1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/genhd.h>
22 #include <linux/idr.h>
23 #include <linux/kthread.h>
24 #include <linux/workqueue.h>
25 #include <linux/module.h>
26 #include <linux/random.h>
27 #include <linux/reboot.h>
28 #include <linux/sysfs.h>
29
30 unsigned int bch_cutoff_writeback;
31 unsigned int bch_cutoff_writeback_sync;
32
33 static const char bcache_magic[] = {
34 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
35 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
36 };
37
38 static const char invalid_uuid[] = {
39 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
40 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
41 };
42
43 static struct kobject *bcache_kobj;
44 struct mutex bch_register_lock;
45 bool bcache_is_reboot;
46 LIST_HEAD(bch_cache_sets);
47 static LIST_HEAD(uncached_devices);
48
49 static int bcache_major;
50 static DEFINE_IDA(bcache_device_idx);
51 static wait_queue_head_t unregister_wait;
52 struct workqueue_struct *bcache_wq;
53 struct workqueue_struct *bch_flush_wq;
54 struct workqueue_struct *bch_journal_wq;
55
56
57 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
58 /* limitation of partitions number on single bcache device */
59 #define BCACHE_MINORS 128
60 /* limitation of bcache devices number on single system */
61 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
62
63 /* Superblock */
64
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)65 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
66 {
67 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
68
69 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
70 if (bch_has_feature_large_bucket(sb)) {
71 unsigned int max, order;
72
73 max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
74 order = le16_to_cpu(s->bucket_size);
75 /*
76 * bcache tool will make sure the overflow won't
77 * happen, an error message here is enough.
78 */
79 if (order > max)
80 pr_err("Bucket size (1 << %u) overflows\n",
81 order);
82 bucket_size = 1 << order;
83 } else if (bch_has_feature_obso_large_bucket(sb)) {
84 bucket_size +=
85 le16_to_cpu(s->obso_bucket_size_hi) << 16;
86 }
87 }
88
89 return bucket_size;
90 }
91
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)92 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
93 struct cache_sb_disk *s)
94 {
95 const char *err;
96 unsigned int i;
97
98 sb->first_bucket= le16_to_cpu(s->first_bucket);
99 sb->nbuckets = le64_to_cpu(s->nbuckets);
100 sb->bucket_size = get_bucket_size(sb, s);
101
102 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
103 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
104
105 err = "Too many journal buckets";
106 if (sb->keys > SB_JOURNAL_BUCKETS)
107 goto err;
108
109 err = "Too many buckets";
110 if (sb->nbuckets > LONG_MAX)
111 goto err;
112
113 err = "Not enough buckets";
114 if (sb->nbuckets < 1 << 7)
115 goto err;
116
117 err = "Bad block size (not power of 2)";
118 if (!is_power_of_2(sb->block_size))
119 goto err;
120
121 err = "Bad block size (larger than page size)";
122 if (sb->block_size > PAGE_SECTORS)
123 goto err;
124
125 err = "Bad bucket size (not power of 2)";
126 if (!is_power_of_2(sb->bucket_size))
127 goto err;
128
129 err = "Bad bucket size (smaller than page size)";
130 if (sb->bucket_size < PAGE_SECTORS)
131 goto err;
132
133 err = "Invalid superblock: device too small";
134 if (get_capacity(bdev->bd_disk) <
135 sb->bucket_size * sb->nbuckets)
136 goto err;
137
138 err = "Bad UUID";
139 if (bch_is_zero(sb->set_uuid, 16))
140 goto err;
141
142 err = "Bad cache device number in set";
143 if (!sb->nr_in_set ||
144 sb->nr_in_set <= sb->nr_this_dev ||
145 sb->nr_in_set > MAX_CACHES_PER_SET)
146 goto err;
147
148 err = "Journal buckets not sequential";
149 for (i = 0; i < sb->keys; i++)
150 if (sb->d[i] != sb->first_bucket + i)
151 goto err;
152
153 err = "Too many journal buckets";
154 if (sb->first_bucket + sb->keys > sb->nbuckets)
155 goto err;
156
157 err = "Invalid superblock: first bucket comes before end of super";
158 if (sb->first_bucket * sb->bucket_size < 16)
159 goto err;
160
161 err = NULL;
162 err:
163 return err;
164 }
165
166
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)167 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
168 struct cache_sb_disk **res)
169 {
170 const char *err;
171 struct cache_sb_disk *s;
172 struct page *page;
173 unsigned int i;
174
175 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
176 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
177 if (IS_ERR(page))
178 return "IO error";
179 s = page_address(page) + offset_in_page(SB_OFFSET);
180
181 sb->offset = le64_to_cpu(s->offset);
182 sb->version = le64_to_cpu(s->version);
183
184 memcpy(sb->magic, s->magic, 16);
185 memcpy(sb->uuid, s->uuid, 16);
186 memcpy(sb->set_uuid, s->set_uuid, 16);
187 memcpy(sb->label, s->label, SB_LABEL_SIZE);
188
189 sb->flags = le64_to_cpu(s->flags);
190 sb->seq = le64_to_cpu(s->seq);
191 sb->last_mount = le32_to_cpu(s->last_mount);
192 sb->keys = le16_to_cpu(s->keys);
193
194 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
195 sb->d[i] = le64_to_cpu(s->d[i]);
196
197 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
198 sb->version, sb->flags, sb->seq, sb->keys);
199
200 err = "Not a bcache superblock (bad offset)";
201 if (sb->offset != SB_SECTOR)
202 goto err;
203
204 err = "Not a bcache superblock (bad magic)";
205 if (memcmp(sb->magic, bcache_magic, 16))
206 goto err;
207
208 err = "Bad checksum";
209 if (s->csum != csum_set(s))
210 goto err;
211
212 err = "Bad UUID";
213 if (bch_is_zero(sb->uuid, 16))
214 goto err;
215
216 sb->block_size = le16_to_cpu(s->block_size);
217
218 err = "Superblock block size smaller than device block size";
219 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
220 goto err;
221
222 switch (sb->version) {
223 case BCACHE_SB_VERSION_BDEV:
224 sb->data_offset = BDEV_DATA_START_DEFAULT;
225 break;
226 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
227 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
228 sb->data_offset = le64_to_cpu(s->data_offset);
229
230 err = "Bad data offset";
231 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
232 goto err;
233
234 break;
235 case BCACHE_SB_VERSION_CDEV:
236 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
237 err = read_super_common(sb, bdev, s);
238 if (err)
239 goto err;
240 break;
241 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
242 /*
243 * Feature bits are needed in read_super_common(),
244 * convert them firstly.
245 */
246 sb->feature_compat = le64_to_cpu(s->feature_compat);
247 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
248 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
249
250 /* Check incompatible features */
251 err = "Unsupported compatible feature found";
252 if (bch_has_unknown_compat_features(sb))
253 goto err;
254
255 err = "Unsupported read-only compatible feature found";
256 if (bch_has_unknown_ro_compat_features(sb))
257 goto err;
258
259 err = "Unsupported incompatible feature found";
260 if (bch_has_unknown_incompat_features(sb))
261 goto err;
262
263 err = read_super_common(sb, bdev, s);
264 if (err)
265 goto err;
266 break;
267 default:
268 err = "Unsupported superblock version";
269 goto err;
270 }
271
272 sb->last_mount = (u32)ktime_get_real_seconds();
273 *res = s;
274 return NULL;
275 err:
276 put_page(page);
277 return err;
278 }
279
write_bdev_super_endio(struct bio * bio)280 static void write_bdev_super_endio(struct bio *bio)
281 {
282 struct cached_dev *dc = bio->bi_private;
283
284 if (bio->bi_status)
285 bch_count_backing_io_errors(dc, bio);
286
287 closure_put(&dc->sb_write);
288 }
289
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)290 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
291 struct bio *bio)
292 {
293 unsigned int i;
294
295 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
296 bio->bi_iter.bi_sector = SB_SECTOR;
297 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
298 offset_in_page(out));
299
300 out->offset = cpu_to_le64(sb->offset);
301
302 memcpy(out->uuid, sb->uuid, 16);
303 memcpy(out->set_uuid, sb->set_uuid, 16);
304 memcpy(out->label, sb->label, SB_LABEL_SIZE);
305
306 out->flags = cpu_to_le64(sb->flags);
307 out->seq = cpu_to_le64(sb->seq);
308
309 out->last_mount = cpu_to_le32(sb->last_mount);
310 out->first_bucket = cpu_to_le16(sb->first_bucket);
311 out->keys = cpu_to_le16(sb->keys);
312
313 for (i = 0; i < sb->keys; i++)
314 out->d[i] = cpu_to_le64(sb->d[i]);
315
316 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
317 out->feature_compat = cpu_to_le64(sb->feature_compat);
318 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
319 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
320 }
321
322 out->version = cpu_to_le64(sb->version);
323 out->csum = csum_set(out);
324
325 pr_debug("ver %llu, flags %llu, seq %llu\n",
326 sb->version, sb->flags, sb->seq);
327
328 submit_bio(bio);
329 }
330
bch_write_bdev_super_unlock(struct closure * cl)331 static void bch_write_bdev_super_unlock(struct closure *cl)
332 {
333 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
334
335 up(&dc->sb_write_mutex);
336 }
337
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)338 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
339 {
340 struct closure *cl = &dc->sb_write;
341 struct bio *bio = &dc->sb_bio;
342
343 down(&dc->sb_write_mutex);
344 closure_init(cl, parent);
345
346 bio_init(bio, dc->sb_bv, 1);
347 bio_set_dev(bio, dc->bdev);
348 bio->bi_end_io = write_bdev_super_endio;
349 bio->bi_private = dc;
350
351 closure_get(cl);
352 /* I/O request sent to backing device */
353 __write_super(&dc->sb, dc->sb_disk, bio);
354
355 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
356 }
357
write_super_endio(struct bio * bio)358 static void write_super_endio(struct bio *bio)
359 {
360 struct cache *ca = bio->bi_private;
361
362 /* is_read = 0 */
363 bch_count_io_errors(ca, bio->bi_status, 0,
364 "writing superblock");
365 closure_put(&ca->set->sb_write);
366 }
367
bcache_write_super_unlock(struct closure * cl)368 static void bcache_write_super_unlock(struct closure *cl)
369 {
370 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
371
372 up(&c->sb_write_mutex);
373 }
374
bcache_write_super(struct cache_set * c)375 void bcache_write_super(struct cache_set *c)
376 {
377 struct closure *cl = &c->sb_write;
378 struct cache *ca = c->cache;
379 struct bio *bio = &ca->sb_bio;
380 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
381
382 down(&c->sb_write_mutex);
383 closure_init(cl, &c->cl);
384
385 ca->sb.seq++;
386
387 if (ca->sb.version < version)
388 ca->sb.version = version;
389
390 bio_init(bio, ca->sb_bv, 1);
391 bio_set_dev(bio, ca->bdev);
392 bio->bi_end_io = write_super_endio;
393 bio->bi_private = ca;
394
395 closure_get(cl);
396 __write_super(&ca->sb, ca->sb_disk, bio);
397
398 closure_return_with_destructor(cl, bcache_write_super_unlock);
399 }
400
401 /* UUID io */
402
uuid_endio(struct bio * bio)403 static void uuid_endio(struct bio *bio)
404 {
405 struct closure *cl = bio->bi_private;
406 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
407
408 cache_set_err_on(bio->bi_status, c, "accessing uuids");
409 bch_bbio_free(bio, c);
410 closure_put(cl);
411 }
412
uuid_io_unlock(struct closure * cl)413 static void uuid_io_unlock(struct closure *cl)
414 {
415 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
416
417 up(&c->uuid_write_mutex);
418 }
419
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)420 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
421 struct bkey *k, struct closure *parent)
422 {
423 struct closure *cl = &c->uuid_write;
424 struct uuid_entry *u;
425 unsigned int i;
426 char buf[80];
427
428 BUG_ON(!parent);
429 down(&c->uuid_write_mutex);
430 closure_init(cl, parent);
431
432 for (i = 0; i < KEY_PTRS(k); i++) {
433 struct bio *bio = bch_bbio_alloc(c);
434
435 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
436 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
437
438 bio->bi_end_io = uuid_endio;
439 bio->bi_private = cl;
440 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
441 bch_bio_map(bio, c->uuids);
442
443 bch_submit_bbio(bio, c, k, i);
444
445 if (op != REQ_OP_WRITE)
446 break;
447 }
448
449 bch_extent_to_text(buf, sizeof(buf), k);
450 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
451
452 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
453 if (!bch_is_zero(u->uuid, 16))
454 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
455 u - c->uuids, u->uuid, u->label,
456 u->first_reg, u->last_reg, u->invalidated);
457
458 closure_return_with_destructor(cl, uuid_io_unlock);
459 }
460
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)461 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
462 {
463 struct bkey *k = &j->uuid_bucket;
464
465 if (__bch_btree_ptr_invalid(c, k))
466 return "bad uuid pointer";
467
468 bkey_copy(&c->uuid_bucket, k);
469 uuid_io(c, REQ_OP_READ, 0, k, cl);
470
471 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
472 struct uuid_entry_v0 *u0 = (void *) c->uuids;
473 struct uuid_entry *u1 = (void *) c->uuids;
474 int i;
475
476 closure_sync(cl);
477
478 /*
479 * Since the new uuid entry is bigger than the old, we have to
480 * convert starting at the highest memory address and work down
481 * in order to do it in place
482 */
483
484 for (i = c->nr_uuids - 1;
485 i >= 0;
486 --i) {
487 memcpy(u1[i].uuid, u0[i].uuid, 16);
488 memcpy(u1[i].label, u0[i].label, 32);
489
490 u1[i].first_reg = u0[i].first_reg;
491 u1[i].last_reg = u0[i].last_reg;
492 u1[i].invalidated = u0[i].invalidated;
493
494 u1[i].flags = 0;
495 u1[i].sectors = 0;
496 }
497 }
498
499 return NULL;
500 }
501
__uuid_write(struct cache_set * c)502 static int __uuid_write(struct cache_set *c)
503 {
504 BKEY_PADDED(key) k;
505 struct closure cl;
506 struct cache *ca = c->cache;
507 unsigned int size;
508
509 closure_init_stack(&cl);
510 lockdep_assert_held(&bch_register_lock);
511
512 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
513 return 1;
514
515 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
516 SET_KEY_SIZE(&k.key, size);
517 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
518 closure_sync(&cl);
519
520 /* Only one bucket used for uuid write */
521 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
522
523 bkey_copy(&c->uuid_bucket, &k.key);
524 bkey_put(c, &k.key);
525 return 0;
526 }
527
bch_uuid_write(struct cache_set * c)528 int bch_uuid_write(struct cache_set *c)
529 {
530 int ret = __uuid_write(c);
531
532 if (!ret)
533 bch_journal_meta(c, NULL);
534
535 return ret;
536 }
537
uuid_find(struct cache_set * c,const char * uuid)538 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
539 {
540 struct uuid_entry *u;
541
542 for (u = c->uuids;
543 u < c->uuids + c->nr_uuids; u++)
544 if (!memcmp(u->uuid, uuid, 16))
545 return u;
546
547 return NULL;
548 }
549
uuid_find_empty(struct cache_set * c)550 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
551 {
552 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
553
554 return uuid_find(c, zero_uuid);
555 }
556
557 /*
558 * Bucket priorities/gens:
559 *
560 * For each bucket, we store on disk its
561 * 8 bit gen
562 * 16 bit priority
563 *
564 * See alloc.c for an explanation of the gen. The priority is used to implement
565 * lru (and in the future other) cache replacement policies; for most purposes
566 * it's just an opaque integer.
567 *
568 * The gens and the priorities don't have a whole lot to do with each other, and
569 * it's actually the gens that must be written out at specific times - it's no
570 * big deal if the priorities don't get written, if we lose them we just reuse
571 * buckets in suboptimal order.
572 *
573 * On disk they're stored in a packed array, and in as many buckets are required
574 * to fit them all. The buckets we use to store them form a list; the journal
575 * header points to the first bucket, the first bucket points to the second
576 * bucket, et cetera.
577 *
578 * This code is used by the allocation code; periodically (whenever it runs out
579 * of buckets to allocate from) the allocation code will invalidate some
580 * buckets, but it can't use those buckets until their new gens are safely on
581 * disk.
582 */
583
prio_endio(struct bio * bio)584 static void prio_endio(struct bio *bio)
585 {
586 struct cache *ca = bio->bi_private;
587
588 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
589 bch_bbio_free(bio, ca->set);
590 closure_put(&ca->prio);
591 }
592
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)593 static void prio_io(struct cache *ca, uint64_t bucket, int op,
594 unsigned long op_flags)
595 {
596 struct closure *cl = &ca->prio;
597 struct bio *bio = bch_bbio_alloc(ca->set);
598
599 closure_init_stack(cl);
600
601 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
602 bio_set_dev(bio, ca->bdev);
603 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
604
605 bio->bi_end_io = prio_endio;
606 bio->bi_private = ca;
607 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
608 bch_bio_map(bio, ca->disk_buckets);
609
610 closure_bio_submit(ca->set, bio, &ca->prio);
611 closure_sync(cl);
612 }
613
bch_prio_write(struct cache * ca,bool wait)614 int bch_prio_write(struct cache *ca, bool wait)
615 {
616 int i;
617 struct bucket *b;
618 struct closure cl;
619
620 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
621 fifo_used(&ca->free[RESERVE_PRIO]),
622 fifo_used(&ca->free[RESERVE_NONE]),
623 fifo_used(&ca->free_inc));
624
625 /*
626 * Pre-check if there are enough free buckets. In the non-blocking
627 * scenario it's better to fail early rather than starting to allocate
628 * buckets and do a cleanup later in case of failure.
629 */
630 if (!wait) {
631 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
632 fifo_used(&ca->free[RESERVE_NONE]);
633 if (prio_buckets(ca) > avail)
634 return -ENOMEM;
635 }
636
637 closure_init_stack(&cl);
638
639 lockdep_assert_held(&ca->set->bucket_lock);
640
641 ca->disk_buckets->seq++;
642
643 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
644 &ca->meta_sectors_written);
645
646 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
647 long bucket;
648 struct prio_set *p = ca->disk_buckets;
649 struct bucket_disk *d = p->data;
650 struct bucket_disk *end = d + prios_per_bucket(ca);
651
652 for (b = ca->buckets + i * prios_per_bucket(ca);
653 b < ca->buckets + ca->sb.nbuckets && d < end;
654 b++, d++) {
655 d->prio = cpu_to_le16(b->prio);
656 d->gen = b->gen;
657 }
658
659 p->next_bucket = ca->prio_buckets[i + 1];
660 p->magic = pset_magic(&ca->sb);
661 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
662
663 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
664 BUG_ON(bucket == -1);
665
666 mutex_unlock(&ca->set->bucket_lock);
667 prio_io(ca, bucket, REQ_OP_WRITE, 0);
668 mutex_lock(&ca->set->bucket_lock);
669
670 ca->prio_buckets[i] = bucket;
671 atomic_dec_bug(&ca->buckets[bucket].pin);
672 }
673
674 mutex_unlock(&ca->set->bucket_lock);
675
676 bch_journal_meta(ca->set, &cl);
677 closure_sync(&cl);
678
679 mutex_lock(&ca->set->bucket_lock);
680
681 /*
682 * Don't want the old priorities to get garbage collected until after we
683 * finish writing the new ones, and they're journalled
684 */
685 for (i = 0; i < prio_buckets(ca); i++) {
686 if (ca->prio_last_buckets[i])
687 __bch_bucket_free(ca,
688 &ca->buckets[ca->prio_last_buckets[i]]);
689
690 ca->prio_last_buckets[i] = ca->prio_buckets[i];
691 }
692 return 0;
693 }
694
prio_read(struct cache * ca,uint64_t bucket)695 static int prio_read(struct cache *ca, uint64_t bucket)
696 {
697 struct prio_set *p = ca->disk_buckets;
698 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
699 struct bucket *b;
700 unsigned int bucket_nr = 0;
701 int ret = -EIO;
702
703 for (b = ca->buckets;
704 b < ca->buckets + ca->sb.nbuckets;
705 b++, d++) {
706 if (d == end) {
707 ca->prio_buckets[bucket_nr] = bucket;
708 ca->prio_last_buckets[bucket_nr] = bucket;
709 bucket_nr++;
710
711 prio_io(ca, bucket, REQ_OP_READ, 0);
712
713 if (p->csum !=
714 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
715 pr_warn("bad csum reading priorities\n");
716 goto out;
717 }
718
719 if (p->magic != pset_magic(&ca->sb)) {
720 pr_warn("bad magic reading priorities\n");
721 goto out;
722 }
723
724 bucket = p->next_bucket;
725 d = p->data;
726 }
727
728 b->prio = le16_to_cpu(d->prio);
729 b->gen = b->last_gc = d->gen;
730 }
731
732 ret = 0;
733 out:
734 return ret;
735 }
736
737 /* Bcache device */
738
open_dev(struct block_device * b,fmode_t mode)739 static int open_dev(struct block_device *b, fmode_t mode)
740 {
741 struct bcache_device *d = b->bd_disk->private_data;
742
743 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
744 return -ENXIO;
745
746 closure_get(&d->cl);
747 return 0;
748 }
749
release_dev(struct gendisk * b,fmode_t mode)750 static void release_dev(struct gendisk *b, fmode_t mode)
751 {
752 struct bcache_device *d = b->private_data;
753
754 closure_put(&d->cl);
755 }
756
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)757 static int ioctl_dev(struct block_device *b, fmode_t mode,
758 unsigned int cmd, unsigned long arg)
759 {
760 struct bcache_device *d = b->bd_disk->private_data;
761
762 return d->ioctl(d, mode, cmd, arg);
763 }
764
765 static const struct block_device_operations bcache_cached_ops = {
766 .submit_bio = cached_dev_submit_bio,
767 .open = open_dev,
768 .release = release_dev,
769 .ioctl = ioctl_dev,
770 .owner = THIS_MODULE,
771 };
772
773 static const struct block_device_operations bcache_flash_ops = {
774 .submit_bio = flash_dev_submit_bio,
775 .open = open_dev,
776 .release = release_dev,
777 .ioctl = ioctl_dev,
778 .owner = THIS_MODULE,
779 };
780
bcache_device_stop(struct bcache_device * d)781 void bcache_device_stop(struct bcache_device *d)
782 {
783 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
784 /*
785 * closure_fn set to
786 * - cached device: cached_dev_flush()
787 * - flash dev: flash_dev_flush()
788 */
789 closure_queue(&d->cl);
790 }
791
bcache_device_unlink(struct bcache_device * d)792 static void bcache_device_unlink(struct bcache_device *d)
793 {
794 lockdep_assert_held(&bch_register_lock);
795
796 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
797 struct cache *ca = d->c->cache;
798
799 sysfs_remove_link(&d->c->kobj, d->name);
800 sysfs_remove_link(&d->kobj, "cache");
801
802 bd_unlink_disk_holder(ca->bdev, d->disk);
803 }
804 }
805
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)806 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
807 const char *name)
808 {
809 struct cache *ca = c->cache;
810 int ret;
811
812 bd_link_disk_holder(ca->bdev, d->disk);
813
814 snprintf(d->name, BCACHEDEVNAME_SIZE,
815 "%s%u", name, d->id);
816
817 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
818 if (ret < 0)
819 pr_err("Couldn't create device -> cache set symlink\n");
820
821 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
822 if (ret < 0)
823 pr_err("Couldn't create cache set -> device symlink\n");
824
825 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
826 }
827
bcache_device_detach(struct bcache_device * d)828 static void bcache_device_detach(struct bcache_device *d)
829 {
830 lockdep_assert_held(&bch_register_lock);
831
832 atomic_dec(&d->c->attached_dev_nr);
833
834 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
835 struct uuid_entry *u = d->c->uuids + d->id;
836
837 SET_UUID_FLASH_ONLY(u, 0);
838 memcpy(u->uuid, invalid_uuid, 16);
839 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
840 bch_uuid_write(d->c);
841 }
842
843 bcache_device_unlink(d);
844
845 d->c->devices[d->id] = NULL;
846 closure_put(&d->c->caching);
847 d->c = NULL;
848 }
849
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)850 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
851 unsigned int id)
852 {
853 d->id = id;
854 d->c = c;
855 c->devices[id] = d;
856
857 if (id >= c->devices_max_used)
858 c->devices_max_used = id + 1;
859
860 closure_get(&c->caching);
861 }
862
first_minor_to_idx(int first_minor)863 static inline int first_minor_to_idx(int first_minor)
864 {
865 return (first_minor/BCACHE_MINORS);
866 }
867
idx_to_first_minor(int idx)868 static inline int idx_to_first_minor(int idx)
869 {
870 return (idx * BCACHE_MINORS);
871 }
872
bcache_device_free(struct bcache_device * d)873 static void bcache_device_free(struct bcache_device *d)
874 {
875 struct gendisk *disk = d->disk;
876
877 lockdep_assert_held(&bch_register_lock);
878
879 if (disk)
880 pr_info("%s stopped\n", disk->disk_name);
881 else
882 pr_err("bcache device (NULL gendisk) stopped\n");
883
884 if (d->c)
885 bcache_device_detach(d);
886
887 if (disk) {
888 blk_cleanup_disk(disk);
889 ida_simple_remove(&bcache_device_idx,
890 first_minor_to_idx(disk->first_minor));
891 }
892
893 bioset_exit(&d->bio_split);
894 kvfree(d->full_dirty_stripes);
895 kvfree(d->stripe_sectors_dirty);
896
897 closure_debug_destroy(&d->cl);
898 }
899
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)900 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
901 sector_t sectors, struct block_device *cached_bdev,
902 const struct block_device_operations *ops)
903 {
904 struct request_queue *q;
905 const size_t max_stripes = min_t(size_t, INT_MAX,
906 SIZE_MAX / sizeof(atomic_t));
907 uint64_t n;
908 int idx;
909
910 if (!d->stripe_size)
911 d->stripe_size = 1 << 31;
912
913 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
914 if (!n || n > max_stripes) {
915 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
916 n);
917 return -ENOMEM;
918 }
919 d->nr_stripes = n;
920
921 n = d->nr_stripes * sizeof(atomic_t);
922 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
923 if (!d->stripe_sectors_dirty)
924 return -ENOMEM;
925
926 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
927 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
928 if (!d->full_dirty_stripes)
929 goto out_free_stripe_sectors_dirty;
930
931 idx = ida_simple_get(&bcache_device_idx, 0,
932 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
933 if (idx < 0)
934 goto out_free_full_dirty_stripes;
935
936 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
937 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
938 goto out_ida_remove;
939
940 d->disk = blk_alloc_disk(NUMA_NO_NODE);
941 if (!d->disk)
942 goto out_bioset_exit;
943
944 set_capacity(d->disk, sectors);
945 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
946
947 d->disk->major = bcache_major;
948 d->disk->first_minor = idx_to_first_minor(idx);
949 d->disk->minors = BCACHE_MINORS;
950 d->disk->fops = ops;
951 d->disk->private_data = d;
952
953 q = d->disk->queue;
954 q->limits.max_hw_sectors = UINT_MAX;
955 q->limits.max_sectors = UINT_MAX;
956 q->limits.max_segment_size = UINT_MAX;
957 q->limits.max_segments = BIO_MAX_VECS;
958 blk_queue_max_discard_sectors(q, UINT_MAX);
959 q->limits.discard_granularity = 512;
960 q->limits.io_min = block_size;
961 q->limits.logical_block_size = block_size;
962 q->limits.physical_block_size = block_size;
963
964 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
965 /*
966 * This should only happen with BCACHE_SB_VERSION_BDEV.
967 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
968 */
969 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
970 d->disk->disk_name, q->limits.logical_block_size,
971 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
972
973 /* This also adjusts physical block size/min io size if needed */
974 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
975 }
976
977 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
978 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
979 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
980
981 blk_queue_write_cache(q, true, true);
982
983 return 0;
984
985 out_bioset_exit:
986 bioset_exit(&d->bio_split);
987 out_ida_remove:
988 ida_simple_remove(&bcache_device_idx, idx);
989 out_free_full_dirty_stripes:
990 kvfree(d->full_dirty_stripes);
991 out_free_stripe_sectors_dirty:
992 kvfree(d->stripe_sectors_dirty);
993 return -ENOMEM;
994
995 }
996
997 /* Cached device */
998
calc_cached_dev_sectors(struct cache_set * c)999 static void calc_cached_dev_sectors(struct cache_set *c)
1000 {
1001 uint64_t sectors = 0;
1002 struct cached_dev *dc;
1003
1004 list_for_each_entry(dc, &c->cached_devs, list)
1005 sectors += bdev_sectors(dc->bdev);
1006
1007 c->cached_dev_sectors = sectors;
1008 }
1009
1010 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)1011 static int cached_dev_status_update(void *arg)
1012 {
1013 struct cached_dev *dc = arg;
1014 struct request_queue *q;
1015
1016 /*
1017 * If this delayed worker is stopping outside, directly quit here.
1018 * dc->io_disable might be set via sysfs interface, so check it
1019 * here too.
1020 */
1021 while (!kthread_should_stop() && !dc->io_disable) {
1022 q = bdev_get_queue(dc->bdev);
1023 if (blk_queue_dying(q))
1024 dc->offline_seconds++;
1025 else
1026 dc->offline_seconds = 0;
1027
1028 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1029 pr_err("%s: device offline for %d seconds\n",
1030 dc->backing_dev_name,
1031 BACKING_DEV_OFFLINE_TIMEOUT);
1032 pr_err("%s: disable I/O request due to backing device offline\n",
1033 dc->disk.name);
1034 dc->io_disable = true;
1035 /* let others know earlier that io_disable is true */
1036 smp_mb();
1037 bcache_device_stop(&dc->disk);
1038 break;
1039 }
1040 schedule_timeout_interruptible(HZ);
1041 }
1042
1043 wait_for_kthread_stop();
1044 return 0;
1045 }
1046
1047
bch_cached_dev_run(struct cached_dev * dc)1048 int bch_cached_dev_run(struct cached_dev *dc)
1049 {
1050 int ret = 0;
1051 struct bcache_device *d = &dc->disk;
1052 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1053 char *env[] = {
1054 "DRIVER=bcache",
1055 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1056 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1057 NULL,
1058 };
1059
1060 if (dc->io_disable) {
1061 pr_err("I/O disabled on cached dev %s\n",
1062 dc->backing_dev_name);
1063 ret = -EIO;
1064 goto out;
1065 }
1066
1067 if (atomic_xchg(&dc->running, 1)) {
1068 pr_info("cached dev %s is running already\n",
1069 dc->backing_dev_name);
1070 ret = -EBUSY;
1071 goto out;
1072 }
1073
1074 if (!d->c &&
1075 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1076 struct closure cl;
1077
1078 closure_init_stack(&cl);
1079
1080 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1081 bch_write_bdev_super(dc, &cl);
1082 closure_sync(&cl);
1083 }
1084
1085 add_disk(d->disk);
1086 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1087 /*
1088 * won't show up in the uevent file, use udevadm monitor -e instead
1089 * only class / kset properties are persistent
1090 */
1091 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1092
1093 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1094 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1095 &d->kobj, "bcache")) {
1096 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1097 ret = -ENOMEM;
1098 goto out;
1099 }
1100
1101 dc->status_update_thread = kthread_run(cached_dev_status_update,
1102 dc, "bcache_status_update");
1103 if (IS_ERR(dc->status_update_thread)) {
1104 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1105 }
1106
1107 out:
1108 kfree(env[1]);
1109 kfree(env[2]);
1110 kfree(buf);
1111 return ret;
1112 }
1113
1114 /*
1115 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1116 * work dc->writeback_rate_update is running. Wait until the routine
1117 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1118 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1119 * seconds, give up waiting here and continue to cancel it too.
1120 */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1121 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1122 {
1123 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1124
1125 do {
1126 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1127 &dc->disk.flags))
1128 break;
1129 time_out--;
1130 schedule_timeout_interruptible(1);
1131 } while (time_out > 0);
1132
1133 if (time_out == 0)
1134 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1135
1136 cancel_delayed_work_sync(&dc->writeback_rate_update);
1137 }
1138
cached_dev_detach_finish(struct work_struct * w)1139 static void cached_dev_detach_finish(struct work_struct *w)
1140 {
1141 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1142
1143 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1144 BUG_ON(refcount_read(&dc->count));
1145
1146
1147 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1148 cancel_writeback_rate_update_dwork(dc);
1149
1150 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1151 kthread_stop(dc->writeback_thread);
1152 dc->writeback_thread = NULL;
1153 }
1154
1155 mutex_lock(&bch_register_lock);
1156
1157 calc_cached_dev_sectors(dc->disk.c);
1158 bcache_device_detach(&dc->disk);
1159 list_move(&dc->list, &uncached_devices);
1160
1161 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1162 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1163
1164 mutex_unlock(&bch_register_lock);
1165
1166 pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1167
1168 /* Drop ref we took in cached_dev_detach() */
1169 closure_put(&dc->disk.cl);
1170 }
1171
bch_cached_dev_detach(struct cached_dev * dc)1172 void bch_cached_dev_detach(struct cached_dev *dc)
1173 {
1174 lockdep_assert_held(&bch_register_lock);
1175
1176 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1177 return;
1178
1179 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1180 return;
1181
1182 /*
1183 * Block the device from being closed and freed until we're finished
1184 * detaching
1185 */
1186 closure_get(&dc->disk.cl);
1187
1188 bch_writeback_queue(dc);
1189
1190 cached_dev_put(dc);
1191 }
1192
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1193 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1194 uint8_t *set_uuid)
1195 {
1196 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1197 struct uuid_entry *u;
1198 struct cached_dev *exist_dc, *t;
1199 int ret = 0;
1200
1201 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1202 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1203 return -ENOENT;
1204
1205 if (dc->disk.c) {
1206 pr_err("Can't attach %s: already attached\n",
1207 dc->backing_dev_name);
1208 return -EINVAL;
1209 }
1210
1211 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1212 pr_err("Can't attach %s: shutting down\n",
1213 dc->backing_dev_name);
1214 return -EINVAL;
1215 }
1216
1217 if (dc->sb.block_size < c->cache->sb.block_size) {
1218 /* Will die */
1219 pr_err("Couldn't attach %s: block size less than set's block size\n",
1220 dc->backing_dev_name);
1221 return -EINVAL;
1222 }
1223
1224 /* Check whether already attached */
1225 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1226 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1227 pr_err("Tried to attach %s but duplicate UUID already attached\n",
1228 dc->backing_dev_name);
1229
1230 return -EINVAL;
1231 }
1232 }
1233
1234 u = uuid_find(c, dc->sb.uuid);
1235
1236 if (u &&
1237 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1238 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1239 memcpy(u->uuid, invalid_uuid, 16);
1240 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1241 u = NULL;
1242 }
1243
1244 if (!u) {
1245 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1246 pr_err("Couldn't find uuid for %s in set\n",
1247 dc->backing_dev_name);
1248 return -ENOENT;
1249 }
1250
1251 u = uuid_find_empty(c);
1252 if (!u) {
1253 pr_err("Not caching %s, no room for UUID\n",
1254 dc->backing_dev_name);
1255 return -EINVAL;
1256 }
1257 }
1258
1259 /*
1260 * Deadlocks since we're called via sysfs...
1261 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1262 */
1263
1264 if (bch_is_zero(u->uuid, 16)) {
1265 struct closure cl;
1266
1267 closure_init_stack(&cl);
1268
1269 memcpy(u->uuid, dc->sb.uuid, 16);
1270 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1271 u->first_reg = u->last_reg = rtime;
1272 bch_uuid_write(c);
1273
1274 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1275 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1276
1277 bch_write_bdev_super(dc, &cl);
1278 closure_sync(&cl);
1279 } else {
1280 u->last_reg = rtime;
1281 bch_uuid_write(c);
1282 }
1283
1284 bcache_device_attach(&dc->disk, c, u - c->uuids);
1285 list_move(&dc->list, &c->cached_devs);
1286 calc_cached_dev_sectors(c);
1287
1288 /*
1289 * dc->c must be set before dc->count != 0 - paired with the mb in
1290 * cached_dev_get()
1291 */
1292 smp_wmb();
1293 refcount_set(&dc->count, 1);
1294
1295 /* Block writeback thread, but spawn it */
1296 down_write(&dc->writeback_lock);
1297 if (bch_cached_dev_writeback_start(dc)) {
1298 up_write(&dc->writeback_lock);
1299 pr_err("Couldn't start writeback facilities for %s\n",
1300 dc->disk.disk->disk_name);
1301 return -ENOMEM;
1302 }
1303
1304 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1305 atomic_set(&dc->has_dirty, 1);
1306 bch_writeback_queue(dc);
1307 }
1308
1309 bch_sectors_dirty_init(&dc->disk);
1310
1311 ret = bch_cached_dev_run(dc);
1312 if (ret && (ret != -EBUSY)) {
1313 up_write(&dc->writeback_lock);
1314 /*
1315 * bch_register_lock is held, bcache_device_stop() is not
1316 * able to be directly called. The kthread and kworker
1317 * created previously in bch_cached_dev_writeback_start()
1318 * have to be stopped manually here.
1319 */
1320 kthread_stop(dc->writeback_thread);
1321 cancel_writeback_rate_update_dwork(dc);
1322 pr_err("Couldn't run cached device %s\n",
1323 dc->backing_dev_name);
1324 return ret;
1325 }
1326
1327 bcache_device_link(&dc->disk, c, "bdev");
1328 atomic_inc(&c->attached_dev_nr);
1329
1330 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1331 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1332 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1333 set_disk_ro(dc->disk.disk, 1);
1334 }
1335
1336 /* Allow the writeback thread to proceed */
1337 up_write(&dc->writeback_lock);
1338
1339 pr_info("Caching %s as %s on set %pU\n",
1340 dc->backing_dev_name,
1341 dc->disk.disk->disk_name,
1342 dc->disk.c->set_uuid);
1343 return 0;
1344 }
1345
1346 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1347 void bch_cached_dev_release(struct kobject *kobj)
1348 {
1349 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1350 disk.kobj);
1351 kfree(dc);
1352 module_put(THIS_MODULE);
1353 }
1354
cached_dev_free(struct closure * cl)1355 static void cached_dev_free(struct closure *cl)
1356 {
1357 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1358
1359 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1360 cancel_writeback_rate_update_dwork(dc);
1361
1362 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1363 kthread_stop(dc->writeback_thread);
1364 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1365 kthread_stop(dc->status_update_thread);
1366
1367 mutex_lock(&bch_register_lock);
1368
1369 if (atomic_read(&dc->running)) {
1370 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1371 del_gendisk(dc->disk.disk);
1372 }
1373 bcache_device_free(&dc->disk);
1374 list_del(&dc->list);
1375
1376 mutex_unlock(&bch_register_lock);
1377
1378 if (dc->sb_disk)
1379 put_page(virt_to_page(dc->sb_disk));
1380
1381 if (!IS_ERR_OR_NULL(dc->bdev))
1382 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1383
1384 wake_up(&unregister_wait);
1385
1386 kobject_put(&dc->disk.kobj);
1387 }
1388
cached_dev_flush(struct closure * cl)1389 static void cached_dev_flush(struct closure *cl)
1390 {
1391 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1392 struct bcache_device *d = &dc->disk;
1393
1394 mutex_lock(&bch_register_lock);
1395 bcache_device_unlink(d);
1396 mutex_unlock(&bch_register_lock);
1397
1398 bch_cache_accounting_destroy(&dc->accounting);
1399 kobject_del(&d->kobj);
1400
1401 continue_at(cl, cached_dev_free, system_wq);
1402 }
1403
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1404 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1405 {
1406 int ret;
1407 struct io *io;
1408 struct request_queue *q = bdev_get_queue(dc->bdev);
1409
1410 __module_get(THIS_MODULE);
1411 INIT_LIST_HEAD(&dc->list);
1412 closure_init(&dc->disk.cl, NULL);
1413 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1414 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1415 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1416 sema_init(&dc->sb_write_mutex, 1);
1417 INIT_LIST_HEAD(&dc->io_lru);
1418 spin_lock_init(&dc->io_lock);
1419 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1420
1421 dc->sequential_cutoff = 4 << 20;
1422
1423 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1424 list_add(&io->lru, &dc->io_lru);
1425 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1426 }
1427
1428 dc->disk.stripe_size = q->limits.io_opt >> 9;
1429
1430 if (dc->disk.stripe_size)
1431 dc->partial_stripes_expensive =
1432 q->limits.raid_partial_stripes_expensive;
1433
1434 ret = bcache_device_init(&dc->disk, block_size,
1435 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1436 dc->bdev, &bcache_cached_ops);
1437 if (ret)
1438 return ret;
1439
1440 blk_queue_io_opt(dc->disk.disk->queue,
1441 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1442
1443 atomic_set(&dc->io_errors, 0);
1444 dc->io_disable = false;
1445 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1446 /* default to auto */
1447 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1448
1449 bch_cached_dev_request_init(dc);
1450 bch_cached_dev_writeback_init(dc);
1451 return 0;
1452 }
1453
1454 /* Cached device - bcache superblock */
1455
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cached_dev * dc)1456 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1457 struct block_device *bdev,
1458 struct cached_dev *dc)
1459 {
1460 const char *err = "cannot allocate memory";
1461 struct cache_set *c;
1462 int ret = -ENOMEM;
1463
1464 bdevname(bdev, dc->backing_dev_name);
1465 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1466 dc->bdev = bdev;
1467 dc->bdev->bd_holder = dc;
1468 dc->sb_disk = sb_disk;
1469
1470 if (cached_dev_init(dc, sb->block_size << 9))
1471 goto err;
1472
1473 err = "error creating kobject";
1474 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1475 goto err;
1476 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1477 goto err;
1478
1479 pr_info("registered backing device %s\n", dc->backing_dev_name);
1480
1481 list_add(&dc->list, &uncached_devices);
1482 /* attach to a matched cache set if it exists */
1483 list_for_each_entry(c, &bch_cache_sets, list)
1484 bch_cached_dev_attach(dc, c, NULL);
1485
1486 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1487 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1488 err = "failed to run cached device";
1489 ret = bch_cached_dev_run(dc);
1490 if (ret)
1491 goto err;
1492 }
1493
1494 return 0;
1495 err:
1496 pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1497 bcache_device_stop(&dc->disk);
1498 return ret;
1499 }
1500
1501 /* Flash only volumes */
1502
1503 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1504 void bch_flash_dev_release(struct kobject *kobj)
1505 {
1506 struct bcache_device *d = container_of(kobj, struct bcache_device,
1507 kobj);
1508 kfree(d);
1509 }
1510
flash_dev_free(struct closure * cl)1511 static void flash_dev_free(struct closure *cl)
1512 {
1513 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1514
1515 mutex_lock(&bch_register_lock);
1516 atomic_long_sub(bcache_dev_sectors_dirty(d),
1517 &d->c->flash_dev_dirty_sectors);
1518 del_gendisk(d->disk);
1519 bcache_device_free(d);
1520 mutex_unlock(&bch_register_lock);
1521 kobject_put(&d->kobj);
1522 }
1523
flash_dev_flush(struct closure * cl)1524 static void flash_dev_flush(struct closure *cl)
1525 {
1526 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1527
1528 mutex_lock(&bch_register_lock);
1529 bcache_device_unlink(d);
1530 mutex_unlock(&bch_register_lock);
1531 kobject_del(&d->kobj);
1532 continue_at(cl, flash_dev_free, system_wq);
1533 }
1534
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1535 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1536 {
1537 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1538 GFP_KERNEL);
1539 if (!d)
1540 return -ENOMEM;
1541
1542 closure_init(&d->cl, NULL);
1543 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1544
1545 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1546
1547 if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1548 NULL, &bcache_flash_ops))
1549 goto err;
1550
1551 bcache_device_attach(d, c, u - c->uuids);
1552 bch_sectors_dirty_init(d);
1553 bch_flash_dev_request_init(d);
1554 add_disk(d->disk);
1555
1556 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1557 goto err;
1558
1559 bcache_device_link(d, c, "volume");
1560
1561 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1562 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1563 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1564 set_disk_ro(d->disk, 1);
1565 }
1566
1567 return 0;
1568 err:
1569 kobject_put(&d->kobj);
1570 return -ENOMEM;
1571 }
1572
flash_devs_run(struct cache_set * c)1573 static int flash_devs_run(struct cache_set *c)
1574 {
1575 int ret = 0;
1576 struct uuid_entry *u;
1577
1578 for (u = c->uuids;
1579 u < c->uuids + c->nr_uuids && !ret;
1580 u++)
1581 if (UUID_FLASH_ONLY(u))
1582 ret = flash_dev_run(c, u);
1583
1584 return ret;
1585 }
1586
bch_flash_dev_create(struct cache_set * c,uint64_t size)1587 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1588 {
1589 struct uuid_entry *u;
1590
1591 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1592 return -EINTR;
1593
1594 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1595 return -EPERM;
1596
1597 u = uuid_find_empty(c);
1598 if (!u) {
1599 pr_err("Can't create volume, no room for UUID\n");
1600 return -EINVAL;
1601 }
1602
1603 get_random_bytes(u->uuid, 16);
1604 memset(u->label, 0, 32);
1605 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1606
1607 SET_UUID_FLASH_ONLY(u, 1);
1608 u->sectors = size >> 9;
1609
1610 bch_uuid_write(c);
1611
1612 return flash_dev_run(c, u);
1613 }
1614
bch_cached_dev_error(struct cached_dev * dc)1615 bool bch_cached_dev_error(struct cached_dev *dc)
1616 {
1617 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1618 return false;
1619
1620 dc->io_disable = true;
1621 /* make others know io_disable is true earlier */
1622 smp_mb();
1623
1624 pr_err("stop %s: too many IO errors on backing device %s\n",
1625 dc->disk.disk->disk_name, dc->backing_dev_name);
1626
1627 bcache_device_stop(&dc->disk);
1628 return true;
1629 }
1630
1631 /* Cache set */
1632
1633 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1634 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1635 {
1636 struct va_format vaf;
1637 va_list args;
1638
1639 if (c->on_error != ON_ERROR_PANIC &&
1640 test_bit(CACHE_SET_STOPPING, &c->flags))
1641 return false;
1642
1643 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1644 pr_info("CACHE_SET_IO_DISABLE already set\n");
1645
1646 /*
1647 * XXX: we can be called from atomic context
1648 * acquire_console_sem();
1649 */
1650
1651 va_start(args, fmt);
1652
1653 vaf.fmt = fmt;
1654 vaf.va = &args;
1655
1656 pr_err("error on %pU: %pV, disabling caching\n",
1657 c->set_uuid, &vaf);
1658
1659 va_end(args);
1660
1661 if (c->on_error == ON_ERROR_PANIC)
1662 panic("panic forced after error\n");
1663
1664 bch_cache_set_unregister(c);
1665 return true;
1666 }
1667
1668 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1669 void bch_cache_set_release(struct kobject *kobj)
1670 {
1671 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1672
1673 kfree(c);
1674 module_put(THIS_MODULE);
1675 }
1676
cache_set_free(struct closure * cl)1677 static void cache_set_free(struct closure *cl)
1678 {
1679 struct cache_set *c = container_of(cl, struct cache_set, cl);
1680 struct cache *ca;
1681
1682 debugfs_remove(c->debug);
1683
1684 bch_open_buckets_free(c);
1685 bch_btree_cache_free(c);
1686 bch_journal_free(c);
1687
1688 mutex_lock(&bch_register_lock);
1689 bch_bset_sort_state_free(&c->sort);
1690 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1691
1692 ca = c->cache;
1693 if (ca) {
1694 ca->set = NULL;
1695 c->cache = NULL;
1696 kobject_put(&ca->kobj);
1697 }
1698
1699
1700 if (c->moving_gc_wq)
1701 destroy_workqueue(c->moving_gc_wq);
1702 bioset_exit(&c->bio_split);
1703 mempool_exit(&c->fill_iter);
1704 mempool_exit(&c->bio_meta);
1705 mempool_exit(&c->search);
1706 kfree(c->devices);
1707
1708 list_del(&c->list);
1709 mutex_unlock(&bch_register_lock);
1710
1711 pr_info("Cache set %pU unregistered\n", c->set_uuid);
1712 wake_up(&unregister_wait);
1713
1714 closure_debug_destroy(&c->cl);
1715 kobject_put(&c->kobj);
1716 }
1717
cache_set_flush(struct closure * cl)1718 static void cache_set_flush(struct closure *cl)
1719 {
1720 struct cache_set *c = container_of(cl, struct cache_set, caching);
1721 struct cache *ca = c->cache;
1722 struct btree *b;
1723
1724 bch_cache_accounting_destroy(&c->accounting);
1725
1726 kobject_put(&c->internal);
1727 kobject_del(&c->kobj);
1728
1729 if (!IS_ERR_OR_NULL(c->gc_thread))
1730 kthread_stop(c->gc_thread);
1731
1732 if (!IS_ERR_OR_NULL(c->root))
1733 list_add(&c->root->list, &c->btree_cache);
1734
1735 /*
1736 * Avoid flushing cached nodes if cache set is retiring
1737 * due to too many I/O errors detected.
1738 */
1739 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1740 list_for_each_entry(b, &c->btree_cache, list) {
1741 mutex_lock(&b->write_lock);
1742 if (btree_node_dirty(b))
1743 __bch_btree_node_write(b, NULL);
1744 mutex_unlock(&b->write_lock);
1745 }
1746
1747 if (ca->alloc_thread)
1748 kthread_stop(ca->alloc_thread);
1749
1750 if (c->journal.cur) {
1751 cancel_delayed_work_sync(&c->journal.work);
1752 /* flush last journal entry if needed */
1753 c->journal.work.work.func(&c->journal.work.work);
1754 }
1755
1756 closure_return(cl);
1757 }
1758
1759 /*
1760 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1761 * cache set is unregistering due to too many I/O errors. In this condition,
1762 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1763 * value and whether the broken cache has dirty data:
1764 *
1765 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1766 * BCH_CACHED_STOP_AUTO 0 NO
1767 * BCH_CACHED_STOP_AUTO 1 YES
1768 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1769 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1770 *
1771 * The expected behavior is, if stop_when_cache_set_failed is configured to
1772 * "auto" via sysfs interface, the bcache device will not be stopped if the
1773 * backing device is clean on the broken cache device.
1774 */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1775 static void conditional_stop_bcache_device(struct cache_set *c,
1776 struct bcache_device *d,
1777 struct cached_dev *dc)
1778 {
1779 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1780 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1781 d->disk->disk_name, c->set_uuid);
1782 bcache_device_stop(d);
1783 } else if (atomic_read(&dc->has_dirty)) {
1784 /*
1785 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1786 * and dc->has_dirty == 1
1787 */
1788 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1789 d->disk->disk_name);
1790 /*
1791 * There might be a small time gap that cache set is
1792 * released but bcache device is not. Inside this time
1793 * gap, regular I/O requests will directly go into
1794 * backing device as no cache set attached to. This
1795 * behavior may also introduce potential inconsistence
1796 * data in writeback mode while cache is dirty.
1797 * Therefore before calling bcache_device_stop() due
1798 * to a broken cache device, dc->io_disable should be
1799 * explicitly set to true.
1800 */
1801 dc->io_disable = true;
1802 /* make others know io_disable is true earlier */
1803 smp_mb();
1804 bcache_device_stop(d);
1805 } else {
1806 /*
1807 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1808 * and dc->has_dirty == 0
1809 */
1810 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1811 d->disk->disk_name);
1812 }
1813 }
1814
__cache_set_unregister(struct closure * cl)1815 static void __cache_set_unregister(struct closure *cl)
1816 {
1817 struct cache_set *c = container_of(cl, struct cache_set, caching);
1818 struct cached_dev *dc;
1819 struct bcache_device *d;
1820 size_t i;
1821
1822 mutex_lock(&bch_register_lock);
1823
1824 for (i = 0; i < c->devices_max_used; i++) {
1825 d = c->devices[i];
1826 if (!d)
1827 continue;
1828
1829 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1830 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1831 dc = container_of(d, struct cached_dev, disk);
1832 bch_cached_dev_detach(dc);
1833 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1834 conditional_stop_bcache_device(c, d, dc);
1835 } else {
1836 bcache_device_stop(d);
1837 }
1838 }
1839
1840 mutex_unlock(&bch_register_lock);
1841
1842 continue_at(cl, cache_set_flush, system_wq);
1843 }
1844
bch_cache_set_stop(struct cache_set * c)1845 void bch_cache_set_stop(struct cache_set *c)
1846 {
1847 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1848 /* closure_fn set to __cache_set_unregister() */
1849 closure_queue(&c->caching);
1850 }
1851
bch_cache_set_unregister(struct cache_set * c)1852 void bch_cache_set_unregister(struct cache_set *c)
1853 {
1854 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1855 bch_cache_set_stop(c);
1856 }
1857
1858 #define alloc_meta_bucket_pages(gfp, sb) \
1859 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1860
bch_cache_set_alloc(struct cache_sb * sb)1861 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1862 {
1863 int iter_size;
1864 struct cache *ca = container_of(sb, struct cache, sb);
1865 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1866
1867 if (!c)
1868 return NULL;
1869
1870 __module_get(THIS_MODULE);
1871 closure_init(&c->cl, NULL);
1872 set_closure_fn(&c->cl, cache_set_free, system_wq);
1873
1874 closure_init(&c->caching, &c->cl);
1875 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1876
1877 /* Maybe create continue_at_noreturn() and use it here? */
1878 closure_set_stopped(&c->cl);
1879 closure_put(&c->cl);
1880
1881 kobject_init(&c->kobj, &bch_cache_set_ktype);
1882 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1883
1884 bch_cache_accounting_init(&c->accounting, &c->cl);
1885
1886 memcpy(c->set_uuid, sb->set_uuid, 16);
1887
1888 c->cache = ca;
1889 c->cache->set = c;
1890 c->bucket_bits = ilog2(sb->bucket_size);
1891 c->block_bits = ilog2(sb->block_size);
1892 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1893 c->devices_max_used = 0;
1894 atomic_set(&c->attached_dev_nr, 0);
1895 c->btree_pages = meta_bucket_pages(sb);
1896 if (c->btree_pages > BTREE_MAX_PAGES)
1897 c->btree_pages = max_t(int, c->btree_pages / 4,
1898 BTREE_MAX_PAGES);
1899
1900 sema_init(&c->sb_write_mutex, 1);
1901 mutex_init(&c->bucket_lock);
1902 init_waitqueue_head(&c->btree_cache_wait);
1903 spin_lock_init(&c->btree_cannibalize_lock);
1904 init_waitqueue_head(&c->bucket_wait);
1905 init_waitqueue_head(&c->gc_wait);
1906 sema_init(&c->uuid_write_mutex, 1);
1907
1908 spin_lock_init(&c->btree_gc_time.lock);
1909 spin_lock_init(&c->btree_split_time.lock);
1910 spin_lock_init(&c->btree_read_time.lock);
1911
1912 bch_moving_init_cache_set(c);
1913
1914 INIT_LIST_HEAD(&c->list);
1915 INIT_LIST_HEAD(&c->cached_devs);
1916 INIT_LIST_HEAD(&c->btree_cache);
1917 INIT_LIST_HEAD(&c->btree_cache_freeable);
1918 INIT_LIST_HEAD(&c->btree_cache_freed);
1919 INIT_LIST_HEAD(&c->data_buckets);
1920
1921 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1922 sizeof(struct btree_iter_set);
1923
1924 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1925 if (!c->devices)
1926 goto err;
1927
1928 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1929 goto err;
1930
1931 if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1932 sizeof(struct bbio) +
1933 sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1934 goto err;
1935
1936 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1937 goto err;
1938
1939 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1940 BIOSET_NEED_RESCUER))
1941 goto err;
1942
1943 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1944 if (!c->uuids)
1945 goto err;
1946
1947 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1948 if (!c->moving_gc_wq)
1949 goto err;
1950
1951 if (bch_journal_alloc(c))
1952 goto err;
1953
1954 if (bch_btree_cache_alloc(c))
1955 goto err;
1956
1957 if (bch_open_buckets_alloc(c))
1958 goto err;
1959
1960 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1961 goto err;
1962
1963 c->congested_read_threshold_us = 2000;
1964 c->congested_write_threshold_us = 20000;
1965 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1966 c->idle_max_writeback_rate_enabled = 1;
1967 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1968
1969 return c;
1970 err:
1971 bch_cache_set_unregister(c);
1972 return NULL;
1973 }
1974
run_cache_set(struct cache_set * c)1975 static int run_cache_set(struct cache_set *c)
1976 {
1977 const char *err = "cannot allocate memory";
1978 struct cached_dev *dc, *t;
1979 struct cache *ca = c->cache;
1980 struct closure cl;
1981 LIST_HEAD(journal);
1982 struct journal_replay *l;
1983
1984 closure_init_stack(&cl);
1985
1986 c->nbuckets = ca->sb.nbuckets;
1987 set_gc_sectors(c);
1988
1989 if (CACHE_SYNC(&c->cache->sb)) {
1990 struct bkey *k;
1991 struct jset *j;
1992
1993 err = "cannot allocate memory for journal";
1994 if (bch_journal_read(c, &journal))
1995 goto err;
1996
1997 pr_debug("btree_journal_read() done\n");
1998
1999 err = "no journal entries found";
2000 if (list_empty(&journal))
2001 goto err;
2002
2003 j = &list_entry(journal.prev, struct journal_replay, list)->j;
2004
2005 err = "IO error reading priorities";
2006 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2007 goto err;
2008
2009 /*
2010 * If prio_read() fails it'll call cache_set_error and we'll
2011 * tear everything down right away, but if we perhaps checked
2012 * sooner we could avoid journal replay.
2013 */
2014
2015 k = &j->btree_root;
2016
2017 err = "bad btree root";
2018 if (__bch_btree_ptr_invalid(c, k))
2019 goto err;
2020
2021 err = "error reading btree root";
2022 c->root = bch_btree_node_get(c, NULL, k,
2023 j->btree_level,
2024 true, NULL);
2025 if (IS_ERR_OR_NULL(c->root))
2026 goto err;
2027
2028 list_del_init(&c->root->list);
2029 rw_unlock(true, c->root);
2030
2031 err = uuid_read(c, j, &cl);
2032 if (err)
2033 goto err;
2034
2035 err = "error in recovery";
2036 if (bch_btree_check(c))
2037 goto err;
2038
2039 bch_journal_mark(c, &journal);
2040 bch_initial_gc_finish(c);
2041 pr_debug("btree_check() done\n");
2042
2043 /*
2044 * bcache_journal_next() can't happen sooner, or
2045 * btree_gc_finish() will give spurious errors about last_gc >
2046 * gc_gen - this is a hack but oh well.
2047 */
2048 bch_journal_next(&c->journal);
2049
2050 err = "error starting allocator thread";
2051 if (bch_cache_allocator_start(ca))
2052 goto err;
2053
2054 /*
2055 * First place it's safe to allocate: btree_check() and
2056 * btree_gc_finish() have to run before we have buckets to
2057 * allocate, and bch_bucket_alloc_set() might cause a journal
2058 * entry to be written so bcache_journal_next() has to be called
2059 * first.
2060 *
2061 * If the uuids were in the old format we have to rewrite them
2062 * before the next journal entry is written:
2063 */
2064 if (j->version < BCACHE_JSET_VERSION_UUID)
2065 __uuid_write(c);
2066
2067 err = "bcache: replay journal failed";
2068 if (bch_journal_replay(c, &journal))
2069 goto err;
2070 } else {
2071 unsigned int j;
2072
2073 pr_notice("invalidating existing data\n");
2074 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2075 2, SB_JOURNAL_BUCKETS);
2076
2077 for (j = 0; j < ca->sb.keys; j++)
2078 ca->sb.d[j] = ca->sb.first_bucket + j;
2079
2080 bch_initial_gc_finish(c);
2081
2082 err = "error starting allocator thread";
2083 if (bch_cache_allocator_start(ca))
2084 goto err;
2085
2086 mutex_lock(&c->bucket_lock);
2087 bch_prio_write(ca, true);
2088 mutex_unlock(&c->bucket_lock);
2089
2090 err = "cannot allocate new UUID bucket";
2091 if (__uuid_write(c))
2092 goto err;
2093
2094 err = "cannot allocate new btree root";
2095 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2096 if (IS_ERR_OR_NULL(c->root))
2097 goto err;
2098
2099 mutex_lock(&c->root->write_lock);
2100 bkey_copy_key(&c->root->key, &MAX_KEY);
2101 bch_btree_node_write(c->root, &cl);
2102 mutex_unlock(&c->root->write_lock);
2103
2104 bch_btree_set_root(c->root);
2105 rw_unlock(true, c->root);
2106
2107 /*
2108 * We don't want to write the first journal entry until
2109 * everything is set up - fortunately journal entries won't be
2110 * written until the SET_CACHE_SYNC() here:
2111 */
2112 SET_CACHE_SYNC(&c->cache->sb, true);
2113
2114 bch_journal_next(&c->journal);
2115 bch_journal_meta(c, &cl);
2116 }
2117
2118 err = "error starting gc thread";
2119 if (bch_gc_thread_start(c))
2120 goto err;
2121
2122 closure_sync(&cl);
2123 c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2124 bcache_write_super(c);
2125
2126 if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2127 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2128
2129 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2130 bch_cached_dev_attach(dc, c, NULL);
2131
2132 flash_devs_run(c);
2133
2134 set_bit(CACHE_SET_RUNNING, &c->flags);
2135 return 0;
2136 err:
2137 while (!list_empty(&journal)) {
2138 l = list_first_entry(&journal, struct journal_replay, list);
2139 list_del(&l->list);
2140 kfree(l);
2141 }
2142
2143 closure_sync(&cl);
2144
2145 bch_cache_set_error(c, "%s", err);
2146
2147 return -EIO;
2148 }
2149
register_cache_set(struct cache * ca)2150 static const char *register_cache_set(struct cache *ca)
2151 {
2152 char buf[12];
2153 const char *err = "cannot allocate memory";
2154 struct cache_set *c;
2155
2156 list_for_each_entry(c, &bch_cache_sets, list)
2157 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2158 if (c->cache)
2159 return "duplicate cache set member";
2160
2161 goto found;
2162 }
2163
2164 c = bch_cache_set_alloc(&ca->sb);
2165 if (!c)
2166 return err;
2167
2168 err = "error creating kobject";
2169 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2170 kobject_add(&c->internal, &c->kobj, "internal"))
2171 goto err;
2172
2173 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2174 goto err;
2175
2176 bch_debug_init_cache_set(c);
2177
2178 list_add(&c->list, &bch_cache_sets);
2179 found:
2180 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2181 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2182 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2183 goto err;
2184
2185 kobject_get(&ca->kobj);
2186 ca->set = c;
2187 ca->set->cache = ca;
2188
2189 err = "failed to run cache set";
2190 if (run_cache_set(c) < 0)
2191 goto err;
2192
2193 return NULL;
2194 err:
2195 bch_cache_set_unregister(c);
2196 return err;
2197 }
2198
2199 /* Cache device */
2200
2201 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2202 void bch_cache_release(struct kobject *kobj)
2203 {
2204 struct cache *ca = container_of(kobj, struct cache, kobj);
2205 unsigned int i;
2206
2207 if (ca->set) {
2208 BUG_ON(ca->set->cache != ca);
2209 ca->set->cache = NULL;
2210 }
2211
2212 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2213 kfree(ca->prio_buckets);
2214 vfree(ca->buckets);
2215
2216 free_heap(&ca->heap);
2217 free_fifo(&ca->free_inc);
2218
2219 for (i = 0; i < RESERVE_NR; i++)
2220 free_fifo(&ca->free[i]);
2221
2222 if (ca->sb_disk)
2223 put_page(virt_to_page(ca->sb_disk));
2224
2225 if (!IS_ERR_OR_NULL(ca->bdev))
2226 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2227
2228 kfree(ca);
2229 module_put(THIS_MODULE);
2230 }
2231
cache_alloc(struct cache * ca)2232 static int cache_alloc(struct cache *ca)
2233 {
2234 size_t free;
2235 size_t btree_buckets;
2236 struct bucket *b;
2237 int ret = -ENOMEM;
2238 const char *err = NULL;
2239
2240 __module_get(THIS_MODULE);
2241 kobject_init(&ca->kobj, &bch_cache_ktype);
2242
2243 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2244
2245 /*
2246 * when ca->sb.njournal_buckets is not zero, journal exists,
2247 * and in bch_journal_replay(), tree node may split,
2248 * so bucket of RESERVE_BTREE type is needed,
2249 * the worst situation is all journal buckets are valid journal,
2250 * and all the keys need to replay,
2251 * so the number of RESERVE_BTREE type buckets should be as much
2252 * as journal buckets
2253 */
2254 btree_buckets = ca->sb.njournal_buckets ?: 8;
2255 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2256 if (!free) {
2257 ret = -EPERM;
2258 err = "ca->sb.nbuckets is too small";
2259 goto err_free;
2260 }
2261
2262 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2263 GFP_KERNEL)) {
2264 err = "ca->free[RESERVE_BTREE] alloc failed";
2265 goto err_btree_alloc;
2266 }
2267
2268 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2269 GFP_KERNEL)) {
2270 err = "ca->free[RESERVE_PRIO] alloc failed";
2271 goto err_prio_alloc;
2272 }
2273
2274 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2275 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2276 goto err_movinggc_alloc;
2277 }
2278
2279 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2280 err = "ca->free[RESERVE_NONE] alloc failed";
2281 goto err_none_alloc;
2282 }
2283
2284 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2285 err = "ca->free_inc alloc failed";
2286 goto err_free_inc_alloc;
2287 }
2288
2289 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2290 err = "ca->heap alloc failed";
2291 goto err_heap_alloc;
2292 }
2293
2294 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2295 ca->sb.nbuckets));
2296 if (!ca->buckets) {
2297 err = "ca->buckets alloc failed";
2298 goto err_buckets_alloc;
2299 }
2300
2301 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2302 prio_buckets(ca), 2),
2303 GFP_KERNEL);
2304 if (!ca->prio_buckets) {
2305 err = "ca->prio_buckets alloc failed";
2306 goto err_prio_buckets_alloc;
2307 }
2308
2309 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2310 if (!ca->disk_buckets) {
2311 err = "ca->disk_buckets alloc failed";
2312 goto err_disk_buckets_alloc;
2313 }
2314
2315 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2316
2317 for_each_bucket(b, ca)
2318 atomic_set(&b->pin, 0);
2319 return 0;
2320
2321 err_disk_buckets_alloc:
2322 kfree(ca->prio_buckets);
2323 err_prio_buckets_alloc:
2324 vfree(ca->buckets);
2325 err_buckets_alloc:
2326 free_heap(&ca->heap);
2327 err_heap_alloc:
2328 free_fifo(&ca->free_inc);
2329 err_free_inc_alloc:
2330 free_fifo(&ca->free[RESERVE_NONE]);
2331 err_none_alloc:
2332 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2333 err_movinggc_alloc:
2334 free_fifo(&ca->free[RESERVE_PRIO]);
2335 err_prio_alloc:
2336 free_fifo(&ca->free[RESERVE_BTREE]);
2337 err_btree_alloc:
2338 err_free:
2339 module_put(THIS_MODULE);
2340 if (err)
2341 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2342 return ret;
2343 }
2344
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cache * ca)2345 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2346 struct block_device *bdev, struct cache *ca)
2347 {
2348 const char *err = NULL; /* must be set for any error case */
2349 int ret = 0;
2350
2351 bdevname(bdev, ca->cache_dev_name);
2352 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2353 ca->bdev = bdev;
2354 ca->bdev->bd_holder = ca;
2355 ca->sb_disk = sb_disk;
2356
2357 if (blk_queue_discard(bdev_get_queue(bdev)))
2358 ca->discard = CACHE_DISCARD(&ca->sb);
2359
2360 ret = cache_alloc(ca);
2361 if (ret != 0) {
2362 /*
2363 * If we failed here, it means ca->kobj is not initialized yet,
2364 * kobject_put() won't be called and there is no chance to
2365 * call blkdev_put() to bdev in bch_cache_release(). So we
2366 * explicitly call blkdev_put() here.
2367 */
2368 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2369 if (ret == -ENOMEM)
2370 err = "cache_alloc(): -ENOMEM";
2371 else if (ret == -EPERM)
2372 err = "cache_alloc(): cache device is too small";
2373 else
2374 err = "cache_alloc(): unknown error";
2375 goto err;
2376 }
2377
2378 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2379 err = "error calling kobject_add";
2380 ret = -ENOMEM;
2381 goto out;
2382 }
2383
2384 mutex_lock(&bch_register_lock);
2385 err = register_cache_set(ca);
2386 mutex_unlock(&bch_register_lock);
2387
2388 if (err) {
2389 ret = -ENODEV;
2390 goto out;
2391 }
2392
2393 pr_info("registered cache device %s\n", ca->cache_dev_name);
2394
2395 out:
2396 kobject_put(&ca->kobj);
2397
2398 err:
2399 if (err)
2400 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2401
2402 return ret;
2403 }
2404
2405 /* Global interfaces/init */
2406
2407 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2408 const char *buffer, size_t size);
2409 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2410 struct kobj_attribute *attr,
2411 const char *buffer, size_t size);
2412
2413 kobj_attribute_write(register, register_bcache);
2414 kobj_attribute_write(register_quiet, register_bcache);
2415 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2416
bch_is_open_backing(dev_t dev)2417 static bool bch_is_open_backing(dev_t dev)
2418 {
2419 struct cache_set *c, *tc;
2420 struct cached_dev *dc, *t;
2421
2422 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2423 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2424 if (dc->bdev->bd_dev == dev)
2425 return true;
2426 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2427 if (dc->bdev->bd_dev == dev)
2428 return true;
2429 return false;
2430 }
2431
bch_is_open_cache(dev_t dev)2432 static bool bch_is_open_cache(dev_t dev)
2433 {
2434 struct cache_set *c, *tc;
2435
2436 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2437 struct cache *ca = c->cache;
2438
2439 if (ca->bdev->bd_dev == dev)
2440 return true;
2441 }
2442
2443 return false;
2444 }
2445
bch_is_open(dev_t dev)2446 static bool bch_is_open(dev_t dev)
2447 {
2448 return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2449 }
2450
2451 struct async_reg_args {
2452 struct delayed_work reg_work;
2453 char *path;
2454 struct cache_sb *sb;
2455 struct cache_sb_disk *sb_disk;
2456 struct block_device *bdev;
2457 };
2458
register_bdev_worker(struct work_struct * work)2459 static void register_bdev_worker(struct work_struct *work)
2460 {
2461 int fail = false;
2462 struct async_reg_args *args =
2463 container_of(work, struct async_reg_args, reg_work.work);
2464 struct cached_dev *dc;
2465
2466 dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2467 if (!dc) {
2468 fail = true;
2469 put_page(virt_to_page(args->sb_disk));
2470 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2471 goto out;
2472 }
2473
2474 mutex_lock(&bch_register_lock);
2475 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2476 fail = true;
2477 mutex_unlock(&bch_register_lock);
2478
2479 out:
2480 if (fail)
2481 pr_info("error %s: fail to register backing device\n",
2482 args->path);
2483 kfree(args->sb);
2484 kfree(args->path);
2485 kfree(args);
2486 module_put(THIS_MODULE);
2487 }
2488
register_cache_worker(struct work_struct * work)2489 static void register_cache_worker(struct work_struct *work)
2490 {
2491 int fail = false;
2492 struct async_reg_args *args =
2493 container_of(work, struct async_reg_args, reg_work.work);
2494 struct cache *ca;
2495
2496 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2497 if (!ca) {
2498 fail = true;
2499 put_page(virt_to_page(args->sb_disk));
2500 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2501 goto out;
2502 }
2503
2504 /* blkdev_put() will be called in bch_cache_release() */
2505 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2506 fail = true;
2507
2508 out:
2509 if (fail)
2510 pr_info("error %s: fail to register cache device\n",
2511 args->path);
2512 kfree(args->sb);
2513 kfree(args->path);
2514 kfree(args);
2515 module_put(THIS_MODULE);
2516 }
2517
register_device_async(struct async_reg_args * args)2518 static void register_device_async(struct async_reg_args *args)
2519 {
2520 if (SB_IS_BDEV(args->sb))
2521 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2522 else
2523 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2524
2525 /* 10 jiffies is enough for a delay */
2526 queue_delayed_work(system_wq, &args->reg_work, 10);
2527 }
2528
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2529 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2530 const char *buffer, size_t size)
2531 {
2532 const char *err;
2533 char *path = NULL;
2534 struct cache_sb *sb;
2535 struct cache_sb_disk *sb_disk;
2536 struct block_device *bdev;
2537 ssize_t ret;
2538 bool async_registration = false;
2539
2540 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2541 async_registration = true;
2542 #endif
2543
2544 ret = -EBUSY;
2545 err = "failed to reference bcache module";
2546 if (!try_module_get(THIS_MODULE))
2547 goto out;
2548
2549 /* For latest state of bcache_is_reboot */
2550 smp_mb();
2551 err = "bcache is in reboot";
2552 if (bcache_is_reboot)
2553 goto out_module_put;
2554
2555 ret = -ENOMEM;
2556 err = "cannot allocate memory";
2557 path = kstrndup(buffer, size, GFP_KERNEL);
2558 if (!path)
2559 goto out_module_put;
2560
2561 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2562 if (!sb)
2563 goto out_free_path;
2564
2565 ret = -EINVAL;
2566 err = "failed to open device";
2567 bdev = blkdev_get_by_path(strim(path),
2568 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2569 sb);
2570 if (IS_ERR(bdev)) {
2571 if (bdev == ERR_PTR(-EBUSY)) {
2572 dev_t dev;
2573
2574 mutex_lock(&bch_register_lock);
2575 if (lookup_bdev(strim(path), &dev) == 0 &&
2576 bch_is_open(dev))
2577 err = "device already registered";
2578 else
2579 err = "device busy";
2580 mutex_unlock(&bch_register_lock);
2581 if (attr == &ksysfs_register_quiet)
2582 goto done;
2583 }
2584 goto out_free_sb;
2585 }
2586
2587 err = "failed to set blocksize";
2588 if (set_blocksize(bdev, 4096))
2589 goto out_blkdev_put;
2590
2591 err = read_super(sb, bdev, &sb_disk);
2592 if (err)
2593 goto out_blkdev_put;
2594
2595 err = "failed to register device";
2596
2597 if (async_registration) {
2598 /* register in asynchronous way */
2599 struct async_reg_args *args =
2600 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2601
2602 if (!args) {
2603 ret = -ENOMEM;
2604 err = "cannot allocate memory";
2605 goto out_put_sb_page;
2606 }
2607
2608 args->path = path;
2609 args->sb = sb;
2610 args->sb_disk = sb_disk;
2611 args->bdev = bdev;
2612 register_device_async(args);
2613 /* No wait and returns to user space */
2614 goto async_done;
2615 }
2616
2617 if (SB_IS_BDEV(sb)) {
2618 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2619
2620 if (!dc)
2621 goto out_put_sb_page;
2622
2623 mutex_lock(&bch_register_lock);
2624 ret = register_bdev(sb, sb_disk, bdev, dc);
2625 mutex_unlock(&bch_register_lock);
2626 /* blkdev_put() will be called in cached_dev_free() */
2627 if (ret < 0)
2628 goto out_free_sb;
2629 } else {
2630 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2631
2632 if (!ca)
2633 goto out_put_sb_page;
2634
2635 /* blkdev_put() will be called in bch_cache_release() */
2636 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2637 goto out_free_sb;
2638 }
2639
2640 done:
2641 kfree(sb);
2642 kfree(path);
2643 module_put(THIS_MODULE);
2644 async_done:
2645 return size;
2646
2647 out_put_sb_page:
2648 put_page(virt_to_page(sb_disk));
2649 out_blkdev_put:
2650 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2651 out_free_sb:
2652 kfree(sb);
2653 out_free_path:
2654 kfree(path);
2655 path = NULL;
2656 out_module_put:
2657 module_put(THIS_MODULE);
2658 out:
2659 pr_info("error %s: %s\n", path?path:"", err);
2660 return ret;
2661 }
2662
2663
2664 struct pdev {
2665 struct list_head list;
2666 struct cached_dev *dc;
2667 };
2668
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2669 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2670 struct kobj_attribute *attr,
2671 const char *buffer,
2672 size_t size)
2673 {
2674 LIST_HEAD(pending_devs);
2675 ssize_t ret = size;
2676 struct cached_dev *dc, *tdc;
2677 struct pdev *pdev, *tpdev;
2678 struct cache_set *c, *tc;
2679
2680 mutex_lock(&bch_register_lock);
2681 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2682 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2683 if (!pdev)
2684 break;
2685 pdev->dc = dc;
2686 list_add(&pdev->list, &pending_devs);
2687 }
2688
2689 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2690 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2691 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2692 char *set_uuid = c->set_uuid;
2693
2694 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2695 list_del(&pdev->list);
2696 kfree(pdev);
2697 break;
2698 }
2699 }
2700 }
2701 mutex_unlock(&bch_register_lock);
2702
2703 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2704 pr_info("delete pdev %p\n", pdev);
2705 list_del(&pdev->list);
2706 bcache_device_stop(&pdev->dc->disk);
2707 kfree(pdev);
2708 }
2709
2710 return ret;
2711 }
2712
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2713 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2714 {
2715 if (bcache_is_reboot)
2716 return NOTIFY_DONE;
2717
2718 if (code == SYS_DOWN ||
2719 code == SYS_HALT ||
2720 code == SYS_POWER_OFF) {
2721 DEFINE_WAIT(wait);
2722 unsigned long start = jiffies;
2723 bool stopped = false;
2724
2725 struct cache_set *c, *tc;
2726 struct cached_dev *dc, *tdc;
2727
2728 mutex_lock(&bch_register_lock);
2729
2730 if (bcache_is_reboot)
2731 goto out;
2732
2733 /* New registration is rejected since now */
2734 bcache_is_reboot = true;
2735 /*
2736 * Make registering caller (if there is) on other CPU
2737 * core know bcache_is_reboot set to true earlier
2738 */
2739 smp_mb();
2740
2741 if (list_empty(&bch_cache_sets) &&
2742 list_empty(&uncached_devices))
2743 goto out;
2744
2745 mutex_unlock(&bch_register_lock);
2746
2747 pr_info("Stopping all devices:\n");
2748
2749 /*
2750 * The reason bch_register_lock is not held to call
2751 * bch_cache_set_stop() and bcache_device_stop() is to
2752 * avoid potential deadlock during reboot, because cache
2753 * set or bcache device stopping process will acqurie
2754 * bch_register_lock too.
2755 *
2756 * We are safe here because bcache_is_reboot sets to
2757 * true already, register_bcache() will reject new
2758 * registration now. bcache_is_reboot also makes sure
2759 * bcache_reboot() won't be re-entered on by other thread,
2760 * so there is no race in following list iteration by
2761 * list_for_each_entry_safe().
2762 */
2763 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2764 bch_cache_set_stop(c);
2765
2766 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2767 bcache_device_stop(&dc->disk);
2768
2769
2770 /*
2771 * Give an early chance for other kthreads and
2772 * kworkers to stop themselves
2773 */
2774 schedule();
2775
2776 /* What's a condition variable? */
2777 while (1) {
2778 long timeout = start + 10 * HZ - jiffies;
2779
2780 mutex_lock(&bch_register_lock);
2781 stopped = list_empty(&bch_cache_sets) &&
2782 list_empty(&uncached_devices);
2783
2784 if (timeout < 0 || stopped)
2785 break;
2786
2787 prepare_to_wait(&unregister_wait, &wait,
2788 TASK_UNINTERRUPTIBLE);
2789
2790 mutex_unlock(&bch_register_lock);
2791 schedule_timeout(timeout);
2792 }
2793
2794 finish_wait(&unregister_wait, &wait);
2795
2796 if (stopped)
2797 pr_info("All devices stopped\n");
2798 else
2799 pr_notice("Timeout waiting for devices to be closed\n");
2800 out:
2801 mutex_unlock(&bch_register_lock);
2802 }
2803
2804 return NOTIFY_DONE;
2805 }
2806
2807 static struct notifier_block reboot = {
2808 .notifier_call = bcache_reboot,
2809 .priority = INT_MAX, /* before any real devices */
2810 };
2811
bcache_exit(void)2812 static void bcache_exit(void)
2813 {
2814 bch_debug_exit();
2815 bch_request_exit();
2816 if (bcache_kobj)
2817 kobject_put(bcache_kobj);
2818 if (bcache_wq)
2819 destroy_workqueue(bcache_wq);
2820 if (bch_journal_wq)
2821 destroy_workqueue(bch_journal_wq);
2822 if (bch_flush_wq)
2823 destroy_workqueue(bch_flush_wq);
2824 bch_btree_exit();
2825
2826 if (bcache_major)
2827 unregister_blkdev(bcache_major, "bcache");
2828 unregister_reboot_notifier(&reboot);
2829 mutex_destroy(&bch_register_lock);
2830 }
2831
2832 /* Check and fixup module parameters */
check_module_parameters(void)2833 static void check_module_parameters(void)
2834 {
2835 if (bch_cutoff_writeback_sync == 0)
2836 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2837 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2838 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2839 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2840 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2841 }
2842
2843 if (bch_cutoff_writeback == 0)
2844 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2845 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2846 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2847 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2848 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2849 }
2850
2851 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2852 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2853 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2854 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2855 }
2856 }
2857
bcache_init(void)2858 static int __init bcache_init(void)
2859 {
2860 static const struct attribute *files[] = {
2861 &ksysfs_register.attr,
2862 &ksysfs_register_quiet.attr,
2863 &ksysfs_pendings_cleanup.attr,
2864 NULL
2865 };
2866
2867 check_module_parameters();
2868
2869 mutex_init(&bch_register_lock);
2870 init_waitqueue_head(&unregister_wait);
2871 register_reboot_notifier(&reboot);
2872
2873 bcache_major = register_blkdev(0, "bcache");
2874 if (bcache_major < 0) {
2875 unregister_reboot_notifier(&reboot);
2876 mutex_destroy(&bch_register_lock);
2877 return bcache_major;
2878 }
2879
2880 if (bch_btree_init())
2881 goto err;
2882
2883 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2884 if (!bcache_wq)
2885 goto err;
2886
2887 /*
2888 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2889 *
2890 * 1. It used `system_wq` before which also does no memory reclaim.
2891 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2892 * reduced throughput can be observed.
2893 *
2894 * We still want to user our own queue to not congest the `system_wq`.
2895 */
2896 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2897 if (!bch_flush_wq)
2898 goto err;
2899
2900 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2901 if (!bch_journal_wq)
2902 goto err;
2903
2904 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2905 if (!bcache_kobj)
2906 goto err;
2907
2908 if (bch_request_init() ||
2909 sysfs_create_files(bcache_kobj, files))
2910 goto err;
2911
2912 bch_debug_init();
2913 closure_debug_init();
2914
2915 bcache_is_reboot = false;
2916
2917 return 0;
2918 err:
2919 bcache_exit();
2920 return -ENOMEM;
2921 }
2922
2923 /*
2924 * Module hooks
2925 */
2926 module_exit(bcache_exit);
2927 module_init(bcache_init);
2928
2929 module_param(bch_cutoff_writeback, uint, 0);
2930 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2931
2932 module_param(bch_cutoff_writeback_sync, uint, 0);
2933 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2934
2935 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2936 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2937 MODULE_LICENSE("GPL");
2938