1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct hd_struct *part;
99 unsigned int inflight[2];
100 };
101
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if (rq->part == mi->part && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
109 mi->inflight[rq_data_dir(rq)]++;
110
111 return true;
112 }
113
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116 struct mq_inflight mi = { .part = part };
117
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119
120 return mi.inflight[0] + mi.inflight[1];
121 }
122
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 unsigned int inflight[2])
125 {
126 struct mq_inflight mi = { .part = part };
127
128 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 inflight[0] = mi.inflight[0];
130 inflight[1] = mi.inflight[1];
131 }
132
blk_freeze_queue_start(struct request_queue * q)133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135 mutex_lock(&q->mq_freeze_lock);
136 if (++q->mq_freeze_depth == 1) {
137 percpu_ref_kill(&q->q_usage_counter);
138 mutex_unlock(&q->mq_freeze_lock);
139 if (queue_is_mq(q))
140 blk_mq_run_hw_queues(q, false);
141 } else {
142 mutex_unlock(&q->mq_freeze_lock);
143 }
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146
blk_mq_freeze_queue_wait(struct request_queue * q)147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 unsigned long timeout)
155 {
156 return wait_event_timeout(q->mq_freeze_wq,
157 percpu_ref_is_zero(&q->q_usage_counter),
158 timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161
162 /*
163 * Guarantee no request is in use, so we can change any data structure of
164 * the queue afterward.
165 */
blk_freeze_queue(struct request_queue * q)166 void blk_freeze_queue(struct request_queue *q)
167 {
168 /*
169 * In the !blk_mq case we are only calling this to kill the
170 * q_usage_counter, otherwise this increases the freeze depth
171 * and waits for it to return to zero. For this reason there is
172 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 * exported to drivers as the only user for unfreeze is blk_mq.
174 */
175 blk_freeze_queue_start(q);
176 blk_mq_freeze_queue_wait(q);
177 }
178
blk_mq_freeze_queue(struct request_queue * q)179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181 /*
182 * ...just an alias to keep freeze and unfreeze actions balanced
183 * in the blk_mq_* namespace
184 */
185 blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188
blk_mq_unfreeze_queue(struct request_queue * q)189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191 mutex_lock(&q->mq_freeze_lock);
192 q->mq_freeze_depth--;
193 WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 if (!q->mq_freeze_depth) {
195 percpu_ref_resurrect(&q->q_usage_counter);
196 wake_up_all(&q->mq_freeze_wq);
197 }
198 mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201
202 /*
203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204 * mpt3sas driver such that this function can be removed.
205 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211
212 /**
213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214 * @q: request queue.
215 *
216 * Note: this function does not prevent that the struct request end_io()
217 * callback function is invoked. Once this function is returned, we make
218 * sure no dispatch can happen until the queue is unquiesced via
219 * blk_mq_unquiesce_queue().
220 */
blk_mq_quiesce_queue(struct request_queue * q)221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223 struct blk_mq_hw_ctx *hctx;
224 unsigned int i;
225 bool rcu = false;
226
227 blk_mq_quiesce_queue_nowait(q);
228
229 queue_for_each_hw_ctx(q, hctx, i) {
230 if (hctx->flags & BLK_MQ_F_BLOCKING)
231 synchronize_srcu(hctx->srcu);
232 else
233 rcu = true;
234 }
235 if (rcu)
236 synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239
240 /*
241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242 * @q: request queue.
243 *
244 * This function recovers queue into the state before quiescing
245 * which is done by blk_mq_quiesce_queue.
246 */
blk_mq_unquiesce_queue(struct request_queue * q)247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250
251 /* dispatch requests which are inserted during quiescing */
252 blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255
blk_mq_wake_waiters(struct request_queue * q)256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258 struct blk_mq_hw_ctx *hctx;
259 unsigned int i;
260
261 queue_for_each_hw_ctx(q, hctx, i)
262 if (blk_mq_hw_queue_mapped(hctx))
263 blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265
266 /*
267 * Only need start/end time stamping if we have iostat or
268 * blk stats enabled, or using an IO scheduler.
269 */
blk_mq_need_time_stamp(struct request * rq)270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 unsigned int tag, u64 alloc_time_ns)
277 {
278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 struct request *rq = tags->static_rqs[tag];
280
281 if (data->q->elevator) {
282 rq->tag = BLK_MQ_NO_TAG;
283 rq->internal_tag = tag;
284 } else {
285 rq->tag = tag;
286 rq->internal_tag = BLK_MQ_NO_TAG;
287 }
288
289 /* csd/requeue_work/fifo_time is initialized before use */
290 rq->q = data->q;
291 rq->mq_ctx = data->ctx;
292 rq->mq_hctx = data->hctx;
293 rq->rq_flags = 0;
294 rq->cmd_flags = data->cmd_flags;
295 if (data->flags & BLK_MQ_REQ_PREEMPT)
296 rq->rq_flags |= RQF_PREEMPT;
297 if (blk_queue_io_stat(data->q))
298 rq->rq_flags |= RQF_IO_STAT;
299 INIT_LIST_HEAD(&rq->queuelist);
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
302 rq->rq_disk = NULL;
303 rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305 rq->alloc_time_ns = alloc_time_ns;
306 #endif
307 if (blk_mq_need_time_stamp(rq))
308 rq->start_time_ns = ktime_get_ns();
309 else
310 rq->start_time_ns = 0;
311 rq->io_start_time_ns = 0;
312 rq->stats_sectors = 0;
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316 #endif
317 blk_crypto_rq_set_defaults(rq);
318 /* tag was already set */
319 WRITE_ONCE(rq->deadline, 0);
320
321 rq->timeout = 0;
322
323 rq->end_io = NULL;
324 rq->end_io_data = NULL;
325
326 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327 refcount_set(&rq->ref, 1);
328
329 if (!op_is_flush(data->cmd_flags)) {
330 struct elevator_queue *e = data->q->elevator;
331
332 rq->elv.icq = NULL;
333 if (e && e->type->ops.prepare_request) {
334 if (e->type->icq_cache)
335 blk_mq_sched_assign_ioc(rq);
336
337 e->type->ops.prepare_request(rq);
338 rq->rq_flags |= RQF_ELVPRIV;
339 }
340 }
341
342 data->hctx->queued++;
343 return rq;
344 }
345
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348 struct request_queue *q = data->q;
349 struct elevator_queue *e = q->elevator;
350 u64 alloc_time_ns = 0;
351 unsigned int tag;
352
353 /* alloc_time includes depth and tag waits */
354 if (blk_queue_rq_alloc_time(q))
355 alloc_time_ns = ktime_get_ns();
356
357 if (data->cmd_flags & REQ_NOWAIT)
358 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360 if (e) {
361 /*
362 * Flush requests are special and go directly to the
363 * dispatch list. Don't include reserved tags in the
364 * limiting, as it isn't useful.
365 */
366 if (!op_is_flush(data->cmd_flags) &&
367 e->type->ops.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.limit_depth(data->cmd_flags, data);
370 }
371
372 retry:
373 data->ctx = blk_mq_get_ctx(q);
374 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375 if (!e)
376 blk_mq_tag_busy(data->hctx);
377
378 /*
379 * Waiting allocations only fail because of an inactive hctx. In that
380 * case just retry the hctx assignment and tag allocation as CPU hotplug
381 * should have migrated us to an online CPU by now.
382 */
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_NO_TAG) {
385 if (data->flags & BLK_MQ_REQ_NOWAIT)
386 return NULL;
387
388 /*
389 * Give up the CPU and sleep for a random short time to ensure
390 * that thread using a realtime scheduling class are migrated
391 * off the CPU, and thus off the hctx that is going away.
392 */
393 msleep(3);
394 goto retry;
395 }
396 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
401 {
402 struct blk_mq_alloc_data data = {
403 .q = q,
404 .flags = flags,
405 .cmd_flags = op,
406 };
407 struct request *rq;
408 int ret;
409
410 ret = blk_queue_enter(q, flags);
411 if (ret)
412 return ERR_PTR(ret);
413
414 rq = __blk_mq_alloc_request(&data);
415 if (!rq)
416 goto out_queue_exit;
417 rq->__data_len = 0;
418 rq->__sector = (sector_t) -1;
419 rq->bio = rq->biotail = NULL;
420 return rq;
421 out_queue_exit:
422 blk_queue_exit(q);
423 return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430 struct blk_mq_alloc_data data = {
431 .q = q,
432 .flags = flags,
433 .cmd_flags = op,
434 };
435 u64 alloc_time_ns = 0;
436 unsigned int cpu;
437 unsigned int tag;
438 int ret;
439
440 /* alloc_time includes depth and tag waits */
441 if (blk_queue_rq_alloc_time(q))
442 alloc_time_ns = ktime_get_ns();
443
444 /*
445 * If the tag allocator sleeps we could get an allocation for a
446 * different hardware context. No need to complicate the low level
447 * allocator for this for the rare use case of a command tied to
448 * a specific queue.
449 */
450 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451 return ERR_PTR(-EINVAL);
452
453 if (hctx_idx >= q->nr_hw_queues)
454 return ERR_PTR(-EIO);
455
456 ret = blk_queue_enter(q, flags);
457 if (ret)
458 return ERR_PTR(ret);
459
460 /*
461 * Check if the hardware context is actually mapped to anything.
462 * If not tell the caller that it should skip this queue.
463 */
464 ret = -EXDEV;
465 data.hctx = q->queue_hw_ctx[hctx_idx];
466 if (!blk_mq_hw_queue_mapped(data.hctx))
467 goto out_queue_exit;
468 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469 data.ctx = __blk_mq_get_ctx(q, cpu);
470
471 if (!q->elevator)
472 blk_mq_tag_busy(data.hctx);
473
474 ret = -EWOULDBLOCK;
475 tag = blk_mq_get_tag(&data);
476 if (tag == BLK_MQ_NO_TAG)
477 goto out_queue_exit;
478 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479
480 out_queue_exit:
481 blk_queue_exit(q);
482 return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485
__blk_mq_free_request(struct request * rq)486 static void __blk_mq_free_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489 struct blk_mq_ctx *ctx = rq->mq_ctx;
490 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 const int sched_tag = rq->internal_tag;
492
493 blk_crypto_free_request(rq);
494 blk_pm_mark_last_busy(rq);
495 rq->mq_hctx = NULL;
496 if (rq->tag != BLK_MQ_NO_TAG)
497 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498 if (sched_tag != BLK_MQ_NO_TAG)
499 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500 blk_mq_sched_restart(hctx);
501 blk_queue_exit(q);
502 }
503
blk_mq_free_request(struct request * rq)504 void blk_mq_free_request(struct request *rq)
505 {
506 struct request_queue *q = rq->q;
507 struct elevator_queue *e = q->elevator;
508 struct blk_mq_ctx *ctx = rq->mq_ctx;
509 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510
511 if (rq->rq_flags & RQF_ELVPRIV) {
512 if (e && e->type->ops.finish_request)
513 e->type->ops.finish_request(rq);
514 if (rq->elv.icq) {
515 put_io_context(rq->elv.icq->ioc);
516 rq->elv.icq = NULL;
517 }
518 }
519
520 ctx->rq_completed[rq_is_sync(rq)]++;
521 if (rq->rq_flags & RQF_MQ_INFLIGHT)
522 __blk_mq_dec_active_requests(hctx);
523
524 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525 laptop_io_completion(q->backing_dev_info);
526
527 rq_qos_done(q, rq);
528
529 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530 if (refcount_dec_and_test(&rq->ref))
531 __blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534
__blk_mq_end_request(struct request * rq,blk_status_t error)535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 u64 now = 0;
538
539 if (blk_mq_need_time_stamp(rq))
540 now = ktime_get_ns();
541
542 if (rq->rq_flags & RQF_STATS) {
543 blk_mq_poll_stats_start(rq->q);
544 blk_stat_add(rq, now);
545 }
546
547 blk_mq_sched_completed_request(rq, now);
548
549 blk_account_io_done(rq, now);
550
551 if (rq->end_io) {
552 rq_qos_done(rq->q, rq);
553 rq->end_io(rq, error);
554 } else {
555 blk_mq_free_request(rq);
556 }
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559
blk_mq_end_request(struct request * rq,blk_status_t error)560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
564 __blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567
568 /*
569 * Softirq action handler - move entries to local list and loop over them
570 * while passing them to the queue registered handler.
571 */
blk_done_softirq(struct softirq_action * h)572 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573 {
574 struct list_head *cpu_list, local_list;
575
576 local_irq_disable();
577 cpu_list = this_cpu_ptr(&blk_cpu_done);
578 list_replace_init(cpu_list, &local_list);
579 local_irq_enable();
580
581 while (!list_empty(&local_list)) {
582 struct request *rq;
583
584 rq = list_entry(local_list.next, struct request, ipi_list);
585 list_del_init(&rq->ipi_list);
586 rq->q->mq_ops->complete(rq);
587 }
588 }
589
blk_mq_trigger_softirq(struct request * rq)590 static void blk_mq_trigger_softirq(struct request *rq)
591 {
592 struct list_head *list;
593 unsigned long flags;
594
595 local_irq_save(flags);
596 list = this_cpu_ptr(&blk_cpu_done);
597 list_add_tail(&rq->ipi_list, list);
598
599 /*
600 * If the list only contains our just added request, signal a raise of
601 * the softirq. If there are already entries there, someone already
602 * raised the irq but it hasn't run yet.
603 */
604 if (list->next == &rq->ipi_list)
605 raise_softirq_irqoff(BLOCK_SOFTIRQ);
606 local_irq_restore(flags);
607 }
608
blk_softirq_cpu_dead(unsigned int cpu)609 static int blk_softirq_cpu_dead(unsigned int cpu)
610 {
611 /*
612 * If a CPU goes away, splice its entries to the current CPU
613 * and trigger a run of the softirq
614 */
615 local_irq_disable();
616 list_splice_init(&per_cpu(blk_cpu_done, cpu),
617 this_cpu_ptr(&blk_cpu_done));
618 raise_softirq_irqoff(BLOCK_SOFTIRQ);
619 local_irq_enable();
620
621 return 0;
622 }
623
624
__blk_mq_complete_request_remote(void * data)625 static void __blk_mq_complete_request_remote(void *data)
626 {
627 struct request *rq = data;
628
629 /*
630 * For most of single queue controllers, there is only one irq vector
631 * for handling I/O completion, and the only irq's affinity is set
632 * to all possible CPUs. On most of ARCHs, this affinity means the irq
633 * is handled on one specific CPU.
634 *
635 * So complete I/O requests in softirq context in case of single queue
636 * devices to avoid degrading I/O performance due to irqsoff latency.
637 */
638 if (rq->q->nr_hw_queues == 1)
639 blk_mq_trigger_softirq(rq);
640 else
641 rq->q->mq_ops->complete(rq);
642 }
643
blk_mq_complete_need_ipi(struct request * rq)644 static inline bool blk_mq_complete_need_ipi(struct request *rq)
645 {
646 int cpu = raw_smp_processor_id();
647
648 if (!IS_ENABLED(CONFIG_SMP) ||
649 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650 return false;
651
652 /* same CPU or cache domain? Complete locally */
653 if (cpu == rq->mq_ctx->cpu ||
654 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656 return false;
657
658 /* don't try to IPI to an offline CPU */
659 return cpu_online(rq->mq_ctx->cpu);
660 }
661
blk_mq_complete_request_remote(struct request * rq)662 bool blk_mq_complete_request_remote(struct request *rq)
663 {
664 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665
666 /*
667 * For a polled request, always complete locallly, it's pointless
668 * to redirect the completion.
669 */
670 if (rq->cmd_flags & REQ_HIPRI)
671 return false;
672
673 if (blk_mq_complete_need_ipi(rq)) {
674 rq->csd.func = __blk_mq_complete_request_remote;
675 rq->csd.info = rq;
676 rq->csd.flags = 0;
677 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678 } else {
679 if (rq->q->nr_hw_queues > 1)
680 return false;
681 blk_mq_trigger_softirq(rq);
682 }
683
684 return true;
685 }
686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
687
688 /**
689 * blk_mq_complete_request - end I/O on a request
690 * @rq: the request being processed
691 *
692 * Description:
693 * Complete a request by scheduling the ->complete_rq operation.
694 **/
blk_mq_complete_request(struct request * rq)695 void blk_mq_complete_request(struct request *rq)
696 {
697 if (!blk_mq_complete_request_remote(rq))
698 rq->q->mq_ops->complete(rq);
699 }
700 EXPORT_SYMBOL(blk_mq_complete_request);
701
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703 __releases(hctx->srcu)
704 {
705 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
706 rcu_read_unlock();
707 else
708 srcu_read_unlock(hctx->srcu, srcu_idx);
709 }
710
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712 __acquires(hctx->srcu)
713 {
714 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
715 /* shut up gcc false positive */
716 *srcu_idx = 0;
717 rcu_read_lock();
718 } else
719 *srcu_idx = srcu_read_lock(hctx->srcu);
720 }
721
722 /**
723 * blk_mq_start_request - Start processing a request
724 * @rq: Pointer to request to be started
725 *
726 * Function used by device drivers to notify the block layer that a request
727 * is going to be processed now, so blk layer can do proper initializations
728 * such as starting the timeout timer.
729 */
blk_mq_start_request(struct request * rq)730 void blk_mq_start_request(struct request *rq)
731 {
732 struct request_queue *q = rq->q;
733
734 trace_block_rq_issue(q, rq);
735
736 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737 rq->io_start_time_ns = ktime_get_ns();
738 rq->stats_sectors = blk_rq_sectors(rq);
739 rq->rq_flags |= RQF_STATS;
740 rq_qos_issue(q, rq);
741 }
742
743 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744
745 blk_add_timer(rq);
746 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747
748 #ifdef CONFIG_BLK_DEV_INTEGRITY
749 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
750 q->integrity.profile->prepare_fn(rq);
751 #endif
752 }
753 EXPORT_SYMBOL(blk_mq_start_request);
754
__blk_mq_requeue_request(struct request * rq)755 static void __blk_mq_requeue_request(struct request *rq)
756 {
757 struct request_queue *q = rq->q;
758
759 blk_mq_put_driver_tag(rq);
760
761 trace_block_rq_requeue(q, rq);
762 rq_qos_requeue(q, rq);
763
764 if (blk_mq_request_started(rq)) {
765 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766 rq->rq_flags &= ~RQF_TIMED_OUT;
767 }
768 }
769
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771 {
772 __blk_mq_requeue_request(rq);
773
774 /* this request will be re-inserted to io scheduler queue */
775 blk_mq_sched_requeue_request(rq);
776
777 BUG_ON(!list_empty(&rq->queuelist));
778 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
779 }
780 EXPORT_SYMBOL(blk_mq_requeue_request);
781
blk_mq_requeue_work(struct work_struct * work)782 static void blk_mq_requeue_work(struct work_struct *work)
783 {
784 struct request_queue *q =
785 container_of(work, struct request_queue, requeue_work.work);
786 LIST_HEAD(rq_list);
787 struct request *rq, *next;
788
789 spin_lock_irq(&q->requeue_lock);
790 list_splice_init(&q->requeue_list, &rq_list);
791 spin_unlock_irq(&q->requeue_lock);
792
793 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
794 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
795 continue;
796
797 rq->rq_flags &= ~RQF_SOFTBARRIER;
798 list_del_init(&rq->queuelist);
799 /*
800 * If RQF_DONTPREP, rq has contained some driver specific
801 * data, so insert it to hctx dispatch list to avoid any
802 * merge.
803 */
804 if (rq->rq_flags & RQF_DONTPREP)
805 blk_mq_request_bypass_insert(rq, false, false);
806 else
807 blk_mq_sched_insert_request(rq, true, false, false);
808 }
809
810 while (!list_empty(&rq_list)) {
811 rq = list_entry(rq_list.next, struct request, queuelist);
812 list_del_init(&rq->queuelist);
813 blk_mq_sched_insert_request(rq, false, false, false);
814 }
815
816 blk_mq_run_hw_queues(q, false);
817 }
818
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
820 bool kick_requeue_list)
821 {
822 struct request_queue *q = rq->q;
823 unsigned long flags;
824
825 /*
826 * We abuse this flag that is otherwise used by the I/O scheduler to
827 * request head insertion from the workqueue.
828 */
829 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
830
831 spin_lock_irqsave(&q->requeue_lock, flags);
832 if (at_head) {
833 rq->rq_flags |= RQF_SOFTBARRIER;
834 list_add(&rq->queuelist, &q->requeue_list);
835 } else {
836 list_add_tail(&rq->queuelist, &q->requeue_list);
837 }
838 spin_unlock_irqrestore(&q->requeue_lock, flags);
839
840 if (kick_requeue_list)
841 blk_mq_kick_requeue_list(q);
842 }
843
blk_mq_kick_requeue_list(struct request_queue * q)844 void blk_mq_kick_requeue_list(struct request_queue *q)
845 {
846 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
847 }
848 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
849
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)850 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
851 unsigned long msecs)
852 {
853 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
854 msecs_to_jiffies(msecs));
855 }
856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
857
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
859 {
860 if (tag < tags->nr_tags) {
861 prefetch(tags->rqs[tag]);
862 return tags->rqs[tag];
863 }
864
865 return NULL;
866 }
867 EXPORT_SYMBOL(blk_mq_tag_to_rq);
868
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
870 void *priv, bool reserved)
871 {
872 /*
873 * If we find a request that isn't idle and the queue matches,
874 * we know the queue is busy. Return false to stop the iteration.
875 */
876 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
877 bool *busy = priv;
878
879 *busy = true;
880 return false;
881 }
882
883 return true;
884 }
885
blk_mq_queue_inflight(struct request_queue * q)886 bool blk_mq_queue_inflight(struct request_queue *q)
887 {
888 bool busy = false;
889
890 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
891 return busy;
892 }
893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
894
blk_mq_rq_timed_out(struct request * req,bool reserved)895 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
896 {
897 req->rq_flags |= RQF_TIMED_OUT;
898 if (req->q->mq_ops->timeout) {
899 enum blk_eh_timer_return ret;
900
901 ret = req->q->mq_ops->timeout(req, reserved);
902 if (ret == BLK_EH_DONE)
903 return;
904 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
905 }
906
907 blk_add_timer(req);
908 }
909
blk_mq_req_expired(struct request * rq,unsigned long * next)910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
911 {
912 unsigned long deadline;
913
914 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
915 return false;
916 if (rq->rq_flags & RQF_TIMED_OUT)
917 return false;
918
919 deadline = READ_ONCE(rq->deadline);
920 if (time_after_eq(jiffies, deadline))
921 return true;
922
923 if (*next == 0)
924 *next = deadline;
925 else if (time_after(*next, deadline))
926 *next = deadline;
927 return false;
928 }
929
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
931 struct request *rq, void *priv, bool reserved)
932 {
933 unsigned long *next = priv;
934
935 /*
936 * Just do a quick check if it is expired before locking the request in
937 * so we're not unnecessarilly synchronizing across CPUs.
938 */
939 if (!blk_mq_req_expired(rq, next))
940 return true;
941
942 /*
943 * We have reason to believe the request may be expired. Take a
944 * reference on the request to lock this request lifetime into its
945 * currently allocated context to prevent it from being reallocated in
946 * the event the completion by-passes this timeout handler.
947 *
948 * If the reference was already released, then the driver beat the
949 * timeout handler to posting a natural completion.
950 */
951 if (!refcount_inc_not_zero(&rq->ref))
952 return true;
953
954 /*
955 * The request is now locked and cannot be reallocated underneath the
956 * timeout handler's processing. Re-verify this exact request is truly
957 * expired; if it is not expired, then the request was completed and
958 * reallocated as a new request.
959 */
960 if (blk_mq_req_expired(rq, next))
961 blk_mq_rq_timed_out(rq, reserved);
962
963 if (is_flush_rq(rq, hctx))
964 rq->end_io(rq, 0);
965 else if (refcount_dec_and_test(&rq->ref))
966 __blk_mq_free_request(rq);
967
968 return true;
969 }
970
blk_mq_timeout_work(struct work_struct * work)971 static void blk_mq_timeout_work(struct work_struct *work)
972 {
973 struct request_queue *q =
974 container_of(work, struct request_queue, timeout_work);
975 unsigned long next = 0;
976 struct blk_mq_hw_ctx *hctx;
977 int i;
978
979 /* A deadlock might occur if a request is stuck requiring a
980 * timeout at the same time a queue freeze is waiting
981 * completion, since the timeout code would not be able to
982 * acquire the queue reference here.
983 *
984 * That's why we don't use blk_queue_enter here; instead, we use
985 * percpu_ref_tryget directly, because we need to be able to
986 * obtain a reference even in the short window between the queue
987 * starting to freeze, by dropping the first reference in
988 * blk_freeze_queue_start, and the moment the last request is
989 * consumed, marked by the instant q_usage_counter reaches
990 * zero.
991 */
992 if (!percpu_ref_tryget(&q->q_usage_counter))
993 return;
994
995 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996
997 if (next != 0) {
998 mod_timer(&q->timeout, next);
999 } else {
1000 /*
1001 * Request timeouts are handled as a forward rolling timer. If
1002 * we end up here it means that no requests are pending and
1003 * also that no request has been pending for a while. Mark
1004 * each hctx as idle.
1005 */
1006 queue_for_each_hw_ctx(q, hctx, i) {
1007 /* the hctx may be unmapped, so check it here */
1008 if (blk_mq_hw_queue_mapped(hctx))
1009 blk_mq_tag_idle(hctx);
1010 }
1011 }
1012 blk_queue_exit(q);
1013 }
1014
1015 struct flush_busy_ctx_data {
1016 struct blk_mq_hw_ctx *hctx;
1017 struct list_head *list;
1018 };
1019
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021 {
1022 struct flush_busy_ctx_data *flush_data = data;
1023 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025 enum hctx_type type = hctx->type;
1026
1027 spin_lock(&ctx->lock);
1028 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029 sbitmap_clear_bit(sb, bitnr);
1030 spin_unlock(&ctx->lock);
1031 return true;
1032 }
1033
1034 /*
1035 * Process software queues that have been marked busy, splicing them
1036 * to the for-dispatch
1037 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039 {
1040 struct flush_busy_ctx_data data = {
1041 .hctx = hctx,
1042 .list = list,
1043 };
1044
1045 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046 }
1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048
1049 struct dispatch_rq_data {
1050 struct blk_mq_hw_ctx *hctx;
1051 struct request *rq;
1052 };
1053
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055 void *data)
1056 {
1057 struct dispatch_rq_data *dispatch_data = data;
1058 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060 enum hctx_type type = hctx->type;
1061
1062 spin_lock(&ctx->lock);
1063 if (!list_empty(&ctx->rq_lists[type])) {
1064 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065 list_del_init(&dispatch_data->rq->queuelist);
1066 if (list_empty(&ctx->rq_lists[type]))
1067 sbitmap_clear_bit(sb, bitnr);
1068 }
1069 spin_unlock(&ctx->lock);
1070
1071 return !dispatch_data->rq;
1072 }
1073
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075 struct blk_mq_ctx *start)
1076 {
1077 unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 struct dispatch_rq_data data = {
1079 .hctx = hctx,
1080 .rq = NULL,
1081 };
1082
1083 __sbitmap_for_each_set(&hctx->ctx_map, off,
1084 dispatch_rq_from_ctx, &data);
1085
1086 return data.rq;
1087 }
1088
queued_to_index(unsigned int queued)1089 static inline unsigned int queued_to_index(unsigned int queued)
1090 {
1091 if (!queued)
1092 return 0;
1093
1094 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 }
1096
__blk_mq_get_driver_tag(struct request * rq)1097 static bool __blk_mq_get_driver_tag(struct request *rq)
1098 {
1099 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1100 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101 int tag;
1102
1103 blk_mq_tag_busy(rq->mq_hctx);
1104
1105 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106 bt = rq->mq_hctx->tags->breserved_tags;
1107 tag_offset = 0;
1108 } else {
1109 if (!hctx_may_queue(rq->mq_hctx, bt))
1110 return false;
1111 }
1112
1113 tag = __sbitmap_queue_get(bt);
1114 if (tag == BLK_MQ_NO_TAG)
1115 return false;
1116
1117 rq->tag = tag + tag_offset;
1118 return true;
1119 }
1120
blk_mq_get_driver_tag(struct request * rq)1121 static bool blk_mq_get_driver_tag(struct request *rq)
1122 {
1123 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1124
1125 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1126 return false;
1127
1128 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1129 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1130 rq->rq_flags |= RQF_MQ_INFLIGHT;
1131 __blk_mq_inc_active_requests(hctx);
1132 }
1133 hctx->tags->rqs[rq->tag] = rq;
1134 return true;
1135 }
1136
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1137 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1138 int flags, void *key)
1139 {
1140 struct blk_mq_hw_ctx *hctx;
1141
1142 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1143
1144 spin_lock(&hctx->dispatch_wait_lock);
1145 if (!list_empty(&wait->entry)) {
1146 struct sbitmap_queue *sbq;
1147
1148 list_del_init(&wait->entry);
1149 sbq = hctx->tags->bitmap_tags;
1150 atomic_dec(&sbq->ws_active);
1151 }
1152 spin_unlock(&hctx->dispatch_wait_lock);
1153
1154 blk_mq_run_hw_queue(hctx, true);
1155 return 1;
1156 }
1157
1158 /*
1159 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1160 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1161 * restart. For both cases, take care to check the condition again after
1162 * marking us as waiting.
1163 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1164 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1165 struct request *rq)
1166 {
1167 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1168 struct wait_queue_head *wq;
1169 wait_queue_entry_t *wait;
1170 bool ret;
1171
1172 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1173 blk_mq_sched_mark_restart_hctx(hctx);
1174
1175 /*
1176 * It's possible that a tag was freed in the window between the
1177 * allocation failure and adding the hardware queue to the wait
1178 * queue.
1179 *
1180 * Don't clear RESTART here, someone else could have set it.
1181 * At most this will cost an extra queue run.
1182 */
1183 return blk_mq_get_driver_tag(rq);
1184 }
1185
1186 wait = &hctx->dispatch_wait;
1187 if (!list_empty_careful(&wait->entry))
1188 return false;
1189
1190 wq = &bt_wait_ptr(sbq, hctx)->wait;
1191
1192 spin_lock_irq(&wq->lock);
1193 spin_lock(&hctx->dispatch_wait_lock);
1194 if (!list_empty(&wait->entry)) {
1195 spin_unlock(&hctx->dispatch_wait_lock);
1196 spin_unlock_irq(&wq->lock);
1197 return false;
1198 }
1199
1200 atomic_inc(&sbq->ws_active);
1201 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1202 __add_wait_queue(wq, wait);
1203
1204 /*
1205 * It's possible that a tag was freed in the window between the
1206 * allocation failure and adding the hardware queue to the wait
1207 * queue.
1208 */
1209 ret = blk_mq_get_driver_tag(rq);
1210 if (!ret) {
1211 spin_unlock(&hctx->dispatch_wait_lock);
1212 spin_unlock_irq(&wq->lock);
1213 return false;
1214 }
1215
1216 /*
1217 * We got a tag, remove ourselves from the wait queue to ensure
1218 * someone else gets the wakeup.
1219 */
1220 list_del_init(&wait->entry);
1221 atomic_dec(&sbq->ws_active);
1222 spin_unlock(&hctx->dispatch_wait_lock);
1223 spin_unlock_irq(&wq->lock);
1224
1225 return true;
1226 }
1227
1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1229 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1230 /*
1231 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1232 * - EWMA is one simple way to compute running average value
1233 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1234 * - take 4 as factor for avoiding to get too small(0) result, and this
1235 * factor doesn't matter because EWMA decreases exponentially
1236 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1237 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1238 {
1239 unsigned int ewma;
1240
1241 if (hctx->queue->elevator)
1242 return;
1243
1244 ewma = hctx->dispatch_busy;
1245
1246 if (!ewma && !busy)
1247 return;
1248
1249 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1250 if (busy)
1251 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1252 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1253
1254 hctx->dispatch_busy = ewma;
1255 }
1256
1257 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1258
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1259 static void blk_mq_handle_dev_resource(struct request *rq,
1260 struct list_head *list)
1261 {
1262 struct request *next =
1263 list_first_entry_or_null(list, struct request, queuelist);
1264
1265 /*
1266 * If an I/O scheduler has been configured and we got a driver tag for
1267 * the next request already, free it.
1268 */
1269 if (next)
1270 blk_mq_put_driver_tag(next);
1271
1272 list_add(&rq->queuelist, list);
1273 __blk_mq_requeue_request(rq);
1274 }
1275
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1276 static void blk_mq_handle_zone_resource(struct request *rq,
1277 struct list_head *zone_list)
1278 {
1279 /*
1280 * If we end up here it is because we cannot dispatch a request to a
1281 * specific zone due to LLD level zone-write locking or other zone
1282 * related resource not being available. In this case, set the request
1283 * aside in zone_list for retrying it later.
1284 */
1285 list_add(&rq->queuelist, zone_list);
1286 __blk_mq_requeue_request(rq);
1287 }
1288
1289 enum prep_dispatch {
1290 PREP_DISPATCH_OK,
1291 PREP_DISPATCH_NO_TAG,
1292 PREP_DISPATCH_NO_BUDGET,
1293 };
1294
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1295 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1296 bool need_budget)
1297 {
1298 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1299
1300 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1301 blk_mq_put_driver_tag(rq);
1302 return PREP_DISPATCH_NO_BUDGET;
1303 }
1304
1305 if (!blk_mq_get_driver_tag(rq)) {
1306 /*
1307 * The initial allocation attempt failed, so we need to
1308 * rerun the hardware queue when a tag is freed. The
1309 * waitqueue takes care of that. If the queue is run
1310 * before we add this entry back on the dispatch list,
1311 * we'll re-run it below.
1312 */
1313 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1314 /*
1315 * All budgets not got from this function will be put
1316 * together during handling partial dispatch
1317 */
1318 if (need_budget)
1319 blk_mq_put_dispatch_budget(rq->q);
1320 return PREP_DISPATCH_NO_TAG;
1321 }
1322 }
1323
1324 return PREP_DISPATCH_OK;
1325 }
1326
1327 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1328 static void blk_mq_release_budgets(struct request_queue *q,
1329 unsigned int nr_budgets)
1330 {
1331 int i;
1332
1333 for (i = 0; i < nr_budgets; i++)
1334 blk_mq_put_dispatch_budget(q);
1335 }
1336
1337 /*
1338 * Returns true if we did some work AND can potentially do more.
1339 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1341 unsigned int nr_budgets)
1342 {
1343 enum prep_dispatch prep;
1344 struct request_queue *q = hctx->queue;
1345 struct request *rq, *nxt;
1346 int errors, queued;
1347 blk_status_t ret = BLK_STS_OK;
1348 LIST_HEAD(zone_list);
1349
1350 if (list_empty(list))
1351 return false;
1352
1353 /*
1354 * Now process all the entries, sending them to the driver.
1355 */
1356 errors = queued = 0;
1357 do {
1358 struct blk_mq_queue_data bd;
1359
1360 rq = list_first_entry(list, struct request, queuelist);
1361
1362 WARN_ON_ONCE(hctx != rq->mq_hctx);
1363 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1364 if (prep != PREP_DISPATCH_OK)
1365 break;
1366
1367 list_del_init(&rq->queuelist);
1368
1369 bd.rq = rq;
1370
1371 /*
1372 * Flag last if we have no more requests, or if we have more
1373 * but can't assign a driver tag to it.
1374 */
1375 if (list_empty(list))
1376 bd.last = true;
1377 else {
1378 nxt = list_first_entry(list, struct request, queuelist);
1379 bd.last = !blk_mq_get_driver_tag(nxt);
1380 }
1381
1382 /*
1383 * once the request is queued to lld, no need to cover the
1384 * budget any more
1385 */
1386 if (nr_budgets)
1387 nr_budgets--;
1388 ret = q->mq_ops->queue_rq(hctx, &bd);
1389 switch (ret) {
1390 case BLK_STS_OK:
1391 queued++;
1392 break;
1393 case BLK_STS_RESOURCE:
1394 case BLK_STS_DEV_RESOURCE:
1395 blk_mq_handle_dev_resource(rq, list);
1396 goto out;
1397 case BLK_STS_ZONE_RESOURCE:
1398 /*
1399 * Move the request to zone_list and keep going through
1400 * the dispatch list to find more requests the drive can
1401 * accept.
1402 */
1403 blk_mq_handle_zone_resource(rq, &zone_list);
1404 break;
1405 default:
1406 errors++;
1407 blk_mq_end_request(rq, BLK_STS_IOERR);
1408 }
1409 } while (!list_empty(list));
1410 out:
1411 if (!list_empty(&zone_list))
1412 list_splice_tail_init(&zone_list, list);
1413
1414 hctx->dispatched[queued_to_index(queued)]++;
1415
1416 /* If we didn't flush the entire list, we could have told the driver
1417 * there was more coming, but that turned out to be a lie.
1418 */
1419 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1420 q->mq_ops->commit_rqs(hctx);
1421 /*
1422 * Any items that need requeuing? Stuff them into hctx->dispatch,
1423 * that is where we will continue on next queue run.
1424 */
1425 if (!list_empty(list)) {
1426 bool needs_restart;
1427 /* For non-shared tags, the RESTART check will suffice */
1428 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1429 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1430 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1431
1432 blk_mq_release_budgets(q, nr_budgets);
1433
1434 spin_lock(&hctx->lock);
1435 list_splice_tail_init(list, &hctx->dispatch);
1436 spin_unlock(&hctx->lock);
1437
1438 /*
1439 * Order adding requests to hctx->dispatch and checking
1440 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1441 * in blk_mq_sched_restart(). Avoid restart code path to
1442 * miss the new added requests to hctx->dispatch, meantime
1443 * SCHED_RESTART is observed here.
1444 */
1445 smp_mb();
1446
1447 /*
1448 * If SCHED_RESTART was set by the caller of this function and
1449 * it is no longer set that means that it was cleared by another
1450 * thread and hence that a queue rerun is needed.
1451 *
1452 * If 'no_tag' is set, that means that we failed getting
1453 * a driver tag with an I/O scheduler attached. If our dispatch
1454 * waitqueue is no longer active, ensure that we run the queue
1455 * AFTER adding our entries back to the list.
1456 *
1457 * If no I/O scheduler has been configured it is possible that
1458 * the hardware queue got stopped and restarted before requests
1459 * were pushed back onto the dispatch list. Rerun the queue to
1460 * avoid starvation. Notes:
1461 * - blk_mq_run_hw_queue() checks whether or not a queue has
1462 * been stopped before rerunning a queue.
1463 * - Some but not all block drivers stop a queue before
1464 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1465 * and dm-rq.
1466 *
1467 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1468 * bit is set, run queue after a delay to avoid IO stalls
1469 * that could otherwise occur if the queue is idle. We'll do
1470 * similar if we couldn't get budget and SCHED_RESTART is set.
1471 */
1472 needs_restart = blk_mq_sched_needs_restart(hctx);
1473 if (!needs_restart ||
1474 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1475 blk_mq_run_hw_queue(hctx, true);
1476 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1477 no_budget_avail))
1478 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1479
1480 blk_mq_update_dispatch_busy(hctx, true);
1481 return false;
1482 } else
1483 blk_mq_update_dispatch_busy(hctx, false);
1484
1485 return (queued + errors) != 0;
1486 }
1487
1488 /**
1489 * __blk_mq_run_hw_queue - Run a hardware queue.
1490 * @hctx: Pointer to the hardware queue to run.
1491 *
1492 * Send pending requests to the hardware.
1493 */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1494 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1495 {
1496 int srcu_idx;
1497
1498 /*
1499 * We should be running this queue from one of the CPUs that
1500 * are mapped to it.
1501 *
1502 * There are at least two related races now between setting
1503 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1504 * __blk_mq_run_hw_queue():
1505 *
1506 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1507 * but later it becomes online, then this warning is harmless
1508 * at all
1509 *
1510 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1511 * but later it becomes offline, then the warning can't be
1512 * triggered, and we depend on blk-mq timeout handler to
1513 * handle dispatched requests to this hctx
1514 */
1515 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1516 cpu_online(hctx->next_cpu)) {
1517 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1518 raw_smp_processor_id(),
1519 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1520 dump_stack();
1521 }
1522
1523 /*
1524 * We can't run the queue inline with ints disabled. Ensure that
1525 * we catch bad users of this early.
1526 */
1527 WARN_ON_ONCE(in_interrupt());
1528
1529 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1530
1531 hctx_lock(hctx, &srcu_idx);
1532 blk_mq_sched_dispatch_requests(hctx);
1533 hctx_unlock(hctx, srcu_idx);
1534 }
1535
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1536 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1537 {
1538 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1539
1540 if (cpu >= nr_cpu_ids)
1541 cpu = cpumask_first(hctx->cpumask);
1542 return cpu;
1543 }
1544
1545 /*
1546 * It'd be great if the workqueue API had a way to pass
1547 * in a mask and had some smarts for more clever placement.
1548 * For now we just round-robin here, switching for every
1549 * BLK_MQ_CPU_WORK_BATCH queued items.
1550 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1551 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1552 {
1553 bool tried = false;
1554 int next_cpu = hctx->next_cpu;
1555
1556 if (hctx->queue->nr_hw_queues == 1)
1557 return WORK_CPU_UNBOUND;
1558
1559 if (--hctx->next_cpu_batch <= 0) {
1560 select_cpu:
1561 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1562 cpu_online_mask);
1563 if (next_cpu >= nr_cpu_ids)
1564 next_cpu = blk_mq_first_mapped_cpu(hctx);
1565 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1566 }
1567
1568 /*
1569 * Do unbound schedule if we can't find a online CPU for this hctx,
1570 * and it should only happen in the path of handling CPU DEAD.
1571 */
1572 if (!cpu_online(next_cpu)) {
1573 if (!tried) {
1574 tried = true;
1575 goto select_cpu;
1576 }
1577
1578 /*
1579 * Make sure to re-select CPU next time once after CPUs
1580 * in hctx->cpumask become online again.
1581 */
1582 hctx->next_cpu = next_cpu;
1583 hctx->next_cpu_batch = 1;
1584 return WORK_CPU_UNBOUND;
1585 }
1586
1587 hctx->next_cpu = next_cpu;
1588 return next_cpu;
1589 }
1590
1591 /**
1592 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1593 * @hctx: Pointer to the hardware queue to run.
1594 * @async: If we want to run the queue asynchronously.
1595 * @msecs: Microseconds of delay to wait before running the queue.
1596 *
1597 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1598 * with a delay of @msecs.
1599 */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1600 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1601 unsigned long msecs)
1602 {
1603 if (unlikely(blk_mq_hctx_stopped(hctx)))
1604 return;
1605
1606 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1607 int cpu = get_cpu();
1608 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1609 __blk_mq_run_hw_queue(hctx);
1610 put_cpu();
1611 return;
1612 }
1613
1614 put_cpu();
1615 }
1616
1617 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1618 msecs_to_jiffies(msecs));
1619 }
1620
1621 /**
1622 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1623 * @hctx: Pointer to the hardware queue to run.
1624 * @msecs: Microseconds of delay to wait before running the queue.
1625 *
1626 * Run a hardware queue asynchronously with a delay of @msecs.
1627 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1628 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1629 {
1630 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1631 }
1632 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1633
1634 /**
1635 * blk_mq_run_hw_queue - Start to run a hardware queue.
1636 * @hctx: Pointer to the hardware queue to run.
1637 * @async: If we want to run the queue asynchronously.
1638 *
1639 * Check if the request queue is not in a quiesced state and if there are
1640 * pending requests to be sent. If this is true, run the queue to send requests
1641 * to hardware.
1642 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1643 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1644 {
1645 int srcu_idx;
1646 bool need_run;
1647
1648 /*
1649 * When queue is quiesced, we may be switching io scheduler, or
1650 * updating nr_hw_queues, or other things, and we can't run queue
1651 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1652 *
1653 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1654 * quiesced.
1655 */
1656 hctx_lock(hctx, &srcu_idx);
1657 need_run = !blk_queue_quiesced(hctx->queue) &&
1658 blk_mq_hctx_has_pending(hctx);
1659 hctx_unlock(hctx, srcu_idx);
1660
1661 if (need_run)
1662 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1663 }
1664 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1665
1666 /**
1667 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1668 * @q: Pointer to the request queue to run.
1669 * @async: If we want to run the queue asynchronously.
1670 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1671 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1672 {
1673 struct blk_mq_hw_ctx *hctx;
1674 int i;
1675
1676 queue_for_each_hw_ctx(q, hctx, i) {
1677 if (blk_mq_hctx_stopped(hctx))
1678 continue;
1679
1680 blk_mq_run_hw_queue(hctx, async);
1681 }
1682 }
1683 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1684
1685 /**
1686 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1687 * @q: Pointer to the request queue to run.
1688 * @msecs: Microseconds of delay to wait before running the queues.
1689 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1690 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1691 {
1692 struct blk_mq_hw_ctx *hctx;
1693 int i;
1694
1695 queue_for_each_hw_ctx(q, hctx, i) {
1696 if (blk_mq_hctx_stopped(hctx))
1697 continue;
1698
1699 blk_mq_delay_run_hw_queue(hctx, msecs);
1700 }
1701 }
1702 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1703
1704 /**
1705 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1706 * @q: request queue.
1707 *
1708 * The caller is responsible for serializing this function against
1709 * blk_mq_{start,stop}_hw_queue().
1710 */
blk_mq_queue_stopped(struct request_queue * q)1711 bool blk_mq_queue_stopped(struct request_queue *q)
1712 {
1713 struct blk_mq_hw_ctx *hctx;
1714 int i;
1715
1716 queue_for_each_hw_ctx(q, hctx, i)
1717 if (blk_mq_hctx_stopped(hctx))
1718 return true;
1719
1720 return false;
1721 }
1722 EXPORT_SYMBOL(blk_mq_queue_stopped);
1723
1724 /*
1725 * This function is often used for pausing .queue_rq() by driver when
1726 * there isn't enough resource or some conditions aren't satisfied, and
1727 * BLK_STS_RESOURCE is usually returned.
1728 *
1729 * We do not guarantee that dispatch can be drained or blocked
1730 * after blk_mq_stop_hw_queue() returns. Please use
1731 * blk_mq_quiesce_queue() for that requirement.
1732 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1733 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1734 {
1735 cancel_delayed_work(&hctx->run_work);
1736
1737 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1738 }
1739 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1740
1741 /*
1742 * This function is often used for pausing .queue_rq() by driver when
1743 * there isn't enough resource or some conditions aren't satisfied, and
1744 * BLK_STS_RESOURCE is usually returned.
1745 *
1746 * We do not guarantee that dispatch can be drained or blocked
1747 * after blk_mq_stop_hw_queues() returns. Please use
1748 * blk_mq_quiesce_queue() for that requirement.
1749 */
blk_mq_stop_hw_queues(struct request_queue * q)1750 void blk_mq_stop_hw_queues(struct request_queue *q)
1751 {
1752 struct blk_mq_hw_ctx *hctx;
1753 int i;
1754
1755 queue_for_each_hw_ctx(q, hctx, i)
1756 blk_mq_stop_hw_queue(hctx);
1757 }
1758 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1759
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1760 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1761 {
1762 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1763
1764 blk_mq_run_hw_queue(hctx, false);
1765 }
1766 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1767
blk_mq_start_hw_queues(struct request_queue * q)1768 void blk_mq_start_hw_queues(struct request_queue *q)
1769 {
1770 struct blk_mq_hw_ctx *hctx;
1771 int i;
1772
1773 queue_for_each_hw_ctx(q, hctx, i)
1774 blk_mq_start_hw_queue(hctx);
1775 }
1776 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1777
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1778 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1779 {
1780 if (!blk_mq_hctx_stopped(hctx))
1781 return;
1782
1783 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1784 blk_mq_run_hw_queue(hctx, async);
1785 }
1786 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1787
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1788 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1789 {
1790 struct blk_mq_hw_ctx *hctx;
1791 int i;
1792
1793 queue_for_each_hw_ctx(q, hctx, i)
1794 blk_mq_start_stopped_hw_queue(hctx, async);
1795 }
1796 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1797
blk_mq_run_work_fn(struct work_struct * work)1798 static void blk_mq_run_work_fn(struct work_struct *work)
1799 {
1800 struct blk_mq_hw_ctx *hctx;
1801
1802 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1803
1804 /*
1805 * If we are stopped, don't run the queue.
1806 */
1807 if (blk_mq_hctx_stopped(hctx))
1808 return;
1809
1810 __blk_mq_run_hw_queue(hctx);
1811 }
1812
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1813 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1814 struct request *rq,
1815 bool at_head)
1816 {
1817 struct blk_mq_ctx *ctx = rq->mq_ctx;
1818 enum hctx_type type = hctx->type;
1819
1820 lockdep_assert_held(&ctx->lock);
1821
1822 trace_block_rq_insert(hctx->queue, rq);
1823
1824 if (at_head)
1825 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1826 else
1827 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1828 }
1829
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1830 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1831 bool at_head)
1832 {
1833 struct blk_mq_ctx *ctx = rq->mq_ctx;
1834
1835 lockdep_assert_held(&ctx->lock);
1836
1837 __blk_mq_insert_req_list(hctx, rq, at_head);
1838 blk_mq_hctx_mark_pending(hctx, ctx);
1839 }
1840
1841 /**
1842 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1843 * @rq: Pointer to request to be inserted.
1844 * @at_head: true if the request should be inserted at the head of the list.
1845 * @run_queue: If we should run the hardware queue after inserting the request.
1846 *
1847 * Should only be used carefully, when the caller knows we want to
1848 * bypass a potential IO scheduler on the target device.
1849 */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1850 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1851 bool run_queue)
1852 {
1853 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1854
1855 spin_lock(&hctx->lock);
1856 if (at_head)
1857 list_add(&rq->queuelist, &hctx->dispatch);
1858 else
1859 list_add_tail(&rq->queuelist, &hctx->dispatch);
1860 spin_unlock(&hctx->lock);
1861
1862 if (run_queue)
1863 blk_mq_run_hw_queue(hctx, false);
1864 }
1865
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1866 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1867 struct list_head *list)
1868
1869 {
1870 struct request *rq;
1871 enum hctx_type type = hctx->type;
1872
1873 /*
1874 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1875 * offline now
1876 */
1877 list_for_each_entry(rq, list, queuelist) {
1878 BUG_ON(rq->mq_ctx != ctx);
1879 trace_block_rq_insert(hctx->queue, rq);
1880 }
1881
1882 spin_lock(&ctx->lock);
1883 list_splice_tail_init(list, &ctx->rq_lists[type]);
1884 blk_mq_hctx_mark_pending(hctx, ctx);
1885 spin_unlock(&ctx->lock);
1886 }
1887
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)1888 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1889 {
1890 struct request *rqa = container_of(a, struct request, queuelist);
1891 struct request *rqb = container_of(b, struct request, queuelist);
1892
1893 if (rqa->mq_ctx != rqb->mq_ctx)
1894 return rqa->mq_ctx > rqb->mq_ctx;
1895 if (rqa->mq_hctx != rqb->mq_hctx)
1896 return rqa->mq_hctx > rqb->mq_hctx;
1897
1898 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1899 }
1900
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1901 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1902 {
1903 LIST_HEAD(list);
1904
1905 if (list_empty(&plug->mq_list))
1906 return;
1907 list_splice_init(&plug->mq_list, &list);
1908
1909 if (plug->rq_count > 2 && plug->multiple_queues)
1910 list_sort(NULL, &list, plug_rq_cmp);
1911
1912 plug->rq_count = 0;
1913
1914 do {
1915 struct list_head rq_list;
1916 struct request *rq, *head_rq = list_entry_rq(list.next);
1917 struct list_head *pos = &head_rq->queuelist; /* skip first */
1918 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1919 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1920 unsigned int depth = 1;
1921
1922 list_for_each_continue(pos, &list) {
1923 rq = list_entry_rq(pos);
1924 BUG_ON(!rq->q);
1925 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1926 break;
1927 depth++;
1928 }
1929
1930 list_cut_before(&rq_list, &list, pos);
1931 trace_block_unplug(head_rq->q, depth, !from_schedule);
1932 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1933 from_schedule);
1934 } while(!list_empty(&list));
1935 }
1936
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1937 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1938 unsigned int nr_segs)
1939 {
1940 int err;
1941
1942 if (bio->bi_opf & REQ_RAHEAD)
1943 rq->cmd_flags |= REQ_FAILFAST_MASK;
1944
1945 rq->__sector = bio->bi_iter.bi_sector;
1946 rq->write_hint = bio->bi_write_hint;
1947 blk_rq_bio_prep(rq, bio, nr_segs);
1948
1949 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1950 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1951 WARN_ON_ONCE(err);
1952
1953 blk_account_io_start(rq);
1954 }
1955
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1956 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1957 struct request *rq,
1958 blk_qc_t *cookie, bool last)
1959 {
1960 struct request_queue *q = rq->q;
1961 struct blk_mq_queue_data bd = {
1962 .rq = rq,
1963 .last = last,
1964 };
1965 blk_qc_t new_cookie;
1966 blk_status_t ret;
1967
1968 new_cookie = request_to_qc_t(hctx, rq);
1969
1970 /*
1971 * For OK queue, we are done. For error, caller may kill it.
1972 * Any other error (busy), just add it to our list as we
1973 * previously would have done.
1974 */
1975 ret = q->mq_ops->queue_rq(hctx, &bd);
1976 switch (ret) {
1977 case BLK_STS_OK:
1978 blk_mq_update_dispatch_busy(hctx, false);
1979 *cookie = new_cookie;
1980 break;
1981 case BLK_STS_RESOURCE:
1982 case BLK_STS_DEV_RESOURCE:
1983 blk_mq_update_dispatch_busy(hctx, true);
1984 __blk_mq_requeue_request(rq);
1985 break;
1986 default:
1987 blk_mq_update_dispatch_busy(hctx, false);
1988 *cookie = BLK_QC_T_NONE;
1989 break;
1990 }
1991
1992 return ret;
1993 }
1994
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)1995 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1996 struct request *rq,
1997 blk_qc_t *cookie,
1998 bool bypass_insert, bool last)
1999 {
2000 struct request_queue *q = rq->q;
2001 bool run_queue = true;
2002
2003 /*
2004 * RCU or SRCU read lock is needed before checking quiesced flag.
2005 *
2006 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2007 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2008 * and avoid driver to try to dispatch again.
2009 */
2010 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2011 run_queue = false;
2012 bypass_insert = false;
2013 goto insert;
2014 }
2015
2016 if (q->elevator && !bypass_insert)
2017 goto insert;
2018
2019 if (!blk_mq_get_dispatch_budget(q))
2020 goto insert;
2021
2022 if (!blk_mq_get_driver_tag(rq)) {
2023 blk_mq_put_dispatch_budget(q);
2024 goto insert;
2025 }
2026
2027 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2028 insert:
2029 if (bypass_insert)
2030 return BLK_STS_RESOURCE;
2031
2032 blk_mq_sched_insert_request(rq, false, run_queue, false);
2033
2034 return BLK_STS_OK;
2035 }
2036
2037 /**
2038 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2039 * @hctx: Pointer of the associated hardware queue.
2040 * @rq: Pointer to request to be sent.
2041 * @cookie: Request queue cookie.
2042 *
2043 * If the device has enough resources to accept a new request now, send the
2044 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2045 * we can try send it another time in the future. Requests inserted at this
2046 * queue have higher priority.
2047 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2048 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2049 struct request *rq, blk_qc_t *cookie)
2050 {
2051 blk_status_t ret;
2052 int srcu_idx;
2053
2054 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2055
2056 hctx_lock(hctx, &srcu_idx);
2057
2058 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2059 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2060 blk_mq_request_bypass_insert(rq, false, true);
2061 else if (ret != BLK_STS_OK)
2062 blk_mq_end_request(rq, ret);
2063
2064 hctx_unlock(hctx, srcu_idx);
2065 }
2066
blk_mq_request_issue_directly(struct request * rq,bool last)2067 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2068 {
2069 blk_status_t ret;
2070 int srcu_idx;
2071 blk_qc_t unused_cookie;
2072 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2073
2074 hctx_lock(hctx, &srcu_idx);
2075 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2076 hctx_unlock(hctx, srcu_idx);
2077
2078 return ret;
2079 }
2080
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2081 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2082 struct list_head *list)
2083 {
2084 int queued = 0;
2085 int errors = 0;
2086
2087 while (!list_empty(list)) {
2088 blk_status_t ret;
2089 struct request *rq = list_first_entry(list, struct request,
2090 queuelist);
2091
2092 list_del_init(&rq->queuelist);
2093 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2094 if (ret != BLK_STS_OK) {
2095 if (ret == BLK_STS_RESOURCE ||
2096 ret == BLK_STS_DEV_RESOURCE) {
2097 blk_mq_request_bypass_insert(rq, false,
2098 list_empty(list));
2099 break;
2100 }
2101 blk_mq_end_request(rq, ret);
2102 errors++;
2103 } else
2104 queued++;
2105 }
2106
2107 /*
2108 * If we didn't flush the entire list, we could have told
2109 * the driver there was more coming, but that turned out to
2110 * be a lie.
2111 */
2112 if ((!list_empty(list) || errors) &&
2113 hctx->queue->mq_ops->commit_rqs && queued)
2114 hctx->queue->mq_ops->commit_rqs(hctx);
2115 }
2116
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2117 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2118 {
2119 list_add_tail(&rq->queuelist, &plug->mq_list);
2120 plug->rq_count++;
2121 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2122 struct request *tmp;
2123
2124 tmp = list_first_entry(&plug->mq_list, struct request,
2125 queuelist);
2126 if (tmp->q != rq->q)
2127 plug->multiple_queues = true;
2128 }
2129 }
2130
2131 /**
2132 * blk_mq_submit_bio - Create and send a request to block device.
2133 * @bio: Bio pointer.
2134 *
2135 * Builds up a request structure from @q and @bio and send to the device. The
2136 * request may not be queued directly to hardware if:
2137 * * This request can be merged with another one
2138 * * We want to place request at plug queue for possible future merging
2139 * * There is an IO scheduler active at this queue
2140 *
2141 * It will not queue the request if there is an error with the bio, or at the
2142 * request creation.
2143 *
2144 * Returns: Request queue cookie.
2145 */
blk_mq_submit_bio(struct bio * bio)2146 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2147 {
2148 struct request_queue *q = bio->bi_disk->queue;
2149 const int is_sync = op_is_sync(bio->bi_opf);
2150 const int is_flush_fua = op_is_flush(bio->bi_opf);
2151 struct blk_mq_alloc_data data = {
2152 .q = q,
2153 };
2154 struct request *rq;
2155 struct blk_plug *plug;
2156 struct request *same_queue_rq = NULL;
2157 unsigned int nr_segs;
2158 blk_qc_t cookie;
2159 blk_status_t ret;
2160
2161 blk_queue_bounce(q, &bio);
2162 __blk_queue_split(&bio, &nr_segs);
2163
2164 if (!bio_integrity_prep(bio))
2165 goto queue_exit;
2166
2167 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2168 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2169 goto queue_exit;
2170
2171 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2172 goto queue_exit;
2173
2174 rq_qos_throttle(q, bio);
2175
2176 data.cmd_flags = bio->bi_opf;
2177 rq = __blk_mq_alloc_request(&data);
2178 if (unlikely(!rq)) {
2179 rq_qos_cleanup(q, bio);
2180 if (bio->bi_opf & REQ_NOWAIT)
2181 bio_wouldblock_error(bio);
2182 goto queue_exit;
2183 }
2184
2185 trace_block_getrq(q, bio, bio->bi_opf);
2186
2187 rq_qos_track(q, rq, bio);
2188
2189 cookie = request_to_qc_t(data.hctx, rq);
2190
2191 blk_mq_bio_to_request(rq, bio, nr_segs);
2192
2193 ret = blk_crypto_init_request(rq);
2194 if (ret != BLK_STS_OK) {
2195 bio->bi_status = ret;
2196 bio_endio(bio);
2197 blk_mq_free_request(rq);
2198 return BLK_QC_T_NONE;
2199 }
2200
2201 plug = blk_mq_plug(q, bio);
2202 if (unlikely(is_flush_fua)) {
2203 /* Bypass scheduler for flush requests */
2204 blk_insert_flush(rq);
2205 blk_mq_run_hw_queue(data.hctx, true);
2206 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2207 !blk_queue_nonrot(q))) {
2208 /*
2209 * Use plugging if we have a ->commit_rqs() hook as well, as
2210 * we know the driver uses bd->last in a smart fashion.
2211 *
2212 * Use normal plugging if this disk is slow HDD, as sequential
2213 * IO may benefit a lot from plug merging.
2214 */
2215 unsigned int request_count = plug->rq_count;
2216 struct request *last = NULL;
2217
2218 if (!request_count)
2219 trace_block_plug(q);
2220 else
2221 last = list_entry_rq(plug->mq_list.prev);
2222
2223 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2224 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2225 blk_flush_plug_list(plug, false);
2226 trace_block_plug(q);
2227 }
2228
2229 blk_add_rq_to_plug(plug, rq);
2230 } else if (q->elevator) {
2231 /* Insert the request at the IO scheduler queue */
2232 blk_mq_sched_insert_request(rq, false, true, true);
2233 } else if (plug && !blk_queue_nomerges(q)) {
2234 /*
2235 * We do limited plugging. If the bio can be merged, do that.
2236 * Otherwise the existing request in the plug list will be
2237 * issued. So the plug list will have one request at most
2238 * The plug list might get flushed before this. If that happens,
2239 * the plug list is empty, and same_queue_rq is invalid.
2240 */
2241 if (list_empty(&plug->mq_list))
2242 same_queue_rq = NULL;
2243 if (same_queue_rq) {
2244 list_del_init(&same_queue_rq->queuelist);
2245 plug->rq_count--;
2246 }
2247 blk_add_rq_to_plug(plug, rq);
2248 trace_block_plug(q);
2249
2250 if (same_queue_rq) {
2251 data.hctx = same_queue_rq->mq_hctx;
2252 trace_block_unplug(q, 1, true);
2253 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2254 &cookie);
2255 }
2256 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2257 !data.hctx->dispatch_busy) {
2258 /*
2259 * There is no scheduler and we can try to send directly
2260 * to the hardware.
2261 */
2262 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2263 } else {
2264 /* Default case. */
2265 blk_mq_sched_insert_request(rq, false, true, true);
2266 }
2267
2268 return cookie;
2269 queue_exit:
2270 blk_queue_exit(q);
2271 return BLK_QC_T_NONE;
2272 }
2273
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2274 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2275 unsigned int hctx_idx)
2276 {
2277 struct page *page;
2278
2279 if (tags->rqs && set->ops->exit_request) {
2280 int i;
2281
2282 for (i = 0; i < tags->nr_tags; i++) {
2283 struct request *rq = tags->static_rqs[i];
2284
2285 if (!rq)
2286 continue;
2287 set->ops->exit_request(set, rq, hctx_idx);
2288 tags->static_rqs[i] = NULL;
2289 }
2290 }
2291
2292 while (!list_empty(&tags->page_list)) {
2293 page = list_first_entry(&tags->page_list, struct page, lru);
2294 list_del_init(&page->lru);
2295 /*
2296 * Remove kmemleak object previously allocated in
2297 * blk_mq_alloc_rqs().
2298 */
2299 kmemleak_free(page_address(page));
2300 __free_pages(page, page->private);
2301 }
2302 }
2303
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2304 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2305 {
2306 kfree(tags->rqs);
2307 tags->rqs = NULL;
2308 kfree(tags->static_rqs);
2309 tags->static_rqs = NULL;
2310
2311 blk_mq_free_tags(tags, flags);
2312 }
2313
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2314 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2315 unsigned int hctx_idx,
2316 unsigned int nr_tags,
2317 unsigned int reserved_tags,
2318 unsigned int flags)
2319 {
2320 struct blk_mq_tags *tags;
2321 int node;
2322
2323 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2324 if (node == NUMA_NO_NODE)
2325 node = set->numa_node;
2326
2327 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2328 if (!tags)
2329 return NULL;
2330
2331 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2332 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2333 node);
2334 if (!tags->rqs) {
2335 blk_mq_free_tags(tags, flags);
2336 return NULL;
2337 }
2338
2339 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2340 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2341 node);
2342 if (!tags->static_rqs) {
2343 kfree(tags->rqs);
2344 blk_mq_free_tags(tags, flags);
2345 return NULL;
2346 }
2347
2348 return tags;
2349 }
2350
order_to_size(unsigned int order)2351 static size_t order_to_size(unsigned int order)
2352 {
2353 return (size_t)PAGE_SIZE << order;
2354 }
2355
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2356 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2357 unsigned int hctx_idx, int node)
2358 {
2359 int ret;
2360
2361 if (set->ops->init_request) {
2362 ret = set->ops->init_request(set, rq, hctx_idx, node);
2363 if (ret)
2364 return ret;
2365 }
2366
2367 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2368 return 0;
2369 }
2370
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2371 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2372 unsigned int hctx_idx, unsigned int depth)
2373 {
2374 unsigned int i, j, entries_per_page, max_order = 4;
2375 size_t rq_size, left;
2376 int node;
2377
2378 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2379 if (node == NUMA_NO_NODE)
2380 node = set->numa_node;
2381
2382 INIT_LIST_HEAD(&tags->page_list);
2383
2384 /*
2385 * rq_size is the size of the request plus driver payload, rounded
2386 * to the cacheline size
2387 */
2388 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2389 cache_line_size());
2390 left = rq_size * depth;
2391
2392 for (i = 0; i < depth; ) {
2393 int this_order = max_order;
2394 struct page *page;
2395 int to_do;
2396 void *p;
2397
2398 while (this_order && left < order_to_size(this_order - 1))
2399 this_order--;
2400
2401 do {
2402 page = alloc_pages_node(node,
2403 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2404 this_order);
2405 if (page)
2406 break;
2407 if (!this_order--)
2408 break;
2409 if (order_to_size(this_order) < rq_size)
2410 break;
2411 } while (1);
2412
2413 if (!page)
2414 goto fail;
2415
2416 page->private = this_order;
2417 list_add_tail(&page->lru, &tags->page_list);
2418
2419 p = page_address(page);
2420 /*
2421 * Allow kmemleak to scan these pages as they contain pointers
2422 * to additional allocations like via ops->init_request().
2423 */
2424 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2425 entries_per_page = order_to_size(this_order) / rq_size;
2426 to_do = min(entries_per_page, depth - i);
2427 left -= to_do * rq_size;
2428 for (j = 0; j < to_do; j++) {
2429 struct request *rq = p;
2430
2431 tags->static_rqs[i] = rq;
2432 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2433 tags->static_rqs[i] = NULL;
2434 goto fail;
2435 }
2436
2437 p += rq_size;
2438 i++;
2439 }
2440 }
2441 return 0;
2442
2443 fail:
2444 blk_mq_free_rqs(set, tags, hctx_idx);
2445 return -ENOMEM;
2446 }
2447
2448 struct rq_iter_data {
2449 struct blk_mq_hw_ctx *hctx;
2450 bool has_rq;
2451 };
2452
blk_mq_has_request(struct request * rq,void * data,bool reserved)2453 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2454 {
2455 struct rq_iter_data *iter_data = data;
2456
2457 if (rq->mq_hctx != iter_data->hctx)
2458 return true;
2459 iter_data->has_rq = true;
2460 return false;
2461 }
2462
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2463 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2464 {
2465 struct blk_mq_tags *tags = hctx->sched_tags ?
2466 hctx->sched_tags : hctx->tags;
2467 struct rq_iter_data data = {
2468 .hctx = hctx,
2469 };
2470
2471 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2472 return data.has_rq;
2473 }
2474
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2475 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2476 struct blk_mq_hw_ctx *hctx)
2477 {
2478 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2479 return false;
2480 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2481 return false;
2482 return true;
2483 }
2484
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2485 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2486 {
2487 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2488 struct blk_mq_hw_ctx, cpuhp_online);
2489
2490 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2491 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2492 return 0;
2493
2494 /*
2495 * Prevent new request from being allocated on the current hctx.
2496 *
2497 * The smp_mb__after_atomic() Pairs with the implied barrier in
2498 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2499 * seen once we return from the tag allocator.
2500 */
2501 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2502 smp_mb__after_atomic();
2503
2504 /*
2505 * Try to grab a reference to the queue and wait for any outstanding
2506 * requests. If we could not grab a reference the queue has been
2507 * frozen and there are no requests.
2508 */
2509 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2510 while (blk_mq_hctx_has_requests(hctx))
2511 msleep(5);
2512 percpu_ref_put(&hctx->queue->q_usage_counter);
2513 }
2514
2515 return 0;
2516 }
2517
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2518 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2519 {
2520 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2521 struct blk_mq_hw_ctx, cpuhp_online);
2522
2523 if (cpumask_test_cpu(cpu, hctx->cpumask))
2524 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2525 return 0;
2526 }
2527
2528 /*
2529 * 'cpu' is going away. splice any existing rq_list entries from this
2530 * software queue to the hw queue dispatch list, and ensure that it
2531 * gets run.
2532 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2533 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2534 {
2535 struct blk_mq_hw_ctx *hctx;
2536 struct blk_mq_ctx *ctx;
2537 LIST_HEAD(tmp);
2538 enum hctx_type type;
2539
2540 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2541 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2542 return 0;
2543
2544 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2545 type = hctx->type;
2546
2547 spin_lock(&ctx->lock);
2548 if (!list_empty(&ctx->rq_lists[type])) {
2549 list_splice_init(&ctx->rq_lists[type], &tmp);
2550 blk_mq_hctx_clear_pending(hctx, ctx);
2551 }
2552 spin_unlock(&ctx->lock);
2553
2554 if (list_empty(&tmp))
2555 return 0;
2556
2557 spin_lock(&hctx->lock);
2558 list_splice_tail_init(&tmp, &hctx->dispatch);
2559 spin_unlock(&hctx->lock);
2560
2561 blk_mq_run_hw_queue(hctx, true);
2562 return 0;
2563 }
2564
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2565 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2566 {
2567 if (!(hctx->flags & BLK_MQ_F_STACKING))
2568 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2569 &hctx->cpuhp_online);
2570 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2571 &hctx->cpuhp_dead);
2572 }
2573
2574 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2575 static void blk_mq_exit_hctx(struct request_queue *q,
2576 struct blk_mq_tag_set *set,
2577 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2578 {
2579 if (blk_mq_hw_queue_mapped(hctx))
2580 blk_mq_tag_idle(hctx);
2581
2582 if (set->ops->exit_request)
2583 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2584
2585 if (set->ops->exit_hctx)
2586 set->ops->exit_hctx(hctx, hctx_idx);
2587
2588 blk_mq_remove_cpuhp(hctx);
2589
2590 spin_lock(&q->unused_hctx_lock);
2591 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2592 spin_unlock(&q->unused_hctx_lock);
2593 }
2594
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2595 static void blk_mq_exit_hw_queues(struct request_queue *q,
2596 struct blk_mq_tag_set *set, int nr_queue)
2597 {
2598 struct blk_mq_hw_ctx *hctx;
2599 unsigned int i;
2600
2601 queue_for_each_hw_ctx(q, hctx, i) {
2602 if (i == nr_queue)
2603 break;
2604 blk_mq_debugfs_unregister_hctx(hctx);
2605 blk_mq_exit_hctx(q, set, hctx, i);
2606 }
2607 }
2608
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2609 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2610 {
2611 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2612
2613 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2614 __alignof__(struct blk_mq_hw_ctx)) !=
2615 sizeof(struct blk_mq_hw_ctx));
2616
2617 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2618 hw_ctx_size += sizeof(struct srcu_struct);
2619
2620 return hw_ctx_size;
2621 }
2622
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2623 static int blk_mq_init_hctx(struct request_queue *q,
2624 struct blk_mq_tag_set *set,
2625 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2626 {
2627 hctx->queue_num = hctx_idx;
2628
2629 if (!(hctx->flags & BLK_MQ_F_STACKING))
2630 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2631 &hctx->cpuhp_online);
2632 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2633
2634 hctx->tags = set->tags[hctx_idx];
2635
2636 if (set->ops->init_hctx &&
2637 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2638 goto unregister_cpu_notifier;
2639
2640 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2641 hctx->numa_node))
2642 goto exit_hctx;
2643 return 0;
2644
2645 exit_hctx:
2646 if (set->ops->exit_hctx)
2647 set->ops->exit_hctx(hctx, hctx_idx);
2648 unregister_cpu_notifier:
2649 blk_mq_remove_cpuhp(hctx);
2650 return -1;
2651 }
2652
2653 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2654 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2655 int node)
2656 {
2657 struct blk_mq_hw_ctx *hctx;
2658 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2659
2660 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2661 if (!hctx)
2662 goto fail_alloc_hctx;
2663
2664 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2665 goto free_hctx;
2666
2667 atomic_set(&hctx->nr_active, 0);
2668 atomic_set(&hctx->elevator_queued, 0);
2669 if (node == NUMA_NO_NODE)
2670 node = set->numa_node;
2671 hctx->numa_node = node;
2672
2673 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2674 spin_lock_init(&hctx->lock);
2675 INIT_LIST_HEAD(&hctx->dispatch);
2676 hctx->queue = q;
2677 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2678
2679 INIT_LIST_HEAD(&hctx->hctx_list);
2680
2681 /*
2682 * Allocate space for all possible cpus to avoid allocation at
2683 * runtime
2684 */
2685 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2686 gfp, node);
2687 if (!hctx->ctxs)
2688 goto free_cpumask;
2689
2690 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2691 gfp, node))
2692 goto free_ctxs;
2693 hctx->nr_ctx = 0;
2694
2695 spin_lock_init(&hctx->dispatch_wait_lock);
2696 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2697 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2698
2699 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2700 if (!hctx->fq)
2701 goto free_bitmap;
2702
2703 if (hctx->flags & BLK_MQ_F_BLOCKING)
2704 init_srcu_struct(hctx->srcu);
2705 blk_mq_hctx_kobj_init(hctx);
2706
2707 return hctx;
2708
2709 free_bitmap:
2710 sbitmap_free(&hctx->ctx_map);
2711 free_ctxs:
2712 kfree(hctx->ctxs);
2713 free_cpumask:
2714 free_cpumask_var(hctx->cpumask);
2715 free_hctx:
2716 kfree(hctx);
2717 fail_alloc_hctx:
2718 return NULL;
2719 }
2720
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2721 static void blk_mq_init_cpu_queues(struct request_queue *q,
2722 unsigned int nr_hw_queues)
2723 {
2724 struct blk_mq_tag_set *set = q->tag_set;
2725 unsigned int i, j;
2726
2727 for_each_possible_cpu(i) {
2728 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2729 struct blk_mq_hw_ctx *hctx;
2730 int k;
2731
2732 __ctx->cpu = i;
2733 spin_lock_init(&__ctx->lock);
2734 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2735 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2736
2737 __ctx->queue = q;
2738
2739 /*
2740 * Set local node, IFF we have more than one hw queue. If
2741 * not, we remain on the home node of the device
2742 */
2743 for (j = 0; j < set->nr_maps; j++) {
2744 hctx = blk_mq_map_queue_type(q, j, i);
2745 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2746 hctx->numa_node = cpu_to_node(i);
2747 }
2748 }
2749 }
2750
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2751 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2752 int hctx_idx)
2753 {
2754 unsigned int flags = set->flags;
2755 int ret = 0;
2756
2757 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2758 set->queue_depth, set->reserved_tags, flags);
2759 if (!set->tags[hctx_idx])
2760 return false;
2761
2762 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2763 set->queue_depth);
2764 if (!ret)
2765 return true;
2766
2767 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2768 set->tags[hctx_idx] = NULL;
2769 return false;
2770 }
2771
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2772 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2773 unsigned int hctx_idx)
2774 {
2775 unsigned int flags = set->flags;
2776
2777 if (set->tags && set->tags[hctx_idx]) {
2778 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2779 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2780 set->tags[hctx_idx] = NULL;
2781 }
2782 }
2783
blk_mq_map_swqueue(struct request_queue * q)2784 static void blk_mq_map_swqueue(struct request_queue *q)
2785 {
2786 unsigned int i, j, hctx_idx;
2787 struct blk_mq_hw_ctx *hctx;
2788 struct blk_mq_ctx *ctx;
2789 struct blk_mq_tag_set *set = q->tag_set;
2790
2791 queue_for_each_hw_ctx(q, hctx, i) {
2792 cpumask_clear(hctx->cpumask);
2793 hctx->nr_ctx = 0;
2794 hctx->dispatch_from = NULL;
2795 }
2796
2797 /*
2798 * Map software to hardware queues.
2799 *
2800 * If the cpu isn't present, the cpu is mapped to first hctx.
2801 */
2802 for_each_possible_cpu(i) {
2803
2804 ctx = per_cpu_ptr(q->queue_ctx, i);
2805 for (j = 0; j < set->nr_maps; j++) {
2806 if (!set->map[j].nr_queues) {
2807 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2808 HCTX_TYPE_DEFAULT, i);
2809 continue;
2810 }
2811 hctx_idx = set->map[j].mq_map[i];
2812 /* unmapped hw queue can be remapped after CPU topo changed */
2813 if (!set->tags[hctx_idx] &&
2814 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2815 /*
2816 * If tags initialization fail for some hctx,
2817 * that hctx won't be brought online. In this
2818 * case, remap the current ctx to hctx[0] which
2819 * is guaranteed to always have tags allocated
2820 */
2821 set->map[j].mq_map[i] = 0;
2822 }
2823
2824 hctx = blk_mq_map_queue_type(q, j, i);
2825 ctx->hctxs[j] = hctx;
2826 /*
2827 * If the CPU is already set in the mask, then we've
2828 * mapped this one already. This can happen if
2829 * devices share queues across queue maps.
2830 */
2831 if (cpumask_test_cpu(i, hctx->cpumask))
2832 continue;
2833
2834 cpumask_set_cpu(i, hctx->cpumask);
2835 hctx->type = j;
2836 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2837 hctx->ctxs[hctx->nr_ctx++] = ctx;
2838
2839 /*
2840 * If the nr_ctx type overflows, we have exceeded the
2841 * amount of sw queues we can support.
2842 */
2843 BUG_ON(!hctx->nr_ctx);
2844 }
2845
2846 for (; j < HCTX_MAX_TYPES; j++)
2847 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2848 HCTX_TYPE_DEFAULT, i);
2849 }
2850
2851 queue_for_each_hw_ctx(q, hctx, i) {
2852 /*
2853 * If no software queues are mapped to this hardware queue,
2854 * disable it and free the request entries.
2855 */
2856 if (!hctx->nr_ctx) {
2857 /* Never unmap queue 0. We need it as a
2858 * fallback in case of a new remap fails
2859 * allocation
2860 */
2861 if (i && set->tags[i])
2862 blk_mq_free_map_and_requests(set, i);
2863
2864 hctx->tags = NULL;
2865 continue;
2866 }
2867
2868 hctx->tags = set->tags[i];
2869 WARN_ON(!hctx->tags);
2870
2871 /*
2872 * Set the map size to the number of mapped software queues.
2873 * This is more accurate and more efficient than looping
2874 * over all possibly mapped software queues.
2875 */
2876 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2877
2878 /*
2879 * Initialize batch roundrobin counts
2880 */
2881 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2882 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2883 }
2884 }
2885
2886 /*
2887 * Caller needs to ensure that we're either frozen/quiesced, or that
2888 * the queue isn't live yet.
2889 */
queue_set_hctx_shared(struct request_queue * q,bool shared)2890 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2891 {
2892 struct blk_mq_hw_ctx *hctx;
2893 int i;
2894
2895 queue_for_each_hw_ctx(q, hctx, i) {
2896 if (shared)
2897 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2898 else
2899 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2900 }
2901 }
2902
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)2903 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2904 bool shared)
2905 {
2906 struct request_queue *q;
2907
2908 lockdep_assert_held(&set->tag_list_lock);
2909
2910 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2911 blk_mq_freeze_queue(q);
2912 queue_set_hctx_shared(q, shared);
2913 blk_mq_unfreeze_queue(q);
2914 }
2915 }
2916
blk_mq_del_queue_tag_set(struct request_queue * q)2917 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2918 {
2919 struct blk_mq_tag_set *set = q->tag_set;
2920
2921 mutex_lock(&set->tag_list_lock);
2922 list_del(&q->tag_set_list);
2923 if (list_is_singular(&set->tag_list)) {
2924 /* just transitioned to unshared */
2925 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2926 /* update existing queue */
2927 blk_mq_update_tag_set_shared(set, false);
2928 }
2929 mutex_unlock(&set->tag_list_lock);
2930 INIT_LIST_HEAD(&q->tag_set_list);
2931 }
2932
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)2933 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2934 struct request_queue *q)
2935 {
2936 mutex_lock(&set->tag_list_lock);
2937
2938 /*
2939 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2940 */
2941 if (!list_empty(&set->tag_list) &&
2942 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2943 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2944 /* update existing queue */
2945 blk_mq_update_tag_set_shared(set, true);
2946 }
2947 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2948 queue_set_hctx_shared(q, true);
2949 list_add_tail(&q->tag_set_list, &set->tag_list);
2950
2951 mutex_unlock(&set->tag_list_lock);
2952 }
2953
2954 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)2955 static int blk_mq_alloc_ctxs(struct request_queue *q)
2956 {
2957 struct blk_mq_ctxs *ctxs;
2958 int cpu;
2959
2960 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2961 if (!ctxs)
2962 return -ENOMEM;
2963
2964 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2965 if (!ctxs->queue_ctx)
2966 goto fail;
2967
2968 for_each_possible_cpu(cpu) {
2969 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2970 ctx->ctxs = ctxs;
2971 }
2972
2973 q->mq_kobj = &ctxs->kobj;
2974 q->queue_ctx = ctxs->queue_ctx;
2975
2976 return 0;
2977 fail:
2978 kfree(ctxs);
2979 return -ENOMEM;
2980 }
2981
2982 /*
2983 * It is the actual release handler for mq, but we do it from
2984 * request queue's release handler for avoiding use-after-free
2985 * and headache because q->mq_kobj shouldn't have been introduced,
2986 * but we can't group ctx/kctx kobj without it.
2987 */
blk_mq_release(struct request_queue * q)2988 void blk_mq_release(struct request_queue *q)
2989 {
2990 struct blk_mq_hw_ctx *hctx, *next;
2991 int i;
2992
2993 queue_for_each_hw_ctx(q, hctx, i)
2994 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2995
2996 /* all hctx are in .unused_hctx_list now */
2997 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2998 list_del_init(&hctx->hctx_list);
2999 kobject_put(&hctx->kobj);
3000 }
3001
3002 kfree(q->queue_hw_ctx);
3003
3004 /*
3005 * release .mq_kobj and sw queue's kobject now because
3006 * both share lifetime with request queue.
3007 */
3008 blk_mq_sysfs_deinit(q);
3009 }
3010
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3011 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3012 void *queuedata)
3013 {
3014 struct request_queue *uninit_q, *q;
3015
3016 uninit_q = blk_alloc_queue(set->numa_node);
3017 if (!uninit_q)
3018 return ERR_PTR(-ENOMEM);
3019 uninit_q->queuedata = queuedata;
3020
3021 /*
3022 * Initialize the queue without an elevator. device_add_disk() will do
3023 * the initialization.
3024 */
3025 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3026 if (IS_ERR(q))
3027 blk_cleanup_queue(uninit_q);
3028
3029 return q;
3030 }
3031 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3032
blk_mq_init_queue(struct blk_mq_tag_set * set)3033 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3034 {
3035 return blk_mq_init_queue_data(set, NULL);
3036 }
3037 EXPORT_SYMBOL(blk_mq_init_queue);
3038
3039 /*
3040 * Helper for setting up a queue with mq ops, given queue depth, and
3041 * the passed in mq ops flags.
3042 */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3043 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3044 const struct blk_mq_ops *ops,
3045 unsigned int queue_depth,
3046 unsigned int set_flags)
3047 {
3048 struct request_queue *q;
3049 int ret;
3050
3051 memset(set, 0, sizeof(*set));
3052 set->ops = ops;
3053 set->nr_hw_queues = 1;
3054 set->nr_maps = 1;
3055 set->queue_depth = queue_depth;
3056 set->numa_node = NUMA_NO_NODE;
3057 set->flags = set_flags;
3058
3059 ret = blk_mq_alloc_tag_set(set);
3060 if (ret)
3061 return ERR_PTR(ret);
3062
3063 q = blk_mq_init_queue(set);
3064 if (IS_ERR(q)) {
3065 blk_mq_free_tag_set(set);
3066 return q;
3067 }
3068
3069 return q;
3070 }
3071 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3072
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3073 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3074 struct blk_mq_tag_set *set, struct request_queue *q,
3075 int hctx_idx, int node)
3076 {
3077 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3078
3079 /* reuse dead hctx first */
3080 spin_lock(&q->unused_hctx_lock);
3081 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3082 if (tmp->numa_node == node) {
3083 hctx = tmp;
3084 break;
3085 }
3086 }
3087 if (hctx)
3088 list_del_init(&hctx->hctx_list);
3089 spin_unlock(&q->unused_hctx_lock);
3090
3091 if (!hctx)
3092 hctx = blk_mq_alloc_hctx(q, set, node);
3093 if (!hctx)
3094 goto fail;
3095
3096 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3097 goto free_hctx;
3098
3099 return hctx;
3100
3101 free_hctx:
3102 kobject_put(&hctx->kobj);
3103 fail:
3104 return NULL;
3105 }
3106
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3107 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3108 struct request_queue *q)
3109 {
3110 int i, j, end;
3111 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3112
3113 if (q->nr_hw_queues < set->nr_hw_queues) {
3114 struct blk_mq_hw_ctx **new_hctxs;
3115
3116 new_hctxs = kcalloc_node(set->nr_hw_queues,
3117 sizeof(*new_hctxs), GFP_KERNEL,
3118 set->numa_node);
3119 if (!new_hctxs)
3120 return;
3121 if (hctxs)
3122 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3123 sizeof(*hctxs));
3124 q->queue_hw_ctx = new_hctxs;
3125 kfree(hctxs);
3126 hctxs = new_hctxs;
3127 }
3128
3129 /* protect against switching io scheduler */
3130 mutex_lock(&q->sysfs_lock);
3131 for (i = 0; i < set->nr_hw_queues; i++) {
3132 int node;
3133 struct blk_mq_hw_ctx *hctx;
3134
3135 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3136 /*
3137 * If the hw queue has been mapped to another numa node,
3138 * we need to realloc the hctx. If allocation fails, fallback
3139 * to use the previous one.
3140 */
3141 if (hctxs[i] && (hctxs[i]->numa_node == node))
3142 continue;
3143
3144 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3145 if (hctx) {
3146 if (hctxs[i])
3147 blk_mq_exit_hctx(q, set, hctxs[i], i);
3148 hctxs[i] = hctx;
3149 } else {
3150 if (hctxs[i])
3151 pr_warn("Allocate new hctx on node %d fails,\
3152 fallback to previous one on node %d\n",
3153 node, hctxs[i]->numa_node);
3154 else
3155 break;
3156 }
3157 }
3158 /*
3159 * Increasing nr_hw_queues fails. Free the newly allocated
3160 * hctxs and keep the previous q->nr_hw_queues.
3161 */
3162 if (i != set->nr_hw_queues) {
3163 j = q->nr_hw_queues;
3164 end = i;
3165 } else {
3166 j = i;
3167 end = q->nr_hw_queues;
3168 q->nr_hw_queues = set->nr_hw_queues;
3169 }
3170
3171 for (; j < end; j++) {
3172 struct blk_mq_hw_ctx *hctx = hctxs[j];
3173
3174 if (hctx) {
3175 if (hctx->tags)
3176 blk_mq_free_map_and_requests(set, j);
3177 blk_mq_exit_hctx(q, set, hctx, j);
3178 hctxs[j] = NULL;
3179 }
3180 }
3181 mutex_unlock(&q->sysfs_lock);
3182 }
3183
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3184 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3185 struct request_queue *q,
3186 bool elevator_init)
3187 {
3188 /* mark the queue as mq asap */
3189 q->mq_ops = set->ops;
3190
3191 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3192 blk_mq_poll_stats_bkt,
3193 BLK_MQ_POLL_STATS_BKTS, q);
3194 if (!q->poll_cb)
3195 goto err_exit;
3196
3197 if (blk_mq_alloc_ctxs(q))
3198 goto err_poll;
3199
3200 /* init q->mq_kobj and sw queues' kobjects */
3201 blk_mq_sysfs_init(q);
3202
3203 INIT_LIST_HEAD(&q->unused_hctx_list);
3204 spin_lock_init(&q->unused_hctx_lock);
3205
3206 blk_mq_realloc_hw_ctxs(set, q);
3207 if (!q->nr_hw_queues)
3208 goto err_hctxs;
3209
3210 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3211 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3212
3213 q->tag_set = set;
3214
3215 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3216 if (set->nr_maps > HCTX_TYPE_POLL &&
3217 set->map[HCTX_TYPE_POLL].nr_queues)
3218 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3219
3220 q->sg_reserved_size = INT_MAX;
3221
3222 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3223 INIT_LIST_HEAD(&q->requeue_list);
3224 spin_lock_init(&q->requeue_lock);
3225
3226 q->nr_requests = set->queue_depth;
3227
3228 /*
3229 * Default to classic polling
3230 */
3231 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3232
3233 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3234 blk_mq_add_queue_tag_set(set, q);
3235 blk_mq_map_swqueue(q);
3236
3237 if (elevator_init)
3238 elevator_init_mq(q);
3239
3240 return q;
3241
3242 err_hctxs:
3243 kfree(q->queue_hw_ctx);
3244 q->nr_hw_queues = 0;
3245 blk_mq_sysfs_deinit(q);
3246 err_poll:
3247 blk_stat_free_callback(q->poll_cb);
3248 q->poll_cb = NULL;
3249 err_exit:
3250 q->mq_ops = NULL;
3251 return ERR_PTR(-ENOMEM);
3252 }
3253 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3254
3255 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3256 void blk_mq_exit_queue(struct request_queue *q)
3257 {
3258 struct blk_mq_tag_set *set = q->tag_set;
3259
3260 blk_mq_del_queue_tag_set(q);
3261 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3262 }
3263
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3264 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3265 {
3266 int i;
3267
3268 for (i = 0; i < set->nr_hw_queues; i++) {
3269 if (!__blk_mq_alloc_map_and_request(set, i))
3270 goto out_unwind;
3271 cond_resched();
3272 }
3273
3274 return 0;
3275
3276 out_unwind:
3277 while (--i >= 0)
3278 blk_mq_free_map_and_requests(set, i);
3279
3280 return -ENOMEM;
3281 }
3282
3283 /*
3284 * Allocate the request maps associated with this tag_set. Note that this
3285 * may reduce the depth asked for, if memory is tight. set->queue_depth
3286 * will be updated to reflect the allocated depth.
3287 */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3288 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3289 {
3290 unsigned int depth;
3291 int err;
3292
3293 depth = set->queue_depth;
3294 do {
3295 err = __blk_mq_alloc_rq_maps(set);
3296 if (!err)
3297 break;
3298
3299 set->queue_depth >>= 1;
3300 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3301 err = -ENOMEM;
3302 break;
3303 }
3304 } while (set->queue_depth);
3305
3306 if (!set->queue_depth || err) {
3307 pr_err("blk-mq: failed to allocate request map\n");
3308 return -ENOMEM;
3309 }
3310
3311 if (depth != set->queue_depth)
3312 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3313 depth, set->queue_depth);
3314
3315 return 0;
3316 }
3317
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3318 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3319 {
3320 /*
3321 * blk_mq_map_queues() and multiple .map_queues() implementations
3322 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3323 * number of hardware queues.
3324 */
3325 if (set->nr_maps == 1)
3326 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3327
3328 if (set->ops->map_queues && !is_kdump_kernel()) {
3329 int i;
3330
3331 /*
3332 * transport .map_queues is usually done in the following
3333 * way:
3334 *
3335 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3336 * mask = get_cpu_mask(queue)
3337 * for_each_cpu(cpu, mask)
3338 * set->map[x].mq_map[cpu] = queue;
3339 * }
3340 *
3341 * When we need to remap, the table has to be cleared for
3342 * killing stale mapping since one CPU may not be mapped
3343 * to any hw queue.
3344 */
3345 for (i = 0; i < set->nr_maps; i++)
3346 blk_mq_clear_mq_map(&set->map[i]);
3347
3348 return set->ops->map_queues(set);
3349 } else {
3350 BUG_ON(set->nr_maps > 1);
3351 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3352 }
3353 }
3354
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3355 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3356 int cur_nr_hw_queues, int new_nr_hw_queues)
3357 {
3358 struct blk_mq_tags **new_tags;
3359
3360 if (cur_nr_hw_queues >= new_nr_hw_queues)
3361 return 0;
3362
3363 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3364 GFP_KERNEL, set->numa_node);
3365 if (!new_tags)
3366 return -ENOMEM;
3367
3368 if (set->tags)
3369 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3370 sizeof(*set->tags));
3371 kfree(set->tags);
3372 set->tags = new_tags;
3373 set->nr_hw_queues = new_nr_hw_queues;
3374
3375 return 0;
3376 }
3377
3378 /*
3379 * Alloc a tag set to be associated with one or more request queues.
3380 * May fail with EINVAL for various error conditions. May adjust the
3381 * requested depth down, if it's too large. In that case, the set
3382 * value will be stored in set->queue_depth.
3383 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3384 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3385 {
3386 int i, ret;
3387
3388 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3389
3390 if (!set->nr_hw_queues)
3391 return -EINVAL;
3392 if (!set->queue_depth)
3393 return -EINVAL;
3394 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3395 return -EINVAL;
3396
3397 if (!set->ops->queue_rq)
3398 return -EINVAL;
3399
3400 if (!set->ops->get_budget ^ !set->ops->put_budget)
3401 return -EINVAL;
3402
3403 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3404 pr_info("blk-mq: reduced tag depth to %u\n",
3405 BLK_MQ_MAX_DEPTH);
3406 set->queue_depth = BLK_MQ_MAX_DEPTH;
3407 }
3408
3409 if (!set->nr_maps)
3410 set->nr_maps = 1;
3411 else if (set->nr_maps > HCTX_MAX_TYPES)
3412 return -EINVAL;
3413
3414 /*
3415 * If a crashdump is active, then we are potentially in a very
3416 * memory constrained environment. Limit us to 1 queue and
3417 * 64 tags to prevent using too much memory.
3418 */
3419 if (is_kdump_kernel()) {
3420 set->nr_hw_queues = 1;
3421 set->nr_maps = 1;
3422 set->queue_depth = min(64U, set->queue_depth);
3423 }
3424 /*
3425 * There is no use for more h/w queues than cpus if we just have
3426 * a single map
3427 */
3428 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3429 set->nr_hw_queues = nr_cpu_ids;
3430
3431 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3432 return -ENOMEM;
3433
3434 ret = -ENOMEM;
3435 for (i = 0; i < set->nr_maps; i++) {
3436 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3437 sizeof(set->map[i].mq_map[0]),
3438 GFP_KERNEL, set->numa_node);
3439 if (!set->map[i].mq_map)
3440 goto out_free_mq_map;
3441 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3442 }
3443
3444 ret = blk_mq_update_queue_map(set);
3445 if (ret)
3446 goto out_free_mq_map;
3447
3448 ret = blk_mq_alloc_map_and_requests(set);
3449 if (ret)
3450 goto out_free_mq_map;
3451
3452 if (blk_mq_is_sbitmap_shared(set->flags)) {
3453 atomic_set(&set->active_queues_shared_sbitmap, 0);
3454
3455 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3456 ret = -ENOMEM;
3457 goto out_free_mq_rq_maps;
3458 }
3459 }
3460
3461 mutex_init(&set->tag_list_lock);
3462 INIT_LIST_HEAD(&set->tag_list);
3463
3464 return 0;
3465
3466 out_free_mq_rq_maps:
3467 for (i = 0; i < set->nr_hw_queues; i++)
3468 blk_mq_free_map_and_requests(set, i);
3469 out_free_mq_map:
3470 for (i = 0; i < set->nr_maps; i++) {
3471 kfree(set->map[i].mq_map);
3472 set->map[i].mq_map = NULL;
3473 }
3474 kfree(set->tags);
3475 set->tags = NULL;
3476 return ret;
3477 }
3478 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3479
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3480 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3481 {
3482 int i, j;
3483
3484 for (i = 0; i < set->nr_hw_queues; i++)
3485 blk_mq_free_map_and_requests(set, i);
3486
3487 if (blk_mq_is_sbitmap_shared(set->flags))
3488 blk_mq_exit_shared_sbitmap(set);
3489
3490 for (j = 0; j < set->nr_maps; j++) {
3491 kfree(set->map[j].mq_map);
3492 set->map[j].mq_map = NULL;
3493 }
3494
3495 kfree(set->tags);
3496 set->tags = NULL;
3497 }
3498 EXPORT_SYMBOL(blk_mq_free_tag_set);
3499
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3500 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3501 {
3502 struct blk_mq_tag_set *set = q->tag_set;
3503 struct blk_mq_hw_ctx *hctx;
3504 int i, ret;
3505
3506 if (!set)
3507 return -EINVAL;
3508
3509 if (q->nr_requests == nr)
3510 return 0;
3511
3512 blk_mq_freeze_queue(q);
3513 blk_mq_quiesce_queue(q);
3514
3515 ret = 0;
3516 queue_for_each_hw_ctx(q, hctx, i) {
3517 if (!hctx->tags)
3518 continue;
3519 /*
3520 * If we're using an MQ scheduler, just update the scheduler
3521 * queue depth. This is similar to what the old code would do.
3522 */
3523 if (!hctx->sched_tags) {
3524 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3525 false);
3526 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3527 blk_mq_tag_resize_shared_sbitmap(set, nr);
3528 } else {
3529 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3530 nr, true);
3531 }
3532 if (ret)
3533 break;
3534 if (q->elevator && q->elevator->type->ops.depth_updated)
3535 q->elevator->type->ops.depth_updated(hctx);
3536 }
3537
3538 if (!ret)
3539 q->nr_requests = nr;
3540
3541 blk_mq_unquiesce_queue(q);
3542 blk_mq_unfreeze_queue(q);
3543
3544 return ret;
3545 }
3546
3547 /*
3548 * request_queue and elevator_type pair.
3549 * It is just used by __blk_mq_update_nr_hw_queues to cache
3550 * the elevator_type associated with a request_queue.
3551 */
3552 struct blk_mq_qe_pair {
3553 struct list_head node;
3554 struct request_queue *q;
3555 struct elevator_type *type;
3556 };
3557
3558 /*
3559 * Cache the elevator_type in qe pair list and switch the
3560 * io scheduler to 'none'
3561 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3562 static bool blk_mq_elv_switch_none(struct list_head *head,
3563 struct request_queue *q)
3564 {
3565 struct blk_mq_qe_pair *qe;
3566
3567 if (!q->elevator)
3568 return true;
3569
3570 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3571 if (!qe)
3572 return false;
3573
3574 INIT_LIST_HEAD(&qe->node);
3575 qe->q = q;
3576 qe->type = q->elevator->type;
3577 list_add(&qe->node, head);
3578
3579 mutex_lock(&q->sysfs_lock);
3580 /*
3581 * After elevator_switch_mq, the previous elevator_queue will be
3582 * released by elevator_release. The reference of the io scheduler
3583 * module get by elevator_get will also be put. So we need to get
3584 * a reference of the io scheduler module here to prevent it to be
3585 * removed.
3586 */
3587 __module_get(qe->type->elevator_owner);
3588 elevator_switch_mq(q, NULL);
3589 mutex_unlock(&q->sysfs_lock);
3590
3591 return true;
3592 }
3593
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3594 static void blk_mq_elv_switch_back(struct list_head *head,
3595 struct request_queue *q)
3596 {
3597 struct blk_mq_qe_pair *qe;
3598 struct elevator_type *t = NULL;
3599
3600 list_for_each_entry(qe, head, node)
3601 if (qe->q == q) {
3602 t = qe->type;
3603 break;
3604 }
3605
3606 if (!t)
3607 return;
3608
3609 list_del(&qe->node);
3610 kfree(qe);
3611
3612 mutex_lock(&q->sysfs_lock);
3613 elevator_switch_mq(q, t);
3614 mutex_unlock(&q->sysfs_lock);
3615 }
3616
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3617 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3618 int nr_hw_queues)
3619 {
3620 struct request_queue *q;
3621 LIST_HEAD(head);
3622 int prev_nr_hw_queues;
3623
3624 lockdep_assert_held(&set->tag_list_lock);
3625
3626 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3627 nr_hw_queues = nr_cpu_ids;
3628 if (nr_hw_queues < 1)
3629 return;
3630 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3631 return;
3632
3633 list_for_each_entry(q, &set->tag_list, tag_set_list)
3634 blk_mq_freeze_queue(q);
3635 /*
3636 * Switch IO scheduler to 'none', cleaning up the data associated
3637 * with the previous scheduler. We will switch back once we are done
3638 * updating the new sw to hw queue mappings.
3639 */
3640 list_for_each_entry(q, &set->tag_list, tag_set_list)
3641 if (!blk_mq_elv_switch_none(&head, q))
3642 goto switch_back;
3643
3644 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3645 blk_mq_debugfs_unregister_hctxs(q);
3646 blk_mq_sysfs_unregister(q);
3647 }
3648
3649 prev_nr_hw_queues = set->nr_hw_queues;
3650 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3651 0)
3652 goto reregister;
3653
3654 set->nr_hw_queues = nr_hw_queues;
3655 fallback:
3656 blk_mq_update_queue_map(set);
3657 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3658 blk_mq_realloc_hw_ctxs(set, q);
3659 if (q->nr_hw_queues != set->nr_hw_queues) {
3660 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3661 nr_hw_queues, prev_nr_hw_queues);
3662 set->nr_hw_queues = prev_nr_hw_queues;
3663 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3664 goto fallback;
3665 }
3666 blk_mq_map_swqueue(q);
3667 }
3668
3669 reregister:
3670 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3671 blk_mq_sysfs_register(q);
3672 blk_mq_debugfs_register_hctxs(q);
3673 }
3674
3675 switch_back:
3676 list_for_each_entry(q, &set->tag_list, tag_set_list)
3677 blk_mq_elv_switch_back(&head, q);
3678
3679 list_for_each_entry(q, &set->tag_list, tag_set_list)
3680 blk_mq_unfreeze_queue(q);
3681 }
3682
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3683 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3684 {
3685 mutex_lock(&set->tag_list_lock);
3686 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3687 mutex_unlock(&set->tag_list_lock);
3688 }
3689 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3690
3691 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3692 static bool blk_poll_stats_enable(struct request_queue *q)
3693 {
3694 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3695 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3696 return true;
3697 blk_stat_add_callback(q, q->poll_cb);
3698 return false;
3699 }
3700
blk_mq_poll_stats_start(struct request_queue * q)3701 static void blk_mq_poll_stats_start(struct request_queue *q)
3702 {
3703 /*
3704 * We don't arm the callback if polling stats are not enabled or the
3705 * callback is already active.
3706 */
3707 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3708 blk_stat_is_active(q->poll_cb))
3709 return;
3710
3711 blk_stat_activate_msecs(q->poll_cb, 100);
3712 }
3713
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3714 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3715 {
3716 struct request_queue *q = cb->data;
3717 int bucket;
3718
3719 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3720 if (cb->stat[bucket].nr_samples)
3721 q->poll_stat[bucket] = cb->stat[bucket];
3722 }
3723 }
3724
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3725 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3726 struct request *rq)
3727 {
3728 unsigned long ret = 0;
3729 int bucket;
3730
3731 /*
3732 * If stats collection isn't on, don't sleep but turn it on for
3733 * future users
3734 */
3735 if (!blk_poll_stats_enable(q))
3736 return 0;
3737
3738 /*
3739 * As an optimistic guess, use half of the mean service time
3740 * for this type of request. We can (and should) make this smarter.
3741 * For instance, if the completion latencies are tight, we can
3742 * get closer than just half the mean. This is especially
3743 * important on devices where the completion latencies are longer
3744 * than ~10 usec. We do use the stats for the relevant IO size
3745 * if available which does lead to better estimates.
3746 */
3747 bucket = blk_mq_poll_stats_bkt(rq);
3748 if (bucket < 0)
3749 return ret;
3750
3751 if (q->poll_stat[bucket].nr_samples)
3752 ret = (q->poll_stat[bucket].mean + 1) / 2;
3753
3754 return ret;
3755 }
3756
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3757 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3758 struct request *rq)
3759 {
3760 struct hrtimer_sleeper hs;
3761 enum hrtimer_mode mode;
3762 unsigned int nsecs;
3763 ktime_t kt;
3764
3765 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3766 return false;
3767
3768 /*
3769 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3770 *
3771 * 0: use half of prev avg
3772 * >0: use this specific value
3773 */
3774 if (q->poll_nsec > 0)
3775 nsecs = q->poll_nsec;
3776 else
3777 nsecs = blk_mq_poll_nsecs(q, rq);
3778
3779 if (!nsecs)
3780 return false;
3781
3782 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3783
3784 /*
3785 * This will be replaced with the stats tracking code, using
3786 * 'avg_completion_time / 2' as the pre-sleep target.
3787 */
3788 kt = nsecs;
3789
3790 mode = HRTIMER_MODE_REL;
3791 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3792 hrtimer_set_expires(&hs.timer, kt);
3793
3794 do {
3795 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3796 break;
3797 set_current_state(TASK_UNINTERRUPTIBLE);
3798 hrtimer_sleeper_start_expires(&hs, mode);
3799 if (hs.task)
3800 io_schedule();
3801 hrtimer_cancel(&hs.timer);
3802 mode = HRTIMER_MODE_ABS;
3803 } while (hs.task && !signal_pending(current));
3804
3805 __set_current_state(TASK_RUNNING);
3806 destroy_hrtimer_on_stack(&hs.timer);
3807 return true;
3808 }
3809
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3810 static bool blk_mq_poll_hybrid(struct request_queue *q,
3811 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3812 {
3813 struct request *rq;
3814
3815 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3816 return false;
3817
3818 if (!blk_qc_t_is_internal(cookie))
3819 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3820 else {
3821 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3822 /*
3823 * With scheduling, if the request has completed, we'll
3824 * get a NULL return here, as we clear the sched tag when
3825 * that happens. The request still remains valid, like always,
3826 * so we should be safe with just the NULL check.
3827 */
3828 if (!rq)
3829 return false;
3830 }
3831
3832 return blk_mq_poll_hybrid_sleep(q, rq);
3833 }
3834
3835 /**
3836 * blk_poll - poll for IO completions
3837 * @q: the queue
3838 * @cookie: cookie passed back at IO submission time
3839 * @spin: whether to spin for completions
3840 *
3841 * Description:
3842 * Poll for completions on the passed in queue. Returns number of
3843 * completed entries found. If @spin is true, then blk_poll will continue
3844 * looping until at least one completion is found, unless the task is
3845 * otherwise marked running (or we need to reschedule).
3846 */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3847 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3848 {
3849 struct blk_mq_hw_ctx *hctx;
3850 long state;
3851
3852 if (!blk_qc_t_valid(cookie) ||
3853 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3854 return 0;
3855
3856 if (current->plug)
3857 blk_flush_plug_list(current->plug, false);
3858
3859 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3860
3861 /*
3862 * If we sleep, have the caller restart the poll loop to reset
3863 * the state. Like for the other success return cases, the
3864 * caller is responsible for checking if the IO completed. If
3865 * the IO isn't complete, we'll get called again and will go
3866 * straight to the busy poll loop.
3867 */
3868 if (blk_mq_poll_hybrid(q, hctx, cookie))
3869 return 1;
3870
3871 hctx->poll_considered++;
3872
3873 state = current->state;
3874 do {
3875 int ret;
3876
3877 hctx->poll_invoked++;
3878
3879 ret = q->mq_ops->poll(hctx);
3880 if (ret > 0) {
3881 hctx->poll_success++;
3882 __set_current_state(TASK_RUNNING);
3883 return ret;
3884 }
3885
3886 if (signal_pending_state(state, current))
3887 __set_current_state(TASK_RUNNING);
3888
3889 if (current->state == TASK_RUNNING)
3890 return 1;
3891 if (ret < 0 || !spin)
3892 break;
3893 cpu_relax();
3894 } while (!need_resched());
3895
3896 __set_current_state(TASK_RUNNING);
3897 return 0;
3898 }
3899 EXPORT_SYMBOL_GPL(blk_poll);
3900
blk_mq_rq_cpu(struct request * rq)3901 unsigned int blk_mq_rq_cpu(struct request *rq)
3902 {
3903 return rq->mq_ctx->cpu;
3904 }
3905 EXPORT_SYMBOL(blk_mq_rq_cpu);
3906
blk_mq_init(void)3907 static int __init blk_mq_init(void)
3908 {
3909 int i;
3910
3911 for_each_possible_cpu(i)
3912 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3913 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3914
3915 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3916 "block/softirq:dead", NULL,
3917 blk_softirq_cpu_dead);
3918 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3919 blk_mq_hctx_notify_dead);
3920 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3921 blk_mq_hctx_notify_online,
3922 blk_mq_hctx_notify_offline);
3923 return 0;
3924 }
3925 subsys_initcall(blk_mq_init);
3926