1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
96
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
103
104
write_block(struct btree * b)105 static inline struct bset *write_block(struct btree *b)
106 {
107 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
108 }
109
bch_btree_init_next(struct btree * b)110 static void bch_btree_init_next(struct btree *b)
111 {
112 /* If not a leaf node, always sort */
113 if (b->level && b->keys.nsets)
114 bch_btree_sort(&b->keys, &b->c->sort);
115 else
116 bch_btree_sort_lazy(&b->keys, &b->c->sort);
117
118 if (b->written < btree_blocks(b))
119 bch_bset_init_next(&b->keys, write_block(b),
120 bset_magic(&b->c->cache->sb));
121
122 }
123
124 /* Btree key manipulation */
125
bkey_put(struct cache_set * c,struct bkey * k)126 void bkey_put(struct cache_set *c, struct bkey *k)
127 {
128 unsigned int i;
129
130 for (i = 0; i < KEY_PTRS(k); i++)
131 if (ptr_available(c, k, i))
132 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
133 }
134
135 /* Btree IO */
136
btree_csum_set(struct btree * b,struct bset * i)137 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
138 {
139 uint64_t crc = b->key.ptr[0];
140 void *data = (void *) i + 8, *end = bset_bkey_last(i);
141
142 crc = bch_crc64_update(crc, data, end - data);
143 return crc ^ 0xffffffffffffffffULL;
144 }
145
bch_btree_node_read_done(struct btree * b)146 void bch_btree_node_read_done(struct btree *b)
147 {
148 const char *err = "bad btree header";
149 struct bset *i = btree_bset_first(b);
150 struct btree_iter *iter;
151
152 /*
153 * c->fill_iter can allocate an iterator with more memory space
154 * than static MAX_BSETS.
155 * See the comment arount cache_set->fill_iter.
156 */
157 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
158 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
159 iter->used = 0;
160
161 #ifdef CONFIG_BCACHE_DEBUG
162 iter->b = &b->keys;
163 #endif
164
165 if (!i->seq)
166 goto err;
167
168 for (;
169 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
170 i = write_block(b)) {
171 err = "unsupported bset version";
172 if (i->version > BCACHE_BSET_VERSION)
173 goto err;
174
175 err = "bad btree header";
176 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
177 btree_blocks(b))
178 goto err;
179
180 err = "bad magic";
181 if (i->magic != bset_magic(&b->c->cache->sb))
182 goto err;
183
184 err = "bad checksum";
185 switch (i->version) {
186 case 0:
187 if (i->csum != csum_set(i))
188 goto err;
189 break;
190 case BCACHE_BSET_VERSION:
191 if (i->csum != btree_csum_set(b, i))
192 goto err;
193 break;
194 }
195
196 err = "empty set";
197 if (i != b->keys.set[0].data && !i->keys)
198 goto err;
199
200 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
201
202 b->written += set_blocks(i, block_bytes(b->c->cache));
203 }
204
205 err = "corrupted btree";
206 for (i = write_block(b);
207 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
208 i = ((void *) i) + block_bytes(b->c->cache))
209 if (i->seq == b->keys.set[0].data->seq)
210 goto err;
211
212 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
213
214 i = b->keys.set[0].data;
215 err = "short btree key";
216 if (b->keys.set[0].size &&
217 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
218 goto err;
219
220 if (b->written < btree_blocks(b))
221 bch_bset_init_next(&b->keys, write_block(b),
222 bset_magic(&b->c->cache->sb));
223 out:
224 mempool_free(iter, &b->c->fill_iter);
225 return;
226 err:
227 set_btree_node_io_error(b);
228 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
229 err, PTR_BUCKET_NR(b->c, &b->key, 0),
230 bset_block_offset(b, i), i->keys);
231 goto out;
232 }
233
btree_node_read_endio(struct bio * bio)234 static void btree_node_read_endio(struct bio *bio)
235 {
236 struct closure *cl = bio->bi_private;
237
238 closure_put(cl);
239 }
240
bch_btree_node_read(struct btree * b)241 static void bch_btree_node_read(struct btree *b)
242 {
243 uint64_t start_time = local_clock();
244 struct closure cl;
245 struct bio *bio;
246
247 trace_bcache_btree_read(b);
248
249 closure_init_stack(&cl);
250
251 bio = bch_bbio_alloc(b->c);
252 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
253 bio->bi_end_io = btree_node_read_endio;
254 bio->bi_private = &cl;
255 bio->bi_opf = REQ_OP_READ | REQ_META;
256
257 bch_bio_map(bio, b->keys.set[0].data);
258
259 bch_submit_bbio(bio, b->c, &b->key, 0);
260 closure_sync(&cl);
261
262 if (bio->bi_status)
263 set_btree_node_io_error(b);
264
265 bch_bbio_free(bio, b->c);
266
267 if (btree_node_io_error(b))
268 goto err;
269
270 bch_btree_node_read_done(b);
271 bch_time_stats_update(&b->c->btree_read_time, start_time);
272
273 return;
274 err:
275 bch_cache_set_error(b->c, "io error reading bucket %zu",
276 PTR_BUCKET_NR(b->c, &b->key, 0));
277 }
278
btree_complete_write(struct btree * b,struct btree_write * w)279 static void btree_complete_write(struct btree *b, struct btree_write *w)
280 {
281 if (w->prio_blocked &&
282 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
283 wake_up_allocators(b->c);
284
285 if (w->journal) {
286 atomic_dec_bug(w->journal);
287 __closure_wake_up(&b->c->journal.wait);
288 }
289
290 w->prio_blocked = 0;
291 w->journal = NULL;
292 }
293
btree_node_write_unlock(struct closure * cl)294 static void btree_node_write_unlock(struct closure *cl)
295 {
296 struct btree *b = container_of(cl, struct btree, io);
297
298 up(&b->io_mutex);
299 }
300
__btree_node_write_done(struct closure * cl)301 static void __btree_node_write_done(struct closure *cl)
302 {
303 struct btree *b = container_of(cl, struct btree, io);
304 struct btree_write *w = btree_prev_write(b);
305
306 bch_bbio_free(b->bio, b->c);
307 b->bio = NULL;
308 btree_complete_write(b, w);
309
310 if (btree_node_dirty(b))
311 schedule_delayed_work(&b->work, 30 * HZ);
312
313 closure_return_with_destructor(cl, btree_node_write_unlock);
314 }
315
btree_node_write_done(struct closure * cl)316 static void btree_node_write_done(struct closure *cl)
317 {
318 struct btree *b = container_of(cl, struct btree, io);
319
320 bio_free_pages(b->bio);
321 __btree_node_write_done(cl);
322 }
323
btree_node_write_endio(struct bio * bio)324 static void btree_node_write_endio(struct bio *bio)
325 {
326 struct closure *cl = bio->bi_private;
327 struct btree *b = container_of(cl, struct btree, io);
328
329 if (bio->bi_status)
330 set_btree_node_io_error(b);
331
332 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
333 closure_put(cl);
334 }
335
do_btree_node_write(struct btree * b)336 static void do_btree_node_write(struct btree *b)
337 {
338 struct closure *cl = &b->io;
339 struct bset *i = btree_bset_last(b);
340 BKEY_PADDED(key) k;
341
342 i->version = BCACHE_BSET_VERSION;
343 i->csum = btree_csum_set(b, i);
344
345 BUG_ON(b->bio);
346 b->bio = bch_bbio_alloc(b->c);
347
348 b->bio->bi_end_io = btree_node_write_endio;
349 b->bio->bi_private = cl;
350 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
351 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
352 bch_bio_map(b->bio, i);
353
354 /*
355 * If we're appending to a leaf node, we don't technically need FUA -
356 * this write just needs to be persisted before the next journal write,
357 * which will be marked FLUSH|FUA.
358 *
359 * Similarly if we're writing a new btree root - the pointer is going to
360 * be in the next journal entry.
361 *
362 * But if we're writing a new btree node (that isn't a root) or
363 * appending to a non leaf btree node, we need either FUA or a flush
364 * when we write the parent with the new pointer. FUA is cheaper than a
365 * flush, and writes appending to leaf nodes aren't blocking anything so
366 * just make all btree node writes FUA to keep things sane.
367 */
368
369 bkey_copy(&k.key, &b->key);
370 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
371 bset_sector_offset(&b->keys, i));
372
373 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
374 struct bio_vec *bv;
375 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
376 struct bvec_iter_all iter_all;
377
378 bio_for_each_segment_all(bv, b->bio, iter_all) {
379 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
380 addr += PAGE_SIZE;
381 }
382
383 bch_submit_bbio(b->bio, b->c, &k.key, 0);
384
385 continue_at(cl, btree_node_write_done, NULL);
386 } else {
387 /*
388 * No problem for multipage bvec since the bio is
389 * just allocated
390 */
391 b->bio->bi_vcnt = 0;
392 bch_bio_map(b->bio, i);
393
394 bch_submit_bbio(b->bio, b->c, &k.key, 0);
395
396 closure_sync(cl);
397 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
398 }
399 }
400
__bch_btree_node_write(struct btree * b,struct closure * parent)401 void __bch_btree_node_write(struct btree *b, struct closure *parent)
402 {
403 struct bset *i = btree_bset_last(b);
404
405 lockdep_assert_held(&b->write_lock);
406
407 trace_bcache_btree_write(b);
408
409 BUG_ON(current->bio_list);
410 BUG_ON(b->written >= btree_blocks(b));
411 BUG_ON(b->written && !i->keys);
412 BUG_ON(btree_bset_first(b)->seq != i->seq);
413 bch_check_keys(&b->keys, "writing");
414
415 cancel_delayed_work(&b->work);
416
417 /* If caller isn't waiting for write, parent refcount is cache set */
418 down(&b->io_mutex);
419 closure_init(&b->io, parent ?: &b->c->cl);
420
421 clear_bit(BTREE_NODE_dirty, &b->flags);
422 change_bit(BTREE_NODE_write_idx, &b->flags);
423
424 do_btree_node_write(b);
425
426 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
427 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
428
429 b->written += set_blocks(i, block_bytes(b->c->cache));
430 }
431
bch_btree_node_write(struct btree * b,struct closure * parent)432 void bch_btree_node_write(struct btree *b, struct closure *parent)
433 {
434 unsigned int nsets = b->keys.nsets;
435
436 lockdep_assert_held(&b->lock);
437
438 __bch_btree_node_write(b, parent);
439
440 /*
441 * do verify if there was more than one set initially (i.e. we did a
442 * sort) and we sorted down to a single set:
443 */
444 if (nsets && !b->keys.nsets)
445 bch_btree_verify(b);
446
447 bch_btree_init_next(b);
448 }
449
bch_btree_node_write_sync(struct btree * b)450 static void bch_btree_node_write_sync(struct btree *b)
451 {
452 struct closure cl;
453
454 closure_init_stack(&cl);
455
456 mutex_lock(&b->write_lock);
457 bch_btree_node_write(b, &cl);
458 mutex_unlock(&b->write_lock);
459
460 closure_sync(&cl);
461 }
462
btree_node_write_work(struct work_struct * w)463 static void btree_node_write_work(struct work_struct *w)
464 {
465 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
466
467 mutex_lock(&b->write_lock);
468 if (btree_node_dirty(b))
469 __bch_btree_node_write(b, NULL);
470 mutex_unlock(&b->write_lock);
471 }
472
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)473 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
474 {
475 struct bset *i = btree_bset_last(b);
476 struct btree_write *w = btree_current_write(b);
477
478 lockdep_assert_held(&b->write_lock);
479
480 BUG_ON(!b->written);
481 BUG_ON(!i->keys);
482
483 if (!btree_node_dirty(b))
484 schedule_delayed_work(&b->work, 30 * HZ);
485
486 set_btree_node_dirty(b);
487
488 /*
489 * w->journal is always the oldest journal pin of all bkeys
490 * in the leaf node, to make sure the oldest jset seq won't
491 * be increased before this btree node is flushed.
492 */
493 if (journal_ref) {
494 if (w->journal &&
495 journal_pin_cmp(b->c, w->journal, journal_ref)) {
496 atomic_dec_bug(w->journal);
497 w->journal = NULL;
498 }
499
500 if (!w->journal) {
501 w->journal = journal_ref;
502 atomic_inc(w->journal);
503 }
504 }
505
506 /* Force write if set is too big */
507 if (set_bytes(i) > PAGE_SIZE - 48 &&
508 !current->bio_list)
509 bch_btree_node_write(b, NULL);
510 }
511
512 /*
513 * Btree in memory cache - allocation/freeing
514 * mca -> memory cache
515 */
516
517 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
518 ? c->root->level : 1) * 8 + 16)
519 #define mca_can_free(c) \
520 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
521
mca_data_free(struct btree * b)522 static void mca_data_free(struct btree *b)
523 {
524 BUG_ON(b->io_mutex.count != 1);
525
526 bch_btree_keys_free(&b->keys);
527
528 b->c->btree_cache_used--;
529 list_move(&b->list, &b->c->btree_cache_freed);
530 }
531
mca_bucket_free(struct btree * b)532 static void mca_bucket_free(struct btree *b)
533 {
534 BUG_ON(btree_node_dirty(b));
535
536 b->key.ptr[0] = 0;
537 hlist_del_init_rcu(&b->hash);
538 list_move(&b->list, &b->c->btree_cache_freeable);
539 }
540
btree_order(struct bkey * k)541 static unsigned int btree_order(struct bkey *k)
542 {
543 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
544 }
545
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)546 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
547 {
548 if (!bch_btree_keys_alloc(&b->keys,
549 max_t(unsigned int,
550 ilog2(b->c->btree_pages),
551 btree_order(k)),
552 gfp)) {
553 b->c->btree_cache_used++;
554 list_move(&b->list, &b->c->btree_cache);
555 } else {
556 list_move(&b->list, &b->c->btree_cache_freed);
557 }
558 }
559
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)560 static struct btree *mca_bucket_alloc(struct cache_set *c,
561 struct bkey *k, gfp_t gfp)
562 {
563 /*
564 * kzalloc() is necessary here for initialization,
565 * see code comments in bch_btree_keys_init().
566 */
567 struct btree *b = kzalloc(sizeof(struct btree), gfp);
568
569 if (!b)
570 return NULL;
571
572 init_rwsem(&b->lock);
573 lockdep_set_novalidate_class(&b->lock);
574 mutex_init(&b->write_lock);
575 lockdep_set_novalidate_class(&b->write_lock);
576 INIT_LIST_HEAD(&b->list);
577 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
578 b->c = c;
579 sema_init(&b->io_mutex, 1);
580
581 mca_data_alloc(b, k, gfp);
582 return b;
583 }
584
mca_reap(struct btree * b,unsigned int min_order,bool flush)585 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
586 {
587 struct closure cl;
588
589 closure_init_stack(&cl);
590 lockdep_assert_held(&b->c->bucket_lock);
591
592 if (!down_write_trylock(&b->lock))
593 return -ENOMEM;
594
595 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
596
597 if (b->keys.page_order < min_order)
598 goto out_unlock;
599
600 if (!flush) {
601 if (btree_node_dirty(b))
602 goto out_unlock;
603
604 if (down_trylock(&b->io_mutex))
605 goto out_unlock;
606 up(&b->io_mutex);
607 }
608
609 retry:
610 /*
611 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
612 * __bch_btree_node_write(). To avoid an extra flush, acquire
613 * b->write_lock before checking BTREE_NODE_dirty bit.
614 */
615 mutex_lock(&b->write_lock);
616 /*
617 * If this btree node is selected in btree_flush_write() by journal
618 * code, delay and retry until the node is flushed by journal code
619 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
620 */
621 if (btree_node_journal_flush(b)) {
622 pr_debug("bnode %p is flushing by journal, retry\n", b);
623 mutex_unlock(&b->write_lock);
624 udelay(1);
625 goto retry;
626 }
627
628 if (btree_node_dirty(b))
629 __bch_btree_node_write(b, &cl);
630 mutex_unlock(&b->write_lock);
631
632 closure_sync(&cl);
633
634 /* wait for any in flight btree write */
635 down(&b->io_mutex);
636 up(&b->io_mutex);
637
638 return 0;
639 out_unlock:
640 rw_unlock(true, b);
641 return -ENOMEM;
642 }
643
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)644 static unsigned long bch_mca_scan(struct shrinker *shrink,
645 struct shrink_control *sc)
646 {
647 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
648 struct btree *b, *t;
649 unsigned long i, nr = sc->nr_to_scan;
650 unsigned long freed = 0;
651 unsigned int btree_cache_used;
652
653 if (c->shrinker_disabled)
654 return SHRINK_STOP;
655
656 if (c->btree_cache_alloc_lock)
657 return SHRINK_STOP;
658
659 /* Return -1 if we can't do anything right now */
660 if (sc->gfp_mask & __GFP_IO)
661 mutex_lock(&c->bucket_lock);
662 else if (!mutex_trylock(&c->bucket_lock))
663 return -1;
664
665 /*
666 * It's _really_ critical that we don't free too many btree nodes - we
667 * have to always leave ourselves a reserve. The reserve is how we
668 * guarantee that allocating memory for a new btree node can always
669 * succeed, so that inserting keys into the btree can always succeed and
670 * IO can always make forward progress:
671 */
672 nr /= c->btree_pages;
673 if (nr == 0)
674 nr = 1;
675 nr = min_t(unsigned long, nr, mca_can_free(c));
676
677 i = 0;
678 btree_cache_used = c->btree_cache_used;
679 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
680 if (nr <= 0)
681 goto out;
682
683 if (!mca_reap(b, 0, false)) {
684 mca_data_free(b);
685 rw_unlock(true, b);
686 freed++;
687 }
688 nr--;
689 i++;
690 }
691
692 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
693 if (nr <= 0 || i >= btree_cache_used)
694 goto out;
695
696 if (!mca_reap(b, 0, false)) {
697 mca_bucket_free(b);
698 mca_data_free(b);
699 rw_unlock(true, b);
700 freed++;
701 }
702
703 nr--;
704 i++;
705 }
706 out:
707 mutex_unlock(&c->bucket_lock);
708 return freed * c->btree_pages;
709 }
710
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)711 static unsigned long bch_mca_count(struct shrinker *shrink,
712 struct shrink_control *sc)
713 {
714 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
715
716 if (c->shrinker_disabled)
717 return 0;
718
719 if (c->btree_cache_alloc_lock)
720 return 0;
721
722 return mca_can_free(c) * c->btree_pages;
723 }
724
bch_btree_cache_free(struct cache_set * c)725 void bch_btree_cache_free(struct cache_set *c)
726 {
727 struct btree *b;
728 struct closure cl;
729
730 closure_init_stack(&cl);
731
732 if (c->shrink.list.next)
733 unregister_shrinker(&c->shrink);
734
735 mutex_lock(&c->bucket_lock);
736
737 #ifdef CONFIG_BCACHE_DEBUG
738 if (c->verify_data)
739 list_move(&c->verify_data->list, &c->btree_cache);
740
741 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
742 #endif
743
744 list_splice(&c->btree_cache_freeable,
745 &c->btree_cache);
746
747 while (!list_empty(&c->btree_cache)) {
748 b = list_first_entry(&c->btree_cache, struct btree, list);
749
750 /*
751 * This function is called by cache_set_free(), no I/O
752 * request on cache now, it is unnecessary to acquire
753 * b->write_lock before clearing BTREE_NODE_dirty anymore.
754 */
755 if (btree_node_dirty(b)) {
756 btree_complete_write(b, btree_current_write(b));
757 clear_bit(BTREE_NODE_dirty, &b->flags);
758 }
759 mca_data_free(b);
760 }
761
762 while (!list_empty(&c->btree_cache_freed)) {
763 b = list_first_entry(&c->btree_cache_freed,
764 struct btree, list);
765 list_del(&b->list);
766 cancel_delayed_work_sync(&b->work);
767 kfree(b);
768 }
769
770 mutex_unlock(&c->bucket_lock);
771 }
772
bch_btree_cache_alloc(struct cache_set * c)773 int bch_btree_cache_alloc(struct cache_set *c)
774 {
775 unsigned int i;
776
777 for (i = 0; i < mca_reserve(c); i++)
778 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
779 return -ENOMEM;
780
781 list_splice_init(&c->btree_cache,
782 &c->btree_cache_freeable);
783
784 #ifdef CONFIG_BCACHE_DEBUG
785 mutex_init(&c->verify_lock);
786
787 c->verify_ondisk = (void *)
788 __get_free_pages(GFP_KERNEL|__GFP_COMP,
789 ilog2(meta_bucket_pages(&c->cache->sb)));
790 if (!c->verify_ondisk) {
791 /*
792 * Don't worry about the mca_rereserve buckets
793 * allocated in previous for-loop, they will be
794 * handled properly in bch_cache_set_unregister().
795 */
796 return -ENOMEM;
797 }
798
799 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
800
801 if (c->verify_data &&
802 c->verify_data->keys.set->data)
803 list_del_init(&c->verify_data->list);
804 else
805 c->verify_data = NULL;
806 #endif
807
808 c->shrink.count_objects = bch_mca_count;
809 c->shrink.scan_objects = bch_mca_scan;
810 c->shrink.seeks = 4;
811 c->shrink.batch = c->btree_pages * 2;
812
813 if (register_shrinker(&c->shrink))
814 pr_warn("bcache: %s: could not register shrinker\n",
815 __func__);
816
817 return 0;
818 }
819
820 /* Btree in memory cache - hash table */
821
mca_hash(struct cache_set * c,struct bkey * k)822 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
823 {
824 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
825 }
826
mca_find(struct cache_set * c,struct bkey * k)827 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
828 {
829 struct btree *b;
830
831 rcu_read_lock();
832 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
833 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
834 goto out;
835 b = NULL;
836 out:
837 rcu_read_unlock();
838 return b;
839 }
840
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)841 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
842 {
843 spin_lock(&c->btree_cannibalize_lock);
844 if (likely(c->btree_cache_alloc_lock == NULL)) {
845 c->btree_cache_alloc_lock = current;
846 } else if (c->btree_cache_alloc_lock != current) {
847 if (op)
848 prepare_to_wait(&c->btree_cache_wait, &op->wait,
849 TASK_UNINTERRUPTIBLE);
850 spin_unlock(&c->btree_cannibalize_lock);
851 return -EINTR;
852 }
853 spin_unlock(&c->btree_cannibalize_lock);
854
855 return 0;
856 }
857
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)858 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
859 struct bkey *k)
860 {
861 struct btree *b;
862
863 trace_bcache_btree_cache_cannibalize(c);
864
865 if (mca_cannibalize_lock(c, op))
866 return ERR_PTR(-EINTR);
867
868 list_for_each_entry_reverse(b, &c->btree_cache, list)
869 if (!mca_reap(b, btree_order(k), false))
870 return b;
871
872 list_for_each_entry_reverse(b, &c->btree_cache, list)
873 if (!mca_reap(b, btree_order(k), true))
874 return b;
875
876 WARN(1, "btree cache cannibalize failed\n");
877 return ERR_PTR(-ENOMEM);
878 }
879
880 /*
881 * We can only have one thread cannibalizing other cached btree nodes at a time,
882 * or we'll deadlock. We use an open coded mutex to ensure that, which a
883 * cannibalize_bucket() will take. This means every time we unlock the root of
884 * the btree, we need to release this lock if we have it held.
885 */
bch_cannibalize_unlock(struct cache_set * c)886 static void bch_cannibalize_unlock(struct cache_set *c)
887 {
888 spin_lock(&c->btree_cannibalize_lock);
889 if (c->btree_cache_alloc_lock == current) {
890 c->btree_cache_alloc_lock = NULL;
891 wake_up(&c->btree_cache_wait);
892 }
893 spin_unlock(&c->btree_cannibalize_lock);
894 }
895
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)896 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
897 struct bkey *k, int level)
898 {
899 struct btree *b;
900
901 BUG_ON(current->bio_list);
902
903 lockdep_assert_held(&c->bucket_lock);
904
905 if (mca_find(c, k))
906 return NULL;
907
908 /* btree_free() doesn't free memory; it sticks the node on the end of
909 * the list. Check if there's any freed nodes there:
910 */
911 list_for_each_entry(b, &c->btree_cache_freeable, list)
912 if (!mca_reap(b, btree_order(k), false))
913 goto out;
914
915 /* We never free struct btree itself, just the memory that holds the on
916 * disk node. Check the freed list before allocating a new one:
917 */
918 list_for_each_entry(b, &c->btree_cache_freed, list)
919 if (!mca_reap(b, 0, false)) {
920 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
921 if (!b->keys.set[0].data)
922 goto err;
923 else
924 goto out;
925 }
926
927 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
928 if (!b)
929 goto err;
930
931 BUG_ON(!down_write_trylock(&b->lock));
932 if (!b->keys.set->data)
933 goto err;
934 out:
935 BUG_ON(b->io_mutex.count != 1);
936
937 bkey_copy(&b->key, k);
938 list_move(&b->list, &c->btree_cache);
939 hlist_del_init_rcu(&b->hash);
940 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
941
942 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
943 b->parent = (void *) ~0UL;
944 b->flags = 0;
945 b->written = 0;
946 b->level = level;
947
948 if (!b->level)
949 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
950 &b->c->expensive_debug_checks);
951 else
952 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
953 &b->c->expensive_debug_checks);
954
955 return b;
956 err:
957 if (b)
958 rw_unlock(true, b);
959
960 b = mca_cannibalize(c, op, k);
961 if (!IS_ERR(b))
962 goto out;
963
964 return b;
965 }
966
967 /*
968 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
969 * in from disk if necessary.
970 *
971 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
972 *
973 * The btree node will have either a read or a write lock held, depending on
974 * level and op->lock.
975 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)976 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
977 struct bkey *k, int level, bool write,
978 struct btree *parent)
979 {
980 int i = 0;
981 struct btree *b;
982
983 BUG_ON(level < 0);
984 retry:
985 b = mca_find(c, k);
986
987 if (!b) {
988 if (current->bio_list)
989 return ERR_PTR(-EAGAIN);
990
991 mutex_lock(&c->bucket_lock);
992 b = mca_alloc(c, op, k, level);
993 mutex_unlock(&c->bucket_lock);
994
995 if (!b)
996 goto retry;
997 if (IS_ERR(b))
998 return b;
999
1000 bch_btree_node_read(b);
1001
1002 if (!write)
1003 downgrade_write(&b->lock);
1004 } else {
1005 rw_lock(write, b, level);
1006 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1007 rw_unlock(write, b);
1008 goto retry;
1009 }
1010 BUG_ON(b->level != level);
1011 }
1012
1013 if (btree_node_io_error(b)) {
1014 rw_unlock(write, b);
1015 return ERR_PTR(-EIO);
1016 }
1017
1018 BUG_ON(!b->written);
1019
1020 b->parent = parent;
1021
1022 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1023 prefetch(b->keys.set[i].tree);
1024 prefetch(b->keys.set[i].data);
1025 }
1026
1027 for (; i <= b->keys.nsets; i++)
1028 prefetch(b->keys.set[i].data);
1029
1030 return b;
1031 }
1032
btree_node_prefetch(struct btree * parent,struct bkey * k)1033 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1034 {
1035 struct btree *b;
1036
1037 mutex_lock(&parent->c->bucket_lock);
1038 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1039 mutex_unlock(&parent->c->bucket_lock);
1040
1041 if (!IS_ERR_OR_NULL(b)) {
1042 b->parent = parent;
1043 bch_btree_node_read(b);
1044 rw_unlock(true, b);
1045 }
1046 }
1047
1048 /* Btree alloc */
1049
btree_node_free(struct btree * b)1050 static void btree_node_free(struct btree *b)
1051 {
1052 trace_bcache_btree_node_free(b);
1053
1054 BUG_ON(b == b->c->root);
1055
1056 retry:
1057 mutex_lock(&b->write_lock);
1058 /*
1059 * If the btree node is selected and flushing in btree_flush_write(),
1060 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1061 * then it is safe to free the btree node here. Otherwise this btree
1062 * node will be in race condition.
1063 */
1064 if (btree_node_journal_flush(b)) {
1065 mutex_unlock(&b->write_lock);
1066 pr_debug("bnode %p journal_flush set, retry\n", b);
1067 udelay(1);
1068 goto retry;
1069 }
1070
1071 if (btree_node_dirty(b)) {
1072 btree_complete_write(b, btree_current_write(b));
1073 clear_bit(BTREE_NODE_dirty, &b->flags);
1074 }
1075
1076 mutex_unlock(&b->write_lock);
1077
1078 cancel_delayed_work(&b->work);
1079
1080 mutex_lock(&b->c->bucket_lock);
1081 bch_bucket_free(b->c, &b->key);
1082 mca_bucket_free(b);
1083 mutex_unlock(&b->c->bucket_lock);
1084 }
1085
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1086 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1087 int level, bool wait,
1088 struct btree *parent)
1089 {
1090 BKEY_PADDED(key) k;
1091 struct btree *b = ERR_PTR(-EAGAIN);
1092
1093 mutex_lock(&c->bucket_lock);
1094 retry:
1095 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1096 goto err;
1097
1098 bkey_put(c, &k.key);
1099 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1100
1101 b = mca_alloc(c, op, &k.key, level);
1102 if (IS_ERR(b))
1103 goto err_free;
1104
1105 if (!b) {
1106 cache_bug(c,
1107 "Tried to allocate bucket that was in btree cache");
1108 goto retry;
1109 }
1110
1111 b->parent = parent;
1112 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1113
1114 mutex_unlock(&c->bucket_lock);
1115
1116 trace_bcache_btree_node_alloc(b);
1117 return b;
1118 err_free:
1119 bch_bucket_free(c, &k.key);
1120 err:
1121 mutex_unlock(&c->bucket_lock);
1122
1123 trace_bcache_btree_node_alloc_fail(c);
1124 return b;
1125 }
1126
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1127 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1128 struct btree_op *op, int level,
1129 struct btree *parent)
1130 {
1131 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1132 }
1133
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1134 static struct btree *btree_node_alloc_replacement(struct btree *b,
1135 struct btree_op *op)
1136 {
1137 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1138
1139 if (!IS_ERR_OR_NULL(n)) {
1140 mutex_lock(&n->write_lock);
1141 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1142 bkey_copy_key(&n->key, &b->key);
1143 mutex_unlock(&n->write_lock);
1144 }
1145
1146 return n;
1147 }
1148
make_btree_freeing_key(struct btree * b,struct bkey * k)1149 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1150 {
1151 unsigned int i;
1152
1153 mutex_lock(&b->c->bucket_lock);
1154
1155 atomic_inc(&b->c->prio_blocked);
1156
1157 bkey_copy(k, &b->key);
1158 bkey_copy_key(k, &ZERO_KEY);
1159
1160 for (i = 0; i < KEY_PTRS(k); i++)
1161 SET_PTR_GEN(k, i,
1162 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1163 PTR_BUCKET(b->c, &b->key, i)));
1164
1165 mutex_unlock(&b->c->bucket_lock);
1166 }
1167
btree_check_reserve(struct btree * b,struct btree_op * op)1168 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1169 {
1170 struct cache_set *c = b->c;
1171 struct cache *ca = c->cache;
1172 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1173
1174 mutex_lock(&c->bucket_lock);
1175
1176 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1177 if (op)
1178 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1179 TASK_UNINTERRUPTIBLE);
1180 mutex_unlock(&c->bucket_lock);
1181 return -EINTR;
1182 }
1183
1184 mutex_unlock(&c->bucket_lock);
1185
1186 return mca_cannibalize_lock(b->c, op);
1187 }
1188
1189 /* Garbage collection */
1190
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1191 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1192 struct bkey *k)
1193 {
1194 uint8_t stale = 0;
1195 unsigned int i;
1196 struct bucket *g;
1197
1198 /*
1199 * ptr_invalid() can't return true for the keys that mark btree nodes as
1200 * freed, but since ptr_bad() returns true we'll never actually use them
1201 * for anything and thus we don't want mark their pointers here
1202 */
1203 if (!bkey_cmp(k, &ZERO_KEY))
1204 return stale;
1205
1206 for (i = 0; i < KEY_PTRS(k); i++) {
1207 if (!ptr_available(c, k, i))
1208 continue;
1209
1210 g = PTR_BUCKET(c, k, i);
1211
1212 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1213 g->last_gc = PTR_GEN(k, i);
1214
1215 if (ptr_stale(c, k, i)) {
1216 stale = max(stale, ptr_stale(c, k, i));
1217 continue;
1218 }
1219
1220 cache_bug_on(GC_MARK(g) &&
1221 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1222 c, "inconsistent ptrs: mark = %llu, level = %i",
1223 GC_MARK(g), level);
1224
1225 if (level)
1226 SET_GC_MARK(g, GC_MARK_METADATA);
1227 else if (KEY_DIRTY(k))
1228 SET_GC_MARK(g, GC_MARK_DIRTY);
1229 else if (!GC_MARK(g))
1230 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1231
1232 /* guard against overflow */
1233 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1234 GC_SECTORS_USED(g) + KEY_SIZE(k),
1235 MAX_GC_SECTORS_USED));
1236
1237 BUG_ON(!GC_SECTORS_USED(g));
1238 }
1239
1240 return stale;
1241 }
1242
1243 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1244
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1245 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1246 {
1247 unsigned int i;
1248
1249 for (i = 0; i < KEY_PTRS(k); i++)
1250 if (ptr_available(c, k, i) &&
1251 !ptr_stale(c, k, i)) {
1252 struct bucket *b = PTR_BUCKET(c, k, i);
1253
1254 b->gen = PTR_GEN(k, i);
1255
1256 if (level && bkey_cmp(k, &ZERO_KEY))
1257 b->prio = BTREE_PRIO;
1258 else if (!level && b->prio == BTREE_PRIO)
1259 b->prio = INITIAL_PRIO;
1260 }
1261
1262 __bch_btree_mark_key(c, level, k);
1263 }
1264
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1265 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1266 {
1267 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1268 }
1269
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1270 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1271 {
1272 uint8_t stale = 0;
1273 unsigned int keys = 0, good_keys = 0;
1274 struct bkey *k;
1275 struct btree_iter iter;
1276 struct bset_tree *t;
1277
1278 gc->nodes++;
1279
1280 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1281 stale = max(stale, btree_mark_key(b, k));
1282 keys++;
1283
1284 if (bch_ptr_bad(&b->keys, k))
1285 continue;
1286
1287 gc->key_bytes += bkey_u64s(k);
1288 gc->nkeys++;
1289 good_keys++;
1290
1291 gc->data += KEY_SIZE(k);
1292 }
1293
1294 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1295 btree_bug_on(t->size &&
1296 bset_written(&b->keys, t) &&
1297 bkey_cmp(&b->key, &t->end) < 0,
1298 b, "found short btree key in gc");
1299
1300 if (b->c->gc_always_rewrite)
1301 return true;
1302
1303 if (stale > 10)
1304 return true;
1305
1306 if ((keys - good_keys) * 2 > keys)
1307 return true;
1308
1309 return false;
1310 }
1311
1312 #define GC_MERGE_NODES 4U
1313
1314 struct gc_merge_info {
1315 struct btree *b;
1316 unsigned int keys;
1317 };
1318
1319 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1320 struct keylist *insert_keys,
1321 atomic_t *journal_ref,
1322 struct bkey *replace_key);
1323
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1324 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1325 struct gc_stat *gc, struct gc_merge_info *r)
1326 {
1327 unsigned int i, nodes = 0, keys = 0, blocks;
1328 struct btree *new_nodes[GC_MERGE_NODES];
1329 struct keylist keylist;
1330 struct closure cl;
1331 struct bkey *k;
1332
1333 bch_keylist_init(&keylist);
1334
1335 if (btree_check_reserve(b, NULL))
1336 return 0;
1337
1338 memset(new_nodes, 0, sizeof(new_nodes));
1339 closure_init_stack(&cl);
1340
1341 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1342 keys += r[nodes++].keys;
1343
1344 blocks = btree_default_blocks(b->c) * 2 / 3;
1345
1346 if (nodes < 2 ||
1347 __set_blocks(b->keys.set[0].data, keys,
1348 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1349 return 0;
1350
1351 for (i = 0; i < nodes; i++) {
1352 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1353 if (IS_ERR_OR_NULL(new_nodes[i]))
1354 goto out_nocoalesce;
1355 }
1356
1357 /*
1358 * We have to check the reserve here, after we've allocated our new
1359 * nodes, to make sure the insert below will succeed - we also check
1360 * before as an optimization to potentially avoid a bunch of expensive
1361 * allocs/sorts
1362 */
1363 if (btree_check_reserve(b, NULL))
1364 goto out_nocoalesce;
1365
1366 for (i = 0; i < nodes; i++)
1367 mutex_lock(&new_nodes[i]->write_lock);
1368
1369 for (i = nodes - 1; i > 0; --i) {
1370 struct bset *n1 = btree_bset_first(new_nodes[i]);
1371 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1372 struct bkey *k, *last = NULL;
1373
1374 keys = 0;
1375
1376 if (i > 1) {
1377 for (k = n2->start;
1378 k < bset_bkey_last(n2);
1379 k = bkey_next(k)) {
1380 if (__set_blocks(n1, n1->keys + keys +
1381 bkey_u64s(k),
1382 block_bytes(b->c->cache)) > blocks)
1383 break;
1384
1385 last = k;
1386 keys += bkey_u64s(k);
1387 }
1388 } else {
1389 /*
1390 * Last node we're not getting rid of - we're getting
1391 * rid of the node at r[0]. Have to try and fit all of
1392 * the remaining keys into this node; we can't ensure
1393 * they will always fit due to rounding and variable
1394 * length keys (shouldn't be possible in practice,
1395 * though)
1396 */
1397 if (__set_blocks(n1, n1->keys + n2->keys,
1398 block_bytes(b->c->cache)) >
1399 btree_blocks(new_nodes[i]))
1400 goto out_unlock_nocoalesce;
1401
1402 keys = n2->keys;
1403 /* Take the key of the node we're getting rid of */
1404 last = &r->b->key;
1405 }
1406
1407 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1408 btree_blocks(new_nodes[i]));
1409
1410 if (last)
1411 bkey_copy_key(&new_nodes[i]->key, last);
1412
1413 memcpy(bset_bkey_last(n1),
1414 n2->start,
1415 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1416
1417 n1->keys += keys;
1418 r[i].keys = n1->keys;
1419
1420 memmove(n2->start,
1421 bset_bkey_idx(n2, keys),
1422 (void *) bset_bkey_last(n2) -
1423 (void *) bset_bkey_idx(n2, keys));
1424
1425 n2->keys -= keys;
1426
1427 if (__bch_keylist_realloc(&keylist,
1428 bkey_u64s(&new_nodes[i]->key)))
1429 goto out_unlock_nocoalesce;
1430
1431 bch_btree_node_write(new_nodes[i], &cl);
1432 bch_keylist_add(&keylist, &new_nodes[i]->key);
1433 }
1434
1435 for (i = 0; i < nodes; i++)
1436 mutex_unlock(&new_nodes[i]->write_lock);
1437
1438 closure_sync(&cl);
1439
1440 /* We emptied out this node */
1441 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1442 btree_node_free(new_nodes[0]);
1443 rw_unlock(true, new_nodes[0]);
1444 new_nodes[0] = NULL;
1445
1446 for (i = 0; i < nodes; i++) {
1447 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1448 goto out_nocoalesce;
1449
1450 make_btree_freeing_key(r[i].b, keylist.top);
1451 bch_keylist_push(&keylist);
1452 }
1453
1454 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1455 BUG_ON(!bch_keylist_empty(&keylist));
1456
1457 for (i = 0; i < nodes; i++) {
1458 btree_node_free(r[i].b);
1459 rw_unlock(true, r[i].b);
1460
1461 r[i].b = new_nodes[i];
1462 }
1463
1464 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1465 r[nodes - 1].b = ERR_PTR(-EINTR);
1466
1467 trace_bcache_btree_gc_coalesce(nodes);
1468 gc->nodes--;
1469
1470 bch_keylist_free(&keylist);
1471
1472 /* Invalidated our iterator */
1473 return -EINTR;
1474
1475 out_unlock_nocoalesce:
1476 for (i = 0; i < nodes; i++)
1477 mutex_unlock(&new_nodes[i]->write_lock);
1478
1479 out_nocoalesce:
1480 closure_sync(&cl);
1481
1482 while ((k = bch_keylist_pop(&keylist)))
1483 if (!bkey_cmp(k, &ZERO_KEY))
1484 atomic_dec(&b->c->prio_blocked);
1485 bch_keylist_free(&keylist);
1486
1487 for (i = 0; i < nodes; i++)
1488 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1489 btree_node_free(new_nodes[i]);
1490 rw_unlock(true, new_nodes[i]);
1491 }
1492 return 0;
1493 }
1494
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1495 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1496 struct btree *replace)
1497 {
1498 struct keylist keys;
1499 struct btree *n;
1500
1501 if (btree_check_reserve(b, NULL))
1502 return 0;
1503
1504 n = btree_node_alloc_replacement(replace, NULL);
1505
1506 /* recheck reserve after allocating replacement node */
1507 if (btree_check_reserve(b, NULL)) {
1508 btree_node_free(n);
1509 rw_unlock(true, n);
1510 return 0;
1511 }
1512
1513 bch_btree_node_write_sync(n);
1514
1515 bch_keylist_init(&keys);
1516 bch_keylist_add(&keys, &n->key);
1517
1518 make_btree_freeing_key(replace, keys.top);
1519 bch_keylist_push(&keys);
1520
1521 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1522 BUG_ON(!bch_keylist_empty(&keys));
1523
1524 btree_node_free(replace);
1525 rw_unlock(true, n);
1526
1527 /* Invalidated our iterator */
1528 return -EINTR;
1529 }
1530
btree_gc_count_keys(struct btree * b)1531 static unsigned int btree_gc_count_keys(struct btree *b)
1532 {
1533 struct bkey *k;
1534 struct btree_iter iter;
1535 unsigned int ret = 0;
1536
1537 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1538 ret += bkey_u64s(k);
1539
1540 return ret;
1541 }
1542
btree_gc_min_nodes(struct cache_set * c)1543 static size_t btree_gc_min_nodes(struct cache_set *c)
1544 {
1545 size_t min_nodes;
1546
1547 /*
1548 * Since incremental GC would stop 100ms when front
1549 * side I/O comes, so when there are many btree nodes,
1550 * if GC only processes constant (100) nodes each time,
1551 * GC would last a long time, and the front side I/Os
1552 * would run out of the buckets (since no new bucket
1553 * can be allocated during GC), and be blocked again.
1554 * So GC should not process constant nodes, but varied
1555 * nodes according to the number of btree nodes, which
1556 * realized by dividing GC into constant(100) times,
1557 * so when there are many btree nodes, GC can process
1558 * more nodes each time, otherwise, GC will process less
1559 * nodes each time (but no less than MIN_GC_NODES)
1560 */
1561 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1562 if (min_nodes < MIN_GC_NODES)
1563 min_nodes = MIN_GC_NODES;
1564
1565 return min_nodes;
1566 }
1567
1568
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1569 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1570 struct closure *writes, struct gc_stat *gc)
1571 {
1572 int ret = 0;
1573 bool should_rewrite;
1574 struct bkey *k;
1575 struct btree_iter iter;
1576 struct gc_merge_info r[GC_MERGE_NODES];
1577 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1578
1579 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1580
1581 for (i = r; i < r + ARRAY_SIZE(r); i++)
1582 i->b = ERR_PTR(-EINTR);
1583
1584 while (1) {
1585 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1586 if (k) {
1587 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1588 true, b);
1589 if (IS_ERR(r->b)) {
1590 ret = PTR_ERR(r->b);
1591 break;
1592 }
1593
1594 r->keys = btree_gc_count_keys(r->b);
1595
1596 ret = btree_gc_coalesce(b, op, gc, r);
1597 if (ret)
1598 break;
1599 }
1600
1601 if (!last->b)
1602 break;
1603
1604 if (!IS_ERR(last->b)) {
1605 should_rewrite = btree_gc_mark_node(last->b, gc);
1606 if (should_rewrite) {
1607 ret = btree_gc_rewrite_node(b, op, last->b);
1608 if (ret)
1609 break;
1610 }
1611
1612 if (last->b->level) {
1613 ret = btree_gc_recurse(last->b, op, writes, gc);
1614 if (ret)
1615 break;
1616 }
1617
1618 bkey_copy_key(&b->c->gc_done, &last->b->key);
1619
1620 /*
1621 * Must flush leaf nodes before gc ends, since replace
1622 * operations aren't journalled
1623 */
1624 mutex_lock(&last->b->write_lock);
1625 if (btree_node_dirty(last->b))
1626 bch_btree_node_write(last->b, writes);
1627 mutex_unlock(&last->b->write_lock);
1628 rw_unlock(true, last->b);
1629 }
1630
1631 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1632 r->b = NULL;
1633
1634 if (atomic_read(&b->c->search_inflight) &&
1635 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1636 gc->nodes_pre = gc->nodes;
1637 ret = -EAGAIN;
1638 break;
1639 }
1640
1641 if (need_resched()) {
1642 ret = -EAGAIN;
1643 break;
1644 }
1645 }
1646
1647 for (i = r; i < r + ARRAY_SIZE(r); i++)
1648 if (!IS_ERR_OR_NULL(i->b)) {
1649 mutex_lock(&i->b->write_lock);
1650 if (btree_node_dirty(i->b))
1651 bch_btree_node_write(i->b, writes);
1652 mutex_unlock(&i->b->write_lock);
1653 rw_unlock(true, i->b);
1654 }
1655
1656 return ret;
1657 }
1658
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1659 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1660 struct closure *writes, struct gc_stat *gc)
1661 {
1662 struct btree *n = NULL;
1663 int ret = 0;
1664 bool should_rewrite;
1665
1666 should_rewrite = btree_gc_mark_node(b, gc);
1667 if (should_rewrite) {
1668 n = btree_node_alloc_replacement(b, NULL);
1669
1670 if (!IS_ERR_OR_NULL(n)) {
1671 bch_btree_node_write_sync(n);
1672
1673 bch_btree_set_root(n);
1674 btree_node_free(b);
1675 rw_unlock(true, n);
1676
1677 return -EINTR;
1678 }
1679 }
1680
1681 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1682
1683 if (b->level) {
1684 ret = btree_gc_recurse(b, op, writes, gc);
1685 if (ret)
1686 return ret;
1687 }
1688
1689 bkey_copy_key(&b->c->gc_done, &b->key);
1690
1691 return ret;
1692 }
1693
btree_gc_start(struct cache_set * c)1694 static void btree_gc_start(struct cache_set *c)
1695 {
1696 struct cache *ca;
1697 struct bucket *b;
1698
1699 if (!c->gc_mark_valid)
1700 return;
1701
1702 mutex_lock(&c->bucket_lock);
1703
1704 c->gc_mark_valid = 0;
1705 c->gc_done = ZERO_KEY;
1706
1707 ca = c->cache;
1708 for_each_bucket(b, ca) {
1709 b->last_gc = b->gen;
1710 if (!atomic_read(&b->pin)) {
1711 SET_GC_MARK(b, 0);
1712 SET_GC_SECTORS_USED(b, 0);
1713 }
1714 }
1715
1716 mutex_unlock(&c->bucket_lock);
1717 }
1718
bch_btree_gc_finish(struct cache_set * c)1719 static void bch_btree_gc_finish(struct cache_set *c)
1720 {
1721 struct bucket *b;
1722 struct cache *ca;
1723 unsigned int i, j;
1724 uint64_t *k;
1725
1726 mutex_lock(&c->bucket_lock);
1727
1728 set_gc_sectors(c);
1729 c->gc_mark_valid = 1;
1730 c->need_gc = 0;
1731
1732 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1733 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1734 GC_MARK_METADATA);
1735
1736 /* don't reclaim buckets to which writeback keys point */
1737 rcu_read_lock();
1738 for (i = 0; i < c->devices_max_used; i++) {
1739 struct bcache_device *d = c->devices[i];
1740 struct cached_dev *dc;
1741 struct keybuf_key *w, *n;
1742
1743 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1744 continue;
1745 dc = container_of(d, struct cached_dev, disk);
1746
1747 spin_lock(&dc->writeback_keys.lock);
1748 rbtree_postorder_for_each_entry_safe(w, n,
1749 &dc->writeback_keys.keys, node)
1750 for (j = 0; j < KEY_PTRS(&w->key); j++)
1751 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1752 GC_MARK_DIRTY);
1753 spin_unlock(&dc->writeback_keys.lock);
1754 }
1755 rcu_read_unlock();
1756
1757 c->avail_nbuckets = 0;
1758
1759 ca = c->cache;
1760 ca->invalidate_needs_gc = 0;
1761
1762 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1763 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1764
1765 for (k = ca->prio_buckets;
1766 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1767 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1768
1769 for_each_bucket(b, ca) {
1770 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1771
1772 if (atomic_read(&b->pin))
1773 continue;
1774
1775 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1776
1777 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1778 c->avail_nbuckets++;
1779 }
1780
1781 mutex_unlock(&c->bucket_lock);
1782 }
1783
bch_btree_gc(struct cache_set * c)1784 static void bch_btree_gc(struct cache_set *c)
1785 {
1786 int ret;
1787 struct gc_stat stats;
1788 struct closure writes;
1789 struct btree_op op;
1790 uint64_t start_time = local_clock();
1791
1792 trace_bcache_gc_start(c);
1793
1794 memset(&stats, 0, sizeof(struct gc_stat));
1795 closure_init_stack(&writes);
1796 bch_btree_op_init(&op, SHRT_MAX);
1797
1798 btree_gc_start(c);
1799
1800 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1801 do {
1802 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1803 closure_sync(&writes);
1804 cond_resched();
1805
1806 if (ret == -EAGAIN)
1807 schedule_timeout_interruptible(msecs_to_jiffies
1808 (GC_SLEEP_MS));
1809 else if (ret)
1810 pr_warn("gc failed!\n");
1811 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1812
1813 bch_btree_gc_finish(c);
1814 wake_up_allocators(c);
1815
1816 bch_time_stats_update(&c->btree_gc_time, start_time);
1817
1818 stats.key_bytes *= sizeof(uint64_t);
1819 stats.data <<= 9;
1820 bch_update_bucket_in_use(c, &stats);
1821 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1822
1823 trace_bcache_gc_end(c);
1824
1825 bch_moving_gc(c);
1826 }
1827
gc_should_run(struct cache_set * c)1828 static bool gc_should_run(struct cache_set *c)
1829 {
1830 struct cache *ca = c->cache;
1831
1832 if (ca->invalidate_needs_gc)
1833 return true;
1834
1835 if (atomic_read(&c->sectors_to_gc) < 0)
1836 return true;
1837
1838 return false;
1839 }
1840
bch_gc_thread(void * arg)1841 static int bch_gc_thread(void *arg)
1842 {
1843 struct cache_set *c = arg;
1844
1845 while (1) {
1846 wait_event_interruptible(c->gc_wait,
1847 kthread_should_stop() ||
1848 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1849 gc_should_run(c));
1850
1851 if (kthread_should_stop() ||
1852 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1853 break;
1854
1855 set_gc_sectors(c);
1856 bch_btree_gc(c);
1857 }
1858
1859 wait_for_kthread_stop();
1860 return 0;
1861 }
1862
bch_gc_thread_start(struct cache_set * c)1863 int bch_gc_thread_start(struct cache_set *c)
1864 {
1865 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1866 return PTR_ERR_OR_ZERO(c->gc_thread);
1867 }
1868
1869 /* Initial partial gc */
1870
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1871 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1872 {
1873 int ret = 0;
1874 struct bkey *k, *p = NULL;
1875 struct btree_iter iter;
1876
1877 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1878 bch_initial_mark_key(b->c, b->level, k);
1879
1880 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1881
1882 if (b->level) {
1883 bch_btree_iter_init(&b->keys, &iter, NULL);
1884
1885 do {
1886 k = bch_btree_iter_next_filter(&iter, &b->keys,
1887 bch_ptr_bad);
1888 if (k) {
1889 btree_node_prefetch(b, k);
1890 /*
1891 * initiallize c->gc_stats.nodes
1892 * for incremental GC
1893 */
1894 b->c->gc_stats.nodes++;
1895 }
1896
1897 if (p)
1898 ret = bcache_btree(check_recurse, p, b, op);
1899
1900 p = k;
1901 } while (p && !ret);
1902 }
1903
1904 return ret;
1905 }
1906
1907
bch_btree_check_thread(void * arg)1908 static int bch_btree_check_thread(void *arg)
1909 {
1910 int ret;
1911 struct btree_check_info *info = arg;
1912 struct btree_check_state *check_state = info->state;
1913 struct cache_set *c = check_state->c;
1914 struct btree_iter iter;
1915 struct bkey *k, *p;
1916 int cur_idx, prev_idx, skip_nr;
1917
1918 k = p = NULL;
1919 cur_idx = prev_idx = 0;
1920 ret = 0;
1921
1922 /* root node keys are checked before thread created */
1923 bch_btree_iter_init(&c->root->keys, &iter, NULL);
1924 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1925 BUG_ON(!k);
1926
1927 p = k;
1928 while (k) {
1929 /*
1930 * Fetch a root node key index, skip the keys which
1931 * should be fetched by other threads, then check the
1932 * sub-tree indexed by the fetched key.
1933 */
1934 spin_lock(&check_state->idx_lock);
1935 cur_idx = check_state->key_idx;
1936 check_state->key_idx++;
1937 spin_unlock(&check_state->idx_lock);
1938
1939 skip_nr = cur_idx - prev_idx;
1940
1941 while (skip_nr) {
1942 k = bch_btree_iter_next_filter(&iter,
1943 &c->root->keys,
1944 bch_ptr_bad);
1945 if (k)
1946 p = k;
1947 else {
1948 /*
1949 * No more keys to check in root node,
1950 * current checking threads are enough,
1951 * stop creating more.
1952 */
1953 atomic_set(&check_state->enough, 1);
1954 /* Update check_state->enough earlier */
1955 smp_mb__after_atomic();
1956 goto out;
1957 }
1958 skip_nr--;
1959 cond_resched();
1960 }
1961
1962 if (p) {
1963 struct btree_op op;
1964
1965 btree_node_prefetch(c->root, p);
1966 c->gc_stats.nodes++;
1967 bch_btree_op_init(&op, 0);
1968 ret = bcache_btree(check_recurse, p, c->root, &op);
1969 if (ret)
1970 goto out;
1971 }
1972 p = NULL;
1973 prev_idx = cur_idx;
1974 cond_resched();
1975 }
1976
1977 out:
1978 info->result = ret;
1979 /* update check_state->started among all CPUs */
1980 smp_mb__before_atomic();
1981 if (atomic_dec_and_test(&check_state->started))
1982 wake_up(&check_state->wait);
1983
1984 return ret;
1985 }
1986
1987
1988
bch_btree_chkthread_nr(void)1989 static int bch_btree_chkthread_nr(void)
1990 {
1991 int n = num_online_cpus()/2;
1992
1993 if (n == 0)
1994 n = 1;
1995 else if (n > BCH_BTR_CHKTHREAD_MAX)
1996 n = BCH_BTR_CHKTHREAD_MAX;
1997
1998 return n;
1999 }
2000
bch_btree_check(struct cache_set * c)2001 int bch_btree_check(struct cache_set *c)
2002 {
2003 int ret = 0;
2004 int i;
2005 struct bkey *k = NULL;
2006 struct btree_iter iter;
2007 struct btree_check_state *check_state;
2008 char name[32];
2009
2010 /* check and mark root node keys */
2011 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2012 bch_initial_mark_key(c, c->root->level, k);
2013
2014 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2015
2016 if (c->root->level == 0)
2017 return 0;
2018
2019 check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
2020 if (!check_state)
2021 return -ENOMEM;
2022
2023 check_state->c = c;
2024 check_state->total_threads = bch_btree_chkthread_nr();
2025 check_state->key_idx = 0;
2026 spin_lock_init(&check_state->idx_lock);
2027 atomic_set(&check_state->started, 0);
2028 atomic_set(&check_state->enough, 0);
2029 init_waitqueue_head(&check_state->wait);
2030
2031 /*
2032 * Run multiple threads to check btree nodes in parallel,
2033 * if check_state->enough is non-zero, it means current
2034 * running check threads are enough, unncessary to create
2035 * more.
2036 */
2037 for (i = 0; i < check_state->total_threads; i++) {
2038 /* fetch latest check_state->enough earlier */
2039 smp_mb__before_atomic();
2040 if (atomic_read(&check_state->enough))
2041 break;
2042
2043 check_state->infos[i].result = 0;
2044 check_state->infos[i].state = check_state;
2045 snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
2046 atomic_inc(&check_state->started);
2047
2048 check_state->infos[i].thread =
2049 kthread_run(bch_btree_check_thread,
2050 &check_state->infos[i],
2051 name);
2052 if (IS_ERR(check_state->infos[i].thread)) {
2053 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2054 for (--i; i >= 0; i--)
2055 kthread_stop(check_state->infos[i].thread);
2056 ret = -ENOMEM;
2057 goto out;
2058 }
2059 }
2060
2061 wait_event_interruptible(check_state->wait,
2062 atomic_read(&check_state->started) == 0 ||
2063 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
2064
2065 for (i = 0; i < check_state->total_threads; i++) {
2066 if (check_state->infos[i].result) {
2067 ret = check_state->infos[i].result;
2068 goto out;
2069 }
2070 }
2071
2072 out:
2073 kfree(check_state);
2074 return ret;
2075 }
2076
bch_initial_gc_finish(struct cache_set * c)2077 void bch_initial_gc_finish(struct cache_set *c)
2078 {
2079 struct cache *ca = c->cache;
2080 struct bucket *b;
2081
2082 bch_btree_gc_finish(c);
2083
2084 mutex_lock(&c->bucket_lock);
2085
2086 /*
2087 * We need to put some unused buckets directly on the prio freelist in
2088 * order to get the allocator thread started - it needs freed buckets in
2089 * order to rewrite the prios and gens, and it needs to rewrite prios
2090 * and gens in order to free buckets.
2091 *
2092 * This is only safe for buckets that have no live data in them, which
2093 * there should always be some of.
2094 */
2095 for_each_bucket(b, ca) {
2096 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2097 fifo_full(&ca->free[RESERVE_BTREE]))
2098 break;
2099
2100 if (bch_can_invalidate_bucket(ca, b) &&
2101 !GC_MARK(b)) {
2102 __bch_invalidate_one_bucket(ca, b);
2103 if (!fifo_push(&ca->free[RESERVE_PRIO],
2104 b - ca->buckets))
2105 fifo_push(&ca->free[RESERVE_BTREE],
2106 b - ca->buckets);
2107 }
2108 }
2109
2110 mutex_unlock(&c->bucket_lock);
2111 }
2112
2113 /* Btree insertion */
2114
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)2115 static bool btree_insert_key(struct btree *b, struct bkey *k,
2116 struct bkey *replace_key)
2117 {
2118 unsigned int status;
2119
2120 BUG_ON(bkey_cmp(k, &b->key) > 0);
2121
2122 status = bch_btree_insert_key(&b->keys, k, replace_key);
2123 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2124 bch_check_keys(&b->keys, "%u for %s", status,
2125 replace_key ? "replace" : "insert");
2126
2127 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2128 status);
2129 return true;
2130 } else
2131 return false;
2132 }
2133
insert_u64s_remaining(struct btree * b)2134 static size_t insert_u64s_remaining(struct btree *b)
2135 {
2136 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2137
2138 /*
2139 * Might land in the middle of an existing extent and have to split it
2140 */
2141 if (b->keys.ops->is_extents)
2142 ret -= KEY_MAX_U64S;
2143
2144 return max(ret, 0L);
2145 }
2146
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2147 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2148 struct keylist *insert_keys,
2149 struct bkey *replace_key)
2150 {
2151 bool ret = false;
2152 int oldsize = bch_count_data(&b->keys);
2153
2154 while (!bch_keylist_empty(insert_keys)) {
2155 struct bkey *k = insert_keys->keys;
2156
2157 if (bkey_u64s(k) > insert_u64s_remaining(b))
2158 break;
2159
2160 if (bkey_cmp(k, &b->key) <= 0) {
2161 if (!b->level)
2162 bkey_put(b->c, k);
2163
2164 ret |= btree_insert_key(b, k, replace_key);
2165 bch_keylist_pop_front(insert_keys);
2166 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2167 BKEY_PADDED(key) temp;
2168 bkey_copy(&temp.key, insert_keys->keys);
2169
2170 bch_cut_back(&b->key, &temp.key);
2171 bch_cut_front(&b->key, insert_keys->keys);
2172
2173 ret |= btree_insert_key(b, &temp.key, replace_key);
2174 break;
2175 } else {
2176 break;
2177 }
2178 }
2179
2180 if (!ret)
2181 op->insert_collision = true;
2182
2183 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2184
2185 BUG_ON(bch_count_data(&b->keys) < oldsize);
2186 return ret;
2187 }
2188
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2189 static int btree_split(struct btree *b, struct btree_op *op,
2190 struct keylist *insert_keys,
2191 struct bkey *replace_key)
2192 {
2193 bool split;
2194 struct btree *n1, *n2 = NULL, *n3 = NULL;
2195 uint64_t start_time = local_clock();
2196 struct closure cl;
2197 struct keylist parent_keys;
2198
2199 closure_init_stack(&cl);
2200 bch_keylist_init(&parent_keys);
2201
2202 if (btree_check_reserve(b, op)) {
2203 if (!b->level)
2204 return -EINTR;
2205 else
2206 WARN(1, "insufficient reserve for split\n");
2207 }
2208
2209 n1 = btree_node_alloc_replacement(b, op);
2210 if (IS_ERR(n1))
2211 goto err;
2212
2213 split = set_blocks(btree_bset_first(n1),
2214 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2215
2216 if (split) {
2217 unsigned int keys = 0;
2218
2219 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2220
2221 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2222 if (IS_ERR(n2))
2223 goto err_free1;
2224
2225 if (!b->parent) {
2226 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2227 if (IS_ERR(n3))
2228 goto err_free2;
2229 }
2230
2231 mutex_lock(&n1->write_lock);
2232 mutex_lock(&n2->write_lock);
2233
2234 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2235
2236 /*
2237 * Has to be a linear search because we don't have an auxiliary
2238 * search tree yet
2239 */
2240
2241 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2242 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2243 keys));
2244
2245 bkey_copy_key(&n1->key,
2246 bset_bkey_idx(btree_bset_first(n1), keys));
2247 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2248
2249 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2250 btree_bset_first(n1)->keys = keys;
2251
2252 memcpy(btree_bset_first(n2)->start,
2253 bset_bkey_last(btree_bset_first(n1)),
2254 btree_bset_first(n2)->keys * sizeof(uint64_t));
2255
2256 bkey_copy_key(&n2->key, &b->key);
2257
2258 bch_keylist_add(&parent_keys, &n2->key);
2259 bch_btree_node_write(n2, &cl);
2260 mutex_unlock(&n2->write_lock);
2261 rw_unlock(true, n2);
2262 } else {
2263 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2264
2265 mutex_lock(&n1->write_lock);
2266 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2267 }
2268
2269 bch_keylist_add(&parent_keys, &n1->key);
2270 bch_btree_node_write(n1, &cl);
2271 mutex_unlock(&n1->write_lock);
2272
2273 if (n3) {
2274 /* Depth increases, make a new root */
2275 mutex_lock(&n3->write_lock);
2276 bkey_copy_key(&n3->key, &MAX_KEY);
2277 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2278 bch_btree_node_write(n3, &cl);
2279 mutex_unlock(&n3->write_lock);
2280
2281 closure_sync(&cl);
2282 bch_btree_set_root(n3);
2283 rw_unlock(true, n3);
2284 } else if (!b->parent) {
2285 /* Root filled up but didn't need to be split */
2286 closure_sync(&cl);
2287 bch_btree_set_root(n1);
2288 } else {
2289 /* Split a non root node */
2290 closure_sync(&cl);
2291 make_btree_freeing_key(b, parent_keys.top);
2292 bch_keylist_push(&parent_keys);
2293
2294 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2295 BUG_ON(!bch_keylist_empty(&parent_keys));
2296 }
2297
2298 btree_node_free(b);
2299 rw_unlock(true, n1);
2300
2301 bch_time_stats_update(&b->c->btree_split_time, start_time);
2302
2303 return 0;
2304 err_free2:
2305 bkey_put(b->c, &n2->key);
2306 btree_node_free(n2);
2307 rw_unlock(true, n2);
2308 err_free1:
2309 bkey_put(b->c, &n1->key);
2310 btree_node_free(n1);
2311 rw_unlock(true, n1);
2312 err:
2313 WARN(1, "bcache: btree split failed (level %u)", b->level);
2314
2315 if (n3 == ERR_PTR(-EAGAIN) ||
2316 n2 == ERR_PTR(-EAGAIN) ||
2317 n1 == ERR_PTR(-EAGAIN))
2318 return -EAGAIN;
2319
2320 return -ENOMEM;
2321 }
2322
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2323 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2324 struct keylist *insert_keys,
2325 atomic_t *journal_ref,
2326 struct bkey *replace_key)
2327 {
2328 struct closure cl;
2329
2330 BUG_ON(b->level && replace_key);
2331
2332 closure_init_stack(&cl);
2333
2334 mutex_lock(&b->write_lock);
2335
2336 if (write_block(b) != btree_bset_last(b) &&
2337 b->keys.last_set_unwritten)
2338 bch_btree_init_next(b); /* just wrote a set */
2339
2340 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2341 mutex_unlock(&b->write_lock);
2342 goto split;
2343 }
2344
2345 BUG_ON(write_block(b) != btree_bset_last(b));
2346
2347 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2348 if (!b->level)
2349 bch_btree_leaf_dirty(b, journal_ref);
2350 else
2351 bch_btree_node_write(b, &cl);
2352 }
2353
2354 mutex_unlock(&b->write_lock);
2355
2356 /* wait for btree node write if necessary, after unlock */
2357 closure_sync(&cl);
2358
2359 return 0;
2360 split:
2361 if (current->bio_list) {
2362 op->lock = b->c->root->level + 1;
2363 return -EAGAIN;
2364 } else if (op->lock <= b->c->root->level) {
2365 op->lock = b->c->root->level + 1;
2366 return -EINTR;
2367 } else {
2368 /* Invalidated all iterators */
2369 int ret = btree_split(b, op, insert_keys, replace_key);
2370
2371 if (bch_keylist_empty(insert_keys))
2372 return 0;
2373 else if (!ret)
2374 return -EINTR;
2375 return ret;
2376 }
2377 }
2378
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2379 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2380 struct bkey *check_key)
2381 {
2382 int ret = -EINTR;
2383 uint64_t btree_ptr = b->key.ptr[0];
2384 unsigned long seq = b->seq;
2385 struct keylist insert;
2386 bool upgrade = op->lock == -1;
2387
2388 bch_keylist_init(&insert);
2389
2390 if (upgrade) {
2391 rw_unlock(false, b);
2392 rw_lock(true, b, b->level);
2393
2394 if (b->key.ptr[0] != btree_ptr ||
2395 b->seq != seq + 1) {
2396 op->lock = b->level;
2397 goto out;
2398 }
2399 }
2400
2401 SET_KEY_PTRS(check_key, 1);
2402 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2403
2404 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2405
2406 bch_keylist_add(&insert, check_key);
2407
2408 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2409
2410 BUG_ON(!ret && !bch_keylist_empty(&insert));
2411 out:
2412 if (upgrade)
2413 downgrade_write(&b->lock);
2414 return ret;
2415 }
2416
2417 struct btree_insert_op {
2418 struct btree_op op;
2419 struct keylist *keys;
2420 atomic_t *journal_ref;
2421 struct bkey *replace_key;
2422 };
2423
btree_insert_fn(struct btree_op * b_op,struct btree * b)2424 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2425 {
2426 struct btree_insert_op *op = container_of(b_op,
2427 struct btree_insert_op, op);
2428
2429 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2430 op->journal_ref, op->replace_key);
2431 if (ret && !bch_keylist_empty(op->keys))
2432 return ret;
2433 else
2434 return MAP_DONE;
2435 }
2436
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2437 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2438 atomic_t *journal_ref, struct bkey *replace_key)
2439 {
2440 struct btree_insert_op op;
2441 int ret = 0;
2442
2443 BUG_ON(current->bio_list);
2444 BUG_ON(bch_keylist_empty(keys));
2445
2446 bch_btree_op_init(&op.op, 0);
2447 op.keys = keys;
2448 op.journal_ref = journal_ref;
2449 op.replace_key = replace_key;
2450
2451 while (!ret && !bch_keylist_empty(keys)) {
2452 op.op.lock = 0;
2453 ret = bch_btree_map_leaf_nodes(&op.op, c,
2454 &START_KEY(keys->keys),
2455 btree_insert_fn);
2456 }
2457
2458 if (ret) {
2459 struct bkey *k;
2460
2461 pr_err("error %i\n", ret);
2462
2463 while ((k = bch_keylist_pop(keys)))
2464 bkey_put(c, k);
2465 } else if (op.op.insert_collision)
2466 ret = -ESRCH;
2467
2468 return ret;
2469 }
2470
bch_btree_set_root(struct btree * b)2471 void bch_btree_set_root(struct btree *b)
2472 {
2473 unsigned int i;
2474 struct closure cl;
2475
2476 closure_init_stack(&cl);
2477
2478 trace_bcache_btree_set_root(b);
2479
2480 BUG_ON(!b->written);
2481
2482 for (i = 0; i < KEY_PTRS(&b->key); i++)
2483 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2484
2485 mutex_lock(&b->c->bucket_lock);
2486 list_del_init(&b->list);
2487 mutex_unlock(&b->c->bucket_lock);
2488
2489 b->c->root = b;
2490
2491 bch_journal_meta(b->c, &cl);
2492 closure_sync(&cl);
2493 }
2494
2495 /* Map across nodes or keys */
2496
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2497 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2498 struct bkey *from,
2499 btree_map_nodes_fn *fn, int flags)
2500 {
2501 int ret = MAP_CONTINUE;
2502
2503 if (b->level) {
2504 struct bkey *k;
2505 struct btree_iter iter;
2506
2507 bch_btree_iter_init(&b->keys, &iter, from);
2508
2509 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2510 bch_ptr_bad))) {
2511 ret = bcache_btree(map_nodes_recurse, k, b,
2512 op, from, fn, flags);
2513 from = NULL;
2514
2515 if (ret != MAP_CONTINUE)
2516 return ret;
2517 }
2518 }
2519
2520 if (!b->level || flags == MAP_ALL_NODES)
2521 ret = fn(op, b);
2522
2523 return ret;
2524 }
2525
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2526 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2527 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2528 {
2529 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2530 }
2531
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2532 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2533 struct bkey *from, btree_map_keys_fn *fn,
2534 int flags)
2535 {
2536 int ret = MAP_CONTINUE;
2537 struct bkey *k;
2538 struct btree_iter iter;
2539
2540 bch_btree_iter_init(&b->keys, &iter, from);
2541
2542 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2543 ret = !b->level
2544 ? fn(op, b, k)
2545 : bcache_btree(map_keys_recurse, k,
2546 b, op, from, fn, flags);
2547 from = NULL;
2548
2549 if (ret != MAP_CONTINUE)
2550 return ret;
2551 }
2552
2553 if (!b->level && (flags & MAP_END_KEY))
2554 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2555 KEY_OFFSET(&b->key), 0));
2556
2557 return ret;
2558 }
2559
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2560 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2561 struct bkey *from, btree_map_keys_fn *fn, int flags)
2562 {
2563 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2564 }
2565
2566 /* Keybuf code */
2567
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2568 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2569 {
2570 /* Overlapping keys compare equal */
2571 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2572 return -1;
2573 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2574 return 1;
2575 return 0;
2576 }
2577
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2578 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2579 struct keybuf_key *r)
2580 {
2581 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2582 }
2583
2584 struct refill {
2585 struct btree_op op;
2586 unsigned int nr_found;
2587 struct keybuf *buf;
2588 struct bkey *end;
2589 keybuf_pred_fn *pred;
2590 };
2591
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2592 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2593 struct bkey *k)
2594 {
2595 struct refill *refill = container_of(op, struct refill, op);
2596 struct keybuf *buf = refill->buf;
2597 int ret = MAP_CONTINUE;
2598
2599 if (bkey_cmp(k, refill->end) > 0) {
2600 ret = MAP_DONE;
2601 goto out;
2602 }
2603
2604 if (!KEY_SIZE(k)) /* end key */
2605 goto out;
2606
2607 if (refill->pred(buf, k)) {
2608 struct keybuf_key *w;
2609
2610 spin_lock(&buf->lock);
2611
2612 w = array_alloc(&buf->freelist);
2613 if (!w) {
2614 spin_unlock(&buf->lock);
2615 return MAP_DONE;
2616 }
2617
2618 w->private = NULL;
2619 bkey_copy(&w->key, k);
2620
2621 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2622 array_free(&buf->freelist, w);
2623 else
2624 refill->nr_found++;
2625
2626 if (array_freelist_empty(&buf->freelist))
2627 ret = MAP_DONE;
2628
2629 spin_unlock(&buf->lock);
2630 }
2631 out:
2632 buf->last_scanned = *k;
2633 return ret;
2634 }
2635
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2636 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2637 struct bkey *end, keybuf_pred_fn *pred)
2638 {
2639 struct bkey start = buf->last_scanned;
2640 struct refill refill;
2641
2642 cond_resched();
2643
2644 bch_btree_op_init(&refill.op, -1);
2645 refill.nr_found = 0;
2646 refill.buf = buf;
2647 refill.end = end;
2648 refill.pred = pred;
2649
2650 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2651 refill_keybuf_fn, MAP_END_KEY);
2652
2653 trace_bcache_keyscan(refill.nr_found,
2654 KEY_INODE(&start), KEY_OFFSET(&start),
2655 KEY_INODE(&buf->last_scanned),
2656 KEY_OFFSET(&buf->last_scanned));
2657
2658 spin_lock(&buf->lock);
2659
2660 if (!RB_EMPTY_ROOT(&buf->keys)) {
2661 struct keybuf_key *w;
2662
2663 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2664 buf->start = START_KEY(&w->key);
2665
2666 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2667 buf->end = w->key;
2668 } else {
2669 buf->start = MAX_KEY;
2670 buf->end = MAX_KEY;
2671 }
2672
2673 spin_unlock(&buf->lock);
2674 }
2675
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2676 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2677 {
2678 rb_erase(&w->node, &buf->keys);
2679 array_free(&buf->freelist, w);
2680 }
2681
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2682 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2683 {
2684 spin_lock(&buf->lock);
2685 __bch_keybuf_del(buf, w);
2686 spin_unlock(&buf->lock);
2687 }
2688
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2689 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2690 struct bkey *end)
2691 {
2692 bool ret = false;
2693 struct keybuf_key *p, *w, s;
2694
2695 s.key = *start;
2696
2697 if (bkey_cmp(end, &buf->start) <= 0 ||
2698 bkey_cmp(start, &buf->end) >= 0)
2699 return false;
2700
2701 spin_lock(&buf->lock);
2702 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2703
2704 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2705 p = w;
2706 w = RB_NEXT(w, node);
2707
2708 if (p->private)
2709 ret = true;
2710 else
2711 __bch_keybuf_del(buf, p);
2712 }
2713
2714 spin_unlock(&buf->lock);
2715 return ret;
2716 }
2717
bch_keybuf_next(struct keybuf * buf)2718 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2719 {
2720 struct keybuf_key *w;
2721
2722 spin_lock(&buf->lock);
2723
2724 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2725
2726 while (w && w->private)
2727 w = RB_NEXT(w, node);
2728
2729 if (w)
2730 w->private = ERR_PTR(-EINTR);
2731
2732 spin_unlock(&buf->lock);
2733 return w;
2734 }
2735
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2736 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2737 struct keybuf *buf,
2738 struct bkey *end,
2739 keybuf_pred_fn *pred)
2740 {
2741 struct keybuf_key *ret;
2742
2743 while (1) {
2744 ret = bch_keybuf_next(buf);
2745 if (ret)
2746 break;
2747
2748 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2749 pr_debug("scan finished\n");
2750 break;
2751 }
2752
2753 bch_refill_keybuf(c, buf, end, pred);
2754 }
2755
2756 return ret;
2757 }
2758
bch_keybuf_init(struct keybuf * buf)2759 void bch_keybuf_init(struct keybuf *buf)
2760 {
2761 buf->last_scanned = MAX_KEY;
2762 buf->keys = RB_ROOT;
2763
2764 spin_lock_init(&buf->lock);
2765 array_allocator_init(&buf->freelist);
2766 }
2767