_TRACE
521 mutex_init(&q->blk_trace_mutex);
522 #endif
523 mutex_init(&q->sysfs_lock);
524 mutex_init(&q->sysfs_dir_lock);
525 spin_lock_init(&q->queue_lock);
526
527 init_waitqueue_head(&q->mq_freeze_wq);
528 mutex_init(&q->mq_freeze_lock);
529
530 /*
531 * Init percpu_ref in atomic mode so that it's faster to shutdown.
532 * See blk_register_queue() for details.
533 */
534 if (percpu_ref_init(&q->q_usage_counter,
535 blk_queue_usage_counter_release,
536 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
537 goto fail_bdi;
538
539 if (blkcg_init_queue(q))
540 goto fail_ref;
541
542 return q;
543
544 fail_ref:
545 percpu_ref_exit(&q->q_usage_counter);
546 fail_bdi:
547 blk_free_queue_stats(q->stats);
548 fail_stats:
549 bdi_put(q->backing_dev_info);
550 fail_split:
551 bioset_exit(&q->bio_split);
552 fail_id:
553 ida_simple_remove(&blk_queue_ida, q->id);
554 fail_q:
555 kmem_cache_free(blk_requestq_cachep, q);
556 return NULL;
557 }
558 EXPORT_SYMBOL(blk_alloc_queue_node);
559
blk_get_queue(struct request_queue * q)560 bool blk_get_queue(struct request_queue *q)
561 {
562 if (likely(!blk_queue_dying(q))) {
563 __blk_get_queue(q);
564 return true;
565 }
566
567 return false;
568 }
569 EXPORT_SYMBOL(blk_get_queue);
570
571 /**
572 * blk_get_request - allocate a request
573 * @q: request queue to allocate a request for
574 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
575 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
576 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)577 struct request *blk_get_request(struct request_queue *q, unsigned int op,
578 blk_mq_req_flags_t flags)
579 {
580 struct request *req;
581
582 WARN_ON_ONCE(op & REQ_NOWAIT);
583 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
584
585 req = blk_mq_alloc_request(q, op, flags);
586 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
587 q->mq_ops->initialize_rq_fn(req);
588
589 return req;
590 }
591 EXPORT_SYMBOL(blk_get_request);
592
blk_put_request(struct request * req)593 void blk_put_request(struct request *req)
594 {
595 blk_mq_free_request(req);
596 }
597 EXPORT_SYMBOL(blk_put_request);
598
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)599 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
600 unsigned int nr_segs)
601 {
602 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
603
604 if (!ll_back_merge_fn(req, bio, nr_segs))
605 return false;
606
607 trace_block_bio_backmerge(req->q, req, bio);
608 rq_qos_merge(req->q, req, bio);
609
610 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
611 blk_rq_set_mixed_merge(req);
612
613 req->biotail->bi_next = bio;
614 req->biotail = bio;
615 req->__data_len += bio->bi_iter.bi_size;
616
617 blk_account_io_start(req, false);
618 return true;
619 }
620
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)621 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
622 unsigned int nr_segs)
623 {
624 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
625
626 if (!ll_front_merge_fn(req, bio, nr_segs))
627 return false;
628
629 trace_block_bio_frontmerge(req->q, req, bio);
630 rq_qos_merge(req->q, req, bio);
631
632 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
633 blk_rq_set_mixed_merge(req);
634
635 bio->bi_next = req->bio;
636 req->bio = bio;
637
638 req->__sector = bio->bi_iter.bi_sector;
639 req->__data_len += bio->bi_iter.bi_size;
640
641 blk_account_io_start(req, false);
642 return true;
643 }
644
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)645 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
646 struct bio *bio)
647 {
648 unsigned short segments = blk_rq_nr_discard_segments(req);
649
650 if (segments >= queue_max_discard_segments(q))
651 goto no_merge;
652 if (blk_rq_sectors(req) + bio_sectors(bio) >
653 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
654 goto no_merge;
655
656 rq_qos_merge(q, req, bio);
657
658 req->biotail->bi_next = bio;
659 req->biotail = bio;
660 req->__data_len += bio->bi_iter.bi_size;
661 req->nr_phys_segments = segments + 1;
662
663 blk_account_io_start(req, false);
664 return true;
665 no_merge:
666 req_set_nomerge(q, req);
667 return false;
668 }
669
670 /**
671 * blk_attempt_plug_merge - try to merge with %current's plugged list
672 * @q: request_queue new bio is being queued at
673 * @bio: new bio being queued
674 * @nr_segs: number of segments in @bio
675 * @same_queue_rq: pointer to &struct request that gets filled in when
676 * another request associated with @q is found on the plug list
677 * (optional, may be %NULL)
678 *
679 * Determine whether @bio being queued on @q can be merged with a request
680 * on %current's plugged list. Returns %true if merge was successful,
681 * otherwise %false.
682 *
683 * Plugging coalesces IOs from the same issuer for the same purpose without
684 * going through @q->queue_lock. As such it's more of an issuing mechanism
685 * than scheduling, and the request, while may have elvpriv data, is not
686 * added on the elevator at this point. In addition, we don't have
687 * reliable access to the elevator outside queue lock. Only check basic
688 * merging parameters without querying the elevator.
689 *
690 * Caller must ensure !blk_queue_nomerges(q) beforehand.
691 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)692 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
693 unsigned int nr_segs, struct request **same_queue_rq)
694 {
695 struct blk_plug *plug;
696 struct request *rq;
697 struct list_head *plug_list;
698
699 plug = blk_mq_plug(q, bio);
700 if (!plug)
701 return false;
702
703 plug_list = &plug->mq_list;
704
705 list_for_each_entry_reverse(rq, plug_list, queuelist) {
706 bool merged = false;
707
708 if (rq->q == q && same_queue_rq) {
709 /*
710 * Only blk-mq multiple hardware queues case checks the
711 * rq in the same queue, there should be only one such
712 * rq in a queue
713 **/
714 *same_queue_rq = rq;
715 }
716
717 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
718 continue;
719
720 switch (blk_try_merge(rq, bio)) {
721 case ELEVATOR_BACK_MERGE:
722 merged = bio_attempt_back_merge(rq, bio, nr_segs);
723 break;
724 case ELEVATOR_FRONT_MERGE:
725 merged = bio_attempt_front_merge(rq, bio, nr_segs);
726 break;
727 case ELEVATOR_DISCARD_MERGE:
728 merged = bio_attempt_discard_merge(q, rq, bio);
729 break;
730 default:
731 break;
732 }
733
734 if (merged)
735 return true;
736 }
737
738 return false;
739 }
740
handle_bad_sector(struct bio * bio,sector_t maxsector)741 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
742 {
743 char b[BDEVNAME_SIZE];
744
745 printk(KERN_INFO "attempt to access beyond end of device\n");
746 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
747 bio_devname(bio, b), bio->bi_opf,
748 (unsigned long long)bio_end_sector(bio),
749 (long long)maxsector);
750 }
751
752 #ifdef CONFIG_FAIL_MAKE_REQUEST
753
754 static DECLARE_FAULT_ATTR(fail_make_request);
755
setup_fail_make_request(char * str)756 static int __init setup_fail_make_request(char *str)
757 {
758 return setup_fault_attr(&fail_make_request, str);
759 }
760 __setup("fail_make_request=", setup_fail_make_request);
761
should_fail_request(struct hd_struct * part,unsigned int bytes)762 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
763 {
764 return part->make_it_fail && should_fail(&fail_make_request, bytes);
765 }
766
fail_make_request_debugfs(void)767 static int __init fail_make_request_debugfs(void)
768 {
769 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
770 NULL, &fail_make_request);
771
772 return PTR_ERR_OR_ZERO(dir);
773 }
774
775 late_initcall(fail_make_request_debugfs);
776
777 #else /* CONFIG_FAIL_MAKE_REQUEST */
778
should_fail_request(struct hd_struct * part,unsigned int bytes)779 static inline bool should_fail_request(struct hd_struct *part,
780 unsigned int bytes)
781 {
782 return false;
783 }
784
785 #endif /* CONFIG_FAIL_MAKE_REQUEST */
786
bio_check_ro(struct bio * bio,struct hd_struct * part)787 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
788 {
789 const int op = bio_op(bio);
790
791 if (part->policy && op_is_write(op)) {
792 char b[BDEVNAME_SIZE];
793
794 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
795 return false;
796
797 WARN_ONCE(1,
798 "generic_make_request: Trying to write "
799 "to read-only block-device %s (partno %d)\n",
800 bio_devname(bio, b), part->partno);
801 /* Older lvm-tools actually trigger this */
802 return false;
803 }
804
805 return false;
806 }
807
should_fail_bio(struct bio * bio)808 static noinline int should_fail_bio(struct bio *bio)
809 {
810 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
811 return -EIO;
812 return 0;
813 }
814 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
815
816 /*
817 * Check whether this bio extends beyond the end of the device or partition.
818 * This may well happen - the kernel calls bread() without checking the size of
819 * the device, e.g., when mounting a file system.
820 */
bio_check_eod(struct bio * bio,sector_t maxsector)821 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
822 {
823 unsigned int nr_sectors = bio_sectors(bio);
824
825 if (nr_sectors && maxsector &&
826 (nr_sectors > maxsector ||
827 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
828 handle_bad_sector(bio, maxsector);
829 return -EIO;
830 }
831 return 0;
832 }
833
834 /*
835 * Remap block n of partition p to block n+start(p) of the disk.
836 */
blk_partition_remap(struct bio * bio)837 static inline int blk_partition_remap(struct bio *bio)
838 {
839 struct hd_struct *p;
840 int ret = -EIO;
841
842 rcu_read_lock();
843 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
844 if (unlikely(!p))
845 goto out;
846 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
847 goto out;
848 if (unlikely(bio_check_ro(bio, p)))
849 goto out;
850
851 /*
852 * Zone reset does not include bi_size so bio_sectors() is always 0.
853 * Include a test for the reset op code and perform the remap if needed.
854 */
855 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
856 if (bio_check_eod(bio, part_nr_sects_read(p)))
857 goto out;
858 bio->bi_iter.bi_sector += p->start_sect;
859 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
860 bio->bi_iter.bi_sector - p->start_sect);
861 }
862 bio->bi_partno = 0;
863 ret = 0;
864 out:
865 rcu_read_unlock();
866 return ret;
867 }
868
869 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)870 generic_make_request_checks(struct bio *bio)
871 {
872 struct request_queue *q;
873 int nr_sectors = bio_sectors(bio);
874 blk_status_t status = BLK_STS_IOERR;
875 char b[BDEVNAME_SIZE];
876
877 might_sleep();
878
879 q = bio->bi_disk->queue;
880 if (unlikely(!q)) {
881 printk(KERN_ERR
882 "generic_make_request: Trying to access "
883 "nonexistent block-device %s (%Lu)\n",
884 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
885 goto end_io;
886 }
887
888 /*
889 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
890 * if queue is not a request based queue.
891 */
892 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
893 goto not_supported;
894
895 if (should_fail_bio(bio))
896 goto end_io;
897
898 if (bio->bi_partno) {
899 if (unlikely(blk_partition_remap(bio)))
900 goto end_io;
901 } else {
902 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
903 goto end_io;
904 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
905 goto end_io;
906 }
907
908 /*
909 * Filter flush bio's early so that make_request based
910 * drivers without flush support don't have to worry
911 * about them.
912 */
913 if (op_is_flush(bio->bi_opf) &&
914 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
915 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
916 if (!nr_sectors) {
917 status = BLK_STS_OK;
918 goto end_io;
919 }
920 }
921
922 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
923 bio->bi_opf &= ~REQ_HIPRI;
924
925 switch (bio_op(bio)) {
926 case REQ_OP_DISCARD:
927 if (!blk_queue_discard(q))
928 goto not_supported;
929 break;
930 case REQ_OP_SECURE_ERASE:
931 if (!blk_queue_secure_erase(q))
932 goto not_supported;
933 break;
934 case REQ_OP_WRITE_SAME:
935 if (!q->limits.max_write_same_sectors)
936 goto not_supported;
937 break;
938 case REQ_OP_ZONE_RESET:
939 if (!blk_queue_is_zoned(q))
940 goto not_supported;
941 break;
942 case REQ_OP_ZONE_RESET_ALL:
943 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
944 goto not_supported;
945 break;
946 case REQ_OP_WRITE_ZEROES:
947 if (!q->limits.max_write_zeroes_sectors)
948 goto not_supported;
949 break;
950 default:
951 break;
952 }
953
954 /*
955 * Various block parts want %current->io_context and lazy ioc
956 * allocation ends up trading a lot of pain for a small amount of
957 * memory. Just allocate it upfront. This may fail and block
958 * layer knows how to live with it.
959 */
960 create_io_context(GFP_ATOMIC, q->node);
961
962 if (!blkcg_bio_issue_check(q, bio))
963 return false;
964
965 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
966 trace_block_bio_queue(q, bio);
967 /* Now that enqueuing has been traced, we need to trace
968 * completion as well.
969 */
970 bio_set_flag(bio, BIO_TRACE_COMPLETION);
971 }
972 return true;
973
974 not_supported:
975 status = BLK_STS_NOTSUPP;
976 end_io:
977 bio->bi_status = status;
978 bio_endio(bio);
979 return false;
980 }
981
982 /**
983 * generic_make_request - hand a buffer to its device driver for I/O
984 * @bio: The bio describing the location in memory and on the device.
985 *
986 * generic_make_request() is used to make I/O requests of block
987 * devices. It is passed a &struct bio, which describes the I/O that needs
988 * to be done.
989 *
990 * generic_make_request() does not return any status. The
991 * success/failure status of the request, along with notification of
992 * completion, is delivered asynchronously through the bio->bi_end_io
993 * function described (one day) else where.
994 *
995 * The caller of generic_make_request must make sure that bi_io_vec
996 * are set to describe the memory buffer, and that bi_dev and bi_sector are
997 * set to describe the device address, and the
998 * bi_end_io and optionally bi_private are set to describe how
999 * completion notification should be signaled.
1000 *
1001 * generic_make_request and the drivers it calls may use bi_next if this
1002 * bio happens to be merged with someone else, and may resubmit the bio to
1003 * a lower device by calling into generic_make_request recursively, which
1004 * means the bio should NOT be touched after the call to ->make_request_fn.
1005 */
generic_make_request(struct bio * bio)1006 blk_qc_t generic_make_request(struct bio *bio)
1007 {
1008 /*
1009 * bio_list_on_stack[0] contains bios submitted by the current
1010 * make_request_fn.
1011 * bio_list_on_stack[1] contains bios that were submitted before
1012 * the current make_request_fn, but that haven't been processed
1013 * yet.
1014 */
1015 struct bio_list bio_list_on_stack[2];
1016 blk_qc_t ret = BLK_QC_T_NONE;
1017
1018 if (!generic_make_request_checks(bio))
1019 goto out;
1020
1021 /*
1022 * We only want one ->make_request_fn to be active at a time, else
1023 * stack usage with stacked devices could be a problem. So use
1024 * current->bio_list to keep a list of requests submited by a
1025 * make_request_fn function. current->bio_list is also used as a
1026 * flag to say if generic_make_request is currently active in this
1027 * task or not. If it is NULL, then no make_request is active. If
1028 * it is non-NULL, then a make_request is active, and new requests
1029 * should be added at the tail
1030 */
1031 if (current->bio_list) {
1032 bio_list_add(¤t->bio_list[0], bio);
1033 goto out;
1034 }
1035
1036 /* following loop may be a bit non-obvious, and so deserves some
1037 * explanation.
1038 * Before entering the loop, bio->bi_next is NULL (as all callers
1039 * ensure that) so we have a list with a single bio.
1040 * We pretend that we have just taken it off a longer list, so
1041 * we assign bio_list to a pointer to the bio_list_on_stack,
1042 * thus initialising the bio_list of new bios to be
1043 * added. ->make_request() may indeed add some more bios
1044 * through a recursive call to generic_make_request. If it
1045 * did, we find a non-NULL value in bio_list and re-enter the loop
1046 * from the top. In this case we really did just take the bio
1047 * of the top of the list (no pretending) and so remove it from
1048 * bio_list, and call into ->make_request() again.
1049 */
1050 BUG_ON(bio->bi_next);
1051 bio_list_init(&bio_list_on_stack[0]);
1052 current->bio_list = bio_list_on_stack;
1053 do {
1054 struct request_queue *q = bio->bi_disk->queue;
1055 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1056 BLK_MQ_REQ_NOWAIT : 0;
1057
1058 if (likely(blk_queue_enter(q, flags) == 0)) {
1059 struct bio_list lower, same;
1060
1061 /* Create a fresh bio_list for all subordinate requests */
1062 bio_list_on_stack[1] = bio_list_on_stack[0];
1063 bio_list_init(&bio_list_on_stack[0]);
1064 ret = q->make_request_fn(q, bio);
1065
1066 blk_queue_exit(q);
1067
1068 /* sort new bios into those for a lower level
1069 * and those for the same level
1070 */
1071 bio_list_init(&lower);
1072 bio_list_init(&same);
1073 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1074 if (q == bio->bi_disk->queue)
1075 bio_list_add(&same, bio);
1076 else
1077 bio_list_add(&lower, bio);
1078 /* now assemble so we handle the lowest level first */
1079 bio_list_merge(&bio_list_on_stack[0], &lower);
1080 bio_list_merge(&bio_list_on_stack[0], &same);
1081 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1082 } else {
1083 if (unlikely(!blk_queue_dying(q) &&
1084 (bio->bi_opf & REQ_NOWAIT)))
1085 bio_wouldblock_error(bio);
1086 else
1087 bio_io_error(bio);
1088 }
1089 bio = bio_list_pop(&bio_list_on_stack[0]);
1090 } while (bio);
1091 current->bio_list = NULL; /* deactivate */
1092
1093 out:
1094 return ret;
1095 }
1096 EXPORT_SYMBOL(generic_make_request);
1097
1098 /**
1099 * direct_make_request - hand a buffer directly to its device driver for I/O
1100 * @bio: The bio describing the location in memory and on the device.
1101 *
1102 * This function behaves like generic_make_request(), but does not protect
1103 * against recursion. Must only be used if the called driver is known
1104 * to not call generic_make_request (or direct_make_request) again from
1105 * its make_request function. (Calling direct_make_request again from
1106 * a workqueue is perfectly fine as that doesn't recurse).
1107 */
direct_make_request(struct bio * bio)1108 blk_qc_t direct_make_request(struct bio *bio)
1109 {
1110 struct request_queue *q = bio->bi_disk->queue;
1111 bool nowait = bio->bi_opf & REQ_NOWAIT;
1112 blk_qc_t ret;
1113
1114 if (!generic_make_request_checks(bio))
1115 return BLK_QC_T_NONE;
1116
1117 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1118 if (nowait && !blk_queue_dying(q))
1119 bio->bi_status = BLK_STS_AGAIN;
1120 else
1121 bio->bi_status = BLK_STS_IOERR;
1122 bio_endio(bio);
1123 return BLK_QC_T_NONE;
1124 }
1125
1126 ret = q->make_request_fn(q, bio);
1127 blk_queue_exit(q);
1128 return ret;
1129 }
1130 EXPORT_SYMBOL_GPL(direct_make_request);
1131
1132 /**
1133 * submit_bio - submit a bio to the block device layer for I/O
1134 * @bio: The &struct bio which describes the I/O
1135 *
1136 * submit_bio() is very similar in purpose to generic_make_request(), and
1137 * uses that function to do most of the work. Both are fairly rough
1138 * interfaces; @bio must be presetup and ready for I/O.
1139 *
1140 */
submit_bio(struct bio * bio)1141 blk_qc_t submit_bio(struct bio *bio)
1142 {
1143 bool workingset_read = false;
1144 unsigned long pflags;
1145 blk_qc_t ret;
1146
1147 if (blkcg_punt_bio_submit(bio))
1148 return BLK_QC_T_NONE;
1149
1150 /*
1151 * If it's a regular read/write or a barrier with data attached,
1152 * go through the normal accounting stuff before submission.
1153 */
1154 if (bio_has_data(bio)) {
1155 unsigned int count;
1156
1157 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1158 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1159 else
1160 count = bio_sectors(bio);
1161
1162 if (op_is_write(bio_op(bio))) {
1163 count_vm_events(PGPGOUT, count);
1164 } else {
1165 if (bio_flagged(bio, BIO_WORKINGSET))
1166 workingset_read = true;
1167 task_io_account_read(bio->bi_iter.bi_size);
1168 count_vm_events(PGPGIN, count);
1169 }
1170
1171 if (unlikely(block_dump)) {
1172 char b[BDEVNAME_SIZE];
1173 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1174 current->comm, task_pid_nr(current),
1175 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1176 (unsigned long long)bio->bi_iter.bi_sector,
1177 bio_devname(bio, b), count);
1178 }
1179 }
1180
1181 /*
1182 * If we're reading data that is part of the userspace
1183 * workingset, count submission time as memory stall. When the
1184 * device is congested, or the submitting cgroup IO-throttled,
1185 * submission can be a significant part of overall IO time.
1186 */
1187 if (workingset_read)
1188 psi_memstall_enter(&pflags);
1189
1190 ret = generic_make_request(bio);
1191
1192 if (workingset_read)
1193 psi_memstall_leave(&pflags);
1194
1195 return ret;
1196 }
1197 EXPORT_SYMBOL(submit_bio);
1198
1199 /**
1200 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1201 * for new the queue limits
1202 * @q: the queue
1203 * @rq: the request being checked
1204 *
1205 * Description:
1206 * @rq may have been made based on weaker limitations of upper-level queues
1207 * in request stacking drivers, and it may violate the limitation of @q.
1208 * Since the block layer and the underlying device driver trust @rq
1209 * after it is inserted to @q, it should be checked against @q before
1210 * the insertion using this generic function.
1211 *
1212 * Request stacking drivers like request-based dm may change the queue
1213 * limits when retrying requests on other queues. Those requests need
1214 * to be checked against the new queue limits again during dispatch.
1215 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1216 static int blk_cloned_rq_check_limits(struct request_queue *q,
1217 struct request *rq)
1218 {
1219 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1220 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1221 __func__, blk_rq_sectors(rq),
1222 blk_queue_get_max_sectors(q, req_op(rq)));
1223 return -EIO;
1224 }
1225
1226 /*
1227 * queue's settings related to segment counting like q->bounce_pfn
1228 * may differ from that of other stacking queues.
1229 * Recalculate it to check the request correctly on this queue's
1230 * limitation.
1231 */
1232 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1233 if (rq->nr_phys_segments > queue_max_segments(q)) {
1234 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1235 __func__, rq->nr_phys_segments, queue_max_segments(q));
1236 return -EIO;
1237 }
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1244 * @q: the queue to submit the request
1245 * @rq: the request being queued
1246 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1247 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1248 {
1249 if (blk_cloned_rq_check_limits(q, rq))
1250 return BLK_STS_IOERR;
1251
1252 if (rq->rq_disk &&
1253 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1254 return BLK_STS_IOERR;
1255
1256 if (blk_queue_io_stat(q))
1257 blk_account_io_start(rq, true);
1258
1259 /*
1260 * Since we have a scheduler attached on the top device,
1261 * bypass a potential scheduler on the bottom device for
1262 * insert.
1263 */
1264 return blk_mq_request_issue_directly(rq, true);
1265 }
1266 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1267
1268 /**
1269 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1270 * @rq: request to examine
1271 *
1272 * Description:
1273 * A request could be merge of IOs which require different failure
1274 * handling. This function determines the number of bytes which
1275 * can be failed from the beginning of the request without
1276 * crossing into area which need to be retried further.
1277 *
1278 * Return:
1279 * The number of bytes to fail.
1280 */
blk_rq_err_bytes(const struct request * rq)1281 unsigned int blk_rq_err_bytes(const struct request *rq)
1282 {
1283 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1284 unsigned int bytes = 0;
1285 struct bio *bio;
1286
1287 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1288 return blk_rq_bytes(rq);
1289
1290 /*
1291 * Currently the only 'mixing' which can happen is between
1292 * different fastfail types. We can safely fail portions
1293 * which have all the failfast bits that the first one has -
1294 * the ones which are at least as eager to fail as the first
1295 * one.
1296 */
1297 for (bio = rq->bio; bio; bio = bio->bi_next) {
1298 if ((bio->bi_opf & ff) != ff)
1299 break;
1300 bytes += bio->bi_iter.bi_size;
1301 }
1302
1303 /* this could lead to infinite loop */
1304 BUG_ON(blk_rq_bytes(rq) && !bytes);
1305 return bytes;
1306 }
1307 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1308
blk_account_io_completion(struct request * req,unsigned int bytes)1309 void blk_account_io_completion(struct request *req, unsigned int bytes)
1310 {
1311 if (blk_do_io_stat(req)) {
1312 const int sgrp = op_stat_group(req_op(req));
1313 struct hd_struct *part;
1314
1315 part_stat_lock();
1316 part = req->part;
1317 part_stat_add(part, sectors[sgrp], bytes >> 9);
1318 part_stat_unlock();
1319 }
1320 }
1321
blk_account_io_done(struct request * req,u64 now)1322 void blk_account_io_done(struct request *req, u64 now)
1323 {
1324 /*
1325 * Account IO completion. flush_rq isn't accounted as a
1326 * normal IO on queueing nor completion. Accounting the
1327 * containing request is enough.
1328 */
1329 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1330 const int sgrp = op_stat_group(req_op(req));
1331 struct hd_struct *part;
1332
1333 part_stat_lock();
1334 part = req->part;
1335
1336 update_io_ticks(part, jiffies);
1337 part_stat_inc(part, ios[sgrp]);
1338 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1339 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1340 part_dec_in_flight(req->q, part, rq_data_dir(req));
1341
1342 hd_struct_put(part);
1343 part_stat_unlock();
1344 }
1345 }
1346
blk_account_io_start(struct request * rq,bool new_io)1347 void blk_account_io_start(struct request *rq, bool new_io)
1348 {
1349 struct hd_struct *part;
1350 int rw = rq_data_dir(rq);
1351
1352 if (!blk_do_io_stat(rq))
1353 return;
1354
1355 part_stat_lock();
1356
1357 if (!new_io) {
1358 part = rq->part;
1359 part_stat_inc(part, merges[rw]);
1360 } else {
1361 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1362 if (!hd_struct_try_get(part)) {
1363 /*
1364 * The partition is already being removed,
1365 * the request will be accounted on the disk only
1366 *
1367 * We take a reference on disk->part0 although that
1368 * partition will never be deleted, so we can treat
1369 * it as any other partition.
1370 */
1371 part = &rq->rq_disk->part0;
1372 hd_struct_get(part);
1373 }
1374 part_inc_in_flight(rq->q, part, rw);
1375 rq->part = part;
1376 }
1377
1378 update_io_ticks(part, jiffies);
1379
1380 part_stat_unlock();
1381 }
1382
1383 /*
1384 * Steal bios from a request and add them to a bio list.
1385 * The request must not have been partially completed before.
1386 */
blk_steal_bios(struct bio_list * list,struct request * rq)1387 void blk_steal_bios(struct bio_list *list, struct request *rq)
1388 {
1389 if (rq->bio) {
1390 if (list->tail)
1391 list->tail->bi_next = rq->bio;
1392 else
1393 list->head = rq->bio;
1394 list->tail = rq->biotail;
1395
1396 rq->bio = NULL;
1397 rq->biotail = NULL;
1398 }
1399
1400 rq->__data_len = 0;
1401 }
1402 EXPORT_SYMBOL_GPL(blk_steal_bios);
1403
1404 /**
1405 * blk_update_request - Special helper function for request stacking drivers
1406 * @req: the request being processed
1407 * @error: block status code
1408 * @nr_bytes: number of bytes to complete @req
1409 *
1410 * Description:
1411 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1412 * the request structure even if @req doesn't have leftover.
1413 * If @req has leftover, sets it up for the next range of segments.
1414 *
1415 * This special helper function is only for request stacking drivers
1416 * (e.g. request-based dm) so that they can handle partial completion.
1417 * Actual device drivers should use blk_mq_end_request instead.
1418 *
1419 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1420 * %false return from this function.
1421 *
1422 * Note:
1423 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1424 * blk_rq_bytes() and in blk_update_request().
1425 *
1426 * Return:
1427 * %false - this request doesn't have any more data
1428 * %true - this request has more data
1429 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1430 bool blk_update_request(struct request *req, blk_status_t error,
1431 unsigned int nr_bytes)
1432 {
1433 int total_bytes;
1434
1435 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1436
1437 if (!req->bio)
1438 return false;
1439
1440 #ifdef CONFIG_BLK_DEV_INTEGRITY
1441 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1442 error == BLK_STS_OK)
1443 req->q->integrity.profile->complete_fn(req, nr_bytes);
1444 #endif
1445
1446 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1447 !(req->rq_flags & RQF_QUIET)))
1448 print_req_error(req, error, __func__);
1449
1450 blk_account_io_completion(req, nr_bytes);
1451
1452 total_bytes = 0;
1453 while (req->bio) {
1454 struct bio *bio = req->bio;
1455 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1456
1457 if (bio_bytes == bio->bi_iter.bi_size)
1458 req->bio = bio->bi_next;
1459
1460 /* Completion has already been traced */
1461 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1462 req_bio_endio(req, bio, bio_bytes, error);
1463
1464 total_bytes += bio_bytes;
1465 nr_bytes -= bio_bytes;
1466
1467 if (!nr_bytes)
1468 break;
1469 }
1470
1471 /*
1472 * completely done
1473 */
1474 if (!req->bio) {
1475 /*
1476 * Reset counters so that the request stacking driver
1477 * can find how many bytes remain in the request
1478 * later.
1479 */
1480 req->__data_len = 0;
1481 return false;
1482 }
1483
1484 req->__data_len -= total_bytes;
1485
1486 /* update sector only for requests with clear definition of sector */
1487 if (!blk_rq_is_passthrough(req))
1488 req->__sector += total_bytes >> 9;
1489
1490 /* mixed attributes always follow the first bio */
1491 if (req->rq_flags & RQF_MIXED_MERGE) {
1492 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1493 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1494 }
1495
1496 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1497 /*
1498 * If total number of sectors is less than the first segment
1499 * size, something has gone terribly wrong.
1500 */
1501 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1502 blk_dump_rq_flags(req, "request botched");
1503 req->__data_len = blk_rq_cur_bytes(req);
1504 }
1505
1506 /* recalculate the number of segments */
1507 req->nr_phys_segments = blk_recalc_rq_segments(req);
1508 }
1509
1510 return true;
1511 }
1512 EXPORT_SYMBOL_GPL(blk_update_request);
1513
1514 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1515 /**
1516 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1517 * @rq: the request to be flushed
1518 *
1519 * Description:
1520 * Flush all pages in @rq.
1521 */
rq_flush_dcache_pages(struct request * rq)1522 void rq_flush_dcache_pages(struct request *rq)
1523 {
1524 struct req_iterator iter;
1525 struct bio_vec bvec;
1526
1527 rq_for_each_segment(bvec, rq, iter)
1528 flush_dcache_page(bvec.bv_page);
1529 }
1530 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1531 #endif
1532
1533 /**
1534 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1535 * @q : the queue of the device being checked
1536 *
1537 * Description:
1538 * Check if underlying low-level drivers of a device are busy.
1539 * If the drivers want to export their busy state, they must set own
1540 * exporting function using blk_queue_lld_busy() first.
1541 *
1542 * Basically, this function is used only by request stacking drivers
1543 * to stop dispatching requests to underlying devices when underlying
1544 * devices are busy. This behavior helps more I/O merging on the queue
1545 * of the request stacking driver and prevents I/O throughput regression
1546 * on burst I/O load.
1547 *
1548 * Return:
1549 * 0 - Not busy (The request stacking driver should dispatch request)
1550 * 1 - Busy (The request stacking driver should stop dispatching request)
1551 */
blk_lld_busy(struct request_queue * q)1552 int blk_lld_busy(struct request_queue *q)
1553 {
1554 if (queue_is_mq(q) && q->mq_ops->busy)
1555 return q->mq_ops->busy(q);
1556
1557 return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(blk_lld_busy);
1560
1561 /**
1562 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1563 * @rq: the clone request to be cleaned up
1564 *
1565 * Description:
1566 * Free all bios in @rq for a cloned request.
1567 */
blk_rq_unprep_clone(struct request * rq)1568 void blk_rq_unprep_clone(struct request *rq)
1569 {
1570 struct bio *bio;
1571
1572 while ((bio = rq->bio) != NULL) {
1573 rq->bio = bio->bi_next;
1574
1575 bio_put(bio);
1576 }
1577 }
1578 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1579
1580 /*
1581 * Copy attributes of the original request to the clone request.
1582 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1583 */
__blk_rq_prep_clone(struct request * dst,struct request * src)1584 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1585 {
1586 dst->__sector = blk_rq_pos(src);
1587 dst->__data_len = blk_rq_bytes(src);
1588 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1589 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1590 dst->special_vec = src->special_vec;
1591 }
1592 dst->nr_phys_segments = src->nr_phys_segments;
1593 dst->ioprio = src->ioprio;
1594 dst->extra_len = src->extra_len;
1595 }
1596
1597 /**
1598 * blk_rq_prep_clone - Helper function to setup clone request
1599 * @rq: the request to be setup
1600 * @rq_src: original request to be cloned
1601 * @bs: bio_set that bios for clone are allocated from
1602 * @gfp_mask: memory allocation mask for bio
1603 * @bio_ctr: setup function to be called for each clone bio.
1604 * Returns %0 for success, non %0 for failure.
1605 * @data: private data to be passed to @bio_ctr
1606 *
1607 * Description:
1608 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1609 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1610 * are not copied, and copying such parts is the caller's responsibility.
1611 * Also, pages which the original bios are pointing to are not copied
1612 * and the cloned bios just point same pages.
1613 * So cloned bios must be completed before original bios, which means
1614 * the caller must complete @rq before @rq_src.
1615 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1616 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1617 struct bio_set *bs, gfp_t gfp_mask,
1618 int (*bio_ctr)(struct bio *, struct bio *, void *),
1619 void *data)
1620 {
1621 struct bio *bio, *bio_src;
1622
1623 if (!bs)
1624 bs = &fs_bio_set;
1625
1626 __rq_for_each_bio(bio_src, rq_src) {
1627 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1628 if (!bio)
1629 goto free_and_out;
1630
1631 if (bio_ctr && bio_ctr(bio, bio_src, data))
1632 goto free_and_out;
1633
1634 if (rq->bio) {
1635 rq->biotail->bi_next = bio;
1636 rq->biotail = bio;
1637 } else
1638 rq->bio = rq->biotail = bio;
1639 }
1640
1641 __blk_rq_prep_clone(rq, rq_src);
1642
1643 return 0;
1644
1645 free_and_out:
1646 if (bio)
1647 bio_put(bio);
1648 blk_rq_unprep_clone(rq);
1649
1650 return -ENOMEM;
1651 }
1652 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1653
kblockd_schedule_work(struct work_struct * work)1654 int kblockd_schedule_work(struct work_struct *work)
1655 {
1656 return queue_work(kblockd_workqueue, work);
1657 }
1658 EXPORT_SYMBOL(kblockd_schedule_work);
1659
kblockd_schedule_work_on(int cpu,struct work_struct * work)1660 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1661 {
1662 return queue_work_on(cpu, kblockd_workqueue, work);
1663 }
1664 EXPORT_SYMBOL(kblockd_schedule_work_on);
1665
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1666 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1667 unsigned long delay)
1668 {
1669 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1670 }
1671 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1672
1673 /**
1674 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1675 * @plug: The &struct blk_plug that needs to be initialized
1676 *
1677 * Description:
1678 * blk_start_plug() indicates to the block layer an intent by the caller
1679 * to submit multiple I/O requests in a batch. The block layer may use
1680 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1681 * is called. However, the block layer may choose to submit requests
1682 * before a call to blk_finish_plug() if the number of queued I/Os
1683 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1684 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1685 * the task schedules (see below).
1686 *
1687 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1688 * pending I/O should the task end up blocking between blk_start_plug() and
1689 * blk_finish_plug(). This is important from a performance perspective, but
1690 * also ensures that we don't deadlock. For instance, if the task is blocking
1691 * for a memory allocation, memory reclaim could end up wanting to free a
1692 * page belonging to that request that is currently residing in our private
1693 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1694 * this kind of deadlock.
1695 */
blk_start_plug(struct blk_plug * plug)1696 void blk_start_plug(struct blk_plug *plug)
1697 {
1698 struct task_struct *tsk = current;
1699
1700 /*
1701 * If this is a nested plug, don't actually assign it.
1702 */
1703 if (tsk->plug)
1704 return;
1705
1706 INIT_LIST_HEAD(&plug->mq_list);
1707 INIT_LIST_HEAD(&plug->cb_list);
1708 plug->rq_count = 0;
1709 plug->multiple_queues = false;
1710
1711 /*
1712 * Store ordering should not be needed here, since a potential
1713 * preempt will imply a full memory barrier
1714 */
1715 tsk->plug = plug;
1716 }
1717 EXPORT_SYMBOL(blk_start_plug);
1718
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1719 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1720 {
1721 LIST_HEAD(callbacks);
1722
1723 while (!list_empty(&plug->cb_list)) {
1724 list_splice_init(&plug->cb_list, &callbacks);
1725
1726 while (!list_empty(&callbacks)) {
1727 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1728 struct blk_plug_cb,
1729 list);
1730 list_del(&cb->list);
1731 cb->callback(cb, from_schedule);
1732 }
1733 }
1734 }
1735
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1736 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1737 int size)
1738 {
1739 struct blk_plug *plug = current->plug;
1740 struct blk_plug_cb *cb;
1741
1742 if (!plug)
1743 return NULL;
1744
1745 list_for_each_entry(cb, &plug->cb_list, list)
1746 if (cb->callback == unplug && cb->data == data)
1747 return cb;
1748
1749 /* Not currently on the callback list */
1750 BUG_ON(size < sizeof(*cb));
1751 cb = kzalloc(size, GFP_ATOMIC);
1752 if (cb) {
1753 cb->data = data;
1754 cb->callback = unplug;
1755 list_add(&cb->list, &plug->cb_list);
1756 }
1757 return cb;
1758 }
1759 EXPORT_SYMBOL(blk_check_plugged);
1760
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1761 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1762 {
1763 flush_plug_callbacks(plug, from_schedule);
1764
1765 if (!list_empty(&plug->mq_list))
1766 blk_mq_flush_plug_list(plug, from_schedule);
1767 }
1768
1769 /**
1770 * blk_finish_plug - mark the end of a batch of submitted I/O
1771 * @plug: The &struct blk_plug passed to blk_start_plug()
1772 *
1773 * Description:
1774 * Indicate that a batch of I/O submissions is complete. This function
1775 * must be paired with an initial call to blk_start_plug(). The intent
1776 * is to allow the block layer to optimize I/O submission. See the
1777 * documentation for blk_start_plug() for more information.
1778 */
blk_finish_plug(struct blk_plug * plug)1779 void blk_finish_plug(struct blk_plug *plug)
1780 {
1781 if (plug != current->plug)
1782 return;
1783 blk_flush_plug_list(plug, false);
1784
1785 current->plug = NULL;
1786 }
1787 EXPORT_SYMBOL(blk_finish_plug);
1788
blk_dev_init(void)1789 int __init blk_dev_init(void)
1790 {
1791 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1792 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1793 FIELD_SIZEOF(struct request, cmd_flags));
1794 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1795 FIELD_SIZEOF(struct bio, bi_opf));
1796
1797 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1798 kblockd_workqueue = alloc_workqueue("kblockd",
1799 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1800 if (!kblockd_workqueue)
1801 panic("Failed to create kblockd\n");
1802
1803 blk_requestq_cachep = kmem_cache_create("request_queue",
1804 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1805
1806 #ifdef CONFIG_DEBUG_FS
1807 blk_debugfs_root = debugfs_create_dir("block", NULL);
1808 #endif
1809
1810 return 0;
1811 }
1812