1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54
55
56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS 128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
61
62 /* Superblock */
63
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 if (bch_has_feature_large_bucket(sb)) {
70 unsigned int max, order;
71
72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 order = le16_to_cpu(s->bucket_size);
74 /*
75 * bcache tool will make sure the overflow won't
76 * happen, an error message here is enough.
77 */
78 if (order > max)
79 pr_err("Bucket size (1 << %u) overflows\n",
80 order);
81 bucket_size = 1 << order;
82 } else if (bch_has_feature_obso_large_bucket(sb)) {
83 bucket_size +=
84 le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 }
86 }
87
88 return bucket_size;
89 }
90
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)91 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
92 struct cache_sb_disk *s)
93 {
94 const char *err;
95 unsigned int i;
96
97 sb->first_bucket= le16_to_cpu(s->first_bucket);
98 sb->nbuckets = le64_to_cpu(s->nbuckets);
99 sb->bucket_size = get_bucket_size(sb, s);
100
101 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
107
108 err = "Too many buckets";
109 if (sb->nbuckets > LONG_MAX)
110 goto err;
111
112 err = "Not enough buckets";
113 if (sb->nbuckets < 1 << 7)
114 goto err;
115
116 err = "Bad block size (not power of 2)";
117 if (!is_power_of_2(sb->block_size))
118 goto err;
119
120 err = "Bad block size (larger than page size)";
121 if (sb->block_size > PAGE_SECTORS)
122 goto err;
123
124 err = "Bad bucket size (not power of 2)";
125 if (!is_power_of_2(sb->bucket_size))
126 goto err;
127
128 err = "Bad bucket size (smaller than page size)";
129 if (sb->bucket_size < PAGE_SECTORS)
130 goto err;
131
132 err = "Invalid superblock: device too small";
133 if (get_capacity(bdev->bd_disk) <
134 sb->bucket_size * sb->nbuckets)
135 goto err;
136
137 err = "Bad UUID";
138 if (bch_is_zero(sb->set_uuid, 16))
139 goto err;
140
141 err = "Bad cache device number in set";
142 if (!sb->nr_in_set ||
143 sb->nr_in_set <= sb->nr_this_dev ||
144 sb->nr_in_set > MAX_CACHES_PER_SET)
145 goto err;
146
147 err = "Journal buckets not sequential";
148 for (i = 0; i < sb->keys; i++)
149 if (sb->d[i] != sb->first_bucket + i)
150 goto err;
151
152 err = "Too many journal buckets";
153 if (sb->first_bucket + sb->keys > sb->nbuckets)
154 goto err;
155
156 err = "Invalid superblock: first bucket comes before end of super";
157 if (sb->first_bucket * sb->bucket_size < 16)
158 goto err;
159
160 err = NULL;
161 err:
162 return err;
163 }
164
165
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 struct cache_sb_disk **res)
168 {
169 const char *err;
170 struct cache_sb_disk *s;
171 struct page *page;
172 unsigned int i;
173
174 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 if (IS_ERR(page))
177 return "IO error";
178 s = page_address(page) + offset_in_page(SB_OFFSET);
179
180 sb->offset = le64_to_cpu(s->offset);
181 sb->version = le64_to_cpu(s->version);
182
183 memcpy(sb->magic, s->magic, 16);
184 memcpy(sb->uuid, s->uuid, 16);
185 memcpy(sb->set_uuid, s->set_uuid, 16);
186 memcpy(sb->label, s->label, SB_LABEL_SIZE);
187
188 sb->flags = le64_to_cpu(s->flags);
189 sb->seq = le64_to_cpu(s->seq);
190 sb->last_mount = le32_to_cpu(s->last_mount);
191 sb->keys = le16_to_cpu(s->keys);
192
193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 sb->d[i] = le64_to_cpu(s->d[i]);
195
196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 sb->version, sb->flags, sb->seq, sb->keys);
198
199 err = "Not a bcache superblock (bad offset)";
200 if (sb->offset != SB_SECTOR)
201 goto err;
202
203 err = "Not a bcache superblock (bad magic)";
204 if (memcmp(sb->magic, bcache_magic, 16))
205 goto err;
206
207 err = "Bad checksum";
208 if (s->csum != csum_set(s))
209 goto err;
210
211 err = "Bad UUID";
212 if (bch_is_zero(sb->uuid, 16))
213 goto err;
214
215 sb->block_size = le16_to_cpu(s->block_size);
216
217 err = "Superblock block size smaller than device block size";
218 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 goto err;
220
221 switch (sb->version) {
222 case BCACHE_SB_VERSION_BDEV:
223 sb->data_offset = BDEV_DATA_START_DEFAULT;
224 break;
225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 sb->data_offset = le64_to_cpu(s->data_offset);
228
229 err = "Bad data offset";
230 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 goto err;
232
233 break;
234 case BCACHE_SB_VERSION_CDEV:
235 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 err = read_super_common(sb, bdev, s);
237 if (err)
238 goto err;
239 break;
240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 /*
242 * Feature bits are needed in read_super_common(),
243 * convert them firstly.
244 */
245 sb->feature_compat = le64_to_cpu(s->feature_compat);
246 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249 /* Check incompatible features */
250 err = "Unsupported compatible feature found";
251 if (bch_has_unknown_compat_features(sb))
252 goto err;
253
254 err = "Unsupported read-only compatible feature found";
255 if (bch_has_unknown_ro_compat_features(sb))
256 goto err;
257
258 err = "Unsupported incompatible feature found";
259 if (bch_has_unknown_incompat_features(sb))
260 goto err;
261
262 err = read_super_common(sb, bdev, s);
263 if (err)
264 goto err;
265 break;
266 default:
267 err = "Unsupported superblock version";
268 goto err;
269 }
270
271 sb->last_mount = (u32)ktime_get_real_seconds();
272 *res = s;
273 return NULL;
274 err:
275 put_page(page);
276 return err;
277 }
278
write_bdev_super_endio(struct bio * bio)279 static void write_bdev_super_endio(struct bio *bio)
280 {
281 struct cached_dev *dc = bio->bi_private;
282
283 if (bio->bi_status)
284 bch_count_backing_io_errors(dc, bio);
285
286 closure_put(&dc->sb_write);
287 }
288
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 struct bio *bio)
291 {
292 unsigned int i;
293
294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 bio->bi_iter.bi_sector = SB_SECTOR;
296 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
297 offset_in_page(out));
298
299 out->offset = cpu_to_le64(sb->offset);
300
301 memcpy(out->uuid, sb->uuid, 16);
302 memcpy(out->set_uuid, sb->set_uuid, 16);
303 memcpy(out->label, sb->label, SB_LABEL_SIZE);
304
305 out->flags = cpu_to_le64(sb->flags);
306 out->seq = cpu_to_le64(sb->seq);
307
308 out->last_mount = cpu_to_le32(sb->last_mount);
309 out->first_bucket = cpu_to_le16(sb->first_bucket);
310 out->keys = cpu_to_le16(sb->keys);
311
312 for (i = 0; i < sb->keys; i++)
313 out->d[i] = cpu_to_le64(sb->d[i]);
314
315 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316 out->feature_compat = cpu_to_le64(sb->feature_compat);
317 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
318 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319 }
320
321 out->version = cpu_to_le64(sb->version);
322 out->csum = csum_set(out);
323
324 pr_debug("ver %llu, flags %llu, seq %llu\n",
325 sb->version, sb->flags, sb->seq);
326
327 submit_bio(bio);
328 }
329
bch_write_bdev_super_unlock(struct closure * cl)330 static void bch_write_bdev_super_unlock(struct closure *cl)
331 {
332 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333
334 up(&dc->sb_write_mutex);
335 }
336
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339 struct closure *cl = &dc->sb_write;
340 struct bio *bio = &dc->sb_bio;
341
342 down(&dc->sb_write_mutex);
343 closure_init(cl, parent);
344
345 bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
346 bio->bi_end_io = write_bdev_super_endio;
347 bio->bi_private = dc;
348
349 closure_get(cl);
350 /* I/O request sent to backing device */
351 __write_super(&dc->sb, dc->sb_disk, bio);
352
353 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
354 }
355
write_super_endio(struct bio * bio)356 static void write_super_endio(struct bio *bio)
357 {
358 struct cache *ca = bio->bi_private;
359
360 /* is_read = 0 */
361 bch_count_io_errors(ca, bio->bi_status, 0,
362 "writing superblock");
363 closure_put(&ca->set->sb_write);
364 }
365
bcache_write_super_unlock(struct closure * cl)366 static void bcache_write_super_unlock(struct closure *cl)
367 {
368 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
369
370 up(&c->sb_write_mutex);
371 }
372
bcache_write_super(struct cache_set * c)373 void bcache_write_super(struct cache_set *c)
374 {
375 struct closure *cl = &c->sb_write;
376 struct cache *ca = c->cache;
377 struct bio *bio = &ca->sb_bio;
378 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
379
380 down(&c->sb_write_mutex);
381 closure_init(cl, &c->cl);
382
383 ca->sb.seq++;
384
385 if (ca->sb.version < version)
386 ca->sb.version = version;
387
388 bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
389 bio->bi_end_io = write_super_endio;
390 bio->bi_private = ca;
391
392 closure_get(cl);
393 __write_super(&ca->sb, ca->sb_disk, bio);
394
395 closure_return_with_destructor(cl, bcache_write_super_unlock);
396 }
397
398 /* UUID io */
399
uuid_endio(struct bio * bio)400 static void uuid_endio(struct bio *bio)
401 {
402 struct closure *cl = bio->bi_private;
403 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
404
405 cache_set_err_on(bio->bi_status, c, "accessing uuids");
406 bch_bbio_free(bio, c);
407 closure_put(cl);
408 }
409
uuid_io_unlock(struct closure * cl)410 static void uuid_io_unlock(struct closure *cl)
411 {
412 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
413
414 up(&c->uuid_write_mutex);
415 }
416
uuid_io(struct cache_set * c,blk_opf_t opf,struct bkey * k,struct closure * parent)417 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
418 struct closure *parent)
419 {
420 struct closure *cl = &c->uuid_write;
421 struct uuid_entry *u;
422 unsigned int i;
423 char buf[80];
424
425 BUG_ON(!parent);
426 down(&c->uuid_write_mutex);
427 closure_init(cl, parent);
428
429 for (i = 0; i < KEY_PTRS(k); i++) {
430 struct bio *bio = bch_bbio_alloc(c);
431
432 bio->bi_opf = opf | REQ_SYNC | REQ_META;
433 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
434
435 bio->bi_end_io = uuid_endio;
436 bio->bi_private = cl;
437 bch_bio_map(bio, c->uuids);
438
439 bch_submit_bbio(bio, c, k, i);
440
441 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
442 break;
443 }
444
445 bch_extent_to_text(buf, sizeof(buf), k);
446 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
447 "wrote" : "read", buf);
448
449 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
450 if (!bch_is_zero(u->uuid, 16))
451 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
452 u - c->uuids, u->uuid, u->label,
453 u->first_reg, u->last_reg, u->invalidated);
454
455 closure_return_with_destructor(cl, uuid_io_unlock);
456 }
457
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)458 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
459 {
460 struct bkey *k = &j->uuid_bucket;
461
462 if (__bch_btree_ptr_invalid(c, k))
463 return "bad uuid pointer";
464
465 bkey_copy(&c->uuid_bucket, k);
466 uuid_io(c, REQ_OP_READ, k, cl);
467
468 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
469 struct uuid_entry_v0 *u0 = (void *) c->uuids;
470 struct uuid_entry *u1 = (void *) c->uuids;
471 int i;
472
473 closure_sync(cl);
474
475 /*
476 * Since the new uuid entry is bigger than the old, we have to
477 * convert starting at the highest memory address and work down
478 * in order to do it in place
479 */
480
481 for (i = c->nr_uuids - 1;
482 i >= 0;
483 --i) {
484 memcpy(u1[i].uuid, u0[i].uuid, 16);
485 memcpy(u1[i].label, u0[i].label, 32);
486
487 u1[i].first_reg = u0[i].first_reg;
488 u1[i].last_reg = u0[i].last_reg;
489 u1[i].invalidated = u0[i].invalidated;
490
491 u1[i].flags = 0;
492 u1[i].sectors = 0;
493 }
494 }
495
496 return NULL;
497 }
498
__uuid_write(struct cache_set * c)499 static int __uuid_write(struct cache_set *c)
500 {
501 BKEY_PADDED(key) k;
502 struct closure cl;
503 struct cache *ca = c->cache;
504 unsigned int size;
505
506 closure_init_stack(&cl);
507 lockdep_assert_held(&bch_register_lock);
508
509 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
510 return 1;
511
512 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
513 SET_KEY_SIZE(&k.key, size);
514 uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
515 closure_sync(&cl);
516
517 /* Only one bucket used for uuid write */
518 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
519
520 bkey_copy(&c->uuid_bucket, &k.key);
521 bkey_put(c, &k.key);
522 return 0;
523 }
524
bch_uuid_write(struct cache_set * c)525 int bch_uuid_write(struct cache_set *c)
526 {
527 int ret = __uuid_write(c);
528
529 if (!ret)
530 bch_journal_meta(c, NULL);
531
532 return ret;
533 }
534
uuid_find(struct cache_set * c,const char * uuid)535 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
536 {
537 struct uuid_entry *u;
538
539 for (u = c->uuids;
540 u < c->uuids + c->nr_uuids; u++)
541 if (!memcmp(u->uuid, uuid, 16))
542 return u;
543
544 return NULL;
545 }
546
uuid_find_empty(struct cache_set * c)547 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
548 {
549 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
550
551 return uuid_find(c, zero_uuid);
552 }
553
554 /*
555 * Bucket priorities/gens:
556 *
557 * For each bucket, we store on disk its
558 * 8 bit gen
559 * 16 bit priority
560 *
561 * See alloc.c for an explanation of the gen. The priority is used to implement
562 * lru (and in the future other) cache replacement policies; for most purposes
563 * it's just an opaque integer.
564 *
565 * The gens and the priorities don't have a whole lot to do with each other, and
566 * it's actually the gens that must be written out at specific times - it's no
567 * big deal if the priorities don't get written, if we lose them we just reuse
568 * buckets in suboptimal order.
569 *
570 * On disk they're stored in a packed array, and in as many buckets are required
571 * to fit them all. The buckets we use to store them form a list; the journal
572 * header points to the first bucket, the first bucket points to the second
573 * bucket, et cetera.
574 *
575 * This code is used by the allocation code; periodically (whenever it runs out
576 * of buckets to allocate from) the allocation code will invalidate some
577 * buckets, but it can't use those buckets until their new gens are safely on
578 * disk.
579 */
580
prio_endio(struct bio * bio)581 static void prio_endio(struct bio *bio)
582 {
583 struct cache *ca = bio->bi_private;
584
585 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586 bch_bbio_free(bio, ca->set);
587 closure_put(&ca->prio);
588 }
589
prio_io(struct cache * ca,uint64_t bucket,blk_opf_t opf)590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
591 {
592 struct closure *cl = &ca->prio;
593 struct bio *bio = bch_bbio_alloc(ca->set);
594
595 closure_init_stack(cl);
596
597 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
598 bio_set_dev(bio, ca->bdev);
599 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
600
601 bio->bi_end_io = prio_endio;
602 bio->bi_private = ca;
603 bio->bi_opf = opf | REQ_SYNC | REQ_META;
604 bch_bio_map(bio, ca->disk_buckets);
605
606 closure_bio_submit(ca->set, bio, &ca->prio);
607 closure_sync(cl);
608 }
609
bch_prio_write(struct cache * ca,bool wait)610 int bch_prio_write(struct cache *ca, bool wait)
611 {
612 int i;
613 struct bucket *b;
614 struct closure cl;
615
616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617 fifo_used(&ca->free[RESERVE_PRIO]),
618 fifo_used(&ca->free[RESERVE_NONE]),
619 fifo_used(&ca->free_inc));
620
621 /*
622 * Pre-check if there are enough free buckets. In the non-blocking
623 * scenario it's better to fail early rather than starting to allocate
624 * buckets and do a cleanup later in case of failure.
625 */
626 if (!wait) {
627 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
628 fifo_used(&ca->free[RESERVE_NONE]);
629 if (prio_buckets(ca) > avail)
630 return -ENOMEM;
631 }
632
633 closure_init_stack(&cl);
634
635 lockdep_assert_held(&ca->set->bucket_lock);
636
637 ca->disk_buckets->seq++;
638
639 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
640 &ca->meta_sectors_written);
641
642 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
643 long bucket;
644 struct prio_set *p = ca->disk_buckets;
645 struct bucket_disk *d = p->data;
646 struct bucket_disk *end = d + prios_per_bucket(ca);
647
648 for (b = ca->buckets + i * prios_per_bucket(ca);
649 b < ca->buckets + ca->sb.nbuckets && d < end;
650 b++, d++) {
651 d->prio = cpu_to_le16(b->prio);
652 d->gen = b->gen;
653 }
654
655 p->next_bucket = ca->prio_buckets[i + 1];
656 p->magic = pset_magic(&ca->sb);
657 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
658
659 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
660 BUG_ON(bucket == -1);
661
662 mutex_unlock(&ca->set->bucket_lock);
663 prio_io(ca, bucket, REQ_OP_WRITE);
664 mutex_lock(&ca->set->bucket_lock);
665
666 ca->prio_buckets[i] = bucket;
667 atomic_dec_bug(&ca->buckets[bucket].pin);
668 }
669
670 mutex_unlock(&ca->set->bucket_lock);
671
672 bch_journal_meta(ca->set, &cl);
673 closure_sync(&cl);
674
675 mutex_lock(&ca->set->bucket_lock);
676
677 /*
678 * Don't want the old priorities to get garbage collected until after we
679 * finish writing the new ones, and they're journalled
680 */
681 for (i = 0; i < prio_buckets(ca); i++) {
682 if (ca->prio_last_buckets[i])
683 __bch_bucket_free(ca,
684 &ca->buckets[ca->prio_last_buckets[i]]);
685
686 ca->prio_last_buckets[i] = ca->prio_buckets[i];
687 }
688 return 0;
689 }
690
prio_read(struct cache * ca,uint64_t bucket)691 static int prio_read(struct cache *ca, uint64_t bucket)
692 {
693 struct prio_set *p = ca->disk_buckets;
694 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
695 struct bucket *b;
696 unsigned int bucket_nr = 0;
697 int ret = -EIO;
698
699 for (b = ca->buckets;
700 b < ca->buckets + ca->sb.nbuckets;
701 b++, d++) {
702 if (d == end) {
703 ca->prio_buckets[bucket_nr] = bucket;
704 ca->prio_last_buckets[bucket_nr] = bucket;
705 bucket_nr++;
706
707 prio_io(ca, bucket, REQ_OP_READ);
708
709 if (p->csum !=
710 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
711 pr_warn("bad csum reading priorities\n");
712 goto out;
713 }
714
715 if (p->magic != pset_magic(&ca->sb)) {
716 pr_warn("bad magic reading priorities\n");
717 goto out;
718 }
719
720 bucket = p->next_bucket;
721 d = p->data;
722 }
723
724 b->prio = le16_to_cpu(d->prio);
725 b->gen = b->last_gc = d->gen;
726 }
727
728 ret = 0;
729 out:
730 return ret;
731 }
732
733 /* Bcache device */
734
open_dev(struct gendisk * disk,blk_mode_t mode)735 static int open_dev(struct gendisk *disk, blk_mode_t mode)
736 {
737 struct bcache_device *d = disk->private_data;
738
739 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
740 return -ENXIO;
741
742 closure_get(&d->cl);
743 return 0;
744 }
745
release_dev(struct gendisk * b)746 static void release_dev(struct gendisk *b)
747 {
748 struct bcache_device *d = b->private_data;
749
750 closure_put(&d->cl);
751 }
752
ioctl_dev(struct block_device * b,blk_mode_t mode,unsigned int cmd,unsigned long arg)753 static int ioctl_dev(struct block_device *b, blk_mode_t mode,
754 unsigned int cmd, unsigned long arg)
755 {
756 struct bcache_device *d = b->bd_disk->private_data;
757
758 return d->ioctl(d, mode, cmd, arg);
759 }
760
761 static const struct block_device_operations bcache_cached_ops = {
762 .submit_bio = cached_dev_submit_bio,
763 .open = open_dev,
764 .release = release_dev,
765 .ioctl = ioctl_dev,
766 .owner = THIS_MODULE,
767 };
768
769 static const struct block_device_operations bcache_flash_ops = {
770 .submit_bio = flash_dev_submit_bio,
771 .open = open_dev,
772 .release = release_dev,
773 .ioctl = ioctl_dev,
774 .owner = THIS_MODULE,
775 };
776
bcache_device_stop(struct bcache_device * d)777 void bcache_device_stop(struct bcache_device *d)
778 {
779 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
780 /*
781 * closure_fn set to
782 * - cached device: cached_dev_flush()
783 * - flash dev: flash_dev_flush()
784 */
785 closure_queue(&d->cl);
786 }
787
bcache_device_unlink(struct bcache_device * d)788 static void bcache_device_unlink(struct bcache_device *d)
789 {
790 lockdep_assert_held(&bch_register_lock);
791
792 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
793 struct cache *ca = d->c->cache;
794
795 sysfs_remove_link(&d->c->kobj, d->name);
796 sysfs_remove_link(&d->kobj, "cache");
797
798 bd_unlink_disk_holder(ca->bdev, d->disk);
799 }
800 }
801
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
803 const char *name)
804 {
805 struct cache *ca = c->cache;
806 int ret;
807
808 bd_link_disk_holder(ca->bdev, d->disk);
809
810 snprintf(d->name, BCACHEDEVNAME_SIZE,
811 "%s%u", name, d->id);
812
813 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
814 if (ret < 0)
815 pr_err("Couldn't create device -> cache set symlink\n");
816
817 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
818 if (ret < 0)
819 pr_err("Couldn't create cache set -> device symlink\n");
820
821 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
822 }
823
bcache_device_detach(struct bcache_device * d)824 static void bcache_device_detach(struct bcache_device *d)
825 {
826 lockdep_assert_held(&bch_register_lock);
827
828 atomic_dec(&d->c->attached_dev_nr);
829
830 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
831 struct uuid_entry *u = d->c->uuids + d->id;
832
833 SET_UUID_FLASH_ONLY(u, 0);
834 memcpy(u->uuid, invalid_uuid, 16);
835 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
836 bch_uuid_write(d->c);
837 }
838
839 bcache_device_unlink(d);
840
841 d->c->devices[d->id] = NULL;
842 closure_put(&d->c->caching);
843 d->c = NULL;
844 }
845
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
847 unsigned int id)
848 {
849 d->id = id;
850 d->c = c;
851 c->devices[id] = d;
852
853 if (id >= c->devices_max_used)
854 c->devices_max_used = id + 1;
855
856 closure_get(&c->caching);
857 }
858
first_minor_to_idx(int first_minor)859 static inline int first_minor_to_idx(int first_minor)
860 {
861 return (first_minor/BCACHE_MINORS);
862 }
863
idx_to_first_minor(int idx)864 static inline int idx_to_first_minor(int idx)
865 {
866 return (idx * BCACHE_MINORS);
867 }
868
bcache_device_free(struct bcache_device * d)869 static void bcache_device_free(struct bcache_device *d)
870 {
871 struct gendisk *disk = d->disk;
872
873 lockdep_assert_held(&bch_register_lock);
874
875 if (disk)
876 pr_info("%s stopped\n", disk->disk_name);
877 else
878 pr_err("bcache device (NULL gendisk) stopped\n");
879
880 if (d->c)
881 bcache_device_detach(d);
882
883 if (disk) {
884 ida_simple_remove(&bcache_device_idx,
885 first_minor_to_idx(disk->first_minor));
886 put_disk(disk);
887 }
888
889 bioset_exit(&d->bio_split);
890 kvfree(d->full_dirty_stripes);
891 kvfree(d->stripe_sectors_dirty);
892
893 closure_debug_destroy(&d->cl);
894 }
895
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)896 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
897 sector_t sectors, struct block_device *cached_bdev,
898 const struct block_device_operations *ops)
899 {
900 struct request_queue *q;
901 const size_t max_stripes = min_t(size_t, INT_MAX,
902 SIZE_MAX / sizeof(atomic_t));
903 uint64_t n;
904 int idx;
905
906 if (!d->stripe_size)
907 d->stripe_size = 1 << 31;
908
909 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
910 if (!n || n > max_stripes) {
911 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
912 n);
913 return -ENOMEM;
914 }
915 d->nr_stripes = n;
916
917 n = d->nr_stripes * sizeof(atomic_t);
918 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
919 if (!d->stripe_sectors_dirty)
920 return -ENOMEM;
921
922 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
923 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
924 if (!d->full_dirty_stripes)
925 goto out_free_stripe_sectors_dirty;
926
927 idx = ida_simple_get(&bcache_device_idx, 0,
928 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
929 if (idx < 0)
930 goto out_free_full_dirty_stripes;
931
932 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
933 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
934 goto out_ida_remove;
935
936 d->disk = blk_alloc_disk(NUMA_NO_NODE);
937 if (!d->disk)
938 goto out_bioset_exit;
939
940 set_capacity(d->disk, sectors);
941 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
942
943 d->disk->major = bcache_major;
944 d->disk->first_minor = idx_to_first_minor(idx);
945 d->disk->minors = BCACHE_MINORS;
946 d->disk->fops = ops;
947 d->disk->private_data = d;
948
949 q = d->disk->queue;
950 q->limits.max_hw_sectors = UINT_MAX;
951 q->limits.max_sectors = UINT_MAX;
952 q->limits.max_segment_size = UINT_MAX;
953 q->limits.max_segments = BIO_MAX_VECS;
954 blk_queue_max_discard_sectors(q, UINT_MAX);
955 q->limits.discard_granularity = 512;
956 q->limits.io_min = block_size;
957 q->limits.logical_block_size = block_size;
958 q->limits.physical_block_size = block_size;
959
960 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
961 /*
962 * This should only happen with BCACHE_SB_VERSION_BDEV.
963 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
964 */
965 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
966 d->disk->disk_name, q->limits.logical_block_size,
967 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
968
969 /* This also adjusts physical block size/min io size if needed */
970 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
971 }
972
973 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
974
975 blk_queue_write_cache(q, true, true);
976
977 return 0;
978
979 out_bioset_exit:
980 bioset_exit(&d->bio_split);
981 out_ida_remove:
982 ida_simple_remove(&bcache_device_idx, idx);
983 out_free_full_dirty_stripes:
984 kvfree(d->full_dirty_stripes);
985 out_free_stripe_sectors_dirty:
986 kvfree(d->stripe_sectors_dirty);
987 return -ENOMEM;
988
989 }
990
991 /* Cached device */
992
calc_cached_dev_sectors(struct cache_set * c)993 static void calc_cached_dev_sectors(struct cache_set *c)
994 {
995 uint64_t sectors = 0;
996 struct cached_dev *dc;
997
998 list_for_each_entry(dc, &c->cached_devs, list)
999 sectors += bdev_nr_sectors(dc->bdev);
1000
1001 c->cached_dev_sectors = sectors;
1002 }
1003
1004 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)1005 static int cached_dev_status_update(void *arg)
1006 {
1007 struct cached_dev *dc = arg;
1008 struct request_queue *q;
1009
1010 /*
1011 * If this delayed worker is stopping outside, directly quit here.
1012 * dc->io_disable might be set via sysfs interface, so check it
1013 * here too.
1014 */
1015 while (!kthread_should_stop() && !dc->io_disable) {
1016 q = bdev_get_queue(dc->bdev);
1017 if (blk_queue_dying(q))
1018 dc->offline_seconds++;
1019 else
1020 dc->offline_seconds = 0;
1021
1022 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1023 pr_err("%pg: device offline for %d seconds\n",
1024 dc->bdev,
1025 BACKING_DEV_OFFLINE_TIMEOUT);
1026 pr_err("%s: disable I/O request due to backing device offline\n",
1027 dc->disk.name);
1028 dc->io_disable = true;
1029 /* let others know earlier that io_disable is true */
1030 smp_mb();
1031 bcache_device_stop(&dc->disk);
1032 break;
1033 }
1034 schedule_timeout_interruptible(HZ);
1035 }
1036
1037 wait_for_kthread_stop();
1038 return 0;
1039 }
1040
1041
bch_cached_dev_run(struct cached_dev * dc)1042 int bch_cached_dev_run(struct cached_dev *dc)
1043 {
1044 int ret = 0;
1045 struct bcache_device *d = &dc->disk;
1046 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1047 char *env[] = {
1048 "DRIVER=bcache",
1049 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1050 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1051 NULL,
1052 };
1053
1054 if (dc->io_disable) {
1055 pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1056 ret = -EIO;
1057 goto out;
1058 }
1059
1060 if (atomic_xchg(&dc->running, 1)) {
1061 pr_info("cached dev %pg is running already\n", dc->bdev);
1062 ret = -EBUSY;
1063 goto out;
1064 }
1065
1066 if (!d->c &&
1067 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1068 struct closure cl;
1069
1070 closure_init_stack(&cl);
1071
1072 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1073 bch_write_bdev_super(dc, &cl);
1074 closure_sync(&cl);
1075 }
1076
1077 ret = add_disk(d->disk);
1078 if (ret)
1079 goto out;
1080 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1081 /*
1082 * won't show up in the uevent file, use udevadm monitor -e instead
1083 * only class / kset properties are persistent
1084 */
1085 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1086
1087 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1088 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1089 &d->kobj, "bcache")) {
1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1091 ret = -ENOMEM;
1092 goto out;
1093 }
1094
1095 dc->status_update_thread = kthread_run(cached_dev_status_update,
1096 dc, "bcache_status_update");
1097 if (IS_ERR(dc->status_update_thread)) {
1098 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1099 }
1100
1101 out:
1102 kfree(env[1]);
1103 kfree(env[2]);
1104 kfree(buf);
1105 return ret;
1106 }
1107
1108 /*
1109 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1110 * work dc->writeback_rate_update is running. Wait until the routine
1111 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1112 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1113 * seconds, give up waiting here and continue to cancel it too.
1114 */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1115 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1116 {
1117 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1118
1119 do {
1120 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1121 &dc->disk.flags))
1122 break;
1123 time_out--;
1124 schedule_timeout_interruptible(1);
1125 } while (time_out > 0);
1126
1127 if (time_out == 0)
1128 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1129
1130 cancel_delayed_work_sync(&dc->writeback_rate_update);
1131 }
1132
cached_dev_detach_finish(struct work_struct * w)1133 static void cached_dev_detach_finish(struct work_struct *w)
1134 {
1135 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1136 struct cache_set *c = dc->disk.c;
1137
1138 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1139 BUG_ON(refcount_read(&dc->count));
1140
1141
1142 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1143 cancel_writeback_rate_update_dwork(dc);
1144
1145 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1146 kthread_stop(dc->writeback_thread);
1147 dc->writeback_thread = NULL;
1148 }
1149
1150 mutex_lock(&bch_register_lock);
1151
1152 bcache_device_detach(&dc->disk);
1153 list_move(&dc->list, &uncached_devices);
1154 calc_cached_dev_sectors(c);
1155
1156 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1157 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1158
1159 mutex_unlock(&bch_register_lock);
1160
1161 pr_info("Caching disabled for %pg\n", dc->bdev);
1162
1163 /* Drop ref we took in cached_dev_detach() */
1164 closure_put(&dc->disk.cl);
1165 }
1166
bch_cached_dev_detach(struct cached_dev * dc)1167 void bch_cached_dev_detach(struct cached_dev *dc)
1168 {
1169 lockdep_assert_held(&bch_register_lock);
1170
1171 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1172 return;
1173
1174 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1175 return;
1176
1177 /*
1178 * Block the device from being closed and freed until we're finished
1179 * detaching
1180 */
1181 closure_get(&dc->disk.cl);
1182
1183 bch_writeback_queue(dc);
1184
1185 cached_dev_put(dc);
1186 }
1187
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1188 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1189 uint8_t *set_uuid)
1190 {
1191 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1192 struct uuid_entry *u;
1193 struct cached_dev *exist_dc, *t;
1194 int ret = 0;
1195
1196 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1197 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1198 return -ENOENT;
1199
1200 if (dc->disk.c) {
1201 pr_err("Can't attach %pg: already attached\n", dc->bdev);
1202 return -EINVAL;
1203 }
1204
1205 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1206 pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1207 return -EINVAL;
1208 }
1209
1210 if (dc->sb.block_size < c->cache->sb.block_size) {
1211 /* Will die */
1212 pr_err("Couldn't attach %pg: block size less than set's block size\n",
1213 dc->bdev);
1214 return -EINVAL;
1215 }
1216
1217 /* Check whether already attached */
1218 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1219 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1220 pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1221 dc->bdev);
1222
1223 return -EINVAL;
1224 }
1225 }
1226
1227 u = uuid_find(c, dc->sb.uuid);
1228
1229 if (u &&
1230 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1231 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1232 memcpy(u->uuid, invalid_uuid, 16);
1233 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1234 u = NULL;
1235 }
1236
1237 if (!u) {
1238 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1239 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1240 return -ENOENT;
1241 }
1242
1243 u = uuid_find_empty(c);
1244 if (!u) {
1245 pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1246 return -EINVAL;
1247 }
1248 }
1249
1250 /*
1251 * Deadlocks since we're called via sysfs...
1252 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1253 */
1254
1255 if (bch_is_zero(u->uuid, 16)) {
1256 struct closure cl;
1257
1258 closure_init_stack(&cl);
1259
1260 memcpy(u->uuid, dc->sb.uuid, 16);
1261 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1262 u->first_reg = u->last_reg = rtime;
1263 bch_uuid_write(c);
1264
1265 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1266 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1267
1268 bch_write_bdev_super(dc, &cl);
1269 closure_sync(&cl);
1270 } else {
1271 u->last_reg = rtime;
1272 bch_uuid_write(c);
1273 }
1274
1275 bcache_device_attach(&dc->disk, c, u - c->uuids);
1276 list_move(&dc->list, &c->cached_devs);
1277 calc_cached_dev_sectors(c);
1278
1279 /*
1280 * dc->c must be set before dc->count != 0 - paired with the mb in
1281 * cached_dev_get()
1282 */
1283 smp_wmb();
1284 refcount_set(&dc->count, 1);
1285
1286 /* Block writeback thread, but spawn it */
1287 down_write(&dc->writeback_lock);
1288 if (bch_cached_dev_writeback_start(dc)) {
1289 up_write(&dc->writeback_lock);
1290 pr_err("Couldn't start writeback facilities for %s\n",
1291 dc->disk.disk->disk_name);
1292 return -ENOMEM;
1293 }
1294
1295 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1296 atomic_set(&dc->has_dirty, 1);
1297 bch_writeback_queue(dc);
1298 }
1299
1300 bch_sectors_dirty_init(&dc->disk);
1301
1302 ret = bch_cached_dev_run(dc);
1303 if (ret && (ret != -EBUSY)) {
1304 up_write(&dc->writeback_lock);
1305 /*
1306 * bch_register_lock is held, bcache_device_stop() is not
1307 * able to be directly called. The kthread and kworker
1308 * created previously in bch_cached_dev_writeback_start()
1309 * have to be stopped manually here.
1310 */
1311 kthread_stop(dc->writeback_thread);
1312 cancel_writeback_rate_update_dwork(dc);
1313 pr_err("Couldn't run cached device %pg\n", dc->bdev);
1314 return ret;
1315 }
1316
1317 bcache_device_link(&dc->disk, c, "bdev");
1318 atomic_inc(&c->attached_dev_nr);
1319
1320 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1321 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1322 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1323 set_disk_ro(dc->disk.disk, 1);
1324 }
1325
1326 /* Allow the writeback thread to proceed */
1327 up_write(&dc->writeback_lock);
1328
1329 pr_info("Caching %pg as %s on set %pU\n",
1330 dc->bdev,
1331 dc->disk.disk->disk_name,
1332 dc->disk.c->set_uuid);
1333 return 0;
1334 }
1335
1336 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1337 void bch_cached_dev_release(struct kobject *kobj)
1338 {
1339 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1340 disk.kobj);
1341 kfree(dc);
1342 module_put(THIS_MODULE);
1343 }
1344
cached_dev_free(struct closure * cl)1345 static void cached_dev_free(struct closure *cl)
1346 {
1347 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1348
1349 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1350 cancel_writeback_rate_update_dwork(dc);
1351
1352 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1353 kthread_stop(dc->writeback_thread);
1354 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1355 kthread_stop(dc->status_update_thread);
1356
1357 mutex_lock(&bch_register_lock);
1358
1359 if (atomic_read(&dc->running)) {
1360 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1361 del_gendisk(dc->disk.disk);
1362 }
1363 bcache_device_free(&dc->disk);
1364 list_del(&dc->list);
1365
1366 mutex_unlock(&bch_register_lock);
1367
1368 if (dc->sb_disk)
1369 put_page(virt_to_page(dc->sb_disk));
1370
1371 if (!IS_ERR_OR_NULL(dc->bdev))
1372 blkdev_put(dc->bdev, dc);
1373
1374 wake_up(&unregister_wait);
1375
1376 kobject_put(&dc->disk.kobj);
1377 }
1378
cached_dev_flush(struct closure * cl)1379 static void cached_dev_flush(struct closure *cl)
1380 {
1381 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1382 struct bcache_device *d = &dc->disk;
1383
1384 mutex_lock(&bch_register_lock);
1385 bcache_device_unlink(d);
1386 mutex_unlock(&bch_register_lock);
1387
1388 bch_cache_accounting_destroy(&dc->accounting);
1389 kobject_del(&d->kobj);
1390
1391 continue_at(cl, cached_dev_free, system_wq);
1392 }
1393
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1394 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1395 {
1396 int ret;
1397 struct io *io;
1398 struct request_queue *q = bdev_get_queue(dc->bdev);
1399
1400 __module_get(THIS_MODULE);
1401 INIT_LIST_HEAD(&dc->list);
1402 closure_init(&dc->disk.cl, NULL);
1403 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1404 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1405 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1406 sema_init(&dc->sb_write_mutex, 1);
1407 INIT_LIST_HEAD(&dc->io_lru);
1408 spin_lock_init(&dc->io_lock);
1409 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1410
1411 dc->sequential_cutoff = 4 << 20;
1412
1413 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1414 list_add(&io->lru, &dc->io_lru);
1415 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1416 }
1417
1418 dc->disk.stripe_size = q->limits.io_opt >> 9;
1419
1420 if (dc->disk.stripe_size)
1421 dc->partial_stripes_expensive =
1422 q->limits.raid_partial_stripes_expensive;
1423
1424 ret = bcache_device_init(&dc->disk, block_size,
1425 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1426 dc->bdev, &bcache_cached_ops);
1427 if (ret)
1428 return ret;
1429
1430 blk_queue_io_opt(dc->disk.disk->queue,
1431 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1432
1433 atomic_set(&dc->io_errors, 0);
1434 dc->io_disable = false;
1435 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1436 /* default to auto */
1437 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1438
1439 bch_cached_dev_request_init(dc);
1440 bch_cached_dev_writeback_init(dc);
1441 return 0;
1442 }
1443
1444 /* Cached device - bcache superblock */
1445
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cached_dev * dc)1446 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1447 struct block_device *bdev,
1448 struct cached_dev *dc)
1449 {
1450 const char *err = "cannot allocate memory";
1451 struct cache_set *c;
1452 int ret = -ENOMEM;
1453
1454 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1455 dc->bdev = bdev;
1456 dc->sb_disk = sb_disk;
1457
1458 if (cached_dev_init(dc, sb->block_size << 9))
1459 goto err;
1460
1461 err = "error creating kobject";
1462 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1463 goto err;
1464 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1465 goto err;
1466
1467 pr_info("registered backing device %pg\n", dc->bdev);
1468
1469 list_add(&dc->list, &uncached_devices);
1470 /* attach to a matched cache set if it exists */
1471 list_for_each_entry(c, &bch_cache_sets, list)
1472 bch_cached_dev_attach(dc, c, NULL);
1473
1474 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1475 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1476 err = "failed to run cached device";
1477 ret = bch_cached_dev_run(dc);
1478 if (ret)
1479 goto err;
1480 }
1481
1482 return 0;
1483 err:
1484 pr_notice("error %pg: %s\n", dc->bdev, err);
1485 bcache_device_stop(&dc->disk);
1486 return ret;
1487 }
1488
1489 /* Flash only volumes */
1490
1491 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1492 void bch_flash_dev_release(struct kobject *kobj)
1493 {
1494 struct bcache_device *d = container_of(kobj, struct bcache_device,
1495 kobj);
1496 kfree(d);
1497 }
1498
flash_dev_free(struct closure * cl)1499 static void flash_dev_free(struct closure *cl)
1500 {
1501 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1502
1503 mutex_lock(&bch_register_lock);
1504 atomic_long_sub(bcache_dev_sectors_dirty(d),
1505 &d->c->flash_dev_dirty_sectors);
1506 del_gendisk(d->disk);
1507 bcache_device_free(d);
1508 mutex_unlock(&bch_register_lock);
1509 kobject_put(&d->kobj);
1510 }
1511
flash_dev_flush(struct closure * cl)1512 static void flash_dev_flush(struct closure *cl)
1513 {
1514 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1515
1516 mutex_lock(&bch_register_lock);
1517 bcache_device_unlink(d);
1518 mutex_unlock(&bch_register_lock);
1519 kobject_del(&d->kobj);
1520 continue_at(cl, flash_dev_free, system_wq);
1521 }
1522
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1523 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1524 {
1525 int err = -ENOMEM;
1526 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1527 GFP_KERNEL);
1528 if (!d)
1529 goto err_ret;
1530
1531 closure_init(&d->cl, NULL);
1532 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1533
1534 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1535
1536 if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1537 NULL, &bcache_flash_ops))
1538 goto err;
1539
1540 bcache_device_attach(d, c, u - c->uuids);
1541 bch_sectors_dirty_init(d);
1542 bch_flash_dev_request_init(d);
1543 err = add_disk(d->disk);
1544 if (err)
1545 goto err;
1546
1547 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1548 if (err)
1549 goto err;
1550
1551 bcache_device_link(d, c, "volume");
1552
1553 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1554 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1555 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1556 set_disk_ro(d->disk, 1);
1557 }
1558
1559 return 0;
1560 err:
1561 kobject_put(&d->kobj);
1562 err_ret:
1563 return err;
1564 }
1565
flash_devs_run(struct cache_set * c)1566 static int flash_devs_run(struct cache_set *c)
1567 {
1568 int ret = 0;
1569 struct uuid_entry *u;
1570
1571 for (u = c->uuids;
1572 u < c->uuids + c->nr_uuids && !ret;
1573 u++)
1574 if (UUID_FLASH_ONLY(u))
1575 ret = flash_dev_run(c, u);
1576
1577 return ret;
1578 }
1579
bch_flash_dev_create(struct cache_set * c,uint64_t size)1580 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1581 {
1582 struct uuid_entry *u;
1583
1584 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1585 return -EINTR;
1586
1587 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1588 return -EPERM;
1589
1590 u = uuid_find_empty(c);
1591 if (!u) {
1592 pr_err("Can't create volume, no room for UUID\n");
1593 return -EINVAL;
1594 }
1595
1596 get_random_bytes(u->uuid, 16);
1597 memset(u->label, 0, 32);
1598 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1599
1600 SET_UUID_FLASH_ONLY(u, 1);
1601 u->sectors = size >> 9;
1602
1603 bch_uuid_write(c);
1604
1605 return flash_dev_run(c, u);
1606 }
1607
bch_cached_dev_error(struct cached_dev * dc)1608 bool bch_cached_dev_error(struct cached_dev *dc)
1609 {
1610 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1611 return false;
1612
1613 dc->io_disable = true;
1614 /* make others know io_disable is true earlier */
1615 smp_mb();
1616
1617 pr_err("stop %s: too many IO errors on backing device %pg\n",
1618 dc->disk.disk->disk_name, dc->bdev);
1619
1620 bcache_device_stop(&dc->disk);
1621 return true;
1622 }
1623
1624 /* Cache set */
1625
1626 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1627 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1628 {
1629 struct va_format vaf;
1630 va_list args;
1631
1632 if (c->on_error != ON_ERROR_PANIC &&
1633 test_bit(CACHE_SET_STOPPING, &c->flags))
1634 return false;
1635
1636 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1637 pr_info("CACHE_SET_IO_DISABLE already set\n");
1638
1639 /*
1640 * XXX: we can be called from atomic context
1641 * acquire_console_sem();
1642 */
1643
1644 va_start(args, fmt);
1645
1646 vaf.fmt = fmt;
1647 vaf.va = &args;
1648
1649 pr_err("error on %pU: %pV, disabling caching\n",
1650 c->set_uuid, &vaf);
1651
1652 va_end(args);
1653
1654 if (c->on_error == ON_ERROR_PANIC)
1655 panic("panic forced after error\n");
1656
1657 bch_cache_set_unregister(c);
1658 return true;
1659 }
1660
1661 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1662 void bch_cache_set_release(struct kobject *kobj)
1663 {
1664 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1665
1666 kfree(c);
1667 module_put(THIS_MODULE);
1668 }
1669
cache_set_free(struct closure * cl)1670 static void cache_set_free(struct closure *cl)
1671 {
1672 struct cache_set *c = container_of(cl, struct cache_set, cl);
1673 struct cache *ca;
1674
1675 debugfs_remove(c->debug);
1676
1677 bch_open_buckets_free(c);
1678 bch_btree_cache_free(c);
1679 bch_journal_free(c);
1680
1681 mutex_lock(&bch_register_lock);
1682 bch_bset_sort_state_free(&c->sort);
1683 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1684
1685 ca = c->cache;
1686 if (ca) {
1687 ca->set = NULL;
1688 c->cache = NULL;
1689 kobject_put(&ca->kobj);
1690 }
1691
1692
1693 if (c->moving_gc_wq)
1694 destroy_workqueue(c->moving_gc_wq);
1695 bioset_exit(&c->bio_split);
1696 mempool_exit(&c->fill_iter);
1697 mempool_exit(&c->bio_meta);
1698 mempool_exit(&c->search);
1699 kfree(c->devices);
1700
1701 list_del(&c->list);
1702 mutex_unlock(&bch_register_lock);
1703
1704 pr_info("Cache set %pU unregistered\n", c->set_uuid);
1705 wake_up(&unregister_wait);
1706
1707 closure_debug_destroy(&c->cl);
1708 kobject_put(&c->kobj);
1709 }
1710
cache_set_flush(struct closure * cl)1711 static void cache_set_flush(struct closure *cl)
1712 {
1713 struct cache_set *c = container_of(cl, struct cache_set, caching);
1714 struct cache *ca = c->cache;
1715 struct btree *b;
1716
1717 bch_cache_accounting_destroy(&c->accounting);
1718
1719 kobject_put(&c->internal);
1720 kobject_del(&c->kobj);
1721
1722 if (!IS_ERR_OR_NULL(c->gc_thread))
1723 kthread_stop(c->gc_thread);
1724
1725 if (!IS_ERR(c->root))
1726 list_add(&c->root->list, &c->btree_cache);
1727
1728 /*
1729 * Avoid flushing cached nodes if cache set is retiring
1730 * due to too many I/O errors detected.
1731 */
1732 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1733 list_for_each_entry(b, &c->btree_cache, list) {
1734 mutex_lock(&b->write_lock);
1735 if (btree_node_dirty(b))
1736 __bch_btree_node_write(b, NULL);
1737 mutex_unlock(&b->write_lock);
1738 }
1739
1740 if (ca->alloc_thread)
1741 kthread_stop(ca->alloc_thread);
1742
1743 if (c->journal.cur) {
1744 cancel_delayed_work_sync(&c->journal.work);
1745 /* flush last journal entry if needed */
1746 c->journal.work.work.func(&c->journal.work.work);
1747 }
1748
1749 closure_return(cl);
1750 }
1751
1752 /*
1753 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1754 * cache set is unregistering due to too many I/O errors. In this condition,
1755 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1756 * value and whether the broken cache has dirty data:
1757 *
1758 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1759 * BCH_CACHED_STOP_AUTO 0 NO
1760 * BCH_CACHED_STOP_AUTO 1 YES
1761 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1762 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1763 *
1764 * The expected behavior is, if stop_when_cache_set_failed is configured to
1765 * "auto" via sysfs interface, the bcache device will not be stopped if the
1766 * backing device is clean on the broken cache device.
1767 */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1768 static void conditional_stop_bcache_device(struct cache_set *c,
1769 struct bcache_device *d,
1770 struct cached_dev *dc)
1771 {
1772 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1773 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1774 d->disk->disk_name, c->set_uuid);
1775 bcache_device_stop(d);
1776 } else if (atomic_read(&dc->has_dirty)) {
1777 /*
1778 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1779 * and dc->has_dirty == 1
1780 */
1781 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1782 d->disk->disk_name);
1783 /*
1784 * There might be a small time gap that cache set is
1785 * released but bcache device is not. Inside this time
1786 * gap, regular I/O requests will directly go into
1787 * backing device as no cache set attached to. This
1788 * behavior may also introduce potential inconsistence
1789 * data in writeback mode while cache is dirty.
1790 * Therefore before calling bcache_device_stop() due
1791 * to a broken cache device, dc->io_disable should be
1792 * explicitly set to true.
1793 */
1794 dc->io_disable = true;
1795 /* make others know io_disable is true earlier */
1796 smp_mb();
1797 bcache_device_stop(d);
1798 } else {
1799 /*
1800 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1801 * and dc->has_dirty == 0
1802 */
1803 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1804 d->disk->disk_name);
1805 }
1806 }
1807
__cache_set_unregister(struct closure * cl)1808 static void __cache_set_unregister(struct closure *cl)
1809 {
1810 struct cache_set *c = container_of(cl, struct cache_set, caching);
1811 struct cached_dev *dc;
1812 struct bcache_device *d;
1813 size_t i;
1814
1815 mutex_lock(&bch_register_lock);
1816
1817 for (i = 0; i < c->devices_max_used; i++) {
1818 d = c->devices[i];
1819 if (!d)
1820 continue;
1821
1822 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1823 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1824 dc = container_of(d, struct cached_dev, disk);
1825 bch_cached_dev_detach(dc);
1826 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1827 conditional_stop_bcache_device(c, d, dc);
1828 } else {
1829 bcache_device_stop(d);
1830 }
1831 }
1832
1833 mutex_unlock(&bch_register_lock);
1834
1835 continue_at(cl, cache_set_flush, system_wq);
1836 }
1837
bch_cache_set_stop(struct cache_set * c)1838 void bch_cache_set_stop(struct cache_set *c)
1839 {
1840 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1841 /* closure_fn set to __cache_set_unregister() */
1842 closure_queue(&c->caching);
1843 }
1844
bch_cache_set_unregister(struct cache_set * c)1845 void bch_cache_set_unregister(struct cache_set *c)
1846 {
1847 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1848 bch_cache_set_stop(c);
1849 }
1850
1851 #define alloc_meta_bucket_pages(gfp, sb) \
1852 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1853
bch_cache_set_alloc(struct cache_sb * sb)1854 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1855 {
1856 int iter_size;
1857 struct cache *ca = container_of(sb, struct cache, sb);
1858 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1859
1860 if (!c)
1861 return NULL;
1862
1863 __module_get(THIS_MODULE);
1864 closure_init(&c->cl, NULL);
1865 set_closure_fn(&c->cl, cache_set_free, system_wq);
1866
1867 closure_init(&c->caching, &c->cl);
1868 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1869
1870 /* Maybe create continue_at_noreturn() and use it here? */
1871 closure_set_stopped(&c->cl);
1872 closure_put(&c->cl);
1873
1874 kobject_init(&c->kobj, &bch_cache_set_ktype);
1875 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1876
1877 bch_cache_accounting_init(&c->accounting, &c->cl);
1878
1879 memcpy(c->set_uuid, sb->set_uuid, 16);
1880
1881 c->cache = ca;
1882 c->cache->set = c;
1883 c->bucket_bits = ilog2(sb->bucket_size);
1884 c->block_bits = ilog2(sb->block_size);
1885 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1886 c->devices_max_used = 0;
1887 atomic_set(&c->attached_dev_nr, 0);
1888 c->btree_pages = meta_bucket_pages(sb);
1889 if (c->btree_pages > BTREE_MAX_PAGES)
1890 c->btree_pages = max_t(int, c->btree_pages / 4,
1891 BTREE_MAX_PAGES);
1892
1893 sema_init(&c->sb_write_mutex, 1);
1894 mutex_init(&c->bucket_lock);
1895 init_waitqueue_head(&c->btree_cache_wait);
1896 spin_lock_init(&c->btree_cannibalize_lock);
1897 init_waitqueue_head(&c->bucket_wait);
1898 init_waitqueue_head(&c->gc_wait);
1899 sema_init(&c->uuid_write_mutex, 1);
1900
1901 spin_lock_init(&c->btree_gc_time.lock);
1902 spin_lock_init(&c->btree_split_time.lock);
1903 spin_lock_init(&c->btree_read_time.lock);
1904
1905 bch_moving_init_cache_set(c);
1906
1907 INIT_LIST_HEAD(&c->list);
1908 INIT_LIST_HEAD(&c->cached_devs);
1909 INIT_LIST_HEAD(&c->btree_cache);
1910 INIT_LIST_HEAD(&c->btree_cache_freeable);
1911 INIT_LIST_HEAD(&c->btree_cache_freed);
1912 INIT_LIST_HEAD(&c->data_buckets);
1913
1914 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1915 sizeof(struct btree_iter_set);
1916
1917 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1918 if (!c->devices)
1919 goto err;
1920
1921 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1922 goto err;
1923
1924 if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1925 sizeof(struct bbio) +
1926 sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1927 goto err;
1928
1929 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1930 goto err;
1931
1932 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1933 BIOSET_NEED_RESCUER))
1934 goto err;
1935
1936 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1937 if (!c->uuids)
1938 goto err;
1939
1940 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1941 if (!c->moving_gc_wq)
1942 goto err;
1943
1944 if (bch_journal_alloc(c))
1945 goto err;
1946
1947 if (bch_btree_cache_alloc(c))
1948 goto err;
1949
1950 if (bch_open_buckets_alloc(c))
1951 goto err;
1952
1953 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1954 goto err;
1955
1956 c->congested_read_threshold_us = 2000;
1957 c->congested_write_threshold_us = 20000;
1958 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1959 c->idle_max_writeback_rate_enabled = 1;
1960 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1961
1962 return c;
1963 err:
1964 bch_cache_set_unregister(c);
1965 return NULL;
1966 }
1967
run_cache_set(struct cache_set * c)1968 static int run_cache_set(struct cache_set *c)
1969 {
1970 const char *err = "cannot allocate memory";
1971 struct cached_dev *dc, *t;
1972 struct cache *ca = c->cache;
1973 struct closure cl;
1974 LIST_HEAD(journal);
1975 struct journal_replay *l;
1976
1977 closure_init_stack(&cl);
1978
1979 c->nbuckets = ca->sb.nbuckets;
1980 set_gc_sectors(c);
1981
1982 if (CACHE_SYNC(&c->cache->sb)) {
1983 struct bkey *k;
1984 struct jset *j;
1985
1986 err = "cannot allocate memory for journal";
1987 if (bch_journal_read(c, &journal))
1988 goto err;
1989
1990 pr_debug("btree_journal_read() done\n");
1991
1992 err = "no journal entries found";
1993 if (list_empty(&journal))
1994 goto err;
1995
1996 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1997
1998 err = "IO error reading priorities";
1999 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2000 goto err;
2001
2002 /*
2003 * If prio_read() fails it'll call cache_set_error and we'll
2004 * tear everything down right away, but if we perhaps checked
2005 * sooner we could avoid journal replay.
2006 */
2007
2008 k = &j->btree_root;
2009
2010 err = "bad btree root";
2011 if (__bch_btree_ptr_invalid(c, k))
2012 goto err;
2013
2014 err = "error reading btree root";
2015 c->root = bch_btree_node_get(c, NULL, k,
2016 j->btree_level,
2017 true, NULL);
2018 if (IS_ERR_OR_NULL(c->root))
2019 goto err;
2020
2021 list_del_init(&c->root->list);
2022 rw_unlock(true, c->root);
2023
2024 err = uuid_read(c, j, &cl);
2025 if (err)
2026 goto err;
2027
2028 err = "error in recovery";
2029 if (bch_btree_check(c))
2030 goto err;
2031
2032 bch_journal_mark(c, &journal);
2033 bch_initial_gc_finish(c);
2034 pr_debug("btree_check() done\n");
2035
2036 /*
2037 * bcache_journal_next() can't happen sooner, or
2038 * btree_gc_finish() will give spurious errors about last_gc >
2039 * gc_gen - this is a hack but oh well.
2040 */
2041 bch_journal_next(&c->journal);
2042
2043 err = "error starting allocator thread";
2044 if (bch_cache_allocator_start(ca))
2045 goto err;
2046
2047 /*
2048 * First place it's safe to allocate: btree_check() and
2049 * btree_gc_finish() have to run before we have buckets to
2050 * allocate, and bch_bucket_alloc_set() might cause a journal
2051 * entry to be written so bcache_journal_next() has to be called
2052 * first.
2053 *
2054 * If the uuids were in the old format we have to rewrite them
2055 * before the next journal entry is written:
2056 */
2057 if (j->version < BCACHE_JSET_VERSION_UUID)
2058 __uuid_write(c);
2059
2060 err = "bcache: replay journal failed";
2061 if (bch_journal_replay(c, &journal))
2062 goto err;
2063 } else {
2064 unsigned int j;
2065
2066 pr_notice("invalidating existing data\n");
2067 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2068 2, SB_JOURNAL_BUCKETS);
2069
2070 for (j = 0; j < ca->sb.keys; j++)
2071 ca->sb.d[j] = ca->sb.first_bucket + j;
2072
2073 bch_initial_gc_finish(c);
2074
2075 err = "error starting allocator thread";
2076 if (bch_cache_allocator_start(ca))
2077 goto err;
2078
2079 mutex_lock(&c->bucket_lock);
2080 bch_prio_write(ca, true);
2081 mutex_unlock(&c->bucket_lock);
2082
2083 err = "cannot allocate new UUID bucket";
2084 if (__uuid_write(c))
2085 goto err;
2086
2087 err = "cannot allocate new btree root";
2088 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2089 if (IS_ERR(c->root))
2090 goto err;
2091
2092 mutex_lock(&c->root->write_lock);
2093 bkey_copy_key(&c->root->key, &MAX_KEY);
2094 bch_btree_node_write(c->root, &cl);
2095 mutex_unlock(&c->root->write_lock);
2096
2097 bch_btree_set_root(c->root);
2098 rw_unlock(true, c->root);
2099
2100 /*
2101 * We don't want to write the first journal entry until
2102 * everything is set up - fortunately journal entries won't be
2103 * written until the SET_CACHE_SYNC() here:
2104 */
2105 SET_CACHE_SYNC(&c->cache->sb, true);
2106
2107 bch_journal_next(&c->journal);
2108 bch_journal_meta(c, &cl);
2109 }
2110
2111 err = "error starting gc thread";
2112 if (bch_gc_thread_start(c))
2113 goto err;
2114
2115 closure_sync(&cl);
2116 c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2117 bcache_write_super(c);
2118
2119 if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2120 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2121
2122 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2123 bch_cached_dev_attach(dc, c, NULL);
2124
2125 flash_devs_run(c);
2126
2127 bch_journal_space_reserve(&c->journal);
2128 set_bit(CACHE_SET_RUNNING, &c->flags);
2129 return 0;
2130 err:
2131 while (!list_empty(&journal)) {
2132 l = list_first_entry(&journal, struct journal_replay, list);
2133 list_del(&l->list);
2134 kfree(l);
2135 }
2136
2137 closure_sync(&cl);
2138
2139 bch_cache_set_error(c, "%s", err);
2140
2141 return -EIO;
2142 }
2143
register_cache_set(struct cache * ca)2144 static const char *register_cache_set(struct cache *ca)
2145 {
2146 char buf[12];
2147 const char *err = "cannot allocate memory";
2148 struct cache_set *c;
2149
2150 list_for_each_entry(c, &bch_cache_sets, list)
2151 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2152 if (c->cache)
2153 return "duplicate cache set member";
2154
2155 goto found;
2156 }
2157
2158 c = bch_cache_set_alloc(&ca->sb);
2159 if (!c)
2160 return err;
2161
2162 err = "error creating kobject";
2163 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2164 kobject_add(&c->internal, &c->kobj, "internal"))
2165 goto err;
2166
2167 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2168 goto err;
2169
2170 bch_debug_init_cache_set(c);
2171
2172 list_add(&c->list, &bch_cache_sets);
2173 found:
2174 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2175 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2176 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2177 goto err;
2178
2179 kobject_get(&ca->kobj);
2180 ca->set = c;
2181 ca->set->cache = ca;
2182
2183 err = "failed to run cache set";
2184 if (run_cache_set(c) < 0)
2185 goto err;
2186
2187 return NULL;
2188 err:
2189 bch_cache_set_unregister(c);
2190 return err;
2191 }
2192
2193 /* Cache device */
2194
2195 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2196 void bch_cache_release(struct kobject *kobj)
2197 {
2198 struct cache *ca = container_of(kobj, struct cache, kobj);
2199 unsigned int i;
2200
2201 if (ca->set) {
2202 BUG_ON(ca->set->cache != ca);
2203 ca->set->cache = NULL;
2204 }
2205
2206 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2207 kfree(ca->prio_buckets);
2208 vfree(ca->buckets);
2209
2210 free_heap(&ca->heap);
2211 free_fifo(&ca->free_inc);
2212
2213 for (i = 0; i < RESERVE_NR; i++)
2214 free_fifo(&ca->free[i]);
2215
2216 if (ca->sb_disk)
2217 put_page(virt_to_page(ca->sb_disk));
2218
2219 if (!IS_ERR_OR_NULL(ca->bdev))
2220 blkdev_put(ca->bdev, ca);
2221
2222 kfree(ca);
2223 module_put(THIS_MODULE);
2224 }
2225
cache_alloc(struct cache * ca)2226 static int cache_alloc(struct cache *ca)
2227 {
2228 size_t free;
2229 size_t btree_buckets;
2230 struct bucket *b;
2231 int ret = -ENOMEM;
2232 const char *err = NULL;
2233
2234 __module_get(THIS_MODULE);
2235 kobject_init(&ca->kobj, &bch_cache_ktype);
2236
2237 bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0);
2238
2239 /*
2240 * when ca->sb.njournal_buckets is not zero, journal exists,
2241 * and in bch_journal_replay(), tree node may split,
2242 * so bucket of RESERVE_BTREE type is needed,
2243 * the worst situation is all journal buckets are valid journal,
2244 * and all the keys need to replay,
2245 * so the number of RESERVE_BTREE type buckets should be as much
2246 * as journal buckets
2247 */
2248 btree_buckets = ca->sb.njournal_buckets ?: 8;
2249 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2250 if (!free) {
2251 ret = -EPERM;
2252 err = "ca->sb.nbuckets is too small";
2253 goto err_free;
2254 }
2255
2256 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2257 GFP_KERNEL)) {
2258 err = "ca->free[RESERVE_BTREE] alloc failed";
2259 goto err_btree_alloc;
2260 }
2261
2262 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2263 GFP_KERNEL)) {
2264 err = "ca->free[RESERVE_PRIO] alloc failed";
2265 goto err_prio_alloc;
2266 }
2267
2268 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2269 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2270 goto err_movinggc_alloc;
2271 }
2272
2273 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2274 err = "ca->free[RESERVE_NONE] alloc failed";
2275 goto err_none_alloc;
2276 }
2277
2278 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2279 err = "ca->free_inc alloc failed";
2280 goto err_free_inc_alloc;
2281 }
2282
2283 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2284 err = "ca->heap alloc failed";
2285 goto err_heap_alloc;
2286 }
2287
2288 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2289 ca->sb.nbuckets));
2290 if (!ca->buckets) {
2291 err = "ca->buckets alloc failed";
2292 goto err_buckets_alloc;
2293 }
2294
2295 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2296 prio_buckets(ca), 2),
2297 GFP_KERNEL);
2298 if (!ca->prio_buckets) {
2299 err = "ca->prio_buckets alloc failed";
2300 goto err_prio_buckets_alloc;
2301 }
2302
2303 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2304 if (!ca->disk_buckets) {
2305 err = "ca->disk_buckets alloc failed";
2306 goto err_disk_buckets_alloc;
2307 }
2308
2309 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2310
2311 for_each_bucket(b, ca)
2312 atomic_set(&b->pin, 0);
2313 return 0;
2314
2315 err_disk_buckets_alloc:
2316 kfree(ca->prio_buckets);
2317 err_prio_buckets_alloc:
2318 vfree(ca->buckets);
2319 err_buckets_alloc:
2320 free_heap(&ca->heap);
2321 err_heap_alloc:
2322 free_fifo(&ca->free_inc);
2323 err_free_inc_alloc:
2324 free_fifo(&ca->free[RESERVE_NONE]);
2325 err_none_alloc:
2326 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2327 err_movinggc_alloc:
2328 free_fifo(&ca->free[RESERVE_PRIO]);
2329 err_prio_alloc:
2330 free_fifo(&ca->free[RESERVE_BTREE]);
2331 err_btree_alloc:
2332 err_free:
2333 module_put(THIS_MODULE);
2334 if (err)
2335 pr_notice("error %pg: %s\n", ca->bdev, err);
2336 return ret;
2337 }
2338
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cache * ca)2339 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2340 struct block_device *bdev, struct cache *ca)
2341 {
2342 const char *err = NULL; /* must be set for any error case */
2343 int ret = 0;
2344
2345 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2346 ca->bdev = bdev;
2347 ca->sb_disk = sb_disk;
2348
2349 if (bdev_max_discard_sectors((bdev)))
2350 ca->discard = CACHE_DISCARD(&ca->sb);
2351
2352 ret = cache_alloc(ca);
2353 if (ret != 0) {
2354 /*
2355 * If we failed here, it means ca->kobj is not initialized yet,
2356 * kobject_put() won't be called and there is no chance to
2357 * call blkdev_put() to bdev in bch_cache_release(). So we
2358 * explicitly call blkdev_put() here.
2359 */
2360 blkdev_put(bdev, ca);
2361 if (ret == -ENOMEM)
2362 err = "cache_alloc(): -ENOMEM";
2363 else if (ret == -EPERM)
2364 err = "cache_alloc(): cache device is too small";
2365 else
2366 err = "cache_alloc(): unknown error";
2367 goto err;
2368 }
2369
2370 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2371 err = "error calling kobject_add";
2372 ret = -ENOMEM;
2373 goto out;
2374 }
2375
2376 mutex_lock(&bch_register_lock);
2377 err = register_cache_set(ca);
2378 mutex_unlock(&bch_register_lock);
2379
2380 if (err) {
2381 ret = -ENODEV;
2382 goto out;
2383 }
2384
2385 pr_info("registered cache device %pg\n", ca->bdev);
2386
2387 out:
2388 kobject_put(&ca->kobj);
2389
2390 err:
2391 if (err)
2392 pr_notice("error %pg: %s\n", ca->bdev, err);
2393
2394 return ret;
2395 }
2396
2397 /* Global interfaces/init */
2398
2399 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2400 const char *buffer, size_t size);
2401 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2402 struct kobj_attribute *attr,
2403 const char *buffer, size_t size);
2404
2405 kobj_attribute_write(register, register_bcache);
2406 kobj_attribute_write(register_quiet, register_bcache);
2407 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2408
bch_is_open_backing(dev_t dev)2409 static bool bch_is_open_backing(dev_t dev)
2410 {
2411 struct cache_set *c, *tc;
2412 struct cached_dev *dc, *t;
2413
2414 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2415 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2416 if (dc->bdev->bd_dev == dev)
2417 return true;
2418 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2419 if (dc->bdev->bd_dev == dev)
2420 return true;
2421 return false;
2422 }
2423
bch_is_open_cache(dev_t dev)2424 static bool bch_is_open_cache(dev_t dev)
2425 {
2426 struct cache_set *c, *tc;
2427
2428 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2429 struct cache *ca = c->cache;
2430
2431 if (ca->bdev->bd_dev == dev)
2432 return true;
2433 }
2434
2435 return false;
2436 }
2437
bch_is_open(dev_t dev)2438 static bool bch_is_open(dev_t dev)
2439 {
2440 return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2441 }
2442
2443 struct async_reg_args {
2444 struct delayed_work reg_work;
2445 char *path;
2446 struct cache_sb *sb;
2447 struct cache_sb_disk *sb_disk;
2448 struct block_device *bdev;
2449 void *holder;
2450 };
2451
register_bdev_worker(struct work_struct * work)2452 static void register_bdev_worker(struct work_struct *work)
2453 {
2454 int fail = false;
2455 struct async_reg_args *args =
2456 container_of(work, struct async_reg_args, reg_work.work);
2457
2458 mutex_lock(&bch_register_lock);
2459 if (register_bdev(args->sb, args->sb_disk, args->bdev, args->holder)
2460 < 0)
2461 fail = true;
2462 mutex_unlock(&bch_register_lock);
2463
2464 if (fail)
2465 pr_info("error %s: fail to register backing device\n",
2466 args->path);
2467 kfree(args->sb);
2468 kfree(args->path);
2469 kfree(args);
2470 module_put(THIS_MODULE);
2471 }
2472
register_cache_worker(struct work_struct * work)2473 static void register_cache_worker(struct work_struct *work)
2474 {
2475 int fail = false;
2476 struct async_reg_args *args =
2477 container_of(work, struct async_reg_args, reg_work.work);
2478
2479 /* blkdev_put() will be called in bch_cache_release() */
2480 if (register_cache(args->sb, args->sb_disk, args->bdev, args->holder))
2481 fail = true;
2482
2483 if (fail)
2484 pr_info("error %s: fail to register cache device\n",
2485 args->path);
2486 kfree(args->sb);
2487 kfree(args->path);
2488 kfree(args);
2489 module_put(THIS_MODULE);
2490 }
2491
register_device_async(struct async_reg_args * args)2492 static void register_device_async(struct async_reg_args *args)
2493 {
2494 if (SB_IS_BDEV(args->sb))
2495 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2496 else
2497 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2498
2499 /* 10 jiffies is enough for a delay */
2500 queue_delayed_work(system_wq, &args->reg_work, 10);
2501 }
2502
alloc_holder_object(struct cache_sb * sb)2503 static void *alloc_holder_object(struct cache_sb *sb)
2504 {
2505 if (SB_IS_BDEV(sb))
2506 return kzalloc(sizeof(struct cached_dev), GFP_KERNEL);
2507 return kzalloc(sizeof(struct cache), GFP_KERNEL);
2508 }
2509
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2510 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2511 const char *buffer, size_t size)
2512 {
2513 const char *err;
2514 char *path = NULL;
2515 struct cache_sb *sb;
2516 struct cache_sb_disk *sb_disk;
2517 struct block_device *bdev, *bdev2;
2518 void *holder = NULL;
2519 ssize_t ret;
2520 bool async_registration = false;
2521 bool quiet = false;
2522
2523 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2524 async_registration = true;
2525 #endif
2526
2527 ret = -EBUSY;
2528 err = "failed to reference bcache module";
2529 if (!try_module_get(THIS_MODULE))
2530 goto out;
2531
2532 /* For latest state of bcache_is_reboot */
2533 smp_mb();
2534 err = "bcache is in reboot";
2535 if (bcache_is_reboot)
2536 goto out_module_put;
2537
2538 ret = -ENOMEM;
2539 err = "cannot allocate memory";
2540 path = kstrndup(buffer, size, GFP_KERNEL);
2541 if (!path)
2542 goto out_module_put;
2543
2544 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2545 if (!sb)
2546 goto out_free_path;
2547
2548 ret = -EINVAL;
2549 err = "failed to open device";
2550 bdev = blkdev_get_by_path(strim(path), BLK_OPEN_READ, NULL, NULL);
2551 if (IS_ERR(bdev))
2552 goto out_free_sb;
2553
2554 err = "failed to set blocksize";
2555 if (set_blocksize(bdev, 4096))
2556 goto out_blkdev_put;
2557
2558 err = read_super(sb, bdev, &sb_disk);
2559 if (err)
2560 goto out_blkdev_put;
2561
2562 holder = alloc_holder_object(sb);
2563 if (!holder) {
2564 ret = -ENOMEM;
2565 err = "cannot allocate memory";
2566 goto out_put_sb_page;
2567 }
2568
2569 /* Now reopen in exclusive mode with proper holder */
2570 bdev2 = blkdev_get_by_dev(bdev->bd_dev, BLK_OPEN_READ | BLK_OPEN_WRITE,
2571 holder, NULL);
2572 blkdev_put(bdev, NULL);
2573 bdev = bdev2;
2574 if (IS_ERR(bdev)) {
2575 ret = PTR_ERR(bdev);
2576 bdev = NULL;
2577 if (ret == -EBUSY) {
2578 dev_t dev;
2579
2580 mutex_lock(&bch_register_lock);
2581 if (lookup_bdev(strim(path), &dev) == 0 &&
2582 bch_is_open(dev))
2583 err = "device already registered";
2584 else
2585 err = "device busy";
2586 mutex_unlock(&bch_register_lock);
2587 if (attr == &ksysfs_register_quiet) {
2588 quiet = true;
2589 ret = size;
2590 }
2591 }
2592 goto out_free_holder;
2593 }
2594
2595 err = "failed to register device";
2596
2597 if (async_registration) {
2598 /* register in asynchronous way */
2599 struct async_reg_args *args =
2600 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2601
2602 if (!args) {
2603 ret = -ENOMEM;
2604 err = "cannot allocate memory";
2605 goto out_free_holder;
2606 }
2607
2608 args->path = path;
2609 args->sb = sb;
2610 args->sb_disk = sb_disk;
2611 args->bdev = bdev;
2612 args->holder = holder;
2613 register_device_async(args);
2614 /* No wait and returns to user space */
2615 goto async_done;
2616 }
2617
2618 if (SB_IS_BDEV(sb)) {
2619 mutex_lock(&bch_register_lock);
2620 ret = register_bdev(sb, sb_disk, bdev, holder);
2621 mutex_unlock(&bch_register_lock);
2622 /* blkdev_put() will be called in cached_dev_free() */
2623 if (ret < 0)
2624 goto out_free_sb;
2625 } else {
2626 /* blkdev_put() will be called in bch_cache_release() */
2627 ret = register_cache(sb, sb_disk, bdev, holder);
2628 if (ret)
2629 goto out_free_sb;
2630 }
2631
2632 kfree(sb);
2633 kfree(path);
2634 module_put(THIS_MODULE);
2635 async_done:
2636 return size;
2637
2638 out_free_holder:
2639 kfree(holder);
2640 out_put_sb_page:
2641 put_page(virt_to_page(sb_disk));
2642 out_blkdev_put:
2643 if (bdev)
2644 blkdev_put(bdev, holder);
2645 out_free_sb:
2646 kfree(sb);
2647 out_free_path:
2648 kfree(path);
2649 path = NULL;
2650 out_module_put:
2651 module_put(THIS_MODULE);
2652 out:
2653 if (!quiet)
2654 pr_info("error %s: %s\n", path?path:"", err);
2655 return ret;
2656 }
2657
2658
2659 struct pdev {
2660 struct list_head list;
2661 struct cached_dev *dc;
2662 };
2663
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2664 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2665 struct kobj_attribute *attr,
2666 const char *buffer,
2667 size_t size)
2668 {
2669 LIST_HEAD(pending_devs);
2670 ssize_t ret = size;
2671 struct cached_dev *dc, *tdc;
2672 struct pdev *pdev, *tpdev;
2673 struct cache_set *c, *tc;
2674
2675 mutex_lock(&bch_register_lock);
2676 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2677 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2678 if (!pdev)
2679 break;
2680 pdev->dc = dc;
2681 list_add(&pdev->list, &pending_devs);
2682 }
2683
2684 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2685 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2686 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2687 char *set_uuid = c->set_uuid;
2688
2689 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2690 list_del(&pdev->list);
2691 kfree(pdev);
2692 break;
2693 }
2694 }
2695 }
2696 mutex_unlock(&bch_register_lock);
2697
2698 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2699 pr_info("delete pdev %p\n", pdev);
2700 list_del(&pdev->list);
2701 bcache_device_stop(&pdev->dc->disk);
2702 kfree(pdev);
2703 }
2704
2705 return ret;
2706 }
2707
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2708 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2709 {
2710 if (bcache_is_reboot)
2711 return NOTIFY_DONE;
2712
2713 if (code == SYS_DOWN ||
2714 code == SYS_HALT ||
2715 code == SYS_POWER_OFF) {
2716 DEFINE_WAIT(wait);
2717 unsigned long start = jiffies;
2718 bool stopped = false;
2719
2720 struct cache_set *c, *tc;
2721 struct cached_dev *dc, *tdc;
2722
2723 mutex_lock(&bch_register_lock);
2724
2725 if (bcache_is_reboot)
2726 goto out;
2727
2728 /* New registration is rejected since now */
2729 bcache_is_reboot = true;
2730 /*
2731 * Make registering caller (if there is) on other CPU
2732 * core know bcache_is_reboot set to true earlier
2733 */
2734 smp_mb();
2735
2736 if (list_empty(&bch_cache_sets) &&
2737 list_empty(&uncached_devices))
2738 goto out;
2739
2740 mutex_unlock(&bch_register_lock);
2741
2742 pr_info("Stopping all devices:\n");
2743
2744 /*
2745 * The reason bch_register_lock is not held to call
2746 * bch_cache_set_stop() and bcache_device_stop() is to
2747 * avoid potential deadlock during reboot, because cache
2748 * set or bcache device stopping process will acquire
2749 * bch_register_lock too.
2750 *
2751 * We are safe here because bcache_is_reboot sets to
2752 * true already, register_bcache() will reject new
2753 * registration now. bcache_is_reboot also makes sure
2754 * bcache_reboot() won't be re-entered on by other thread,
2755 * so there is no race in following list iteration by
2756 * list_for_each_entry_safe().
2757 */
2758 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2759 bch_cache_set_stop(c);
2760
2761 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2762 bcache_device_stop(&dc->disk);
2763
2764
2765 /*
2766 * Give an early chance for other kthreads and
2767 * kworkers to stop themselves
2768 */
2769 schedule();
2770
2771 /* What's a condition variable? */
2772 while (1) {
2773 long timeout = start + 10 * HZ - jiffies;
2774
2775 mutex_lock(&bch_register_lock);
2776 stopped = list_empty(&bch_cache_sets) &&
2777 list_empty(&uncached_devices);
2778
2779 if (timeout < 0 || stopped)
2780 break;
2781
2782 prepare_to_wait(&unregister_wait, &wait,
2783 TASK_UNINTERRUPTIBLE);
2784
2785 mutex_unlock(&bch_register_lock);
2786 schedule_timeout(timeout);
2787 }
2788
2789 finish_wait(&unregister_wait, &wait);
2790
2791 if (stopped)
2792 pr_info("All devices stopped\n");
2793 else
2794 pr_notice("Timeout waiting for devices to be closed\n");
2795 out:
2796 mutex_unlock(&bch_register_lock);
2797 }
2798
2799 return NOTIFY_DONE;
2800 }
2801
2802 static struct notifier_block reboot = {
2803 .notifier_call = bcache_reboot,
2804 .priority = INT_MAX, /* before any real devices */
2805 };
2806
bcache_exit(void)2807 static void bcache_exit(void)
2808 {
2809 bch_debug_exit();
2810 bch_request_exit();
2811 if (bcache_kobj)
2812 kobject_put(bcache_kobj);
2813 if (bcache_wq)
2814 destroy_workqueue(bcache_wq);
2815 if (bch_journal_wq)
2816 destroy_workqueue(bch_journal_wq);
2817 if (bch_flush_wq)
2818 destroy_workqueue(bch_flush_wq);
2819 bch_btree_exit();
2820
2821 if (bcache_major)
2822 unregister_blkdev(bcache_major, "bcache");
2823 unregister_reboot_notifier(&reboot);
2824 mutex_destroy(&bch_register_lock);
2825 }
2826
2827 /* Check and fixup module parameters */
check_module_parameters(void)2828 static void check_module_parameters(void)
2829 {
2830 if (bch_cutoff_writeback_sync == 0)
2831 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2832 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2833 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2834 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2835 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2836 }
2837
2838 if (bch_cutoff_writeback == 0)
2839 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2840 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2841 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2842 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2843 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2844 }
2845
2846 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2847 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2848 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2849 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2850 }
2851 }
2852
bcache_init(void)2853 static int __init bcache_init(void)
2854 {
2855 static const struct attribute *files[] = {
2856 &ksysfs_register.attr,
2857 &ksysfs_register_quiet.attr,
2858 &ksysfs_pendings_cleanup.attr,
2859 NULL
2860 };
2861
2862 check_module_parameters();
2863
2864 mutex_init(&bch_register_lock);
2865 init_waitqueue_head(&unregister_wait);
2866 register_reboot_notifier(&reboot);
2867
2868 bcache_major = register_blkdev(0, "bcache");
2869 if (bcache_major < 0) {
2870 unregister_reboot_notifier(&reboot);
2871 mutex_destroy(&bch_register_lock);
2872 return bcache_major;
2873 }
2874
2875 if (bch_btree_init())
2876 goto err;
2877
2878 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2879 if (!bcache_wq)
2880 goto err;
2881
2882 /*
2883 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2884 *
2885 * 1. It used `system_wq` before which also does no memory reclaim.
2886 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2887 * reduced throughput can be observed.
2888 *
2889 * We still want to user our own queue to not congest the `system_wq`.
2890 */
2891 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2892 if (!bch_flush_wq)
2893 goto err;
2894
2895 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2896 if (!bch_journal_wq)
2897 goto err;
2898
2899 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2900 if (!bcache_kobj)
2901 goto err;
2902
2903 if (bch_request_init() ||
2904 sysfs_create_files(bcache_kobj, files))
2905 goto err;
2906
2907 bch_debug_init();
2908 closure_debug_init();
2909
2910 bcache_is_reboot = false;
2911
2912 return 0;
2913 err:
2914 bcache_exit();
2915 return -ENOMEM;
2916 }
2917
2918 /*
2919 * Module hooks
2920 */
2921 module_exit(bcache_exit);
2922 module_init(bcache_init);
2923
2924 module_param(bch_cutoff_writeback, uint, 0);
2925 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2926
2927 module_param(bch_cutoff_writeback_sync, uint, 0);
2928 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2929
2930 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2931 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2932 MODULE_LICENSE("GPL");
2933