1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 /* Rate limiting */
__calc_target_rate(struct cached_dev * dc)21 static uint64_t __calc_target_rate(struct cached_dev *dc)
22 {
23 struct cache_set *c = dc->disk.c;
24
25 /*
26 * This is the size of the cache, minus the amount used for
27 * flash-only devices
28 */
29 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
30 atomic_long_read(&c->flash_dev_dirty_sectors);
31
32 /*
33 * Unfortunately there is no control of global dirty data. If the
34 * user states that they want 10% dirty data in the cache, and has,
35 * e.g., 5 backing volumes of equal size, we try and ensure each
36 * backing volume uses about 2% of the cache for dirty data.
37 */
38 uint32_t bdev_share =
39 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
40 c->cached_dev_sectors);
41
42 uint64_t cache_dirty_target =
43 div_u64(cache_sectors * dc->writeback_percent, 100);
44
45 /* Ensure each backing dev gets at least one dirty share */
46 if (bdev_share < 1)
47 bdev_share = 1;
48
49 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
50 }
51
__update_writeback_rate(struct cached_dev * dc)52 static void __update_writeback_rate(struct cached_dev *dc)
53 {
54 /*
55 * PI controller:
56 * Figures out the amount that should be written per second.
57 *
58 * First, the error (number of sectors that are dirty beyond our
59 * target) is calculated. The error is accumulated (numerically
60 * integrated).
61 *
62 * Then, the proportional value and integral value are scaled
63 * based on configured values. These are stored as inverses to
64 * avoid fixed point math and to make configuration easy-- e.g.
65 * the default value of 40 for writeback_rate_p_term_inverse
66 * attempts to write at a rate that would retire all the dirty
67 * blocks in 40 seconds.
68 *
69 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
70 * of the error is accumulated in the integral term per second.
71 * This acts as a slow, long-term average that is not subject to
72 * variations in usage like the p term.
73 */
74 int64_t target = __calc_target_rate(dc);
75 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 int64_t error = dirty - target;
77 int64_t proportional_scaled =
78 div_s64(error, dc->writeback_rate_p_term_inverse);
79 int64_t integral_scaled;
80 uint32_t new_rate;
81
82 if ((error < 0 && dc->writeback_rate_integral > 0) ||
83 (error > 0 && time_before64(local_clock(),
84 dc->writeback_rate.next + NSEC_PER_MSEC))) {
85 /*
86 * Only decrease the integral term if it's more than
87 * zero. Only increase the integral term if the device
88 * is keeping up. (Don't wind up the integral
89 * ineffectively in either case).
90 *
91 * It's necessary to scale this by
92 * writeback_rate_update_seconds to keep the integral
93 * term dimensioned properly.
94 */
95 dc->writeback_rate_integral += error *
96 dc->writeback_rate_update_seconds;
97 }
98
99 integral_scaled = div_s64(dc->writeback_rate_integral,
100 dc->writeback_rate_i_term_inverse);
101
102 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
103 dc->writeback_rate_minimum, NSEC_PER_SEC);
104
105 dc->writeback_rate_proportional = proportional_scaled;
106 dc->writeback_rate_integral_scaled = integral_scaled;
107 dc->writeback_rate_change = new_rate -
108 atomic_long_read(&dc->writeback_rate.rate);
109 atomic_long_set(&dc->writeback_rate.rate, new_rate);
110 dc->writeback_rate_target = target;
111 }
112
set_at_max_writeback_rate(struct cache_set * c,struct cached_dev * dc)113 static bool set_at_max_writeback_rate(struct cache_set *c,
114 struct cached_dev *dc)
115 {
116 /*
117 * Idle_counter is increased everytime when update_writeback_rate() is
118 * called. If all backing devices attached to the same cache set have
119 * identical dc->writeback_rate_update_seconds values, it is about 6
120 * rounds of update_writeback_rate() on each backing device before
121 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
122 * to each dc->writeback_rate.rate.
123 * In order to avoid extra locking cost for counting exact dirty cached
124 * devices number, c->attached_dev_nr is used to calculate the idle
125 * throushold. It might be bigger if not all cached device are in write-
126 * back mode, but it still works well with limited extra rounds of
127 * update_writeback_rate().
128 */
129 if (atomic_inc_return(&c->idle_counter) <
130 atomic_read(&c->attached_dev_nr) * 6)
131 return false;
132
133 if (atomic_read(&c->at_max_writeback_rate) != 1)
134 atomic_set(&c->at_max_writeback_rate, 1);
135
136 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
137
138 /* keep writeback_rate_target as existing value */
139 dc->writeback_rate_proportional = 0;
140 dc->writeback_rate_integral_scaled = 0;
141 dc->writeback_rate_change = 0;
142
143 /*
144 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
145 * new I/O arrives during before set_at_max_writeback_rate() returns.
146 * Then the writeback rate is set to 1, and its new value should be
147 * decided via __update_writeback_rate().
148 */
149 if ((atomic_read(&c->idle_counter) <
150 atomic_read(&c->attached_dev_nr) * 6) ||
151 !atomic_read(&c->at_max_writeback_rate))
152 return false;
153
154 return true;
155 }
156
update_writeback_rate(struct work_struct * work)157 static void update_writeback_rate(struct work_struct *work)
158 {
159 struct cached_dev *dc = container_of(to_delayed_work(work),
160 struct cached_dev,
161 writeback_rate_update);
162 struct cache_set *c = dc->disk.c;
163
164 /*
165 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
166 * cancel_delayed_work_sync().
167 */
168 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
169 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
170 smp_mb();
171
172 /*
173 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
174 * check it here too.
175 */
176 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
177 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
178 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
179 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
180 smp_mb();
181 return;
182 }
183
184 if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
185 /*
186 * If the whole cache set is idle, set_at_max_writeback_rate()
187 * will set writeback rate to a max number. Then it is
188 * unncessary to update writeback rate for an idle cache set
189 * in maximum writeback rate number(s).
190 */
191 if (!set_at_max_writeback_rate(c, dc)) {
192 down_read(&dc->writeback_lock);
193 __update_writeback_rate(dc);
194 up_read(&dc->writeback_lock);
195 }
196 }
197
198
199 /*
200 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
201 * check it here too.
202 */
203 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
204 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
205 schedule_delayed_work(&dc->writeback_rate_update,
206 dc->writeback_rate_update_seconds * HZ);
207 }
208
209 /*
210 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
211 * cancel_delayed_work_sync().
212 */
213 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
214 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
215 smp_mb();
216 }
217
writeback_delay(struct cached_dev * dc,unsigned int sectors)218 static unsigned int writeback_delay(struct cached_dev *dc,
219 unsigned int sectors)
220 {
221 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
222 !dc->writeback_percent)
223 return 0;
224
225 return bch_next_delay(&dc->writeback_rate, sectors);
226 }
227
228 struct dirty_io {
229 struct closure cl;
230 struct cached_dev *dc;
231 uint16_t sequence;
232 struct bio bio;
233 };
234
dirty_init(struct keybuf_key * w)235 static void dirty_init(struct keybuf_key *w)
236 {
237 struct dirty_io *io = w->private;
238 struct bio *bio = &io->bio;
239
240 bio_init(bio, bio->bi_inline_vecs,
241 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
242 if (!io->dc->writeback_percent)
243 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
244
245 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
246 bio->bi_private = w;
247 bch_bio_map(bio, NULL);
248 }
249
dirty_io_destructor(struct closure * cl)250 static void dirty_io_destructor(struct closure *cl)
251 {
252 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
253
254 kfree(io);
255 }
256
write_dirty_finish(struct closure * cl)257 static void write_dirty_finish(struct closure *cl)
258 {
259 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
260 struct keybuf_key *w = io->bio.bi_private;
261 struct cached_dev *dc = io->dc;
262
263 bio_free_pages(&io->bio);
264
265 /* This is kind of a dumb way of signalling errors. */
266 if (KEY_DIRTY(&w->key)) {
267 int ret;
268 unsigned int i;
269 struct keylist keys;
270
271 bch_keylist_init(&keys);
272
273 bkey_copy(keys.top, &w->key);
274 SET_KEY_DIRTY(keys.top, false);
275 bch_keylist_push(&keys);
276
277 for (i = 0; i < KEY_PTRS(&w->key); i++)
278 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
279
280 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
281
282 if (ret)
283 trace_bcache_writeback_collision(&w->key);
284
285 atomic_long_inc(ret
286 ? &dc->disk.c->writeback_keys_failed
287 : &dc->disk.c->writeback_keys_done);
288 }
289
290 bch_keybuf_del(&dc->writeback_keys, w);
291 up(&dc->in_flight);
292
293 closure_return_with_destructor(cl, dirty_io_destructor);
294 }
295
dirty_endio(struct bio * bio)296 static void dirty_endio(struct bio *bio)
297 {
298 struct keybuf_key *w = bio->bi_private;
299 struct dirty_io *io = w->private;
300
301 if (bio->bi_status) {
302 SET_KEY_DIRTY(&w->key, false);
303 bch_count_backing_io_errors(io->dc, bio);
304 }
305
306 closure_put(&io->cl);
307 }
308
write_dirty(struct closure * cl)309 static void write_dirty(struct closure *cl)
310 {
311 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
312 struct keybuf_key *w = io->bio.bi_private;
313 struct cached_dev *dc = io->dc;
314
315 uint16_t next_sequence;
316
317 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
318 /* Not our turn to write; wait for a write to complete */
319 closure_wait(&dc->writeback_ordering_wait, cl);
320
321 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
322 /*
323 * Edge case-- it happened in indeterminate order
324 * relative to when we were added to wait list..
325 */
326 closure_wake_up(&dc->writeback_ordering_wait);
327 }
328
329 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
330 return;
331 }
332
333 next_sequence = io->sequence + 1;
334
335 /*
336 * IO errors are signalled using the dirty bit on the key.
337 * If we failed to read, we should not attempt to write to the
338 * backing device. Instead, immediately go to write_dirty_finish
339 * to clean up.
340 */
341 if (KEY_DIRTY(&w->key)) {
342 dirty_init(w);
343 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
344 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
345 bio_set_dev(&io->bio, io->dc->bdev);
346 io->bio.bi_end_io = dirty_endio;
347
348 /* I/O request sent to backing device */
349 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
350 }
351
352 atomic_set(&dc->writeback_sequence_next, next_sequence);
353 closure_wake_up(&dc->writeback_ordering_wait);
354
355 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
356 }
357
read_dirty_endio(struct bio * bio)358 static void read_dirty_endio(struct bio *bio)
359 {
360 struct keybuf_key *w = bio->bi_private;
361 struct dirty_io *io = w->private;
362
363 /* is_read = 1 */
364 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
365 bio->bi_status, 1,
366 "reading dirty data from cache");
367
368 dirty_endio(bio);
369 }
370
read_dirty_submit(struct closure * cl)371 static void read_dirty_submit(struct closure *cl)
372 {
373 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
374
375 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
376
377 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
378 }
379
read_dirty(struct cached_dev * dc)380 static void read_dirty(struct cached_dev *dc)
381 {
382 unsigned int delay = 0;
383 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
384 size_t size;
385 int nk, i;
386 struct dirty_io *io;
387 struct closure cl;
388 uint16_t sequence = 0;
389
390 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
391 atomic_set(&dc->writeback_sequence_next, sequence);
392 closure_init_stack(&cl);
393
394 /*
395 * XXX: if we error, background writeback just spins. Should use some
396 * mempools.
397 */
398
399 next = bch_keybuf_next(&dc->writeback_keys);
400
401 while (!kthread_should_stop() &&
402 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
403 next) {
404 size = 0;
405 nk = 0;
406
407 do {
408 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
409
410 /*
411 * Don't combine too many operations, even if they
412 * are all small.
413 */
414 if (nk >= MAX_WRITEBACKS_IN_PASS)
415 break;
416
417 /*
418 * If the current operation is very large, don't
419 * further combine operations.
420 */
421 if (size >= MAX_WRITESIZE_IN_PASS)
422 break;
423
424 /*
425 * Operations are only eligible to be combined
426 * if they are contiguous.
427 *
428 * TODO: add a heuristic willing to fire a
429 * certain amount of non-contiguous IO per pass,
430 * so that we can benefit from backing device
431 * command queueing.
432 */
433 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
434 &START_KEY(&next->key)))
435 break;
436
437 size += KEY_SIZE(&next->key);
438 keys[nk++] = next;
439 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
440
441 /* Now we have gathered a set of 1..5 keys to write back. */
442 for (i = 0; i < nk; i++) {
443 w = keys[i];
444
445 io = kzalloc(sizeof(struct dirty_io) +
446 sizeof(struct bio_vec) *
447 DIV_ROUND_UP(KEY_SIZE(&w->key),
448 PAGE_SECTORS),
449 GFP_KERNEL);
450 if (!io)
451 goto err;
452
453 w->private = io;
454 io->dc = dc;
455 io->sequence = sequence++;
456
457 dirty_init(w);
458 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
459 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
460 bio_set_dev(&io->bio,
461 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
462 io->bio.bi_end_io = read_dirty_endio;
463
464 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
465 goto err_free;
466
467 trace_bcache_writeback(&w->key);
468
469 down(&dc->in_flight);
470
471 /*
472 * We've acquired a semaphore for the maximum
473 * simultaneous number of writebacks; from here
474 * everything happens asynchronously.
475 */
476 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
477 }
478
479 delay = writeback_delay(dc, size);
480
481 while (!kthread_should_stop() &&
482 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
483 delay) {
484 schedule_timeout_interruptible(delay);
485 delay = writeback_delay(dc, 0);
486 }
487 }
488
489 if (0) {
490 err_free:
491 kfree(w->private);
492 err:
493 bch_keybuf_del(&dc->writeback_keys, w);
494 }
495
496 /*
497 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
498 * freed) before refilling again
499 */
500 closure_sync(&cl);
501 }
502
503 /* Scan for dirty data */
504
bcache_dev_sectors_dirty_add(struct cache_set * c,unsigned int inode,uint64_t offset,int nr_sectors)505 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
506 uint64_t offset, int nr_sectors)
507 {
508 struct bcache_device *d = c->devices[inode];
509 unsigned int stripe_offset, stripe, sectors_dirty;
510
511 if (!d)
512 return;
513
514 if (UUID_FLASH_ONLY(&c->uuids[inode]))
515 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
516
517 stripe = offset_to_stripe(d, offset);
518 stripe_offset = offset & (d->stripe_size - 1);
519
520 while (nr_sectors) {
521 int s = min_t(unsigned int, abs(nr_sectors),
522 d->stripe_size - stripe_offset);
523
524 if (nr_sectors < 0)
525 s = -s;
526
527 if (stripe >= d->nr_stripes)
528 return;
529
530 sectors_dirty = atomic_add_return(s,
531 d->stripe_sectors_dirty + stripe);
532 if (sectors_dirty == d->stripe_size)
533 set_bit(stripe, d->full_dirty_stripes);
534 else
535 clear_bit(stripe, d->full_dirty_stripes);
536
537 nr_sectors -= s;
538 stripe_offset = 0;
539 stripe++;
540 }
541 }
542
dirty_pred(struct keybuf * buf,struct bkey * k)543 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
544 {
545 struct cached_dev *dc = container_of(buf,
546 struct cached_dev,
547 writeback_keys);
548
549 BUG_ON(KEY_INODE(k) != dc->disk.id);
550
551 return KEY_DIRTY(k);
552 }
553
refill_full_stripes(struct cached_dev * dc)554 static void refill_full_stripes(struct cached_dev *dc)
555 {
556 struct keybuf *buf = &dc->writeback_keys;
557 unsigned int start_stripe, stripe, next_stripe;
558 bool wrapped = false;
559
560 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
561
562 if (stripe >= dc->disk.nr_stripes)
563 stripe = 0;
564
565 start_stripe = stripe;
566
567 while (1) {
568 stripe = find_next_bit(dc->disk.full_dirty_stripes,
569 dc->disk.nr_stripes, stripe);
570
571 if (stripe == dc->disk.nr_stripes)
572 goto next;
573
574 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
575 dc->disk.nr_stripes, stripe);
576
577 buf->last_scanned = KEY(dc->disk.id,
578 stripe * dc->disk.stripe_size, 0);
579
580 bch_refill_keybuf(dc->disk.c, buf,
581 &KEY(dc->disk.id,
582 next_stripe * dc->disk.stripe_size, 0),
583 dirty_pred);
584
585 if (array_freelist_empty(&buf->freelist))
586 return;
587
588 stripe = next_stripe;
589 next:
590 if (wrapped && stripe > start_stripe)
591 return;
592
593 if (stripe == dc->disk.nr_stripes) {
594 stripe = 0;
595 wrapped = true;
596 }
597 }
598 }
599
600 /*
601 * Returns true if we scanned the entire disk
602 */
refill_dirty(struct cached_dev * dc)603 static bool refill_dirty(struct cached_dev *dc)
604 {
605 struct keybuf *buf = &dc->writeback_keys;
606 struct bkey start = KEY(dc->disk.id, 0, 0);
607 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
608 struct bkey start_pos;
609
610 /*
611 * make sure keybuf pos is inside the range for this disk - at bringup
612 * we might not be attached yet so this disk's inode nr isn't
613 * initialized then
614 */
615 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
616 bkey_cmp(&buf->last_scanned, &end) > 0)
617 buf->last_scanned = start;
618
619 if (dc->partial_stripes_expensive) {
620 refill_full_stripes(dc);
621 if (array_freelist_empty(&buf->freelist))
622 return false;
623 }
624
625 start_pos = buf->last_scanned;
626 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
627
628 if (bkey_cmp(&buf->last_scanned, &end) < 0)
629 return false;
630
631 /*
632 * If we get to the end start scanning again from the beginning, and
633 * only scan up to where we initially started scanning from:
634 */
635 buf->last_scanned = start;
636 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
637
638 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
639 }
640
bch_writeback_thread(void * arg)641 static int bch_writeback_thread(void *arg)
642 {
643 struct cached_dev *dc = arg;
644 struct cache_set *c = dc->disk.c;
645 bool searched_full_index;
646
647 bch_ratelimit_reset(&dc->writeback_rate);
648
649 while (!kthread_should_stop() &&
650 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
651 down_write(&dc->writeback_lock);
652 set_current_state(TASK_INTERRUPTIBLE);
653 /*
654 * If the bache device is detaching, skip here and continue
655 * to perform writeback. Otherwise, if no dirty data on cache,
656 * or there is dirty data on cache but writeback is disabled,
657 * the writeback thread should sleep here and wait for others
658 * to wake up it.
659 */
660 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
661 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
662 up_write(&dc->writeback_lock);
663
664 if (kthread_should_stop() ||
665 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
666 set_current_state(TASK_RUNNING);
667 break;
668 }
669
670 schedule();
671 continue;
672 }
673 set_current_state(TASK_RUNNING);
674
675 searched_full_index = refill_dirty(dc);
676
677 if (searched_full_index &&
678 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
679 atomic_set(&dc->has_dirty, 0);
680 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
681 bch_write_bdev_super(dc, NULL);
682 /*
683 * If bcache device is detaching via sysfs interface,
684 * writeback thread should stop after there is no dirty
685 * data on cache. BCACHE_DEV_DETACHING flag is set in
686 * bch_cached_dev_detach().
687 */
688 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
689 up_write(&dc->writeback_lock);
690 break;
691 }
692 }
693
694 up_write(&dc->writeback_lock);
695
696 read_dirty(dc);
697
698 if (searched_full_index) {
699 unsigned int delay = dc->writeback_delay * HZ;
700
701 while (delay &&
702 !kthread_should_stop() &&
703 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
704 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
705 delay = schedule_timeout_interruptible(delay);
706
707 bch_ratelimit_reset(&dc->writeback_rate);
708 }
709 }
710
711 cached_dev_put(dc);
712 wait_for_kthread_stop();
713
714 return 0;
715 }
716
717 /* Init */
718 #define INIT_KEYS_EACH_TIME 500000
719 #define INIT_KEYS_SLEEP_MS 100
720
721 struct sectors_dirty_init {
722 struct btree_op op;
723 unsigned int inode;
724 size_t count;
725 struct bkey start;
726 };
727
sectors_dirty_init_fn(struct btree_op * _op,struct btree * b,struct bkey * k)728 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
729 struct bkey *k)
730 {
731 struct sectors_dirty_init *op = container_of(_op,
732 struct sectors_dirty_init, op);
733 if (KEY_INODE(k) > op->inode)
734 return MAP_DONE;
735
736 if (KEY_DIRTY(k))
737 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
738 KEY_START(k), KEY_SIZE(k));
739
740 op->count++;
741 if (atomic_read(&b->c->search_inflight) &&
742 !(op->count % INIT_KEYS_EACH_TIME)) {
743 bkey_copy_key(&op->start, k);
744 return -EAGAIN;
745 }
746
747 return MAP_CONTINUE;
748 }
749
bch_sectors_dirty_init(struct bcache_device * d)750 void bch_sectors_dirty_init(struct bcache_device *d)
751 {
752 struct sectors_dirty_init op;
753 int ret;
754
755 bch_btree_op_init(&op.op, -1);
756 op.inode = d->id;
757 op.count = 0;
758 op.start = KEY(op.inode, 0, 0);
759
760 do {
761 ret = bch_btree_map_keys(&op.op, d->c, &op.start,
762 sectors_dirty_init_fn, 0);
763 if (ret == -EAGAIN)
764 schedule_timeout_interruptible(
765 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
766 else if (ret < 0) {
767 pr_warn("sectors dirty init failed, ret=%d!", ret);
768 break;
769 }
770 } while (ret == -EAGAIN);
771 }
772
bch_cached_dev_writeback_init(struct cached_dev * dc)773 void bch_cached_dev_writeback_init(struct cached_dev *dc)
774 {
775 sema_init(&dc->in_flight, 64);
776 init_rwsem(&dc->writeback_lock);
777 bch_keybuf_init(&dc->writeback_keys);
778
779 dc->writeback_metadata = true;
780 dc->writeback_running = true;
781 dc->writeback_percent = 10;
782 dc->writeback_delay = 30;
783 atomic_long_set(&dc->writeback_rate.rate, 1024);
784 dc->writeback_rate_minimum = 8;
785
786 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
787 dc->writeback_rate_p_term_inverse = 40;
788 dc->writeback_rate_i_term_inverse = 10000;
789
790 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
791 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
792 }
793
bch_cached_dev_writeback_start(struct cached_dev * dc)794 int bch_cached_dev_writeback_start(struct cached_dev *dc)
795 {
796 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
797 WQ_MEM_RECLAIM, 0);
798 if (!dc->writeback_write_wq)
799 return -ENOMEM;
800
801 cached_dev_get(dc);
802 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
803 "bcache_writeback");
804 if (IS_ERR(dc->writeback_thread)) {
805 cached_dev_put(dc);
806 return PTR_ERR(dc->writeback_thread);
807 }
808
809 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
810 schedule_delayed_work(&dc->writeback_rate_update,
811 dc->writeback_rate_update_seconds * HZ);
812
813 bch_writeback_queue(dc);
814
815 return 0;
816 }
817