1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
5 *
6 * Copyright 2012 Google, Inc.
7 */
8
9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
10
11 #include "util.h"
12 #include "bset.h"
13
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
18
19 #ifdef CONFIG_BCACHE_DEBUG
20
bch_dump_bset(struct btree_keys * b,struct bset * i,unsigned int set)21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
22 {
23 struct bkey *k, *next;
24
25 for (k = i->start; k < bset_bkey_last(i); k = next) {
26 next = bkey_next(k);
27
28 pr_err("block %u key %u/%u: ", set,
29 (unsigned int) ((u64 *) k - i->d), i->keys);
30
31 if (b->ops->key_dump)
32 b->ops->key_dump(b, k);
33 else
34 pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
35
36 if (next < bset_bkey_last(i) &&
37 bkey_cmp(k, b->ops->is_extents ?
38 &START_KEY(next) : next) > 0)
39 pr_err("Key skipped backwards\n");
40 }
41 }
42
bch_dump_bucket(struct btree_keys * b)43 void bch_dump_bucket(struct btree_keys *b)
44 {
45 unsigned int i;
46
47 console_lock();
48 for (i = 0; i <= b->nsets; i++)
49 bch_dump_bset(b, b->set[i].data,
50 bset_sector_offset(b, b->set[i].data));
51 console_unlock();
52 }
53
__bch_count_data(struct btree_keys * b)54 int __bch_count_data(struct btree_keys *b)
55 {
56 unsigned int ret = 0;
57 struct btree_iter iter;
58 struct bkey *k;
59
60 if (b->ops->is_extents)
61 for_each_key(b, k, &iter)
62 ret += KEY_SIZE(k);
63 return ret;
64 }
65
__bch_check_keys(struct btree_keys * b,const char * fmt,...)66 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
67 {
68 va_list args;
69 struct bkey *k, *p = NULL;
70 struct btree_iter iter;
71 const char *err;
72
73 for_each_key(b, k, &iter) {
74 if (b->ops->is_extents) {
75 err = "Keys out of order";
76 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77 goto bug;
78
79 if (bch_ptr_invalid(b, k))
80 continue;
81
82 err = "Overlapping keys";
83 if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84 goto bug;
85 } else {
86 if (bch_ptr_bad(b, k))
87 continue;
88
89 err = "Duplicate keys";
90 if (p && !bkey_cmp(p, k))
91 goto bug;
92 }
93 p = k;
94 }
95 #if 0
96 err = "Key larger than btree node key";
97 if (p && bkey_cmp(p, &b->key) > 0)
98 goto bug;
99 #endif
100 return;
101 bug:
102 bch_dump_bucket(b);
103
104 va_start(args, fmt);
105 vprintk(fmt, args);
106 va_end(args);
107
108 panic("bch_check_keys error: %s:\n", err);
109 }
110
bch_btree_iter_next_check(struct btree_iter * iter)111 static void bch_btree_iter_next_check(struct btree_iter *iter)
112 {
113 struct bkey *k = iter->data->k, *next = bkey_next(k);
114
115 if (next < iter->data->end &&
116 bkey_cmp(k, iter->b->ops->is_extents ?
117 &START_KEY(next) : next) > 0) {
118 bch_dump_bucket(iter->b);
119 panic("Key skipped backwards\n");
120 }
121 }
122
123 #else
124
bch_btree_iter_next_check(struct btree_iter * iter)125 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
126
127 #endif
128
129 /* Keylists */
130
__bch_keylist_realloc(struct keylist * l,unsigned int u64s)131 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
132 {
133 size_t oldsize = bch_keylist_nkeys(l);
134 size_t newsize = oldsize + u64s;
135 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136 uint64_t *new_keys;
137
138 newsize = roundup_pow_of_two(newsize);
139
140 if (newsize <= KEYLIST_INLINE ||
141 roundup_pow_of_two(oldsize) == newsize)
142 return 0;
143
144 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
145
146 if (!new_keys)
147 return -ENOMEM;
148
149 if (!old_keys)
150 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
151
152 l->keys_p = new_keys;
153 l->top_p = new_keys + oldsize;
154
155 return 0;
156 }
157
bch_keylist_pop(struct keylist * l)158 struct bkey *bch_keylist_pop(struct keylist *l)
159 {
160 struct bkey *k = l->keys;
161
162 if (k == l->top)
163 return NULL;
164
165 while (bkey_next(k) != l->top)
166 k = bkey_next(k);
167
168 return l->top = k;
169 }
170
bch_keylist_pop_front(struct keylist * l)171 void bch_keylist_pop_front(struct keylist *l)
172 {
173 l->top_p -= bkey_u64s(l->keys);
174
175 memmove(l->keys,
176 bkey_next(l->keys),
177 bch_keylist_bytes(l));
178 }
179
180 /* Key/pointer manipulation */
181
bch_bkey_copy_single_ptr(struct bkey * dest,const struct bkey * src,unsigned int i)182 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
183 unsigned int i)
184 {
185 BUG_ON(i > KEY_PTRS(src));
186
187 /* Only copy the header, key, and one pointer. */
188 memcpy(dest, src, 2 * sizeof(uint64_t));
189 dest->ptr[0] = src->ptr[i];
190 SET_KEY_PTRS(dest, 1);
191 /* We didn't copy the checksum so clear that bit. */
192 SET_KEY_CSUM(dest, 0);
193 }
194
__bch_cut_front(const struct bkey * where,struct bkey * k)195 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
196 {
197 unsigned int i, len = 0;
198
199 if (bkey_cmp(where, &START_KEY(k)) <= 0)
200 return false;
201
202 if (bkey_cmp(where, k) < 0)
203 len = KEY_OFFSET(k) - KEY_OFFSET(where);
204 else
205 bkey_copy_key(k, where);
206
207 for (i = 0; i < KEY_PTRS(k); i++)
208 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
209
210 BUG_ON(len > KEY_SIZE(k));
211 SET_KEY_SIZE(k, len);
212 return true;
213 }
214
__bch_cut_back(const struct bkey * where,struct bkey * k)215 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
216 {
217 unsigned int len = 0;
218
219 if (bkey_cmp(where, k) >= 0)
220 return false;
221
222 BUG_ON(KEY_INODE(where) != KEY_INODE(k));
223
224 if (bkey_cmp(where, &START_KEY(k)) > 0)
225 len = KEY_OFFSET(where) - KEY_START(k);
226
227 bkey_copy_key(k, where);
228
229 BUG_ON(len > KEY_SIZE(k));
230 SET_KEY_SIZE(k, len);
231 return true;
232 }
233
234 /* Auxiliary search trees */
235
236 /* 32 bits total: */
237 #define BKEY_MID_BITS 3
238 #define BKEY_EXPONENT_BITS 7
239 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
240 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
241
242 struct bkey_float {
243 unsigned int exponent:BKEY_EXPONENT_BITS;
244 unsigned int m:BKEY_MID_BITS;
245 unsigned int mantissa:BKEY_MANTISSA_BITS;
246 } __packed;
247
248 /*
249 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
250 * it used to be 64, but I realized the lookup code would touch slightly less
251 * memory if it was 128.
252 *
253 * It definites the number of bytes (in struct bset) per struct bkey_float in
254 * the auxiliar search tree - when we're done searching the bset_float tree we
255 * have this many bytes left that we do a linear search over.
256 *
257 * Since (after level 5) every level of the bset_tree is on a new cacheline,
258 * we're touching one fewer cacheline in the bset tree in exchange for one more
259 * cacheline in the linear search - but the linear search might stop before it
260 * gets to the second cacheline.
261 */
262
263 #define BSET_CACHELINE 128
264
265 /* Space required for the btree node keys */
btree_keys_bytes(struct btree_keys * b)266 static inline size_t btree_keys_bytes(struct btree_keys *b)
267 {
268 return PAGE_SIZE << b->page_order;
269 }
270
btree_keys_cachelines(struct btree_keys * b)271 static inline size_t btree_keys_cachelines(struct btree_keys *b)
272 {
273 return btree_keys_bytes(b) / BSET_CACHELINE;
274 }
275
276 /* Space required for the auxiliary search trees */
bset_tree_bytes(struct btree_keys * b)277 static inline size_t bset_tree_bytes(struct btree_keys *b)
278 {
279 return btree_keys_cachelines(b) * sizeof(struct bkey_float);
280 }
281
282 /* Space required for the prev pointers */
bset_prev_bytes(struct btree_keys * b)283 static inline size_t bset_prev_bytes(struct btree_keys *b)
284 {
285 return btree_keys_cachelines(b) * sizeof(uint8_t);
286 }
287
288 /* Memory allocation */
289
bch_btree_keys_free(struct btree_keys * b)290 void bch_btree_keys_free(struct btree_keys *b)
291 {
292 struct bset_tree *t = b->set;
293
294 if (bset_prev_bytes(b) < PAGE_SIZE)
295 kfree(t->prev);
296 else
297 free_pages((unsigned long) t->prev,
298 get_order(bset_prev_bytes(b)));
299
300 if (bset_tree_bytes(b) < PAGE_SIZE)
301 kfree(t->tree);
302 else
303 free_pages((unsigned long) t->tree,
304 get_order(bset_tree_bytes(b)));
305
306 free_pages((unsigned long) t->data, b->page_order);
307
308 t->prev = NULL;
309 t->tree = NULL;
310 t->data = NULL;
311 }
312 EXPORT_SYMBOL(bch_btree_keys_free);
313
bch_btree_keys_alloc(struct btree_keys * b,unsigned int page_order,gfp_t gfp)314 int bch_btree_keys_alloc(struct btree_keys *b,
315 unsigned int page_order,
316 gfp_t gfp)
317 {
318 struct bset_tree *t = b->set;
319
320 BUG_ON(t->data);
321
322 b->page_order = page_order;
323
324 t->data = (void *) __get_free_pages(gfp, b->page_order);
325 if (!t->data)
326 goto err;
327
328 t->tree = bset_tree_bytes(b) < PAGE_SIZE
329 ? kmalloc(bset_tree_bytes(b), gfp)
330 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
331 if (!t->tree)
332 goto err;
333
334 t->prev = bset_prev_bytes(b) < PAGE_SIZE
335 ? kmalloc(bset_prev_bytes(b), gfp)
336 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
337 if (!t->prev)
338 goto err;
339
340 return 0;
341 err:
342 bch_btree_keys_free(b);
343 return -ENOMEM;
344 }
345 EXPORT_SYMBOL(bch_btree_keys_alloc);
346
bch_btree_keys_init(struct btree_keys * b,const struct btree_keys_ops * ops,bool * expensive_debug_checks)347 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
348 bool *expensive_debug_checks)
349 {
350 unsigned int i;
351
352 b->ops = ops;
353 b->expensive_debug_checks = expensive_debug_checks;
354 b->nsets = 0;
355 b->last_set_unwritten = 0;
356
357 /* XXX: shouldn't be needed */
358 for (i = 0; i < MAX_BSETS; i++)
359 b->set[i].size = 0;
360 /*
361 * Second loop starts at 1 because b->keys[0]->data is the memory we
362 * allocated
363 */
364 for (i = 1; i < MAX_BSETS; i++)
365 b->set[i].data = NULL;
366 }
367 EXPORT_SYMBOL(bch_btree_keys_init);
368
369 /* Binary tree stuff for auxiliary search trees */
370
371 /*
372 * return array index next to j when does in-order traverse
373 * of a binary tree which is stored in a linear array
374 */
inorder_next(unsigned int j,unsigned int size)375 static unsigned int inorder_next(unsigned int j, unsigned int size)
376 {
377 if (j * 2 + 1 < size) {
378 j = j * 2 + 1;
379
380 while (j * 2 < size)
381 j *= 2;
382 } else
383 j >>= ffz(j) + 1;
384
385 return j;
386 }
387
388 /*
389 * return array index previous to j when does in-order traverse
390 * of a binary tree which is stored in a linear array
391 */
inorder_prev(unsigned int j,unsigned int size)392 static unsigned int inorder_prev(unsigned int j, unsigned int size)
393 {
394 if (j * 2 < size) {
395 j = j * 2;
396
397 while (j * 2 + 1 < size)
398 j = j * 2 + 1;
399 } else
400 j >>= ffs(j);
401
402 return j;
403 }
404
405 /*
406 * I have no idea why this code works... and I'm the one who wrote it
407 *
408 * However, I do know what it does:
409 * Given a binary tree constructed in an array (i.e. how you normally implement
410 * a heap), it converts a node in the tree - referenced by array index - to the
411 * index it would have if you did an inorder traversal.
412 *
413 * Also tested for every j, size up to size somewhere around 6 million.
414 *
415 * The binary tree starts at array index 1, not 0
416 * extra is a function of size:
417 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
418 */
__to_inorder(unsigned int j,unsigned int size,unsigned int extra)419 static unsigned int __to_inorder(unsigned int j,
420 unsigned int size,
421 unsigned int extra)
422 {
423 unsigned int b = fls(j);
424 unsigned int shift = fls(size - 1) - b;
425
426 j ^= 1U << (b - 1);
427 j <<= 1;
428 j |= 1;
429 j <<= shift;
430
431 if (j > extra)
432 j -= (j - extra) >> 1;
433
434 return j;
435 }
436
437 /*
438 * Return the cacheline index in bset_tree->data, where j is index
439 * from a linear array which stores the auxiliar binary tree
440 */
to_inorder(unsigned int j,struct bset_tree * t)441 static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
442 {
443 return __to_inorder(j, t->size, t->extra);
444 }
445
__inorder_to_tree(unsigned int j,unsigned int size,unsigned int extra)446 static unsigned int __inorder_to_tree(unsigned int j,
447 unsigned int size,
448 unsigned int extra)
449 {
450 unsigned int shift;
451
452 if (j > extra)
453 j += j - extra;
454
455 shift = ffs(j);
456
457 j >>= shift;
458 j |= roundup_pow_of_two(size) >> shift;
459
460 return j;
461 }
462
463 /*
464 * Return an index from a linear array which stores the auxiliar binary
465 * tree, j is the cacheline index of t->data.
466 */
inorder_to_tree(unsigned int j,struct bset_tree * t)467 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
468 {
469 return __inorder_to_tree(j, t->size, t->extra);
470 }
471
472 #if 0
473 void inorder_test(void)
474 {
475 unsigned long done = 0;
476 ktime_t start = ktime_get();
477
478 for (unsigned int size = 2;
479 size < 65536000;
480 size++) {
481 unsigned int extra =
482 (size - rounddown_pow_of_two(size - 1)) << 1;
483 unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
484
485 if (!(size % 4096))
486 pr_notice("loop %u, %llu per us\n", size,
487 done / ktime_us_delta(ktime_get(), start));
488
489 while (1) {
490 if (__inorder_to_tree(i, size, extra) != j)
491 panic("size %10u j %10u i %10u", size, j, i);
492
493 if (__to_inorder(j, size, extra) != i)
494 panic("size %10u j %10u i %10u", size, j, i);
495
496 if (j == rounddown_pow_of_two(size) - 1)
497 break;
498
499 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
500
501 j = inorder_next(j, size);
502 i++;
503 }
504
505 done += size - 1;
506 }
507 }
508 #endif
509
510 /*
511 * Cacheline/offset <-> bkey pointer arithmetic:
512 *
513 * t->tree is a binary search tree in an array; each node corresponds to a key
514 * in one cacheline in t->set (BSET_CACHELINE bytes).
515 *
516 * This means we don't have to store the full index of the key that a node in
517 * the binary tree points to; to_inorder() gives us the cacheline, and then
518 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
519 *
520 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
521 * make this work.
522 *
523 * To construct the bfloat for an arbitrary key we need to know what the key
524 * immediately preceding it is: we have to check if the two keys differ in the
525 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
526 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
527 */
528
cacheline_to_bkey(struct bset_tree * t,unsigned int cacheline,unsigned int offset)529 static struct bkey *cacheline_to_bkey(struct bset_tree *t,
530 unsigned int cacheline,
531 unsigned int offset)
532 {
533 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
534 }
535
bkey_to_cacheline(struct bset_tree * t,struct bkey * k)536 static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
537 {
538 return ((void *) k - (void *) t->data) / BSET_CACHELINE;
539 }
540
bkey_to_cacheline_offset(struct bset_tree * t,unsigned int cacheline,struct bkey * k)541 static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
542 unsigned int cacheline,
543 struct bkey *k)
544 {
545 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
546 }
547
tree_to_bkey(struct bset_tree * t,unsigned int j)548 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
549 {
550 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
551 }
552
tree_to_prev_bkey(struct bset_tree * t,unsigned int j)553 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
554 {
555 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
556 }
557
558 /*
559 * For the write set - the one we're currently inserting keys into - we don't
560 * maintain a full search tree, we just keep a simple lookup table in t->prev.
561 */
table_to_bkey(struct bset_tree * t,unsigned int cacheline)562 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
563 {
564 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
565 }
566
shrd128(uint64_t high,uint64_t low,uint8_t shift)567 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
568 {
569 low >>= shift;
570 low |= (high << 1) << (63U - shift);
571 return low;
572 }
573
574 /*
575 * Calculate mantissa value for struct bkey_float.
576 * If most significant bit of f->exponent is not set, then
577 * - f->exponent >> 6 is 0
578 * - p[0] points to bkey->low
579 * - p[-1] borrows bits from KEY_INODE() of bkey->high
580 * if most isgnificant bits of f->exponent is set, then
581 * - f->exponent >> 6 is 1
582 * - p[0] points to bits from KEY_INODE() of bkey->high
583 * - p[-1] points to other bits from KEY_INODE() of
584 * bkey->high too.
585 * See make_bfloat() to check when most significant bit of f->exponent
586 * is set or not.
587 */
bfloat_mantissa(const struct bkey * k,struct bkey_float * f)588 static inline unsigned int bfloat_mantissa(const struct bkey *k,
589 struct bkey_float *f)
590 {
591 const uint64_t *p = &k->low - (f->exponent >> 6);
592
593 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
594 }
595
make_bfloat(struct bset_tree * t,unsigned int j)596 static void make_bfloat(struct bset_tree *t, unsigned int j)
597 {
598 struct bkey_float *f = &t->tree[j];
599 struct bkey *m = tree_to_bkey(t, j);
600 struct bkey *p = tree_to_prev_bkey(t, j);
601
602 struct bkey *l = is_power_of_2(j)
603 ? t->data->start
604 : tree_to_prev_bkey(t, j >> ffs(j));
605
606 struct bkey *r = is_power_of_2(j + 1)
607 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
608 : tree_to_bkey(t, j >> (ffz(j) + 1));
609
610 BUG_ON(m < l || m > r);
611 BUG_ON(bkey_next(p) != m);
612
613 /*
614 * If l and r have different KEY_INODE values (different backing
615 * device), f->exponent records how many least significant bits
616 * are different in KEY_INODE values and sets most significant
617 * bits to 1 (by +64).
618 * If l and r have same KEY_INODE value, f->exponent records
619 * how many different bits in least significant bits of bkey->low.
620 * See bfloat_mantiss() how the most significant bit of
621 * f->exponent is used to calculate bfloat mantissa value.
622 */
623 if (KEY_INODE(l) != KEY_INODE(r))
624 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
625 else
626 f->exponent = fls64(r->low ^ l->low);
627
628 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
629
630 /*
631 * Setting f->exponent = 127 flags this node as failed, and causes the
632 * lookup code to fall back to comparing against the original key.
633 */
634
635 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
636 f->mantissa = bfloat_mantissa(m, f) - 1;
637 else
638 f->exponent = 127;
639 }
640
bset_alloc_tree(struct btree_keys * b,struct bset_tree * t)641 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
642 {
643 if (t != b->set) {
644 unsigned int j = roundup(t[-1].size,
645 64 / sizeof(struct bkey_float));
646
647 t->tree = t[-1].tree + j;
648 t->prev = t[-1].prev + j;
649 }
650
651 while (t < b->set + MAX_BSETS)
652 t++->size = 0;
653 }
654
bch_bset_build_unwritten_tree(struct btree_keys * b)655 static void bch_bset_build_unwritten_tree(struct btree_keys *b)
656 {
657 struct bset_tree *t = bset_tree_last(b);
658
659 BUG_ON(b->last_set_unwritten);
660 b->last_set_unwritten = 1;
661
662 bset_alloc_tree(b, t);
663
664 if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
665 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
666 t->size = 1;
667 }
668 }
669
bch_bset_init_next(struct btree_keys * b,struct bset * i,uint64_t magic)670 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
671 {
672 if (i != b->set->data) {
673 b->set[++b->nsets].data = i;
674 i->seq = b->set->data->seq;
675 } else
676 get_random_bytes(&i->seq, sizeof(uint64_t));
677
678 i->magic = magic;
679 i->version = 0;
680 i->keys = 0;
681
682 bch_bset_build_unwritten_tree(b);
683 }
684 EXPORT_SYMBOL(bch_bset_init_next);
685
686 /*
687 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
688 * accelerate bkey search in a btree node (pointed by bset_tree->data in
689 * memory). After search in the auxiliar tree by calling bset_search_tree(),
690 * a struct bset_search_iter is returned which indicates range [l, r] from
691 * bset_tree->data where the searching bkey might be inside. Then a followed
692 * linear comparison does the exact search, see __bch_bset_search() for how
693 * the auxiliary tree is used.
694 */
bch_bset_build_written_tree(struct btree_keys * b)695 void bch_bset_build_written_tree(struct btree_keys *b)
696 {
697 struct bset_tree *t = bset_tree_last(b);
698 struct bkey *prev = NULL, *k = t->data->start;
699 unsigned int j, cacheline = 1;
700
701 b->last_set_unwritten = 0;
702
703 bset_alloc_tree(b, t);
704
705 t->size = min_t(unsigned int,
706 bkey_to_cacheline(t, bset_bkey_last(t->data)),
707 b->set->tree + btree_keys_cachelines(b) - t->tree);
708
709 if (t->size < 2) {
710 t->size = 0;
711 return;
712 }
713
714 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
715
716 /* First we figure out where the first key in each cacheline is */
717 for (j = inorder_next(0, t->size);
718 j;
719 j = inorder_next(j, t->size)) {
720 while (bkey_to_cacheline(t, k) < cacheline)
721 prev = k, k = bkey_next(k);
722
723 t->prev[j] = bkey_u64s(prev);
724 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
725 }
726
727 while (bkey_next(k) != bset_bkey_last(t->data))
728 k = bkey_next(k);
729
730 t->end = *k;
731
732 /* Then we build the tree */
733 for (j = inorder_next(0, t->size);
734 j;
735 j = inorder_next(j, t->size))
736 make_bfloat(t, j);
737 }
738 EXPORT_SYMBOL(bch_bset_build_written_tree);
739
740 /* Insert */
741
bch_bset_fix_invalidated_key(struct btree_keys * b,struct bkey * k)742 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
743 {
744 struct bset_tree *t;
745 unsigned int inorder, j = 1;
746
747 for (t = b->set; t <= bset_tree_last(b); t++)
748 if (k < bset_bkey_last(t->data))
749 goto found_set;
750
751 BUG();
752 found_set:
753 if (!t->size || !bset_written(b, t))
754 return;
755
756 inorder = bkey_to_cacheline(t, k);
757
758 if (k == t->data->start)
759 goto fix_left;
760
761 if (bkey_next(k) == bset_bkey_last(t->data)) {
762 t->end = *k;
763 goto fix_right;
764 }
765
766 j = inorder_to_tree(inorder, t);
767
768 if (j &&
769 j < t->size &&
770 k == tree_to_bkey(t, j))
771 fix_left: do {
772 make_bfloat(t, j);
773 j = j * 2;
774 } while (j < t->size);
775
776 j = inorder_to_tree(inorder + 1, t);
777
778 if (j &&
779 j < t->size &&
780 k == tree_to_prev_bkey(t, j))
781 fix_right: do {
782 make_bfloat(t, j);
783 j = j * 2 + 1;
784 } while (j < t->size);
785 }
786 EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
787
bch_bset_fix_lookup_table(struct btree_keys * b,struct bset_tree * t,struct bkey * k)788 static void bch_bset_fix_lookup_table(struct btree_keys *b,
789 struct bset_tree *t,
790 struct bkey *k)
791 {
792 unsigned int shift = bkey_u64s(k);
793 unsigned int j = bkey_to_cacheline(t, k);
794
795 /* We're getting called from btree_split() or btree_gc, just bail out */
796 if (!t->size)
797 return;
798
799 /*
800 * k is the key we just inserted; we need to find the entry in the
801 * lookup table for the first key that is strictly greater than k:
802 * it's either k's cacheline or the next one
803 */
804 while (j < t->size &&
805 table_to_bkey(t, j) <= k)
806 j++;
807
808 /*
809 * Adjust all the lookup table entries, and find a new key for any that
810 * have gotten too big
811 */
812 for (; j < t->size; j++) {
813 t->prev[j] += shift;
814
815 if (t->prev[j] > 7) {
816 k = table_to_bkey(t, j - 1);
817
818 while (k < cacheline_to_bkey(t, j, 0))
819 k = bkey_next(k);
820
821 t->prev[j] = bkey_to_cacheline_offset(t, j, k);
822 }
823 }
824
825 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
826 return;
827
828 /* Possibly add a new entry to the end of the lookup table */
829
830 for (k = table_to_bkey(t, t->size - 1);
831 k != bset_bkey_last(t->data);
832 k = bkey_next(k))
833 if (t->size == bkey_to_cacheline(t, k)) {
834 t->prev[t->size] =
835 bkey_to_cacheline_offset(t, t->size, k);
836 t->size++;
837 }
838 }
839
840 /*
841 * Tries to merge l and r: l should be lower than r
842 * Returns true if we were able to merge. If we did merge, l will be the merged
843 * key, r will be untouched.
844 */
bch_bkey_try_merge(struct btree_keys * b,struct bkey * l,struct bkey * r)845 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
846 {
847 if (!b->ops->key_merge)
848 return false;
849
850 /*
851 * Generic header checks
852 * Assumes left and right are in order
853 * Left and right must be exactly aligned
854 */
855 if (!bch_bkey_equal_header(l, r) ||
856 bkey_cmp(l, &START_KEY(r)))
857 return false;
858
859 return b->ops->key_merge(b, l, r);
860 }
861 EXPORT_SYMBOL(bch_bkey_try_merge);
862
bch_bset_insert(struct btree_keys * b,struct bkey * where,struct bkey * insert)863 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
864 struct bkey *insert)
865 {
866 struct bset_tree *t = bset_tree_last(b);
867
868 BUG_ON(!b->last_set_unwritten);
869 BUG_ON(bset_byte_offset(b, t->data) +
870 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
871 PAGE_SIZE << b->page_order);
872
873 memmove((uint64_t *) where + bkey_u64s(insert),
874 where,
875 (void *) bset_bkey_last(t->data) - (void *) where);
876
877 t->data->keys += bkey_u64s(insert);
878 bkey_copy(where, insert);
879 bch_bset_fix_lookup_table(b, t, where);
880 }
881 EXPORT_SYMBOL(bch_bset_insert);
882
bch_btree_insert_key(struct btree_keys * b,struct bkey * k,struct bkey * replace_key)883 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
884 struct bkey *replace_key)
885 {
886 unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
887 struct bset *i = bset_tree_last(b)->data;
888 struct bkey *m, *prev = NULL;
889 struct btree_iter iter;
890
891 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
892
893 m = bch_btree_iter_init(b, &iter, b->ops->is_extents
894 ? PRECEDING_KEY(&START_KEY(k))
895 : PRECEDING_KEY(k));
896
897 if (b->ops->insert_fixup(b, k, &iter, replace_key))
898 return status;
899
900 status = BTREE_INSERT_STATUS_INSERT;
901
902 while (m != bset_bkey_last(i) &&
903 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
904 prev = m, m = bkey_next(m);
905
906 /* prev is in the tree, if we merge we're done */
907 status = BTREE_INSERT_STATUS_BACK_MERGE;
908 if (prev &&
909 bch_bkey_try_merge(b, prev, k))
910 goto merged;
911 #if 0
912 status = BTREE_INSERT_STATUS_OVERWROTE;
913 if (m != bset_bkey_last(i) &&
914 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
915 goto copy;
916 #endif
917 status = BTREE_INSERT_STATUS_FRONT_MERGE;
918 if (m != bset_bkey_last(i) &&
919 bch_bkey_try_merge(b, k, m))
920 goto copy;
921
922 bch_bset_insert(b, m, k);
923 copy: bkey_copy(m, k);
924 merged:
925 return status;
926 }
927 EXPORT_SYMBOL(bch_btree_insert_key);
928
929 /* Lookup */
930
931 struct bset_search_iter {
932 struct bkey *l, *r;
933 };
934
bset_search_write_set(struct bset_tree * t,const struct bkey * search)935 static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
936 const struct bkey *search)
937 {
938 unsigned int li = 0, ri = t->size;
939
940 while (li + 1 != ri) {
941 unsigned int m = (li + ri) >> 1;
942
943 if (bkey_cmp(table_to_bkey(t, m), search) > 0)
944 ri = m;
945 else
946 li = m;
947 }
948
949 return (struct bset_search_iter) {
950 table_to_bkey(t, li),
951 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
952 };
953 }
954
bset_search_tree(struct bset_tree * t,const struct bkey * search)955 static struct bset_search_iter bset_search_tree(struct bset_tree *t,
956 const struct bkey *search)
957 {
958 struct bkey *l, *r;
959 struct bkey_float *f;
960 unsigned int inorder, j, n = 1;
961
962 do {
963 /*
964 * A bit trick here.
965 * If p < t->size, (int)(p - t->size) is a minus value and
966 * the most significant bit is set, right shifting 31 bits
967 * gets 1. If p >= t->size, the most significant bit is
968 * not set, right shifting 31 bits gets 0.
969 * So the following 2 lines equals to
970 * if (p >= t->size)
971 * p = 0;
972 * but a branch instruction is avoided.
973 */
974 unsigned int p = n << 4;
975
976 p &= ((int) (p - t->size)) >> 31;
977
978 prefetch(&t->tree[p]);
979
980 j = n;
981 f = &t->tree[j];
982
983 /*
984 * Similar bit trick, use subtract operation to avoid a branch
985 * instruction.
986 *
987 * n = (f->mantissa > bfloat_mantissa())
988 * ? j * 2
989 * : j * 2 + 1;
990 *
991 * We need to subtract 1 from f->mantissa for the sign bit trick
992 * to work - that's done in make_bfloat()
993 */
994 if (likely(f->exponent != 127))
995 n = j * 2 + (((unsigned int)
996 (f->mantissa -
997 bfloat_mantissa(search, f))) >> 31);
998 else
999 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
1000 ? j * 2
1001 : j * 2 + 1;
1002 } while (n < t->size);
1003
1004 inorder = to_inorder(j, t);
1005
1006 /*
1007 * n would have been the node we recursed to - the low bit tells us if
1008 * we recursed left or recursed right.
1009 */
1010 if (n & 1) {
1011 l = cacheline_to_bkey(t, inorder, f->m);
1012
1013 if (++inorder != t->size) {
1014 f = &t->tree[inorder_next(j, t->size)];
1015 r = cacheline_to_bkey(t, inorder, f->m);
1016 } else
1017 r = bset_bkey_last(t->data);
1018 } else {
1019 r = cacheline_to_bkey(t, inorder, f->m);
1020
1021 if (--inorder) {
1022 f = &t->tree[inorder_prev(j, t->size)];
1023 l = cacheline_to_bkey(t, inorder, f->m);
1024 } else
1025 l = t->data->start;
1026 }
1027
1028 return (struct bset_search_iter) {l, r};
1029 }
1030
__bch_bset_search(struct btree_keys * b,struct bset_tree * t,const struct bkey * search)1031 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1032 const struct bkey *search)
1033 {
1034 struct bset_search_iter i;
1035
1036 /*
1037 * First, we search for a cacheline, then lastly we do a linear search
1038 * within that cacheline.
1039 *
1040 * To search for the cacheline, there's three different possibilities:
1041 * * The set is too small to have a search tree, so we just do a linear
1042 * search over the whole set.
1043 * * The set is the one we're currently inserting into; keeping a full
1044 * auxiliary search tree up to date would be too expensive, so we
1045 * use a much simpler lookup table to do a binary search -
1046 * bset_search_write_set().
1047 * * Or we use the auxiliary search tree we constructed earlier -
1048 * bset_search_tree()
1049 */
1050
1051 if (unlikely(!t->size)) {
1052 i.l = t->data->start;
1053 i.r = bset_bkey_last(t->data);
1054 } else if (bset_written(b, t)) {
1055 /*
1056 * Each node in the auxiliary search tree covers a certain range
1057 * of bits, and keys above and below the set it covers might
1058 * differ outside those bits - so we have to special case the
1059 * start and end - handle that here:
1060 */
1061
1062 if (unlikely(bkey_cmp(search, &t->end) >= 0))
1063 return bset_bkey_last(t->data);
1064
1065 if (unlikely(bkey_cmp(search, t->data->start) < 0))
1066 return t->data->start;
1067
1068 i = bset_search_tree(t, search);
1069 } else {
1070 BUG_ON(!b->nsets &&
1071 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1072
1073 i = bset_search_write_set(t, search);
1074 }
1075
1076 if (btree_keys_expensive_checks(b)) {
1077 BUG_ON(bset_written(b, t) &&
1078 i.l != t->data->start &&
1079 bkey_cmp(tree_to_prev_bkey(t,
1080 inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1081 search) > 0);
1082
1083 BUG_ON(i.r != bset_bkey_last(t->data) &&
1084 bkey_cmp(i.r, search) <= 0);
1085 }
1086
1087 while (likely(i.l != i.r) &&
1088 bkey_cmp(i.l, search) <= 0)
1089 i.l = bkey_next(i.l);
1090
1091 return i.l;
1092 }
1093 EXPORT_SYMBOL(__bch_bset_search);
1094
1095 /* Btree iterator */
1096
1097 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1098 struct btree_iter_set);
1099
btree_iter_cmp(struct btree_iter_set l,struct btree_iter_set r)1100 static inline bool btree_iter_cmp(struct btree_iter_set l,
1101 struct btree_iter_set r)
1102 {
1103 return bkey_cmp(l.k, r.k) > 0;
1104 }
1105
btree_iter_end(struct btree_iter * iter)1106 static inline bool btree_iter_end(struct btree_iter *iter)
1107 {
1108 return !iter->used;
1109 }
1110
bch_btree_iter_push(struct btree_iter * iter,struct bkey * k,struct bkey * end)1111 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1112 struct bkey *end)
1113 {
1114 if (k != end)
1115 BUG_ON(!heap_add(iter,
1116 ((struct btree_iter_set) { k, end }),
1117 btree_iter_cmp));
1118 }
1119
__bch_btree_iter_init(struct btree_keys * b,struct btree_iter * iter,struct bkey * search,struct bset_tree * start)1120 static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1121 struct btree_iter *iter,
1122 struct bkey *search,
1123 struct bset_tree *start)
1124 {
1125 struct bkey *ret = NULL;
1126
1127 iter->size = ARRAY_SIZE(iter->data);
1128 iter->used = 0;
1129
1130 #ifdef CONFIG_BCACHE_DEBUG
1131 iter->b = b;
1132 #endif
1133
1134 for (; start <= bset_tree_last(b); start++) {
1135 ret = bch_bset_search(b, start, search);
1136 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1137 }
1138
1139 return ret;
1140 }
1141
bch_btree_iter_init(struct btree_keys * b,struct btree_iter * iter,struct bkey * search)1142 struct bkey *bch_btree_iter_init(struct btree_keys *b,
1143 struct btree_iter *iter,
1144 struct bkey *search)
1145 {
1146 return __bch_btree_iter_init(b, iter, search, b->set);
1147 }
1148 EXPORT_SYMBOL(bch_btree_iter_init);
1149
__bch_btree_iter_next(struct btree_iter * iter,btree_iter_cmp_fn * cmp)1150 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1151 btree_iter_cmp_fn *cmp)
1152 {
1153 struct btree_iter_set b __maybe_unused;
1154 struct bkey *ret = NULL;
1155
1156 if (!btree_iter_end(iter)) {
1157 bch_btree_iter_next_check(iter);
1158
1159 ret = iter->data->k;
1160 iter->data->k = bkey_next(iter->data->k);
1161
1162 if (iter->data->k > iter->data->end) {
1163 WARN_ONCE(1, "bset was corrupt!\n");
1164 iter->data->k = iter->data->end;
1165 }
1166
1167 if (iter->data->k == iter->data->end)
1168 heap_pop(iter, b, cmp);
1169 else
1170 heap_sift(iter, 0, cmp);
1171 }
1172
1173 return ret;
1174 }
1175
bch_btree_iter_next(struct btree_iter * iter)1176 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1177 {
1178 return __bch_btree_iter_next(iter, btree_iter_cmp);
1179
1180 }
1181 EXPORT_SYMBOL(bch_btree_iter_next);
1182
bch_btree_iter_next_filter(struct btree_iter * iter,struct btree_keys * b,ptr_filter_fn fn)1183 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1184 struct btree_keys *b, ptr_filter_fn fn)
1185 {
1186 struct bkey *ret;
1187
1188 do {
1189 ret = bch_btree_iter_next(iter);
1190 } while (ret && fn(b, ret));
1191
1192 return ret;
1193 }
1194
1195 /* Mergesort */
1196
bch_bset_sort_state_free(struct bset_sort_state * state)1197 void bch_bset_sort_state_free(struct bset_sort_state *state)
1198 {
1199 mempool_exit(&state->pool);
1200 }
1201
bch_bset_sort_state_init(struct bset_sort_state * state,unsigned int page_order)1202 int bch_bset_sort_state_init(struct bset_sort_state *state,
1203 unsigned int page_order)
1204 {
1205 spin_lock_init(&state->time.lock);
1206
1207 state->page_order = page_order;
1208 state->crit_factor = int_sqrt(1 << page_order);
1209
1210 return mempool_init_page_pool(&state->pool, 1, page_order);
1211 }
1212 EXPORT_SYMBOL(bch_bset_sort_state_init);
1213
btree_mergesort(struct btree_keys * b,struct bset * out,struct btree_iter * iter,bool fixup,bool remove_stale)1214 static void btree_mergesort(struct btree_keys *b, struct bset *out,
1215 struct btree_iter *iter,
1216 bool fixup, bool remove_stale)
1217 {
1218 int i;
1219 struct bkey *k, *last = NULL;
1220 BKEY_PADDED(k) tmp;
1221 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1222 ? bch_ptr_bad
1223 : bch_ptr_invalid;
1224
1225 /* Heapify the iterator, using our comparison function */
1226 for (i = iter->used / 2 - 1; i >= 0; --i)
1227 heap_sift(iter, i, b->ops->sort_cmp);
1228
1229 while (!btree_iter_end(iter)) {
1230 if (b->ops->sort_fixup && fixup)
1231 k = b->ops->sort_fixup(iter, &tmp.k);
1232 else
1233 k = NULL;
1234
1235 if (!k)
1236 k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1237
1238 if (bad(b, k))
1239 continue;
1240
1241 if (!last) {
1242 last = out->start;
1243 bkey_copy(last, k);
1244 } else if (!bch_bkey_try_merge(b, last, k)) {
1245 last = bkey_next(last);
1246 bkey_copy(last, k);
1247 }
1248 }
1249
1250 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1251
1252 pr_debug("sorted %i keys", out->keys);
1253 }
1254
__btree_sort(struct btree_keys * b,struct btree_iter * iter,unsigned int start,unsigned int order,bool fixup,struct bset_sort_state * state)1255 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1256 unsigned int start, unsigned int order, bool fixup,
1257 struct bset_sort_state *state)
1258 {
1259 uint64_t start_time;
1260 bool used_mempool = false;
1261 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1262 order);
1263 if (!out) {
1264 struct page *outp;
1265
1266 BUG_ON(order > state->page_order);
1267
1268 outp = mempool_alloc(&state->pool, GFP_NOIO);
1269 out = page_address(outp);
1270 used_mempool = true;
1271 order = state->page_order;
1272 }
1273
1274 start_time = local_clock();
1275
1276 btree_mergesort(b, out, iter, fixup, false);
1277 b->nsets = start;
1278
1279 if (!start && order == b->page_order) {
1280 /*
1281 * Our temporary buffer is the same size as the btree node's
1282 * buffer, we can just swap buffers instead of doing a big
1283 * memcpy()
1284 */
1285
1286 out->magic = b->set->data->magic;
1287 out->seq = b->set->data->seq;
1288 out->version = b->set->data->version;
1289 swap(out, b->set->data);
1290 } else {
1291 b->set[start].data->keys = out->keys;
1292 memcpy(b->set[start].data->start, out->start,
1293 (void *) bset_bkey_last(out) - (void *) out->start);
1294 }
1295
1296 if (used_mempool)
1297 mempool_free(virt_to_page(out), &state->pool);
1298 else
1299 free_pages((unsigned long) out, order);
1300
1301 bch_bset_build_written_tree(b);
1302
1303 if (!start)
1304 bch_time_stats_update(&state->time, start_time);
1305 }
1306
bch_btree_sort_partial(struct btree_keys * b,unsigned int start,struct bset_sort_state * state)1307 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1308 struct bset_sort_state *state)
1309 {
1310 size_t order = b->page_order, keys = 0;
1311 struct btree_iter iter;
1312 int oldsize = bch_count_data(b);
1313
1314 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1315
1316 if (start) {
1317 unsigned int i;
1318
1319 for (i = start; i <= b->nsets; i++)
1320 keys += b->set[i].data->keys;
1321
1322 order = get_order(__set_bytes(b->set->data, keys));
1323 }
1324
1325 __btree_sort(b, &iter, start, order, false, state);
1326
1327 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1328 }
1329 EXPORT_SYMBOL(bch_btree_sort_partial);
1330
bch_btree_sort_and_fix_extents(struct btree_keys * b,struct btree_iter * iter,struct bset_sort_state * state)1331 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1332 struct btree_iter *iter,
1333 struct bset_sort_state *state)
1334 {
1335 __btree_sort(b, iter, 0, b->page_order, true, state);
1336 }
1337
bch_btree_sort_into(struct btree_keys * b,struct btree_keys * new,struct bset_sort_state * state)1338 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1339 struct bset_sort_state *state)
1340 {
1341 uint64_t start_time = local_clock();
1342 struct btree_iter iter;
1343
1344 bch_btree_iter_init(b, &iter, NULL);
1345
1346 btree_mergesort(b, new->set->data, &iter, false, true);
1347
1348 bch_time_stats_update(&state->time, start_time);
1349
1350 new->set->size = 0; // XXX: why?
1351 }
1352
1353 #define SORT_CRIT (4096 / sizeof(uint64_t))
1354
bch_btree_sort_lazy(struct btree_keys * b,struct bset_sort_state * state)1355 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1356 {
1357 unsigned int crit = SORT_CRIT;
1358 int i;
1359
1360 /* Don't sort if nothing to do */
1361 if (!b->nsets)
1362 goto out;
1363
1364 for (i = b->nsets - 1; i >= 0; --i) {
1365 crit *= state->crit_factor;
1366
1367 if (b->set[i].data->keys < crit) {
1368 bch_btree_sort_partial(b, i, state);
1369 return;
1370 }
1371 }
1372
1373 /* Sort if we'd overflow */
1374 if (b->nsets + 1 == MAX_BSETS) {
1375 bch_btree_sort(b, state);
1376 return;
1377 }
1378
1379 out:
1380 bch_bset_build_written_tree(b);
1381 }
1382 EXPORT_SYMBOL(bch_btree_sort_lazy);
1383
bch_btree_keys_stats(struct btree_keys * b,struct bset_stats * stats)1384 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1385 {
1386 unsigned int i;
1387
1388 for (i = 0; i <= b->nsets; i++) {
1389 struct bset_tree *t = &b->set[i];
1390 size_t bytes = t->data->keys * sizeof(uint64_t);
1391 size_t j;
1392
1393 if (bset_written(b, t)) {
1394 stats->sets_written++;
1395 stats->bytes_written += bytes;
1396
1397 stats->floats += t->size - 1;
1398
1399 for (j = 1; j < t->size; j++)
1400 if (t->tree[j].exponent == 127)
1401 stats->failed++;
1402 } else {
1403 stats->sets_unwritten++;
1404 stats->bytes_unwritten += bytes;
1405 }
1406 }
1407 }
1408