1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Block data types and constants.  Directly include this file only to
4  * break include dependency loop.
5  */
6 #ifndef __LINUX_BLK_TYPES_H
7 #define __LINUX_BLK_TYPES_H
8 
9 #include <linux/types.h>
10 #include <linux/bvec.h>
11 #include <linux/device.h>
12 #include <linux/ktime.h>
13 
14 struct bio_set;
15 struct bio;
16 struct bio_integrity_payload;
17 struct page;
18 struct io_context;
19 struct cgroup_subsys_state;
20 typedef void (bio_end_io_t) (struct bio *);
21 struct bio_crypt_ctx;
22 
23 struct block_device {
24 	sector_t		bd_start_sect;
25 	struct disk_stats __percpu *bd_stats;
26 	unsigned long		bd_stamp;
27 	bool			bd_read_only;	/* read-only policy */
28 	dev_t			bd_dev;
29 	int			bd_openers;
30 	struct inode *		bd_inode;	/* will die */
31 	struct super_block *	bd_super;
32 	void *			bd_claiming;
33 	struct device		bd_device;
34 	void *			bd_holder;
35 	int			bd_holders;
36 	bool			bd_write_holder;
37 	struct kobject		*bd_holder_dir;
38 	u8			bd_partno;
39 	spinlock_t		bd_size_lock; /* for bd_inode->i_size updates */
40 	struct gendisk *	bd_disk;
41 
42 	/* The counter of freeze processes */
43 	int			bd_fsfreeze_count;
44 	/* Mutex for freeze */
45 	struct mutex		bd_fsfreeze_mutex;
46 	struct super_block	*bd_fsfreeze_sb;
47 
48 	struct partition_meta_info *bd_meta_info;
49 #ifdef CONFIG_FAIL_MAKE_REQUEST
50 	bool			bd_make_it_fail;
51 #endif
52 } __randomize_layout;
53 
54 #define bdev_whole(_bdev) \
55 	((_bdev)->bd_disk->part0)
56 
57 #define dev_to_bdev(device) \
58 	container_of((device), struct block_device, bd_device)
59 
60 #define bdev_kobj(_bdev) \
61 	(&((_bdev)->bd_device.kobj))
62 
63 /*
64  * Block error status values.  See block/blk-core:blk_errors for the details.
65  * Alpha cannot write a byte atomically, so we need to use 32-bit value.
66  */
67 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
68 typedef u32 __bitwise blk_status_t;
69 #else
70 typedef u8 __bitwise blk_status_t;
71 #endif
72 #define	BLK_STS_OK 0
73 #define BLK_STS_NOTSUPP		((__force blk_status_t)1)
74 #define BLK_STS_TIMEOUT		((__force blk_status_t)2)
75 #define BLK_STS_NOSPC		((__force blk_status_t)3)
76 #define BLK_STS_TRANSPORT	((__force blk_status_t)4)
77 #define BLK_STS_TARGET		((__force blk_status_t)5)
78 #define BLK_STS_NEXUS		((__force blk_status_t)6)
79 #define BLK_STS_MEDIUM		((__force blk_status_t)7)
80 #define BLK_STS_PROTECTION	((__force blk_status_t)8)
81 #define BLK_STS_RESOURCE	((__force blk_status_t)9)
82 #define BLK_STS_IOERR		((__force blk_status_t)10)
83 
84 /* hack for device mapper, don't use elsewhere: */
85 #define BLK_STS_DM_REQUEUE    ((__force blk_status_t)11)
86 
87 #define BLK_STS_AGAIN		((__force blk_status_t)12)
88 
89 /*
90  * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
91  * device related resources are unavailable, but the driver can guarantee
92  * that the queue will be rerun in the future once resources become
93  * available again. This is typically the case for device specific
94  * resources that are consumed for IO. If the driver fails allocating these
95  * resources, we know that inflight (or pending) IO will free these
96  * resource upon completion.
97  *
98  * This is different from BLK_STS_RESOURCE in that it explicitly references
99  * a device specific resource. For resources of wider scope, allocation
100  * failure can happen without having pending IO. This means that we can't
101  * rely on request completions freeing these resources, as IO may not be in
102  * flight. Examples of that are kernel memory allocations, DMA mappings, or
103  * any other system wide resources.
104  */
105 #define BLK_STS_DEV_RESOURCE	((__force blk_status_t)13)
106 
107 /*
108  * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
109  * related resources are unavailable, but the driver can guarantee the queue
110  * will be rerun in the future once the resources become available again.
111  *
112  * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
113  * a zone specific resource and IO to a different zone on the same device could
114  * still be served. Examples of that are zones that are write-locked, but a read
115  * to the same zone could be served.
116  */
117 #define BLK_STS_ZONE_RESOURCE	((__force blk_status_t)14)
118 
119 /*
120  * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion
121  * path if the device returns a status indicating that too many zone resources
122  * are currently open. The same command should be successful if resubmitted
123  * after the number of open zones decreases below the device's limits, which is
124  * reported in the request_queue's max_open_zones.
125  */
126 #define BLK_STS_ZONE_OPEN_RESOURCE	((__force blk_status_t)15)
127 
128 /*
129  * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion
130  * path if the device returns a status indicating that too many zone resources
131  * are currently active. The same command should be successful if resubmitted
132  * after the number of active zones decreases below the device's limits, which
133  * is reported in the request_queue's max_active_zones.
134  */
135 #define BLK_STS_ZONE_ACTIVE_RESOURCE	((__force blk_status_t)16)
136 
137 /**
138  * blk_path_error - returns true if error may be path related
139  * @error: status the request was completed with
140  *
141  * Description:
142  *     This classifies block error status into non-retryable errors and ones
143  *     that may be successful if retried on a failover path.
144  *
145  * Return:
146  *     %false - retrying failover path will not help
147  *     %true  - may succeed if retried
148  */
blk_path_error(blk_status_t error)149 static inline bool blk_path_error(blk_status_t error)
150 {
151 	switch (error) {
152 	case BLK_STS_NOTSUPP:
153 	case BLK_STS_NOSPC:
154 	case BLK_STS_TARGET:
155 	case BLK_STS_NEXUS:
156 	case BLK_STS_MEDIUM:
157 	case BLK_STS_PROTECTION:
158 		return false;
159 	}
160 
161 	/* Anything else could be a path failure, so should be retried */
162 	return true;
163 }
164 
165 /*
166  * From most significant bit:
167  * 1 bit: reserved for other usage, see below
168  * 12 bits: original size of bio
169  * 51 bits: issue time of bio
170  */
171 #define BIO_ISSUE_RES_BITS      1
172 #define BIO_ISSUE_SIZE_BITS     12
173 #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
174 #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
175 #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
176 #define BIO_ISSUE_SIZE_MASK     \
177 	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
178 #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
179 
180 /* Reserved bit for blk-throtl */
181 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
182 
183 struct bio_issue {
184 	u64 value;
185 };
186 
__bio_issue_time(u64 time)187 static inline u64 __bio_issue_time(u64 time)
188 {
189 	return time & BIO_ISSUE_TIME_MASK;
190 }
191 
bio_issue_time(struct bio_issue * issue)192 static inline u64 bio_issue_time(struct bio_issue *issue)
193 {
194 	return __bio_issue_time(issue->value);
195 }
196 
bio_issue_size(struct bio_issue * issue)197 static inline sector_t bio_issue_size(struct bio_issue *issue)
198 {
199 	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
200 }
201 
bio_issue_init(struct bio_issue * issue,sector_t size)202 static inline void bio_issue_init(struct bio_issue *issue,
203 				       sector_t size)
204 {
205 	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
206 	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
207 			(ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
208 			((u64)size << BIO_ISSUE_SIZE_SHIFT));
209 }
210 
211 /*
212  * main unit of I/O for the block layer and lower layers (ie drivers and
213  * stacking drivers)
214  */
215 struct bio {
216 	struct bio		*bi_next;	/* request queue link */
217 	struct block_device	*bi_bdev;
218 	unsigned int		bi_opf;		/* bottom bits req flags,
219 						 * top bits REQ_OP. Use
220 						 * accessors.
221 						 */
222 	unsigned short		bi_flags;	/* BIO_* below */
223 	unsigned short		bi_ioprio;
224 	unsigned short		bi_write_hint;
225 	blk_status_t		bi_status;
226 	atomic_t		__bi_remaining;
227 
228 	struct bvec_iter	bi_iter;
229 
230 	bio_end_io_t		*bi_end_io;
231 
232 	void			*bi_private;
233 #ifdef CONFIG_BLK_CGROUP
234 	/*
235 	 * Represents the association of the css and request_queue for the bio.
236 	 * If a bio goes direct to device, it will not have a blkg as it will
237 	 * not have a request_queue associated with it.  The reference is put
238 	 * on release of the bio.
239 	 */
240 	struct blkcg_gq		*bi_blkg;
241 	struct bio_issue	bi_issue;
242 #ifdef CONFIG_BLK_CGROUP_IOCOST
243 	u64			bi_iocost_cost;
244 #endif
245 #endif
246 
247 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
248 	struct bio_crypt_ctx	*bi_crypt_context;
249 #endif
250 
251 	union {
252 #if defined(CONFIG_BLK_DEV_INTEGRITY)
253 		struct bio_integrity_payload *bi_integrity; /* data integrity */
254 #endif
255 	};
256 
257 	unsigned short		bi_vcnt;	/* how many bio_vec's */
258 
259 	/*
260 	 * Everything starting with bi_max_vecs will be preserved by bio_reset()
261 	 */
262 
263 	unsigned short		bi_max_vecs;	/* max bvl_vecs we can hold */
264 
265 	atomic_t		__bi_cnt;	/* pin count */
266 
267 	struct bio_vec		*bi_io_vec;	/* the actual vec list */
268 
269 	struct bio_set		*bi_pool;
270 
271 	/*
272 	 * We can inline a number of vecs at the end of the bio, to avoid
273 	 * double allocations for a small number of bio_vecs. This member
274 	 * MUST obviously be kept at the very end of the bio.
275 	 */
276 	struct bio_vec		bi_inline_vecs[];
277 };
278 
279 #define BIO_RESET_BYTES		offsetof(struct bio, bi_max_vecs)
280 #define BIO_MAX_SECTORS		(UINT_MAX >> SECTOR_SHIFT)
281 
282 /*
283  * bio flags
284  */
285 enum {
286 	BIO_NO_PAGE_REF,	/* don't put release vec pages */
287 	BIO_CLONED,		/* doesn't own data */
288 	BIO_BOUNCED,		/* bio is a bounce bio */
289 	BIO_WORKINGSET,		/* contains userspace workingset pages */
290 	BIO_QUIET,		/* Make BIO Quiet */
291 	BIO_CHAIN,		/* chained bio, ->bi_remaining in effect */
292 	BIO_REFFED,		/* bio has elevated ->bi_cnt */
293 	BIO_THROTTLED,		/* This bio has already been subjected to
294 				 * throttling rules. Don't do it again. */
295 	BIO_TRACE_COMPLETION,	/* bio_endio() should trace the final completion
296 				 * of this bio. */
297 	BIO_CGROUP_ACCT,	/* has been accounted to a cgroup */
298 	BIO_TRACKED,		/* set if bio goes through the rq_qos path */
299 	BIO_REMAPPED,
300 	BIO_ZONE_WRITE_LOCKED,	/* Owns a zoned device zone write lock */
301 	BIO_PERCPU_CACHE,	/* can participate in per-cpu alloc cache */
302 	BIO_FLAG_LAST
303 };
304 
305 typedef __u32 __bitwise blk_mq_req_flags_t;
306 
307 /*
308  * Operations and flags common to the bio and request structures.
309  * We use 8 bits for encoding the operation, and the remaining 24 for flags.
310  *
311  * The least significant bit of the operation number indicates the data
312  * transfer direction:
313  *
314  *   - if the least significant bit is set transfers are TO the device
315  *   - if the least significant bit is not set transfers are FROM the device
316  *
317  * If a operation does not transfer data the least significant bit has no
318  * meaning.
319  */
320 #define REQ_OP_BITS	8
321 #define REQ_OP_MASK	((1 << REQ_OP_BITS) - 1)
322 #define REQ_FLAG_BITS	24
323 
324 enum req_opf {
325 	/* read sectors from the device */
326 	REQ_OP_READ		= 0,
327 	/* write sectors to the device */
328 	REQ_OP_WRITE		= 1,
329 	/* flush the volatile write cache */
330 	REQ_OP_FLUSH		= 2,
331 	/* discard sectors */
332 	REQ_OP_DISCARD		= 3,
333 	/* securely erase sectors */
334 	REQ_OP_SECURE_ERASE	= 5,
335 	/* write the same sector many times */
336 	REQ_OP_WRITE_SAME	= 7,
337 	/* write the zero filled sector many times */
338 	REQ_OP_WRITE_ZEROES	= 9,
339 	/* Open a zone */
340 	REQ_OP_ZONE_OPEN	= 10,
341 	/* Close a zone */
342 	REQ_OP_ZONE_CLOSE	= 11,
343 	/* Transition a zone to full */
344 	REQ_OP_ZONE_FINISH	= 12,
345 	/* write data at the current zone write pointer */
346 	REQ_OP_ZONE_APPEND	= 13,
347 	/* reset a zone write pointer */
348 	REQ_OP_ZONE_RESET	= 15,
349 	/* reset all the zone present on the device */
350 	REQ_OP_ZONE_RESET_ALL	= 17,
351 
352 	/* Driver private requests */
353 	REQ_OP_DRV_IN		= 34,
354 	REQ_OP_DRV_OUT		= 35,
355 
356 	REQ_OP_LAST,
357 };
358 
359 enum req_flag_bits {
360 	__REQ_FAILFAST_DEV =	/* no driver retries of device errors */
361 		REQ_OP_BITS,
362 	__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
363 	__REQ_FAILFAST_DRIVER,	/* no driver retries of driver errors */
364 	__REQ_SYNC,		/* request is sync (sync write or read) */
365 	__REQ_META,		/* metadata io request */
366 	__REQ_PRIO,		/* boost priority in cfq */
367 	__REQ_NOMERGE,		/* don't touch this for merging */
368 	__REQ_IDLE,		/* anticipate more IO after this one */
369 	__REQ_INTEGRITY,	/* I/O includes block integrity payload */
370 	__REQ_FUA,		/* forced unit access */
371 	__REQ_PREFLUSH,		/* request for cache flush */
372 	__REQ_RAHEAD,		/* read ahead, can fail anytime */
373 	__REQ_BACKGROUND,	/* background IO */
374 	__REQ_NOWAIT,           /* Don't wait if request will block */
375 	/*
376 	 * When a shared kthread needs to issue a bio for a cgroup, doing
377 	 * so synchronously can lead to priority inversions as the kthread
378 	 * can be trapped waiting for that cgroup.  CGROUP_PUNT flag makes
379 	 * submit_bio() punt the actual issuing to a dedicated per-blkcg
380 	 * work item to avoid such priority inversions.
381 	 */
382 	__REQ_CGROUP_PUNT,
383 
384 	/* command specific flags for REQ_OP_WRITE_ZEROES: */
385 	__REQ_NOUNMAP,		/* do not free blocks when zeroing */
386 
387 	__REQ_HIPRI,
388 
389 	/* for driver use */
390 	__REQ_DRV,
391 	__REQ_SWAP,		/* swapping request. */
392 	__REQ_NR_BITS,		/* stops here */
393 };
394 
395 #define REQ_FAILFAST_DEV	(1ULL << __REQ_FAILFAST_DEV)
396 #define REQ_FAILFAST_TRANSPORT	(1ULL << __REQ_FAILFAST_TRANSPORT)
397 #define REQ_FAILFAST_DRIVER	(1ULL << __REQ_FAILFAST_DRIVER)
398 #define REQ_SYNC		(1ULL << __REQ_SYNC)
399 #define REQ_META		(1ULL << __REQ_META)
400 #define REQ_PRIO		(1ULL << __REQ_PRIO)
401 #define REQ_NOMERGE		(1ULL << __REQ_NOMERGE)
402 #define REQ_IDLE		(1ULL << __REQ_IDLE)
403 #define REQ_INTEGRITY		(1ULL << __REQ_INTEGRITY)
404 #define REQ_FUA			(1ULL << __REQ_FUA)
405 #define REQ_PREFLUSH		(1ULL << __REQ_PREFLUSH)
406 #define REQ_RAHEAD		(1ULL << __REQ_RAHEAD)
407 #define REQ_BACKGROUND		(1ULL << __REQ_BACKGROUND)
408 #define REQ_NOWAIT		(1ULL << __REQ_NOWAIT)
409 #define REQ_CGROUP_PUNT		(1ULL << __REQ_CGROUP_PUNT)
410 
411 #define REQ_NOUNMAP		(1ULL << __REQ_NOUNMAP)
412 #define REQ_HIPRI		(1ULL << __REQ_HIPRI)
413 
414 #define REQ_DRV			(1ULL << __REQ_DRV)
415 #define REQ_SWAP		(1ULL << __REQ_SWAP)
416 
417 #define REQ_FAILFAST_MASK \
418 	(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
419 
420 #define REQ_NOMERGE_FLAGS \
421 	(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
422 
423 enum stat_group {
424 	STAT_READ,
425 	STAT_WRITE,
426 	STAT_DISCARD,
427 	STAT_FLUSH,
428 
429 	NR_STAT_GROUPS
430 };
431 
432 #define bio_op(bio) \
433 	((bio)->bi_opf & REQ_OP_MASK)
434 #define req_op(req) \
435 	((req)->cmd_flags & REQ_OP_MASK)
436 
437 /* obsolete, don't use in new code */
bio_set_op_attrs(struct bio * bio,unsigned op,unsigned op_flags)438 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
439 		unsigned op_flags)
440 {
441 	bio->bi_opf = op | op_flags;
442 }
443 
op_is_write(unsigned int op)444 static inline bool op_is_write(unsigned int op)
445 {
446 	return (op & 1);
447 }
448 
449 /*
450  * Check if the bio or request is one that needs special treatment in the
451  * flush state machine.
452  */
op_is_flush(unsigned int op)453 static inline bool op_is_flush(unsigned int op)
454 {
455 	return op & (REQ_FUA | REQ_PREFLUSH);
456 }
457 
458 /*
459  * Reads are always treated as synchronous, as are requests with the FUA or
460  * PREFLUSH flag.  Other operations may be marked as synchronous using the
461  * REQ_SYNC flag.
462  */
op_is_sync(unsigned int op)463 static inline bool op_is_sync(unsigned int op)
464 {
465 	return (op & REQ_OP_MASK) == REQ_OP_READ ||
466 		(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
467 }
468 
op_is_discard(unsigned int op)469 static inline bool op_is_discard(unsigned int op)
470 {
471 	return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
472 }
473 
474 /*
475  * Check if a bio or request operation is a zone management operation, with
476  * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
477  * due to its different handling in the block layer and device response in
478  * case of command failure.
479  */
op_is_zone_mgmt(enum req_opf op)480 static inline bool op_is_zone_mgmt(enum req_opf op)
481 {
482 	switch (op & REQ_OP_MASK) {
483 	case REQ_OP_ZONE_RESET:
484 	case REQ_OP_ZONE_OPEN:
485 	case REQ_OP_ZONE_CLOSE:
486 	case REQ_OP_ZONE_FINISH:
487 		return true;
488 	default:
489 		return false;
490 	}
491 }
492 
op_stat_group(unsigned int op)493 static inline int op_stat_group(unsigned int op)
494 {
495 	if (op_is_discard(op))
496 		return STAT_DISCARD;
497 	return op_is_write(op);
498 }
499 
500 typedef unsigned int blk_qc_t;
501 #define BLK_QC_T_NONE		-1U
502 #define BLK_QC_T_SHIFT		16
503 #define BLK_QC_T_INTERNAL	(1U << 31)
504 
blk_qc_t_valid(blk_qc_t cookie)505 static inline bool blk_qc_t_valid(blk_qc_t cookie)
506 {
507 	return cookie != BLK_QC_T_NONE;
508 }
509 
blk_qc_t_to_queue_num(blk_qc_t cookie)510 static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
511 {
512 	return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
513 }
514 
blk_qc_t_to_tag(blk_qc_t cookie)515 static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
516 {
517 	return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
518 }
519 
blk_qc_t_is_internal(blk_qc_t cookie)520 static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
521 {
522 	return (cookie & BLK_QC_T_INTERNAL) != 0;
523 }
524 
525 struct blk_rq_stat {
526 	u64 mean;
527 	u64 min;
528 	u64 max;
529 	u32 nr_samples;
530 	u64 batch;
531 };
532 
533 #endif /* __LINUX_BLK_TYPES_H */
534