1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
96
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
103
104 /*
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
108 *
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
113 */
114
115 /**
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
121 */
122 #define btree(fn, key, b, op, ...) \
123 ({ \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
127 _w, b); \
128 if (!IS_ERR(_child)) { \
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
131 } else \
132 _r = PTR_ERR(_child); \
133 _r; \
134 })
135
136 /**
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
139 * @c: cache set
140 * @op: pointer to struct btree_op
141 */
142 #define btree_root(fn, c, op, ...) \
143 ({ \
144 int _r = -EINTR; \
145 do { \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
152 } \
153 rw_unlock(_w, _b); \
154 bch_cannibalize_unlock(c); \
155 if (_r == -EINTR) \
156 schedule(); \
157 } while (_r == -EINTR); \
158 \
159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
160 _r; \
161 })
162
write_block(struct btree * b)163 static inline struct bset *write_block(struct btree *b)
164 {
165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167
bch_btree_init_next(struct btree * b)168 static void bch_btree_init_next(struct btree *b)
169 {
170 /* If not a leaf node, always sort */
171 if (b->level && b->keys.nsets)
172 bch_btree_sort(&b->keys, &b->c->sort);
173 else
174 bch_btree_sort_lazy(&b->keys, &b->c->sort);
175
176 if (b->written < btree_blocks(b))
177 bch_bset_init_next(&b->keys, write_block(b),
178 bset_magic(&b->c->sb));
179
180 }
181
182 /* Btree key manipulation */
183
bkey_put(struct cache_set * c,struct bkey * k)184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186 unsigned int i;
187
188 for (i = 0; i < KEY_PTRS(k); i++)
189 if (ptr_available(c, k, i))
190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192
193 /* Btree IO */
194
btree_csum_set(struct btree * b,struct bset * i)195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197 uint64_t crc = b->key.ptr[0];
198 void *data = (void *) i + 8, *end = bset_bkey_last(i);
199
200 crc = bch_crc64_update(crc, data, end - data);
201 return crc ^ 0xffffffffffffffffULL;
202 }
203
bch_btree_node_read_done(struct btree * b)204 void bch_btree_node_read_done(struct btree *b)
205 {
206 const char *err = "bad btree header";
207 struct bset *i = btree_bset_first(b);
208 struct btree_iter *iter;
209
210 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
211 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
212 iter->used = 0;
213
214 #ifdef CONFIG_BCACHE_DEBUG
215 iter->b = &b->keys;
216 #endif
217
218 if (!i->seq)
219 goto err;
220
221 for (;
222 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
223 i = write_block(b)) {
224 err = "unsupported bset version";
225 if (i->version > BCACHE_BSET_VERSION)
226 goto err;
227
228 err = "bad btree header";
229 if (b->written + set_blocks(i, block_bytes(b->c)) >
230 btree_blocks(b))
231 goto err;
232
233 err = "bad magic";
234 if (i->magic != bset_magic(&b->c->sb))
235 goto err;
236
237 err = "bad checksum";
238 switch (i->version) {
239 case 0:
240 if (i->csum != csum_set(i))
241 goto err;
242 break;
243 case BCACHE_BSET_VERSION:
244 if (i->csum != btree_csum_set(b, i))
245 goto err;
246 break;
247 }
248
249 err = "empty set";
250 if (i != b->keys.set[0].data && !i->keys)
251 goto err;
252
253 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
254
255 b->written += set_blocks(i, block_bytes(b->c));
256 }
257
258 err = "corrupted btree";
259 for (i = write_block(b);
260 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
261 i = ((void *) i) + block_bytes(b->c))
262 if (i->seq == b->keys.set[0].data->seq)
263 goto err;
264
265 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
266
267 i = b->keys.set[0].data;
268 err = "short btree key";
269 if (b->keys.set[0].size &&
270 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
271 goto err;
272
273 if (b->written < btree_blocks(b))
274 bch_bset_init_next(&b->keys, write_block(b),
275 bset_magic(&b->c->sb));
276 out:
277 mempool_free(iter, &b->c->fill_iter);
278 return;
279 err:
280 set_btree_node_io_error(b);
281 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
282 err, PTR_BUCKET_NR(b->c, &b->key, 0),
283 bset_block_offset(b, i), i->keys);
284 goto out;
285 }
286
btree_node_read_endio(struct bio * bio)287 static void btree_node_read_endio(struct bio *bio)
288 {
289 struct closure *cl = bio->bi_private;
290
291 closure_put(cl);
292 }
293
bch_btree_node_read(struct btree * b)294 static void bch_btree_node_read(struct btree *b)
295 {
296 uint64_t start_time = local_clock();
297 struct closure cl;
298 struct bio *bio;
299
300 trace_bcache_btree_read(b);
301
302 closure_init_stack(&cl);
303
304 bio = bch_bbio_alloc(b->c);
305 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
306 bio->bi_end_io = btree_node_read_endio;
307 bio->bi_private = &cl;
308 bio->bi_opf = REQ_OP_READ | REQ_META;
309
310 bch_bio_map(bio, b->keys.set[0].data);
311
312 bch_submit_bbio(bio, b->c, &b->key, 0);
313 closure_sync(&cl);
314
315 if (bio->bi_status)
316 set_btree_node_io_error(b);
317
318 bch_bbio_free(bio, b->c);
319
320 if (btree_node_io_error(b))
321 goto err;
322
323 bch_btree_node_read_done(b);
324 bch_time_stats_update(&b->c->btree_read_time, start_time);
325
326 return;
327 err:
328 bch_cache_set_error(b->c, "io error reading bucket %zu",
329 PTR_BUCKET_NR(b->c, &b->key, 0));
330 }
331
btree_complete_write(struct btree * b,struct btree_write * w)332 static void btree_complete_write(struct btree *b, struct btree_write *w)
333 {
334 if (w->prio_blocked &&
335 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
336 wake_up_allocators(b->c);
337
338 if (w->journal) {
339 atomic_dec_bug(w->journal);
340 __closure_wake_up(&b->c->journal.wait);
341 }
342
343 w->prio_blocked = 0;
344 w->journal = NULL;
345 }
346
btree_node_write_unlock(struct closure * cl)347 static void btree_node_write_unlock(struct closure *cl)
348 {
349 struct btree *b = container_of(cl, struct btree, io);
350
351 up(&b->io_mutex);
352 }
353
__btree_node_write_done(struct closure * cl)354 static void __btree_node_write_done(struct closure *cl)
355 {
356 struct btree *b = container_of(cl, struct btree, io);
357 struct btree_write *w = btree_prev_write(b);
358
359 bch_bbio_free(b->bio, b->c);
360 b->bio = NULL;
361 btree_complete_write(b, w);
362
363 if (btree_node_dirty(b))
364 schedule_delayed_work(&b->work, 30 * HZ);
365
366 closure_return_with_destructor(cl, btree_node_write_unlock);
367 }
368
btree_node_write_done(struct closure * cl)369 static void btree_node_write_done(struct closure *cl)
370 {
371 struct btree *b = container_of(cl, struct btree, io);
372
373 bio_free_pages(b->bio);
374 __btree_node_write_done(cl);
375 }
376
btree_node_write_endio(struct bio * bio)377 static void btree_node_write_endio(struct bio *bio)
378 {
379 struct closure *cl = bio->bi_private;
380 struct btree *b = container_of(cl, struct btree, io);
381
382 if (bio->bi_status)
383 set_btree_node_io_error(b);
384
385 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
386 closure_put(cl);
387 }
388
do_btree_node_write(struct btree * b)389 static void do_btree_node_write(struct btree *b)
390 {
391 struct closure *cl = &b->io;
392 struct bset *i = btree_bset_last(b);
393 BKEY_PADDED(key) k;
394
395 i->version = BCACHE_BSET_VERSION;
396 i->csum = btree_csum_set(b, i);
397
398 BUG_ON(b->bio);
399 b->bio = bch_bbio_alloc(b->c);
400
401 b->bio->bi_end_io = btree_node_write_endio;
402 b->bio->bi_private = cl;
403 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
404 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
405 bch_bio_map(b->bio, i);
406
407 /*
408 * If we're appending to a leaf node, we don't technically need FUA -
409 * this write just needs to be persisted before the next journal write,
410 * which will be marked FLUSH|FUA.
411 *
412 * Similarly if we're writing a new btree root - the pointer is going to
413 * be in the next journal entry.
414 *
415 * But if we're writing a new btree node (that isn't a root) or
416 * appending to a non leaf btree node, we need either FUA or a flush
417 * when we write the parent with the new pointer. FUA is cheaper than a
418 * flush, and writes appending to leaf nodes aren't blocking anything so
419 * just make all btree node writes FUA to keep things sane.
420 */
421
422 bkey_copy(&k.key, &b->key);
423 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
424 bset_sector_offset(&b->keys, i));
425
426 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
427 int j;
428 struct bio_vec *bv;
429 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
430
431 bio_for_each_segment_all(bv, b->bio, j)
432 memcpy(page_address(bv->bv_page),
433 base + j * PAGE_SIZE, PAGE_SIZE);
434
435 bch_submit_bbio(b->bio, b->c, &k.key, 0);
436
437 continue_at(cl, btree_node_write_done, NULL);
438 } else {
439 /*
440 * No problem for multipage bvec since the bio is
441 * just allocated
442 */
443 b->bio->bi_vcnt = 0;
444 bch_bio_map(b->bio, i);
445
446 bch_submit_bbio(b->bio, b->c, &k.key, 0);
447
448 closure_sync(cl);
449 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
450 }
451 }
452
__bch_btree_node_write(struct btree * b,struct closure * parent)453 void __bch_btree_node_write(struct btree *b, struct closure *parent)
454 {
455 struct bset *i = btree_bset_last(b);
456
457 lockdep_assert_held(&b->write_lock);
458
459 trace_bcache_btree_write(b);
460
461 BUG_ON(current->bio_list);
462 BUG_ON(b->written >= btree_blocks(b));
463 BUG_ON(b->written && !i->keys);
464 BUG_ON(btree_bset_first(b)->seq != i->seq);
465 bch_check_keys(&b->keys, "writing");
466
467 cancel_delayed_work(&b->work);
468
469 /* If caller isn't waiting for write, parent refcount is cache set */
470 down(&b->io_mutex);
471 closure_init(&b->io, parent ?: &b->c->cl);
472
473 clear_bit(BTREE_NODE_dirty, &b->flags);
474 change_bit(BTREE_NODE_write_idx, &b->flags);
475
476 do_btree_node_write(b);
477
478 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
479 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
480
481 b->written += set_blocks(i, block_bytes(b->c));
482 }
483
bch_btree_node_write(struct btree * b,struct closure * parent)484 void bch_btree_node_write(struct btree *b, struct closure *parent)
485 {
486 unsigned int nsets = b->keys.nsets;
487
488 lockdep_assert_held(&b->lock);
489
490 __bch_btree_node_write(b, parent);
491
492 /*
493 * do verify if there was more than one set initially (i.e. we did a
494 * sort) and we sorted down to a single set:
495 */
496 if (nsets && !b->keys.nsets)
497 bch_btree_verify(b);
498
499 bch_btree_init_next(b);
500 }
501
bch_btree_node_write_sync(struct btree * b)502 static void bch_btree_node_write_sync(struct btree *b)
503 {
504 struct closure cl;
505
506 closure_init_stack(&cl);
507
508 mutex_lock(&b->write_lock);
509 bch_btree_node_write(b, &cl);
510 mutex_unlock(&b->write_lock);
511
512 closure_sync(&cl);
513 }
514
btree_node_write_work(struct work_struct * w)515 static void btree_node_write_work(struct work_struct *w)
516 {
517 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
518
519 mutex_lock(&b->write_lock);
520 if (btree_node_dirty(b))
521 __bch_btree_node_write(b, NULL);
522 mutex_unlock(&b->write_lock);
523 }
524
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)525 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
526 {
527 struct bset *i = btree_bset_last(b);
528 struct btree_write *w = btree_current_write(b);
529
530 lockdep_assert_held(&b->write_lock);
531
532 BUG_ON(!b->written);
533 BUG_ON(!i->keys);
534
535 if (!btree_node_dirty(b))
536 schedule_delayed_work(&b->work, 30 * HZ);
537
538 set_btree_node_dirty(b);
539
540 if (journal_ref) {
541 if (w->journal &&
542 journal_pin_cmp(b->c, w->journal, journal_ref)) {
543 atomic_dec_bug(w->journal);
544 w->journal = NULL;
545 }
546
547 if (!w->journal) {
548 w->journal = journal_ref;
549 atomic_inc(w->journal);
550 }
551 }
552
553 /* Force write if set is too big */
554 if (set_bytes(i) > PAGE_SIZE - 48 &&
555 !current->bio_list)
556 bch_btree_node_write(b, NULL);
557 }
558
559 /*
560 * Btree in memory cache - allocation/freeing
561 * mca -> memory cache
562 */
563
564 #define mca_reserve(c) (((c->root && c->root->level) \
565 ? c->root->level : 1) * 8 + 16)
566 #define mca_can_free(c) \
567 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
568
mca_data_free(struct btree * b)569 static void mca_data_free(struct btree *b)
570 {
571 BUG_ON(b->io_mutex.count != 1);
572
573 bch_btree_keys_free(&b->keys);
574
575 b->c->btree_cache_used--;
576 list_move(&b->list, &b->c->btree_cache_freed);
577 }
578
mca_bucket_free(struct btree * b)579 static void mca_bucket_free(struct btree *b)
580 {
581 BUG_ON(btree_node_dirty(b));
582
583 b->key.ptr[0] = 0;
584 hlist_del_init_rcu(&b->hash);
585 list_move(&b->list, &b->c->btree_cache_freeable);
586 }
587
btree_order(struct bkey * k)588 static unsigned int btree_order(struct bkey *k)
589 {
590 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
591 }
592
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)593 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
594 {
595 if (!bch_btree_keys_alloc(&b->keys,
596 max_t(unsigned int,
597 ilog2(b->c->btree_pages),
598 btree_order(k)),
599 gfp)) {
600 b->c->btree_cache_used++;
601 list_move(&b->list, &b->c->btree_cache);
602 } else {
603 list_move(&b->list, &b->c->btree_cache_freed);
604 }
605 }
606
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)607 static struct btree *mca_bucket_alloc(struct cache_set *c,
608 struct bkey *k, gfp_t gfp)
609 {
610 struct btree *b = kzalloc(sizeof(struct btree), gfp);
611
612 if (!b)
613 return NULL;
614
615 init_rwsem(&b->lock);
616 lockdep_set_novalidate_class(&b->lock);
617 mutex_init(&b->write_lock);
618 lockdep_set_novalidate_class(&b->write_lock);
619 INIT_LIST_HEAD(&b->list);
620 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
621 b->c = c;
622 sema_init(&b->io_mutex, 1);
623
624 mca_data_alloc(b, k, gfp);
625 return b;
626 }
627
mca_reap(struct btree * b,unsigned int min_order,bool flush)628 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
629 {
630 struct closure cl;
631
632 closure_init_stack(&cl);
633 lockdep_assert_held(&b->c->bucket_lock);
634
635 if (!down_write_trylock(&b->lock))
636 return -ENOMEM;
637
638 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
639
640 if (b->keys.page_order < min_order)
641 goto out_unlock;
642
643 if (!flush) {
644 if (btree_node_dirty(b))
645 goto out_unlock;
646
647 if (down_trylock(&b->io_mutex))
648 goto out_unlock;
649 up(&b->io_mutex);
650 }
651
652 mutex_lock(&b->write_lock);
653 if (btree_node_dirty(b))
654 __bch_btree_node_write(b, &cl);
655 mutex_unlock(&b->write_lock);
656
657 closure_sync(&cl);
658
659 /* wait for any in flight btree write */
660 down(&b->io_mutex);
661 up(&b->io_mutex);
662
663 return 0;
664 out_unlock:
665 rw_unlock(true, b);
666 return -ENOMEM;
667 }
668
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)669 static unsigned long bch_mca_scan(struct shrinker *shrink,
670 struct shrink_control *sc)
671 {
672 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
673 struct btree *b, *t;
674 unsigned long i, nr = sc->nr_to_scan;
675 unsigned long freed = 0;
676 unsigned int btree_cache_used;
677
678 if (c->shrinker_disabled)
679 return SHRINK_STOP;
680
681 if (c->btree_cache_alloc_lock)
682 return SHRINK_STOP;
683
684 /* Return -1 if we can't do anything right now */
685 if (sc->gfp_mask & __GFP_IO)
686 mutex_lock(&c->bucket_lock);
687 else if (!mutex_trylock(&c->bucket_lock))
688 return -1;
689
690 /*
691 * It's _really_ critical that we don't free too many btree nodes - we
692 * have to always leave ourselves a reserve. The reserve is how we
693 * guarantee that allocating memory for a new btree node can always
694 * succeed, so that inserting keys into the btree can always succeed and
695 * IO can always make forward progress:
696 */
697 nr /= c->btree_pages;
698 nr = min_t(unsigned long, nr, mca_can_free(c));
699
700 i = 0;
701 btree_cache_used = c->btree_cache_used;
702 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
703 if (nr <= 0)
704 goto out;
705
706 if (++i > 3 &&
707 !mca_reap(b, 0, false)) {
708 mca_data_free(b);
709 rw_unlock(true, b);
710 freed++;
711 }
712 nr--;
713 }
714
715 for (; (nr--) && i < btree_cache_used; i++) {
716 if (list_empty(&c->btree_cache))
717 goto out;
718
719 b = list_first_entry(&c->btree_cache, struct btree, list);
720 list_rotate_left(&c->btree_cache);
721
722 if (!b->accessed &&
723 !mca_reap(b, 0, false)) {
724 mca_bucket_free(b);
725 mca_data_free(b);
726 rw_unlock(true, b);
727 freed++;
728 } else
729 b->accessed = 0;
730 }
731 out:
732 mutex_unlock(&c->bucket_lock);
733 return freed * c->btree_pages;
734 }
735
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)736 static unsigned long bch_mca_count(struct shrinker *shrink,
737 struct shrink_control *sc)
738 {
739 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
740
741 if (c->shrinker_disabled)
742 return 0;
743
744 if (c->btree_cache_alloc_lock)
745 return 0;
746
747 return mca_can_free(c) * c->btree_pages;
748 }
749
bch_btree_cache_free(struct cache_set * c)750 void bch_btree_cache_free(struct cache_set *c)
751 {
752 struct btree *b;
753 struct closure cl;
754
755 closure_init_stack(&cl);
756
757 if (c->shrink.list.next)
758 unregister_shrinker(&c->shrink);
759
760 mutex_lock(&c->bucket_lock);
761
762 #ifdef CONFIG_BCACHE_DEBUG
763 if (c->verify_data)
764 list_move(&c->verify_data->list, &c->btree_cache);
765
766 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
767 #endif
768
769 list_splice(&c->btree_cache_freeable,
770 &c->btree_cache);
771
772 while (!list_empty(&c->btree_cache)) {
773 b = list_first_entry(&c->btree_cache, struct btree, list);
774
775 if (btree_node_dirty(b))
776 btree_complete_write(b, btree_current_write(b));
777 clear_bit(BTREE_NODE_dirty, &b->flags);
778
779 mca_data_free(b);
780 }
781
782 while (!list_empty(&c->btree_cache_freed)) {
783 b = list_first_entry(&c->btree_cache_freed,
784 struct btree, list);
785 list_del(&b->list);
786 cancel_delayed_work_sync(&b->work);
787 kfree(b);
788 }
789
790 mutex_unlock(&c->bucket_lock);
791 }
792
bch_btree_cache_alloc(struct cache_set * c)793 int bch_btree_cache_alloc(struct cache_set *c)
794 {
795 unsigned int i;
796
797 for (i = 0; i < mca_reserve(c); i++)
798 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
799 return -ENOMEM;
800
801 list_splice_init(&c->btree_cache,
802 &c->btree_cache_freeable);
803
804 #ifdef CONFIG_BCACHE_DEBUG
805 mutex_init(&c->verify_lock);
806
807 c->verify_ondisk = (void *)
808 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
809
810 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
811
812 if (c->verify_data &&
813 c->verify_data->keys.set->data)
814 list_del_init(&c->verify_data->list);
815 else
816 c->verify_data = NULL;
817 #endif
818
819 c->shrink.count_objects = bch_mca_count;
820 c->shrink.scan_objects = bch_mca_scan;
821 c->shrink.seeks = 4;
822 c->shrink.batch = c->btree_pages * 2;
823
824 if (register_shrinker(&c->shrink))
825 pr_warn("bcache: %s: could not register shrinker",
826 __func__);
827
828 return 0;
829 }
830
831 /* Btree in memory cache - hash table */
832
mca_hash(struct cache_set * c,struct bkey * k)833 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
834 {
835 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
836 }
837
mca_find(struct cache_set * c,struct bkey * k)838 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
839 {
840 struct btree *b;
841
842 rcu_read_lock();
843 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
844 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
845 goto out;
846 b = NULL;
847 out:
848 rcu_read_unlock();
849 return b;
850 }
851
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)852 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
853 {
854 struct task_struct *old;
855
856 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
857 if (old && old != current) {
858 if (op)
859 prepare_to_wait(&c->btree_cache_wait, &op->wait,
860 TASK_UNINTERRUPTIBLE);
861 return -EINTR;
862 }
863
864 return 0;
865 }
866
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)867 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
868 struct bkey *k)
869 {
870 struct btree *b;
871
872 trace_bcache_btree_cache_cannibalize(c);
873
874 if (mca_cannibalize_lock(c, op))
875 return ERR_PTR(-EINTR);
876
877 list_for_each_entry_reverse(b, &c->btree_cache, list)
878 if (!mca_reap(b, btree_order(k), false))
879 return b;
880
881 list_for_each_entry_reverse(b, &c->btree_cache, list)
882 if (!mca_reap(b, btree_order(k), true))
883 return b;
884
885 WARN(1, "btree cache cannibalize failed\n");
886 return ERR_PTR(-ENOMEM);
887 }
888
889 /*
890 * We can only have one thread cannibalizing other cached btree nodes at a time,
891 * or we'll deadlock. We use an open coded mutex to ensure that, which a
892 * cannibalize_bucket() will take. This means every time we unlock the root of
893 * the btree, we need to release this lock if we have it held.
894 */
bch_cannibalize_unlock(struct cache_set * c)895 static void bch_cannibalize_unlock(struct cache_set *c)
896 {
897 if (c->btree_cache_alloc_lock == current) {
898 c->btree_cache_alloc_lock = NULL;
899 wake_up(&c->btree_cache_wait);
900 }
901 }
902
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)903 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
904 struct bkey *k, int level)
905 {
906 struct btree *b;
907
908 BUG_ON(current->bio_list);
909
910 lockdep_assert_held(&c->bucket_lock);
911
912 if (mca_find(c, k))
913 return NULL;
914
915 /* btree_free() doesn't free memory; it sticks the node on the end of
916 * the list. Check if there's any freed nodes there:
917 */
918 list_for_each_entry(b, &c->btree_cache_freeable, list)
919 if (!mca_reap(b, btree_order(k), false))
920 goto out;
921
922 /* We never free struct btree itself, just the memory that holds the on
923 * disk node. Check the freed list before allocating a new one:
924 */
925 list_for_each_entry(b, &c->btree_cache_freed, list)
926 if (!mca_reap(b, 0, false)) {
927 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
928 if (!b->keys.set[0].data)
929 goto err;
930 else
931 goto out;
932 }
933
934 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
935 if (!b)
936 goto err;
937
938 BUG_ON(!down_write_trylock(&b->lock));
939 if (!b->keys.set->data)
940 goto err;
941 out:
942 BUG_ON(b->io_mutex.count != 1);
943
944 bkey_copy(&b->key, k);
945 list_move(&b->list, &c->btree_cache);
946 hlist_del_init_rcu(&b->hash);
947 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
948
949 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
950 b->parent = (void *) ~0UL;
951 b->flags = 0;
952 b->written = 0;
953 b->level = level;
954
955 if (!b->level)
956 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
957 &b->c->expensive_debug_checks);
958 else
959 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
960 &b->c->expensive_debug_checks);
961
962 return b;
963 err:
964 if (b)
965 rw_unlock(true, b);
966
967 b = mca_cannibalize(c, op, k);
968 if (!IS_ERR(b))
969 goto out;
970
971 return b;
972 }
973
974 /*
975 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
976 * in from disk if necessary.
977 *
978 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
979 *
980 * The btree node will have either a read or a write lock held, depending on
981 * level and op->lock.
982 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)983 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
984 struct bkey *k, int level, bool write,
985 struct btree *parent)
986 {
987 int i = 0;
988 struct btree *b;
989
990 BUG_ON(level < 0);
991 retry:
992 b = mca_find(c, k);
993
994 if (!b) {
995 if (current->bio_list)
996 return ERR_PTR(-EAGAIN);
997
998 mutex_lock(&c->bucket_lock);
999 b = mca_alloc(c, op, k, level);
1000 mutex_unlock(&c->bucket_lock);
1001
1002 if (!b)
1003 goto retry;
1004 if (IS_ERR(b))
1005 return b;
1006
1007 bch_btree_node_read(b);
1008
1009 if (!write)
1010 downgrade_write(&b->lock);
1011 } else {
1012 rw_lock(write, b, level);
1013 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1014 rw_unlock(write, b);
1015 goto retry;
1016 }
1017 BUG_ON(b->level != level);
1018 }
1019
1020 if (btree_node_io_error(b)) {
1021 rw_unlock(write, b);
1022 return ERR_PTR(-EIO);
1023 }
1024
1025 BUG_ON(!b->written);
1026
1027 b->parent = parent;
1028 b->accessed = 1;
1029
1030 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1031 prefetch(b->keys.set[i].tree);
1032 prefetch(b->keys.set[i].data);
1033 }
1034
1035 for (; i <= b->keys.nsets; i++)
1036 prefetch(b->keys.set[i].data);
1037
1038 return b;
1039 }
1040
btree_node_prefetch(struct btree * parent,struct bkey * k)1041 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1042 {
1043 struct btree *b;
1044
1045 mutex_lock(&parent->c->bucket_lock);
1046 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1047 mutex_unlock(&parent->c->bucket_lock);
1048
1049 if (!IS_ERR_OR_NULL(b)) {
1050 b->parent = parent;
1051 bch_btree_node_read(b);
1052 rw_unlock(true, b);
1053 }
1054 }
1055
1056 /* Btree alloc */
1057
btree_node_free(struct btree * b)1058 static void btree_node_free(struct btree *b)
1059 {
1060 trace_bcache_btree_node_free(b);
1061
1062 BUG_ON(b == b->c->root);
1063
1064 mutex_lock(&b->write_lock);
1065
1066 if (btree_node_dirty(b))
1067 btree_complete_write(b, btree_current_write(b));
1068 clear_bit(BTREE_NODE_dirty, &b->flags);
1069
1070 mutex_unlock(&b->write_lock);
1071
1072 cancel_delayed_work(&b->work);
1073
1074 mutex_lock(&b->c->bucket_lock);
1075 bch_bucket_free(b->c, &b->key);
1076 mca_bucket_free(b);
1077 mutex_unlock(&b->c->bucket_lock);
1078 }
1079
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1080 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1081 int level, bool wait,
1082 struct btree *parent)
1083 {
1084 BKEY_PADDED(key) k;
1085 struct btree *b = ERR_PTR(-EAGAIN);
1086
1087 mutex_lock(&c->bucket_lock);
1088 retry:
1089 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1090 goto err;
1091
1092 bkey_put(c, &k.key);
1093 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1094
1095 b = mca_alloc(c, op, &k.key, level);
1096 if (IS_ERR(b))
1097 goto err_free;
1098
1099 if (!b) {
1100 cache_bug(c,
1101 "Tried to allocate bucket that was in btree cache");
1102 goto retry;
1103 }
1104
1105 b->accessed = 1;
1106 b->parent = parent;
1107 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1108
1109 mutex_unlock(&c->bucket_lock);
1110
1111 trace_bcache_btree_node_alloc(b);
1112 return b;
1113 err_free:
1114 bch_bucket_free(c, &k.key);
1115 err:
1116 mutex_unlock(&c->bucket_lock);
1117
1118 trace_bcache_btree_node_alloc_fail(c);
1119 return b;
1120 }
1121
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1122 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1123 struct btree_op *op, int level,
1124 struct btree *parent)
1125 {
1126 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1127 }
1128
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1129 static struct btree *btree_node_alloc_replacement(struct btree *b,
1130 struct btree_op *op)
1131 {
1132 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1133
1134 if (!IS_ERR_OR_NULL(n)) {
1135 mutex_lock(&n->write_lock);
1136 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1137 bkey_copy_key(&n->key, &b->key);
1138 mutex_unlock(&n->write_lock);
1139 }
1140
1141 return n;
1142 }
1143
make_btree_freeing_key(struct btree * b,struct bkey * k)1144 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1145 {
1146 unsigned int i;
1147
1148 mutex_lock(&b->c->bucket_lock);
1149
1150 atomic_inc(&b->c->prio_blocked);
1151
1152 bkey_copy(k, &b->key);
1153 bkey_copy_key(k, &ZERO_KEY);
1154
1155 for (i = 0; i < KEY_PTRS(k); i++)
1156 SET_PTR_GEN(k, i,
1157 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1158 PTR_BUCKET(b->c, &b->key, i)));
1159
1160 mutex_unlock(&b->c->bucket_lock);
1161 }
1162
btree_check_reserve(struct btree * b,struct btree_op * op)1163 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1164 {
1165 struct cache_set *c = b->c;
1166 struct cache *ca;
1167 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1168
1169 mutex_lock(&c->bucket_lock);
1170
1171 for_each_cache(ca, c, i)
1172 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1173 if (op)
1174 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1175 TASK_UNINTERRUPTIBLE);
1176 mutex_unlock(&c->bucket_lock);
1177 return -EINTR;
1178 }
1179
1180 mutex_unlock(&c->bucket_lock);
1181
1182 return mca_cannibalize_lock(b->c, op);
1183 }
1184
1185 /* Garbage collection */
1186
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1187 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1188 struct bkey *k)
1189 {
1190 uint8_t stale = 0;
1191 unsigned int i;
1192 struct bucket *g;
1193
1194 /*
1195 * ptr_invalid() can't return true for the keys that mark btree nodes as
1196 * freed, but since ptr_bad() returns true we'll never actually use them
1197 * for anything and thus we don't want mark their pointers here
1198 */
1199 if (!bkey_cmp(k, &ZERO_KEY))
1200 return stale;
1201
1202 for (i = 0; i < KEY_PTRS(k); i++) {
1203 if (!ptr_available(c, k, i))
1204 continue;
1205
1206 g = PTR_BUCKET(c, k, i);
1207
1208 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1209 g->last_gc = PTR_GEN(k, i);
1210
1211 if (ptr_stale(c, k, i)) {
1212 stale = max(stale, ptr_stale(c, k, i));
1213 continue;
1214 }
1215
1216 cache_bug_on(GC_MARK(g) &&
1217 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1218 c, "inconsistent ptrs: mark = %llu, level = %i",
1219 GC_MARK(g), level);
1220
1221 if (level)
1222 SET_GC_MARK(g, GC_MARK_METADATA);
1223 else if (KEY_DIRTY(k))
1224 SET_GC_MARK(g, GC_MARK_DIRTY);
1225 else if (!GC_MARK(g))
1226 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1227
1228 /* guard against overflow */
1229 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1230 GC_SECTORS_USED(g) + KEY_SIZE(k),
1231 MAX_GC_SECTORS_USED));
1232
1233 BUG_ON(!GC_SECTORS_USED(g));
1234 }
1235
1236 return stale;
1237 }
1238
1239 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1240
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1241 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1242 {
1243 unsigned int i;
1244
1245 for (i = 0; i < KEY_PTRS(k); i++)
1246 if (ptr_available(c, k, i) &&
1247 !ptr_stale(c, k, i)) {
1248 struct bucket *b = PTR_BUCKET(c, k, i);
1249
1250 b->gen = PTR_GEN(k, i);
1251
1252 if (level && bkey_cmp(k, &ZERO_KEY))
1253 b->prio = BTREE_PRIO;
1254 else if (!level && b->prio == BTREE_PRIO)
1255 b->prio = INITIAL_PRIO;
1256 }
1257
1258 __bch_btree_mark_key(c, level, k);
1259 }
1260
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1261 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1262 {
1263 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1264 }
1265
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1266 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1267 {
1268 uint8_t stale = 0;
1269 unsigned int keys = 0, good_keys = 0;
1270 struct bkey *k;
1271 struct btree_iter iter;
1272 struct bset_tree *t;
1273
1274 gc->nodes++;
1275
1276 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1277 stale = max(stale, btree_mark_key(b, k));
1278 keys++;
1279
1280 if (bch_ptr_bad(&b->keys, k))
1281 continue;
1282
1283 gc->key_bytes += bkey_u64s(k);
1284 gc->nkeys++;
1285 good_keys++;
1286
1287 gc->data += KEY_SIZE(k);
1288 }
1289
1290 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1291 btree_bug_on(t->size &&
1292 bset_written(&b->keys, t) &&
1293 bkey_cmp(&b->key, &t->end) < 0,
1294 b, "found short btree key in gc");
1295
1296 if (b->c->gc_always_rewrite)
1297 return true;
1298
1299 if (stale > 10)
1300 return true;
1301
1302 if ((keys - good_keys) * 2 > keys)
1303 return true;
1304
1305 return false;
1306 }
1307
1308 #define GC_MERGE_NODES 4U
1309
1310 struct gc_merge_info {
1311 struct btree *b;
1312 unsigned int keys;
1313 };
1314
1315 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1316 struct keylist *insert_keys,
1317 atomic_t *journal_ref,
1318 struct bkey *replace_key);
1319
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1320 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1321 struct gc_stat *gc, struct gc_merge_info *r)
1322 {
1323 unsigned int i, nodes = 0, keys = 0, blocks;
1324 struct btree *new_nodes[GC_MERGE_NODES];
1325 struct keylist keylist;
1326 struct closure cl;
1327 struct bkey *k;
1328
1329 bch_keylist_init(&keylist);
1330
1331 if (btree_check_reserve(b, NULL))
1332 return 0;
1333
1334 memset(new_nodes, 0, sizeof(new_nodes));
1335 closure_init_stack(&cl);
1336
1337 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1338 keys += r[nodes++].keys;
1339
1340 blocks = btree_default_blocks(b->c) * 2 / 3;
1341
1342 if (nodes < 2 ||
1343 __set_blocks(b->keys.set[0].data, keys,
1344 block_bytes(b->c)) > blocks * (nodes - 1))
1345 return 0;
1346
1347 for (i = 0; i < nodes; i++) {
1348 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1349 if (IS_ERR_OR_NULL(new_nodes[i]))
1350 goto out_nocoalesce;
1351 }
1352
1353 /*
1354 * We have to check the reserve here, after we've allocated our new
1355 * nodes, to make sure the insert below will succeed - we also check
1356 * before as an optimization to potentially avoid a bunch of expensive
1357 * allocs/sorts
1358 */
1359 if (btree_check_reserve(b, NULL))
1360 goto out_nocoalesce;
1361
1362 for (i = 0; i < nodes; i++)
1363 mutex_lock(&new_nodes[i]->write_lock);
1364
1365 for (i = nodes - 1; i > 0; --i) {
1366 struct bset *n1 = btree_bset_first(new_nodes[i]);
1367 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1368 struct bkey *k, *last = NULL;
1369
1370 keys = 0;
1371
1372 if (i > 1) {
1373 for (k = n2->start;
1374 k < bset_bkey_last(n2);
1375 k = bkey_next(k)) {
1376 if (__set_blocks(n1, n1->keys + keys +
1377 bkey_u64s(k),
1378 block_bytes(b->c)) > blocks)
1379 break;
1380
1381 last = k;
1382 keys += bkey_u64s(k);
1383 }
1384 } else {
1385 /*
1386 * Last node we're not getting rid of - we're getting
1387 * rid of the node at r[0]. Have to try and fit all of
1388 * the remaining keys into this node; we can't ensure
1389 * they will always fit due to rounding and variable
1390 * length keys (shouldn't be possible in practice,
1391 * though)
1392 */
1393 if (__set_blocks(n1, n1->keys + n2->keys,
1394 block_bytes(b->c)) >
1395 btree_blocks(new_nodes[i]))
1396 goto out_nocoalesce;
1397
1398 keys = n2->keys;
1399 /* Take the key of the node we're getting rid of */
1400 last = &r->b->key;
1401 }
1402
1403 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1404 btree_blocks(new_nodes[i]));
1405
1406 if (last)
1407 bkey_copy_key(&new_nodes[i]->key, last);
1408
1409 memcpy(bset_bkey_last(n1),
1410 n2->start,
1411 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1412
1413 n1->keys += keys;
1414 r[i].keys = n1->keys;
1415
1416 memmove(n2->start,
1417 bset_bkey_idx(n2, keys),
1418 (void *) bset_bkey_last(n2) -
1419 (void *) bset_bkey_idx(n2, keys));
1420
1421 n2->keys -= keys;
1422
1423 if (__bch_keylist_realloc(&keylist,
1424 bkey_u64s(&new_nodes[i]->key)))
1425 goto out_nocoalesce;
1426
1427 bch_btree_node_write(new_nodes[i], &cl);
1428 bch_keylist_add(&keylist, &new_nodes[i]->key);
1429 }
1430
1431 for (i = 0; i < nodes; i++)
1432 mutex_unlock(&new_nodes[i]->write_lock);
1433
1434 closure_sync(&cl);
1435
1436 /* We emptied out this node */
1437 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1438 btree_node_free(new_nodes[0]);
1439 rw_unlock(true, new_nodes[0]);
1440 new_nodes[0] = NULL;
1441
1442 for (i = 0; i < nodes; i++) {
1443 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1444 goto out_nocoalesce;
1445
1446 make_btree_freeing_key(r[i].b, keylist.top);
1447 bch_keylist_push(&keylist);
1448 }
1449
1450 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1451 BUG_ON(!bch_keylist_empty(&keylist));
1452
1453 for (i = 0; i < nodes; i++) {
1454 btree_node_free(r[i].b);
1455 rw_unlock(true, r[i].b);
1456
1457 r[i].b = new_nodes[i];
1458 }
1459
1460 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1461 r[nodes - 1].b = ERR_PTR(-EINTR);
1462
1463 trace_bcache_btree_gc_coalesce(nodes);
1464 gc->nodes--;
1465
1466 bch_keylist_free(&keylist);
1467
1468 /* Invalidated our iterator */
1469 return -EINTR;
1470
1471 out_nocoalesce:
1472 closure_sync(&cl);
1473 bch_keylist_free(&keylist);
1474
1475 while ((k = bch_keylist_pop(&keylist)))
1476 if (!bkey_cmp(k, &ZERO_KEY))
1477 atomic_dec(&b->c->prio_blocked);
1478
1479 for (i = 0; i < nodes; i++)
1480 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1481 btree_node_free(new_nodes[i]);
1482 rw_unlock(true, new_nodes[i]);
1483 }
1484 return 0;
1485 }
1486
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1487 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1488 struct btree *replace)
1489 {
1490 struct keylist keys;
1491 struct btree *n;
1492
1493 if (btree_check_reserve(b, NULL))
1494 return 0;
1495
1496 n = btree_node_alloc_replacement(replace, NULL);
1497
1498 /* recheck reserve after allocating replacement node */
1499 if (btree_check_reserve(b, NULL)) {
1500 btree_node_free(n);
1501 rw_unlock(true, n);
1502 return 0;
1503 }
1504
1505 bch_btree_node_write_sync(n);
1506
1507 bch_keylist_init(&keys);
1508 bch_keylist_add(&keys, &n->key);
1509
1510 make_btree_freeing_key(replace, keys.top);
1511 bch_keylist_push(&keys);
1512
1513 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1514 BUG_ON(!bch_keylist_empty(&keys));
1515
1516 btree_node_free(replace);
1517 rw_unlock(true, n);
1518
1519 /* Invalidated our iterator */
1520 return -EINTR;
1521 }
1522
btree_gc_count_keys(struct btree * b)1523 static unsigned int btree_gc_count_keys(struct btree *b)
1524 {
1525 struct bkey *k;
1526 struct btree_iter iter;
1527 unsigned int ret = 0;
1528
1529 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1530 ret += bkey_u64s(k);
1531
1532 return ret;
1533 }
1534
btree_gc_min_nodes(struct cache_set * c)1535 static size_t btree_gc_min_nodes(struct cache_set *c)
1536 {
1537 size_t min_nodes;
1538
1539 /*
1540 * Since incremental GC would stop 100ms when front
1541 * side I/O comes, so when there are many btree nodes,
1542 * if GC only processes constant (100) nodes each time,
1543 * GC would last a long time, and the front side I/Os
1544 * would run out of the buckets (since no new bucket
1545 * can be allocated during GC), and be blocked again.
1546 * So GC should not process constant nodes, but varied
1547 * nodes according to the number of btree nodes, which
1548 * realized by dividing GC into constant(100) times,
1549 * so when there are many btree nodes, GC can process
1550 * more nodes each time, otherwise, GC will process less
1551 * nodes each time (but no less than MIN_GC_NODES)
1552 */
1553 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1554 if (min_nodes < MIN_GC_NODES)
1555 min_nodes = MIN_GC_NODES;
1556
1557 return min_nodes;
1558 }
1559
1560
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1561 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1562 struct closure *writes, struct gc_stat *gc)
1563 {
1564 int ret = 0;
1565 bool should_rewrite;
1566 struct bkey *k;
1567 struct btree_iter iter;
1568 struct gc_merge_info r[GC_MERGE_NODES];
1569 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1570
1571 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1572
1573 for (i = r; i < r + ARRAY_SIZE(r); i++)
1574 i->b = ERR_PTR(-EINTR);
1575
1576 while (1) {
1577 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1578 if (k) {
1579 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1580 true, b);
1581 if (IS_ERR(r->b)) {
1582 ret = PTR_ERR(r->b);
1583 break;
1584 }
1585
1586 r->keys = btree_gc_count_keys(r->b);
1587
1588 ret = btree_gc_coalesce(b, op, gc, r);
1589 if (ret)
1590 break;
1591 }
1592
1593 if (!last->b)
1594 break;
1595
1596 if (!IS_ERR(last->b)) {
1597 should_rewrite = btree_gc_mark_node(last->b, gc);
1598 if (should_rewrite) {
1599 ret = btree_gc_rewrite_node(b, op, last->b);
1600 if (ret)
1601 break;
1602 }
1603
1604 if (last->b->level) {
1605 ret = btree_gc_recurse(last->b, op, writes, gc);
1606 if (ret)
1607 break;
1608 }
1609
1610 bkey_copy_key(&b->c->gc_done, &last->b->key);
1611
1612 /*
1613 * Must flush leaf nodes before gc ends, since replace
1614 * operations aren't journalled
1615 */
1616 mutex_lock(&last->b->write_lock);
1617 if (btree_node_dirty(last->b))
1618 bch_btree_node_write(last->b, writes);
1619 mutex_unlock(&last->b->write_lock);
1620 rw_unlock(true, last->b);
1621 }
1622
1623 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1624 r->b = NULL;
1625
1626 if (atomic_read(&b->c->search_inflight) &&
1627 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1628 gc->nodes_pre = gc->nodes;
1629 ret = -EAGAIN;
1630 break;
1631 }
1632
1633 if (need_resched()) {
1634 ret = -EAGAIN;
1635 break;
1636 }
1637 }
1638
1639 for (i = r; i < r + ARRAY_SIZE(r); i++)
1640 if (!IS_ERR_OR_NULL(i->b)) {
1641 mutex_lock(&i->b->write_lock);
1642 if (btree_node_dirty(i->b))
1643 bch_btree_node_write(i->b, writes);
1644 mutex_unlock(&i->b->write_lock);
1645 rw_unlock(true, i->b);
1646 }
1647
1648 return ret;
1649 }
1650
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1651 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1652 struct closure *writes, struct gc_stat *gc)
1653 {
1654 struct btree *n = NULL;
1655 int ret = 0;
1656 bool should_rewrite;
1657
1658 should_rewrite = btree_gc_mark_node(b, gc);
1659 if (should_rewrite) {
1660 n = btree_node_alloc_replacement(b, NULL);
1661
1662 if (!IS_ERR_OR_NULL(n)) {
1663 bch_btree_node_write_sync(n);
1664
1665 bch_btree_set_root(n);
1666 btree_node_free(b);
1667 rw_unlock(true, n);
1668
1669 return -EINTR;
1670 }
1671 }
1672
1673 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1674
1675 if (b->level) {
1676 ret = btree_gc_recurse(b, op, writes, gc);
1677 if (ret)
1678 return ret;
1679 }
1680
1681 bkey_copy_key(&b->c->gc_done, &b->key);
1682
1683 return ret;
1684 }
1685
btree_gc_start(struct cache_set * c)1686 static void btree_gc_start(struct cache_set *c)
1687 {
1688 struct cache *ca;
1689 struct bucket *b;
1690 unsigned int i;
1691
1692 if (!c->gc_mark_valid)
1693 return;
1694
1695 mutex_lock(&c->bucket_lock);
1696
1697 c->gc_mark_valid = 0;
1698 c->gc_done = ZERO_KEY;
1699
1700 for_each_cache(ca, c, i)
1701 for_each_bucket(b, ca) {
1702 b->last_gc = b->gen;
1703 if (!atomic_read(&b->pin)) {
1704 SET_GC_MARK(b, 0);
1705 SET_GC_SECTORS_USED(b, 0);
1706 }
1707 }
1708
1709 mutex_unlock(&c->bucket_lock);
1710 }
1711
bch_btree_gc_finish(struct cache_set * c)1712 static void bch_btree_gc_finish(struct cache_set *c)
1713 {
1714 struct bucket *b;
1715 struct cache *ca;
1716 unsigned int i;
1717
1718 mutex_lock(&c->bucket_lock);
1719
1720 set_gc_sectors(c);
1721 c->gc_mark_valid = 1;
1722 c->need_gc = 0;
1723
1724 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1725 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1726 GC_MARK_METADATA);
1727
1728 /* don't reclaim buckets to which writeback keys point */
1729 rcu_read_lock();
1730 for (i = 0; i < c->devices_max_used; i++) {
1731 struct bcache_device *d = c->devices[i];
1732 struct cached_dev *dc;
1733 struct keybuf_key *w, *n;
1734 unsigned int j;
1735
1736 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1737 continue;
1738 dc = container_of(d, struct cached_dev, disk);
1739
1740 spin_lock(&dc->writeback_keys.lock);
1741 rbtree_postorder_for_each_entry_safe(w, n,
1742 &dc->writeback_keys.keys, node)
1743 for (j = 0; j < KEY_PTRS(&w->key); j++)
1744 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1745 GC_MARK_DIRTY);
1746 spin_unlock(&dc->writeback_keys.lock);
1747 }
1748 rcu_read_unlock();
1749
1750 c->avail_nbuckets = 0;
1751 for_each_cache(ca, c, i) {
1752 uint64_t *i;
1753
1754 ca->invalidate_needs_gc = 0;
1755
1756 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1757 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1758
1759 for (i = ca->prio_buckets;
1760 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1761 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1762
1763 for_each_bucket(b, ca) {
1764 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1765
1766 if (atomic_read(&b->pin))
1767 continue;
1768
1769 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1770
1771 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1772 c->avail_nbuckets++;
1773 }
1774 }
1775
1776 mutex_unlock(&c->bucket_lock);
1777 }
1778
bch_btree_gc(struct cache_set * c)1779 static void bch_btree_gc(struct cache_set *c)
1780 {
1781 int ret;
1782 struct gc_stat stats;
1783 struct closure writes;
1784 struct btree_op op;
1785 uint64_t start_time = local_clock();
1786
1787 trace_bcache_gc_start(c);
1788
1789 memset(&stats, 0, sizeof(struct gc_stat));
1790 closure_init_stack(&writes);
1791 bch_btree_op_init(&op, SHRT_MAX);
1792
1793 btree_gc_start(c);
1794
1795 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1796 do {
1797 ret = btree_root(gc_root, c, &op, &writes, &stats);
1798 closure_sync(&writes);
1799 cond_resched();
1800
1801 if (ret == -EAGAIN)
1802 schedule_timeout_interruptible(msecs_to_jiffies
1803 (GC_SLEEP_MS));
1804 else if (ret)
1805 pr_warn("gc failed!");
1806 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1807
1808 bch_btree_gc_finish(c);
1809 wake_up_allocators(c);
1810
1811 bch_time_stats_update(&c->btree_gc_time, start_time);
1812
1813 stats.key_bytes *= sizeof(uint64_t);
1814 stats.data <<= 9;
1815 bch_update_bucket_in_use(c, &stats);
1816 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1817
1818 trace_bcache_gc_end(c);
1819
1820 bch_moving_gc(c);
1821 }
1822
gc_should_run(struct cache_set * c)1823 static bool gc_should_run(struct cache_set *c)
1824 {
1825 struct cache *ca;
1826 unsigned int i;
1827
1828 for_each_cache(ca, c, i)
1829 if (ca->invalidate_needs_gc)
1830 return true;
1831
1832 if (atomic_read(&c->sectors_to_gc) < 0)
1833 return true;
1834
1835 return false;
1836 }
1837
bch_gc_thread(void * arg)1838 static int bch_gc_thread(void *arg)
1839 {
1840 struct cache_set *c = arg;
1841
1842 while (1) {
1843 wait_event_interruptible(c->gc_wait,
1844 kthread_should_stop() ||
1845 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1846 gc_should_run(c));
1847
1848 if (kthread_should_stop() ||
1849 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1850 break;
1851
1852 set_gc_sectors(c);
1853 bch_btree_gc(c);
1854 }
1855
1856 wait_for_kthread_stop();
1857 return 0;
1858 }
1859
bch_gc_thread_start(struct cache_set * c)1860 int bch_gc_thread_start(struct cache_set *c)
1861 {
1862 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1863 return PTR_ERR_OR_ZERO(c->gc_thread);
1864 }
1865
1866 /* Initial partial gc */
1867
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1868 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1869 {
1870 int ret = 0;
1871 struct bkey *k, *p = NULL;
1872 struct btree_iter iter;
1873
1874 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1875 bch_initial_mark_key(b->c, b->level, k);
1876
1877 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1878
1879 if (b->level) {
1880 bch_btree_iter_init(&b->keys, &iter, NULL);
1881
1882 do {
1883 k = bch_btree_iter_next_filter(&iter, &b->keys,
1884 bch_ptr_bad);
1885 if (k) {
1886 btree_node_prefetch(b, k);
1887 /*
1888 * initiallize c->gc_stats.nodes
1889 * for incremental GC
1890 */
1891 b->c->gc_stats.nodes++;
1892 }
1893
1894 if (p)
1895 ret = btree(check_recurse, p, b, op);
1896
1897 p = k;
1898 } while (p && !ret);
1899 }
1900
1901 return ret;
1902 }
1903
bch_btree_check(struct cache_set * c)1904 int bch_btree_check(struct cache_set *c)
1905 {
1906 struct btree_op op;
1907
1908 bch_btree_op_init(&op, SHRT_MAX);
1909
1910 return btree_root(check_recurse, c, &op);
1911 }
1912
bch_initial_gc_finish(struct cache_set * c)1913 void bch_initial_gc_finish(struct cache_set *c)
1914 {
1915 struct cache *ca;
1916 struct bucket *b;
1917 unsigned int i;
1918
1919 bch_btree_gc_finish(c);
1920
1921 mutex_lock(&c->bucket_lock);
1922
1923 /*
1924 * We need to put some unused buckets directly on the prio freelist in
1925 * order to get the allocator thread started - it needs freed buckets in
1926 * order to rewrite the prios and gens, and it needs to rewrite prios
1927 * and gens in order to free buckets.
1928 *
1929 * This is only safe for buckets that have no live data in them, which
1930 * there should always be some of.
1931 */
1932 for_each_cache(ca, c, i) {
1933 for_each_bucket(b, ca) {
1934 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1935 fifo_full(&ca->free[RESERVE_BTREE]))
1936 break;
1937
1938 if (bch_can_invalidate_bucket(ca, b) &&
1939 !GC_MARK(b)) {
1940 __bch_invalidate_one_bucket(ca, b);
1941 if (!fifo_push(&ca->free[RESERVE_PRIO],
1942 b - ca->buckets))
1943 fifo_push(&ca->free[RESERVE_BTREE],
1944 b - ca->buckets);
1945 }
1946 }
1947 }
1948
1949 mutex_unlock(&c->bucket_lock);
1950 }
1951
1952 /* Btree insertion */
1953
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)1954 static bool btree_insert_key(struct btree *b, struct bkey *k,
1955 struct bkey *replace_key)
1956 {
1957 unsigned int status;
1958
1959 BUG_ON(bkey_cmp(k, &b->key) > 0);
1960
1961 status = bch_btree_insert_key(&b->keys, k, replace_key);
1962 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1963 bch_check_keys(&b->keys, "%u for %s", status,
1964 replace_key ? "replace" : "insert");
1965
1966 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1967 status);
1968 return true;
1969 } else
1970 return false;
1971 }
1972
insert_u64s_remaining(struct btree * b)1973 static size_t insert_u64s_remaining(struct btree *b)
1974 {
1975 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1976
1977 /*
1978 * Might land in the middle of an existing extent and have to split it
1979 */
1980 if (b->keys.ops->is_extents)
1981 ret -= KEY_MAX_U64S;
1982
1983 return max(ret, 0L);
1984 }
1985
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)1986 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1987 struct keylist *insert_keys,
1988 struct bkey *replace_key)
1989 {
1990 bool ret = false;
1991 int oldsize = bch_count_data(&b->keys);
1992
1993 while (!bch_keylist_empty(insert_keys)) {
1994 struct bkey *k = insert_keys->keys;
1995
1996 if (bkey_u64s(k) > insert_u64s_remaining(b))
1997 break;
1998
1999 if (bkey_cmp(k, &b->key) <= 0) {
2000 if (!b->level)
2001 bkey_put(b->c, k);
2002
2003 ret |= btree_insert_key(b, k, replace_key);
2004 bch_keylist_pop_front(insert_keys);
2005 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2006 BKEY_PADDED(key) temp;
2007 bkey_copy(&temp.key, insert_keys->keys);
2008
2009 bch_cut_back(&b->key, &temp.key);
2010 bch_cut_front(&b->key, insert_keys->keys);
2011
2012 ret |= btree_insert_key(b, &temp.key, replace_key);
2013 break;
2014 } else {
2015 break;
2016 }
2017 }
2018
2019 if (!ret)
2020 op->insert_collision = true;
2021
2022 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2023
2024 BUG_ON(bch_count_data(&b->keys) < oldsize);
2025 return ret;
2026 }
2027
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2028 static int btree_split(struct btree *b, struct btree_op *op,
2029 struct keylist *insert_keys,
2030 struct bkey *replace_key)
2031 {
2032 bool split;
2033 struct btree *n1, *n2 = NULL, *n3 = NULL;
2034 uint64_t start_time = local_clock();
2035 struct closure cl;
2036 struct keylist parent_keys;
2037
2038 closure_init_stack(&cl);
2039 bch_keylist_init(&parent_keys);
2040
2041 if (btree_check_reserve(b, op)) {
2042 if (!b->level)
2043 return -EINTR;
2044 else
2045 WARN(1, "insufficient reserve for split\n");
2046 }
2047
2048 n1 = btree_node_alloc_replacement(b, op);
2049 if (IS_ERR(n1))
2050 goto err;
2051
2052 split = set_blocks(btree_bset_first(n1),
2053 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2054
2055 if (split) {
2056 unsigned int keys = 0;
2057
2058 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2059
2060 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2061 if (IS_ERR(n2))
2062 goto err_free1;
2063
2064 if (!b->parent) {
2065 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2066 if (IS_ERR(n3))
2067 goto err_free2;
2068 }
2069
2070 mutex_lock(&n1->write_lock);
2071 mutex_lock(&n2->write_lock);
2072
2073 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2074
2075 /*
2076 * Has to be a linear search because we don't have an auxiliary
2077 * search tree yet
2078 */
2079
2080 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2081 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2082 keys));
2083
2084 bkey_copy_key(&n1->key,
2085 bset_bkey_idx(btree_bset_first(n1), keys));
2086 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2087
2088 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2089 btree_bset_first(n1)->keys = keys;
2090
2091 memcpy(btree_bset_first(n2)->start,
2092 bset_bkey_last(btree_bset_first(n1)),
2093 btree_bset_first(n2)->keys * sizeof(uint64_t));
2094
2095 bkey_copy_key(&n2->key, &b->key);
2096
2097 bch_keylist_add(&parent_keys, &n2->key);
2098 bch_btree_node_write(n2, &cl);
2099 mutex_unlock(&n2->write_lock);
2100 rw_unlock(true, n2);
2101 } else {
2102 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2103
2104 mutex_lock(&n1->write_lock);
2105 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2106 }
2107
2108 bch_keylist_add(&parent_keys, &n1->key);
2109 bch_btree_node_write(n1, &cl);
2110 mutex_unlock(&n1->write_lock);
2111
2112 if (n3) {
2113 /* Depth increases, make a new root */
2114 mutex_lock(&n3->write_lock);
2115 bkey_copy_key(&n3->key, &MAX_KEY);
2116 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2117 bch_btree_node_write(n3, &cl);
2118 mutex_unlock(&n3->write_lock);
2119
2120 closure_sync(&cl);
2121 bch_btree_set_root(n3);
2122 rw_unlock(true, n3);
2123 } else if (!b->parent) {
2124 /* Root filled up but didn't need to be split */
2125 closure_sync(&cl);
2126 bch_btree_set_root(n1);
2127 } else {
2128 /* Split a non root node */
2129 closure_sync(&cl);
2130 make_btree_freeing_key(b, parent_keys.top);
2131 bch_keylist_push(&parent_keys);
2132
2133 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2134 BUG_ON(!bch_keylist_empty(&parent_keys));
2135 }
2136
2137 btree_node_free(b);
2138 rw_unlock(true, n1);
2139
2140 bch_time_stats_update(&b->c->btree_split_time, start_time);
2141
2142 return 0;
2143 err_free2:
2144 bkey_put(b->c, &n2->key);
2145 btree_node_free(n2);
2146 rw_unlock(true, n2);
2147 err_free1:
2148 bkey_put(b->c, &n1->key);
2149 btree_node_free(n1);
2150 rw_unlock(true, n1);
2151 err:
2152 WARN(1, "bcache: btree split failed (level %u)", b->level);
2153
2154 if (n3 == ERR_PTR(-EAGAIN) ||
2155 n2 == ERR_PTR(-EAGAIN) ||
2156 n1 == ERR_PTR(-EAGAIN))
2157 return -EAGAIN;
2158
2159 return -ENOMEM;
2160 }
2161
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2162 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2163 struct keylist *insert_keys,
2164 atomic_t *journal_ref,
2165 struct bkey *replace_key)
2166 {
2167 struct closure cl;
2168
2169 BUG_ON(b->level && replace_key);
2170
2171 closure_init_stack(&cl);
2172
2173 mutex_lock(&b->write_lock);
2174
2175 if (write_block(b) != btree_bset_last(b) &&
2176 b->keys.last_set_unwritten)
2177 bch_btree_init_next(b); /* just wrote a set */
2178
2179 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2180 mutex_unlock(&b->write_lock);
2181 goto split;
2182 }
2183
2184 BUG_ON(write_block(b) != btree_bset_last(b));
2185
2186 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2187 if (!b->level)
2188 bch_btree_leaf_dirty(b, journal_ref);
2189 else
2190 bch_btree_node_write(b, &cl);
2191 }
2192
2193 mutex_unlock(&b->write_lock);
2194
2195 /* wait for btree node write if necessary, after unlock */
2196 closure_sync(&cl);
2197
2198 return 0;
2199 split:
2200 if (current->bio_list) {
2201 op->lock = b->c->root->level + 1;
2202 return -EAGAIN;
2203 } else if (op->lock <= b->c->root->level) {
2204 op->lock = b->c->root->level + 1;
2205 return -EINTR;
2206 } else {
2207 /* Invalidated all iterators */
2208 int ret = btree_split(b, op, insert_keys, replace_key);
2209
2210 if (bch_keylist_empty(insert_keys))
2211 return 0;
2212 else if (!ret)
2213 return -EINTR;
2214 return ret;
2215 }
2216 }
2217
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2218 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2219 struct bkey *check_key)
2220 {
2221 int ret = -EINTR;
2222 uint64_t btree_ptr = b->key.ptr[0];
2223 unsigned long seq = b->seq;
2224 struct keylist insert;
2225 bool upgrade = op->lock == -1;
2226
2227 bch_keylist_init(&insert);
2228
2229 if (upgrade) {
2230 rw_unlock(false, b);
2231 rw_lock(true, b, b->level);
2232
2233 if (b->key.ptr[0] != btree_ptr ||
2234 b->seq != seq + 1) {
2235 op->lock = b->level;
2236 goto out;
2237 }
2238 }
2239
2240 SET_KEY_PTRS(check_key, 1);
2241 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2242
2243 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2244
2245 bch_keylist_add(&insert, check_key);
2246
2247 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2248
2249 BUG_ON(!ret && !bch_keylist_empty(&insert));
2250 out:
2251 if (upgrade)
2252 downgrade_write(&b->lock);
2253 return ret;
2254 }
2255
2256 struct btree_insert_op {
2257 struct btree_op op;
2258 struct keylist *keys;
2259 atomic_t *journal_ref;
2260 struct bkey *replace_key;
2261 };
2262
btree_insert_fn(struct btree_op * b_op,struct btree * b)2263 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2264 {
2265 struct btree_insert_op *op = container_of(b_op,
2266 struct btree_insert_op, op);
2267
2268 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2269 op->journal_ref, op->replace_key);
2270 if (ret && !bch_keylist_empty(op->keys))
2271 return ret;
2272 else
2273 return MAP_DONE;
2274 }
2275
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2276 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2277 atomic_t *journal_ref, struct bkey *replace_key)
2278 {
2279 struct btree_insert_op op;
2280 int ret = 0;
2281
2282 BUG_ON(current->bio_list);
2283 BUG_ON(bch_keylist_empty(keys));
2284
2285 bch_btree_op_init(&op.op, 0);
2286 op.keys = keys;
2287 op.journal_ref = journal_ref;
2288 op.replace_key = replace_key;
2289
2290 while (!ret && !bch_keylist_empty(keys)) {
2291 op.op.lock = 0;
2292 ret = bch_btree_map_leaf_nodes(&op.op, c,
2293 &START_KEY(keys->keys),
2294 btree_insert_fn);
2295 }
2296
2297 if (ret) {
2298 struct bkey *k;
2299
2300 pr_err("error %i", ret);
2301
2302 while ((k = bch_keylist_pop(keys)))
2303 bkey_put(c, k);
2304 } else if (op.op.insert_collision)
2305 ret = -ESRCH;
2306
2307 return ret;
2308 }
2309
bch_btree_set_root(struct btree * b)2310 void bch_btree_set_root(struct btree *b)
2311 {
2312 unsigned int i;
2313 struct closure cl;
2314
2315 closure_init_stack(&cl);
2316
2317 trace_bcache_btree_set_root(b);
2318
2319 BUG_ON(!b->written);
2320
2321 for (i = 0; i < KEY_PTRS(&b->key); i++)
2322 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2323
2324 mutex_lock(&b->c->bucket_lock);
2325 list_del_init(&b->list);
2326 mutex_unlock(&b->c->bucket_lock);
2327
2328 b->c->root = b;
2329
2330 bch_journal_meta(b->c, &cl);
2331 closure_sync(&cl);
2332 }
2333
2334 /* Map across nodes or keys */
2335
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2336 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2337 struct bkey *from,
2338 btree_map_nodes_fn *fn, int flags)
2339 {
2340 int ret = MAP_CONTINUE;
2341
2342 if (b->level) {
2343 struct bkey *k;
2344 struct btree_iter iter;
2345
2346 bch_btree_iter_init(&b->keys, &iter, from);
2347
2348 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2349 bch_ptr_bad))) {
2350 ret = btree(map_nodes_recurse, k, b,
2351 op, from, fn, flags);
2352 from = NULL;
2353
2354 if (ret != MAP_CONTINUE)
2355 return ret;
2356 }
2357 }
2358
2359 if (!b->level || flags == MAP_ALL_NODES)
2360 ret = fn(op, b);
2361
2362 return ret;
2363 }
2364
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2365 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2366 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2367 {
2368 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2369 }
2370
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2371 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2372 struct bkey *from, btree_map_keys_fn *fn,
2373 int flags)
2374 {
2375 int ret = MAP_CONTINUE;
2376 struct bkey *k;
2377 struct btree_iter iter;
2378
2379 bch_btree_iter_init(&b->keys, &iter, from);
2380
2381 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2382 ret = !b->level
2383 ? fn(op, b, k)
2384 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2385 from = NULL;
2386
2387 if (ret != MAP_CONTINUE)
2388 return ret;
2389 }
2390
2391 if (!b->level && (flags & MAP_END_KEY))
2392 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2393 KEY_OFFSET(&b->key), 0));
2394
2395 return ret;
2396 }
2397
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2398 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2399 struct bkey *from, btree_map_keys_fn *fn, int flags)
2400 {
2401 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2402 }
2403
2404 /* Keybuf code */
2405
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2406 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2407 {
2408 /* Overlapping keys compare equal */
2409 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2410 return -1;
2411 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2412 return 1;
2413 return 0;
2414 }
2415
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2416 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2417 struct keybuf_key *r)
2418 {
2419 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2420 }
2421
2422 struct refill {
2423 struct btree_op op;
2424 unsigned int nr_found;
2425 struct keybuf *buf;
2426 struct bkey *end;
2427 keybuf_pred_fn *pred;
2428 };
2429
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2430 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2431 struct bkey *k)
2432 {
2433 struct refill *refill = container_of(op, struct refill, op);
2434 struct keybuf *buf = refill->buf;
2435 int ret = MAP_CONTINUE;
2436
2437 if (bkey_cmp(k, refill->end) >= 0) {
2438 ret = MAP_DONE;
2439 goto out;
2440 }
2441
2442 if (!KEY_SIZE(k)) /* end key */
2443 goto out;
2444
2445 if (refill->pred(buf, k)) {
2446 struct keybuf_key *w;
2447
2448 spin_lock(&buf->lock);
2449
2450 w = array_alloc(&buf->freelist);
2451 if (!w) {
2452 spin_unlock(&buf->lock);
2453 return MAP_DONE;
2454 }
2455
2456 w->private = NULL;
2457 bkey_copy(&w->key, k);
2458
2459 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2460 array_free(&buf->freelist, w);
2461 else
2462 refill->nr_found++;
2463
2464 if (array_freelist_empty(&buf->freelist))
2465 ret = MAP_DONE;
2466
2467 spin_unlock(&buf->lock);
2468 }
2469 out:
2470 buf->last_scanned = *k;
2471 return ret;
2472 }
2473
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2474 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2475 struct bkey *end, keybuf_pred_fn *pred)
2476 {
2477 struct bkey start = buf->last_scanned;
2478 struct refill refill;
2479
2480 cond_resched();
2481
2482 bch_btree_op_init(&refill.op, -1);
2483 refill.nr_found = 0;
2484 refill.buf = buf;
2485 refill.end = end;
2486 refill.pred = pred;
2487
2488 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2489 refill_keybuf_fn, MAP_END_KEY);
2490
2491 trace_bcache_keyscan(refill.nr_found,
2492 KEY_INODE(&start), KEY_OFFSET(&start),
2493 KEY_INODE(&buf->last_scanned),
2494 KEY_OFFSET(&buf->last_scanned));
2495
2496 spin_lock(&buf->lock);
2497
2498 if (!RB_EMPTY_ROOT(&buf->keys)) {
2499 struct keybuf_key *w;
2500
2501 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2502 buf->start = START_KEY(&w->key);
2503
2504 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2505 buf->end = w->key;
2506 } else {
2507 buf->start = MAX_KEY;
2508 buf->end = MAX_KEY;
2509 }
2510
2511 spin_unlock(&buf->lock);
2512 }
2513
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2514 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2515 {
2516 rb_erase(&w->node, &buf->keys);
2517 array_free(&buf->freelist, w);
2518 }
2519
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2520 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2521 {
2522 spin_lock(&buf->lock);
2523 __bch_keybuf_del(buf, w);
2524 spin_unlock(&buf->lock);
2525 }
2526
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2527 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2528 struct bkey *end)
2529 {
2530 bool ret = false;
2531 struct keybuf_key *p, *w, s;
2532
2533 s.key = *start;
2534
2535 if (bkey_cmp(end, &buf->start) <= 0 ||
2536 bkey_cmp(start, &buf->end) >= 0)
2537 return false;
2538
2539 spin_lock(&buf->lock);
2540 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2541
2542 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2543 p = w;
2544 w = RB_NEXT(w, node);
2545
2546 if (p->private)
2547 ret = true;
2548 else
2549 __bch_keybuf_del(buf, p);
2550 }
2551
2552 spin_unlock(&buf->lock);
2553 return ret;
2554 }
2555
bch_keybuf_next(struct keybuf * buf)2556 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2557 {
2558 struct keybuf_key *w;
2559
2560 spin_lock(&buf->lock);
2561
2562 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2563
2564 while (w && w->private)
2565 w = RB_NEXT(w, node);
2566
2567 if (w)
2568 w->private = ERR_PTR(-EINTR);
2569
2570 spin_unlock(&buf->lock);
2571 return w;
2572 }
2573
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2574 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2575 struct keybuf *buf,
2576 struct bkey *end,
2577 keybuf_pred_fn *pred)
2578 {
2579 struct keybuf_key *ret;
2580
2581 while (1) {
2582 ret = bch_keybuf_next(buf);
2583 if (ret)
2584 break;
2585
2586 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2587 pr_debug("scan finished");
2588 break;
2589 }
2590
2591 bch_refill_keybuf(c, buf, end, pred);
2592 }
2593
2594 return ret;
2595 }
2596
bch_keybuf_init(struct keybuf * buf)2597 void bch_keybuf_init(struct keybuf *buf)
2598 {
2599 buf->last_scanned = MAX_KEY;
2600 buf->keys = RB_ROOT;
2601
2602 spin_lock_init(&buf->lock);
2603 array_allocator_init(&buf->freelist);
2604 }
2605