1 /*
2  *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
3  *
4  * mtd nand driver for M-Systems DiskOnChip G4
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
12  * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13  * Should work on these as well.  Let me know!
14  *
15  * TODO:
16  *
17  *  Mechanism for management of password-protected areas
18  *
19  *  Hamming ecc when reading oob only
20  *
21  *  According to the M-Sys documentation, this device is also available in a
22  *  "dual-die" configuration having a 256MB capacity, but no mechanism for
23  *  detecting this variant is documented.  Currently this driver assumes 128MB
24  *  capacity.
25  *
26  *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
27  *  contain multiple G4s in a cascaded configuration, if any.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
40 #include <linux/io.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/rawnand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
47 #include <linux/jiffies.h>
48 
49 /*
50  * In "reliable mode" consecutive 2k pages are used in parallel (in some
51  * fashion) to store the same data.  The data can be read back from the
52  * even-numbered pages in the normal manner; odd-numbered pages will appear to
53  * contain junk.  Systems that boot from the docg4 typically write the secondary
54  * program loader (SPL) code in this mode.  The SPL is loaded by the initial
55  * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
56  * to the reset vector address).  This module parameter enables you to use this
57  * driver to write the SPL.  When in this mode, no more than 2k of data can be
58  * written at a time, because the addresses do not increment in the normal
59  * manner, and the starting offset must be within an even-numbered 2k region;
60  * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
61  * 0x1a00, ...  Reliable mode is a special case and should not be used unless
62  * you know what you're doing.
63  */
64 static bool reliable_mode;
65 module_param(reliable_mode, bool, 0);
66 MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
67 
68 /*
69  * You'll want to ignore badblocks if you're reading a partition that contains
70  * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
71  * it does not use mtd nand's method for marking bad blocks (using oob area).
72  * This will also skip the check of the "page written" flag.
73  */
74 static bool ignore_badblocks;
75 module_param(ignore_badblocks, bool, 0);
76 MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
77 
78 struct docg4_priv {
79 	struct mtd_info	*mtd;
80 	struct device *dev;
81 	void __iomem *virtadr;
82 	int status;
83 	struct {
84 		unsigned int command;
85 		int column;
86 		int page;
87 	} last_command;
88 	uint8_t oob_buf[16];
89 	uint8_t ecc_buf[7];
90 	int oob_page;
91 	struct bch_control *bch;
92 };
93 
94 /*
95  * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
96  * shared with other diskonchip devices (P3, G3 at least).
97  *
98  * Functions with names prefixed with docg4_ are mtd / nand interface functions
99  * (though they may also be called internally).  All others are internal.
100  */
101 
102 #define DOC_IOSPACE_DATA		0x0800
103 
104 /* register offsets */
105 #define DOC_CHIPID			0x1000
106 #define DOC_DEVICESELECT		0x100a
107 #define DOC_ASICMODE			0x100c
108 #define DOC_DATAEND			0x101e
109 #define DOC_NOP				0x103e
110 
111 #define DOC_FLASHSEQUENCE		0x1032
112 #define DOC_FLASHCOMMAND		0x1034
113 #define DOC_FLASHADDRESS		0x1036
114 #define DOC_FLASHCONTROL		0x1038
115 #define DOC_ECCCONF0			0x1040
116 #define DOC_ECCCONF1			0x1042
117 #define DOC_HAMMINGPARITY		0x1046
118 #define DOC_BCH_SYNDROM(idx)		(0x1048 + idx)
119 
120 #define DOC_ASICMODECONFIRM		0x1072
121 #define DOC_CHIPID_INV			0x1074
122 #define DOC_POWERMODE			0x107c
123 
124 #define DOCG4_MYSTERY_REG		0x1050
125 
126 /* apparently used only to write oob bytes 6 and 7 */
127 #define DOCG4_OOB_6_7			0x1052
128 
129 /* DOC_FLASHSEQUENCE register commands */
130 #define DOC_SEQ_RESET			0x00
131 #define DOCG4_SEQ_PAGE_READ		0x03
132 #define DOCG4_SEQ_FLUSH			0x29
133 #define DOCG4_SEQ_PAGEWRITE		0x16
134 #define DOCG4_SEQ_PAGEPROG		0x1e
135 #define DOCG4_SEQ_BLOCKERASE		0x24
136 #define DOCG4_SEQ_SETMODE		0x45
137 
138 /* DOC_FLASHCOMMAND register commands */
139 #define DOCG4_CMD_PAGE_READ             0x00
140 #define DOC_CMD_ERASECYCLE2		0xd0
141 #define DOCG4_CMD_FLUSH                 0x70
142 #define DOCG4_CMD_READ2                 0x30
143 #define DOC_CMD_PROG_BLOCK_ADDR		0x60
144 #define DOCG4_CMD_PAGEWRITE		0x80
145 #define DOC_CMD_PROG_CYCLE2		0x10
146 #define DOCG4_CMD_FAST_MODE		0xa3 /* functionality guessed */
147 #define DOC_CMD_RELIABLE_MODE		0x22
148 #define DOC_CMD_RESET			0xff
149 
150 /* DOC_POWERMODE register bits */
151 #define DOC_POWERDOWN_READY		0x80
152 
153 /* DOC_FLASHCONTROL register bits */
154 #define DOC_CTRL_CE			0x10
155 #define DOC_CTRL_UNKNOWN		0x40
156 #define DOC_CTRL_FLASHREADY		0x01
157 
158 /* DOC_ECCCONF0 register bits */
159 #define DOC_ECCCONF0_READ_MODE		0x8000
160 #define DOC_ECCCONF0_UNKNOWN		0x2000
161 #define DOC_ECCCONF0_ECC_ENABLE	        0x1000
162 #define DOC_ECCCONF0_DATA_BYTES_MASK	0x07ff
163 
164 /* DOC_ECCCONF1 register bits */
165 #define DOC_ECCCONF1_BCH_SYNDROM_ERR	0x80
166 #define DOC_ECCCONF1_ECC_ENABLE         0x07
167 #define DOC_ECCCONF1_PAGE_IS_WRITTEN	0x20
168 
169 /* DOC_ASICMODE register bits */
170 #define DOC_ASICMODE_RESET		0x00
171 #define DOC_ASICMODE_NORMAL		0x01
172 #define DOC_ASICMODE_POWERDOWN		0x02
173 #define DOC_ASICMODE_MDWREN		0x04
174 #define DOC_ASICMODE_BDETCT_RESET	0x08
175 #define DOC_ASICMODE_RSTIN_RESET	0x10
176 #define DOC_ASICMODE_RAM_WE		0x20
177 
178 /* good status values read after read/write/erase operations */
179 #define DOCG4_PROGSTATUS_GOOD          0x51
180 #define DOCG4_PROGSTATUS_GOOD_2        0xe0
181 
182 /*
183  * On read operations (page and oob-only), the first byte read from I/O reg is a
184  * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
185  * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
186  */
187 #define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
188 
189 /* anatomy of the device */
190 #define DOCG4_CHIP_SIZE        0x8000000
191 #define DOCG4_PAGE_SIZE        0x200
192 #define DOCG4_PAGES_PER_BLOCK  0x200
193 #define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
194 #define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
195 #define DOCG4_OOB_SIZE         0x10
196 #define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
197 #define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
198 #define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
199 
200 /* all but the last byte is included in ecc calculation */
201 #define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
202 
203 #define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
204 
205 /* expected values from the ID registers */
206 #define DOCG4_IDREG1_VALUE     0x0400
207 #define DOCG4_IDREG2_VALUE     0xfbff
208 
209 /* primitive polynomial used to build the Galois field used by hw ecc gen */
210 #define DOCG4_PRIMITIVE_POLY   0x4443
211 
212 #define DOCG4_M                14  /* Galois field is of order 2^14 */
213 #define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
214 
215 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
216 #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
217 
218 /*
219  * Bytes 0, 1 are used as badblock marker.
220  * Bytes 2 - 6 are available to the user.
221  * Byte 7 is hamming ecc for first 7 oob bytes only.
222  * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
223  * Byte 15 (the last) is used by the driver as a "page written" flag.
224  */
docg4_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)225 static int docg4_ooblayout_ecc(struct mtd_info *mtd, int section,
226 			       struct mtd_oob_region *oobregion)
227 {
228 	if (section)
229 		return -ERANGE;
230 
231 	oobregion->offset = 7;
232 	oobregion->length = 9;
233 
234 	return 0;
235 }
236 
docg4_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)237 static int docg4_ooblayout_free(struct mtd_info *mtd, int section,
238 				struct mtd_oob_region *oobregion)
239 {
240 	if (section)
241 		return -ERANGE;
242 
243 	oobregion->offset = 2;
244 	oobregion->length = 5;
245 
246 	return 0;
247 }
248 
249 static const struct mtd_ooblayout_ops docg4_ooblayout_ops = {
250 	.ecc = docg4_ooblayout_ecc,
251 	.free = docg4_ooblayout_free,
252 };
253 
254 /*
255  * The device has a nop register which M-Sys claims is for the purpose of
256  * inserting precise delays.  But beware; at least some operations fail if the
257  * nop writes are replaced with a generic delay!
258  */
write_nop(void __iomem * docptr)259 static inline void write_nop(void __iomem *docptr)
260 {
261 	writew(0, docptr + DOC_NOP);
262 }
263 
docg4_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)264 static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
265 {
266 	int i;
267 	struct nand_chip *nand = mtd_to_nand(mtd);
268 	uint16_t *p = (uint16_t *) buf;
269 	len >>= 1;
270 
271 	for (i = 0; i < len; i++)
272 		p[i] = readw(nand->IO_ADDR_R);
273 }
274 
docg4_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)275 static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
276 {
277 	int i;
278 	struct nand_chip *nand = mtd_to_nand(mtd);
279 	uint16_t *p = (uint16_t *) buf;
280 	len >>= 1;
281 
282 	for (i = 0; i < len; i++)
283 		writew(p[i], nand->IO_ADDR_W);
284 }
285 
poll_status(struct docg4_priv * doc)286 static int poll_status(struct docg4_priv *doc)
287 {
288 	/*
289 	 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
290 	 * register.  Operations known to take a long time (e.g., block erase)
291 	 * should sleep for a while before calling this.
292 	 */
293 
294 	uint16_t flash_status;
295 	unsigned long timeo;
296 	void __iomem *docptr = doc->virtadr;
297 
298 	dev_dbg(doc->dev, "%s...\n", __func__);
299 
300 	/* hardware quirk requires reading twice initially */
301 	flash_status = readw(docptr + DOC_FLASHCONTROL);
302 
303 	timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
304 	do {
305 		cpu_relax();
306 		flash_status = readb(docptr + DOC_FLASHCONTROL);
307 	} while (!(flash_status & DOC_CTRL_FLASHREADY) &&
308 		 time_before(jiffies, timeo));
309 
310 	if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
311 		dev_err(doc->dev, "%s: timed out!\n", __func__);
312 		return NAND_STATUS_FAIL;
313 	}
314 
315 	return 0;
316 }
317 
318 
docg4_wait(struct mtd_info * mtd,struct nand_chip * nand)319 static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
320 {
321 
322 	struct docg4_priv *doc = nand_get_controller_data(nand);
323 	int status = NAND_STATUS_WP;       /* inverse logic?? */
324 	dev_dbg(doc->dev, "%s...\n", __func__);
325 
326 	/* report any previously unreported error */
327 	if (doc->status) {
328 		status |= doc->status;
329 		doc->status = 0;
330 		return status;
331 	}
332 
333 	status |= poll_status(doc);
334 	return status;
335 }
336 
docg4_select_chip(struct mtd_info * mtd,int chip)337 static void docg4_select_chip(struct mtd_info *mtd, int chip)
338 {
339 	/*
340 	 * Select among multiple cascaded chips ("floors").  Multiple floors are
341 	 * not yet supported, so the only valid non-negative value is 0.
342 	 */
343 	struct nand_chip *nand = mtd_to_nand(mtd);
344 	struct docg4_priv *doc = nand_get_controller_data(nand);
345 	void __iomem *docptr = doc->virtadr;
346 
347 	dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
348 
349 	if (chip < 0)
350 		return;		/* deselected */
351 
352 	if (chip > 0)
353 		dev_warn(doc->dev, "multiple floors currently unsupported\n");
354 
355 	writew(0, docptr + DOC_DEVICESELECT);
356 }
357 
reset(struct mtd_info * mtd)358 static void reset(struct mtd_info *mtd)
359 {
360 	/* full device reset */
361 
362 	struct nand_chip *nand = mtd_to_nand(mtd);
363 	struct docg4_priv *doc = nand_get_controller_data(nand);
364 	void __iomem *docptr = doc->virtadr;
365 
366 	writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
367 	       docptr + DOC_ASICMODE);
368 	writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
369 	       docptr + DOC_ASICMODECONFIRM);
370 	write_nop(docptr);
371 
372 	writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
373 	       docptr + DOC_ASICMODE);
374 	writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
375 	       docptr + DOC_ASICMODECONFIRM);
376 
377 	writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
378 
379 	poll_status(doc);
380 }
381 
read_hw_ecc(void __iomem * docptr,uint8_t * ecc_buf)382 static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
383 {
384 	/* read the 7 hw-generated ecc bytes */
385 
386 	int i;
387 	for (i = 0; i < 7; i++) { /* hw quirk; read twice */
388 		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
389 		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
390 	}
391 }
392 
correct_data(struct mtd_info * mtd,uint8_t * buf,int page)393 static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
394 {
395 	/*
396 	 * Called after a page read when hardware reports bitflips.
397 	 * Up to four bitflips can be corrected.
398 	 */
399 
400 	struct nand_chip *nand = mtd_to_nand(mtd);
401 	struct docg4_priv *doc = nand_get_controller_data(nand);
402 	void __iomem *docptr = doc->virtadr;
403 	int i, numerrs, errpos[4];
404 	const uint8_t blank_read_hwecc[8] = {
405 		0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
406 
407 	read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
408 
409 	/* check if read error is due to a blank page */
410 	if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
411 		return 0;	/* yes */
412 
413 	/* skip additional check of "written flag" if ignore_badblocks */
414 	if (ignore_badblocks == false) {
415 
416 		/*
417 		 * If the hw ecc bytes are not those of a blank page, there's
418 		 * still a chance that the page is blank, but was read with
419 		 * errors.  Check the "written flag" in last oob byte, which
420 		 * is set to zero when a page is written.  If more than half
421 		 * the bits are set, assume a blank page.  Unfortunately, the
422 		 * bit flips(s) are not reported in stats.
423 		 */
424 
425 		if (nand->oob_poi[15]) {
426 			int bit, numsetbits = 0;
427 			unsigned long written_flag = nand->oob_poi[15];
428 			for_each_set_bit(bit, &written_flag, 8)
429 				numsetbits++;
430 			if (numsetbits > 4) { /* assume blank */
431 				dev_warn(doc->dev,
432 					 "error(s) in blank page "
433 					 "at offset %08x\n",
434 					 page * DOCG4_PAGE_SIZE);
435 				return 0;
436 			}
437 		}
438 	}
439 
440 	/*
441 	 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
442 	 * algorithm is used to decode this.  However the hw operates on page
443 	 * data in a bit order that is the reverse of that of the bch alg,
444 	 * requiring that the bits be reversed on the result.  Thanks to Ivan
445 	 * Djelic for his analysis!
446 	 */
447 	for (i = 0; i < 7; i++)
448 		doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
449 
450 	numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
451 			     doc->ecc_buf, NULL, errpos);
452 
453 	if (numerrs == -EBADMSG) {
454 		dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
455 			 page * DOCG4_PAGE_SIZE);
456 		return -EBADMSG;
457 	}
458 
459 	BUG_ON(numerrs < 0);	/* -EINVAL, or anything other than -EBADMSG */
460 
461 	/* undo last step in BCH alg (modulo mirroring not needed) */
462 	for (i = 0; i < numerrs; i++)
463 		errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
464 
465 	/* fix the errors */
466 	for (i = 0; i < numerrs; i++) {
467 
468 		/* ignore if error within oob ecc bytes */
469 		if (errpos[i] > DOCG4_USERDATA_LEN * 8)
470 			continue;
471 
472 		/* if error within oob area preceeding ecc bytes... */
473 		if (errpos[i] > DOCG4_PAGE_SIZE * 8)
474 			change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
475 				   (unsigned long *)nand->oob_poi);
476 
477 		else    /* error in page data */
478 			change_bit(errpos[i], (unsigned long *)buf);
479 	}
480 
481 	dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
482 		   numerrs, page * DOCG4_PAGE_SIZE);
483 
484 	return numerrs;
485 }
486 
docg4_read_byte(struct mtd_info * mtd)487 static uint8_t docg4_read_byte(struct mtd_info *mtd)
488 {
489 	struct nand_chip *nand = mtd_to_nand(mtd);
490 	struct docg4_priv *doc = nand_get_controller_data(nand);
491 
492 	dev_dbg(doc->dev, "%s\n", __func__);
493 
494 	if (doc->last_command.command == NAND_CMD_STATUS) {
495 		int status;
496 
497 		/*
498 		 * Previous nand command was status request, so nand
499 		 * infrastructure code expects to read the status here.  If an
500 		 * error occurred in a previous operation, report it.
501 		 */
502 		doc->last_command.command = 0;
503 
504 		if (doc->status) {
505 			status = doc->status;
506 			doc->status = 0;
507 		}
508 
509 		/* why is NAND_STATUS_WP inverse logic?? */
510 		else
511 			status = NAND_STATUS_WP | NAND_STATUS_READY;
512 
513 		return status;
514 	}
515 
516 	dev_warn(doc->dev, "unexpected call to read_byte()\n");
517 
518 	return 0;
519 }
520 
write_addr(struct docg4_priv * doc,uint32_t docg4_addr)521 static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
522 {
523 	/* write the four address bytes packed in docg4_addr to the device */
524 
525 	void __iomem *docptr = doc->virtadr;
526 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
527 	docg4_addr >>= 8;
528 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
529 	docg4_addr >>= 8;
530 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
531 	docg4_addr >>= 8;
532 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
533 }
534 
read_progstatus(struct docg4_priv * doc)535 static int read_progstatus(struct docg4_priv *doc)
536 {
537 	/*
538 	 * This apparently checks the status of programming.  Done after an
539 	 * erasure, and after page data is written.  On error, the status is
540 	 * saved, to be later retrieved by the nand infrastructure code.
541 	 */
542 	void __iomem *docptr = doc->virtadr;
543 
544 	/* status is read from the I/O reg */
545 	uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
546 	uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
547 	uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
548 
549 	dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
550 	      __func__, status1, status2, status3);
551 
552 	if (status1 != DOCG4_PROGSTATUS_GOOD
553 	    || status2 != DOCG4_PROGSTATUS_GOOD_2
554 	    || status3 != DOCG4_PROGSTATUS_GOOD_2) {
555 		doc->status = NAND_STATUS_FAIL;
556 		dev_warn(doc->dev, "read_progstatus failed: "
557 			 "%02x, %02x, %02x\n", status1, status2, status3);
558 		return -EIO;
559 	}
560 	return 0;
561 }
562 
pageprog(struct mtd_info * mtd)563 static int pageprog(struct mtd_info *mtd)
564 {
565 	/*
566 	 * Final step in writing a page.  Writes the contents of its
567 	 * internal buffer out to the flash array, or some such.
568 	 */
569 
570 	struct nand_chip *nand = mtd_to_nand(mtd);
571 	struct docg4_priv *doc = nand_get_controller_data(nand);
572 	void __iomem *docptr = doc->virtadr;
573 	int retval = 0;
574 
575 	dev_dbg(doc->dev, "docg4: %s\n", __func__);
576 
577 	writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
578 	writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
579 	write_nop(docptr);
580 	write_nop(docptr);
581 
582 	/* Just busy-wait; usleep_range() slows things down noticeably. */
583 	poll_status(doc);
584 
585 	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
586 	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
587 	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
588 	write_nop(docptr);
589 	write_nop(docptr);
590 	write_nop(docptr);
591 	write_nop(docptr);
592 	write_nop(docptr);
593 
594 	retval = read_progstatus(doc);
595 	writew(0, docptr + DOC_DATAEND);
596 	write_nop(docptr);
597 	poll_status(doc);
598 	write_nop(docptr);
599 
600 	return retval;
601 }
602 
sequence_reset(struct mtd_info * mtd)603 static void sequence_reset(struct mtd_info *mtd)
604 {
605 	/* common starting sequence for all operations */
606 
607 	struct nand_chip *nand = mtd_to_nand(mtd);
608 	struct docg4_priv *doc = nand_get_controller_data(nand);
609 	void __iomem *docptr = doc->virtadr;
610 
611 	writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
612 	writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
613 	writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
614 	write_nop(docptr);
615 	write_nop(docptr);
616 	poll_status(doc);
617 	write_nop(docptr);
618 }
619 
read_page_prologue(struct mtd_info * mtd,uint32_t docg4_addr)620 static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
621 {
622 	/* first step in reading a page */
623 
624 	struct nand_chip *nand = mtd_to_nand(mtd);
625 	struct docg4_priv *doc = nand_get_controller_data(nand);
626 	void __iomem *docptr = doc->virtadr;
627 
628 	dev_dbg(doc->dev,
629 	      "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
630 
631 	sequence_reset(mtd);
632 
633 	writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
634 	writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
635 	write_nop(docptr);
636 
637 	write_addr(doc, docg4_addr);
638 
639 	write_nop(docptr);
640 	writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
641 	write_nop(docptr);
642 	write_nop(docptr);
643 
644 	poll_status(doc);
645 }
646 
write_page_prologue(struct mtd_info * mtd,uint32_t docg4_addr)647 static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
648 {
649 	/* first step in writing a page */
650 
651 	struct nand_chip *nand = mtd_to_nand(mtd);
652 	struct docg4_priv *doc = nand_get_controller_data(nand);
653 	void __iomem *docptr = doc->virtadr;
654 
655 	dev_dbg(doc->dev,
656 	      "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
657 	sequence_reset(mtd);
658 
659 	if (unlikely(reliable_mode)) {
660 		writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
661 		writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
662 		writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
663 		write_nop(docptr);
664 	}
665 
666 	writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
667 	writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
668 	write_nop(docptr);
669 	write_addr(doc, docg4_addr);
670 	write_nop(docptr);
671 	write_nop(docptr);
672 	poll_status(doc);
673 }
674 
mtd_to_docg4_address(int page,int column)675 static uint32_t mtd_to_docg4_address(int page, int column)
676 {
677 	/*
678 	 * Convert mtd address to format used by the device, 32 bit packed.
679 	 *
680 	 * Some notes on G4 addressing... The M-Sys documentation on this device
681 	 * claims that pages are 2K in length, and indeed, the format of the
682 	 * address used by the device reflects that.  But within each page are
683 	 * four 512 byte "sub-pages", each with its own oob data that is
684 	 * read/written immediately after the 512 bytes of page data.  This oob
685 	 * data contains the ecc bytes for the preceeding 512 bytes.
686 	 *
687 	 * Rather than tell the mtd nand infrastructure that page size is 2k,
688 	 * with four sub-pages each, we engage in a little subterfuge and tell
689 	 * the infrastructure code that pages are 512 bytes in size.  This is
690 	 * done because during the course of reverse-engineering the device, I
691 	 * never observed an instance where an entire 2K "page" was read or
692 	 * written as a unit.  Each "sub-page" is always addressed individually,
693 	 * its data read/written, and ecc handled before the next "sub-page" is
694 	 * addressed.
695 	 *
696 	 * This requires us to convert addresses passed by the mtd nand
697 	 * infrastructure code to those used by the device.
698 	 *
699 	 * The address that is written to the device consists of four bytes: the
700 	 * first two are the 2k page number, and the second is the index into
701 	 * the page.  The index is in terms of 16-bit half-words and includes
702 	 * the preceeding oob data, so e.g., the index into the second
703 	 * "sub-page" is 0x108, and the full device address of the start of mtd
704 	 * page 0x201 is 0x00800108.
705 	 */
706 	int g4_page = page / 4;	                      /* device's 2K page */
707 	int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
708 	return (g4_page << 16) | g4_index;	      /* pack */
709 }
710 
docg4_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)711 static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
712 			  int page_addr)
713 {
714 	/* handle standard nand commands */
715 
716 	struct nand_chip *nand = mtd_to_nand(mtd);
717 	struct docg4_priv *doc = nand_get_controller_data(nand);
718 	uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
719 
720 	dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
721 	      __func__, command, page_addr, column);
722 
723 	/*
724 	 * Save the command and its arguments.  This enables emulation of
725 	 * standard flash devices, and also some optimizations.
726 	 */
727 	doc->last_command.command = command;
728 	doc->last_command.column = column;
729 	doc->last_command.page = page_addr;
730 
731 	switch (command) {
732 
733 	case NAND_CMD_RESET:
734 		reset(mtd);
735 		break;
736 
737 	case NAND_CMD_READ0:
738 		read_page_prologue(mtd, g4_addr);
739 		break;
740 
741 	case NAND_CMD_STATUS:
742 		/* next call to read_byte() will expect a status */
743 		break;
744 
745 	case NAND_CMD_SEQIN:
746 		if (unlikely(reliable_mode)) {
747 			uint16_t g4_page = g4_addr >> 16;
748 
749 			/* writes to odd-numbered 2k pages are invalid */
750 			if (g4_page & 0x01)
751 				dev_warn(doc->dev,
752 					 "invalid reliable mode address\n");
753 		}
754 
755 		write_page_prologue(mtd, g4_addr);
756 
757 		/* hack for deferred write of oob bytes */
758 		if (doc->oob_page == page_addr)
759 			memcpy(nand->oob_poi, doc->oob_buf, 16);
760 		break;
761 
762 	case NAND_CMD_PAGEPROG:
763 		pageprog(mtd);
764 		break;
765 
766 	/* we don't expect these, based on review of nand_base.c */
767 	case NAND_CMD_READOOB:
768 	case NAND_CMD_READID:
769 	case NAND_CMD_ERASE1:
770 	case NAND_CMD_ERASE2:
771 		dev_warn(doc->dev, "docg4_command: "
772 			 "unexpected nand command 0x%x\n", command);
773 		break;
774 
775 	}
776 }
777 
read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int page,bool use_ecc)778 static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
779 		     uint8_t *buf, int page, bool use_ecc)
780 {
781 	struct docg4_priv *doc = nand_get_controller_data(nand);
782 	void __iomem *docptr = doc->virtadr;
783 	uint16_t status, edc_err, *buf16;
784 	int bits_corrected = 0;
785 
786 	dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
787 
788 	nand_read_page_op(nand, page, 0, NULL, 0);
789 
790 	writew(DOC_ECCCONF0_READ_MODE |
791 	       DOC_ECCCONF0_ECC_ENABLE |
792 	       DOC_ECCCONF0_UNKNOWN |
793 	       DOCG4_BCH_SIZE,
794 	       docptr + DOC_ECCCONF0);
795 	write_nop(docptr);
796 	write_nop(docptr);
797 	write_nop(docptr);
798 	write_nop(docptr);
799 	write_nop(docptr);
800 
801 	/* the 1st byte from the I/O reg is a status; the rest is page data */
802 	status = readw(docptr + DOC_IOSPACE_DATA);
803 	if (status & DOCG4_READ_ERROR) {
804 		dev_err(doc->dev,
805 			"docg4_read_page: bad status: 0x%02x\n", status);
806 		writew(0, docptr + DOC_DATAEND);
807 		return -EIO;
808 	}
809 
810 	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
811 
812 	docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
813 
814 	/* this device always reads oob after page data */
815 	/* first 14 oob bytes read from I/O reg */
816 	docg4_read_buf(mtd, nand->oob_poi, 14);
817 
818 	/* last 2 read from another reg */
819 	buf16 = (uint16_t *)(nand->oob_poi + 14);
820 	*buf16 = readw(docptr + DOCG4_MYSTERY_REG);
821 
822 	write_nop(docptr);
823 
824 	if (likely(use_ecc == true)) {
825 
826 		/* read the register that tells us if bitflip(s) detected  */
827 		edc_err = readw(docptr + DOC_ECCCONF1);
828 		edc_err = readw(docptr + DOC_ECCCONF1);
829 		dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
830 
831 		/* If bitflips are reported, attempt to correct with ecc */
832 		if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
833 			bits_corrected = correct_data(mtd, buf, page);
834 			if (bits_corrected == -EBADMSG)
835 				mtd->ecc_stats.failed++;
836 			else
837 				mtd->ecc_stats.corrected += bits_corrected;
838 		}
839 	}
840 
841 	writew(0, docptr + DOC_DATAEND);
842 	if (bits_corrected == -EBADMSG)	  /* uncorrectable errors */
843 		return 0;
844 	return bits_corrected;
845 }
846 
847 
docg4_read_page_raw(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int oob_required,int page)848 static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
849 			       uint8_t *buf, int oob_required, int page)
850 {
851 	return read_page(mtd, nand, buf, page, false);
852 }
853 
docg4_read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int oob_required,int page)854 static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
855 			   uint8_t *buf, int oob_required, int page)
856 {
857 	return read_page(mtd, nand, buf, page, true);
858 }
859 
docg4_read_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)860 static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
861 			  int page)
862 {
863 	struct docg4_priv *doc = nand_get_controller_data(nand);
864 	void __iomem *docptr = doc->virtadr;
865 	uint16_t status;
866 
867 	dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
868 
869 	nand_read_page_op(nand, page, nand->ecc.size, NULL, 0);
870 
871 	writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
872 	write_nop(docptr);
873 	write_nop(docptr);
874 	write_nop(docptr);
875 	write_nop(docptr);
876 	write_nop(docptr);
877 
878 	/* the 1st byte from the I/O reg is a status; the rest is oob data */
879 	status = readw(docptr + DOC_IOSPACE_DATA);
880 	if (status & DOCG4_READ_ERROR) {
881 		dev_warn(doc->dev,
882 			 "docg4_read_oob failed: status = 0x%02x\n", status);
883 		return -EIO;
884 	}
885 
886 	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
887 
888 	docg4_read_buf(mtd, nand->oob_poi, 16);
889 
890 	write_nop(docptr);
891 	write_nop(docptr);
892 	write_nop(docptr);
893 	writew(0, docptr + DOC_DATAEND);
894 	write_nop(docptr);
895 
896 	return 0;
897 }
898 
docg4_erase_block(struct mtd_info * mtd,int page)899 static int docg4_erase_block(struct mtd_info *mtd, int page)
900 {
901 	struct nand_chip *nand = mtd_to_nand(mtd);
902 	struct docg4_priv *doc = nand_get_controller_data(nand);
903 	void __iomem *docptr = doc->virtadr;
904 	uint16_t g4_page;
905 	int status;
906 
907 	dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
908 
909 	sequence_reset(mtd);
910 
911 	writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
912 	writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
913 	write_nop(docptr);
914 
915 	/* only 2 bytes of address are written to specify erase block */
916 	g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
917 	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
918 	g4_page >>= 8;
919 	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
920 	write_nop(docptr);
921 
922 	/* start the erasure */
923 	writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
924 	write_nop(docptr);
925 	write_nop(docptr);
926 
927 	usleep_range(500, 1000); /* erasure is long; take a snooze */
928 	poll_status(doc);
929 	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
930 	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
931 	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
932 	write_nop(docptr);
933 	write_nop(docptr);
934 	write_nop(docptr);
935 	write_nop(docptr);
936 	write_nop(docptr);
937 
938 	read_progstatus(doc);
939 
940 	writew(0, docptr + DOC_DATAEND);
941 	write_nop(docptr);
942 	poll_status(doc);
943 	write_nop(docptr);
944 
945 	status = nand->waitfunc(mtd, nand);
946 	if (status < 0)
947 		return status;
948 
949 	return status & NAND_STATUS_FAIL ? -EIO : 0;
950 }
951 
write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int page,bool use_ecc)952 static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
953 		      const uint8_t *buf, int page, bool use_ecc)
954 {
955 	struct docg4_priv *doc = nand_get_controller_data(nand);
956 	void __iomem *docptr = doc->virtadr;
957 	uint8_t ecc_buf[8];
958 
959 	dev_dbg(doc->dev, "%s...\n", __func__);
960 
961 	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
962 
963 	writew(DOC_ECCCONF0_ECC_ENABLE |
964 	       DOC_ECCCONF0_UNKNOWN |
965 	       DOCG4_BCH_SIZE,
966 	       docptr + DOC_ECCCONF0);
967 	write_nop(docptr);
968 
969 	/* write the page data */
970 	docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
971 
972 	/* oob bytes 0 through 5 are written to I/O reg */
973 	docg4_write_buf16(mtd, nand->oob_poi, 6);
974 
975 	/* oob byte 6 written to a separate reg */
976 	writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
977 
978 	write_nop(docptr);
979 	write_nop(docptr);
980 
981 	/* write hw-generated ecc bytes to oob */
982 	if (likely(use_ecc == true)) {
983 		/* oob byte 7 is hamming code */
984 		uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
985 		hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
986 		writew(hamming, docptr + DOCG4_OOB_6_7);
987 		write_nop(docptr);
988 
989 		/* read the 7 bch bytes from ecc regs */
990 		read_hw_ecc(docptr, ecc_buf);
991 		ecc_buf[7] = 0;         /* clear the "page written" flag */
992 	}
993 
994 	/* write user-supplied bytes to oob */
995 	else {
996 		writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
997 		write_nop(docptr);
998 		memcpy(ecc_buf, &nand->oob_poi[8], 8);
999 	}
1000 
1001 	docg4_write_buf16(mtd, ecc_buf, 8);
1002 	write_nop(docptr);
1003 	write_nop(docptr);
1004 	writew(0, docptr + DOC_DATAEND);
1005 	write_nop(docptr);
1006 
1007 	return nand_prog_page_end_op(nand);
1008 }
1009 
docg4_write_page_raw(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int oob_required,int page)1010 static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
1011 				const uint8_t *buf, int oob_required, int page)
1012 {
1013 	return write_page(mtd, nand, buf, page, false);
1014 }
1015 
docg4_write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int oob_required,int page)1016 static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
1017 			     const uint8_t *buf, int oob_required, int page)
1018 {
1019 	return write_page(mtd, nand, buf, page, true);
1020 }
1021 
docg4_write_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)1022 static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
1023 			   int page)
1024 {
1025 	/*
1026 	 * Writing oob-only is not really supported, because MLC nand must write
1027 	 * oob bytes at the same time as page data.  Nonetheless, we save the
1028 	 * oob buffer contents here, and then write it along with the page data
1029 	 * if the same page is subsequently written.  This allows user space
1030 	 * utilities that write the oob data prior to the page data to work
1031 	 * (e.g., nandwrite).  The disdvantage is that, if the intention was to
1032 	 * write oob only, the operation is quietly ignored.  Also, oob can get
1033 	 * corrupted if two concurrent processes are running nandwrite.
1034 	 */
1035 
1036 	/* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1037 	struct docg4_priv *doc = nand_get_controller_data(nand);
1038 	doc->oob_page = page;
1039 	memcpy(doc->oob_buf, nand->oob_poi, 16);
1040 	return 0;
1041 }
1042 
read_factory_bbt(struct mtd_info * mtd)1043 static int __init read_factory_bbt(struct mtd_info *mtd)
1044 {
1045 	/*
1046 	 * The device contains a read-only factory bad block table.  Read it and
1047 	 * update the memory-based bbt accordingly.
1048 	 */
1049 
1050 	struct nand_chip *nand = mtd_to_nand(mtd);
1051 	struct docg4_priv *doc = nand_get_controller_data(nand);
1052 	uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1053 	uint8_t *buf;
1054 	int i, block;
1055 	__u32 eccfailed_stats = mtd->ecc_stats.failed;
1056 
1057 	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1058 	if (buf == NULL)
1059 		return -ENOMEM;
1060 
1061 	read_page_prologue(mtd, g4_addr);
1062 	docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1063 
1064 	/*
1065 	 * If no memory-based bbt was created, exit.  This will happen if module
1066 	 * parameter ignore_badblocks is set.  Then why even call this function?
1067 	 * For an unknown reason, block erase always fails if it's the first
1068 	 * operation after device power-up.  The above read ensures it never is.
1069 	 * Ugly, I know.
1070 	 */
1071 	if (nand->bbt == NULL)  /* no memory-based bbt */
1072 		goto exit;
1073 
1074 	if (mtd->ecc_stats.failed > eccfailed_stats) {
1075 		/*
1076 		 * Whoops, an ecc failure ocurred reading the factory bbt.
1077 		 * It is stored redundantly, so we get another chance.
1078 		 */
1079 		eccfailed_stats = mtd->ecc_stats.failed;
1080 		docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1081 		if (mtd->ecc_stats.failed > eccfailed_stats) {
1082 			dev_warn(doc->dev,
1083 				 "The factory bbt could not be read!\n");
1084 			goto exit;
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1090 	 * simple: one bit per block, block numbers increase left to right (msb
1091 	 * to lsb).  Bit clear means bad block.
1092 	 */
1093 	for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1094 		int bitnum;
1095 		unsigned long bits = ~buf[i];
1096 		for_each_set_bit(bitnum, &bits, 8) {
1097 			int badblock = block + 7 - bitnum;
1098 			nand->bbt[badblock / 4] |=
1099 				0x03 << ((badblock % 4) * 2);
1100 			mtd->ecc_stats.badblocks++;
1101 			dev_notice(doc->dev, "factory-marked bad block: %d\n",
1102 				   badblock);
1103 		}
1104 	}
1105  exit:
1106 	kfree(buf);
1107 	return 0;
1108 }
1109 
docg4_block_markbad(struct mtd_info * mtd,loff_t ofs)1110 static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1111 {
1112 	/*
1113 	 * Mark a block as bad.  Bad blocks are marked in the oob area of the
1114 	 * first page of the block.  The default scan_bbt() in the nand
1115 	 * infrastructure code works fine for building the memory-based bbt
1116 	 * during initialization, as does the nand infrastructure function that
1117 	 * checks if a block is bad by reading the bbt.  This function replaces
1118 	 * the nand default because writes to oob-only are not supported.
1119 	 */
1120 
1121 	int ret, i;
1122 	uint8_t *buf;
1123 	struct nand_chip *nand = mtd_to_nand(mtd);
1124 	struct docg4_priv *doc = nand_get_controller_data(nand);
1125 	struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1126 	int page = (int)(ofs >> nand->page_shift);
1127 	uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1128 
1129 	dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1130 
1131 	if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1132 		dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1133 			 __func__, ofs);
1134 
1135 	/* allocate blank buffer for page data */
1136 	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1137 	if (buf == NULL)
1138 		return -ENOMEM;
1139 
1140 	/* write bit-wise negation of pattern to oob buffer */
1141 	memset(nand->oob_poi, 0xff, mtd->oobsize);
1142 	for (i = 0; i < bbtd->len; i++)
1143 		nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1144 
1145 	/* write first page of block */
1146 	write_page_prologue(mtd, g4_addr);
1147 	docg4_write_page(mtd, nand, buf, 1, page);
1148 	ret = pageprog(mtd);
1149 
1150 	kfree(buf);
1151 
1152 	return ret;
1153 }
1154 
docg4_block_neverbad(struct mtd_info * mtd,loff_t ofs)1155 static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs)
1156 {
1157 	/* only called when module_param ignore_badblocks is set */
1158 	return 0;
1159 }
1160 
docg4_suspend(struct platform_device * pdev,pm_message_t state)1161 static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1162 {
1163 	/*
1164 	 * Put the device into "deep power-down" mode.  Note that CE# must be
1165 	 * deasserted for this to take effect.  The xscale, e.g., can be
1166 	 * configured to float this signal when the processor enters power-down,
1167 	 * and a suitable pull-up ensures its deassertion.
1168 	 */
1169 
1170 	int i;
1171 	uint8_t pwr_down;
1172 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1173 	void __iomem *docptr = doc->virtadr;
1174 
1175 	dev_dbg(doc->dev, "%s...\n", __func__);
1176 
1177 	/* poll the register that tells us we're ready to go to sleep */
1178 	for (i = 0; i < 10; i++) {
1179 		pwr_down = readb(docptr + DOC_POWERMODE);
1180 		if (pwr_down & DOC_POWERDOWN_READY)
1181 			break;
1182 		usleep_range(1000, 4000);
1183 	}
1184 
1185 	if (pwr_down & DOC_POWERDOWN_READY) {
1186 		dev_err(doc->dev, "suspend failed; "
1187 			"timeout polling DOC_POWERDOWN_READY\n");
1188 		return -EIO;
1189 	}
1190 
1191 	writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1192 	       docptr + DOC_ASICMODE);
1193 	writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1194 	       docptr + DOC_ASICMODECONFIRM);
1195 
1196 	write_nop(docptr);
1197 
1198 	return 0;
1199 }
1200 
docg4_resume(struct platform_device * pdev)1201 static int docg4_resume(struct platform_device *pdev)
1202 {
1203 
1204 	/*
1205 	 * Exit power-down.  Twelve consecutive reads of the address below
1206 	 * accomplishes this, assuming CE# has been asserted.
1207 	 */
1208 
1209 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1210 	void __iomem *docptr = doc->virtadr;
1211 	int i;
1212 
1213 	dev_dbg(doc->dev, "%s...\n", __func__);
1214 
1215 	for (i = 0; i < 12; i++)
1216 		readb(docptr + 0x1fff);
1217 
1218 	return 0;
1219 }
1220 
init_mtd_structs(struct mtd_info * mtd)1221 static void init_mtd_structs(struct mtd_info *mtd)
1222 {
1223 	/* initialize mtd and nand data structures */
1224 
1225 	/*
1226 	 * Note that some of the following initializations are not usually
1227 	 * required within a nand driver because they are performed by the nand
1228 	 * infrastructure code as part of nand_scan().  In this case they need
1229 	 * to be initialized here because we skip call to nand_scan_ident() (the
1230 	 * first half of nand_scan()).  The call to nand_scan_ident() could be
1231 	 * skipped because for this device the chip id is not read in the manner
1232 	 * of a standard nand device.
1233 	 */
1234 
1235 	struct nand_chip *nand = mtd_to_nand(mtd);
1236 	struct docg4_priv *doc = nand_get_controller_data(nand);
1237 
1238 	mtd->size = DOCG4_CHIP_SIZE;
1239 	mtd->name = "Msys_Diskonchip_G4";
1240 	mtd->writesize = DOCG4_PAGE_SIZE;
1241 	mtd->erasesize = DOCG4_BLOCK_SIZE;
1242 	mtd->oobsize = DOCG4_OOB_SIZE;
1243 	mtd_set_ooblayout(mtd, &docg4_ooblayout_ops);
1244 	nand->chipsize = DOCG4_CHIP_SIZE;
1245 	nand->chip_shift = DOCG4_CHIP_SHIFT;
1246 	nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1247 	nand->chip_delay = 20;
1248 	nand->page_shift = DOCG4_PAGE_SHIFT;
1249 	nand->pagemask = 0x3ffff;
1250 	nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1251 	nand->badblockbits = 8;
1252 	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1253 	nand->ecc.size = DOCG4_PAGE_SIZE;
1254 	nand->ecc.prepad = 8;
1255 	nand->ecc.bytes	= 8;
1256 	nand->ecc.strength = DOCG4_T;
1257 	nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1258 	nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1259 	nand->controller = &nand->dummy_controller;
1260 	nand_controller_init(nand->controller);
1261 
1262 	/* methods */
1263 	nand->cmdfunc = docg4_command;
1264 	nand->waitfunc = docg4_wait;
1265 	nand->select_chip = docg4_select_chip;
1266 	nand->read_byte = docg4_read_byte;
1267 	nand->block_markbad = docg4_block_markbad;
1268 	nand->read_buf = docg4_read_buf;
1269 	nand->write_buf = docg4_write_buf16;
1270 	nand->erase = docg4_erase_block;
1271 	nand->set_features = nand_get_set_features_notsupp;
1272 	nand->get_features = nand_get_set_features_notsupp;
1273 	nand->ecc.read_page = docg4_read_page;
1274 	nand->ecc.write_page = docg4_write_page;
1275 	nand->ecc.read_page_raw = docg4_read_page_raw;
1276 	nand->ecc.write_page_raw = docg4_write_page_raw;
1277 	nand->ecc.read_oob = docg4_read_oob;
1278 	nand->ecc.write_oob = docg4_write_oob;
1279 
1280 	/*
1281 	 * The way the nand infrastructure code is written, a memory-based bbt
1282 	 * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1283 	 * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1284 	 * scan and define a dummy block_bad() which always returns 0.
1285 	 */
1286 	if (ignore_badblocks) {
1287 		nand->options |= NAND_SKIP_BBTSCAN;
1288 		nand->block_bad	= docg4_block_neverbad;
1289 	}
1290 
1291 }
1292 
read_id_reg(struct mtd_info * mtd)1293 static int read_id_reg(struct mtd_info *mtd)
1294 {
1295 	struct nand_chip *nand = mtd_to_nand(mtd);
1296 	struct docg4_priv *doc = nand_get_controller_data(nand);
1297 	void __iomem *docptr = doc->virtadr;
1298 	uint16_t id1, id2;
1299 
1300 	/* check for presence of g4 chip by reading id registers */
1301 	id1 = readw(docptr + DOC_CHIPID);
1302 	id1 = readw(docptr + DOCG4_MYSTERY_REG);
1303 	id2 = readw(docptr + DOC_CHIPID_INV);
1304 	id2 = readw(docptr + DOCG4_MYSTERY_REG);
1305 
1306 	if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1307 		dev_info(doc->dev,
1308 			 "NAND device: 128MiB Diskonchip G4 detected\n");
1309 		return 0;
1310 	}
1311 
1312 	return -ENODEV;
1313 }
1314 
1315 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1316 
docg4_attach_chip(struct nand_chip * chip)1317 static int docg4_attach_chip(struct nand_chip *chip)
1318 {
1319 	struct mtd_info *mtd = nand_to_mtd(chip);
1320 	struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
1321 	int ret;
1322 
1323 	init_mtd_structs(mtd);
1324 
1325 	/* Initialize kernel BCH algorithm */
1326 	doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1327 	if (!doc->bch)
1328 		return -EINVAL;
1329 
1330 	reset(mtd);
1331 
1332 	ret = read_id_reg(mtd);
1333 	if (ret)
1334 		free_bch(doc->bch);
1335 
1336 	return ret;
1337 }
1338 
docg4_detach_chip(struct nand_chip * chip)1339 static void docg4_detach_chip(struct nand_chip *chip)
1340 {
1341 	struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
1342 
1343 	free_bch(doc->bch);
1344 }
1345 
1346 static const struct nand_controller_ops docg4_controller_ops = {
1347 	.attach_chip = docg4_attach_chip,
1348 	.detach_chip = docg4_detach_chip,
1349 };
1350 
probe_docg4(struct platform_device * pdev)1351 static int __init probe_docg4(struct platform_device *pdev)
1352 {
1353 	struct mtd_info *mtd;
1354 	struct nand_chip *nand;
1355 	void __iomem *virtadr;
1356 	struct docg4_priv *doc;
1357 	int len, retval;
1358 	struct resource *r;
1359 	struct device *dev = &pdev->dev;
1360 
1361 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1362 	if (r == NULL) {
1363 		dev_err(dev, "no io memory resource defined!\n");
1364 		return -ENODEV;
1365 	}
1366 
1367 	virtadr = ioremap(r->start, resource_size(r));
1368 	if (!virtadr) {
1369 		dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1370 		return -EIO;
1371 	}
1372 
1373 	len = sizeof(struct nand_chip) + sizeof(struct docg4_priv);
1374 	nand = kzalloc(len, GFP_KERNEL);
1375 	if (nand == NULL) {
1376 		retval = -ENOMEM;
1377 		goto unmap;
1378 	}
1379 
1380 	mtd = nand_to_mtd(nand);
1381 	doc = (struct docg4_priv *) (nand + 1);
1382 	nand_set_controller_data(nand, doc);
1383 	mtd->dev.parent = &pdev->dev;
1384 	doc->virtadr = virtadr;
1385 	doc->dev = dev;
1386 	platform_set_drvdata(pdev, doc);
1387 
1388 	/*
1389 	 * Running nand_scan() with maxchips == 0 will skip nand_scan_ident(),
1390 	 * which is a specific operation with this driver and done in the
1391 	 * ->attach_chip callback.
1392 	 */
1393 	nand->dummy_controller.ops = &docg4_controller_ops;
1394 	retval = nand_scan(mtd, 0);
1395 	if (retval)
1396 		goto free_nand;
1397 
1398 	retval = read_factory_bbt(mtd);
1399 	if (retval)
1400 		goto cleanup_nand;
1401 
1402 	retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1403 	if (retval)
1404 		goto cleanup_nand;
1405 
1406 	doc->mtd = mtd;
1407 
1408 	return 0;
1409 
1410 cleanup_nand:
1411 	nand_cleanup(nand);
1412 free_nand:
1413 	kfree(nand);
1414 unmap:
1415 	iounmap(virtadr);
1416 
1417 	return retval;
1418 }
1419 
cleanup_docg4(struct platform_device * pdev)1420 static int __exit cleanup_docg4(struct platform_device *pdev)
1421 {
1422 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1423 	nand_release(doc->mtd);
1424 	kfree(mtd_to_nand(doc->mtd));
1425 	iounmap(doc->virtadr);
1426 	return 0;
1427 }
1428 
1429 static struct platform_driver docg4_driver = {
1430 	.driver		= {
1431 		.name	= "docg4",
1432 	},
1433 	.suspend	= docg4_suspend,
1434 	.resume		= docg4_resume,
1435 	.remove		= __exit_p(cleanup_docg4),
1436 };
1437 
1438 module_platform_driver_probe(docg4_driver, probe_docg4);
1439 
1440 MODULE_LICENSE("GPL");
1441 MODULE_AUTHOR("Mike Dunn");
1442 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1443