1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 
17 #include <linux/blkdev.h>
18 #include <linux/buffer_head.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
27 
28 unsigned int bch_cutoff_writeback;
29 unsigned int bch_cutoff_writeback_sync;
30 
31 static const char bcache_magic[] = {
32 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
34 };
35 
36 static const char invalid_uuid[] = {
37 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
39 };
40 
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 bool bcache_is_reboot;
44 LIST_HEAD(bch_cache_sets);
45 static LIST_HEAD(uncached_devices);
46 
47 static int bcache_major;
48 static DEFINE_IDA(bcache_device_idx);
49 static wait_queue_head_t unregister_wait;
50 struct workqueue_struct *bcache_wq;
51 struct workqueue_struct *bch_journal_wq;
52 
53 
54 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
55 /* limitation of partitions number on single bcache device */
56 #define BCACHE_MINORS		128
57 /* limitation of bcache devices number on single system */
58 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
59 
60 /* Superblock */
61 
read_super(struct cache_sb * sb,struct block_device * bdev,struct page ** res)62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
63 			      struct page **res)
64 {
65 	const char *err;
66 	struct cache_sb *s;
67 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
68 	unsigned int i;
69 
70 	if (!bh)
71 		return "IO error";
72 
73 	s = (struct cache_sb *) bh->b_data;
74 
75 	sb->offset		= le64_to_cpu(s->offset);
76 	sb->version		= le64_to_cpu(s->version);
77 
78 	memcpy(sb->magic,	s->magic, 16);
79 	memcpy(sb->uuid,	s->uuid, 16);
80 	memcpy(sb->set_uuid,	s->set_uuid, 16);
81 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
82 
83 	sb->flags		= le64_to_cpu(s->flags);
84 	sb->seq			= le64_to_cpu(s->seq);
85 	sb->last_mount		= le32_to_cpu(s->last_mount);
86 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
87 	sb->keys		= le16_to_cpu(s->keys);
88 
89 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
90 		sb->d[i] = le64_to_cpu(s->d[i]);
91 
92 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
93 		 sb->version, sb->flags, sb->seq, sb->keys);
94 
95 	err = "Not a bcache superblock";
96 	if (sb->offset != SB_SECTOR)
97 		goto err;
98 
99 	if (memcmp(sb->magic, bcache_magic, 16))
100 		goto err;
101 
102 	err = "Too many journal buckets";
103 	if (sb->keys > SB_JOURNAL_BUCKETS)
104 		goto err;
105 
106 	err = "Bad checksum";
107 	if (s->csum != csum_set(s))
108 		goto err;
109 
110 	err = "Bad UUID";
111 	if (bch_is_zero(sb->uuid, 16))
112 		goto err;
113 
114 	sb->block_size	= le16_to_cpu(s->block_size);
115 
116 	err = "Superblock block size smaller than device block size";
117 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
118 		goto err;
119 
120 	switch (sb->version) {
121 	case BCACHE_SB_VERSION_BDEV:
122 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
123 		break;
124 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
125 		sb->data_offset	= le64_to_cpu(s->data_offset);
126 
127 		err = "Bad data offset";
128 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
129 			goto err;
130 
131 		break;
132 	case BCACHE_SB_VERSION_CDEV:
133 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
134 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
135 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
136 
137 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
138 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
139 
140 		err = "Too many buckets";
141 		if (sb->nbuckets > LONG_MAX)
142 			goto err;
143 
144 		err = "Not enough buckets";
145 		if (sb->nbuckets < 1 << 7)
146 			goto err;
147 
148 		err = "Bad block/bucket size";
149 		if (!is_power_of_2(sb->block_size) ||
150 		    sb->block_size > PAGE_SECTORS ||
151 		    !is_power_of_2(sb->bucket_size) ||
152 		    sb->bucket_size < PAGE_SECTORS)
153 			goto err;
154 
155 		err = "Invalid superblock: device too small";
156 		if (get_capacity(bdev->bd_disk) <
157 		    sb->bucket_size * sb->nbuckets)
158 			goto err;
159 
160 		err = "Bad UUID";
161 		if (bch_is_zero(sb->set_uuid, 16))
162 			goto err;
163 
164 		err = "Bad cache device number in set";
165 		if (!sb->nr_in_set ||
166 		    sb->nr_in_set <= sb->nr_this_dev ||
167 		    sb->nr_in_set > MAX_CACHES_PER_SET)
168 			goto err;
169 
170 		err = "Journal buckets not sequential";
171 		for (i = 0; i < sb->keys; i++)
172 			if (sb->d[i] != sb->first_bucket + i)
173 				goto err;
174 
175 		err = "Too many journal buckets";
176 		if (sb->first_bucket + sb->keys > sb->nbuckets)
177 			goto err;
178 
179 		err = "Invalid superblock: first bucket comes before end of super";
180 		if (sb->first_bucket * sb->bucket_size < 16)
181 			goto err;
182 
183 		break;
184 	default:
185 		err = "Unsupported superblock version";
186 		goto err;
187 	}
188 
189 	sb->last_mount = (u32)ktime_get_real_seconds();
190 	err = NULL;
191 
192 	get_page(bh->b_page);
193 	*res = bh->b_page;
194 err:
195 	put_bh(bh);
196 	return err;
197 }
198 
write_bdev_super_endio(struct bio * bio)199 static void write_bdev_super_endio(struct bio *bio)
200 {
201 	struct cached_dev *dc = bio->bi_private;
202 
203 	if (bio->bi_status)
204 		bch_count_backing_io_errors(dc, bio);
205 
206 	closure_put(&dc->sb_write);
207 }
208 
__write_super(struct cache_sb * sb,struct bio * bio)209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 	struct cache_sb *out = page_address(bio_first_page_all(bio));
212 	unsigned int i;
213 
214 	bio->bi_iter.bi_sector	= SB_SECTOR;
215 	bio->bi_iter.bi_size	= SB_SIZE;
216 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
217 	bch_bio_map(bio, NULL);
218 
219 	out->offset		= cpu_to_le64(sb->offset);
220 	out->version		= cpu_to_le64(sb->version);
221 
222 	memcpy(out->uuid,	sb->uuid, 16);
223 	memcpy(out->set_uuid,	sb->set_uuid, 16);
224 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
225 
226 	out->flags		= cpu_to_le64(sb->flags);
227 	out->seq		= cpu_to_le64(sb->seq);
228 
229 	out->last_mount		= cpu_to_le32(sb->last_mount);
230 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
231 	out->keys		= cpu_to_le16(sb->keys);
232 
233 	for (i = 0; i < sb->keys; i++)
234 		out->d[i] = cpu_to_le64(sb->d[i]);
235 
236 	out->csum = csum_set(out);
237 
238 	pr_debug("ver %llu, flags %llu, seq %llu",
239 		 sb->version, sb->flags, sb->seq);
240 
241 	submit_bio(bio);
242 }
243 
bch_write_bdev_super_unlock(struct closure * cl)244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247 
248 	up(&dc->sb_write_mutex);
249 }
250 
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 	struct closure *cl = &dc->sb_write;
254 	struct bio *bio = &dc->sb_bio;
255 
256 	down(&dc->sb_write_mutex);
257 	closure_init(cl, parent);
258 
259 	bio_reset(bio);
260 	bio_set_dev(bio, dc->bdev);
261 	bio->bi_end_io	= write_bdev_super_endio;
262 	bio->bi_private = dc;
263 
264 	closure_get(cl);
265 	/* I/O request sent to backing device */
266 	__write_super(&dc->sb, bio);
267 
268 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
269 }
270 
write_super_endio(struct bio * bio)271 static void write_super_endio(struct bio *bio)
272 {
273 	struct cache *ca = bio->bi_private;
274 
275 	/* is_read = 0 */
276 	bch_count_io_errors(ca, bio->bi_status, 0,
277 			    "writing superblock");
278 	closure_put(&ca->set->sb_write);
279 }
280 
bcache_write_super_unlock(struct closure * cl)281 static void bcache_write_super_unlock(struct closure *cl)
282 {
283 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
284 
285 	up(&c->sb_write_mutex);
286 }
287 
bcache_write_super(struct cache_set * c)288 void bcache_write_super(struct cache_set *c)
289 {
290 	struct closure *cl = &c->sb_write;
291 	struct cache *ca;
292 	unsigned int i;
293 
294 	down(&c->sb_write_mutex);
295 	closure_init(cl, &c->cl);
296 
297 	c->sb.seq++;
298 
299 	for_each_cache(ca, c, i) {
300 		struct bio *bio = &ca->sb_bio;
301 
302 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
303 		ca->sb.seq		= c->sb.seq;
304 		ca->sb.last_mount	= c->sb.last_mount;
305 
306 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
307 
308 		bio_reset(bio);
309 		bio_set_dev(bio, ca->bdev);
310 		bio->bi_end_io	= write_super_endio;
311 		bio->bi_private = ca;
312 
313 		closure_get(cl);
314 		__write_super(&ca->sb, bio);
315 	}
316 
317 	closure_return_with_destructor(cl, bcache_write_super_unlock);
318 }
319 
320 /* UUID io */
321 
uuid_endio(struct bio * bio)322 static void uuid_endio(struct bio *bio)
323 {
324 	struct closure *cl = bio->bi_private;
325 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
326 
327 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
328 	bch_bbio_free(bio, c);
329 	closure_put(cl);
330 }
331 
uuid_io_unlock(struct closure * cl)332 static void uuid_io_unlock(struct closure *cl)
333 {
334 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
335 
336 	up(&c->uuid_write_mutex);
337 }
338 
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
340 		    struct bkey *k, struct closure *parent)
341 {
342 	struct closure *cl = &c->uuid_write;
343 	struct uuid_entry *u;
344 	unsigned int i;
345 	char buf[80];
346 
347 	BUG_ON(!parent);
348 	down(&c->uuid_write_mutex);
349 	closure_init(cl, parent);
350 
351 	for (i = 0; i < KEY_PTRS(k); i++) {
352 		struct bio *bio = bch_bbio_alloc(c);
353 
354 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
355 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
356 
357 		bio->bi_end_io	= uuid_endio;
358 		bio->bi_private = cl;
359 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
360 		bch_bio_map(bio, c->uuids);
361 
362 		bch_submit_bbio(bio, c, k, i);
363 
364 		if (op != REQ_OP_WRITE)
365 			break;
366 	}
367 
368 	bch_extent_to_text(buf, sizeof(buf), k);
369 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
370 
371 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
372 		if (!bch_is_zero(u->uuid, 16))
373 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
374 				 u - c->uuids, u->uuid, u->label,
375 				 u->first_reg, u->last_reg, u->invalidated);
376 
377 	closure_return_with_destructor(cl, uuid_io_unlock);
378 }
379 
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
381 {
382 	struct bkey *k = &j->uuid_bucket;
383 
384 	if (__bch_btree_ptr_invalid(c, k))
385 		return "bad uuid pointer";
386 
387 	bkey_copy(&c->uuid_bucket, k);
388 	uuid_io(c, REQ_OP_READ, 0, k, cl);
389 
390 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
391 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
392 		struct uuid_entry	*u1 = (void *) c->uuids;
393 		int i;
394 
395 		closure_sync(cl);
396 
397 		/*
398 		 * Since the new uuid entry is bigger than the old, we have to
399 		 * convert starting at the highest memory address and work down
400 		 * in order to do it in place
401 		 */
402 
403 		for (i = c->nr_uuids - 1;
404 		     i >= 0;
405 		     --i) {
406 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
407 			memcpy(u1[i].label,	u0[i].label, 32);
408 
409 			u1[i].first_reg		= u0[i].first_reg;
410 			u1[i].last_reg		= u0[i].last_reg;
411 			u1[i].invalidated	= u0[i].invalidated;
412 
413 			u1[i].flags	= 0;
414 			u1[i].sectors	= 0;
415 		}
416 	}
417 
418 	return NULL;
419 }
420 
__uuid_write(struct cache_set * c)421 static int __uuid_write(struct cache_set *c)
422 {
423 	BKEY_PADDED(key) k;
424 	struct closure cl;
425 	struct cache *ca;
426 
427 	closure_init_stack(&cl);
428 	lockdep_assert_held(&bch_register_lock);
429 
430 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
431 		return 1;
432 
433 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
435 	closure_sync(&cl);
436 
437 	/* Only one bucket used for uuid write */
438 	ca = PTR_CACHE(c, &k.key, 0);
439 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
440 
441 	bkey_copy(&c->uuid_bucket, &k.key);
442 	bkey_put(c, &k.key);
443 	return 0;
444 }
445 
bch_uuid_write(struct cache_set * c)446 int bch_uuid_write(struct cache_set *c)
447 {
448 	int ret = __uuid_write(c);
449 
450 	if (!ret)
451 		bch_journal_meta(c, NULL);
452 
453 	return ret;
454 }
455 
uuid_find(struct cache_set * c,const char * uuid)456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
457 {
458 	struct uuid_entry *u;
459 
460 	for (u = c->uuids;
461 	     u < c->uuids + c->nr_uuids; u++)
462 		if (!memcmp(u->uuid, uuid, 16))
463 			return u;
464 
465 	return NULL;
466 }
467 
uuid_find_empty(struct cache_set * c)468 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
469 {
470 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
471 
472 	return uuid_find(c, zero_uuid);
473 }
474 
475 /*
476  * Bucket priorities/gens:
477  *
478  * For each bucket, we store on disk its
479  *   8 bit gen
480  *  16 bit priority
481  *
482  * See alloc.c for an explanation of the gen. The priority is used to implement
483  * lru (and in the future other) cache replacement policies; for most purposes
484  * it's just an opaque integer.
485  *
486  * The gens and the priorities don't have a whole lot to do with each other, and
487  * it's actually the gens that must be written out at specific times - it's no
488  * big deal if the priorities don't get written, if we lose them we just reuse
489  * buckets in suboptimal order.
490  *
491  * On disk they're stored in a packed array, and in as many buckets are required
492  * to fit them all. The buckets we use to store them form a list; the journal
493  * header points to the first bucket, the first bucket points to the second
494  * bucket, et cetera.
495  *
496  * This code is used by the allocation code; periodically (whenever it runs out
497  * of buckets to allocate from) the allocation code will invalidate some
498  * buckets, but it can't use those buckets until their new gens are safely on
499  * disk.
500  */
501 
prio_endio(struct bio * bio)502 static void prio_endio(struct bio *bio)
503 {
504 	struct cache *ca = bio->bi_private;
505 
506 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
507 	bch_bbio_free(bio, ca->set);
508 	closure_put(&ca->prio);
509 }
510 
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)511 static void prio_io(struct cache *ca, uint64_t bucket, int op,
512 		    unsigned long op_flags)
513 {
514 	struct closure *cl = &ca->prio;
515 	struct bio *bio = bch_bbio_alloc(ca->set);
516 
517 	closure_init_stack(cl);
518 
519 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
520 	bio_set_dev(bio, ca->bdev);
521 	bio->bi_iter.bi_size	= bucket_bytes(ca);
522 
523 	bio->bi_end_io	= prio_endio;
524 	bio->bi_private = ca;
525 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
526 	bch_bio_map(bio, ca->disk_buckets);
527 
528 	closure_bio_submit(ca->set, bio, &ca->prio);
529 	closure_sync(cl);
530 }
531 
bch_prio_write(struct cache * ca)532 void bch_prio_write(struct cache *ca)
533 {
534 	int i;
535 	struct bucket *b;
536 	struct closure cl;
537 
538 	closure_init_stack(&cl);
539 
540 	lockdep_assert_held(&ca->set->bucket_lock);
541 
542 	ca->disk_buckets->seq++;
543 
544 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
545 			&ca->meta_sectors_written);
546 
547 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
548 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
549 
550 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
551 		long bucket;
552 		struct prio_set *p = ca->disk_buckets;
553 		struct bucket_disk *d = p->data;
554 		struct bucket_disk *end = d + prios_per_bucket(ca);
555 
556 		for (b = ca->buckets + i * prios_per_bucket(ca);
557 		     b < ca->buckets + ca->sb.nbuckets && d < end;
558 		     b++, d++) {
559 			d->prio = cpu_to_le16(b->prio);
560 			d->gen = b->gen;
561 		}
562 
563 		p->next_bucket	= ca->prio_buckets[i + 1];
564 		p->magic	= pset_magic(&ca->sb);
565 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
566 
567 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
568 		BUG_ON(bucket == -1);
569 
570 		mutex_unlock(&ca->set->bucket_lock);
571 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
572 		mutex_lock(&ca->set->bucket_lock);
573 
574 		ca->prio_buckets[i] = bucket;
575 		atomic_dec_bug(&ca->buckets[bucket].pin);
576 	}
577 
578 	mutex_unlock(&ca->set->bucket_lock);
579 
580 	bch_journal_meta(ca->set, &cl);
581 	closure_sync(&cl);
582 
583 	mutex_lock(&ca->set->bucket_lock);
584 
585 	/*
586 	 * Don't want the old priorities to get garbage collected until after we
587 	 * finish writing the new ones, and they're journalled
588 	 */
589 	for (i = 0; i < prio_buckets(ca); i++) {
590 		if (ca->prio_last_buckets[i])
591 			__bch_bucket_free(ca,
592 				&ca->buckets[ca->prio_last_buckets[i]]);
593 
594 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
595 	}
596 }
597 
prio_read(struct cache * ca,uint64_t bucket)598 static void prio_read(struct cache *ca, uint64_t bucket)
599 {
600 	struct prio_set *p = ca->disk_buckets;
601 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
602 	struct bucket *b;
603 	unsigned int bucket_nr = 0;
604 
605 	for (b = ca->buckets;
606 	     b < ca->buckets + ca->sb.nbuckets;
607 	     b++, d++) {
608 		if (d == end) {
609 			ca->prio_buckets[bucket_nr] = bucket;
610 			ca->prio_last_buckets[bucket_nr] = bucket;
611 			bucket_nr++;
612 
613 			prio_io(ca, bucket, REQ_OP_READ, 0);
614 
615 			if (p->csum !=
616 			    bch_crc64(&p->magic, bucket_bytes(ca) - 8))
617 				pr_warn("bad csum reading priorities");
618 
619 			if (p->magic != pset_magic(&ca->sb))
620 				pr_warn("bad magic reading priorities");
621 
622 			bucket = p->next_bucket;
623 			d = p->data;
624 		}
625 
626 		b->prio = le16_to_cpu(d->prio);
627 		b->gen = b->last_gc = d->gen;
628 	}
629 }
630 
631 /* Bcache device */
632 
open_dev(struct block_device * b,fmode_t mode)633 static int open_dev(struct block_device *b, fmode_t mode)
634 {
635 	struct bcache_device *d = b->bd_disk->private_data;
636 
637 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
638 		return -ENXIO;
639 
640 	closure_get(&d->cl);
641 	return 0;
642 }
643 
release_dev(struct gendisk * b,fmode_t mode)644 static void release_dev(struct gendisk *b, fmode_t mode)
645 {
646 	struct bcache_device *d = b->private_data;
647 
648 	closure_put(&d->cl);
649 }
650 
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)651 static int ioctl_dev(struct block_device *b, fmode_t mode,
652 		     unsigned int cmd, unsigned long arg)
653 {
654 	struct bcache_device *d = b->bd_disk->private_data;
655 
656 	return d->ioctl(d, mode, cmd, arg);
657 }
658 
659 static const struct block_device_operations bcache_ops = {
660 	.open		= open_dev,
661 	.release	= release_dev,
662 	.ioctl		= ioctl_dev,
663 	.owner		= THIS_MODULE,
664 };
665 
bcache_device_stop(struct bcache_device * d)666 void bcache_device_stop(struct bcache_device *d)
667 {
668 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
669 		/*
670 		 * closure_fn set to
671 		 * - cached device: cached_dev_flush()
672 		 * - flash dev: flash_dev_flush()
673 		 */
674 		closure_queue(&d->cl);
675 }
676 
bcache_device_unlink(struct bcache_device * d)677 static void bcache_device_unlink(struct bcache_device *d)
678 {
679 	lockdep_assert_held(&bch_register_lock);
680 
681 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
682 		unsigned int i;
683 		struct cache *ca;
684 
685 		sysfs_remove_link(&d->c->kobj, d->name);
686 		sysfs_remove_link(&d->kobj, "cache");
687 
688 		for_each_cache(ca, d->c, i)
689 			bd_unlink_disk_holder(ca->bdev, d->disk);
690 	}
691 }
692 
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)693 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
694 			       const char *name)
695 {
696 	unsigned int i;
697 	struct cache *ca;
698 	int ret;
699 
700 	for_each_cache(ca, d->c, i)
701 		bd_link_disk_holder(ca->bdev, d->disk);
702 
703 	snprintf(d->name, BCACHEDEVNAME_SIZE,
704 		 "%s%u", name, d->id);
705 
706 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
707 	if (ret < 0)
708 		pr_err("Couldn't create device -> cache set symlink");
709 
710 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
711 	if (ret < 0)
712 		pr_err("Couldn't create cache set -> device symlink");
713 
714 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
715 }
716 
bcache_device_detach(struct bcache_device * d)717 static void bcache_device_detach(struct bcache_device *d)
718 {
719 	lockdep_assert_held(&bch_register_lock);
720 
721 	atomic_dec(&d->c->attached_dev_nr);
722 
723 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
724 		struct uuid_entry *u = d->c->uuids + d->id;
725 
726 		SET_UUID_FLASH_ONLY(u, 0);
727 		memcpy(u->uuid, invalid_uuid, 16);
728 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
729 		bch_uuid_write(d->c);
730 	}
731 
732 	bcache_device_unlink(d);
733 
734 	d->c->devices[d->id] = NULL;
735 	closure_put(&d->c->caching);
736 	d->c = NULL;
737 }
738 
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)739 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
740 				 unsigned int id)
741 {
742 	d->id = id;
743 	d->c = c;
744 	c->devices[id] = d;
745 
746 	if (id >= c->devices_max_used)
747 		c->devices_max_used = id + 1;
748 
749 	closure_get(&c->caching);
750 }
751 
first_minor_to_idx(int first_minor)752 static inline int first_minor_to_idx(int first_minor)
753 {
754 	return (first_minor/BCACHE_MINORS);
755 }
756 
idx_to_first_minor(int idx)757 static inline int idx_to_first_minor(int idx)
758 {
759 	return (idx * BCACHE_MINORS);
760 }
761 
bcache_device_free(struct bcache_device * d)762 static void bcache_device_free(struct bcache_device *d)
763 {
764 	lockdep_assert_held(&bch_register_lock);
765 
766 	pr_info("%s stopped", d->disk->disk_name);
767 
768 	if (d->c)
769 		bcache_device_detach(d);
770 	if (d->disk && d->disk->flags & GENHD_FL_UP)
771 		del_gendisk(d->disk);
772 	if (d->disk && d->disk->queue)
773 		blk_cleanup_queue(d->disk->queue);
774 	if (d->disk) {
775 		ida_simple_remove(&bcache_device_idx,
776 				  first_minor_to_idx(d->disk->first_minor));
777 		put_disk(d->disk);
778 	}
779 
780 	bioset_exit(&d->bio_split);
781 	kvfree(d->full_dirty_stripes);
782 	kvfree(d->stripe_sectors_dirty);
783 
784 	closure_debug_destroy(&d->cl);
785 }
786 
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors)787 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
788 			      sector_t sectors)
789 {
790 	struct request_queue *q;
791 	const size_t max_stripes = min_t(size_t, INT_MAX,
792 					 SIZE_MAX / sizeof(atomic_t));
793 	size_t n;
794 	int idx;
795 
796 	if (!d->stripe_size)
797 		d->stripe_size = 1 << 31;
798 
799 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
800 
801 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
802 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
803 			(unsigned int)d->nr_stripes);
804 		return -ENOMEM;
805 	}
806 
807 	n = d->nr_stripes * sizeof(atomic_t);
808 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
809 	if (!d->stripe_sectors_dirty)
810 		return -ENOMEM;
811 
812 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
813 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
814 	if (!d->full_dirty_stripes)
815 		return -ENOMEM;
816 
817 	idx = ida_simple_get(&bcache_device_idx, 0,
818 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
819 	if (idx < 0)
820 		return idx;
821 
822 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
823 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
824 		goto err;
825 
826 	d->disk = alloc_disk(BCACHE_MINORS);
827 	if (!d->disk)
828 		goto err;
829 
830 	set_capacity(d->disk, sectors);
831 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
832 
833 	d->disk->major		= bcache_major;
834 	d->disk->first_minor	= idx_to_first_minor(idx);
835 	d->disk->fops		= &bcache_ops;
836 	d->disk->private_data	= d;
837 
838 	q = blk_alloc_queue(GFP_KERNEL);
839 	if (!q)
840 		return -ENOMEM;
841 
842 	blk_queue_make_request(q, NULL);
843 	d->disk->queue			= q;
844 	q->queuedata			= d;
845 	q->backing_dev_info->congested_data = d;
846 	q->limits.max_hw_sectors	= UINT_MAX;
847 	q->limits.max_sectors		= UINT_MAX;
848 	q->limits.max_segment_size	= UINT_MAX;
849 	q->limits.max_segments		= BIO_MAX_PAGES;
850 	blk_queue_max_discard_sectors(q, UINT_MAX);
851 	q->limits.discard_granularity	= 512;
852 	q->limits.io_min		= block_size;
853 	q->limits.logical_block_size	= block_size;
854 	q->limits.physical_block_size	= block_size;
855 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
856 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
857 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
858 
859 	blk_queue_write_cache(q, true, true);
860 
861 	return 0;
862 
863 err:
864 	ida_simple_remove(&bcache_device_idx, idx);
865 	return -ENOMEM;
866 
867 }
868 
869 /* Cached device */
870 
calc_cached_dev_sectors(struct cache_set * c)871 static void calc_cached_dev_sectors(struct cache_set *c)
872 {
873 	uint64_t sectors = 0;
874 	struct cached_dev *dc;
875 
876 	list_for_each_entry(dc, &c->cached_devs, list)
877 		sectors += bdev_sectors(dc->bdev);
878 
879 	c->cached_dev_sectors = sectors;
880 }
881 
882 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)883 static int cached_dev_status_update(void *arg)
884 {
885 	struct cached_dev *dc = arg;
886 	struct request_queue *q;
887 
888 	/*
889 	 * If this delayed worker is stopping outside, directly quit here.
890 	 * dc->io_disable might be set via sysfs interface, so check it
891 	 * here too.
892 	 */
893 	while (!kthread_should_stop() && !dc->io_disable) {
894 		q = bdev_get_queue(dc->bdev);
895 		if (blk_queue_dying(q))
896 			dc->offline_seconds++;
897 		else
898 			dc->offline_seconds = 0;
899 
900 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
901 			pr_err("%s: device offline for %d seconds",
902 			       dc->backing_dev_name,
903 			       BACKING_DEV_OFFLINE_TIMEOUT);
904 			pr_err("%s: disable I/O request due to backing "
905 			       "device offline", dc->disk.name);
906 			dc->io_disable = true;
907 			/* let others know earlier that io_disable is true */
908 			smp_mb();
909 			bcache_device_stop(&dc->disk);
910 			break;
911 		}
912 		schedule_timeout_interruptible(HZ);
913 	}
914 
915 	wait_for_kthread_stop();
916 	return 0;
917 }
918 
919 
bch_cached_dev_run(struct cached_dev * dc)920 int bch_cached_dev_run(struct cached_dev *dc)
921 {
922 	struct bcache_device *d = &dc->disk;
923 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
924 	char *env[] = {
925 		"DRIVER=bcache",
926 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
927 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
928 		NULL,
929 	};
930 
931 	if (dc->io_disable) {
932 		pr_err("I/O disabled on cached dev %s",
933 		       dc->backing_dev_name);
934 		kfree(env[1]);
935 		kfree(env[2]);
936 		kfree(buf);
937 		return -EIO;
938 	}
939 
940 	if (atomic_xchg(&dc->running, 1)) {
941 		kfree(env[1]);
942 		kfree(env[2]);
943 		kfree(buf);
944 		pr_info("cached dev %s is running already",
945 		       dc->backing_dev_name);
946 		return -EBUSY;
947 	}
948 
949 	if (!d->c &&
950 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
951 		struct closure cl;
952 
953 		closure_init_stack(&cl);
954 
955 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
956 		bch_write_bdev_super(dc, &cl);
957 		closure_sync(&cl);
958 	}
959 
960 	add_disk(d->disk);
961 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
962 	/*
963 	 * won't show up in the uevent file, use udevadm monitor -e instead
964 	 * only class / kset properties are persistent
965 	 */
966 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
967 	kfree(env[1]);
968 	kfree(env[2]);
969 	kfree(buf);
970 
971 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
972 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
973 			      &d->kobj, "bcache")) {
974 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks");
975 		return -ENOMEM;
976 	}
977 
978 	dc->status_update_thread = kthread_run(cached_dev_status_update,
979 					       dc, "bcache_status_update");
980 	if (IS_ERR(dc->status_update_thread)) {
981 		pr_warn("failed to create bcache_status_update kthread, "
982 			"continue to run without monitoring backing "
983 			"device status");
984 	}
985 
986 	return 0;
987 }
988 
989 /*
990  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
991  * work dc->writeback_rate_update is running. Wait until the routine
992  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
993  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
994  * seconds, give up waiting here and continue to cancel it too.
995  */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)996 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
997 {
998 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
999 
1000 	do {
1001 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1002 			      &dc->disk.flags))
1003 			break;
1004 		time_out--;
1005 		schedule_timeout_interruptible(1);
1006 	} while (time_out > 0);
1007 
1008 	if (time_out == 0)
1009 		pr_warn("give up waiting for dc->writeback_write_update to quit");
1010 
1011 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1012 }
1013 
cached_dev_detach_finish(struct work_struct * w)1014 static void cached_dev_detach_finish(struct work_struct *w)
1015 {
1016 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1017 	struct closure cl;
1018 
1019 	closure_init_stack(&cl);
1020 
1021 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1022 	BUG_ON(refcount_read(&dc->count));
1023 
1024 
1025 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1026 		cancel_writeback_rate_update_dwork(dc);
1027 
1028 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1029 		kthread_stop(dc->writeback_thread);
1030 		dc->writeback_thread = NULL;
1031 	}
1032 
1033 	memset(&dc->sb.set_uuid, 0, 16);
1034 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1035 
1036 	bch_write_bdev_super(dc, &cl);
1037 	closure_sync(&cl);
1038 
1039 	mutex_lock(&bch_register_lock);
1040 
1041 	calc_cached_dev_sectors(dc->disk.c);
1042 	bcache_device_detach(&dc->disk);
1043 	list_move(&dc->list, &uncached_devices);
1044 
1045 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1046 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1047 
1048 	mutex_unlock(&bch_register_lock);
1049 
1050 	pr_info("Caching disabled for %s", dc->backing_dev_name);
1051 
1052 	/* Drop ref we took in cached_dev_detach() */
1053 	closure_put(&dc->disk.cl);
1054 }
1055 
bch_cached_dev_detach(struct cached_dev * dc)1056 void bch_cached_dev_detach(struct cached_dev *dc)
1057 {
1058 	lockdep_assert_held(&bch_register_lock);
1059 
1060 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1061 		return;
1062 
1063 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1064 		return;
1065 
1066 	/*
1067 	 * Block the device from being closed and freed until we're finished
1068 	 * detaching
1069 	 */
1070 	closure_get(&dc->disk.cl);
1071 
1072 	bch_writeback_queue(dc);
1073 
1074 	cached_dev_put(dc);
1075 }
1076 
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1077 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1078 			  uint8_t *set_uuid)
1079 {
1080 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1081 	struct uuid_entry *u;
1082 	struct cached_dev *exist_dc, *t;
1083 	int ret = 0;
1084 
1085 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1086 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1087 		return -ENOENT;
1088 
1089 	if (dc->disk.c) {
1090 		pr_err("Can't attach %s: already attached",
1091 		       dc->backing_dev_name);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1096 		pr_err("Can't attach %s: shutting down",
1097 		       dc->backing_dev_name);
1098 		return -EINVAL;
1099 	}
1100 
1101 	if (dc->sb.block_size < c->sb.block_size) {
1102 		/* Will die */
1103 		pr_err("Couldn't attach %s: block size less than set's block size",
1104 		       dc->backing_dev_name);
1105 		return -EINVAL;
1106 	}
1107 
1108 	/* Check whether already attached */
1109 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1110 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1111 			pr_err("Tried to attach %s but duplicate UUID already attached",
1112 				dc->backing_dev_name);
1113 
1114 			return -EINVAL;
1115 		}
1116 	}
1117 
1118 	u = uuid_find(c, dc->sb.uuid);
1119 
1120 	if (u &&
1121 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1122 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1123 		memcpy(u->uuid, invalid_uuid, 16);
1124 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1125 		u = NULL;
1126 	}
1127 
1128 	if (!u) {
1129 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1130 			pr_err("Couldn't find uuid for %s in set",
1131 			       dc->backing_dev_name);
1132 			return -ENOENT;
1133 		}
1134 
1135 		u = uuid_find_empty(c);
1136 		if (!u) {
1137 			pr_err("Not caching %s, no room for UUID",
1138 			       dc->backing_dev_name);
1139 			return -EINVAL;
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * Deadlocks since we're called via sysfs...
1145 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1146 	 */
1147 
1148 	if (bch_is_zero(u->uuid, 16)) {
1149 		struct closure cl;
1150 
1151 		closure_init_stack(&cl);
1152 
1153 		memcpy(u->uuid, dc->sb.uuid, 16);
1154 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1155 		u->first_reg = u->last_reg = rtime;
1156 		bch_uuid_write(c);
1157 
1158 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1159 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1160 
1161 		bch_write_bdev_super(dc, &cl);
1162 		closure_sync(&cl);
1163 	} else {
1164 		u->last_reg = rtime;
1165 		bch_uuid_write(c);
1166 	}
1167 
1168 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1169 	list_move(&dc->list, &c->cached_devs);
1170 	calc_cached_dev_sectors(c);
1171 
1172 	/*
1173 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1174 	 * cached_dev_get()
1175 	 */
1176 	smp_wmb();
1177 	refcount_set(&dc->count, 1);
1178 
1179 	/* Block writeback thread, but spawn it */
1180 	down_write(&dc->writeback_lock);
1181 	if (bch_cached_dev_writeback_start(dc)) {
1182 		up_write(&dc->writeback_lock);
1183 		pr_err("Couldn't start writeback facilities for %s",
1184 		       dc->disk.disk->disk_name);
1185 		return -ENOMEM;
1186 	}
1187 
1188 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1189 		atomic_set(&dc->has_dirty, 1);
1190 		bch_writeback_queue(dc);
1191 	}
1192 
1193 	bch_sectors_dirty_init(&dc->disk);
1194 
1195 	ret = bch_cached_dev_run(dc);
1196 	if (ret && (ret != -EBUSY)) {
1197 		up_write(&dc->writeback_lock);
1198 		/*
1199 		 * bch_register_lock is held, bcache_device_stop() is not
1200 		 * able to be directly called. The kthread and kworker
1201 		 * created previously in bch_cached_dev_writeback_start()
1202 		 * have to be stopped manually here.
1203 		 */
1204 		kthread_stop(dc->writeback_thread);
1205 		cancel_writeback_rate_update_dwork(dc);
1206 		pr_err("Couldn't run cached device %s",
1207 		       dc->backing_dev_name);
1208 		return ret;
1209 	}
1210 
1211 	bcache_device_link(&dc->disk, c, "bdev");
1212 	atomic_inc(&c->attached_dev_nr);
1213 
1214 	/* Allow the writeback thread to proceed */
1215 	up_write(&dc->writeback_lock);
1216 
1217 	pr_info("Caching %s as %s on set %pU",
1218 		dc->backing_dev_name,
1219 		dc->disk.disk->disk_name,
1220 		dc->disk.c->sb.set_uuid);
1221 	return 0;
1222 }
1223 
1224 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1225 void bch_cached_dev_release(struct kobject *kobj)
1226 {
1227 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1228 					     disk.kobj);
1229 	kfree(dc);
1230 	module_put(THIS_MODULE);
1231 }
1232 
cached_dev_free(struct closure * cl)1233 static void cached_dev_free(struct closure *cl)
1234 {
1235 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1236 
1237 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1238 		cancel_writeback_rate_update_dwork(dc);
1239 
1240 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1241 		kthread_stop(dc->writeback_thread);
1242 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1243 		kthread_stop(dc->status_update_thread);
1244 
1245 	mutex_lock(&bch_register_lock);
1246 
1247 	if (atomic_read(&dc->running))
1248 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1249 	bcache_device_free(&dc->disk);
1250 	list_del(&dc->list);
1251 
1252 	mutex_unlock(&bch_register_lock);
1253 
1254 	if (!IS_ERR_OR_NULL(dc->bdev))
1255 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1256 
1257 	wake_up(&unregister_wait);
1258 
1259 	kobject_put(&dc->disk.kobj);
1260 }
1261 
cached_dev_flush(struct closure * cl)1262 static void cached_dev_flush(struct closure *cl)
1263 {
1264 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1265 	struct bcache_device *d = &dc->disk;
1266 
1267 	mutex_lock(&bch_register_lock);
1268 	bcache_device_unlink(d);
1269 	mutex_unlock(&bch_register_lock);
1270 
1271 	bch_cache_accounting_destroy(&dc->accounting);
1272 	kobject_del(&d->kobj);
1273 
1274 	continue_at(cl, cached_dev_free, system_wq);
1275 }
1276 
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1277 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1278 {
1279 	int ret;
1280 	struct io *io;
1281 	struct request_queue *q = bdev_get_queue(dc->bdev);
1282 
1283 	__module_get(THIS_MODULE);
1284 	INIT_LIST_HEAD(&dc->list);
1285 	closure_init(&dc->disk.cl, NULL);
1286 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1287 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1288 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1289 	sema_init(&dc->sb_write_mutex, 1);
1290 	INIT_LIST_HEAD(&dc->io_lru);
1291 	spin_lock_init(&dc->io_lock);
1292 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1293 
1294 	dc->sequential_cutoff		= 4 << 20;
1295 
1296 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1297 		list_add(&io->lru, &dc->io_lru);
1298 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1299 	}
1300 
1301 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1302 
1303 	if (dc->disk.stripe_size)
1304 		dc->partial_stripes_expensive =
1305 			q->limits.raid_partial_stripes_expensive;
1306 
1307 	ret = bcache_device_init(&dc->disk, block_size,
1308 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1309 	if (ret)
1310 		return ret;
1311 
1312 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1313 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1314 		    q->backing_dev_info->ra_pages);
1315 
1316 	atomic_set(&dc->io_errors, 0);
1317 	dc->io_disable = false;
1318 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1319 	/* default to auto */
1320 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1321 
1322 	bch_cached_dev_request_init(dc);
1323 	bch_cached_dev_writeback_init(dc);
1324 	return 0;
1325 }
1326 
1327 /* Cached device - bcache superblock */
1328 
register_bdev(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cached_dev * dc)1329 static int register_bdev(struct cache_sb *sb, struct page *sb_page,
1330 				 struct block_device *bdev,
1331 				 struct cached_dev *dc)
1332 {
1333 	const char *err = "cannot allocate memory";
1334 	struct cache_set *c;
1335 	int ret = -ENOMEM;
1336 
1337 	bdevname(bdev, dc->backing_dev_name);
1338 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1339 	dc->bdev = bdev;
1340 	dc->bdev->bd_holder = dc;
1341 
1342 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1343 	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1344 	get_page(sb_page);
1345 
1346 
1347 	if (cached_dev_init(dc, sb->block_size << 9))
1348 		goto err;
1349 
1350 	err = "error creating kobject";
1351 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1352 			"bcache"))
1353 		goto err;
1354 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1355 		goto err;
1356 
1357 	pr_info("registered backing device %s", dc->backing_dev_name);
1358 
1359 	list_add(&dc->list, &uncached_devices);
1360 	/* attach to a matched cache set if it exists */
1361 	list_for_each_entry(c, &bch_cache_sets, list)
1362 		bch_cached_dev_attach(dc, c, NULL);
1363 
1364 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1365 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1366 		err = "failed to run cached device";
1367 		ret = bch_cached_dev_run(dc);
1368 		if (ret)
1369 			goto err;
1370 	}
1371 
1372 	return 0;
1373 err:
1374 	pr_notice("error %s: %s", dc->backing_dev_name, err);
1375 	bcache_device_stop(&dc->disk);
1376 	return ret;
1377 }
1378 
1379 /* Flash only volumes */
1380 
1381 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1382 void bch_flash_dev_release(struct kobject *kobj)
1383 {
1384 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1385 					       kobj);
1386 	kfree(d);
1387 }
1388 
flash_dev_free(struct closure * cl)1389 static void flash_dev_free(struct closure *cl)
1390 {
1391 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1392 
1393 	mutex_lock(&bch_register_lock);
1394 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1395 			&d->c->flash_dev_dirty_sectors);
1396 	bcache_device_free(d);
1397 	mutex_unlock(&bch_register_lock);
1398 	kobject_put(&d->kobj);
1399 }
1400 
flash_dev_flush(struct closure * cl)1401 static void flash_dev_flush(struct closure *cl)
1402 {
1403 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1404 
1405 	mutex_lock(&bch_register_lock);
1406 	bcache_device_unlink(d);
1407 	mutex_unlock(&bch_register_lock);
1408 	kobject_del(&d->kobj);
1409 	continue_at(cl, flash_dev_free, system_wq);
1410 }
1411 
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1412 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1413 {
1414 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1415 					  GFP_KERNEL);
1416 	if (!d)
1417 		return -ENOMEM;
1418 
1419 	closure_init(&d->cl, NULL);
1420 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1421 
1422 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1423 
1424 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1425 		goto err;
1426 
1427 	bcache_device_attach(d, c, u - c->uuids);
1428 	bch_sectors_dirty_init(d);
1429 	bch_flash_dev_request_init(d);
1430 	add_disk(d->disk);
1431 
1432 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1433 		goto err;
1434 
1435 	bcache_device_link(d, c, "volume");
1436 
1437 	return 0;
1438 err:
1439 	kobject_put(&d->kobj);
1440 	return -ENOMEM;
1441 }
1442 
flash_devs_run(struct cache_set * c)1443 static int flash_devs_run(struct cache_set *c)
1444 {
1445 	int ret = 0;
1446 	struct uuid_entry *u;
1447 
1448 	for (u = c->uuids;
1449 	     u < c->uuids + c->nr_uuids && !ret;
1450 	     u++)
1451 		if (UUID_FLASH_ONLY(u))
1452 			ret = flash_dev_run(c, u);
1453 
1454 	return ret;
1455 }
1456 
bch_flash_dev_create(struct cache_set * c,uint64_t size)1457 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1458 {
1459 	struct uuid_entry *u;
1460 
1461 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1462 		return -EINTR;
1463 
1464 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1465 		return -EPERM;
1466 
1467 	u = uuid_find_empty(c);
1468 	if (!u) {
1469 		pr_err("Can't create volume, no room for UUID");
1470 		return -EINVAL;
1471 	}
1472 
1473 	get_random_bytes(u->uuid, 16);
1474 	memset(u->label, 0, 32);
1475 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1476 
1477 	SET_UUID_FLASH_ONLY(u, 1);
1478 	u->sectors = size >> 9;
1479 
1480 	bch_uuid_write(c);
1481 
1482 	return flash_dev_run(c, u);
1483 }
1484 
bch_cached_dev_error(struct cached_dev * dc)1485 bool bch_cached_dev_error(struct cached_dev *dc)
1486 {
1487 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1488 		return false;
1489 
1490 	dc->io_disable = true;
1491 	/* make others know io_disable is true earlier */
1492 	smp_mb();
1493 
1494 	pr_err("stop %s: too many IO errors on backing device %s\n",
1495 		dc->disk.disk->disk_name, dc->backing_dev_name);
1496 
1497 	bcache_device_stop(&dc->disk);
1498 	return true;
1499 }
1500 
1501 /* Cache set */
1502 
1503 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1504 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1505 {
1506 	va_list args;
1507 
1508 	if (c->on_error != ON_ERROR_PANIC &&
1509 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1510 		return false;
1511 
1512 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1513 		pr_info("CACHE_SET_IO_DISABLE already set");
1514 
1515 	/*
1516 	 * XXX: we can be called from atomic context
1517 	 * acquire_console_sem();
1518 	 */
1519 
1520 	pr_err("bcache: error on %pU: ", c->sb.set_uuid);
1521 
1522 	va_start(args, fmt);
1523 	vprintk(fmt, args);
1524 	va_end(args);
1525 
1526 	pr_err(", disabling caching\n");
1527 
1528 	if (c->on_error == ON_ERROR_PANIC)
1529 		panic("panic forced after error\n");
1530 
1531 	bch_cache_set_unregister(c);
1532 	return true;
1533 }
1534 
1535 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1536 void bch_cache_set_release(struct kobject *kobj)
1537 {
1538 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1539 
1540 	kfree(c);
1541 	module_put(THIS_MODULE);
1542 }
1543 
cache_set_free(struct closure * cl)1544 static void cache_set_free(struct closure *cl)
1545 {
1546 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1547 	struct cache *ca;
1548 	unsigned int i;
1549 
1550 	debugfs_remove(c->debug);
1551 
1552 	bch_open_buckets_free(c);
1553 	bch_btree_cache_free(c);
1554 	bch_journal_free(c);
1555 
1556 	mutex_lock(&bch_register_lock);
1557 	for_each_cache(ca, c, i)
1558 		if (ca) {
1559 			ca->set = NULL;
1560 			c->cache[ca->sb.nr_this_dev] = NULL;
1561 			kobject_put(&ca->kobj);
1562 		}
1563 
1564 	bch_bset_sort_state_free(&c->sort);
1565 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1566 
1567 	if (c->moving_gc_wq)
1568 		destroy_workqueue(c->moving_gc_wq);
1569 	bioset_exit(&c->bio_split);
1570 	mempool_exit(&c->fill_iter);
1571 	mempool_exit(&c->bio_meta);
1572 	mempool_exit(&c->search);
1573 	kfree(c->devices);
1574 
1575 	list_del(&c->list);
1576 	mutex_unlock(&bch_register_lock);
1577 
1578 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1579 	wake_up(&unregister_wait);
1580 
1581 	closure_debug_destroy(&c->cl);
1582 	kobject_put(&c->kobj);
1583 }
1584 
cache_set_flush(struct closure * cl)1585 static void cache_set_flush(struct closure *cl)
1586 {
1587 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1588 	struct cache *ca;
1589 	struct btree *b;
1590 	unsigned int i;
1591 
1592 	bch_cache_accounting_destroy(&c->accounting);
1593 
1594 	kobject_put(&c->internal);
1595 	kobject_del(&c->kobj);
1596 
1597 	if (!IS_ERR_OR_NULL(c->gc_thread))
1598 		kthread_stop(c->gc_thread);
1599 
1600 	if (!IS_ERR_OR_NULL(c->root))
1601 		list_add(&c->root->list, &c->btree_cache);
1602 
1603 	/*
1604 	 * Avoid flushing cached nodes if cache set is retiring
1605 	 * due to too many I/O errors detected.
1606 	 */
1607 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1608 		list_for_each_entry(b, &c->btree_cache, list) {
1609 			mutex_lock(&b->write_lock);
1610 			if (btree_node_dirty(b))
1611 				__bch_btree_node_write(b, NULL);
1612 			mutex_unlock(&b->write_lock);
1613 		}
1614 
1615 	for_each_cache(ca, c, i)
1616 		if (ca->alloc_thread)
1617 			kthread_stop(ca->alloc_thread);
1618 
1619 	if (c->journal.cur) {
1620 		cancel_delayed_work_sync(&c->journal.work);
1621 		/* flush last journal entry if needed */
1622 		c->journal.work.work.func(&c->journal.work.work);
1623 	}
1624 
1625 	closure_return(cl);
1626 }
1627 
1628 /*
1629  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1630  * cache set is unregistering due to too many I/O errors. In this condition,
1631  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1632  * value and whether the broken cache has dirty data:
1633  *
1634  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1635  *  BCH_CACHED_STOP_AUTO               0               NO
1636  *  BCH_CACHED_STOP_AUTO               1               YES
1637  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1638  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1639  *
1640  * The expected behavior is, if stop_when_cache_set_failed is configured to
1641  * "auto" via sysfs interface, the bcache device will not be stopped if the
1642  * backing device is clean on the broken cache device.
1643  */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1644 static void conditional_stop_bcache_device(struct cache_set *c,
1645 					   struct bcache_device *d,
1646 					   struct cached_dev *dc)
1647 {
1648 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1649 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1650 			d->disk->disk_name, c->sb.set_uuid);
1651 		bcache_device_stop(d);
1652 	} else if (atomic_read(&dc->has_dirty)) {
1653 		/*
1654 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1655 		 * and dc->has_dirty == 1
1656 		 */
1657 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1658 			d->disk->disk_name);
1659 		/*
1660 		 * There might be a small time gap that cache set is
1661 		 * released but bcache device is not. Inside this time
1662 		 * gap, regular I/O requests will directly go into
1663 		 * backing device as no cache set attached to. This
1664 		 * behavior may also introduce potential inconsistence
1665 		 * data in writeback mode while cache is dirty.
1666 		 * Therefore before calling bcache_device_stop() due
1667 		 * to a broken cache device, dc->io_disable should be
1668 		 * explicitly set to true.
1669 		 */
1670 		dc->io_disable = true;
1671 		/* make others know io_disable is true earlier */
1672 		smp_mb();
1673 		bcache_device_stop(d);
1674 	} else {
1675 		/*
1676 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1677 		 * and dc->has_dirty == 0
1678 		 */
1679 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1680 			d->disk->disk_name);
1681 	}
1682 }
1683 
__cache_set_unregister(struct closure * cl)1684 static void __cache_set_unregister(struct closure *cl)
1685 {
1686 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1687 	struct cached_dev *dc;
1688 	struct bcache_device *d;
1689 	size_t i;
1690 
1691 	mutex_lock(&bch_register_lock);
1692 
1693 	for (i = 0; i < c->devices_max_used; i++) {
1694 		d = c->devices[i];
1695 		if (!d)
1696 			continue;
1697 
1698 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1699 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1700 			dc = container_of(d, struct cached_dev, disk);
1701 			bch_cached_dev_detach(dc);
1702 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1703 				conditional_stop_bcache_device(c, d, dc);
1704 		} else {
1705 			bcache_device_stop(d);
1706 		}
1707 	}
1708 
1709 	mutex_unlock(&bch_register_lock);
1710 
1711 	continue_at(cl, cache_set_flush, system_wq);
1712 }
1713 
bch_cache_set_stop(struct cache_set * c)1714 void bch_cache_set_stop(struct cache_set *c)
1715 {
1716 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1717 		/* closure_fn set to __cache_set_unregister() */
1718 		closure_queue(&c->caching);
1719 }
1720 
bch_cache_set_unregister(struct cache_set * c)1721 void bch_cache_set_unregister(struct cache_set *c)
1722 {
1723 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1724 	bch_cache_set_stop(c);
1725 }
1726 
1727 #define alloc_bucket_pages(gfp, c)			\
1728 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1729 
bch_cache_set_alloc(struct cache_sb * sb)1730 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1731 {
1732 	int iter_size;
1733 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1734 
1735 	if (!c)
1736 		return NULL;
1737 
1738 	__module_get(THIS_MODULE);
1739 	closure_init(&c->cl, NULL);
1740 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1741 
1742 	closure_init(&c->caching, &c->cl);
1743 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1744 
1745 	/* Maybe create continue_at_noreturn() and use it here? */
1746 	closure_set_stopped(&c->cl);
1747 	closure_put(&c->cl);
1748 
1749 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1750 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1751 
1752 	bch_cache_accounting_init(&c->accounting, &c->cl);
1753 
1754 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1755 	c->sb.block_size	= sb->block_size;
1756 	c->sb.bucket_size	= sb->bucket_size;
1757 	c->sb.nr_in_set		= sb->nr_in_set;
1758 	c->sb.last_mount	= sb->last_mount;
1759 	c->bucket_bits		= ilog2(sb->bucket_size);
1760 	c->block_bits		= ilog2(sb->block_size);
1761 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1762 	c->devices_max_used	= 0;
1763 	atomic_set(&c->attached_dev_nr, 0);
1764 	c->btree_pages		= bucket_pages(c);
1765 	if (c->btree_pages > BTREE_MAX_PAGES)
1766 		c->btree_pages = max_t(int, c->btree_pages / 4,
1767 				       BTREE_MAX_PAGES);
1768 
1769 	sema_init(&c->sb_write_mutex, 1);
1770 	mutex_init(&c->bucket_lock);
1771 	init_waitqueue_head(&c->btree_cache_wait);
1772 	init_waitqueue_head(&c->bucket_wait);
1773 	init_waitqueue_head(&c->gc_wait);
1774 	sema_init(&c->uuid_write_mutex, 1);
1775 
1776 	spin_lock_init(&c->btree_gc_time.lock);
1777 	spin_lock_init(&c->btree_split_time.lock);
1778 	spin_lock_init(&c->btree_read_time.lock);
1779 
1780 	bch_moving_init_cache_set(c);
1781 
1782 	INIT_LIST_HEAD(&c->list);
1783 	INIT_LIST_HEAD(&c->cached_devs);
1784 	INIT_LIST_HEAD(&c->btree_cache);
1785 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1786 	INIT_LIST_HEAD(&c->btree_cache_freed);
1787 	INIT_LIST_HEAD(&c->data_buckets);
1788 
1789 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1790 		sizeof(struct btree_iter_set);
1791 
1792 	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1793 	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1794 	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1795 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1796 				bucket_pages(c)) ||
1797 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1798 	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1799 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1800 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1801 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1802 						WQ_MEM_RECLAIM, 0)) ||
1803 	    bch_journal_alloc(c) ||
1804 	    bch_btree_cache_alloc(c) ||
1805 	    bch_open_buckets_alloc(c) ||
1806 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1807 		goto err;
1808 
1809 	c->congested_read_threshold_us	= 2000;
1810 	c->congested_write_threshold_us	= 20000;
1811 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1812 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1813 
1814 	return c;
1815 err:
1816 	bch_cache_set_unregister(c);
1817 	return NULL;
1818 }
1819 
run_cache_set(struct cache_set * c)1820 static int run_cache_set(struct cache_set *c)
1821 {
1822 	const char *err = "cannot allocate memory";
1823 	struct cached_dev *dc, *t;
1824 	struct cache *ca;
1825 	struct closure cl;
1826 	unsigned int i;
1827 	LIST_HEAD(journal);
1828 	struct journal_replay *l;
1829 
1830 	closure_init_stack(&cl);
1831 
1832 	for_each_cache(ca, c, i)
1833 		c->nbuckets += ca->sb.nbuckets;
1834 	set_gc_sectors(c);
1835 
1836 	if (CACHE_SYNC(&c->sb)) {
1837 		struct bkey *k;
1838 		struct jset *j;
1839 
1840 		err = "cannot allocate memory for journal";
1841 		if (bch_journal_read(c, &journal))
1842 			goto err;
1843 
1844 		pr_debug("btree_journal_read() done");
1845 
1846 		err = "no journal entries found";
1847 		if (list_empty(&journal))
1848 			goto err;
1849 
1850 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1851 
1852 		err = "IO error reading priorities";
1853 		for_each_cache(ca, c, i)
1854 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1855 
1856 		/*
1857 		 * If prio_read() fails it'll call cache_set_error and we'll
1858 		 * tear everything down right away, but if we perhaps checked
1859 		 * sooner we could avoid journal replay.
1860 		 */
1861 
1862 		k = &j->btree_root;
1863 
1864 		err = "bad btree root";
1865 		if (__bch_btree_ptr_invalid(c, k))
1866 			goto err;
1867 
1868 		err = "error reading btree root";
1869 		c->root = bch_btree_node_get(c, NULL, k,
1870 					     j->btree_level,
1871 					     true, NULL);
1872 		if (IS_ERR_OR_NULL(c->root))
1873 			goto err;
1874 
1875 		list_del_init(&c->root->list);
1876 		rw_unlock(true, c->root);
1877 
1878 		err = uuid_read(c, j, &cl);
1879 		if (err)
1880 			goto err;
1881 
1882 		err = "error in recovery";
1883 		if (bch_btree_check(c))
1884 			goto err;
1885 
1886 		/*
1887 		 * bch_btree_check() may occupy too much system memory which
1888 		 * has negative effects to user space application (e.g. data
1889 		 * base) performance. Shrink the mca cache memory proactively
1890 		 * here to avoid competing memory with user space workloads..
1891 		 */
1892 		if (!c->shrinker_disabled) {
1893 			struct shrink_control sc;
1894 
1895 			sc.gfp_mask = GFP_KERNEL;
1896 			sc.nr_to_scan = c->btree_cache_used * c->btree_pages;
1897 			/* first run to clear b->accessed tag */
1898 			c->shrink.scan_objects(&c->shrink, &sc);
1899 			/* second run to reap non-accessed nodes */
1900 			c->shrink.scan_objects(&c->shrink, &sc);
1901 		}
1902 
1903 		bch_journal_mark(c, &journal);
1904 		bch_initial_gc_finish(c);
1905 		pr_debug("btree_check() done");
1906 
1907 		/*
1908 		 * bcache_journal_next() can't happen sooner, or
1909 		 * btree_gc_finish() will give spurious errors about last_gc >
1910 		 * gc_gen - this is a hack but oh well.
1911 		 */
1912 		bch_journal_next(&c->journal);
1913 
1914 		err = "error starting allocator thread";
1915 		for_each_cache(ca, c, i)
1916 			if (bch_cache_allocator_start(ca))
1917 				goto err;
1918 
1919 		/*
1920 		 * First place it's safe to allocate: btree_check() and
1921 		 * btree_gc_finish() have to run before we have buckets to
1922 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1923 		 * entry to be written so bcache_journal_next() has to be called
1924 		 * first.
1925 		 *
1926 		 * If the uuids were in the old format we have to rewrite them
1927 		 * before the next journal entry is written:
1928 		 */
1929 		if (j->version < BCACHE_JSET_VERSION_UUID)
1930 			__uuid_write(c);
1931 
1932 		err = "bcache: replay journal failed";
1933 		if (bch_journal_replay(c, &journal))
1934 			goto err;
1935 	} else {
1936 		pr_notice("invalidating existing data");
1937 
1938 		for_each_cache(ca, c, i) {
1939 			unsigned int j;
1940 
1941 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1942 					      2, SB_JOURNAL_BUCKETS);
1943 
1944 			for (j = 0; j < ca->sb.keys; j++)
1945 				ca->sb.d[j] = ca->sb.first_bucket + j;
1946 		}
1947 
1948 		bch_initial_gc_finish(c);
1949 
1950 		err = "error starting allocator thread";
1951 		for_each_cache(ca, c, i)
1952 			if (bch_cache_allocator_start(ca))
1953 				goto err;
1954 
1955 		mutex_lock(&c->bucket_lock);
1956 		for_each_cache(ca, c, i)
1957 			bch_prio_write(ca);
1958 		mutex_unlock(&c->bucket_lock);
1959 
1960 		err = "cannot allocate new UUID bucket";
1961 		if (__uuid_write(c))
1962 			goto err;
1963 
1964 		err = "cannot allocate new btree root";
1965 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1966 		if (IS_ERR_OR_NULL(c->root))
1967 			goto err;
1968 
1969 		mutex_lock(&c->root->write_lock);
1970 		bkey_copy_key(&c->root->key, &MAX_KEY);
1971 		bch_btree_node_write(c->root, &cl);
1972 		mutex_unlock(&c->root->write_lock);
1973 
1974 		bch_btree_set_root(c->root);
1975 		rw_unlock(true, c->root);
1976 
1977 		/*
1978 		 * We don't want to write the first journal entry until
1979 		 * everything is set up - fortunately journal entries won't be
1980 		 * written until the SET_CACHE_SYNC() here:
1981 		 */
1982 		SET_CACHE_SYNC(&c->sb, true);
1983 
1984 		bch_journal_next(&c->journal);
1985 		bch_journal_meta(c, &cl);
1986 	}
1987 
1988 	err = "error starting gc thread";
1989 	if (bch_gc_thread_start(c))
1990 		goto err;
1991 
1992 	closure_sync(&cl);
1993 	c->sb.last_mount = (u32)ktime_get_real_seconds();
1994 	bcache_write_super(c);
1995 
1996 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1997 		bch_cached_dev_attach(dc, c, NULL);
1998 
1999 	flash_devs_run(c);
2000 
2001 	set_bit(CACHE_SET_RUNNING, &c->flags);
2002 	return 0;
2003 err:
2004 	while (!list_empty(&journal)) {
2005 		l = list_first_entry(&journal, struct journal_replay, list);
2006 		list_del(&l->list);
2007 		kfree(l);
2008 	}
2009 
2010 	closure_sync(&cl);
2011 
2012 	bch_cache_set_error(c, "%s", err);
2013 
2014 	return -EIO;
2015 }
2016 
can_attach_cache(struct cache * ca,struct cache_set * c)2017 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2018 {
2019 	return ca->sb.block_size	== c->sb.block_size &&
2020 		ca->sb.bucket_size	== c->sb.bucket_size &&
2021 		ca->sb.nr_in_set	== c->sb.nr_in_set;
2022 }
2023 
register_cache_set(struct cache * ca)2024 static const char *register_cache_set(struct cache *ca)
2025 {
2026 	char buf[12];
2027 	const char *err = "cannot allocate memory";
2028 	struct cache_set *c;
2029 
2030 	list_for_each_entry(c, &bch_cache_sets, list)
2031 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2032 			if (c->cache[ca->sb.nr_this_dev])
2033 				return "duplicate cache set member";
2034 
2035 			if (!can_attach_cache(ca, c))
2036 				return "cache sb does not match set";
2037 
2038 			if (!CACHE_SYNC(&ca->sb))
2039 				SET_CACHE_SYNC(&c->sb, false);
2040 
2041 			goto found;
2042 		}
2043 
2044 	c = bch_cache_set_alloc(&ca->sb);
2045 	if (!c)
2046 		return err;
2047 
2048 	err = "error creating kobject";
2049 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2050 	    kobject_add(&c->internal, &c->kobj, "internal"))
2051 		goto err;
2052 
2053 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2054 		goto err;
2055 
2056 	bch_debug_init_cache_set(c);
2057 
2058 	list_add(&c->list, &bch_cache_sets);
2059 found:
2060 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2061 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2062 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2063 		goto err;
2064 
2065 	if (ca->sb.seq > c->sb.seq) {
2066 		c->sb.version		= ca->sb.version;
2067 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2068 		c->sb.flags             = ca->sb.flags;
2069 		c->sb.seq		= ca->sb.seq;
2070 		pr_debug("set version = %llu", c->sb.version);
2071 	}
2072 
2073 	kobject_get(&ca->kobj);
2074 	ca->set = c;
2075 	ca->set->cache[ca->sb.nr_this_dev] = ca;
2076 	c->cache_by_alloc[c->caches_loaded++] = ca;
2077 
2078 	if (c->caches_loaded == c->sb.nr_in_set) {
2079 		err = "failed to run cache set";
2080 		if (run_cache_set(c) < 0)
2081 			goto err;
2082 	}
2083 
2084 	return NULL;
2085 err:
2086 	bch_cache_set_unregister(c);
2087 	return err;
2088 }
2089 
2090 /* Cache device */
2091 
2092 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2093 void bch_cache_release(struct kobject *kobj)
2094 {
2095 	struct cache *ca = container_of(kobj, struct cache, kobj);
2096 	unsigned int i;
2097 
2098 	if (ca->set) {
2099 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2100 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2101 	}
2102 
2103 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2104 	kfree(ca->prio_buckets);
2105 	vfree(ca->buckets);
2106 
2107 	free_heap(&ca->heap);
2108 	free_fifo(&ca->free_inc);
2109 
2110 	for (i = 0; i < RESERVE_NR; i++)
2111 		free_fifo(&ca->free[i]);
2112 
2113 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2114 		put_page(bio_first_page_all(&ca->sb_bio));
2115 
2116 	if (!IS_ERR_OR_NULL(ca->bdev))
2117 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2118 
2119 	kfree(ca);
2120 	module_put(THIS_MODULE);
2121 }
2122 
cache_alloc(struct cache * ca)2123 static int cache_alloc(struct cache *ca)
2124 {
2125 	size_t free;
2126 	size_t btree_buckets;
2127 	struct bucket *b;
2128 	int ret = -ENOMEM;
2129 	const char *err = NULL;
2130 
2131 	__module_get(THIS_MODULE);
2132 	kobject_init(&ca->kobj, &bch_cache_ktype);
2133 
2134 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2135 
2136 	/*
2137 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2138 	 * and in bch_journal_replay(), tree node may split,
2139 	 * so bucket of RESERVE_BTREE type is needed,
2140 	 * the worst situation is all journal buckets are valid journal,
2141 	 * and all the keys need to replay,
2142 	 * so the number of  RESERVE_BTREE type buckets should be as much
2143 	 * as journal buckets
2144 	 */
2145 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2146 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2147 	if (!free) {
2148 		ret = -EPERM;
2149 		err = "ca->sb.nbuckets is too small";
2150 		goto err_free;
2151 	}
2152 
2153 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2154 						GFP_KERNEL)) {
2155 		err = "ca->free[RESERVE_BTREE] alloc failed";
2156 		goto err_btree_alloc;
2157 	}
2158 
2159 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2160 							GFP_KERNEL)) {
2161 		err = "ca->free[RESERVE_PRIO] alloc failed";
2162 		goto err_prio_alloc;
2163 	}
2164 
2165 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2166 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2167 		goto err_movinggc_alloc;
2168 	}
2169 
2170 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2171 		err = "ca->free[RESERVE_NONE] alloc failed";
2172 		goto err_none_alloc;
2173 	}
2174 
2175 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2176 		err = "ca->free_inc alloc failed";
2177 		goto err_free_inc_alloc;
2178 	}
2179 
2180 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2181 		err = "ca->heap alloc failed";
2182 		goto err_heap_alloc;
2183 	}
2184 
2185 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2186 			      ca->sb.nbuckets));
2187 	if (!ca->buckets) {
2188 		err = "ca->buckets alloc failed";
2189 		goto err_buckets_alloc;
2190 	}
2191 
2192 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2193 				   prio_buckets(ca), 2),
2194 				   GFP_KERNEL);
2195 	if (!ca->prio_buckets) {
2196 		err = "ca->prio_buckets alloc failed";
2197 		goto err_prio_buckets_alloc;
2198 	}
2199 
2200 	ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2201 	if (!ca->disk_buckets) {
2202 		err = "ca->disk_buckets alloc failed";
2203 		goto err_disk_buckets_alloc;
2204 	}
2205 
2206 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2207 
2208 	for_each_bucket(b, ca)
2209 		atomic_set(&b->pin, 0);
2210 	return 0;
2211 
2212 err_disk_buckets_alloc:
2213 	kfree(ca->prio_buckets);
2214 err_prio_buckets_alloc:
2215 	vfree(ca->buckets);
2216 err_buckets_alloc:
2217 	free_heap(&ca->heap);
2218 err_heap_alloc:
2219 	free_fifo(&ca->free_inc);
2220 err_free_inc_alloc:
2221 	free_fifo(&ca->free[RESERVE_NONE]);
2222 err_none_alloc:
2223 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2224 err_movinggc_alloc:
2225 	free_fifo(&ca->free[RESERVE_PRIO]);
2226 err_prio_alloc:
2227 	free_fifo(&ca->free[RESERVE_BTREE]);
2228 err_btree_alloc:
2229 err_free:
2230 	module_put(THIS_MODULE);
2231 	if (err)
2232 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2233 	return ret;
2234 }
2235 
register_cache(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cache * ca)2236 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2237 				struct block_device *bdev, struct cache *ca)
2238 {
2239 	const char *err = NULL; /* must be set for any error case */
2240 	int ret = 0;
2241 
2242 	bdevname(bdev, ca->cache_dev_name);
2243 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2244 	ca->bdev = bdev;
2245 	ca->bdev->bd_holder = ca;
2246 
2247 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2248 	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2249 	get_page(sb_page);
2250 
2251 	if (blk_queue_discard(bdev_get_queue(bdev)))
2252 		ca->discard = CACHE_DISCARD(&ca->sb);
2253 
2254 	ret = cache_alloc(ca);
2255 	if (ret != 0) {
2256 		/*
2257 		 * If we failed here, it means ca->kobj is not initialized yet,
2258 		 * kobject_put() won't be called and there is no chance to
2259 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2260 		 * explicitly call blkdev_put() here.
2261 		 */
2262 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2263 		if (ret == -ENOMEM)
2264 			err = "cache_alloc(): -ENOMEM";
2265 		else if (ret == -EPERM)
2266 			err = "cache_alloc(): cache device is too small";
2267 		else
2268 			err = "cache_alloc(): unknown error";
2269 		goto err;
2270 	}
2271 
2272 	if (kobject_add(&ca->kobj,
2273 			&part_to_dev(bdev->bd_part)->kobj,
2274 			"bcache")) {
2275 		err = "error calling kobject_add";
2276 		ret = -ENOMEM;
2277 		goto out;
2278 	}
2279 
2280 	mutex_lock(&bch_register_lock);
2281 	err = register_cache_set(ca);
2282 	mutex_unlock(&bch_register_lock);
2283 
2284 	if (err) {
2285 		ret = -ENODEV;
2286 		goto out;
2287 	}
2288 
2289 	pr_info("registered cache device %s", ca->cache_dev_name);
2290 
2291 out:
2292 	kobject_put(&ca->kobj);
2293 
2294 err:
2295 	if (err)
2296 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2297 
2298 	return ret;
2299 }
2300 
2301 /* Global interfaces/init */
2302 
2303 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2304 			       const char *buffer, size_t size);
2305 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2306 					 struct kobj_attribute *attr,
2307 					 const char *buffer, size_t size);
2308 
2309 kobj_attribute_write(register,		register_bcache);
2310 kobj_attribute_write(register_quiet,	register_bcache);
2311 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2312 
bch_is_open_backing(struct block_device * bdev)2313 static bool bch_is_open_backing(struct block_device *bdev)
2314 {
2315 	struct cache_set *c, *tc;
2316 	struct cached_dev *dc, *t;
2317 
2318 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2319 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2320 			if (dc->bdev == bdev)
2321 				return true;
2322 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2323 		if (dc->bdev == bdev)
2324 			return true;
2325 	return false;
2326 }
2327 
bch_is_open_cache(struct block_device * bdev)2328 static bool bch_is_open_cache(struct block_device *bdev)
2329 {
2330 	struct cache_set *c, *tc;
2331 	struct cache *ca;
2332 	unsigned int i;
2333 
2334 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2335 		for_each_cache(ca, c, i)
2336 			if (ca->bdev == bdev)
2337 				return true;
2338 	return false;
2339 }
2340 
bch_is_open(struct block_device * bdev)2341 static bool bch_is_open(struct block_device *bdev)
2342 {
2343 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2344 }
2345 
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2346 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2347 			       const char *buffer, size_t size)
2348 {
2349 	ssize_t ret = -EINVAL;
2350 	const char *err = "cannot allocate memory";
2351 	char *path = NULL;
2352 	struct cache_sb *sb = NULL;
2353 	struct block_device *bdev = NULL;
2354 	struct page *sb_page = NULL;
2355 
2356 	if (!try_module_get(THIS_MODULE))
2357 		return -EBUSY;
2358 
2359 	/* For latest state of bcache_is_reboot */
2360 	smp_mb();
2361 	if (bcache_is_reboot)
2362 		return -EBUSY;
2363 
2364 	path = kstrndup(buffer, size, GFP_KERNEL);
2365 	if (!path)
2366 		goto err;
2367 
2368 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2369 	if (!sb)
2370 		goto err;
2371 
2372 	err = "failed to open device";
2373 	bdev = blkdev_get_by_path(strim(path),
2374 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2375 				  sb);
2376 	if (IS_ERR(bdev)) {
2377 		if (bdev == ERR_PTR(-EBUSY)) {
2378 			bdev = lookup_bdev(strim(path));
2379 			mutex_lock(&bch_register_lock);
2380 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2381 				err = "device already registered";
2382 			else
2383 				err = "device busy";
2384 			mutex_unlock(&bch_register_lock);
2385 			if (!IS_ERR(bdev))
2386 				bdput(bdev);
2387 			if (attr == &ksysfs_register_quiet)
2388 				goto quiet_out;
2389 		}
2390 		goto err;
2391 	}
2392 
2393 	err = "failed to set blocksize";
2394 	if (set_blocksize(bdev, 4096))
2395 		goto err_close;
2396 
2397 	err = read_super(sb, bdev, &sb_page);
2398 	if (err)
2399 		goto err_close;
2400 
2401 	err = "failed to register device";
2402 	if (SB_IS_BDEV(sb)) {
2403 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2404 
2405 		if (!dc)
2406 			goto err_close;
2407 
2408 		mutex_lock(&bch_register_lock);
2409 		ret = register_bdev(sb, sb_page, bdev, dc);
2410 		mutex_unlock(&bch_register_lock);
2411 		/* blkdev_put() will be called in cached_dev_free() */
2412 		if (ret < 0)
2413 			goto err;
2414 	} else {
2415 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2416 
2417 		if (!ca)
2418 			goto err_close;
2419 
2420 		/* blkdev_put() will be called in bch_cache_release() */
2421 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2422 			goto err;
2423 	}
2424 quiet_out:
2425 	ret = size;
2426 out:
2427 	if (sb_page)
2428 		put_page(sb_page);
2429 	kfree(sb);
2430 	kfree(path);
2431 	module_put(THIS_MODULE);
2432 	return ret;
2433 
2434 err_close:
2435 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2436 err:
2437 	pr_info("error %s: %s", path, err);
2438 	goto out;
2439 }
2440 
2441 
2442 struct pdev {
2443 	struct list_head list;
2444 	struct cached_dev *dc;
2445 };
2446 
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2447 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2448 					 struct kobj_attribute *attr,
2449 					 const char *buffer,
2450 					 size_t size)
2451 {
2452 	LIST_HEAD(pending_devs);
2453 	ssize_t ret = size;
2454 	struct cached_dev *dc, *tdc;
2455 	struct pdev *pdev, *tpdev;
2456 	struct cache_set *c, *tc;
2457 
2458 	mutex_lock(&bch_register_lock);
2459 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2460 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2461 		if (!pdev)
2462 			break;
2463 		pdev->dc = dc;
2464 		list_add(&pdev->list, &pending_devs);
2465 	}
2466 
2467 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2468 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2469 			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2470 			char *set_uuid = c->sb.uuid;
2471 
2472 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2473 				list_del(&pdev->list);
2474 				kfree(pdev);
2475 				break;
2476 			}
2477 		}
2478 	}
2479 	mutex_unlock(&bch_register_lock);
2480 
2481 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2482 		pr_info("delete pdev %p", pdev);
2483 		list_del(&pdev->list);
2484 		bcache_device_stop(&pdev->dc->disk);
2485 		kfree(pdev);
2486 	}
2487 
2488 	return ret;
2489 }
2490 
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2491 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2492 {
2493 	if (bcache_is_reboot)
2494 		return NOTIFY_DONE;
2495 
2496 	if (code == SYS_DOWN ||
2497 	    code == SYS_HALT ||
2498 	    code == SYS_POWER_OFF) {
2499 		DEFINE_WAIT(wait);
2500 		unsigned long start = jiffies;
2501 		bool stopped = false;
2502 
2503 		struct cache_set *c, *tc;
2504 		struct cached_dev *dc, *tdc;
2505 
2506 		mutex_lock(&bch_register_lock);
2507 
2508 		if (bcache_is_reboot)
2509 			goto out;
2510 
2511 		/* New registration is rejected since now */
2512 		bcache_is_reboot = true;
2513 		/*
2514 		 * Make registering caller (if there is) on other CPU
2515 		 * core know bcache_is_reboot set to true earlier
2516 		 */
2517 		smp_mb();
2518 
2519 		if (list_empty(&bch_cache_sets) &&
2520 		    list_empty(&uncached_devices))
2521 			goto out;
2522 
2523 		mutex_unlock(&bch_register_lock);
2524 
2525 		pr_info("Stopping all devices:");
2526 
2527 		/*
2528 		 * The reason bch_register_lock is not held to call
2529 		 * bch_cache_set_stop() and bcache_device_stop() is to
2530 		 * avoid potential deadlock during reboot, because cache
2531 		 * set or bcache device stopping process will acqurie
2532 		 * bch_register_lock too.
2533 		 *
2534 		 * We are safe here because bcache_is_reboot sets to
2535 		 * true already, register_bcache() will reject new
2536 		 * registration now. bcache_is_reboot also makes sure
2537 		 * bcache_reboot() won't be re-entered on by other thread,
2538 		 * so there is no race in following list iteration by
2539 		 * list_for_each_entry_safe().
2540 		 */
2541 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2542 			bch_cache_set_stop(c);
2543 
2544 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2545 			bcache_device_stop(&dc->disk);
2546 
2547 
2548 		/*
2549 		 * Give an early chance for other kthreads and
2550 		 * kworkers to stop themselves
2551 		 */
2552 		schedule();
2553 
2554 		/* What's a condition variable? */
2555 		while (1) {
2556 			long timeout = start + 10 * HZ - jiffies;
2557 
2558 			mutex_lock(&bch_register_lock);
2559 			stopped = list_empty(&bch_cache_sets) &&
2560 				list_empty(&uncached_devices);
2561 
2562 			if (timeout < 0 || stopped)
2563 				break;
2564 
2565 			prepare_to_wait(&unregister_wait, &wait,
2566 					TASK_UNINTERRUPTIBLE);
2567 
2568 			mutex_unlock(&bch_register_lock);
2569 			schedule_timeout(timeout);
2570 		}
2571 
2572 		finish_wait(&unregister_wait, &wait);
2573 
2574 		if (stopped)
2575 			pr_info("All devices stopped");
2576 		else
2577 			pr_notice("Timeout waiting for devices to be closed");
2578 out:
2579 		mutex_unlock(&bch_register_lock);
2580 	}
2581 
2582 	return NOTIFY_DONE;
2583 }
2584 
2585 static struct notifier_block reboot = {
2586 	.notifier_call	= bcache_reboot,
2587 	.priority	= INT_MAX, /* before any real devices */
2588 };
2589 
bcache_exit(void)2590 static void bcache_exit(void)
2591 {
2592 	bch_debug_exit();
2593 	bch_request_exit();
2594 	if (bcache_kobj)
2595 		kobject_put(bcache_kobj);
2596 	if (bcache_wq)
2597 		destroy_workqueue(bcache_wq);
2598 	if (bch_journal_wq)
2599 		destroy_workqueue(bch_journal_wq);
2600 
2601 	if (bcache_major)
2602 		unregister_blkdev(bcache_major, "bcache");
2603 	unregister_reboot_notifier(&reboot);
2604 	mutex_destroy(&bch_register_lock);
2605 }
2606 
2607 /* Check and fixup module parameters */
check_module_parameters(void)2608 static void check_module_parameters(void)
2609 {
2610 	if (bch_cutoff_writeback_sync == 0)
2611 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2612 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2613 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u",
2614 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2615 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2616 	}
2617 
2618 	if (bch_cutoff_writeback == 0)
2619 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2620 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2621 		pr_warn("set bch_cutoff_writeback (%u) to max value %u",
2622 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2623 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2624 	}
2625 
2626 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2627 		pr_warn("set bch_cutoff_writeback (%u) to %u",
2628 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2629 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2630 	}
2631 }
2632 
bcache_init(void)2633 static int __init bcache_init(void)
2634 {
2635 	static const struct attribute *files[] = {
2636 		&ksysfs_register.attr,
2637 		&ksysfs_register_quiet.attr,
2638 		&ksysfs_pendings_cleanup.attr,
2639 		NULL
2640 	};
2641 
2642 	check_module_parameters();
2643 
2644 	mutex_init(&bch_register_lock);
2645 	init_waitqueue_head(&unregister_wait);
2646 	register_reboot_notifier(&reboot);
2647 
2648 	bcache_major = register_blkdev(0, "bcache");
2649 	if (bcache_major < 0) {
2650 		unregister_reboot_notifier(&reboot);
2651 		mutex_destroy(&bch_register_lock);
2652 		return bcache_major;
2653 	}
2654 
2655 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2656 	if (!bcache_wq)
2657 		goto err;
2658 
2659 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2660 	if (!bch_journal_wq)
2661 		goto err;
2662 
2663 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2664 	if (!bcache_kobj)
2665 		goto err;
2666 
2667 	if (bch_request_init() ||
2668 	    sysfs_create_files(bcache_kobj, files))
2669 		goto err;
2670 
2671 	bch_debug_init();
2672 	closure_debug_init();
2673 
2674 	bcache_is_reboot = false;
2675 
2676 	return 0;
2677 err:
2678 	bcache_exit();
2679 	return -ENOMEM;
2680 }
2681 
2682 /*
2683  * Module hooks
2684  */
2685 module_exit(bcache_exit);
2686 module_init(bcache_init);
2687 
2688 module_param(bch_cutoff_writeback, uint, 0);
2689 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2690 
2691 module_param(bch_cutoff_writeback_sync, uint, 0);
2692 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2693 
2694 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2695 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2696 MODULE_LICENSE("GPL");
2697