1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14 
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19 
20 /* Rate limiting */
__calc_target_rate(struct cached_dev * dc)21 static uint64_t __calc_target_rate(struct cached_dev *dc)
22 {
23 	struct cache_set *c = dc->disk.c;
24 
25 	/*
26 	 * This is the size of the cache, minus the amount used for
27 	 * flash-only devices
28 	 */
29 	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
30 				atomic_long_read(&c->flash_dev_dirty_sectors);
31 
32 	/*
33 	 * Unfortunately there is no control of global dirty data.  If the
34 	 * user states that they want 10% dirty data in the cache, and has,
35 	 * e.g., 5 backing volumes of equal size, we try and ensure each
36 	 * backing volume uses about 2% of the cache for dirty data.
37 	 */
38 	uint32_t bdev_share =
39 		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
40 				c->cached_dev_sectors);
41 
42 	uint64_t cache_dirty_target =
43 		div_u64(cache_sectors * dc->writeback_percent, 100);
44 
45 	/* Ensure each backing dev gets at least one dirty share */
46 	if (bdev_share < 1)
47 		bdev_share = 1;
48 
49 	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
50 }
51 
__update_writeback_rate(struct cached_dev * dc)52 static void __update_writeback_rate(struct cached_dev *dc)
53 {
54 	/*
55 	 * PI controller:
56 	 * Figures out the amount that should be written per second.
57 	 *
58 	 * First, the error (number of sectors that are dirty beyond our
59 	 * target) is calculated.  The error is accumulated (numerically
60 	 * integrated).
61 	 *
62 	 * Then, the proportional value and integral value are scaled
63 	 * based on configured values.  These are stored as inverses to
64 	 * avoid fixed point math and to make configuration easy-- e.g.
65 	 * the default value of 40 for writeback_rate_p_term_inverse
66 	 * attempts to write at a rate that would retire all the dirty
67 	 * blocks in 40 seconds.
68 	 *
69 	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
70 	 * of the error is accumulated in the integral term per second.
71 	 * This acts as a slow, long-term average that is not subject to
72 	 * variations in usage like the p term.
73 	 */
74 	int64_t target = __calc_target_rate(dc);
75 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 	int64_t error = dirty - target;
77 	int64_t proportional_scaled =
78 		div_s64(error, dc->writeback_rate_p_term_inverse);
79 	int64_t integral_scaled;
80 	uint32_t new_rate;
81 
82 	if ((error < 0 && dc->writeback_rate_integral > 0) ||
83 	    (error > 0 && time_before64(local_clock(),
84 			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
85 		/*
86 		 * Only decrease the integral term if it's more than
87 		 * zero.  Only increase the integral term if the device
88 		 * is keeping up.  (Don't wind up the integral
89 		 * ineffectively in either case).
90 		 *
91 		 * It's necessary to scale this by
92 		 * writeback_rate_update_seconds to keep the integral
93 		 * term dimensioned properly.
94 		 */
95 		dc->writeback_rate_integral += error *
96 			dc->writeback_rate_update_seconds;
97 	}
98 
99 	integral_scaled = div_s64(dc->writeback_rate_integral,
100 			dc->writeback_rate_i_term_inverse);
101 
102 	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
103 			dc->writeback_rate_minimum, NSEC_PER_SEC);
104 
105 	dc->writeback_rate_proportional = proportional_scaled;
106 	dc->writeback_rate_integral_scaled = integral_scaled;
107 	dc->writeback_rate_change = new_rate -
108 			atomic_long_read(&dc->writeback_rate.rate);
109 	atomic_long_set(&dc->writeback_rate.rate, new_rate);
110 	dc->writeback_rate_target = target;
111 }
112 
set_at_max_writeback_rate(struct cache_set * c,struct cached_dev * dc)113 static bool set_at_max_writeback_rate(struct cache_set *c,
114 				       struct cached_dev *dc)
115 {
116 	/*
117 	 * Idle_counter is increased everytime when update_writeback_rate() is
118 	 * called. If all backing devices attached to the same cache set have
119 	 * identical dc->writeback_rate_update_seconds values, it is about 6
120 	 * rounds of update_writeback_rate() on each backing device before
121 	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
122 	 * to each dc->writeback_rate.rate.
123 	 * In order to avoid extra locking cost for counting exact dirty cached
124 	 * devices number, c->attached_dev_nr is used to calculate the idle
125 	 * throushold. It might be bigger if not all cached device are in write-
126 	 * back mode, but it still works well with limited extra rounds of
127 	 * update_writeback_rate().
128 	 */
129 	if (atomic_inc_return(&c->idle_counter) <
130 	    atomic_read(&c->attached_dev_nr) * 6)
131 		return false;
132 
133 	if (atomic_read(&c->at_max_writeback_rate) != 1)
134 		atomic_set(&c->at_max_writeback_rate, 1);
135 
136 	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
137 
138 	/* keep writeback_rate_target as existing value */
139 	dc->writeback_rate_proportional = 0;
140 	dc->writeback_rate_integral_scaled = 0;
141 	dc->writeback_rate_change = 0;
142 
143 	/*
144 	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
145 	 * new I/O arrives during before set_at_max_writeback_rate() returns.
146 	 * Then the writeback rate is set to 1, and its new value should be
147 	 * decided via __update_writeback_rate().
148 	 */
149 	if ((atomic_read(&c->idle_counter) <
150 	     atomic_read(&c->attached_dev_nr) * 6) ||
151 	    !atomic_read(&c->at_max_writeback_rate))
152 		return false;
153 
154 	return true;
155 }
156 
update_writeback_rate(struct work_struct * work)157 static void update_writeback_rate(struct work_struct *work)
158 {
159 	struct cached_dev *dc = container_of(to_delayed_work(work),
160 					     struct cached_dev,
161 					     writeback_rate_update);
162 	struct cache_set *c = dc->disk.c;
163 
164 	/*
165 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
166 	 * cancel_delayed_work_sync().
167 	 */
168 	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
169 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
170 	smp_mb();
171 
172 	/*
173 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
174 	 * check it here too.
175 	 */
176 	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
177 	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
178 		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
179 		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
180 		smp_mb();
181 		return;
182 	}
183 
184 	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
185 		/*
186 		 * If the whole cache set is idle, set_at_max_writeback_rate()
187 		 * will set writeback rate to a max number. Then it is
188 		 * unncessary to update writeback rate for an idle cache set
189 		 * in maximum writeback rate number(s).
190 		 */
191 		if (!set_at_max_writeback_rate(c, dc)) {
192 			down_read(&dc->writeback_lock);
193 			__update_writeback_rate(dc);
194 			up_read(&dc->writeback_lock);
195 		}
196 	}
197 
198 
199 	/*
200 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
201 	 * check it here too.
202 	 */
203 	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
204 	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
205 		schedule_delayed_work(&dc->writeback_rate_update,
206 			      dc->writeback_rate_update_seconds * HZ);
207 	}
208 
209 	/*
210 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
211 	 * cancel_delayed_work_sync().
212 	 */
213 	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
214 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
215 	smp_mb();
216 }
217 
writeback_delay(struct cached_dev * dc,unsigned int sectors)218 static unsigned int writeback_delay(struct cached_dev *dc,
219 				    unsigned int sectors)
220 {
221 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
222 	    !dc->writeback_percent)
223 		return 0;
224 
225 	return bch_next_delay(&dc->writeback_rate, sectors);
226 }
227 
228 struct dirty_io {
229 	struct closure		cl;
230 	struct cached_dev	*dc;
231 	uint16_t		sequence;
232 	struct bio		bio;
233 };
234 
dirty_init(struct keybuf_key * w)235 static void dirty_init(struct keybuf_key *w)
236 {
237 	struct dirty_io *io = w->private;
238 	struct bio *bio = &io->bio;
239 
240 	bio_init(bio, bio->bi_inline_vecs,
241 		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
242 	if (!io->dc->writeback_percent)
243 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
244 
245 	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
246 	bio->bi_private		= w;
247 	bch_bio_map(bio, NULL);
248 }
249 
dirty_io_destructor(struct closure * cl)250 static void dirty_io_destructor(struct closure *cl)
251 {
252 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
253 
254 	kfree(io);
255 }
256 
write_dirty_finish(struct closure * cl)257 static void write_dirty_finish(struct closure *cl)
258 {
259 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
260 	struct keybuf_key *w = io->bio.bi_private;
261 	struct cached_dev *dc = io->dc;
262 
263 	bio_free_pages(&io->bio);
264 
265 	/* This is kind of a dumb way of signalling errors. */
266 	if (KEY_DIRTY(&w->key)) {
267 		int ret;
268 		unsigned int i;
269 		struct keylist keys;
270 
271 		bch_keylist_init(&keys);
272 
273 		bkey_copy(keys.top, &w->key);
274 		SET_KEY_DIRTY(keys.top, false);
275 		bch_keylist_push(&keys);
276 
277 		for (i = 0; i < KEY_PTRS(&w->key); i++)
278 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
279 
280 		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
281 
282 		if (ret)
283 			trace_bcache_writeback_collision(&w->key);
284 
285 		atomic_long_inc(ret
286 				? &dc->disk.c->writeback_keys_failed
287 				: &dc->disk.c->writeback_keys_done);
288 	}
289 
290 	bch_keybuf_del(&dc->writeback_keys, w);
291 	up(&dc->in_flight);
292 
293 	closure_return_with_destructor(cl, dirty_io_destructor);
294 }
295 
dirty_endio(struct bio * bio)296 static void dirty_endio(struct bio *bio)
297 {
298 	struct keybuf_key *w = bio->bi_private;
299 	struct dirty_io *io = w->private;
300 
301 	if (bio->bi_status) {
302 		SET_KEY_DIRTY(&w->key, false);
303 		bch_count_backing_io_errors(io->dc, bio);
304 	}
305 
306 	closure_put(&io->cl);
307 }
308 
write_dirty(struct closure * cl)309 static void write_dirty(struct closure *cl)
310 {
311 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
312 	struct keybuf_key *w = io->bio.bi_private;
313 	struct cached_dev *dc = io->dc;
314 
315 	uint16_t next_sequence;
316 
317 	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
318 		/* Not our turn to write; wait for a write to complete */
319 		closure_wait(&dc->writeback_ordering_wait, cl);
320 
321 		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
322 			/*
323 			 * Edge case-- it happened in indeterminate order
324 			 * relative to when we were added to wait list..
325 			 */
326 			closure_wake_up(&dc->writeback_ordering_wait);
327 		}
328 
329 		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
330 		return;
331 	}
332 
333 	next_sequence = io->sequence + 1;
334 
335 	/*
336 	 * IO errors are signalled using the dirty bit on the key.
337 	 * If we failed to read, we should not attempt to write to the
338 	 * backing device.  Instead, immediately go to write_dirty_finish
339 	 * to clean up.
340 	 */
341 	if (KEY_DIRTY(&w->key)) {
342 		dirty_init(w);
343 		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
344 		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
345 		bio_set_dev(&io->bio, io->dc->bdev);
346 		io->bio.bi_end_io	= dirty_endio;
347 
348 		/* I/O request sent to backing device */
349 		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
350 	}
351 
352 	atomic_set(&dc->writeback_sequence_next, next_sequence);
353 	closure_wake_up(&dc->writeback_ordering_wait);
354 
355 	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
356 }
357 
read_dirty_endio(struct bio * bio)358 static void read_dirty_endio(struct bio *bio)
359 {
360 	struct keybuf_key *w = bio->bi_private;
361 	struct dirty_io *io = w->private;
362 
363 	/* is_read = 1 */
364 	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
365 			    bio->bi_status, 1,
366 			    "reading dirty data from cache");
367 
368 	dirty_endio(bio);
369 }
370 
read_dirty_submit(struct closure * cl)371 static void read_dirty_submit(struct closure *cl)
372 {
373 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
374 
375 	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
376 
377 	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
378 }
379 
read_dirty(struct cached_dev * dc)380 static void read_dirty(struct cached_dev *dc)
381 {
382 	unsigned int delay = 0;
383 	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
384 	size_t size;
385 	int nk, i;
386 	struct dirty_io *io;
387 	struct closure cl;
388 	uint16_t sequence = 0;
389 
390 	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
391 	atomic_set(&dc->writeback_sequence_next, sequence);
392 	closure_init_stack(&cl);
393 
394 	/*
395 	 * XXX: if we error, background writeback just spins. Should use some
396 	 * mempools.
397 	 */
398 
399 	next = bch_keybuf_next(&dc->writeback_keys);
400 
401 	while (!kthread_should_stop() &&
402 	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
403 	       next) {
404 		size = 0;
405 		nk = 0;
406 
407 		do {
408 			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
409 
410 			/*
411 			 * Don't combine too many operations, even if they
412 			 * are all small.
413 			 */
414 			if (nk >= MAX_WRITEBACKS_IN_PASS)
415 				break;
416 
417 			/*
418 			 * If the current operation is very large, don't
419 			 * further combine operations.
420 			 */
421 			if (size >= MAX_WRITESIZE_IN_PASS)
422 				break;
423 
424 			/*
425 			 * Operations are only eligible to be combined
426 			 * if they are contiguous.
427 			 *
428 			 * TODO: add a heuristic willing to fire a
429 			 * certain amount of non-contiguous IO per pass,
430 			 * so that we can benefit from backing device
431 			 * command queueing.
432 			 */
433 			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
434 						&START_KEY(&next->key)))
435 				break;
436 
437 			size += KEY_SIZE(&next->key);
438 			keys[nk++] = next;
439 		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
440 
441 		/* Now we have gathered a set of 1..5 keys to write back. */
442 		for (i = 0; i < nk; i++) {
443 			w = keys[i];
444 
445 			io = kzalloc(sizeof(struct dirty_io) +
446 				     sizeof(struct bio_vec) *
447 				     DIV_ROUND_UP(KEY_SIZE(&w->key),
448 						  PAGE_SECTORS),
449 				     GFP_KERNEL);
450 			if (!io)
451 				goto err;
452 
453 			w->private	= io;
454 			io->dc		= dc;
455 			io->sequence    = sequence++;
456 
457 			dirty_init(w);
458 			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
459 			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
460 			bio_set_dev(&io->bio,
461 				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
462 			io->bio.bi_end_io	= read_dirty_endio;
463 
464 			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
465 				goto err_free;
466 
467 			trace_bcache_writeback(&w->key);
468 
469 			down(&dc->in_flight);
470 
471 			/*
472 			 * We've acquired a semaphore for the maximum
473 			 * simultaneous number of writebacks; from here
474 			 * everything happens asynchronously.
475 			 */
476 			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
477 		}
478 
479 		delay = writeback_delay(dc, size);
480 
481 		while (!kthread_should_stop() &&
482 		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
483 		       delay) {
484 			schedule_timeout_interruptible(delay);
485 			delay = writeback_delay(dc, 0);
486 		}
487 	}
488 
489 	if (0) {
490 err_free:
491 		kfree(w->private);
492 err:
493 		bch_keybuf_del(&dc->writeback_keys, w);
494 	}
495 
496 	/*
497 	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
498 	 * freed) before refilling again
499 	 */
500 	closure_sync(&cl);
501 }
502 
503 /* Scan for dirty data */
504 
bcache_dev_sectors_dirty_add(struct cache_set * c,unsigned int inode,uint64_t offset,int nr_sectors)505 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
506 				  uint64_t offset, int nr_sectors)
507 {
508 	struct bcache_device *d = c->devices[inode];
509 	unsigned int stripe_offset, stripe, sectors_dirty;
510 
511 	if (!d)
512 		return;
513 
514 	if (UUID_FLASH_ONLY(&c->uuids[inode]))
515 		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
516 
517 	stripe = offset_to_stripe(d, offset);
518 	stripe_offset = offset & (d->stripe_size - 1);
519 
520 	while (nr_sectors) {
521 		int s = min_t(unsigned int, abs(nr_sectors),
522 			      d->stripe_size - stripe_offset);
523 
524 		if (nr_sectors < 0)
525 			s = -s;
526 
527 		if (stripe >= d->nr_stripes)
528 			return;
529 
530 		sectors_dirty = atomic_add_return(s,
531 					d->stripe_sectors_dirty + stripe);
532 		if (sectors_dirty == d->stripe_size)
533 			set_bit(stripe, d->full_dirty_stripes);
534 		else
535 			clear_bit(stripe, d->full_dirty_stripes);
536 
537 		nr_sectors -= s;
538 		stripe_offset = 0;
539 		stripe++;
540 	}
541 }
542 
dirty_pred(struct keybuf * buf,struct bkey * k)543 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
544 {
545 	struct cached_dev *dc = container_of(buf,
546 					     struct cached_dev,
547 					     writeback_keys);
548 
549 	BUG_ON(KEY_INODE(k) != dc->disk.id);
550 
551 	return KEY_DIRTY(k);
552 }
553 
refill_full_stripes(struct cached_dev * dc)554 static void refill_full_stripes(struct cached_dev *dc)
555 {
556 	struct keybuf *buf = &dc->writeback_keys;
557 	unsigned int start_stripe, stripe, next_stripe;
558 	bool wrapped = false;
559 
560 	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
561 
562 	if (stripe >= dc->disk.nr_stripes)
563 		stripe = 0;
564 
565 	start_stripe = stripe;
566 
567 	while (1) {
568 		stripe = find_next_bit(dc->disk.full_dirty_stripes,
569 				       dc->disk.nr_stripes, stripe);
570 
571 		if (stripe == dc->disk.nr_stripes)
572 			goto next;
573 
574 		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
575 						 dc->disk.nr_stripes, stripe);
576 
577 		buf->last_scanned = KEY(dc->disk.id,
578 					stripe * dc->disk.stripe_size, 0);
579 
580 		bch_refill_keybuf(dc->disk.c, buf,
581 				  &KEY(dc->disk.id,
582 				       next_stripe * dc->disk.stripe_size, 0),
583 				  dirty_pred);
584 
585 		if (array_freelist_empty(&buf->freelist))
586 			return;
587 
588 		stripe = next_stripe;
589 next:
590 		if (wrapped && stripe > start_stripe)
591 			return;
592 
593 		if (stripe == dc->disk.nr_stripes) {
594 			stripe = 0;
595 			wrapped = true;
596 		}
597 	}
598 }
599 
600 /*
601  * Returns true if we scanned the entire disk
602  */
refill_dirty(struct cached_dev * dc)603 static bool refill_dirty(struct cached_dev *dc)
604 {
605 	struct keybuf *buf = &dc->writeback_keys;
606 	struct bkey start = KEY(dc->disk.id, 0, 0);
607 	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
608 	struct bkey start_pos;
609 
610 	/*
611 	 * make sure keybuf pos is inside the range for this disk - at bringup
612 	 * we might not be attached yet so this disk's inode nr isn't
613 	 * initialized then
614 	 */
615 	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
616 	    bkey_cmp(&buf->last_scanned, &end) > 0)
617 		buf->last_scanned = start;
618 
619 	if (dc->partial_stripes_expensive) {
620 		refill_full_stripes(dc);
621 		if (array_freelist_empty(&buf->freelist))
622 			return false;
623 	}
624 
625 	start_pos = buf->last_scanned;
626 	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
627 
628 	if (bkey_cmp(&buf->last_scanned, &end) < 0)
629 		return false;
630 
631 	/*
632 	 * If we get to the end start scanning again from the beginning, and
633 	 * only scan up to where we initially started scanning from:
634 	 */
635 	buf->last_scanned = start;
636 	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
637 
638 	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
639 }
640 
bch_writeback_thread(void * arg)641 static int bch_writeback_thread(void *arg)
642 {
643 	struct cached_dev *dc = arg;
644 	struct cache_set *c = dc->disk.c;
645 	bool searched_full_index;
646 
647 	bch_ratelimit_reset(&dc->writeback_rate);
648 
649 	while (!kthread_should_stop() &&
650 	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
651 		down_write(&dc->writeback_lock);
652 		set_current_state(TASK_INTERRUPTIBLE);
653 		/*
654 		 * If the bache device is detaching, skip here and continue
655 		 * to perform writeback. Otherwise, if no dirty data on cache,
656 		 * or there is dirty data on cache but writeback is disabled,
657 		 * the writeback thread should sleep here and wait for others
658 		 * to wake up it.
659 		 */
660 		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
661 		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
662 			up_write(&dc->writeback_lock);
663 
664 			if (kthread_should_stop() ||
665 			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
666 				set_current_state(TASK_RUNNING);
667 				break;
668 			}
669 
670 			schedule();
671 			continue;
672 		}
673 		set_current_state(TASK_RUNNING);
674 
675 		searched_full_index = refill_dirty(dc);
676 
677 		if (searched_full_index &&
678 		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
679 			atomic_set(&dc->has_dirty, 0);
680 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
681 			bch_write_bdev_super(dc, NULL);
682 			/*
683 			 * If bcache device is detaching via sysfs interface,
684 			 * writeback thread should stop after there is no dirty
685 			 * data on cache. BCACHE_DEV_DETACHING flag is set in
686 			 * bch_cached_dev_detach().
687 			 */
688 			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
689 				up_write(&dc->writeback_lock);
690 				break;
691 			}
692 		}
693 
694 		up_write(&dc->writeback_lock);
695 
696 		read_dirty(dc);
697 
698 		if (searched_full_index) {
699 			unsigned int delay = dc->writeback_delay * HZ;
700 
701 			while (delay &&
702 			       !kthread_should_stop() &&
703 			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
704 			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
705 				delay = schedule_timeout_interruptible(delay);
706 
707 			bch_ratelimit_reset(&dc->writeback_rate);
708 		}
709 	}
710 
711 	cached_dev_put(dc);
712 	wait_for_kthread_stop();
713 
714 	return 0;
715 }
716 
717 /* Init */
718 #define INIT_KEYS_EACH_TIME	500000
719 #define INIT_KEYS_SLEEP_MS	100
720 
721 struct sectors_dirty_init {
722 	struct btree_op	op;
723 	unsigned int	inode;
724 	size_t		count;
725 	struct bkey	start;
726 };
727 
sectors_dirty_init_fn(struct btree_op * _op,struct btree * b,struct bkey * k)728 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
729 				 struct bkey *k)
730 {
731 	struct sectors_dirty_init *op = container_of(_op,
732 						struct sectors_dirty_init, op);
733 	if (KEY_INODE(k) > op->inode)
734 		return MAP_DONE;
735 
736 	if (KEY_DIRTY(k))
737 		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
738 					     KEY_START(k), KEY_SIZE(k));
739 
740 	op->count++;
741 	if (atomic_read(&b->c->search_inflight) &&
742 	    !(op->count % INIT_KEYS_EACH_TIME)) {
743 		bkey_copy_key(&op->start, k);
744 		return -EAGAIN;
745 	}
746 
747 	return MAP_CONTINUE;
748 }
749 
bch_sectors_dirty_init(struct bcache_device * d)750 void bch_sectors_dirty_init(struct bcache_device *d)
751 {
752 	struct sectors_dirty_init op;
753 	int ret;
754 
755 	bch_btree_op_init(&op.op, -1);
756 	op.inode = d->id;
757 	op.count = 0;
758 	op.start = KEY(op.inode, 0, 0);
759 
760 	do {
761 		ret = bch_btree_map_keys(&op.op, d->c, &op.start,
762 					 sectors_dirty_init_fn, 0);
763 		if (ret == -EAGAIN)
764 			schedule_timeout_interruptible(
765 				msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
766 		else if (ret < 0) {
767 			pr_warn("sectors dirty init failed, ret=%d!", ret);
768 			break;
769 		}
770 	} while (ret == -EAGAIN);
771 }
772 
bch_cached_dev_writeback_init(struct cached_dev * dc)773 void bch_cached_dev_writeback_init(struct cached_dev *dc)
774 {
775 	sema_init(&dc->in_flight, 64);
776 	init_rwsem(&dc->writeback_lock);
777 	bch_keybuf_init(&dc->writeback_keys);
778 
779 	dc->writeback_metadata		= true;
780 	dc->writeback_running		= true;
781 	dc->writeback_percent		= 10;
782 	dc->writeback_delay		= 30;
783 	atomic_long_set(&dc->writeback_rate.rate, 1024);
784 	dc->writeback_rate_minimum	= 8;
785 
786 	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
787 	dc->writeback_rate_p_term_inverse = 40;
788 	dc->writeback_rate_i_term_inverse = 10000;
789 
790 	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
791 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
792 }
793 
bch_cached_dev_writeback_start(struct cached_dev * dc)794 int bch_cached_dev_writeback_start(struct cached_dev *dc)
795 {
796 	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
797 						WQ_MEM_RECLAIM, 0);
798 	if (!dc->writeback_write_wq)
799 		return -ENOMEM;
800 
801 	cached_dev_get(dc);
802 	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
803 					      "bcache_writeback");
804 	if (IS_ERR(dc->writeback_thread)) {
805 		cached_dev_put(dc);
806 		return PTR_ERR(dc->writeback_thread);
807 	}
808 
809 	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
810 	schedule_delayed_work(&dc->writeback_rate_update,
811 			      dc->writeback_rate_update_seconds * HZ);
812 
813 	bch_writeback_queue(dc);
814 
815 	return 0;
816 }
817