1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8 #define pr_fmt(fmt) "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT 4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY 0
49
50 #define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH 2048
56 #define SKB_ALIGNMENT 32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
bcmgenet_writel(u32 value,void __iomem * offset)71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
75 */
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(value, offset);
78 else
79 writel_relaxed(value, offset);
80 }
81
bcmgenet_readl(void __iomem * offset)82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(offset);
86 else
87 return readl_relaxed(offset);
88 }
89
dmadesc_set_length_status(struct bcmgenet_priv * priv,void __iomem * d,u32 value)90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
92 {
93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
dmadesc_set_addr(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr)96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
99 {
100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
105 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
dmadesc_set(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr,u32 val)113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, val);
118 }
119
120 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
121
122 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123 NETIF_MSG_LINK)
124
bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv * priv)125 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126 {
127 if (GENET_IS_V1(priv))
128 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129 else
130 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131 }
132
bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)133 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134 {
135 if (GENET_IS_V1(priv))
136 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137 else
138 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139 }
140
141 /* These macros are defined to deal with register map change
142 * between GENET1.1 and GENET2. Only those currently being used
143 * by driver are defined.
144 */
bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv * priv)145 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146 {
147 if (GENET_IS_V1(priv))
148 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149 else
150 return bcmgenet_readl(priv->base +
151 priv->hw_params->tbuf_offset + TBUF_CTRL);
152 }
153
bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)154 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155 {
156 if (GENET_IS_V1(priv))
157 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158 else
159 bcmgenet_writel(val, priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
bcmgenet_bp_mc_get(struct bcmgenet_priv * priv)163 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164 {
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167 else
168 return bcmgenet_readl(priv->base +
169 priv->hw_params->tbuf_offset + TBUF_BP_MC);
170 }
171
bcmgenet_bp_mc_set(struct bcmgenet_priv * priv,u32 val)172 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176 else
177 bcmgenet_writel(val, priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 /* RX/TX DMA register accessors */
182 enum dma_reg {
183 DMA_RING_CFG = 0,
184 DMA_CTRL,
185 DMA_STATUS,
186 DMA_SCB_BURST_SIZE,
187 DMA_ARB_CTRL,
188 DMA_PRIORITY_0,
189 DMA_PRIORITY_1,
190 DMA_PRIORITY_2,
191 DMA_INDEX2RING_0,
192 DMA_INDEX2RING_1,
193 DMA_INDEX2RING_2,
194 DMA_INDEX2RING_3,
195 DMA_INDEX2RING_4,
196 DMA_INDEX2RING_5,
197 DMA_INDEX2RING_6,
198 DMA_INDEX2RING_7,
199 DMA_RING0_TIMEOUT,
200 DMA_RING1_TIMEOUT,
201 DMA_RING2_TIMEOUT,
202 DMA_RING3_TIMEOUT,
203 DMA_RING4_TIMEOUT,
204 DMA_RING5_TIMEOUT,
205 DMA_RING6_TIMEOUT,
206 DMA_RING7_TIMEOUT,
207 DMA_RING8_TIMEOUT,
208 DMA_RING9_TIMEOUT,
209 DMA_RING10_TIMEOUT,
210 DMA_RING11_TIMEOUT,
211 DMA_RING12_TIMEOUT,
212 DMA_RING13_TIMEOUT,
213 DMA_RING14_TIMEOUT,
214 DMA_RING15_TIMEOUT,
215 DMA_RING16_TIMEOUT,
216 };
217
218 static const u8 bcmgenet_dma_regs_v3plus[] = {
219 [DMA_RING_CFG] = 0x00,
220 [DMA_CTRL] = 0x04,
221 [DMA_STATUS] = 0x08,
222 [DMA_SCB_BURST_SIZE] = 0x0C,
223 [DMA_ARB_CTRL] = 0x2C,
224 [DMA_PRIORITY_0] = 0x30,
225 [DMA_PRIORITY_1] = 0x34,
226 [DMA_PRIORITY_2] = 0x38,
227 [DMA_RING0_TIMEOUT] = 0x2C,
228 [DMA_RING1_TIMEOUT] = 0x30,
229 [DMA_RING2_TIMEOUT] = 0x34,
230 [DMA_RING3_TIMEOUT] = 0x38,
231 [DMA_RING4_TIMEOUT] = 0x3c,
232 [DMA_RING5_TIMEOUT] = 0x40,
233 [DMA_RING6_TIMEOUT] = 0x44,
234 [DMA_RING7_TIMEOUT] = 0x48,
235 [DMA_RING8_TIMEOUT] = 0x4c,
236 [DMA_RING9_TIMEOUT] = 0x50,
237 [DMA_RING10_TIMEOUT] = 0x54,
238 [DMA_RING11_TIMEOUT] = 0x58,
239 [DMA_RING12_TIMEOUT] = 0x5c,
240 [DMA_RING13_TIMEOUT] = 0x60,
241 [DMA_RING14_TIMEOUT] = 0x64,
242 [DMA_RING15_TIMEOUT] = 0x68,
243 [DMA_RING16_TIMEOUT] = 0x6C,
244 [DMA_INDEX2RING_0] = 0x70,
245 [DMA_INDEX2RING_1] = 0x74,
246 [DMA_INDEX2RING_2] = 0x78,
247 [DMA_INDEX2RING_3] = 0x7C,
248 [DMA_INDEX2RING_4] = 0x80,
249 [DMA_INDEX2RING_5] = 0x84,
250 [DMA_INDEX2RING_6] = 0x88,
251 [DMA_INDEX2RING_7] = 0x8C,
252 };
253
254 static const u8 bcmgenet_dma_regs_v2[] = {
255 [DMA_RING_CFG] = 0x00,
256 [DMA_CTRL] = 0x04,
257 [DMA_STATUS] = 0x08,
258 [DMA_SCB_BURST_SIZE] = 0x0C,
259 [DMA_ARB_CTRL] = 0x30,
260 [DMA_PRIORITY_0] = 0x34,
261 [DMA_PRIORITY_1] = 0x38,
262 [DMA_PRIORITY_2] = 0x3C,
263 [DMA_RING0_TIMEOUT] = 0x2C,
264 [DMA_RING1_TIMEOUT] = 0x30,
265 [DMA_RING2_TIMEOUT] = 0x34,
266 [DMA_RING3_TIMEOUT] = 0x38,
267 [DMA_RING4_TIMEOUT] = 0x3c,
268 [DMA_RING5_TIMEOUT] = 0x40,
269 [DMA_RING6_TIMEOUT] = 0x44,
270 [DMA_RING7_TIMEOUT] = 0x48,
271 [DMA_RING8_TIMEOUT] = 0x4c,
272 [DMA_RING9_TIMEOUT] = 0x50,
273 [DMA_RING10_TIMEOUT] = 0x54,
274 [DMA_RING11_TIMEOUT] = 0x58,
275 [DMA_RING12_TIMEOUT] = 0x5c,
276 [DMA_RING13_TIMEOUT] = 0x60,
277 [DMA_RING14_TIMEOUT] = 0x64,
278 [DMA_RING15_TIMEOUT] = 0x68,
279 [DMA_RING16_TIMEOUT] = 0x6C,
280 };
281
282 static const u8 bcmgenet_dma_regs_v1[] = {
283 [DMA_CTRL] = 0x00,
284 [DMA_STATUS] = 0x04,
285 [DMA_SCB_BURST_SIZE] = 0x0C,
286 [DMA_ARB_CTRL] = 0x30,
287 [DMA_PRIORITY_0] = 0x34,
288 [DMA_PRIORITY_1] = 0x38,
289 [DMA_PRIORITY_2] = 0x3C,
290 [DMA_RING0_TIMEOUT] = 0x2C,
291 [DMA_RING1_TIMEOUT] = 0x30,
292 [DMA_RING2_TIMEOUT] = 0x34,
293 [DMA_RING3_TIMEOUT] = 0x38,
294 [DMA_RING4_TIMEOUT] = 0x3c,
295 [DMA_RING5_TIMEOUT] = 0x40,
296 [DMA_RING6_TIMEOUT] = 0x44,
297 [DMA_RING7_TIMEOUT] = 0x48,
298 [DMA_RING8_TIMEOUT] = 0x4c,
299 [DMA_RING9_TIMEOUT] = 0x50,
300 [DMA_RING10_TIMEOUT] = 0x54,
301 [DMA_RING11_TIMEOUT] = 0x58,
302 [DMA_RING12_TIMEOUT] = 0x5c,
303 [DMA_RING13_TIMEOUT] = 0x60,
304 [DMA_RING14_TIMEOUT] = 0x64,
305 [DMA_RING15_TIMEOUT] = 0x68,
306 [DMA_RING16_TIMEOUT] = 0x6C,
307 };
308
309 /* Set at runtime once bcmgenet version is known */
310 static const u8 *bcmgenet_dma_regs;
311
dev_to_priv(struct device * dev)312 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313 {
314 return netdev_priv(dev_get_drvdata(dev));
315 }
316
bcmgenet_tdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)317 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318 enum dma_reg r)
319 {
320 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
321 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322 }
323
bcmgenet_tdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)324 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325 u32 val, enum dma_reg r)
326 {
327 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
328 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329 }
330
bcmgenet_rdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)331 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332 enum dma_reg r)
333 {
334 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
335 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336 }
337
bcmgenet_rdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)338 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339 u32 val, enum dma_reg r)
340 {
341 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
342 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343 }
344
345 /* RDMA/TDMA ring registers and accessors
346 * we merge the common fields and just prefix with T/D the registers
347 * having different meaning depending on the direction
348 */
349 enum dma_ring_reg {
350 TDMA_READ_PTR = 0,
351 RDMA_WRITE_PTR = TDMA_READ_PTR,
352 TDMA_READ_PTR_HI,
353 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354 TDMA_CONS_INDEX,
355 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356 TDMA_PROD_INDEX,
357 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358 DMA_RING_BUF_SIZE,
359 DMA_START_ADDR,
360 DMA_START_ADDR_HI,
361 DMA_END_ADDR,
362 DMA_END_ADDR_HI,
363 DMA_MBUF_DONE_THRESH,
364 TDMA_FLOW_PERIOD,
365 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366 TDMA_WRITE_PTR,
367 RDMA_READ_PTR = TDMA_WRITE_PTR,
368 TDMA_WRITE_PTR_HI,
369 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370 };
371
372 /* GENET v4 supports 40-bits pointer addressing
373 * for obvious reasons the LO and HI word parts
374 * are contiguous, but this offsets the other
375 * registers.
376 */
377 static const u8 genet_dma_ring_regs_v4[] = {
378 [TDMA_READ_PTR] = 0x00,
379 [TDMA_READ_PTR_HI] = 0x04,
380 [TDMA_CONS_INDEX] = 0x08,
381 [TDMA_PROD_INDEX] = 0x0C,
382 [DMA_RING_BUF_SIZE] = 0x10,
383 [DMA_START_ADDR] = 0x14,
384 [DMA_START_ADDR_HI] = 0x18,
385 [DMA_END_ADDR] = 0x1C,
386 [DMA_END_ADDR_HI] = 0x20,
387 [DMA_MBUF_DONE_THRESH] = 0x24,
388 [TDMA_FLOW_PERIOD] = 0x28,
389 [TDMA_WRITE_PTR] = 0x2C,
390 [TDMA_WRITE_PTR_HI] = 0x30,
391 };
392
393 static const u8 genet_dma_ring_regs_v123[] = {
394 [TDMA_READ_PTR] = 0x00,
395 [TDMA_CONS_INDEX] = 0x04,
396 [TDMA_PROD_INDEX] = 0x08,
397 [DMA_RING_BUF_SIZE] = 0x0C,
398 [DMA_START_ADDR] = 0x10,
399 [DMA_END_ADDR] = 0x14,
400 [DMA_MBUF_DONE_THRESH] = 0x18,
401 [TDMA_FLOW_PERIOD] = 0x1C,
402 [TDMA_WRITE_PTR] = 0x20,
403 };
404
405 /* Set at runtime once GENET version is known */
406 static const u8 *genet_dma_ring_regs;
407
bcmgenet_tdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)408 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409 unsigned int ring,
410 enum dma_ring_reg r)
411 {
412 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
413 (DMA_RING_SIZE * ring) +
414 genet_dma_ring_regs[r]);
415 }
416
bcmgenet_tdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)417 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418 unsigned int ring, u32 val,
419 enum dma_ring_reg r)
420 {
421 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424 }
425
bcmgenet_rdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)426 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
429 {
430 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
bcmgenet_rdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)435 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
438 {
439 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
bcmgenet_hfb_enable_filter(struct bcmgenet_priv * priv,u32 f_index)444 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445 {
446 u32 offset;
447 u32 reg;
448
449 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450 reg = bcmgenet_hfb_reg_readl(priv, offset);
451 reg |= (1 << (f_index % 32));
452 bcmgenet_hfb_reg_writel(priv, reg, offset);
453 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454 reg |= RBUF_HFB_EN;
455 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
456 }
457
bcmgenet_hfb_disable_filter(struct bcmgenet_priv * priv,u32 f_index)458 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459 {
460 u32 offset, reg, reg1;
461
462 offset = HFB_FLT_ENABLE_V3PLUS;
463 reg = bcmgenet_hfb_reg_readl(priv, offset);
464 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
465 if (f_index < 32) {
466 reg1 &= ~(1 << (f_index % 32));
467 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
468 } else {
469 reg &= ~(1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, reg, offset);
471 }
472 if (!reg && !reg1) {
473 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474 reg &= ~RBUF_HFB_EN;
475 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476 }
477 }
478
bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv * priv,u32 f_index,u32 rx_queue)479 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480 u32 f_index, u32 rx_queue)
481 {
482 u32 offset;
483 u32 reg;
484
485 offset = f_index / 8;
486 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
487 reg &= ~(0xF << (4 * (f_index % 8)));
488 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
490 }
491
bcmgenet_hfb_set_filter_length(struct bcmgenet_priv * priv,u32 f_index,u32 f_length)492 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493 u32 f_index, u32 f_length)
494 {
495 u32 offset;
496 u32 reg;
497
498 offset = HFB_FLT_LEN_V3PLUS +
499 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500 sizeof(u32);
501 reg = bcmgenet_hfb_reg_readl(priv, offset);
502 reg &= ~(0xFF << (8 * (f_index % 4)));
503 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504 bcmgenet_hfb_reg_writel(priv, reg, offset);
505 }
506
bcmgenet_hfb_validate_mask(void * mask,size_t size)507 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508 {
509 while (size) {
510 switch (*(unsigned char *)mask++) {
511 case 0x00:
512 case 0x0f:
513 case 0xf0:
514 case 0xff:
515 size--;
516 continue;
517 default:
518 return -EINVAL;
519 }
520 }
521
522 return 0;
523 }
524
525 #define VALIDATE_MASK(x) \
526 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527
bcmgenet_hfb_insert_data(struct bcmgenet_priv * priv,u32 f_index,u32 offset,void * val,void * mask,size_t size)528 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529 u32 offset, void *val, void *mask,
530 size_t size)
531 {
532 u32 index, tmp;
533
534 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
536
537 while (size--) {
538 if (offset++ & 1) {
539 tmp &= ~0x300FF;
540 tmp |= (*(unsigned char *)val++);
541 switch ((*(unsigned char *)mask++)) {
542 case 0xFF:
543 tmp |= 0x30000;
544 break;
545 case 0xF0:
546 tmp |= 0x20000;
547 break;
548 case 0x0F:
549 tmp |= 0x10000;
550 break;
551 }
552 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
553 if (size)
554 tmp = bcmgenet_hfb_readl(priv,
555 index * sizeof(u32));
556 } else {
557 tmp &= ~0xCFF00;
558 tmp |= (*(unsigned char *)val++) << 8;
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0xC0000;
562 break;
563 case 0xF0:
564 tmp |= 0x80000;
565 break;
566 case 0x0F:
567 tmp |= 0x40000;
568 break;
569 }
570 if (!size)
571 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
572 }
573 }
574
575 return 0;
576 }
577
bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv * priv,struct bcmgenet_rxnfc_rule * rule)578 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579 struct bcmgenet_rxnfc_rule *rule)
580 {
581 struct ethtool_rx_flow_spec *fs = &rule->fs;
582 u32 offset = 0, f_length = 0, f;
583 u8 val_8, mask_8;
584 __be16 val_16;
585 u16 mask_16;
586 size_t size;
587
588 f = fs->location;
589 if (fs->flow_type & FLOW_MAC_EXT) {
590 bcmgenet_hfb_insert_data(priv, f, 0,
591 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
592 sizeof(fs->h_ext.h_dest));
593 }
594
595 if (fs->flow_type & FLOW_EXT) {
596 if (fs->m_ext.vlan_etype ||
597 fs->m_ext.vlan_tci) {
598 bcmgenet_hfb_insert_data(priv, f, 12,
599 &fs->h_ext.vlan_etype,
600 &fs->m_ext.vlan_etype,
601 sizeof(fs->h_ext.vlan_etype));
602 bcmgenet_hfb_insert_data(priv, f, 14,
603 &fs->h_ext.vlan_tci,
604 &fs->m_ext.vlan_tci,
605 sizeof(fs->h_ext.vlan_tci));
606 offset += VLAN_HLEN;
607 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608 }
609 }
610
611 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612 case ETHER_FLOW:
613 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614 bcmgenet_hfb_insert_data(priv, f, 0,
615 &fs->h_u.ether_spec.h_dest,
616 &fs->m_u.ether_spec.h_dest,
617 sizeof(fs->h_u.ether_spec.h_dest));
618 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
619 &fs->h_u.ether_spec.h_source,
620 &fs->m_u.ether_spec.h_source,
621 sizeof(fs->h_u.ether_spec.h_source));
622 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
623 &fs->h_u.ether_spec.h_proto,
624 &fs->m_u.ether_spec.h_proto,
625 sizeof(fs->h_u.ether_spec.h_proto));
626 break;
627 case IP_USER_FLOW:
628 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629 /* Specify IP Ether Type */
630 val_16 = htons(ETH_P_IP);
631 mask_16 = 0xFFFF;
632 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
633 &val_16, &mask_16, sizeof(val_16));
634 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
635 &fs->h_u.usr_ip4_spec.tos,
636 &fs->m_u.usr_ip4_spec.tos,
637 sizeof(fs->h_u.usr_ip4_spec.tos));
638 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
639 &fs->h_u.usr_ip4_spec.proto,
640 &fs->m_u.usr_ip4_spec.proto,
641 sizeof(fs->h_u.usr_ip4_spec.proto));
642 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
643 &fs->h_u.usr_ip4_spec.ip4src,
644 &fs->m_u.usr_ip4_spec.ip4src,
645 sizeof(fs->h_u.usr_ip4_spec.ip4src));
646 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
647 &fs->h_u.usr_ip4_spec.ip4dst,
648 &fs->m_u.usr_ip4_spec.ip4dst,
649 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651 break;
652
653 /* Only supports 20 byte IPv4 header */
654 val_8 = 0x45;
655 mask_8 = 0xFF;
656 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
657 &val_8, &mask_8,
658 sizeof(val_8));
659 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660 bcmgenet_hfb_insert_data(priv, f,
661 ETH_HLEN + 20 + offset,
662 &fs->h_u.usr_ip4_spec.l4_4_bytes,
663 &fs->m_u.usr_ip4_spec.l4_4_bytes,
664 size);
665 f_length += DIV_ROUND_UP(size, 2);
666 break;
667 }
668
669 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
670 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671 /* Ring 0 flows can be handled by the default Descriptor Ring
672 * We'll map them to ring 0, but don't enable the filter
673 */
674 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
675 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676 } else {
677 /* Other Rx rings are direct mapped here */
678 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
679 fs->ring_cookie);
680 bcmgenet_hfb_enable_filter(priv, f);
681 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682 }
683 }
684
685 /* bcmgenet_hfb_clear
686 *
687 * Clear Hardware Filter Block and disable all filtering.
688 */
bcmgenet_hfb_clear_filter(struct bcmgenet_priv * priv,u32 f_index)689 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690 {
691 u32 base, i;
692
693 base = f_index * priv->hw_params->hfb_filter_size;
694 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
696 }
697
bcmgenet_hfb_clear(struct bcmgenet_priv * priv)698 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699 {
700 u32 i;
701
702 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703 return;
704
705 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
706 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
707 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708
709 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710 bcmgenet_rdma_writel(priv, 0x0, i);
711
712 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713 bcmgenet_hfb_reg_writel(priv, 0x0,
714 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715
716 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717 bcmgenet_hfb_clear_filter(priv, i);
718 }
719
bcmgenet_hfb_init(struct bcmgenet_priv * priv)720 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721 {
722 int i;
723
724 INIT_LIST_HEAD(&priv->rxnfc_list);
725 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726 return;
727
728 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
730 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731 }
732
733 bcmgenet_hfb_clear(priv);
734 }
735
bcmgenet_begin(struct net_device * dev)736 static int bcmgenet_begin(struct net_device *dev)
737 {
738 struct bcmgenet_priv *priv = netdev_priv(dev);
739
740 /* Turn on the clock */
741 return clk_prepare_enable(priv->clk);
742 }
743
bcmgenet_complete(struct net_device * dev)744 static void bcmgenet_complete(struct net_device *dev)
745 {
746 struct bcmgenet_priv *priv = netdev_priv(dev);
747
748 /* Turn off the clock */
749 clk_disable_unprepare(priv->clk);
750 }
751
bcmgenet_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)752 static int bcmgenet_get_link_ksettings(struct net_device *dev,
753 struct ethtool_link_ksettings *cmd)
754 {
755 if (!netif_running(dev))
756 return -EINVAL;
757
758 if (!dev->phydev)
759 return -ENODEV;
760
761 phy_ethtool_ksettings_get(dev->phydev, cmd);
762
763 return 0;
764 }
765
bcmgenet_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)766 static int bcmgenet_set_link_ksettings(struct net_device *dev,
767 const struct ethtool_link_ksettings *cmd)
768 {
769 if (!netif_running(dev))
770 return -EINVAL;
771
772 if (!dev->phydev)
773 return -ENODEV;
774
775 return phy_ethtool_ksettings_set(dev->phydev, cmd);
776 }
777
bcmgenet_set_features(struct net_device * dev,netdev_features_t features)778 static int bcmgenet_set_features(struct net_device *dev,
779 netdev_features_t features)
780 {
781 struct bcmgenet_priv *priv = netdev_priv(dev);
782 u32 reg;
783 int ret;
784
785 ret = clk_prepare_enable(priv->clk);
786 if (ret)
787 return ret;
788
789 /* Make sure we reflect the value of CRC_CMD_FWD */
790 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792
793 clk_disable_unprepare(priv->clk);
794
795 return ret;
796 }
797
bcmgenet_get_msglevel(struct net_device * dev)798 static u32 bcmgenet_get_msglevel(struct net_device *dev)
799 {
800 struct bcmgenet_priv *priv = netdev_priv(dev);
801
802 return priv->msg_enable;
803 }
804
bcmgenet_set_msglevel(struct net_device * dev,u32 level)805 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806 {
807 struct bcmgenet_priv *priv = netdev_priv(dev);
808
809 priv->msg_enable = level;
810 }
811
bcmgenet_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)812 static int bcmgenet_get_coalesce(struct net_device *dev,
813 struct ethtool_coalesce *ec,
814 struct kernel_ethtool_coalesce *kernel_coal,
815 struct netlink_ext_ack *extack)
816 {
817 struct bcmgenet_priv *priv = netdev_priv(dev);
818 struct bcmgenet_rx_ring *ring;
819 unsigned int i;
820
821 ec->tx_max_coalesced_frames =
822 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823 DMA_MBUF_DONE_THRESH);
824 ec->rx_max_coalesced_frames =
825 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826 DMA_MBUF_DONE_THRESH);
827 ec->rx_coalesce_usecs =
828 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
829
830 for (i = 0; i < priv->hw_params->rx_queues; i++) {
831 ring = &priv->rx_rings[i];
832 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833 }
834 ring = &priv->rx_rings[DESC_INDEX];
835 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836
837 return 0;
838 }
839
bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring * ring,u32 usecs,u32 pkts)840 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841 u32 usecs, u32 pkts)
842 {
843 struct bcmgenet_priv *priv = ring->priv;
844 unsigned int i = ring->index;
845 u32 reg;
846
847 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
848
849 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
850 reg &= ~DMA_TIMEOUT_MASK;
851 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
853 }
854
bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring * ring,struct ethtool_coalesce * ec)855 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856 struct ethtool_coalesce *ec)
857 {
858 struct dim_cq_moder moder;
859 u32 usecs, pkts;
860
861 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863 usecs = ring->rx_coalesce_usecs;
864 pkts = ring->rx_max_coalesced_frames;
865
866 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
868 usecs = moder.usec;
869 pkts = moder.pkts;
870 }
871
872 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874 }
875
bcmgenet_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)876 static int bcmgenet_set_coalesce(struct net_device *dev,
877 struct ethtool_coalesce *ec,
878 struct kernel_ethtool_coalesce *kernel_coal,
879 struct netlink_ext_ack *extack)
880 {
881 struct bcmgenet_priv *priv = netdev_priv(dev);
882 unsigned int i;
883
884 /* Base system clock is 125Mhz, DMA timeout is this reference clock
885 * divided by 1024, which yields roughly 8.192us, our maximum value
886 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887 */
888 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889 ec->tx_max_coalesced_frames == 0 ||
890 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892 return -EINVAL;
893
894 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895 return -EINVAL;
896
897 /* GENET TDMA hardware does not support a configurable timeout, but will
898 * always generate an interrupt either after MBDONE packets have been
899 * transmitted, or when the ring is empty.
900 */
901
902 /* Program all TX queues with the same values, as there is no
903 * ethtool knob to do coalescing on a per-queue basis
904 */
905 for (i = 0; i < priv->hw_params->tx_queues; i++)
906 bcmgenet_tdma_ring_writel(priv, i,
907 ec->tx_max_coalesced_frames,
908 DMA_MBUF_DONE_THRESH);
909 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910 ec->tx_max_coalesced_frames,
911 DMA_MBUF_DONE_THRESH);
912
913 for (i = 0; i < priv->hw_params->rx_queues; i++)
914 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
915 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
916
917 return 0;
918 }
919
bcmgenet_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)920 static void bcmgenet_get_pauseparam(struct net_device *dev,
921 struct ethtool_pauseparam *epause)
922 {
923 struct bcmgenet_priv *priv;
924 u32 umac_cmd;
925
926 priv = netdev_priv(dev);
927
928 epause->autoneg = priv->autoneg_pause;
929
930 if (netif_carrier_ok(dev)) {
931 /* report active state when link is up */
932 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935 } else {
936 /* otherwise report stored settings */
937 epause->tx_pause = priv->tx_pause;
938 epause->rx_pause = priv->rx_pause;
939 }
940 }
941
bcmgenet_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)942 static int bcmgenet_set_pauseparam(struct net_device *dev,
943 struct ethtool_pauseparam *epause)
944 {
945 struct bcmgenet_priv *priv = netdev_priv(dev);
946
947 if (!dev->phydev)
948 return -ENODEV;
949
950 if (!phy_validate_pause(dev->phydev, epause))
951 return -EINVAL;
952
953 priv->autoneg_pause = !!epause->autoneg;
954 priv->tx_pause = !!epause->tx_pause;
955 priv->rx_pause = !!epause->rx_pause;
956
957 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
958
959 return 0;
960 }
961
962 /* standard ethtool support functions. */
963 enum bcmgenet_stat_type {
964 BCMGENET_STAT_NETDEV = -1,
965 BCMGENET_STAT_MIB_RX,
966 BCMGENET_STAT_MIB_TX,
967 BCMGENET_STAT_RUNT,
968 BCMGENET_STAT_MISC,
969 BCMGENET_STAT_SOFT,
970 };
971
972 struct bcmgenet_stats {
973 char stat_string[ETH_GSTRING_LEN];
974 int stat_sizeof;
975 int stat_offset;
976 enum bcmgenet_stat_type type;
977 /* reg offset from UMAC base for misc counters */
978 u16 reg_offset;
979 };
980
981 #define STAT_NETDEV(m) { \
982 .stat_string = __stringify(m), \
983 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984 .stat_offset = offsetof(struct net_device_stats, m), \
985 .type = BCMGENET_STAT_NETDEV, \
986 }
987
988 #define STAT_GENET_MIB(str, m, _type) { \
989 .stat_string = str, \
990 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991 .stat_offset = offsetof(struct bcmgenet_priv, m), \
992 .type = _type, \
993 }
994
995 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999
1000 #define STAT_GENET_MISC(str, m, offset) { \
1001 .stat_string = str, \
1002 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003 .stat_offset = offsetof(struct bcmgenet_priv, m), \
1004 .type = BCMGENET_STAT_MISC, \
1005 .reg_offset = offset, \
1006 }
1007
1008 #define STAT_GENET_Q(num) \
1009 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010 tx_rings[num].packets), \
1011 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012 tx_rings[num].bytes), \
1013 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014 rx_rings[num].bytes), \
1015 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016 rx_rings[num].packets), \
1017 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018 rx_rings[num].errors), \
1019 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020 rx_rings[num].dropped)
1021
1022 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023 * between the end of TX stats and the beginning of the RX RUNT
1024 */
1025 #define BCMGENET_STAT_OFFSET 0xc
1026
1027 /* Hardware counters must be kept in sync because the order/offset
1028 * is important here (order in structure declaration = order in hardware)
1029 */
1030 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031 /* general stats */
1032 STAT_NETDEV(rx_packets),
1033 STAT_NETDEV(tx_packets),
1034 STAT_NETDEV(rx_bytes),
1035 STAT_NETDEV(tx_bytes),
1036 STAT_NETDEV(rx_errors),
1037 STAT_NETDEV(tx_errors),
1038 STAT_NETDEV(rx_dropped),
1039 STAT_NETDEV(tx_dropped),
1040 STAT_NETDEV(multicast),
1041 /* UniMAC RSV counters */
1042 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071 /* UniMAC TSV counters */
1072 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101 /* UniMAC RUNT counters */
1102 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106 /* Misc UniMAC counters */
1107 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108 UMAC_RBUF_OVFL_CNT_V1),
1109 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110 UMAC_RBUF_ERR_CNT_V1),
1111 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117 mib.tx_realloc_tsb_failed),
1118 /* Per TX queues */
1119 STAT_GENET_Q(0),
1120 STAT_GENET_Q(1),
1121 STAT_GENET_Q(2),
1122 STAT_GENET_Q(3),
1123 STAT_GENET_Q(16),
1124 };
1125
1126 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
bcmgenet_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1128 static void bcmgenet_get_drvinfo(struct net_device *dev,
1129 struct ethtool_drvinfo *info)
1130 {
1131 strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132 }
1133
bcmgenet_get_sset_count(struct net_device * dev,int string_set)1134 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135 {
1136 switch (string_set) {
1137 case ETH_SS_STATS:
1138 return BCMGENET_STATS_LEN;
1139 default:
1140 return -EOPNOTSUPP;
1141 }
1142 }
1143
bcmgenet_get_strings(struct net_device * dev,u32 stringset,u8 * data)1144 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145 u8 *data)
1146 {
1147 int i;
1148
1149 switch (stringset) {
1150 case ETH_SS_STATS:
1151 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152 memcpy(data + i * ETH_GSTRING_LEN,
1153 bcmgenet_gstrings_stats[i].stat_string,
1154 ETH_GSTRING_LEN);
1155 }
1156 break;
1157 }
1158 }
1159
bcmgenet_update_stat_misc(struct bcmgenet_priv * priv,u16 offset)1160 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161 {
1162 u16 new_offset;
1163 u32 val;
1164
1165 switch (offset) {
1166 case UMAC_RBUF_OVFL_CNT_V1:
1167 if (GENET_IS_V2(priv))
1168 new_offset = RBUF_OVFL_CNT_V2;
1169 else
1170 new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172 val = bcmgenet_rbuf_readl(priv, new_offset);
1173 /* clear if overflowed */
1174 if (val == ~0)
1175 bcmgenet_rbuf_writel(priv, 0, new_offset);
1176 break;
1177 case UMAC_RBUF_ERR_CNT_V1:
1178 if (GENET_IS_V2(priv))
1179 new_offset = RBUF_ERR_CNT_V2;
1180 else
1181 new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183 val = bcmgenet_rbuf_readl(priv, new_offset);
1184 /* clear if overflowed */
1185 if (val == ~0)
1186 bcmgenet_rbuf_writel(priv, 0, new_offset);
1187 break;
1188 default:
1189 val = bcmgenet_umac_readl(priv, offset);
1190 /* clear if overflowed */
1191 if (val == ~0)
1192 bcmgenet_umac_writel(priv, 0, offset);
1193 break;
1194 }
1195
1196 return val;
1197 }
1198
bcmgenet_update_mib_counters(struct bcmgenet_priv * priv)1199 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200 {
1201 int i, j = 0;
1202
1203 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204 const struct bcmgenet_stats *s;
1205 u8 offset = 0;
1206 u32 val = 0;
1207 char *p;
1208
1209 s = &bcmgenet_gstrings_stats[i];
1210 switch (s->type) {
1211 case BCMGENET_STAT_NETDEV:
1212 case BCMGENET_STAT_SOFT:
1213 continue;
1214 case BCMGENET_STAT_RUNT:
1215 offset += BCMGENET_STAT_OFFSET;
1216 fallthrough;
1217 case BCMGENET_STAT_MIB_TX:
1218 offset += BCMGENET_STAT_OFFSET;
1219 fallthrough;
1220 case BCMGENET_STAT_MIB_RX:
1221 val = bcmgenet_umac_readl(priv,
1222 UMAC_MIB_START + j + offset);
1223 offset = 0; /* Reset Offset */
1224 break;
1225 case BCMGENET_STAT_MISC:
1226 if (GENET_IS_V1(priv)) {
1227 val = bcmgenet_umac_readl(priv, s->reg_offset);
1228 /* clear if overflowed */
1229 if (val == ~0)
1230 bcmgenet_umac_writel(priv, 0,
1231 s->reg_offset);
1232 } else {
1233 val = bcmgenet_update_stat_misc(priv,
1234 s->reg_offset);
1235 }
1236 break;
1237 }
1238
1239 j += s->stat_sizeof;
1240 p = (char *)priv + s->stat_offset;
1241 *(u32 *)p = val;
1242 }
1243 }
1244
bcmgenet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1245 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246 struct ethtool_stats *stats,
1247 u64 *data)
1248 {
1249 struct bcmgenet_priv *priv = netdev_priv(dev);
1250 int i;
1251
1252 if (netif_running(dev))
1253 bcmgenet_update_mib_counters(priv);
1254
1255 dev->netdev_ops->ndo_get_stats(dev);
1256
1257 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258 const struct bcmgenet_stats *s;
1259 char *p;
1260
1261 s = &bcmgenet_gstrings_stats[i];
1262 if (s->type == BCMGENET_STAT_NETDEV)
1263 p = (char *)&dev->stats;
1264 else
1265 p = (char *)priv;
1266 p += s->stat_offset;
1267 if (sizeof(unsigned long) != sizeof(u32) &&
1268 s->stat_sizeof == sizeof(unsigned long))
1269 data[i] = *(unsigned long *)p;
1270 else
1271 data[i] = *(u32 *)p;
1272 }
1273 }
1274
bcmgenet_eee_enable_set(struct net_device * dev,bool enable,bool tx_lpi_enabled)1275 void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1276 bool tx_lpi_enabled)
1277 {
1278 struct bcmgenet_priv *priv = netdev_priv(dev);
1279 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1280 u32 reg;
1281
1282 if (enable && !priv->clk_eee_enabled) {
1283 clk_prepare_enable(priv->clk_eee);
1284 priv->clk_eee_enabled = true;
1285 }
1286
1287 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1288 if (enable)
1289 reg |= EEE_EN;
1290 else
1291 reg &= ~EEE_EN;
1292 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1293
1294 /* Enable EEE and switch to a 27Mhz clock automatically */
1295 reg = bcmgenet_readl(priv->base + off);
1296 if (tx_lpi_enabled)
1297 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1298 else
1299 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1300 bcmgenet_writel(reg, priv->base + off);
1301
1302 /* Do the same for thing for RBUF */
1303 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1304 if (enable)
1305 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1306 else
1307 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1308 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1309
1310 if (!enable && priv->clk_eee_enabled) {
1311 clk_disable_unprepare(priv->clk_eee);
1312 priv->clk_eee_enabled = false;
1313 }
1314
1315 priv->eee.eee_enabled = enable;
1316 priv->eee.eee_active = enable;
1317 priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1318 }
1319
bcmgenet_get_eee(struct net_device * dev,struct ethtool_eee * e)1320 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1321 {
1322 struct bcmgenet_priv *priv = netdev_priv(dev);
1323 struct ethtool_eee *p = &priv->eee;
1324
1325 if (GENET_IS_V1(priv))
1326 return -EOPNOTSUPP;
1327
1328 if (!dev->phydev)
1329 return -ENODEV;
1330
1331 e->eee_enabled = p->eee_enabled;
1332 e->eee_active = p->eee_active;
1333 e->tx_lpi_enabled = p->tx_lpi_enabled;
1334 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1335
1336 return phy_ethtool_get_eee(dev->phydev, e);
1337 }
1338
bcmgenet_set_eee(struct net_device * dev,struct ethtool_eee * e)1339 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1340 {
1341 struct bcmgenet_priv *priv = netdev_priv(dev);
1342 struct ethtool_eee *p = &priv->eee;
1343
1344 if (GENET_IS_V1(priv))
1345 return -EOPNOTSUPP;
1346
1347 if (!dev->phydev)
1348 return -ENODEV;
1349
1350 p->eee_enabled = e->eee_enabled;
1351
1352 if (!p->eee_enabled) {
1353 bcmgenet_eee_enable_set(dev, false, false);
1354 } else {
1355 p->eee_active = phy_init_eee(dev->phydev, false) >= 0;
1356 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1357 bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled);
1358 }
1359
1360 return phy_ethtool_set_eee(dev->phydev, e);
1361 }
1362
bcmgenet_validate_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1363 static int bcmgenet_validate_flow(struct net_device *dev,
1364 struct ethtool_rxnfc *cmd)
1365 {
1366 struct ethtool_usrip4_spec *l4_mask;
1367 struct ethhdr *eth_mask;
1368
1369 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1370 cmd->fs.location != RX_CLS_LOC_ANY) {
1371 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1372 cmd->fs.location);
1373 return -EINVAL;
1374 }
1375
1376 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1377 case IP_USER_FLOW:
1378 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1379 /* don't allow mask which isn't valid */
1380 if (VALIDATE_MASK(l4_mask->ip4src) ||
1381 VALIDATE_MASK(l4_mask->ip4dst) ||
1382 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1383 VALIDATE_MASK(l4_mask->proto) ||
1384 VALIDATE_MASK(l4_mask->ip_ver) ||
1385 VALIDATE_MASK(l4_mask->tos)) {
1386 netdev_err(dev, "rxnfc: Unsupported mask\n");
1387 return -EINVAL;
1388 }
1389 break;
1390 case ETHER_FLOW:
1391 eth_mask = &cmd->fs.m_u.ether_spec;
1392 /* don't allow mask which isn't valid */
1393 if (VALIDATE_MASK(eth_mask->h_dest) ||
1394 VALIDATE_MASK(eth_mask->h_source) ||
1395 VALIDATE_MASK(eth_mask->h_proto)) {
1396 netdev_err(dev, "rxnfc: Unsupported mask\n");
1397 return -EINVAL;
1398 }
1399 break;
1400 default:
1401 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1402 cmd->fs.flow_type);
1403 return -EINVAL;
1404 }
1405
1406 if ((cmd->fs.flow_type & FLOW_EXT)) {
1407 /* don't allow mask which isn't valid */
1408 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1409 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1410 netdev_err(dev, "rxnfc: Unsupported mask\n");
1411 return -EINVAL;
1412 }
1413 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1414 netdev_err(dev, "rxnfc: user-def not supported\n");
1415 return -EINVAL;
1416 }
1417 }
1418
1419 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1420 /* don't allow mask which isn't valid */
1421 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1422 netdev_err(dev, "rxnfc: Unsupported mask\n");
1423 return -EINVAL;
1424 }
1425 }
1426
1427 return 0;
1428 }
1429
bcmgenet_insert_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1430 static int bcmgenet_insert_flow(struct net_device *dev,
1431 struct ethtool_rxnfc *cmd)
1432 {
1433 struct bcmgenet_priv *priv = netdev_priv(dev);
1434 struct bcmgenet_rxnfc_rule *loc_rule;
1435 int err, i;
1436
1437 if (priv->hw_params->hfb_filter_size < 128) {
1438 netdev_err(dev, "rxnfc: Not supported by this device\n");
1439 return -EINVAL;
1440 }
1441
1442 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1443 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1444 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1445 cmd->fs.ring_cookie);
1446 return -EINVAL;
1447 }
1448
1449 err = bcmgenet_validate_flow(dev, cmd);
1450 if (err)
1451 return err;
1452
1453 if (cmd->fs.location == RX_CLS_LOC_ANY) {
1454 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1455 cmd->fs.location = loc_rule->fs.location;
1456 err = memcmp(&loc_rule->fs, &cmd->fs,
1457 sizeof(struct ethtool_rx_flow_spec));
1458 if (!err)
1459 /* rule exists so return current location */
1460 return 0;
1461 }
1462 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1463 loc_rule = &priv->rxnfc_rules[i];
1464 if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1465 cmd->fs.location = i;
1466 break;
1467 }
1468 }
1469 if (i == MAX_NUM_OF_FS_RULES) {
1470 cmd->fs.location = RX_CLS_LOC_ANY;
1471 return -ENOSPC;
1472 }
1473 } else {
1474 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1475 }
1476 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1477 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1478 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1479 list_del(&loc_rule->list);
1480 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1481 }
1482 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1483 memcpy(&loc_rule->fs, &cmd->fs,
1484 sizeof(struct ethtool_rx_flow_spec));
1485
1486 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1487
1488 list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1489
1490 return 0;
1491 }
1492
bcmgenet_delete_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1493 static int bcmgenet_delete_flow(struct net_device *dev,
1494 struct ethtool_rxnfc *cmd)
1495 {
1496 struct bcmgenet_priv *priv = netdev_priv(dev);
1497 struct bcmgenet_rxnfc_rule *rule;
1498 int err = 0;
1499
1500 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1501 return -EINVAL;
1502
1503 rule = &priv->rxnfc_rules[cmd->fs.location];
1504 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1505 err = -ENOENT;
1506 goto out;
1507 }
1508
1509 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1510 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1511 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1512 list_del(&rule->list);
1513 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1514 }
1515 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1516 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1517
1518 out:
1519 return err;
1520 }
1521
bcmgenet_set_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd)1522 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1523 {
1524 struct bcmgenet_priv *priv = netdev_priv(dev);
1525 int err = 0;
1526
1527 switch (cmd->cmd) {
1528 case ETHTOOL_SRXCLSRLINS:
1529 err = bcmgenet_insert_flow(dev, cmd);
1530 break;
1531 case ETHTOOL_SRXCLSRLDEL:
1532 err = bcmgenet_delete_flow(dev, cmd);
1533 break;
1534 default:
1535 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1536 cmd->cmd);
1537 return -EINVAL;
1538 }
1539
1540 return err;
1541 }
1542
bcmgenet_get_flow(struct net_device * dev,struct ethtool_rxnfc * cmd,int loc)1543 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1544 int loc)
1545 {
1546 struct bcmgenet_priv *priv = netdev_priv(dev);
1547 struct bcmgenet_rxnfc_rule *rule;
1548 int err = 0;
1549
1550 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1551 return -EINVAL;
1552
1553 rule = &priv->rxnfc_rules[loc];
1554 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1555 err = -ENOENT;
1556 else
1557 memcpy(&cmd->fs, &rule->fs,
1558 sizeof(struct ethtool_rx_flow_spec));
1559
1560 return err;
1561 }
1562
bcmgenet_get_num_flows(struct bcmgenet_priv * priv)1563 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1564 {
1565 struct list_head *pos;
1566 int res = 0;
1567
1568 list_for_each(pos, &priv->rxnfc_list)
1569 res++;
1570
1571 return res;
1572 }
1573
bcmgenet_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd,u32 * rule_locs)1574 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1575 u32 *rule_locs)
1576 {
1577 struct bcmgenet_priv *priv = netdev_priv(dev);
1578 struct bcmgenet_rxnfc_rule *rule;
1579 int err = 0;
1580 int i = 0;
1581
1582 switch (cmd->cmd) {
1583 case ETHTOOL_GRXRINGS:
1584 cmd->data = priv->hw_params->rx_queues ?: 1;
1585 break;
1586 case ETHTOOL_GRXCLSRLCNT:
1587 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1588 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1589 break;
1590 case ETHTOOL_GRXCLSRULE:
1591 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1592 break;
1593 case ETHTOOL_GRXCLSRLALL:
1594 list_for_each_entry(rule, &priv->rxnfc_list, list)
1595 if (i < cmd->rule_cnt)
1596 rule_locs[i++] = rule->fs.location;
1597 cmd->rule_cnt = i;
1598 cmd->data = MAX_NUM_OF_FS_RULES;
1599 break;
1600 default:
1601 err = -EOPNOTSUPP;
1602 break;
1603 }
1604
1605 return err;
1606 }
1607
1608 /* standard ethtool support functions. */
1609 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1610 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1611 ETHTOOL_COALESCE_MAX_FRAMES |
1612 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1613 .begin = bcmgenet_begin,
1614 .complete = bcmgenet_complete,
1615 .get_strings = bcmgenet_get_strings,
1616 .get_sset_count = bcmgenet_get_sset_count,
1617 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1618 .get_drvinfo = bcmgenet_get_drvinfo,
1619 .get_link = ethtool_op_get_link,
1620 .get_msglevel = bcmgenet_get_msglevel,
1621 .set_msglevel = bcmgenet_set_msglevel,
1622 .get_wol = bcmgenet_get_wol,
1623 .set_wol = bcmgenet_set_wol,
1624 .get_eee = bcmgenet_get_eee,
1625 .set_eee = bcmgenet_set_eee,
1626 .nway_reset = phy_ethtool_nway_reset,
1627 .get_coalesce = bcmgenet_get_coalesce,
1628 .set_coalesce = bcmgenet_set_coalesce,
1629 .get_link_ksettings = bcmgenet_get_link_ksettings,
1630 .set_link_ksettings = bcmgenet_set_link_ksettings,
1631 .get_ts_info = ethtool_op_get_ts_info,
1632 .get_rxnfc = bcmgenet_get_rxnfc,
1633 .set_rxnfc = bcmgenet_set_rxnfc,
1634 .get_pauseparam = bcmgenet_get_pauseparam,
1635 .set_pauseparam = bcmgenet_set_pauseparam,
1636 };
1637
1638 /* Power down the unimac, based on mode. */
bcmgenet_power_down(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1639 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1640 enum bcmgenet_power_mode mode)
1641 {
1642 int ret = 0;
1643 u32 reg;
1644
1645 switch (mode) {
1646 case GENET_POWER_CABLE_SENSE:
1647 phy_detach(priv->dev->phydev);
1648 break;
1649
1650 case GENET_POWER_WOL_MAGIC:
1651 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1652 break;
1653
1654 case GENET_POWER_PASSIVE:
1655 /* Power down LED */
1656 if (priv->hw_params->flags & GENET_HAS_EXT) {
1657 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1658 if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1659 reg |= EXT_PWR_DOWN_PHY_EN |
1660 EXT_PWR_DOWN_PHY_RD |
1661 EXT_PWR_DOWN_PHY_SD |
1662 EXT_PWR_DOWN_PHY_RX |
1663 EXT_PWR_DOWN_PHY_TX |
1664 EXT_IDDQ_GLBL_PWR;
1665 else
1666 reg |= EXT_PWR_DOWN_PHY;
1667
1668 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1669 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670
1671 bcmgenet_phy_power_set(priv->dev, false);
1672 }
1673 break;
1674 default:
1675 break;
1676 }
1677
1678 return ret;
1679 }
1680
bcmgenet_power_up(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1681 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1682 enum bcmgenet_power_mode mode)
1683 {
1684 u32 reg;
1685
1686 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1687 return;
1688
1689 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1690
1691 switch (mode) {
1692 case GENET_POWER_PASSIVE:
1693 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1694 EXT_ENERGY_DET_MASK);
1695 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1696 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1697 EXT_PWR_DOWN_PHY_RD |
1698 EXT_PWR_DOWN_PHY_SD |
1699 EXT_PWR_DOWN_PHY_RX |
1700 EXT_PWR_DOWN_PHY_TX |
1701 EXT_IDDQ_GLBL_PWR);
1702 reg |= EXT_PHY_RESET;
1703 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1704 mdelay(1);
1705
1706 reg &= ~EXT_PHY_RESET;
1707 } else {
1708 reg &= ~EXT_PWR_DOWN_PHY;
1709 reg |= EXT_PWR_DN_EN_LD;
1710 }
1711 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1712 bcmgenet_phy_power_set(priv->dev, true);
1713 break;
1714
1715 case GENET_POWER_CABLE_SENSE:
1716 /* enable APD */
1717 if (!GENET_IS_V5(priv)) {
1718 reg |= EXT_PWR_DN_EN_LD;
1719 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1720 }
1721 break;
1722 case GENET_POWER_WOL_MAGIC:
1723 bcmgenet_wol_power_up_cfg(priv, mode);
1724 return;
1725 default:
1726 break;
1727 }
1728 }
1729
bcmgenet_get_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1730 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1731 struct bcmgenet_tx_ring *ring)
1732 {
1733 struct enet_cb *tx_cb_ptr;
1734
1735 tx_cb_ptr = ring->cbs;
1736 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1737
1738 /* Advancing local write pointer */
1739 if (ring->write_ptr == ring->end_ptr)
1740 ring->write_ptr = ring->cb_ptr;
1741 else
1742 ring->write_ptr++;
1743
1744 return tx_cb_ptr;
1745 }
1746
bcmgenet_put_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1747 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1748 struct bcmgenet_tx_ring *ring)
1749 {
1750 struct enet_cb *tx_cb_ptr;
1751
1752 tx_cb_ptr = ring->cbs;
1753 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1754
1755 /* Rewinding local write pointer */
1756 if (ring->write_ptr == ring->cb_ptr)
1757 ring->write_ptr = ring->end_ptr;
1758 else
1759 ring->write_ptr--;
1760
1761 return tx_cb_ptr;
1762 }
1763
bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring * ring)1764 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1765 {
1766 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1767 INTRL2_CPU_MASK_SET);
1768 }
1769
bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring * ring)1770 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1771 {
1772 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1773 INTRL2_CPU_MASK_CLEAR);
1774 }
1775
bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring * ring)1776 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1777 {
1778 bcmgenet_intrl2_1_writel(ring->priv,
1779 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1780 INTRL2_CPU_MASK_SET);
1781 }
1782
bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring * ring)1783 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1784 {
1785 bcmgenet_intrl2_1_writel(ring->priv,
1786 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1787 INTRL2_CPU_MASK_CLEAR);
1788 }
1789
bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring * ring)1790 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1791 {
1792 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1793 INTRL2_CPU_MASK_SET);
1794 }
1795
bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring * ring)1796 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1797 {
1798 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1799 INTRL2_CPU_MASK_CLEAR);
1800 }
1801
bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring * ring)1802 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1803 {
1804 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1805 INTRL2_CPU_MASK_CLEAR);
1806 }
1807
bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring * ring)1808 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1809 {
1810 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1811 INTRL2_CPU_MASK_SET);
1812 }
1813
1814 /* Simple helper to free a transmit control block's resources
1815 * Returns an skb when the last transmit control block associated with the
1816 * skb is freed. The skb should be freed by the caller if necessary.
1817 */
bcmgenet_free_tx_cb(struct device * dev,struct enet_cb * cb)1818 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1819 struct enet_cb *cb)
1820 {
1821 struct sk_buff *skb;
1822
1823 skb = cb->skb;
1824
1825 if (skb) {
1826 cb->skb = NULL;
1827 if (cb == GENET_CB(skb)->first_cb)
1828 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1829 dma_unmap_len(cb, dma_len),
1830 DMA_TO_DEVICE);
1831 else
1832 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1833 dma_unmap_len(cb, dma_len),
1834 DMA_TO_DEVICE);
1835 dma_unmap_addr_set(cb, dma_addr, 0);
1836
1837 if (cb == GENET_CB(skb)->last_cb)
1838 return skb;
1839
1840 } else if (dma_unmap_addr(cb, dma_addr)) {
1841 dma_unmap_page(dev,
1842 dma_unmap_addr(cb, dma_addr),
1843 dma_unmap_len(cb, dma_len),
1844 DMA_TO_DEVICE);
1845 dma_unmap_addr_set(cb, dma_addr, 0);
1846 }
1847
1848 return NULL;
1849 }
1850
1851 /* Simple helper to free a receive control block's resources */
bcmgenet_free_rx_cb(struct device * dev,struct enet_cb * cb)1852 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1853 struct enet_cb *cb)
1854 {
1855 struct sk_buff *skb;
1856
1857 skb = cb->skb;
1858 cb->skb = NULL;
1859
1860 if (dma_unmap_addr(cb, dma_addr)) {
1861 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1862 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1863 dma_unmap_addr_set(cb, dma_addr, 0);
1864 }
1865
1866 return skb;
1867 }
1868
1869 /* Unlocked version of the reclaim routine */
__bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1870 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1871 struct bcmgenet_tx_ring *ring)
1872 {
1873 struct bcmgenet_priv *priv = netdev_priv(dev);
1874 unsigned int txbds_processed = 0;
1875 unsigned int bytes_compl = 0;
1876 unsigned int pkts_compl = 0;
1877 unsigned int txbds_ready;
1878 unsigned int c_index;
1879 struct sk_buff *skb;
1880
1881 /* Clear status before servicing to reduce spurious interrupts */
1882 if (ring->index == DESC_INDEX)
1883 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1884 INTRL2_CPU_CLEAR);
1885 else
1886 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1887 INTRL2_CPU_CLEAR);
1888
1889 /* Compute how many buffers are transmitted since last xmit call */
1890 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1891 & DMA_C_INDEX_MASK;
1892 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1893
1894 netif_dbg(priv, tx_done, dev,
1895 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1896 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1897
1898 /* Reclaim transmitted buffers */
1899 while (txbds_processed < txbds_ready) {
1900 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1901 &priv->tx_cbs[ring->clean_ptr]);
1902 if (skb) {
1903 pkts_compl++;
1904 bytes_compl += GENET_CB(skb)->bytes_sent;
1905 dev_consume_skb_any(skb);
1906 }
1907
1908 txbds_processed++;
1909 if (likely(ring->clean_ptr < ring->end_ptr))
1910 ring->clean_ptr++;
1911 else
1912 ring->clean_ptr = ring->cb_ptr;
1913 }
1914
1915 ring->free_bds += txbds_processed;
1916 ring->c_index = c_index;
1917
1918 ring->packets += pkts_compl;
1919 ring->bytes += bytes_compl;
1920
1921 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1922 pkts_compl, bytes_compl);
1923
1924 return txbds_processed;
1925 }
1926
bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1927 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1928 struct bcmgenet_tx_ring *ring)
1929 {
1930 unsigned int released;
1931
1932 spin_lock_bh(&ring->lock);
1933 released = __bcmgenet_tx_reclaim(dev, ring);
1934 spin_unlock_bh(&ring->lock);
1935
1936 return released;
1937 }
1938
bcmgenet_tx_poll(struct napi_struct * napi,int budget)1939 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1940 {
1941 struct bcmgenet_tx_ring *ring =
1942 container_of(napi, struct bcmgenet_tx_ring, napi);
1943 unsigned int work_done = 0;
1944 struct netdev_queue *txq;
1945
1946 spin_lock(&ring->lock);
1947 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1948 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1949 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1950 netif_tx_wake_queue(txq);
1951 }
1952 spin_unlock(&ring->lock);
1953
1954 if (work_done == 0) {
1955 napi_complete(napi);
1956 ring->int_enable(ring);
1957
1958 return 0;
1959 }
1960
1961 return budget;
1962 }
1963
bcmgenet_tx_reclaim_all(struct net_device * dev)1964 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1965 {
1966 struct bcmgenet_priv *priv = netdev_priv(dev);
1967 int i;
1968
1969 if (netif_is_multiqueue(dev)) {
1970 for (i = 0; i < priv->hw_params->tx_queues; i++)
1971 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1972 }
1973
1974 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1975 }
1976
1977 /* Reallocate the SKB to put enough headroom in front of it and insert
1978 * the transmit checksum offsets in the descriptors
1979 */
bcmgenet_add_tsb(struct net_device * dev,struct sk_buff * skb)1980 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1981 struct sk_buff *skb)
1982 {
1983 struct bcmgenet_priv *priv = netdev_priv(dev);
1984 struct status_64 *status = NULL;
1985 struct sk_buff *new_skb;
1986 u16 offset;
1987 u8 ip_proto;
1988 __be16 ip_ver;
1989 u32 tx_csum_info;
1990
1991 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1992 /* If 64 byte status block enabled, must make sure skb has
1993 * enough headroom for us to insert 64B status block.
1994 */
1995 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1996 if (!new_skb) {
1997 dev_kfree_skb_any(skb);
1998 priv->mib.tx_realloc_tsb_failed++;
1999 dev->stats.tx_dropped++;
2000 return NULL;
2001 }
2002 dev_consume_skb_any(skb);
2003 skb = new_skb;
2004 priv->mib.tx_realloc_tsb++;
2005 }
2006
2007 skb_push(skb, sizeof(*status));
2008 status = (struct status_64 *)skb->data;
2009
2010 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2011 ip_ver = skb->protocol;
2012 switch (ip_ver) {
2013 case htons(ETH_P_IP):
2014 ip_proto = ip_hdr(skb)->protocol;
2015 break;
2016 case htons(ETH_P_IPV6):
2017 ip_proto = ipv6_hdr(skb)->nexthdr;
2018 break;
2019 default:
2020 /* don't use UDP flag */
2021 ip_proto = 0;
2022 break;
2023 }
2024
2025 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2026 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2027 (offset + skb->csum_offset) |
2028 STATUS_TX_CSUM_LV;
2029
2030 /* Set the special UDP flag for UDP */
2031 if (ip_proto == IPPROTO_UDP)
2032 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2033
2034 status->tx_csum_info = tx_csum_info;
2035 }
2036
2037 return skb;
2038 }
2039
bcmgenet_hide_tsb(struct sk_buff * skb)2040 static void bcmgenet_hide_tsb(struct sk_buff *skb)
2041 {
2042 __skb_pull(skb, sizeof(struct status_64));
2043 }
2044
bcmgenet_xmit(struct sk_buff * skb,struct net_device * dev)2045 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2046 {
2047 struct bcmgenet_priv *priv = netdev_priv(dev);
2048 struct device *kdev = &priv->pdev->dev;
2049 struct bcmgenet_tx_ring *ring = NULL;
2050 struct enet_cb *tx_cb_ptr;
2051 struct netdev_queue *txq;
2052 int nr_frags, index;
2053 dma_addr_t mapping;
2054 unsigned int size;
2055 skb_frag_t *frag;
2056 u32 len_stat;
2057 int ret;
2058 int i;
2059
2060 index = skb_get_queue_mapping(skb);
2061 /* Mapping strategy:
2062 * queue_mapping = 0, unclassified, packet xmited through ring16
2063 * queue_mapping = 1, goes to ring 0. (highest priority queue
2064 * queue_mapping = 2, goes to ring 1.
2065 * queue_mapping = 3, goes to ring 2.
2066 * queue_mapping = 4, goes to ring 3.
2067 */
2068 if (index == 0)
2069 index = DESC_INDEX;
2070 else
2071 index -= 1;
2072
2073 ring = &priv->tx_rings[index];
2074 txq = netdev_get_tx_queue(dev, ring->queue);
2075
2076 nr_frags = skb_shinfo(skb)->nr_frags;
2077
2078 spin_lock(&ring->lock);
2079 if (ring->free_bds <= (nr_frags + 1)) {
2080 if (!netif_tx_queue_stopped(txq))
2081 netif_tx_stop_queue(txq);
2082 ret = NETDEV_TX_BUSY;
2083 goto out;
2084 }
2085
2086 /* Retain how many bytes will be sent on the wire, without TSB inserted
2087 * by transmit checksum offload
2088 */
2089 GENET_CB(skb)->bytes_sent = skb->len;
2090
2091 /* add the Transmit Status Block */
2092 skb = bcmgenet_add_tsb(dev, skb);
2093 if (!skb) {
2094 ret = NETDEV_TX_OK;
2095 goto out;
2096 }
2097
2098 for (i = 0; i <= nr_frags; i++) {
2099 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2100
2101 BUG_ON(!tx_cb_ptr);
2102
2103 if (!i) {
2104 /* Transmit single SKB or head of fragment list */
2105 GENET_CB(skb)->first_cb = tx_cb_ptr;
2106 size = skb_headlen(skb);
2107 mapping = dma_map_single(kdev, skb->data, size,
2108 DMA_TO_DEVICE);
2109 } else {
2110 /* xmit fragment */
2111 frag = &skb_shinfo(skb)->frags[i - 1];
2112 size = skb_frag_size(frag);
2113 mapping = skb_frag_dma_map(kdev, frag, 0, size,
2114 DMA_TO_DEVICE);
2115 }
2116
2117 ret = dma_mapping_error(kdev, mapping);
2118 if (ret) {
2119 priv->mib.tx_dma_failed++;
2120 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2121 ret = NETDEV_TX_OK;
2122 goto out_unmap_frags;
2123 }
2124 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2125 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2126
2127 tx_cb_ptr->skb = skb;
2128
2129 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2130 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2131
2132 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2133 * will need to restore software padding of "runt" packets
2134 */
2135 if (!i) {
2136 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2137 if (skb->ip_summed == CHECKSUM_PARTIAL)
2138 len_stat |= DMA_TX_DO_CSUM;
2139 }
2140 if (i == nr_frags)
2141 len_stat |= DMA_EOP;
2142
2143 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2144 }
2145
2146 GENET_CB(skb)->last_cb = tx_cb_ptr;
2147
2148 bcmgenet_hide_tsb(skb);
2149 skb_tx_timestamp(skb);
2150
2151 /* Decrement total BD count and advance our write pointer */
2152 ring->free_bds -= nr_frags + 1;
2153 ring->prod_index += nr_frags + 1;
2154 ring->prod_index &= DMA_P_INDEX_MASK;
2155
2156 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2157
2158 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2159 netif_tx_stop_queue(txq);
2160
2161 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2162 /* Packets are ready, update producer index */
2163 bcmgenet_tdma_ring_writel(priv, ring->index,
2164 ring->prod_index, TDMA_PROD_INDEX);
2165 out:
2166 spin_unlock(&ring->lock);
2167
2168 return ret;
2169
2170 out_unmap_frags:
2171 /* Back up for failed control block mapping */
2172 bcmgenet_put_txcb(priv, ring);
2173
2174 /* Unmap successfully mapped control blocks */
2175 while (i-- > 0) {
2176 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2177 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2178 }
2179
2180 dev_kfree_skb(skb);
2181 goto out;
2182 }
2183
bcmgenet_rx_refill(struct bcmgenet_priv * priv,struct enet_cb * cb)2184 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2185 struct enet_cb *cb)
2186 {
2187 struct device *kdev = &priv->pdev->dev;
2188 struct sk_buff *skb;
2189 struct sk_buff *rx_skb;
2190 dma_addr_t mapping;
2191
2192 /* Allocate a new Rx skb */
2193 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2194 GFP_ATOMIC | __GFP_NOWARN);
2195 if (!skb) {
2196 priv->mib.alloc_rx_buff_failed++;
2197 netif_err(priv, rx_err, priv->dev,
2198 "%s: Rx skb allocation failed\n", __func__);
2199 return NULL;
2200 }
2201
2202 /* DMA-map the new Rx skb */
2203 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2204 DMA_FROM_DEVICE);
2205 if (dma_mapping_error(kdev, mapping)) {
2206 priv->mib.rx_dma_failed++;
2207 dev_kfree_skb_any(skb);
2208 netif_err(priv, rx_err, priv->dev,
2209 "%s: Rx skb DMA mapping failed\n", __func__);
2210 return NULL;
2211 }
2212
2213 /* Grab the current Rx skb from the ring and DMA-unmap it */
2214 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2215
2216 /* Put the new Rx skb on the ring */
2217 cb->skb = skb;
2218 dma_unmap_addr_set(cb, dma_addr, mapping);
2219 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2220 dmadesc_set_addr(priv, cb->bd_addr, mapping);
2221
2222 /* Return the current Rx skb to caller */
2223 return rx_skb;
2224 }
2225
2226 /* bcmgenet_desc_rx - descriptor based rx process.
2227 * this could be called from bottom half, or from NAPI polling method.
2228 */
bcmgenet_desc_rx(struct bcmgenet_rx_ring * ring,unsigned int budget)2229 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2230 unsigned int budget)
2231 {
2232 struct bcmgenet_priv *priv = ring->priv;
2233 struct net_device *dev = priv->dev;
2234 struct enet_cb *cb;
2235 struct sk_buff *skb;
2236 u32 dma_length_status;
2237 unsigned long dma_flag;
2238 int len;
2239 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2240 unsigned int bytes_processed = 0;
2241 unsigned int p_index, mask;
2242 unsigned int discards;
2243
2244 /* Clear status before servicing to reduce spurious interrupts */
2245 if (ring->index == DESC_INDEX) {
2246 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2247 INTRL2_CPU_CLEAR);
2248 } else {
2249 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2250 bcmgenet_intrl2_1_writel(priv,
2251 mask,
2252 INTRL2_CPU_CLEAR);
2253 }
2254
2255 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2256
2257 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2258 DMA_P_INDEX_DISCARD_CNT_MASK;
2259 if (discards > ring->old_discards) {
2260 discards = discards - ring->old_discards;
2261 ring->errors += discards;
2262 ring->old_discards += discards;
2263
2264 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2265 if (ring->old_discards >= 0xC000) {
2266 ring->old_discards = 0;
2267 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2268 RDMA_PROD_INDEX);
2269 }
2270 }
2271
2272 p_index &= DMA_P_INDEX_MASK;
2273 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2274
2275 netif_dbg(priv, rx_status, dev,
2276 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2277
2278 while ((rxpktprocessed < rxpkttoprocess) &&
2279 (rxpktprocessed < budget)) {
2280 struct status_64 *status;
2281 __be16 rx_csum;
2282
2283 cb = &priv->rx_cbs[ring->read_ptr];
2284 skb = bcmgenet_rx_refill(priv, cb);
2285
2286 if (unlikely(!skb)) {
2287 ring->dropped++;
2288 goto next;
2289 }
2290
2291 status = (struct status_64 *)skb->data;
2292 dma_length_status = status->length_status;
2293 if (dev->features & NETIF_F_RXCSUM) {
2294 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2295 if (rx_csum) {
2296 skb->csum = (__force __wsum)ntohs(rx_csum);
2297 skb->ip_summed = CHECKSUM_COMPLETE;
2298 }
2299 }
2300
2301 /* DMA flags and length are still valid no matter how
2302 * we got the Receive Status Vector (64B RSB or register)
2303 */
2304 dma_flag = dma_length_status & 0xffff;
2305 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2306
2307 netif_dbg(priv, rx_status, dev,
2308 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2309 __func__, p_index, ring->c_index,
2310 ring->read_ptr, dma_length_status);
2311
2312 if (unlikely(len > RX_BUF_LENGTH)) {
2313 netif_err(priv, rx_status, dev, "oversized packet\n");
2314 dev->stats.rx_length_errors++;
2315 dev->stats.rx_errors++;
2316 dev_kfree_skb_any(skb);
2317 goto next;
2318 }
2319
2320 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2321 netif_err(priv, rx_status, dev,
2322 "dropping fragmented packet!\n");
2323 ring->errors++;
2324 dev_kfree_skb_any(skb);
2325 goto next;
2326 }
2327
2328 /* report errors */
2329 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2330 DMA_RX_OV |
2331 DMA_RX_NO |
2332 DMA_RX_LG |
2333 DMA_RX_RXER))) {
2334 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2335 (unsigned int)dma_flag);
2336 if (dma_flag & DMA_RX_CRC_ERROR)
2337 dev->stats.rx_crc_errors++;
2338 if (dma_flag & DMA_RX_OV)
2339 dev->stats.rx_over_errors++;
2340 if (dma_flag & DMA_RX_NO)
2341 dev->stats.rx_frame_errors++;
2342 if (dma_flag & DMA_RX_LG)
2343 dev->stats.rx_length_errors++;
2344 dev->stats.rx_errors++;
2345 dev_kfree_skb_any(skb);
2346 goto next;
2347 } /* error packet */
2348
2349 skb_put(skb, len);
2350
2351 /* remove RSB and hardware 2bytes added for IP alignment */
2352 skb_pull(skb, 66);
2353 len -= 66;
2354
2355 if (priv->crc_fwd_en) {
2356 skb_trim(skb, len - ETH_FCS_LEN);
2357 len -= ETH_FCS_LEN;
2358 }
2359
2360 bytes_processed += len;
2361
2362 /*Finish setting up the received SKB and send it to the kernel*/
2363 skb->protocol = eth_type_trans(skb, priv->dev);
2364 ring->packets++;
2365 ring->bytes += len;
2366 if (dma_flag & DMA_RX_MULT)
2367 dev->stats.multicast++;
2368
2369 /* Notify kernel */
2370 napi_gro_receive(&ring->napi, skb);
2371 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2372
2373 next:
2374 rxpktprocessed++;
2375 if (likely(ring->read_ptr < ring->end_ptr))
2376 ring->read_ptr++;
2377 else
2378 ring->read_ptr = ring->cb_ptr;
2379
2380 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2381 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2382 }
2383
2384 ring->dim.bytes = bytes_processed;
2385 ring->dim.packets = rxpktprocessed;
2386
2387 return rxpktprocessed;
2388 }
2389
2390 /* Rx NAPI polling method */
bcmgenet_rx_poll(struct napi_struct * napi,int budget)2391 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2392 {
2393 struct bcmgenet_rx_ring *ring = container_of(napi,
2394 struct bcmgenet_rx_ring, napi);
2395 struct dim_sample dim_sample = {};
2396 unsigned int work_done;
2397
2398 work_done = bcmgenet_desc_rx(ring, budget);
2399
2400 if (work_done < budget) {
2401 napi_complete_done(napi, work_done);
2402 ring->int_enable(ring);
2403 }
2404
2405 if (ring->dim.use_dim) {
2406 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2407 ring->dim.bytes, &dim_sample);
2408 net_dim(&ring->dim.dim, dim_sample);
2409 }
2410
2411 return work_done;
2412 }
2413
bcmgenet_dim_work(struct work_struct * work)2414 static void bcmgenet_dim_work(struct work_struct *work)
2415 {
2416 struct dim *dim = container_of(work, struct dim, work);
2417 struct bcmgenet_net_dim *ndim =
2418 container_of(dim, struct bcmgenet_net_dim, dim);
2419 struct bcmgenet_rx_ring *ring =
2420 container_of(ndim, struct bcmgenet_rx_ring, dim);
2421 struct dim_cq_moder cur_profile =
2422 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2423
2424 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2425 dim->state = DIM_START_MEASURE;
2426 }
2427
2428 /* Assign skb to RX DMA descriptor. */
bcmgenet_alloc_rx_buffers(struct bcmgenet_priv * priv,struct bcmgenet_rx_ring * ring)2429 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2430 struct bcmgenet_rx_ring *ring)
2431 {
2432 struct enet_cb *cb;
2433 struct sk_buff *skb;
2434 int i;
2435
2436 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2437
2438 /* loop here for each buffer needing assign */
2439 for (i = 0; i < ring->size; i++) {
2440 cb = ring->cbs + i;
2441 skb = bcmgenet_rx_refill(priv, cb);
2442 if (skb)
2443 dev_consume_skb_any(skb);
2444 if (!cb->skb)
2445 return -ENOMEM;
2446 }
2447
2448 return 0;
2449 }
2450
bcmgenet_free_rx_buffers(struct bcmgenet_priv * priv)2451 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2452 {
2453 struct sk_buff *skb;
2454 struct enet_cb *cb;
2455 int i;
2456
2457 for (i = 0; i < priv->num_rx_bds; i++) {
2458 cb = &priv->rx_cbs[i];
2459
2460 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2461 if (skb)
2462 dev_consume_skb_any(skb);
2463 }
2464 }
2465
umac_enable_set(struct bcmgenet_priv * priv,u32 mask,bool enable)2466 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2467 {
2468 u32 reg;
2469
2470 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2471 if (reg & CMD_SW_RESET)
2472 return;
2473 if (enable)
2474 reg |= mask;
2475 else
2476 reg &= ~mask;
2477 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2478
2479 /* UniMAC stops on a packet boundary, wait for a full-size packet
2480 * to be processed
2481 */
2482 if (enable == 0)
2483 usleep_range(1000, 2000);
2484 }
2485
reset_umac(struct bcmgenet_priv * priv)2486 static void reset_umac(struct bcmgenet_priv *priv)
2487 {
2488 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2489 bcmgenet_rbuf_ctrl_set(priv, 0);
2490 udelay(10);
2491
2492 /* issue soft reset and disable MAC while updating its registers */
2493 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2494 udelay(2);
2495 }
2496
bcmgenet_intr_disable(struct bcmgenet_priv * priv)2497 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2498 {
2499 /* Mask all interrupts.*/
2500 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2501 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2502 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2503 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2504 }
2505
bcmgenet_link_intr_enable(struct bcmgenet_priv * priv)2506 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2507 {
2508 u32 int0_enable = 0;
2509
2510 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2511 * and MoCA PHY
2512 */
2513 if (priv->internal_phy) {
2514 int0_enable |= UMAC_IRQ_LINK_EVENT;
2515 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2516 int0_enable |= UMAC_IRQ_PHY_DET_R;
2517 } else if (priv->ext_phy) {
2518 int0_enable |= UMAC_IRQ_LINK_EVENT;
2519 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2520 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2521 int0_enable |= UMAC_IRQ_LINK_EVENT;
2522 }
2523 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2524 }
2525
init_umac(struct bcmgenet_priv * priv)2526 static void init_umac(struct bcmgenet_priv *priv)
2527 {
2528 struct device *kdev = &priv->pdev->dev;
2529 u32 reg;
2530 u32 int0_enable = 0;
2531
2532 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2533
2534 reset_umac(priv);
2535
2536 /* clear tx/rx counter */
2537 bcmgenet_umac_writel(priv,
2538 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2539 UMAC_MIB_CTRL);
2540 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2541
2542 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2543
2544 /* init tx registers, enable TSB */
2545 reg = bcmgenet_tbuf_ctrl_get(priv);
2546 reg |= TBUF_64B_EN;
2547 bcmgenet_tbuf_ctrl_set(priv, reg);
2548
2549 /* init rx registers, enable ip header optimization and RSB */
2550 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2551 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2552 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2553
2554 /* enable rx checksumming */
2555 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2556 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2557 /* If UniMAC forwards CRC, we need to skip over it to get
2558 * a valid CHK bit to be set in the per-packet status word
2559 */
2560 if (priv->crc_fwd_en)
2561 reg |= RBUF_SKIP_FCS;
2562 else
2563 reg &= ~RBUF_SKIP_FCS;
2564 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2565
2566 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2567 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2568
2569 bcmgenet_intr_disable(priv);
2570
2571 /* Configure backpressure vectors for MoCA */
2572 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2573 reg = bcmgenet_bp_mc_get(priv);
2574 reg |= BIT(priv->hw_params->bp_in_en_shift);
2575
2576 /* bp_mask: back pressure mask */
2577 if (netif_is_multiqueue(priv->dev))
2578 reg |= priv->hw_params->bp_in_mask;
2579 else
2580 reg &= ~priv->hw_params->bp_in_mask;
2581 bcmgenet_bp_mc_set(priv, reg);
2582 }
2583
2584 /* Enable MDIO interrupts on GENET v3+ */
2585 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2586 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2587
2588 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2589
2590 dev_dbg(kdev, "done init umac\n");
2591 }
2592
bcmgenet_init_dim(struct bcmgenet_rx_ring * ring,void (* cb)(struct work_struct * work))2593 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2594 void (*cb)(struct work_struct *work))
2595 {
2596 struct bcmgenet_net_dim *dim = &ring->dim;
2597
2598 INIT_WORK(&dim->dim.work, cb);
2599 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2600 dim->event_ctr = 0;
2601 dim->packets = 0;
2602 dim->bytes = 0;
2603 }
2604
bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring * ring)2605 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2606 {
2607 struct bcmgenet_net_dim *dim = &ring->dim;
2608 struct dim_cq_moder moder;
2609 u32 usecs, pkts;
2610
2611 usecs = ring->rx_coalesce_usecs;
2612 pkts = ring->rx_max_coalesced_frames;
2613
2614 /* If DIM was enabled, re-apply default parameters */
2615 if (dim->use_dim) {
2616 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2617 usecs = moder.usec;
2618 pkts = moder.pkts;
2619 }
2620
2621 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2622 }
2623
2624 /* Initialize a Tx ring along with corresponding hardware registers */
bcmgenet_init_tx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2625 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2626 unsigned int index, unsigned int size,
2627 unsigned int start_ptr, unsigned int end_ptr)
2628 {
2629 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2630 u32 words_per_bd = WORDS_PER_BD(priv);
2631 u32 flow_period_val = 0;
2632
2633 spin_lock_init(&ring->lock);
2634 ring->priv = priv;
2635 ring->index = index;
2636 if (index == DESC_INDEX) {
2637 ring->queue = 0;
2638 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2639 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2640 } else {
2641 ring->queue = index + 1;
2642 ring->int_enable = bcmgenet_tx_ring_int_enable;
2643 ring->int_disable = bcmgenet_tx_ring_int_disable;
2644 }
2645 ring->cbs = priv->tx_cbs + start_ptr;
2646 ring->size = size;
2647 ring->clean_ptr = start_ptr;
2648 ring->c_index = 0;
2649 ring->free_bds = size;
2650 ring->write_ptr = start_ptr;
2651 ring->cb_ptr = start_ptr;
2652 ring->end_ptr = end_ptr - 1;
2653 ring->prod_index = 0;
2654
2655 /* Set flow period for ring != 16 */
2656 if (index != DESC_INDEX)
2657 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2658
2659 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2660 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2661 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2662 /* Disable rate control for now */
2663 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2664 TDMA_FLOW_PERIOD);
2665 bcmgenet_tdma_ring_writel(priv, index,
2666 ((size << DMA_RING_SIZE_SHIFT) |
2667 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2668
2669 /* Set start and end address, read and write pointers */
2670 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2671 DMA_START_ADDR);
2672 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673 TDMA_READ_PTR);
2674 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2675 TDMA_WRITE_PTR);
2676 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2677 DMA_END_ADDR);
2678
2679 /* Initialize Tx NAPI */
2680 netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2681 }
2682
2683 /* Initialize a RDMA ring */
bcmgenet_init_rx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2684 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2685 unsigned int index, unsigned int size,
2686 unsigned int start_ptr, unsigned int end_ptr)
2687 {
2688 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2689 u32 words_per_bd = WORDS_PER_BD(priv);
2690 int ret;
2691
2692 ring->priv = priv;
2693 ring->index = index;
2694 if (index == DESC_INDEX) {
2695 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2696 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2697 } else {
2698 ring->int_enable = bcmgenet_rx_ring_int_enable;
2699 ring->int_disable = bcmgenet_rx_ring_int_disable;
2700 }
2701 ring->cbs = priv->rx_cbs + start_ptr;
2702 ring->size = size;
2703 ring->c_index = 0;
2704 ring->read_ptr = start_ptr;
2705 ring->cb_ptr = start_ptr;
2706 ring->end_ptr = end_ptr - 1;
2707
2708 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2709 if (ret)
2710 return ret;
2711
2712 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2713 bcmgenet_init_rx_coalesce(ring);
2714
2715 /* Initialize Rx NAPI */
2716 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
2717
2718 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2719 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2720 bcmgenet_rdma_ring_writel(priv, index,
2721 ((size << DMA_RING_SIZE_SHIFT) |
2722 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2723 bcmgenet_rdma_ring_writel(priv, index,
2724 (DMA_FC_THRESH_LO <<
2725 DMA_XOFF_THRESHOLD_SHIFT) |
2726 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2727
2728 /* Set start and end address, read and write pointers */
2729 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2730 DMA_START_ADDR);
2731 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2732 RDMA_READ_PTR);
2733 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2734 RDMA_WRITE_PTR);
2735 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2736 DMA_END_ADDR);
2737
2738 return ret;
2739 }
2740
bcmgenet_enable_tx_napi(struct bcmgenet_priv * priv)2741 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2742 {
2743 unsigned int i;
2744 struct bcmgenet_tx_ring *ring;
2745
2746 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2747 ring = &priv->tx_rings[i];
2748 napi_enable(&ring->napi);
2749 ring->int_enable(ring);
2750 }
2751
2752 ring = &priv->tx_rings[DESC_INDEX];
2753 napi_enable(&ring->napi);
2754 ring->int_enable(ring);
2755 }
2756
bcmgenet_disable_tx_napi(struct bcmgenet_priv * priv)2757 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2758 {
2759 unsigned int i;
2760 struct bcmgenet_tx_ring *ring;
2761
2762 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2763 ring = &priv->tx_rings[i];
2764 napi_disable(&ring->napi);
2765 }
2766
2767 ring = &priv->tx_rings[DESC_INDEX];
2768 napi_disable(&ring->napi);
2769 }
2770
bcmgenet_fini_tx_napi(struct bcmgenet_priv * priv)2771 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2772 {
2773 unsigned int i;
2774 struct bcmgenet_tx_ring *ring;
2775
2776 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2777 ring = &priv->tx_rings[i];
2778 netif_napi_del(&ring->napi);
2779 }
2780
2781 ring = &priv->tx_rings[DESC_INDEX];
2782 netif_napi_del(&ring->napi);
2783 }
2784
2785 /* Initialize Tx queues
2786 *
2787 * Queues 0-3 are priority-based, each one has 32 descriptors,
2788 * with queue 0 being the highest priority queue.
2789 *
2790 * Queue 16 is the default Tx queue with
2791 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2792 *
2793 * The transmit control block pool is then partitioned as follows:
2794 * - Tx queue 0 uses tx_cbs[0..31]
2795 * - Tx queue 1 uses tx_cbs[32..63]
2796 * - Tx queue 2 uses tx_cbs[64..95]
2797 * - Tx queue 3 uses tx_cbs[96..127]
2798 * - Tx queue 16 uses tx_cbs[128..255]
2799 */
bcmgenet_init_tx_queues(struct net_device * dev)2800 static void bcmgenet_init_tx_queues(struct net_device *dev)
2801 {
2802 struct bcmgenet_priv *priv = netdev_priv(dev);
2803 u32 i, dma_enable;
2804 u32 dma_ctrl, ring_cfg;
2805 u32 dma_priority[3] = {0, 0, 0};
2806
2807 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2808 dma_enable = dma_ctrl & DMA_EN;
2809 dma_ctrl &= ~DMA_EN;
2810 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2811
2812 dma_ctrl = 0;
2813 ring_cfg = 0;
2814
2815 /* Enable strict priority arbiter mode */
2816 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2817
2818 /* Initialize Tx priority queues */
2819 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2820 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2821 i * priv->hw_params->tx_bds_per_q,
2822 (i + 1) * priv->hw_params->tx_bds_per_q);
2823 ring_cfg |= (1 << i);
2824 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2825 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2826 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2827 }
2828
2829 /* Initialize Tx default queue 16 */
2830 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2831 priv->hw_params->tx_queues *
2832 priv->hw_params->tx_bds_per_q,
2833 TOTAL_DESC);
2834 ring_cfg |= (1 << DESC_INDEX);
2835 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2836 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2837 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2838 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2839
2840 /* Set Tx queue priorities */
2841 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2842 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2843 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2844
2845 /* Enable Tx queues */
2846 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2847
2848 /* Enable Tx DMA */
2849 if (dma_enable)
2850 dma_ctrl |= DMA_EN;
2851 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2852 }
2853
bcmgenet_enable_rx_napi(struct bcmgenet_priv * priv)2854 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2855 {
2856 unsigned int i;
2857 struct bcmgenet_rx_ring *ring;
2858
2859 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2860 ring = &priv->rx_rings[i];
2861 napi_enable(&ring->napi);
2862 ring->int_enable(ring);
2863 }
2864
2865 ring = &priv->rx_rings[DESC_INDEX];
2866 napi_enable(&ring->napi);
2867 ring->int_enable(ring);
2868 }
2869
bcmgenet_disable_rx_napi(struct bcmgenet_priv * priv)2870 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2871 {
2872 unsigned int i;
2873 struct bcmgenet_rx_ring *ring;
2874
2875 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2876 ring = &priv->rx_rings[i];
2877 napi_disable(&ring->napi);
2878 cancel_work_sync(&ring->dim.dim.work);
2879 }
2880
2881 ring = &priv->rx_rings[DESC_INDEX];
2882 napi_disable(&ring->napi);
2883 cancel_work_sync(&ring->dim.dim.work);
2884 }
2885
bcmgenet_fini_rx_napi(struct bcmgenet_priv * priv)2886 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2887 {
2888 unsigned int i;
2889 struct bcmgenet_rx_ring *ring;
2890
2891 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2892 ring = &priv->rx_rings[i];
2893 netif_napi_del(&ring->napi);
2894 }
2895
2896 ring = &priv->rx_rings[DESC_INDEX];
2897 netif_napi_del(&ring->napi);
2898 }
2899
2900 /* Initialize Rx queues
2901 *
2902 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2903 * used to direct traffic to these queues.
2904 *
2905 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2906 */
bcmgenet_init_rx_queues(struct net_device * dev)2907 static int bcmgenet_init_rx_queues(struct net_device *dev)
2908 {
2909 struct bcmgenet_priv *priv = netdev_priv(dev);
2910 u32 i;
2911 u32 dma_enable;
2912 u32 dma_ctrl;
2913 u32 ring_cfg;
2914 int ret;
2915
2916 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2917 dma_enable = dma_ctrl & DMA_EN;
2918 dma_ctrl &= ~DMA_EN;
2919 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2920
2921 dma_ctrl = 0;
2922 ring_cfg = 0;
2923
2924 /* Initialize Rx priority queues */
2925 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2926 ret = bcmgenet_init_rx_ring(priv, i,
2927 priv->hw_params->rx_bds_per_q,
2928 i * priv->hw_params->rx_bds_per_q,
2929 (i + 1) *
2930 priv->hw_params->rx_bds_per_q);
2931 if (ret)
2932 return ret;
2933
2934 ring_cfg |= (1 << i);
2935 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2936 }
2937
2938 /* Initialize Rx default queue 16 */
2939 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2940 priv->hw_params->rx_queues *
2941 priv->hw_params->rx_bds_per_q,
2942 TOTAL_DESC);
2943 if (ret)
2944 return ret;
2945
2946 ring_cfg |= (1 << DESC_INDEX);
2947 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2948
2949 /* Enable rings */
2950 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2951
2952 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2953 if (dma_enable)
2954 dma_ctrl |= DMA_EN;
2955 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2956
2957 return 0;
2958 }
2959
bcmgenet_dma_teardown(struct bcmgenet_priv * priv)2960 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2961 {
2962 int ret = 0;
2963 int timeout = 0;
2964 u32 reg;
2965 u32 dma_ctrl;
2966 int i;
2967
2968 /* Disable TDMA to stop add more frames in TX DMA */
2969 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2970 reg &= ~DMA_EN;
2971 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2972
2973 /* Check TDMA status register to confirm TDMA is disabled */
2974 while (timeout++ < DMA_TIMEOUT_VAL) {
2975 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2976 if (reg & DMA_DISABLED)
2977 break;
2978
2979 udelay(1);
2980 }
2981
2982 if (timeout == DMA_TIMEOUT_VAL) {
2983 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2984 ret = -ETIMEDOUT;
2985 }
2986
2987 /* Wait 10ms for packet drain in both tx and rx dma */
2988 usleep_range(10000, 20000);
2989
2990 /* Disable RDMA */
2991 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2992 reg &= ~DMA_EN;
2993 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2994
2995 timeout = 0;
2996 /* Check RDMA status register to confirm RDMA is disabled */
2997 while (timeout++ < DMA_TIMEOUT_VAL) {
2998 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2999 if (reg & DMA_DISABLED)
3000 break;
3001
3002 udelay(1);
3003 }
3004
3005 if (timeout == DMA_TIMEOUT_VAL) {
3006 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3007 ret = -ETIMEDOUT;
3008 }
3009
3010 dma_ctrl = 0;
3011 for (i = 0; i < priv->hw_params->rx_queues; i++)
3012 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3013 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3014 reg &= ~dma_ctrl;
3015 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3016
3017 dma_ctrl = 0;
3018 for (i = 0; i < priv->hw_params->tx_queues; i++)
3019 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3020 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3021 reg &= ~dma_ctrl;
3022 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3023
3024 return ret;
3025 }
3026
bcmgenet_fini_dma(struct bcmgenet_priv * priv)3027 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3028 {
3029 struct netdev_queue *txq;
3030 int i;
3031
3032 bcmgenet_fini_rx_napi(priv);
3033 bcmgenet_fini_tx_napi(priv);
3034
3035 for (i = 0; i < priv->num_tx_bds; i++)
3036 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3037 priv->tx_cbs + i));
3038
3039 for (i = 0; i < priv->hw_params->tx_queues; i++) {
3040 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3041 netdev_tx_reset_queue(txq);
3042 }
3043
3044 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3045 netdev_tx_reset_queue(txq);
3046
3047 bcmgenet_free_rx_buffers(priv);
3048 kfree(priv->rx_cbs);
3049 kfree(priv->tx_cbs);
3050 }
3051
3052 /* init_edma: Initialize DMA control register */
bcmgenet_init_dma(struct bcmgenet_priv * priv)3053 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3054 {
3055 int ret;
3056 unsigned int i;
3057 struct enet_cb *cb;
3058
3059 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3060
3061 /* Initialize common Rx ring structures */
3062 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3063 priv->num_rx_bds = TOTAL_DESC;
3064 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3065 GFP_KERNEL);
3066 if (!priv->rx_cbs)
3067 return -ENOMEM;
3068
3069 for (i = 0; i < priv->num_rx_bds; i++) {
3070 cb = priv->rx_cbs + i;
3071 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3072 }
3073
3074 /* Initialize common TX ring structures */
3075 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3076 priv->num_tx_bds = TOTAL_DESC;
3077 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3078 GFP_KERNEL);
3079 if (!priv->tx_cbs) {
3080 kfree(priv->rx_cbs);
3081 return -ENOMEM;
3082 }
3083
3084 for (i = 0; i < priv->num_tx_bds; i++) {
3085 cb = priv->tx_cbs + i;
3086 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3087 }
3088
3089 /* Init rDma */
3090 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3091 DMA_SCB_BURST_SIZE);
3092
3093 /* Initialize Rx queues */
3094 ret = bcmgenet_init_rx_queues(priv->dev);
3095 if (ret) {
3096 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3097 bcmgenet_free_rx_buffers(priv);
3098 kfree(priv->rx_cbs);
3099 kfree(priv->tx_cbs);
3100 return ret;
3101 }
3102
3103 /* Init tDma */
3104 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3105 DMA_SCB_BURST_SIZE);
3106
3107 /* Initialize Tx queues */
3108 bcmgenet_init_tx_queues(priv->dev);
3109
3110 return 0;
3111 }
3112
3113 /* Interrupt bottom half */
bcmgenet_irq_task(struct work_struct * work)3114 static void bcmgenet_irq_task(struct work_struct *work)
3115 {
3116 unsigned int status;
3117 struct bcmgenet_priv *priv = container_of(
3118 work, struct bcmgenet_priv, bcmgenet_irq_work);
3119
3120 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3121
3122 spin_lock_irq(&priv->lock);
3123 status = priv->irq0_stat;
3124 priv->irq0_stat = 0;
3125 spin_unlock_irq(&priv->lock);
3126
3127 if (status & UMAC_IRQ_PHY_DET_R &&
3128 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3129 phy_init_hw(priv->dev->phydev);
3130 genphy_config_aneg(priv->dev->phydev);
3131 }
3132
3133 /* Link UP/DOWN event */
3134 if (status & UMAC_IRQ_LINK_EVENT)
3135 phy_mac_interrupt(priv->dev->phydev);
3136
3137 }
3138
3139 /* bcmgenet_isr1: handle Rx and Tx priority queues */
bcmgenet_isr1(int irq,void * dev_id)3140 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3141 {
3142 struct bcmgenet_priv *priv = dev_id;
3143 struct bcmgenet_rx_ring *rx_ring;
3144 struct bcmgenet_tx_ring *tx_ring;
3145 unsigned int index, status;
3146
3147 /* Read irq status */
3148 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3149 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3150
3151 /* clear interrupts */
3152 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3153
3154 netif_dbg(priv, intr, priv->dev,
3155 "%s: IRQ=0x%x\n", __func__, status);
3156
3157 /* Check Rx priority queue interrupts */
3158 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3159 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3160 continue;
3161
3162 rx_ring = &priv->rx_rings[index];
3163 rx_ring->dim.event_ctr++;
3164
3165 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3166 rx_ring->int_disable(rx_ring);
3167 __napi_schedule_irqoff(&rx_ring->napi);
3168 }
3169 }
3170
3171 /* Check Tx priority queue interrupts */
3172 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3173 if (!(status & BIT(index)))
3174 continue;
3175
3176 tx_ring = &priv->tx_rings[index];
3177
3178 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3179 tx_ring->int_disable(tx_ring);
3180 __napi_schedule_irqoff(&tx_ring->napi);
3181 }
3182 }
3183
3184 return IRQ_HANDLED;
3185 }
3186
3187 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
bcmgenet_isr0(int irq,void * dev_id)3188 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3189 {
3190 struct bcmgenet_priv *priv = dev_id;
3191 struct bcmgenet_rx_ring *rx_ring;
3192 struct bcmgenet_tx_ring *tx_ring;
3193 unsigned int status;
3194 unsigned long flags;
3195
3196 /* Read irq status */
3197 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3198 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3199
3200 /* clear interrupts */
3201 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3202
3203 netif_dbg(priv, intr, priv->dev,
3204 "IRQ=0x%x\n", status);
3205
3206 if (status & UMAC_IRQ_RXDMA_DONE) {
3207 rx_ring = &priv->rx_rings[DESC_INDEX];
3208 rx_ring->dim.event_ctr++;
3209
3210 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3211 rx_ring->int_disable(rx_ring);
3212 __napi_schedule_irqoff(&rx_ring->napi);
3213 }
3214 }
3215
3216 if (status & UMAC_IRQ_TXDMA_DONE) {
3217 tx_ring = &priv->tx_rings[DESC_INDEX];
3218
3219 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3220 tx_ring->int_disable(tx_ring);
3221 __napi_schedule_irqoff(&tx_ring->napi);
3222 }
3223 }
3224
3225 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3226 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3227 wake_up(&priv->wq);
3228 }
3229
3230 /* all other interested interrupts handled in bottom half */
3231 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3232 if (status) {
3233 /* Save irq status for bottom-half processing. */
3234 spin_lock_irqsave(&priv->lock, flags);
3235 priv->irq0_stat |= status;
3236 spin_unlock_irqrestore(&priv->lock, flags);
3237
3238 schedule_work(&priv->bcmgenet_irq_work);
3239 }
3240
3241 return IRQ_HANDLED;
3242 }
3243
bcmgenet_wol_isr(int irq,void * dev_id)3244 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3245 {
3246 /* Acknowledge the interrupt */
3247 return IRQ_HANDLED;
3248 }
3249
3250 #ifdef CONFIG_NET_POLL_CONTROLLER
bcmgenet_poll_controller(struct net_device * dev)3251 static void bcmgenet_poll_controller(struct net_device *dev)
3252 {
3253 struct bcmgenet_priv *priv = netdev_priv(dev);
3254
3255 /* Invoke the main RX/TX interrupt handler */
3256 disable_irq(priv->irq0);
3257 bcmgenet_isr0(priv->irq0, priv);
3258 enable_irq(priv->irq0);
3259
3260 /* And the interrupt handler for RX/TX priority queues */
3261 disable_irq(priv->irq1);
3262 bcmgenet_isr1(priv->irq1, priv);
3263 enable_irq(priv->irq1);
3264 }
3265 #endif
3266
bcmgenet_umac_reset(struct bcmgenet_priv * priv)3267 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3268 {
3269 u32 reg;
3270
3271 reg = bcmgenet_rbuf_ctrl_get(priv);
3272 reg |= BIT(1);
3273 bcmgenet_rbuf_ctrl_set(priv, reg);
3274 udelay(10);
3275
3276 reg &= ~BIT(1);
3277 bcmgenet_rbuf_ctrl_set(priv, reg);
3278 udelay(10);
3279 }
3280
bcmgenet_set_hw_addr(struct bcmgenet_priv * priv,const unsigned char * addr)3281 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3282 const unsigned char *addr)
3283 {
3284 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3285 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3286 }
3287
bcmgenet_get_hw_addr(struct bcmgenet_priv * priv,unsigned char * addr)3288 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3289 unsigned char *addr)
3290 {
3291 u32 addr_tmp;
3292
3293 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3294 put_unaligned_be32(addr_tmp, &addr[0]);
3295 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3296 put_unaligned_be16(addr_tmp, &addr[4]);
3297 }
3298
3299 /* Returns a reusable dma control register value */
bcmgenet_dma_disable(struct bcmgenet_priv * priv)3300 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3301 {
3302 unsigned int i;
3303 u32 reg;
3304 u32 dma_ctrl;
3305
3306 /* disable DMA */
3307 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3308 for (i = 0; i < priv->hw_params->tx_queues; i++)
3309 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3310 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3311 reg &= ~dma_ctrl;
3312 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3313
3314 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3315 for (i = 0; i < priv->hw_params->rx_queues; i++)
3316 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3317 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3318 reg &= ~dma_ctrl;
3319 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3320
3321 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3322 udelay(10);
3323 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3324
3325 return dma_ctrl;
3326 }
3327
bcmgenet_enable_dma(struct bcmgenet_priv * priv,u32 dma_ctrl)3328 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3329 {
3330 u32 reg;
3331
3332 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3333 reg |= dma_ctrl;
3334 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3335
3336 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3337 reg |= dma_ctrl;
3338 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3339 }
3340
bcmgenet_netif_start(struct net_device * dev)3341 static void bcmgenet_netif_start(struct net_device *dev)
3342 {
3343 struct bcmgenet_priv *priv = netdev_priv(dev);
3344
3345 /* Start the network engine */
3346 bcmgenet_set_rx_mode(dev);
3347 bcmgenet_enable_rx_napi(priv);
3348
3349 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3350
3351 bcmgenet_enable_tx_napi(priv);
3352
3353 /* Monitor link interrupts now */
3354 bcmgenet_link_intr_enable(priv);
3355
3356 phy_start(dev->phydev);
3357 }
3358
bcmgenet_open(struct net_device * dev)3359 static int bcmgenet_open(struct net_device *dev)
3360 {
3361 struct bcmgenet_priv *priv = netdev_priv(dev);
3362 unsigned long dma_ctrl;
3363 int ret;
3364
3365 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3366
3367 /* Turn on the clock */
3368 clk_prepare_enable(priv->clk);
3369
3370 /* If this is an internal GPHY, power it back on now, before UniMAC is
3371 * brought out of reset as absolutely no UniMAC activity is allowed
3372 */
3373 if (priv->internal_phy)
3374 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3375
3376 /* take MAC out of reset */
3377 bcmgenet_umac_reset(priv);
3378
3379 init_umac(priv);
3380
3381 /* Apply features again in case we changed them while interface was
3382 * down
3383 */
3384 bcmgenet_set_features(dev, dev->features);
3385
3386 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3387
3388 /* Disable RX/TX DMA and flush TX queues */
3389 dma_ctrl = bcmgenet_dma_disable(priv);
3390
3391 /* Reinitialize TDMA and RDMA and SW housekeeping */
3392 ret = bcmgenet_init_dma(priv);
3393 if (ret) {
3394 netdev_err(dev, "failed to initialize DMA\n");
3395 goto err_clk_disable;
3396 }
3397
3398 /* Always enable ring 16 - descriptor ring */
3399 bcmgenet_enable_dma(priv, dma_ctrl);
3400
3401 /* HFB init */
3402 bcmgenet_hfb_init(priv);
3403
3404 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3405 dev->name, priv);
3406 if (ret < 0) {
3407 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3408 goto err_fini_dma;
3409 }
3410
3411 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3412 dev->name, priv);
3413 if (ret < 0) {
3414 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3415 goto err_irq0;
3416 }
3417
3418 ret = bcmgenet_mii_probe(dev);
3419 if (ret) {
3420 netdev_err(dev, "failed to connect to PHY\n");
3421 goto err_irq1;
3422 }
3423
3424 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3425
3426 bcmgenet_netif_start(dev);
3427
3428 netif_tx_start_all_queues(dev);
3429
3430 return 0;
3431
3432 err_irq1:
3433 free_irq(priv->irq1, priv);
3434 err_irq0:
3435 free_irq(priv->irq0, priv);
3436 err_fini_dma:
3437 bcmgenet_dma_teardown(priv);
3438 bcmgenet_fini_dma(priv);
3439 err_clk_disable:
3440 if (priv->internal_phy)
3441 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3442 clk_disable_unprepare(priv->clk);
3443 return ret;
3444 }
3445
bcmgenet_netif_stop(struct net_device * dev,bool stop_phy)3446 static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3447 {
3448 struct bcmgenet_priv *priv = netdev_priv(dev);
3449
3450 bcmgenet_disable_tx_napi(priv);
3451 netif_tx_disable(dev);
3452
3453 /* Disable MAC receive */
3454 umac_enable_set(priv, CMD_RX_EN, false);
3455
3456 bcmgenet_dma_teardown(priv);
3457
3458 /* Disable MAC transmit. TX DMA disabled must be done before this */
3459 umac_enable_set(priv, CMD_TX_EN, false);
3460
3461 if (stop_phy)
3462 phy_stop(dev->phydev);
3463 bcmgenet_disable_rx_napi(priv);
3464 bcmgenet_intr_disable(priv);
3465
3466 /* Wait for pending work items to complete. Since interrupts are
3467 * disabled no new work will be scheduled.
3468 */
3469 cancel_work_sync(&priv->bcmgenet_irq_work);
3470
3471 /* tx reclaim */
3472 bcmgenet_tx_reclaim_all(dev);
3473 bcmgenet_fini_dma(priv);
3474 }
3475
bcmgenet_close(struct net_device * dev)3476 static int bcmgenet_close(struct net_device *dev)
3477 {
3478 struct bcmgenet_priv *priv = netdev_priv(dev);
3479 int ret = 0;
3480
3481 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3482
3483 bcmgenet_netif_stop(dev, false);
3484
3485 /* Really kill the PHY state machine and disconnect from it */
3486 phy_disconnect(dev->phydev);
3487
3488 free_irq(priv->irq0, priv);
3489 free_irq(priv->irq1, priv);
3490
3491 if (priv->internal_phy)
3492 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3493
3494 clk_disable_unprepare(priv->clk);
3495
3496 return ret;
3497 }
3498
bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring * ring)3499 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3500 {
3501 struct bcmgenet_priv *priv = ring->priv;
3502 u32 p_index, c_index, intsts, intmsk;
3503 struct netdev_queue *txq;
3504 unsigned int free_bds;
3505 bool txq_stopped;
3506
3507 if (!netif_msg_tx_err(priv))
3508 return;
3509
3510 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3511
3512 spin_lock(&ring->lock);
3513 if (ring->index == DESC_INDEX) {
3514 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3515 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3516 } else {
3517 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3518 intmsk = 1 << ring->index;
3519 }
3520 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3521 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3522 txq_stopped = netif_tx_queue_stopped(txq);
3523 free_bds = ring->free_bds;
3524 spin_unlock(&ring->lock);
3525
3526 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3527 "TX queue status: %s, interrupts: %s\n"
3528 "(sw)free_bds: %d (sw)size: %d\n"
3529 "(sw)p_index: %d (hw)p_index: %d\n"
3530 "(sw)c_index: %d (hw)c_index: %d\n"
3531 "(sw)clean_p: %d (sw)write_p: %d\n"
3532 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3533 ring->index, ring->queue,
3534 txq_stopped ? "stopped" : "active",
3535 intsts & intmsk ? "enabled" : "disabled",
3536 free_bds, ring->size,
3537 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3538 ring->c_index, c_index & DMA_C_INDEX_MASK,
3539 ring->clean_ptr, ring->write_ptr,
3540 ring->cb_ptr, ring->end_ptr);
3541 }
3542
bcmgenet_timeout(struct net_device * dev,unsigned int txqueue)3543 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3544 {
3545 struct bcmgenet_priv *priv = netdev_priv(dev);
3546 u32 int0_enable = 0;
3547 u32 int1_enable = 0;
3548 unsigned int q;
3549
3550 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3551
3552 for (q = 0; q < priv->hw_params->tx_queues; q++)
3553 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3554 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3555
3556 bcmgenet_tx_reclaim_all(dev);
3557
3558 for (q = 0; q < priv->hw_params->tx_queues; q++)
3559 int1_enable |= (1 << q);
3560
3561 int0_enable = UMAC_IRQ_TXDMA_DONE;
3562
3563 /* Re-enable TX interrupts if disabled */
3564 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3565 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3566
3567 netif_trans_update(dev);
3568
3569 dev->stats.tx_errors++;
3570
3571 netif_tx_wake_all_queues(dev);
3572 }
3573
3574 #define MAX_MDF_FILTER 17
3575
bcmgenet_set_mdf_addr(struct bcmgenet_priv * priv,const unsigned char * addr,int * i)3576 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3577 const unsigned char *addr,
3578 int *i)
3579 {
3580 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3581 UMAC_MDF_ADDR + (*i * 4));
3582 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3583 addr[4] << 8 | addr[5],
3584 UMAC_MDF_ADDR + ((*i + 1) * 4));
3585 *i += 2;
3586 }
3587
bcmgenet_set_rx_mode(struct net_device * dev)3588 static void bcmgenet_set_rx_mode(struct net_device *dev)
3589 {
3590 struct bcmgenet_priv *priv = netdev_priv(dev);
3591 struct netdev_hw_addr *ha;
3592 int i, nfilter;
3593 u32 reg;
3594
3595 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3596
3597 /* Number of filters needed */
3598 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3599
3600 /*
3601 * Turn on promicuous mode for three scenarios
3602 * 1. IFF_PROMISC flag is set
3603 * 2. IFF_ALLMULTI flag is set
3604 * 3. The number of filters needed exceeds the number filters
3605 * supported by the hardware.
3606 */
3607 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3608 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3609 (nfilter > MAX_MDF_FILTER)) {
3610 reg |= CMD_PROMISC;
3611 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3612 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3613 return;
3614 } else {
3615 reg &= ~CMD_PROMISC;
3616 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3617 }
3618
3619 /* update MDF filter */
3620 i = 0;
3621 /* Broadcast */
3622 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3623 /* my own address.*/
3624 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3625
3626 /* Unicast */
3627 netdev_for_each_uc_addr(ha, dev)
3628 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3629
3630 /* Multicast */
3631 netdev_for_each_mc_addr(ha, dev)
3632 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3633
3634 /* Enable filters */
3635 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3636 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3637 }
3638
3639 /* Set the hardware MAC address. */
bcmgenet_set_mac_addr(struct net_device * dev,void * p)3640 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3641 {
3642 struct sockaddr *addr = p;
3643
3644 /* Setting the MAC address at the hardware level is not possible
3645 * without disabling the UniMAC RX/TX enable bits.
3646 */
3647 if (netif_running(dev))
3648 return -EBUSY;
3649
3650 eth_hw_addr_set(dev, addr->sa_data);
3651
3652 return 0;
3653 }
3654
bcmgenet_get_stats(struct net_device * dev)3655 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3656 {
3657 struct bcmgenet_priv *priv = netdev_priv(dev);
3658 unsigned long tx_bytes = 0, tx_packets = 0;
3659 unsigned long rx_bytes = 0, rx_packets = 0;
3660 unsigned long rx_errors = 0, rx_dropped = 0;
3661 struct bcmgenet_tx_ring *tx_ring;
3662 struct bcmgenet_rx_ring *rx_ring;
3663 unsigned int q;
3664
3665 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3666 tx_ring = &priv->tx_rings[q];
3667 tx_bytes += tx_ring->bytes;
3668 tx_packets += tx_ring->packets;
3669 }
3670 tx_ring = &priv->tx_rings[DESC_INDEX];
3671 tx_bytes += tx_ring->bytes;
3672 tx_packets += tx_ring->packets;
3673
3674 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3675 rx_ring = &priv->rx_rings[q];
3676
3677 rx_bytes += rx_ring->bytes;
3678 rx_packets += rx_ring->packets;
3679 rx_errors += rx_ring->errors;
3680 rx_dropped += rx_ring->dropped;
3681 }
3682 rx_ring = &priv->rx_rings[DESC_INDEX];
3683 rx_bytes += rx_ring->bytes;
3684 rx_packets += rx_ring->packets;
3685 rx_errors += rx_ring->errors;
3686 rx_dropped += rx_ring->dropped;
3687
3688 dev->stats.tx_bytes = tx_bytes;
3689 dev->stats.tx_packets = tx_packets;
3690 dev->stats.rx_bytes = rx_bytes;
3691 dev->stats.rx_packets = rx_packets;
3692 dev->stats.rx_errors = rx_errors;
3693 dev->stats.rx_missed_errors = rx_errors;
3694 dev->stats.rx_dropped = rx_dropped;
3695 return &dev->stats;
3696 }
3697
bcmgenet_change_carrier(struct net_device * dev,bool new_carrier)3698 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3699 {
3700 struct bcmgenet_priv *priv = netdev_priv(dev);
3701
3702 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3703 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3704 return -EOPNOTSUPP;
3705
3706 if (new_carrier)
3707 netif_carrier_on(dev);
3708 else
3709 netif_carrier_off(dev);
3710
3711 return 0;
3712 }
3713
3714 static const struct net_device_ops bcmgenet_netdev_ops = {
3715 .ndo_open = bcmgenet_open,
3716 .ndo_stop = bcmgenet_close,
3717 .ndo_start_xmit = bcmgenet_xmit,
3718 .ndo_tx_timeout = bcmgenet_timeout,
3719 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3720 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3721 .ndo_eth_ioctl = phy_do_ioctl_running,
3722 .ndo_set_features = bcmgenet_set_features,
3723 #ifdef CONFIG_NET_POLL_CONTROLLER
3724 .ndo_poll_controller = bcmgenet_poll_controller,
3725 #endif
3726 .ndo_get_stats = bcmgenet_get_stats,
3727 .ndo_change_carrier = bcmgenet_change_carrier,
3728 };
3729
3730 /* Array of GENET hardware parameters/characteristics */
3731 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3732 [GENET_V1] = {
3733 .tx_queues = 0,
3734 .tx_bds_per_q = 0,
3735 .rx_queues = 0,
3736 .rx_bds_per_q = 0,
3737 .bp_in_en_shift = 16,
3738 .bp_in_mask = 0xffff,
3739 .hfb_filter_cnt = 16,
3740 .qtag_mask = 0x1F,
3741 .hfb_offset = 0x1000,
3742 .rdma_offset = 0x2000,
3743 .tdma_offset = 0x3000,
3744 .words_per_bd = 2,
3745 },
3746 [GENET_V2] = {
3747 .tx_queues = 4,
3748 .tx_bds_per_q = 32,
3749 .rx_queues = 0,
3750 .rx_bds_per_q = 0,
3751 .bp_in_en_shift = 16,
3752 .bp_in_mask = 0xffff,
3753 .hfb_filter_cnt = 16,
3754 .qtag_mask = 0x1F,
3755 .tbuf_offset = 0x0600,
3756 .hfb_offset = 0x1000,
3757 .hfb_reg_offset = 0x2000,
3758 .rdma_offset = 0x3000,
3759 .tdma_offset = 0x4000,
3760 .words_per_bd = 2,
3761 .flags = GENET_HAS_EXT,
3762 },
3763 [GENET_V3] = {
3764 .tx_queues = 4,
3765 .tx_bds_per_q = 32,
3766 .rx_queues = 0,
3767 .rx_bds_per_q = 0,
3768 .bp_in_en_shift = 17,
3769 .bp_in_mask = 0x1ffff,
3770 .hfb_filter_cnt = 48,
3771 .hfb_filter_size = 128,
3772 .qtag_mask = 0x3F,
3773 .tbuf_offset = 0x0600,
3774 .hfb_offset = 0x8000,
3775 .hfb_reg_offset = 0xfc00,
3776 .rdma_offset = 0x10000,
3777 .tdma_offset = 0x11000,
3778 .words_per_bd = 2,
3779 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3780 GENET_HAS_MOCA_LINK_DET,
3781 },
3782 [GENET_V4] = {
3783 .tx_queues = 4,
3784 .tx_bds_per_q = 32,
3785 .rx_queues = 0,
3786 .rx_bds_per_q = 0,
3787 .bp_in_en_shift = 17,
3788 .bp_in_mask = 0x1ffff,
3789 .hfb_filter_cnt = 48,
3790 .hfb_filter_size = 128,
3791 .qtag_mask = 0x3F,
3792 .tbuf_offset = 0x0600,
3793 .hfb_offset = 0x8000,
3794 .hfb_reg_offset = 0xfc00,
3795 .rdma_offset = 0x2000,
3796 .tdma_offset = 0x4000,
3797 .words_per_bd = 3,
3798 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3799 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3800 },
3801 [GENET_V5] = {
3802 .tx_queues = 4,
3803 .tx_bds_per_q = 32,
3804 .rx_queues = 0,
3805 .rx_bds_per_q = 0,
3806 .bp_in_en_shift = 17,
3807 .bp_in_mask = 0x1ffff,
3808 .hfb_filter_cnt = 48,
3809 .hfb_filter_size = 128,
3810 .qtag_mask = 0x3F,
3811 .tbuf_offset = 0x0600,
3812 .hfb_offset = 0x8000,
3813 .hfb_reg_offset = 0xfc00,
3814 .rdma_offset = 0x2000,
3815 .tdma_offset = 0x4000,
3816 .words_per_bd = 3,
3817 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3818 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3819 },
3820 };
3821
3822 /* Infer hardware parameters from the detected GENET version */
bcmgenet_set_hw_params(struct bcmgenet_priv * priv)3823 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3824 {
3825 struct bcmgenet_hw_params *params;
3826 u32 reg;
3827 u8 major;
3828 u16 gphy_rev;
3829
3830 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3831 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3832 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3833 } else if (GENET_IS_V3(priv)) {
3834 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3835 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3836 } else if (GENET_IS_V2(priv)) {
3837 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3838 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3839 } else if (GENET_IS_V1(priv)) {
3840 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3841 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3842 }
3843
3844 /* enum genet_version starts at 1 */
3845 priv->hw_params = &bcmgenet_hw_params[priv->version];
3846 params = priv->hw_params;
3847
3848 /* Read GENET HW version */
3849 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3850 major = (reg >> 24 & 0x0f);
3851 if (major == 6)
3852 major = 5;
3853 else if (major == 5)
3854 major = 4;
3855 else if (major == 0)
3856 major = 1;
3857 if (major != priv->version) {
3858 dev_err(&priv->pdev->dev,
3859 "GENET version mismatch, got: %d, configured for: %d\n",
3860 major, priv->version);
3861 }
3862
3863 /* Print the GENET core version */
3864 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3865 major, (reg >> 16) & 0x0f, reg & 0xffff);
3866
3867 /* Store the integrated PHY revision for the MDIO probing function
3868 * to pass this information to the PHY driver. The PHY driver expects
3869 * to find the PHY major revision in bits 15:8 while the GENET register
3870 * stores that information in bits 7:0, account for that.
3871 *
3872 * On newer chips, starting with PHY revision G0, a new scheme is
3873 * deployed similar to the Starfighter 2 switch with GPHY major
3874 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3875 * is reserved as well as special value 0x01ff, we have a small
3876 * heuristic to check for the new GPHY revision and re-arrange things
3877 * so the GPHY driver is happy.
3878 */
3879 gphy_rev = reg & 0xffff;
3880
3881 if (GENET_IS_V5(priv)) {
3882 /* The EPHY revision should come from the MDIO registers of
3883 * the PHY not from GENET.
3884 */
3885 if (gphy_rev != 0) {
3886 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3887 gphy_rev);
3888 }
3889 /* This is reserved so should require special treatment */
3890 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3891 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3892 return;
3893 /* This is the good old scheme, just GPHY major, no minor nor patch */
3894 } else if ((gphy_rev & 0xf0) != 0) {
3895 priv->gphy_rev = gphy_rev << 8;
3896 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3897 } else if ((gphy_rev & 0xff00) != 0) {
3898 priv->gphy_rev = gphy_rev;
3899 }
3900
3901 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3902 if (!(params->flags & GENET_HAS_40BITS))
3903 pr_warn("GENET does not support 40-bits PA\n");
3904 #endif
3905
3906 pr_debug("Configuration for version: %d\n"
3907 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3908 "BP << en: %2d, BP msk: 0x%05x\n"
3909 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3910 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3911 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3912 "Words/BD: %d\n",
3913 priv->version,
3914 params->tx_queues, params->tx_bds_per_q,
3915 params->rx_queues, params->rx_bds_per_q,
3916 params->bp_in_en_shift, params->bp_in_mask,
3917 params->hfb_filter_cnt, params->qtag_mask,
3918 params->tbuf_offset, params->hfb_offset,
3919 params->hfb_reg_offset,
3920 params->rdma_offset, params->tdma_offset,
3921 params->words_per_bd);
3922 }
3923
3924 struct bcmgenet_plat_data {
3925 enum bcmgenet_version version;
3926 u32 dma_max_burst_length;
3927 bool ephy_16nm;
3928 };
3929
3930 static const struct bcmgenet_plat_data v1_plat_data = {
3931 .version = GENET_V1,
3932 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3933 };
3934
3935 static const struct bcmgenet_plat_data v2_plat_data = {
3936 .version = GENET_V2,
3937 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3938 };
3939
3940 static const struct bcmgenet_plat_data v3_plat_data = {
3941 .version = GENET_V3,
3942 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3943 };
3944
3945 static const struct bcmgenet_plat_data v4_plat_data = {
3946 .version = GENET_V4,
3947 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3948 };
3949
3950 static const struct bcmgenet_plat_data v5_plat_data = {
3951 .version = GENET_V5,
3952 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3953 };
3954
3955 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3956 .version = GENET_V5,
3957 .dma_max_burst_length = 0x08,
3958 };
3959
3960 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3961 .version = GENET_V5,
3962 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3963 .ephy_16nm = true,
3964 };
3965
3966 static const struct of_device_id bcmgenet_match[] = {
3967 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3968 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3969 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3970 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3971 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3972 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3973 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3974 { },
3975 };
3976 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3977
bcmgenet_probe(struct platform_device * pdev)3978 static int bcmgenet_probe(struct platform_device *pdev)
3979 {
3980 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3981 const struct bcmgenet_plat_data *pdata;
3982 struct bcmgenet_priv *priv;
3983 struct net_device *dev;
3984 unsigned int i;
3985 int err = -EIO;
3986
3987 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3988 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3989 GENET_MAX_MQ_CNT + 1);
3990 if (!dev) {
3991 dev_err(&pdev->dev, "can't allocate net device\n");
3992 return -ENOMEM;
3993 }
3994
3995 priv = netdev_priv(dev);
3996 priv->irq0 = platform_get_irq(pdev, 0);
3997 if (priv->irq0 < 0) {
3998 err = priv->irq0;
3999 goto err;
4000 }
4001 priv->irq1 = platform_get_irq(pdev, 1);
4002 if (priv->irq1 < 0) {
4003 err = priv->irq1;
4004 goto err;
4005 }
4006 priv->wol_irq = platform_get_irq_optional(pdev, 2);
4007 if (priv->wol_irq == -EPROBE_DEFER) {
4008 err = priv->wol_irq;
4009 goto err;
4010 }
4011
4012 priv->base = devm_platform_ioremap_resource(pdev, 0);
4013 if (IS_ERR(priv->base)) {
4014 err = PTR_ERR(priv->base);
4015 goto err;
4016 }
4017
4018 spin_lock_init(&priv->lock);
4019
4020 /* Set default pause parameters */
4021 priv->autoneg_pause = 1;
4022 priv->tx_pause = 1;
4023 priv->rx_pause = 1;
4024
4025 SET_NETDEV_DEV(dev, &pdev->dev);
4026 dev_set_drvdata(&pdev->dev, dev);
4027 dev->watchdog_timeo = 2 * HZ;
4028 dev->ethtool_ops = &bcmgenet_ethtool_ops;
4029 dev->netdev_ops = &bcmgenet_netdev_ops;
4030
4031 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4032
4033 /* Set default features */
4034 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4035 NETIF_F_RXCSUM;
4036 dev->hw_features |= dev->features;
4037 dev->vlan_features |= dev->features;
4038
4039 /* Request the WOL interrupt and advertise suspend if available */
4040 priv->wol_irq_disabled = true;
4041 if (priv->wol_irq > 0) {
4042 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4043 bcmgenet_wol_isr, 0, dev->name, priv);
4044 if (!err)
4045 device_set_wakeup_capable(&pdev->dev, 1);
4046 }
4047
4048 /* Set the needed headroom to account for any possible
4049 * features enabling/disabling at runtime
4050 */
4051 dev->needed_headroom += 64;
4052
4053 priv->dev = dev;
4054 priv->pdev = pdev;
4055
4056 pdata = device_get_match_data(&pdev->dev);
4057 if (pdata) {
4058 priv->version = pdata->version;
4059 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4060 priv->ephy_16nm = pdata->ephy_16nm;
4061 } else {
4062 priv->version = pd->genet_version;
4063 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4064 }
4065
4066 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4067 if (IS_ERR(priv->clk)) {
4068 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4069 err = PTR_ERR(priv->clk);
4070 goto err;
4071 }
4072
4073 err = clk_prepare_enable(priv->clk);
4074 if (err)
4075 goto err;
4076
4077 bcmgenet_set_hw_params(priv);
4078
4079 err = -EIO;
4080 if (priv->hw_params->flags & GENET_HAS_40BITS)
4081 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4082 if (err)
4083 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4084 if (err)
4085 goto err_clk_disable;
4086
4087 /* Mii wait queue */
4088 init_waitqueue_head(&priv->wq);
4089 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4090 priv->rx_buf_len = RX_BUF_LENGTH;
4091 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4092
4093 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4094 if (IS_ERR(priv->clk_wol)) {
4095 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4096 err = PTR_ERR(priv->clk_wol);
4097 goto err_clk_disable;
4098 }
4099
4100 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4101 if (IS_ERR(priv->clk_eee)) {
4102 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4103 err = PTR_ERR(priv->clk_eee);
4104 goto err_clk_disable;
4105 }
4106
4107 /* If this is an internal GPHY, power it on now, before UniMAC is
4108 * brought out of reset as absolutely no UniMAC activity is allowed
4109 */
4110 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4111 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4112
4113 if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4114 eth_hw_addr_set(dev, pd->mac_address);
4115 else
4116 if (device_get_ethdev_address(&pdev->dev, dev))
4117 if (has_acpi_companion(&pdev->dev)) {
4118 u8 addr[ETH_ALEN];
4119
4120 bcmgenet_get_hw_addr(priv, addr);
4121 eth_hw_addr_set(dev, addr);
4122 }
4123
4124 if (!is_valid_ether_addr(dev->dev_addr)) {
4125 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4126 eth_hw_addr_random(dev);
4127 }
4128
4129 reset_umac(priv);
4130
4131 err = bcmgenet_mii_init(dev);
4132 if (err)
4133 goto err_clk_disable;
4134
4135 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4136 * just the ring 16 descriptor based TX
4137 */
4138 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4139 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4140
4141 /* Set default coalescing parameters */
4142 for (i = 0; i < priv->hw_params->rx_queues; i++)
4143 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4144 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4145
4146 /* libphy will determine the link state */
4147 netif_carrier_off(dev);
4148
4149 /* Turn off the main clock, WOL clock is handled separately */
4150 clk_disable_unprepare(priv->clk);
4151
4152 err = register_netdev(dev);
4153 if (err) {
4154 bcmgenet_mii_exit(dev);
4155 goto err;
4156 }
4157
4158 return err;
4159
4160 err_clk_disable:
4161 clk_disable_unprepare(priv->clk);
4162 err:
4163 free_netdev(dev);
4164 return err;
4165 }
4166
bcmgenet_remove(struct platform_device * pdev)4167 static int bcmgenet_remove(struct platform_device *pdev)
4168 {
4169 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4170
4171 dev_set_drvdata(&pdev->dev, NULL);
4172 unregister_netdev(priv->dev);
4173 bcmgenet_mii_exit(priv->dev);
4174 free_netdev(priv->dev);
4175
4176 return 0;
4177 }
4178
bcmgenet_shutdown(struct platform_device * pdev)4179 static void bcmgenet_shutdown(struct platform_device *pdev)
4180 {
4181 bcmgenet_remove(pdev);
4182 }
4183
4184 #ifdef CONFIG_PM_SLEEP
bcmgenet_resume_noirq(struct device * d)4185 static int bcmgenet_resume_noirq(struct device *d)
4186 {
4187 struct net_device *dev = dev_get_drvdata(d);
4188 struct bcmgenet_priv *priv = netdev_priv(dev);
4189 int ret;
4190 u32 reg;
4191
4192 if (!netif_running(dev))
4193 return 0;
4194
4195 /* Turn on the clock */
4196 ret = clk_prepare_enable(priv->clk);
4197 if (ret)
4198 return ret;
4199
4200 if (device_may_wakeup(d) && priv->wolopts) {
4201 /* Account for Wake-on-LAN events and clear those events
4202 * (Some devices need more time between enabling the clocks
4203 * and the interrupt register reflecting the wake event so
4204 * read the register twice)
4205 */
4206 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4207 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4208 if (reg & UMAC_IRQ_WAKE_EVENT)
4209 pm_wakeup_event(&priv->pdev->dev, 0);
4210 }
4211
4212 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4213
4214 return 0;
4215 }
4216
bcmgenet_resume(struct device * d)4217 static int bcmgenet_resume(struct device *d)
4218 {
4219 struct net_device *dev = dev_get_drvdata(d);
4220 struct bcmgenet_priv *priv = netdev_priv(dev);
4221 struct bcmgenet_rxnfc_rule *rule;
4222 unsigned long dma_ctrl;
4223 int ret;
4224
4225 if (!netif_running(dev))
4226 return 0;
4227
4228 /* From WOL-enabled suspend, switch to regular clock */
4229 if (device_may_wakeup(d) && priv->wolopts)
4230 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4231
4232 /* If this is an internal GPHY, power it back on now, before UniMAC is
4233 * brought out of reset as absolutely no UniMAC activity is allowed
4234 */
4235 if (priv->internal_phy)
4236 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4237
4238 bcmgenet_umac_reset(priv);
4239
4240 init_umac(priv);
4241
4242 phy_init_hw(dev->phydev);
4243
4244 /* Speed settings must be restored */
4245 genphy_config_aneg(dev->phydev);
4246 bcmgenet_mii_config(priv->dev, false);
4247
4248 /* Restore enabled features */
4249 bcmgenet_set_features(dev, dev->features);
4250
4251 bcmgenet_set_hw_addr(priv, dev->dev_addr);
4252
4253 /* Restore hardware filters */
4254 bcmgenet_hfb_clear(priv);
4255 list_for_each_entry(rule, &priv->rxnfc_list, list)
4256 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4257 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4258
4259 /* Disable RX/TX DMA and flush TX queues */
4260 dma_ctrl = bcmgenet_dma_disable(priv);
4261
4262 /* Reinitialize TDMA and RDMA and SW housekeeping */
4263 ret = bcmgenet_init_dma(priv);
4264 if (ret) {
4265 netdev_err(dev, "failed to initialize DMA\n");
4266 goto out_clk_disable;
4267 }
4268
4269 /* Always enable ring 16 - descriptor ring */
4270 bcmgenet_enable_dma(priv, dma_ctrl);
4271
4272 if (!device_may_wakeup(d))
4273 phy_resume(dev->phydev);
4274
4275 bcmgenet_netif_start(dev);
4276
4277 netif_device_attach(dev);
4278
4279 return 0;
4280
4281 out_clk_disable:
4282 if (priv->internal_phy)
4283 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4284 clk_disable_unprepare(priv->clk);
4285 return ret;
4286 }
4287
bcmgenet_suspend(struct device * d)4288 static int bcmgenet_suspend(struct device *d)
4289 {
4290 struct net_device *dev = dev_get_drvdata(d);
4291 struct bcmgenet_priv *priv = netdev_priv(dev);
4292
4293 if (!netif_running(dev))
4294 return 0;
4295
4296 netif_device_detach(dev);
4297
4298 bcmgenet_netif_stop(dev, true);
4299
4300 if (!device_may_wakeup(d))
4301 phy_suspend(dev->phydev);
4302
4303 /* Disable filtering */
4304 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4305
4306 return 0;
4307 }
4308
bcmgenet_suspend_noirq(struct device * d)4309 static int bcmgenet_suspend_noirq(struct device *d)
4310 {
4311 struct net_device *dev = dev_get_drvdata(d);
4312 struct bcmgenet_priv *priv = netdev_priv(dev);
4313 int ret = 0;
4314
4315 if (!netif_running(dev))
4316 return 0;
4317
4318 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4319 if (device_may_wakeup(d) && priv->wolopts)
4320 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4321 else if (priv->internal_phy)
4322 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4323
4324 /* Let the framework handle resumption and leave the clocks on */
4325 if (ret)
4326 return ret;
4327
4328 /* Turn off the clocks */
4329 clk_disable_unprepare(priv->clk);
4330
4331 return 0;
4332 }
4333 #else
4334 #define bcmgenet_suspend NULL
4335 #define bcmgenet_suspend_noirq NULL
4336 #define bcmgenet_resume NULL
4337 #define bcmgenet_resume_noirq NULL
4338 #endif /* CONFIG_PM_SLEEP */
4339
4340 static const struct dev_pm_ops bcmgenet_pm_ops = {
4341 .suspend = bcmgenet_suspend,
4342 .suspend_noirq = bcmgenet_suspend_noirq,
4343 .resume = bcmgenet_resume,
4344 .resume_noirq = bcmgenet_resume_noirq,
4345 };
4346
4347 static const struct acpi_device_id genet_acpi_match[] = {
4348 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4349 { },
4350 };
4351 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4352
4353 static struct platform_driver bcmgenet_driver = {
4354 .probe = bcmgenet_probe,
4355 .remove = bcmgenet_remove,
4356 .shutdown = bcmgenet_shutdown,
4357 .driver = {
4358 .name = "bcmgenet",
4359 .of_match_table = bcmgenet_match,
4360 .pm = &bcmgenet_pm_ops,
4361 .acpi_match_table = genet_acpi_match,
4362 },
4363 };
4364 module_platform_driver(bcmgenet_driver);
4365
4366 MODULE_AUTHOR("Broadcom Corporation");
4367 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4368 MODULE_ALIAS("platform:bcmgenet");
4369 MODULE_LICENSE("GPL");
4370 MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4371