1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #include <linux/security.h>
57 #include <linux/freezer.h>
58 #include <linux/pid_namespace.h>
59 #include <net/netns/generic.h>
60
61 #include "audit.h"
62
63 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64 * (Initialization happens after skb_init is called.) */
65 #define AUDIT_DISABLED -1
66 #define AUDIT_UNINITIALIZED 0
67 #define AUDIT_INITIALIZED 1
68 static int audit_initialized = AUDIT_UNINITIALIZED;
69
70 u32 audit_enabled = AUDIT_OFF;
71 bool audit_ever_enabled = !!AUDIT_OFF;
72
73 EXPORT_SYMBOL_GPL(audit_enabled);
74
75 /* Default state when kernel boots without any parameters. */
76 static u32 audit_default = AUDIT_OFF;
77
78 /* If auditing cannot proceed, audit_failure selects what happens. */
79 static u32 audit_failure = AUDIT_FAIL_PRINTK;
80
81 /* private audit network namespace index */
82 static unsigned int audit_net_id;
83
84 /**
85 * struct audit_net - audit private network namespace data
86 * @sk: communication socket
87 */
88 struct audit_net {
89 struct sock *sk;
90 };
91
92 /**
93 * struct auditd_connection - kernel/auditd connection state
94 * @pid: auditd PID
95 * @portid: netlink portid
96 * @net: the associated network namespace
97 * @rcu: RCU head
98 *
99 * Description:
100 * This struct is RCU protected; you must either hold the RCU lock for reading
101 * or the associated spinlock for writing.
102 */
103 struct auditd_connection {
104 struct pid *pid;
105 u32 portid;
106 struct net *net;
107 struct rcu_head rcu;
108 };
109 static struct auditd_connection __rcu *auditd_conn;
110 static DEFINE_SPINLOCK(auditd_conn_lock);
111
112 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
113 * to that number per second. This prevents DoS attacks, but results in
114 * audit records being dropped. */
115 static u32 audit_rate_limit;
116
117 /* Number of outstanding audit_buffers allowed.
118 * When set to zero, this means unlimited. */
119 static u32 audit_backlog_limit = 64;
120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122
123 /* The identity of the user shutting down the audit system. */
124 static kuid_t audit_sig_uid = INVALID_UID;
125 static pid_t audit_sig_pid = -1;
126 static u32 audit_sig_sid;
127
128 /* Records can be lost in several ways:
129 0) [suppressed in audit_alloc]
130 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131 2) out of memory in audit_log_move [alloc_skb]
132 3) suppressed due to audit_rate_limit
133 4) suppressed due to audit_backlog_limit
134 */
135 static atomic_t audit_lost = ATOMIC_INIT(0);
136
137 /* Monotonically increasing sum of time the kernel has spent
138 * waiting while the backlog limit is exceeded.
139 */
140 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141
142 /* Hash for inode-based rules */
143 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144
145 static struct kmem_cache *audit_buffer_cache;
146
147 /* queue msgs to send via kauditd_task */
148 static struct sk_buff_head audit_queue;
149 /* queue msgs due to temporary unicast send problems */
150 static struct sk_buff_head audit_retry_queue;
151 /* queue msgs waiting for new auditd connection */
152 static struct sk_buff_head audit_hold_queue;
153
154 /* queue servicing thread */
155 static struct task_struct *kauditd_task;
156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157
158 /* waitqueue for callers who are blocked on the audit backlog */
159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160
161 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162 .mask = -1,
163 .features = 0,
164 .lock = 0,};
165
166 static char *audit_feature_names[2] = {
167 "only_unset_loginuid",
168 "loginuid_immutable",
169 };
170
171 /**
172 * struct audit_ctl_mutex - serialize requests from userspace
173 * @lock: the mutex used for locking
174 * @owner: the task which owns the lock
175 *
176 * Description:
177 * This is the lock struct used to ensure we only process userspace requests
178 * in an orderly fashion. We can't simply use a mutex/lock here because we
179 * need to track lock ownership so we don't end up blocking the lock owner in
180 * audit_log_start() or similar.
181 */
182 static struct audit_ctl_mutex {
183 struct mutex lock;
184 void *owner;
185 } audit_cmd_mutex;
186
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records. Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191
192 /* The audit_buffer is used when formatting an audit record. The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue. Multiple audit_buffers can be in
196 * use simultaneously. */
197 struct audit_buffer {
198 struct sk_buff *skb; /* formatted skb ready to send */
199 struct audit_context *ctx; /* NULL or associated context */
200 gfp_t gfp_mask;
201 };
202
203 struct audit_reply {
204 __u32 portid;
205 struct net *net;
206 struct sk_buff *skb;
207 };
208
209 /**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
auditd_test_task(struct task_struct * task)216 int auditd_test_task(struct task_struct *task)
217 {
218 int rc;
219 struct auditd_connection *ac;
220
221 rcu_read_lock();
222 ac = rcu_dereference(auditd_conn);
223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 rcu_read_unlock();
225
226 return rc;
227 }
228
229 /**
230 * audit_ctl_lock - Take the audit control lock
231 */
audit_ctl_lock(void)232 void audit_ctl_lock(void)
233 {
234 mutex_lock(&audit_cmd_mutex.lock);
235 audit_cmd_mutex.owner = current;
236 }
237
238 /**
239 * audit_ctl_unlock - Drop the audit control lock
240 */
audit_ctl_unlock(void)241 void audit_ctl_unlock(void)
242 {
243 audit_cmd_mutex.owner = NULL;
244 mutex_unlock(&audit_cmd_mutex.lock);
245 }
246
247 /**
248 * audit_ctl_owner_current - Test to see if the current task owns the lock
249 *
250 * Description:
251 * Return true if the current task owns the audit control lock, false if it
252 * doesn't own the lock.
253 */
audit_ctl_owner_current(void)254 static bool audit_ctl_owner_current(void)
255 {
256 return (current == audit_cmd_mutex.owner);
257 }
258
259 /**
260 * auditd_pid_vnr - Return the auditd PID relative to the namespace
261 *
262 * Description:
263 * Returns the PID in relation to the namespace, 0 on failure.
264 */
auditd_pid_vnr(void)265 static pid_t auditd_pid_vnr(void)
266 {
267 pid_t pid;
268 const struct auditd_connection *ac;
269
270 rcu_read_lock();
271 ac = rcu_dereference(auditd_conn);
272 if (!ac || !ac->pid)
273 pid = 0;
274 else
275 pid = pid_vnr(ac->pid);
276 rcu_read_unlock();
277
278 return pid;
279 }
280
281 /**
282 * audit_get_sk - Return the audit socket for the given network namespace
283 * @net: the destination network namespace
284 *
285 * Description:
286 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
287 * that a reference is held for the network namespace while the sock is in use.
288 */
audit_get_sk(const struct net * net)289 static struct sock *audit_get_sk(const struct net *net)
290 {
291 struct audit_net *aunet;
292
293 if (!net)
294 return NULL;
295
296 aunet = net_generic(net, audit_net_id);
297 return aunet->sk;
298 }
299
audit_panic(const char * message)300 void audit_panic(const char *message)
301 {
302 switch (audit_failure) {
303 case AUDIT_FAIL_SILENT:
304 break;
305 case AUDIT_FAIL_PRINTK:
306 if (printk_ratelimit())
307 pr_err("%s\n", message);
308 break;
309 case AUDIT_FAIL_PANIC:
310 panic("audit: %s\n", message);
311 break;
312 }
313 }
314
audit_rate_check(void)315 static inline int audit_rate_check(void)
316 {
317 static unsigned long last_check = 0;
318 static int messages = 0;
319 static DEFINE_SPINLOCK(lock);
320 unsigned long flags;
321 unsigned long now;
322 int retval = 0;
323
324 if (!audit_rate_limit)
325 return 1;
326
327 spin_lock_irqsave(&lock, flags);
328 if (++messages < audit_rate_limit) {
329 retval = 1;
330 } else {
331 now = jiffies;
332 if (time_after(now, last_check + HZ)) {
333 last_check = now;
334 messages = 0;
335 retval = 1;
336 }
337 }
338 spin_unlock_irqrestore(&lock, flags);
339
340 return retval;
341 }
342
343 /**
344 * audit_log_lost - conditionally log lost audit message event
345 * @message: the message stating reason for lost audit message
346 *
347 * Emit at least 1 message per second, even if audit_rate_check is
348 * throttling.
349 * Always increment the lost messages counter.
350 */
audit_log_lost(const char * message)351 void audit_log_lost(const char *message)
352 {
353 static unsigned long last_msg = 0;
354 static DEFINE_SPINLOCK(lock);
355 unsigned long flags;
356 unsigned long now;
357 int print;
358
359 atomic_inc(&audit_lost);
360
361 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362
363 if (!print) {
364 spin_lock_irqsave(&lock, flags);
365 now = jiffies;
366 if (time_after(now, last_msg + HZ)) {
367 print = 1;
368 last_msg = now;
369 }
370 spin_unlock_irqrestore(&lock, flags);
371 }
372
373 if (print) {
374 if (printk_ratelimit())
375 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376 atomic_read(&audit_lost),
377 audit_rate_limit,
378 audit_backlog_limit);
379 audit_panic(message);
380 }
381 }
382
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)383 static int audit_log_config_change(char *function_name, u32 new, u32 old,
384 int allow_changes)
385 {
386 struct audit_buffer *ab;
387 int rc = 0;
388
389 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390 if (unlikely(!ab))
391 return rc;
392 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393 audit_log_session_info(ab);
394 rc = audit_log_task_context(ab);
395 if (rc)
396 allow_changes = 0; /* Something weird, deny request */
397 audit_log_format(ab, " res=%d", allow_changes);
398 audit_log_end(ab);
399 return rc;
400 }
401
audit_do_config_change(char * function_name,u32 * to_change,u32 new)402 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403 {
404 int allow_changes, rc = 0;
405 u32 old = *to_change;
406
407 /* check if we are locked */
408 if (audit_enabled == AUDIT_LOCKED)
409 allow_changes = 0;
410 else
411 allow_changes = 1;
412
413 if (audit_enabled != AUDIT_OFF) {
414 rc = audit_log_config_change(function_name, new, old, allow_changes);
415 if (rc)
416 allow_changes = 0;
417 }
418
419 /* If we are allowed, make the change */
420 if (allow_changes == 1)
421 *to_change = new;
422 /* Not allowed, update reason */
423 else if (rc == 0)
424 rc = -EPERM;
425 return rc;
426 }
427
audit_set_rate_limit(u32 limit)428 static int audit_set_rate_limit(u32 limit)
429 {
430 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431 }
432
audit_set_backlog_limit(u32 limit)433 static int audit_set_backlog_limit(u32 limit)
434 {
435 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436 }
437
audit_set_backlog_wait_time(u32 timeout)438 static int audit_set_backlog_wait_time(u32 timeout)
439 {
440 return audit_do_config_change("audit_backlog_wait_time",
441 &audit_backlog_wait_time, timeout);
442 }
443
audit_set_enabled(u32 state)444 static int audit_set_enabled(u32 state)
445 {
446 int rc;
447 if (state > AUDIT_LOCKED)
448 return -EINVAL;
449
450 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
451 if (!rc)
452 audit_ever_enabled |= !!state;
453
454 return rc;
455 }
456
audit_set_failure(u32 state)457 static int audit_set_failure(u32 state)
458 {
459 if (state != AUDIT_FAIL_SILENT
460 && state != AUDIT_FAIL_PRINTK
461 && state != AUDIT_FAIL_PANIC)
462 return -EINVAL;
463
464 return audit_do_config_change("audit_failure", &audit_failure, state);
465 }
466
467 /**
468 * auditd_conn_free - RCU helper to release an auditd connection struct
469 * @rcu: RCU head
470 *
471 * Description:
472 * Drop any references inside the auditd connection tracking struct and free
473 * the memory.
474 */
auditd_conn_free(struct rcu_head * rcu)475 static void auditd_conn_free(struct rcu_head *rcu)
476 {
477 struct auditd_connection *ac;
478
479 ac = container_of(rcu, struct auditd_connection, rcu);
480 put_pid(ac->pid);
481 put_net(ac->net);
482 kfree(ac);
483 }
484
485 /**
486 * auditd_set - Set/Reset the auditd connection state
487 * @pid: auditd PID
488 * @portid: auditd netlink portid
489 * @net: auditd network namespace pointer
490 *
491 * Description:
492 * This function will obtain and drop network namespace references as
493 * necessary. Returns zero on success, negative values on failure.
494 */
auditd_set(struct pid * pid,u32 portid,struct net * net)495 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
496 {
497 unsigned long flags;
498 struct auditd_connection *ac_old, *ac_new;
499
500 if (!pid || !net)
501 return -EINVAL;
502
503 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
504 if (!ac_new)
505 return -ENOMEM;
506 ac_new->pid = get_pid(pid);
507 ac_new->portid = portid;
508 ac_new->net = get_net(net);
509
510 spin_lock_irqsave(&auditd_conn_lock, flags);
511 ac_old = rcu_dereference_protected(auditd_conn,
512 lockdep_is_held(&auditd_conn_lock));
513 rcu_assign_pointer(auditd_conn, ac_new);
514 spin_unlock_irqrestore(&auditd_conn_lock, flags);
515
516 if (ac_old)
517 call_rcu(&ac_old->rcu, auditd_conn_free);
518
519 return 0;
520 }
521
522 /**
523 * kauditd_printk_skb - Print the audit record to the ring buffer
524 * @skb: audit record
525 *
526 * Whatever the reason, this packet may not make it to the auditd connection
527 * so write it via printk so the information isn't completely lost.
528 */
kauditd_printk_skb(struct sk_buff * skb)529 static void kauditd_printk_skb(struct sk_buff *skb)
530 {
531 struct nlmsghdr *nlh = nlmsg_hdr(skb);
532 char *data = nlmsg_data(nlh);
533
534 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
535 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
536 }
537
538 /**
539 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
540 * @skb: audit record
541 * @error: error code (unused)
542 *
543 * Description:
544 * This should only be used by the kauditd_thread when it fails to flush the
545 * hold queue.
546 */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)547 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
548 {
549 /* put the record back in the queue */
550 skb_queue_tail(&audit_hold_queue, skb);
551 }
552
553 /**
554 * kauditd_hold_skb - Queue an audit record, waiting for auditd
555 * @skb: audit record
556 * @error: error code
557 *
558 * Description:
559 * Queue the audit record, waiting for an instance of auditd. When this
560 * function is called we haven't given up yet on sending the record, but things
561 * are not looking good. The first thing we want to do is try to write the
562 * record via printk and then see if we want to try and hold on to the record
563 * and queue it, if we have room. If we want to hold on to the record, but we
564 * don't have room, record a record lost message.
565 */
kauditd_hold_skb(struct sk_buff * skb,int error)566 static void kauditd_hold_skb(struct sk_buff *skb, int error)
567 {
568 /* at this point it is uncertain if we will ever send this to auditd so
569 * try to send the message via printk before we go any further */
570 kauditd_printk_skb(skb);
571
572 /* can we just silently drop the message? */
573 if (!audit_default)
574 goto drop;
575
576 /* the hold queue is only for when the daemon goes away completely,
577 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
578 * record on the retry queue unless it's full, in which case drop it
579 */
580 if (error == -EAGAIN) {
581 if (!audit_backlog_limit ||
582 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
583 skb_queue_tail(&audit_retry_queue, skb);
584 return;
585 }
586 audit_log_lost("kauditd retry queue overflow");
587 goto drop;
588 }
589
590 /* if we have room in the hold queue, queue the message */
591 if (!audit_backlog_limit ||
592 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
593 skb_queue_tail(&audit_hold_queue, skb);
594 return;
595 }
596
597 /* we have no other options - drop the message */
598 audit_log_lost("kauditd hold queue overflow");
599 drop:
600 kfree_skb(skb);
601 }
602
603 /**
604 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
605 * @skb: audit record
606 * @error: error code (unused)
607 *
608 * Description:
609 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
610 * but for some reason we are having problems sending it audit records so
611 * queue the given record and attempt to resend.
612 */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)613 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
614 {
615 if (!audit_backlog_limit ||
616 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
617 skb_queue_tail(&audit_retry_queue, skb);
618 return;
619 }
620
621 /* we have to drop the record, send it via printk as a last effort */
622 kauditd_printk_skb(skb);
623 audit_log_lost("kauditd retry queue overflow");
624 kfree_skb(skb);
625 }
626
627 /**
628 * auditd_reset - Disconnect the auditd connection
629 * @ac: auditd connection state
630 *
631 * Description:
632 * Break the auditd/kauditd connection and move all the queued records into the
633 * hold queue in case auditd reconnects. It is important to note that the @ac
634 * pointer should never be dereferenced inside this function as it may be NULL
635 * or invalid, you can only compare the memory address! If @ac is NULL then
636 * the connection will always be reset.
637 */
auditd_reset(const struct auditd_connection * ac)638 static void auditd_reset(const struct auditd_connection *ac)
639 {
640 unsigned long flags;
641 struct sk_buff *skb;
642 struct auditd_connection *ac_old;
643
644 /* if it isn't already broken, break the connection */
645 spin_lock_irqsave(&auditd_conn_lock, flags);
646 ac_old = rcu_dereference_protected(auditd_conn,
647 lockdep_is_held(&auditd_conn_lock));
648 if (ac && ac != ac_old) {
649 /* someone already registered a new auditd connection */
650 spin_unlock_irqrestore(&auditd_conn_lock, flags);
651 return;
652 }
653 rcu_assign_pointer(auditd_conn, NULL);
654 spin_unlock_irqrestore(&auditd_conn_lock, flags);
655
656 if (ac_old)
657 call_rcu(&ac_old->rcu, auditd_conn_free);
658
659 /* flush the retry queue to the hold queue, but don't touch the main
660 * queue since we need to process that normally for multicast */
661 while ((skb = skb_dequeue(&audit_retry_queue)))
662 kauditd_hold_skb(skb, -ECONNREFUSED);
663 }
664
665 /**
666 * auditd_send_unicast_skb - Send a record via unicast to auditd
667 * @skb: audit record
668 *
669 * Description:
670 * Send a skb to the audit daemon, returns positive/zero values on success and
671 * negative values on failure; in all cases the skb will be consumed by this
672 * function. If the send results in -ECONNREFUSED the connection with auditd
673 * will be reset. This function may sleep so callers should not hold any locks
674 * where this would cause a problem.
675 */
auditd_send_unicast_skb(struct sk_buff * skb)676 static int auditd_send_unicast_skb(struct sk_buff *skb)
677 {
678 int rc;
679 u32 portid;
680 struct net *net;
681 struct sock *sk;
682 struct auditd_connection *ac;
683
684 /* NOTE: we can't call netlink_unicast while in the RCU section so
685 * take a reference to the network namespace and grab local
686 * copies of the namespace, the sock, and the portid; the
687 * namespace and sock aren't going to go away while we hold a
688 * reference and if the portid does become invalid after the RCU
689 * section netlink_unicast() should safely return an error */
690
691 rcu_read_lock();
692 ac = rcu_dereference(auditd_conn);
693 if (!ac) {
694 rcu_read_unlock();
695 kfree_skb(skb);
696 rc = -ECONNREFUSED;
697 goto err;
698 }
699 net = get_net(ac->net);
700 sk = audit_get_sk(net);
701 portid = ac->portid;
702 rcu_read_unlock();
703
704 rc = netlink_unicast(sk, skb, portid, 0);
705 put_net(net);
706 if (rc < 0)
707 goto err;
708
709 return rc;
710
711 err:
712 if (ac && rc == -ECONNREFUSED)
713 auditd_reset(ac);
714 return rc;
715 }
716
717 /**
718 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
719 * @sk: the sending sock
720 * @portid: the netlink destination
721 * @queue: the skb queue to process
722 * @retry_limit: limit on number of netlink unicast failures
723 * @skb_hook: per-skb hook for additional processing
724 * @err_hook: hook called if the skb fails the netlink unicast send
725 *
726 * Description:
727 * Run through the given queue and attempt to send the audit records to auditd,
728 * returns zero on success, negative values on failure. It is up to the caller
729 * to ensure that the @sk is valid for the duration of this function.
730 *
731 */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))732 static int kauditd_send_queue(struct sock *sk, u32 portid,
733 struct sk_buff_head *queue,
734 unsigned int retry_limit,
735 void (*skb_hook)(struct sk_buff *skb),
736 void (*err_hook)(struct sk_buff *skb, int error))
737 {
738 int rc = 0;
739 struct sk_buff *skb = NULL;
740 struct sk_buff *skb_tail;
741 unsigned int failed = 0;
742
743 /* NOTE: kauditd_thread takes care of all our locking, we just use
744 * the netlink info passed to us (e.g. sk and portid) */
745
746 skb_tail = skb_peek_tail(queue);
747 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
748 /* call the skb_hook for each skb we touch */
749 if (skb_hook)
750 (*skb_hook)(skb);
751
752 /* can we send to anyone via unicast? */
753 if (!sk) {
754 if (err_hook)
755 (*err_hook)(skb, -ECONNREFUSED);
756 continue;
757 }
758
759 retry:
760 /* grab an extra skb reference in case of error */
761 skb_get(skb);
762 rc = netlink_unicast(sk, skb, portid, 0);
763 if (rc < 0) {
764 /* send failed - try a few times unless fatal error */
765 if (++failed >= retry_limit ||
766 rc == -ECONNREFUSED || rc == -EPERM) {
767 sk = NULL;
768 if (err_hook)
769 (*err_hook)(skb, rc);
770 if (rc == -EAGAIN)
771 rc = 0;
772 /* continue to drain the queue */
773 continue;
774 } else
775 goto retry;
776 } else {
777 /* skb sent - drop the extra reference and continue */
778 consume_skb(skb);
779 failed = 0;
780 }
781 }
782
783 return (rc >= 0 ? 0 : rc);
784 }
785
786 /*
787 * kauditd_send_multicast_skb - Send a record to any multicast listeners
788 * @skb: audit record
789 *
790 * Description:
791 * Write a multicast message to anyone listening in the initial network
792 * namespace. This function doesn't consume an skb as might be expected since
793 * it has to copy it anyways.
794 */
kauditd_send_multicast_skb(struct sk_buff * skb)795 static void kauditd_send_multicast_skb(struct sk_buff *skb)
796 {
797 struct sk_buff *copy;
798 struct sock *sock = audit_get_sk(&init_net);
799 struct nlmsghdr *nlh;
800
801 /* NOTE: we are not taking an additional reference for init_net since
802 * we don't have to worry about it going away */
803
804 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
805 return;
806
807 /*
808 * The seemingly wasteful skb_copy() rather than bumping the refcount
809 * using skb_get() is necessary because non-standard mods are made to
810 * the skb by the original kaudit unicast socket send routine. The
811 * existing auditd daemon assumes this breakage. Fixing this would
812 * require co-ordinating a change in the established protocol between
813 * the kaudit kernel subsystem and the auditd userspace code. There is
814 * no reason for new multicast clients to continue with this
815 * non-compliance.
816 */
817 copy = skb_copy(skb, GFP_KERNEL);
818 if (!copy)
819 return;
820 nlh = nlmsg_hdr(copy);
821 nlh->nlmsg_len = skb->len;
822
823 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
824 }
825
826 /**
827 * kauditd_thread - Worker thread to send audit records to userspace
828 * @dummy: unused
829 */
kauditd_thread(void * dummy)830 static int kauditd_thread(void *dummy)
831 {
832 int rc;
833 u32 portid = 0;
834 struct net *net = NULL;
835 struct sock *sk = NULL;
836 struct auditd_connection *ac;
837
838 #define UNICAST_RETRIES 5
839
840 set_freezable();
841 while (!kthread_should_stop()) {
842 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
843 rcu_read_lock();
844 ac = rcu_dereference(auditd_conn);
845 if (!ac) {
846 rcu_read_unlock();
847 goto main_queue;
848 }
849 net = get_net(ac->net);
850 sk = audit_get_sk(net);
851 portid = ac->portid;
852 rcu_read_unlock();
853
854 /* attempt to flush the hold queue */
855 rc = kauditd_send_queue(sk, portid,
856 &audit_hold_queue, UNICAST_RETRIES,
857 NULL, kauditd_rehold_skb);
858 if (rc < 0) {
859 sk = NULL;
860 auditd_reset(ac);
861 goto main_queue;
862 }
863
864 /* attempt to flush the retry queue */
865 rc = kauditd_send_queue(sk, portid,
866 &audit_retry_queue, UNICAST_RETRIES,
867 NULL, kauditd_hold_skb);
868 if (rc < 0) {
869 sk = NULL;
870 auditd_reset(ac);
871 goto main_queue;
872 }
873
874 main_queue:
875 /* process the main queue - do the multicast send and attempt
876 * unicast, dump failed record sends to the retry queue; if
877 * sk == NULL due to previous failures we will just do the
878 * multicast send and move the record to the hold queue */
879 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
880 kauditd_send_multicast_skb,
881 (sk ?
882 kauditd_retry_skb : kauditd_hold_skb));
883 if (ac && rc < 0)
884 auditd_reset(ac);
885 sk = NULL;
886
887 /* drop our netns reference, no auditd sends past this line */
888 if (net) {
889 put_net(net);
890 net = NULL;
891 }
892
893 /* we have processed all the queues so wake everyone */
894 wake_up(&audit_backlog_wait);
895
896 /* NOTE: we want to wake up if there is anything on the queue,
897 * regardless of if an auditd is connected, as we need to
898 * do the multicast send and rotate records from the
899 * main queue to the retry/hold queues */
900 wait_event_freezable(kauditd_wait,
901 (skb_queue_len(&audit_queue) ? 1 : 0));
902 }
903
904 return 0;
905 }
906
audit_send_list_thread(void * _dest)907 int audit_send_list_thread(void *_dest)
908 {
909 struct audit_netlink_list *dest = _dest;
910 struct sk_buff *skb;
911 struct sock *sk = audit_get_sk(dest->net);
912
913 /* wait for parent to finish and send an ACK */
914 audit_ctl_lock();
915 audit_ctl_unlock();
916
917 while ((skb = __skb_dequeue(&dest->q)) != NULL)
918 netlink_unicast(sk, skb, dest->portid, 0);
919
920 put_net(dest->net);
921 kfree(dest);
922
923 return 0;
924 }
925
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)926 struct sk_buff *audit_make_reply(int seq, int type, int done,
927 int multi, const void *payload, int size)
928 {
929 struct sk_buff *skb;
930 struct nlmsghdr *nlh;
931 void *data;
932 int flags = multi ? NLM_F_MULTI : 0;
933 int t = done ? NLMSG_DONE : type;
934
935 skb = nlmsg_new(size, GFP_KERNEL);
936 if (!skb)
937 return NULL;
938
939 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
940 if (!nlh)
941 goto out_kfree_skb;
942 data = nlmsg_data(nlh);
943 memcpy(data, payload, size);
944 return skb;
945
946 out_kfree_skb:
947 kfree_skb(skb);
948 return NULL;
949 }
950
audit_free_reply(struct audit_reply * reply)951 static void audit_free_reply(struct audit_reply *reply)
952 {
953 if (!reply)
954 return;
955
956 kfree_skb(reply->skb);
957 if (reply->net)
958 put_net(reply->net);
959 kfree(reply);
960 }
961
audit_send_reply_thread(void * arg)962 static int audit_send_reply_thread(void *arg)
963 {
964 struct audit_reply *reply = (struct audit_reply *)arg;
965
966 audit_ctl_lock();
967 audit_ctl_unlock();
968
969 /* Ignore failure. It'll only happen if the sender goes away,
970 because our timeout is set to infinite. */
971 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
972 reply->skb = NULL;
973 audit_free_reply(reply);
974 return 0;
975 }
976
977 /**
978 * audit_send_reply - send an audit reply message via netlink
979 * @request_skb: skb of request we are replying to (used to target the reply)
980 * @seq: sequence number
981 * @type: audit message type
982 * @done: done (last) flag
983 * @multi: multi-part message flag
984 * @payload: payload data
985 * @size: payload size
986 *
987 * Allocates a skb, builds the netlink message, and sends it to the port id.
988 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)989 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
990 int multi, const void *payload, int size)
991 {
992 struct task_struct *tsk;
993 struct audit_reply *reply;
994
995 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
996 if (!reply)
997 return;
998
999 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1000 if (!reply->skb)
1001 goto err;
1002 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1003 reply->portid = NETLINK_CB(request_skb).portid;
1004
1005 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1006 if (IS_ERR(tsk))
1007 goto err;
1008
1009 return;
1010
1011 err:
1012 audit_free_reply(reply);
1013 }
1014
1015 /*
1016 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1017 * control messages.
1018 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1019 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1020 {
1021 int err = 0;
1022
1023 /* Only support initial user namespace for now. */
1024 /*
1025 * We return ECONNREFUSED because it tricks userspace into thinking
1026 * that audit was not configured into the kernel. Lots of users
1027 * configure their PAM stack (because that's what the distro does)
1028 * to reject login if unable to send messages to audit. If we return
1029 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1030 * configured in and will let login proceed. If we return EPERM
1031 * userspace will reject all logins. This should be removed when we
1032 * support non init namespaces!!
1033 */
1034 if (current_user_ns() != &init_user_ns)
1035 return -ECONNREFUSED;
1036
1037 switch (msg_type) {
1038 case AUDIT_LIST:
1039 case AUDIT_ADD:
1040 case AUDIT_DEL:
1041 return -EOPNOTSUPP;
1042 case AUDIT_GET:
1043 case AUDIT_SET:
1044 case AUDIT_GET_FEATURE:
1045 case AUDIT_SET_FEATURE:
1046 case AUDIT_LIST_RULES:
1047 case AUDIT_ADD_RULE:
1048 case AUDIT_DEL_RULE:
1049 case AUDIT_SIGNAL_INFO:
1050 case AUDIT_TTY_GET:
1051 case AUDIT_TTY_SET:
1052 case AUDIT_TRIM:
1053 case AUDIT_MAKE_EQUIV:
1054 /* Only support auditd and auditctl in initial pid namespace
1055 * for now. */
1056 if (task_active_pid_ns(current) != &init_pid_ns)
1057 return -EPERM;
1058
1059 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1060 err = -EPERM;
1061 break;
1062 case AUDIT_USER:
1063 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1064 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1065 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1066 err = -EPERM;
1067 break;
1068 default: /* bad msg */
1069 err = -EINVAL;
1070 }
1071
1072 return err;
1073 }
1074
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1075 static void audit_log_common_recv_msg(struct audit_context *context,
1076 struct audit_buffer **ab, u16 msg_type)
1077 {
1078 uid_t uid = from_kuid(&init_user_ns, current_uid());
1079 pid_t pid = task_tgid_nr(current);
1080
1081 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1082 *ab = NULL;
1083 return;
1084 }
1085
1086 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1087 if (unlikely(!*ab))
1088 return;
1089 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1090 audit_log_session_info(*ab);
1091 audit_log_task_context(*ab);
1092 }
1093
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1094 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1095 u16 msg_type)
1096 {
1097 audit_log_common_recv_msg(NULL, ab, msg_type);
1098 }
1099
is_audit_feature_set(int i)1100 static int is_audit_feature_set(int i)
1101 {
1102 return af.features & AUDIT_FEATURE_TO_MASK(i);
1103 }
1104
1105
audit_get_feature(struct sk_buff * skb)1106 static int audit_get_feature(struct sk_buff *skb)
1107 {
1108 u32 seq;
1109
1110 seq = nlmsg_hdr(skb)->nlmsg_seq;
1111
1112 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1113
1114 return 0;
1115 }
1116
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1117 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1118 u32 old_lock, u32 new_lock, int res)
1119 {
1120 struct audit_buffer *ab;
1121
1122 if (audit_enabled == AUDIT_OFF)
1123 return;
1124
1125 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1126 if (!ab)
1127 return;
1128 audit_log_task_info(ab);
1129 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1130 audit_feature_names[which], !!old_feature, !!new_feature,
1131 !!old_lock, !!new_lock, res);
1132 audit_log_end(ab);
1133 }
1134
audit_set_feature(struct audit_features * uaf)1135 static int audit_set_feature(struct audit_features *uaf)
1136 {
1137 int i;
1138
1139 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1140
1141 /* if there is ever a version 2 we should handle that here */
1142
1143 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1144 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1145 u32 old_feature, new_feature, old_lock, new_lock;
1146
1147 /* if we are not changing this feature, move along */
1148 if (!(feature & uaf->mask))
1149 continue;
1150
1151 old_feature = af.features & feature;
1152 new_feature = uaf->features & feature;
1153 new_lock = (uaf->lock | af.lock) & feature;
1154 old_lock = af.lock & feature;
1155
1156 /* are we changing a locked feature? */
1157 if (old_lock && (new_feature != old_feature)) {
1158 audit_log_feature_change(i, old_feature, new_feature,
1159 old_lock, new_lock, 0);
1160 return -EPERM;
1161 }
1162 }
1163 /* nothing invalid, do the changes */
1164 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1165 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1166 u32 old_feature, new_feature, old_lock, new_lock;
1167
1168 /* if we are not changing this feature, move along */
1169 if (!(feature & uaf->mask))
1170 continue;
1171
1172 old_feature = af.features & feature;
1173 new_feature = uaf->features & feature;
1174 old_lock = af.lock & feature;
1175 new_lock = (uaf->lock | af.lock) & feature;
1176
1177 if (new_feature != old_feature)
1178 audit_log_feature_change(i, old_feature, new_feature,
1179 old_lock, new_lock, 1);
1180
1181 if (new_feature)
1182 af.features |= feature;
1183 else
1184 af.features &= ~feature;
1185 af.lock |= new_lock;
1186 }
1187
1188 return 0;
1189 }
1190
audit_replace(struct pid * pid)1191 static int audit_replace(struct pid *pid)
1192 {
1193 pid_t pvnr;
1194 struct sk_buff *skb;
1195
1196 pvnr = pid_vnr(pid);
1197 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1198 if (!skb)
1199 return -ENOMEM;
1200 return auditd_send_unicast_skb(skb);
1201 }
1202
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)1203 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1204 {
1205 u32 seq;
1206 void *data;
1207 int data_len;
1208 int err;
1209 struct audit_buffer *ab;
1210 u16 msg_type = nlh->nlmsg_type;
1211 struct audit_sig_info *sig_data;
1212 char *ctx = NULL;
1213 u32 len;
1214
1215 err = audit_netlink_ok(skb, msg_type);
1216 if (err)
1217 return err;
1218
1219 seq = nlh->nlmsg_seq;
1220 data = nlmsg_data(nlh);
1221 data_len = nlmsg_len(nlh);
1222
1223 switch (msg_type) {
1224 case AUDIT_GET: {
1225 struct audit_status s;
1226 memset(&s, 0, sizeof(s));
1227 s.enabled = audit_enabled;
1228 s.failure = audit_failure;
1229 /* NOTE: use pid_vnr() so the PID is relative to the current
1230 * namespace */
1231 s.pid = auditd_pid_vnr();
1232 s.rate_limit = audit_rate_limit;
1233 s.backlog_limit = audit_backlog_limit;
1234 s.lost = atomic_read(&audit_lost);
1235 s.backlog = skb_queue_len(&audit_queue);
1236 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1237 s.backlog_wait_time = audit_backlog_wait_time;
1238 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1239 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1240 break;
1241 }
1242 case AUDIT_SET: {
1243 struct audit_status s;
1244 memset(&s, 0, sizeof(s));
1245 /* guard against past and future API changes */
1246 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1247 if (s.mask & AUDIT_STATUS_ENABLED) {
1248 err = audit_set_enabled(s.enabled);
1249 if (err < 0)
1250 return err;
1251 }
1252 if (s.mask & AUDIT_STATUS_FAILURE) {
1253 err = audit_set_failure(s.failure);
1254 if (err < 0)
1255 return err;
1256 }
1257 if (s.mask & AUDIT_STATUS_PID) {
1258 /* NOTE: we are using the vnr PID functions below
1259 * because the s.pid value is relative to the
1260 * namespace of the caller; at present this
1261 * doesn't matter much since you can really only
1262 * run auditd from the initial pid namespace, but
1263 * something to keep in mind if this changes */
1264 pid_t new_pid = s.pid;
1265 pid_t auditd_pid;
1266 struct pid *req_pid = task_tgid(current);
1267
1268 /* Sanity check - PID values must match. Setting
1269 * pid to 0 is how auditd ends auditing. */
1270 if (new_pid && (new_pid != pid_vnr(req_pid)))
1271 return -EINVAL;
1272
1273 /* test the auditd connection */
1274 audit_replace(req_pid);
1275
1276 auditd_pid = auditd_pid_vnr();
1277 if (auditd_pid) {
1278 /* replacing a healthy auditd is not allowed */
1279 if (new_pid) {
1280 audit_log_config_change("audit_pid",
1281 new_pid, auditd_pid, 0);
1282 return -EEXIST;
1283 }
1284 /* only current auditd can unregister itself */
1285 if (pid_vnr(req_pid) != auditd_pid) {
1286 audit_log_config_change("audit_pid",
1287 new_pid, auditd_pid, 0);
1288 return -EACCES;
1289 }
1290 }
1291
1292 if (new_pid) {
1293 /* register a new auditd connection */
1294 err = auditd_set(req_pid,
1295 NETLINK_CB(skb).portid,
1296 sock_net(NETLINK_CB(skb).sk));
1297 if (audit_enabled != AUDIT_OFF)
1298 audit_log_config_change("audit_pid",
1299 new_pid,
1300 auditd_pid,
1301 err ? 0 : 1);
1302 if (err)
1303 return err;
1304
1305 /* try to process any backlog */
1306 wake_up_interruptible(&kauditd_wait);
1307 } else {
1308 if (audit_enabled != AUDIT_OFF)
1309 audit_log_config_change("audit_pid",
1310 new_pid,
1311 auditd_pid, 1);
1312
1313 /* unregister the auditd connection */
1314 auditd_reset(NULL);
1315 }
1316 }
1317 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1318 err = audit_set_rate_limit(s.rate_limit);
1319 if (err < 0)
1320 return err;
1321 }
1322 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1323 err = audit_set_backlog_limit(s.backlog_limit);
1324 if (err < 0)
1325 return err;
1326 }
1327 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1328 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1329 return -EINVAL;
1330 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1331 return -EINVAL;
1332 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1333 if (err < 0)
1334 return err;
1335 }
1336 if (s.mask == AUDIT_STATUS_LOST) {
1337 u32 lost = atomic_xchg(&audit_lost, 0);
1338
1339 audit_log_config_change("lost", 0, lost, 1);
1340 return lost;
1341 }
1342 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1343 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1344
1345 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1346 return actual;
1347 }
1348 break;
1349 }
1350 case AUDIT_GET_FEATURE:
1351 err = audit_get_feature(skb);
1352 if (err)
1353 return err;
1354 break;
1355 case AUDIT_SET_FEATURE:
1356 if (data_len < sizeof(struct audit_features))
1357 return -EINVAL;
1358 err = audit_set_feature(data);
1359 if (err)
1360 return err;
1361 break;
1362 case AUDIT_USER:
1363 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1364 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1365 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1366 return 0;
1367 /* exit early if there isn't at least one character to print */
1368 if (data_len < 2)
1369 return -EINVAL;
1370
1371 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1372 if (err == 1) { /* match or error */
1373 char *str = data;
1374
1375 err = 0;
1376 if (msg_type == AUDIT_USER_TTY) {
1377 err = tty_audit_push();
1378 if (err)
1379 break;
1380 }
1381 audit_log_user_recv_msg(&ab, msg_type);
1382 if (msg_type != AUDIT_USER_TTY) {
1383 /* ensure NULL termination */
1384 str[data_len - 1] = '\0';
1385 audit_log_format(ab, " msg='%.*s'",
1386 AUDIT_MESSAGE_TEXT_MAX,
1387 str);
1388 } else {
1389 audit_log_format(ab, " data=");
1390 if (str[data_len - 1] == '\0')
1391 data_len--;
1392 audit_log_n_untrustedstring(ab, str, data_len);
1393 }
1394 audit_log_end(ab);
1395 }
1396 break;
1397 case AUDIT_ADD_RULE:
1398 case AUDIT_DEL_RULE:
1399 if (data_len < sizeof(struct audit_rule_data))
1400 return -EINVAL;
1401 if (audit_enabled == AUDIT_LOCKED) {
1402 audit_log_common_recv_msg(audit_context(), &ab,
1403 AUDIT_CONFIG_CHANGE);
1404 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1405 msg_type == AUDIT_ADD_RULE ?
1406 "add_rule" : "remove_rule",
1407 audit_enabled);
1408 audit_log_end(ab);
1409 return -EPERM;
1410 }
1411 err = audit_rule_change(msg_type, seq, data, data_len);
1412 break;
1413 case AUDIT_LIST_RULES:
1414 err = audit_list_rules_send(skb, seq);
1415 break;
1416 case AUDIT_TRIM:
1417 audit_trim_trees();
1418 audit_log_common_recv_msg(audit_context(), &ab,
1419 AUDIT_CONFIG_CHANGE);
1420 audit_log_format(ab, " op=trim res=1");
1421 audit_log_end(ab);
1422 break;
1423 case AUDIT_MAKE_EQUIV: {
1424 void *bufp = data;
1425 u32 sizes[2];
1426 size_t msglen = data_len;
1427 char *old, *new;
1428
1429 err = -EINVAL;
1430 if (msglen < 2 * sizeof(u32))
1431 break;
1432 memcpy(sizes, bufp, 2 * sizeof(u32));
1433 bufp += 2 * sizeof(u32);
1434 msglen -= 2 * sizeof(u32);
1435 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1436 if (IS_ERR(old)) {
1437 err = PTR_ERR(old);
1438 break;
1439 }
1440 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1441 if (IS_ERR(new)) {
1442 err = PTR_ERR(new);
1443 kfree(old);
1444 break;
1445 }
1446 /* OK, here comes... */
1447 err = audit_tag_tree(old, new);
1448
1449 audit_log_common_recv_msg(audit_context(), &ab,
1450 AUDIT_CONFIG_CHANGE);
1451 audit_log_format(ab, " op=make_equiv old=");
1452 audit_log_untrustedstring(ab, old);
1453 audit_log_format(ab, " new=");
1454 audit_log_untrustedstring(ab, new);
1455 audit_log_format(ab, " res=%d", !err);
1456 audit_log_end(ab);
1457 kfree(old);
1458 kfree(new);
1459 break;
1460 }
1461 case AUDIT_SIGNAL_INFO:
1462 len = 0;
1463 if (audit_sig_sid) {
1464 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1465 if (err)
1466 return err;
1467 }
1468 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1469 if (!sig_data) {
1470 if (audit_sig_sid)
1471 security_release_secctx(ctx, len);
1472 return -ENOMEM;
1473 }
1474 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1475 sig_data->pid = audit_sig_pid;
1476 if (audit_sig_sid) {
1477 memcpy(sig_data->ctx, ctx, len);
1478 security_release_secctx(ctx, len);
1479 }
1480 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1481 sig_data, struct_size(sig_data, ctx, len));
1482 kfree(sig_data);
1483 break;
1484 case AUDIT_TTY_GET: {
1485 struct audit_tty_status s;
1486 unsigned int t;
1487
1488 t = READ_ONCE(current->signal->audit_tty);
1489 s.enabled = t & AUDIT_TTY_ENABLE;
1490 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1491
1492 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1493 break;
1494 }
1495 case AUDIT_TTY_SET: {
1496 struct audit_tty_status s, old;
1497 struct audit_buffer *ab;
1498 unsigned int t;
1499
1500 memset(&s, 0, sizeof(s));
1501 /* guard against past and future API changes */
1502 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1503 /* check if new data is valid */
1504 if ((s.enabled != 0 && s.enabled != 1) ||
1505 (s.log_passwd != 0 && s.log_passwd != 1))
1506 err = -EINVAL;
1507
1508 if (err)
1509 t = READ_ONCE(current->signal->audit_tty);
1510 else {
1511 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1512 t = xchg(¤t->signal->audit_tty, t);
1513 }
1514 old.enabled = t & AUDIT_TTY_ENABLE;
1515 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1516
1517 audit_log_common_recv_msg(audit_context(), &ab,
1518 AUDIT_CONFIG_CHANGE);
1519 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1520 " old-log_passwd=%d new-log_passwd=%d res=%d",
1521 old.enabled, s.enabled, old.log_passwd,
1522 s.log_passwd, !err);
1523 audit_log_end(ab);
1524 break;
1525 }
1526 default:
1527 err = -EINVAL;
1528 break;
1529 }
1530
1531 return err < 0 ? err : 0;
1532 }
1533
1534 /**
1535 * audit_receive - receive messages from a netlink control socket
1536 * @skb: the message buffer
1537 *
1538 * Parse the provided skb and deal with any messages that may be present,
1539 * malformed skbs are discarded.
1540 */
audit_receive(struct sk_buff * skb)1541 static void audit_receive(struct sk_buff *skb)
1542 {
1543 struct nlmsghdr *nlh;
1544 /*
1545 * len MUST be signed for nlmsg_next to be able to dec it below 0
1546 * if the nlmsg_len was not aligned
1547 */
1548 int len;
1549 int err;
1550
1551 nlh = nlmsg_hdr(skb);
1552 len = skb->len;
1553
1554 audit_ctl_lock();
1555 while (nlmsg_ok(nlh, len)) {
1556 err = audit_receive_msg(skb, nlh);
1557 /* if err or if this message says it wants a response */
1558 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1559 netlink_ack(skb, nlh, err, NULL);
1560
1561 nlh = nlmsg_next(nlh, &len);
1562 }
1563 audit_ctl_unlock();
1564
1565 /* can't block with the ctrl lock, so penalize the sender now */
1566 if (audit_backlog_limit &&
1567 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1568 DECLARE_WAITQUEUE(wait, current);
1569
1570 /* wake kauditd to try and flush the queue */
1571 wake_up_interruptible(&kauditd_wait);
1572
1573 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1574 set_current_state(TASK_UNINTERRUPTIBLE);
1575 schedule_timeout(audit_backlog_wait_time);
1576 remove_wait_queue(&audit_backlog_wait, &wait);
1577 }
1578 }
1579
1580 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1581 static void audit_log_multicast(int group, const char *op, int err)
1582 {
1583 const struct cred *cred;
1584 struct tty_struct *tty;
1585 char comm[sizeof(current->comm)];
1586 struct audit_buffer *ab;
1587
1588 if (!audit_enabled)
1589 return;
1590
1591 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1592 if (!ab)
1593 return;
1594
1595 cred = current_cred();
1596 tty = audit_get_tty();
1597 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1598 task_pid_nr(current),
1599 from_kuid(&init_user_ns, cred->uid),
1600 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1601 tty ? tty_name(tty) : "(none)",
1602 audit_get_sessionid(current));
1603 audit_put_tty(tty);
1604 audit_log_task_context(ab); /* subj= */
1605 audit_log_format(ab, " comm=");
1606 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1607 audit_log_d_path_exe(ab, current->mm); /* exe= */
1608 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1609 audit_log_end(ab);
1610 }
1611
1612 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1613 static int audit_multicast_bind(struct net *net, int group)
1614 {
1615 int err = 0;
1616
1617 if (!capable(CAP_AUDIT_READ))
1618 err = -EPERM;
1619 audit_log_multicast(group, "connect", err);
1620 return err;
1621 }
1622
audit_multicast_unbind(struct net * net,int group)1623 static void audit_multicast_unbind(struct net *net, int group)
1624 {
1625 audit_log_multicast(group, "disconnect", 0);
1626 }
1627
audit_net_init(struct net * net)1628 static int __net_init audit_net_init(struct net *net)
1629 {
1630 struct netlink_kernel_cfg cfg = {
1631 .input = audit_receive,
1632 .bind = audit_multicast_bind,
1633 .unbind = audit_multicast_unbind,
1634 .flags = NL_CFG_F_NONROOT_RECV,
1635 .groups = AUDIT_NLGRP_MAX,
1636 };
1637
1638 struct audit_net *aunet = net_generic(net, audit_net_id);
1639
1640 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1641 if (aunet->sk == NULL) {
1642 audit_panic("cannot initialize netlink socket in namespace");
1643 return -ENOMEM;
1644 }
1645 /* limit the timeout in case auditd is blocked/stopped */
1646 aunet->sk->sk_sndtimeo = HZ / 10;
1647
1648 return 0;
1649 }
1650
audit_net_exit(struct net * net)1651 static void __net_exit audit_net_exit(struct net *net)
1652 {
1653 struct audit_net *aunet = net_generic(net, audit_net_id);
1654
1655 /* NOTE: you would think that we would want to check the auditd
1656 * connection and potentially reset it here if it lives in this
1657 * namespace, but since the auditd connection tracking struct holds a
1658 * reference to this namespace (see auditd_set()) we are only ever
1659 * going to get here after that connection has been released */
1660
1661 netlink_kernel_release(aunet->sk);
1662 }
1663
1664 static struct pernet_operations audit_net_ops __net_initdata = {
1665 .init = audit_net_init,
1666 .exit = audit_net_exit,
1667 .id = &audit_net_id,
1668 .size = sizeof(struct audit_net),
1669 };
1670
1671 /* Initialize audit support at boot time. */
audit_init(void)1672 static int __init audit_init(void)
1673 {
1674 int i;
1675
1676 if (audit_initialized == AUDIT_DISABLED)
1677 return 0;
1678
1679 audit_buffer_cache = kmem_cache_create("audit_buffer",
1680 sizeof(struct audit_buffer),
1681 0, SLAB_PANIC, NULL);
1682
1683 skb_queue_head_init(&audit_queue);
1684 skb_queue_head_init(&audit_retry_queue);
1685 skb_queue_head_init(&audit_hold_queue);
1686
1687 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1688 INIT_LIST_HEAD(&audit_inode_hash[i]);
1689
1690 mutex_init(&audit_cmd_mutex.lock);
1691 audit_cmd_mutex.owner = NULL;
1692
1693 pr_info("initializing netlink subsys (%s)\n",
1694 audit_default ? "enabled" : "disabled");
1695 register_pernet_subsys(&audit_net_ops);
1696
1697 audit_initialized = AUDIT_INITIALIZED;
1698
1699 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1700 if (IS_ERR(kauditd_task)) {
1701 int err = PTR_ERR(kauditd_task);
1702 panic("audit: failed to start the kauditd thread (%d)\n", err);
1703 }
1704
1705 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1706 "state=initialized audit_enabled=%u res=1",
1707 audit_enabled);
1708
1709 return 0;
1710 }
1711 postcore_initcall(audit_init);
1712
1713 /*
1714 * Process kernel command-line parameter at boot time.
1715 * audit={0|off} or audit={1|on}.
1716 */
audit_enable(char * str)1717 static int __init audit_enable(char *str)
1718 {
1719 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1720 audit_default = AUDIT_OFF;
1721 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1722 audit_default = AUDIT_ON;
1723 else {
1724 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1725 audit_default = AUDIT_ON;
1726 }
1727
1728 if (audit_default == AUDIT_OFF)
1729 audit_initialized = AUDIT_DISABLED;
1730 if (audit_set_enabled(audit_default))
1731 pr_err("audit: error setting audit state (%d)\n",
1732 audit_default);
1733
1734 pr_info("%s\n", audit_default ?
1735 "enabled (after initialization)" : "disabled (until reboot)");
1736
1737 return 1;
1738 }
1739 __setup("audit=", audit_enable);
1740
1741 /* Process kernel command-line parameter at boot time.
1742 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1743 static int __init audit_backlog_limit_set(char *str)
1744 {
1745 u32 audit_backlog_limit_arg;
1746
1747 pr_info("audit_backlog_limit: ");
1748 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1749 pr_cont("using default of %u, unable to parse %s\n",
1750 audit_backlog_limit, str);
1751 return 1;
1752 }
1753
1754 audit_backlog_limit = audit_backlog_limit_arg;
1755 pr_cont("%d\n", audit_backlog_limit);
1756
1757 return 1;
1758 }
1759 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1760
audit_buffer_free(struct audit_buffer * ab)1761 static void audit_buffer_free(struct audit_buffer *ab)
1762 {
1763 if (!ab)
1764 return;
1765
1766 kfree_skb(ab->skb);
1767 kmem_cache_free(audit_buffer_cache, ab);
1768 }
1769
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1770 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1771 gfp_t gfp_mask, int type)
1772 {
1773 struct audit_buffer *ab;
1774
1775 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1776 if (!ab)
1777 return NULL;
1778
1779 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1780 if (!ab->skb)
1781 goto err;
1782 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1783 goto err;
1784
1785 ab->ctx = ctx;
1786 ab->gfp_mask = gfp_mask;
1787
1788 return ab;
1789
1790 err:
1791 audit_buffer_free(ab);
1792 return NULL;
1793 }
1794
1795 /**
1796 * audit_serial - compute a serial number for the audit record
1797 *
1798 * Compute a serial number for the audit record. Audit records are
1799 * written to user-space as soon as they are generated, so a complete
1800 * audit record may be written in several pieces. The timestamp of the
1801 * record and this serial number are used by the user-space tools to
1802 * determine which pieces belong to the same audit record. The
1803 * (timestamp,serial) tuple is unique for each syscall and is live from
1804 * syscall entry to syscall exit.
1805 *
1806 * NOTE: Another possibility is to store the formatted records off the
1807 * audit context (for those records that have a context), and emit them
1808 * all at syscall exit. However, this could delay the reporting of
1809 * significant errors until syscall exit (or never, if the system
1810 * halts).
1811 */
audit_serial(void)1812 unsigned int audit_serial(void)
1813 {
1814 static atomic_t serial = ATOMIC_INIT(0);
1815
1816 return atomic_inc_return(&serial);
1817 }
1818
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1819 static inline void audit_get_stamp(struct audit_context *ctx,
1820 struct timespec64 *t, unsigned int *serial)
1821 {
1822 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1823 ktime_get_coarse_real_ts64(t);
1824 *serial = audit_serial();
1825 }
1826 }
1827
1828 /**
1829 * audit_log_start - obtain an audit buffer
1830 * @ctx: audit_context (may be NULL)
1831 * @gfp_mask: type of allocation
1832 * @type: audit message type
1833 *
1834 * Returns audit_buffer pointer on success or NULL on error.
1835 *
1836 * Obtain an audit buffer. This routine does locking to obtain the
1837 * audit buffer, but then no locking is required for calls to
1838 * audit_log_*format. If the task (ctx) is a task that is currently in a
1839 * syscall, then the syscall is marked as auditable and an audit record
1840 * will be written at syscall exit. If there is no associated task, then
1841 * task context (ctx) should be NULL.
1842 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1843 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1844 int type)
1845 {
1846 struct audit_buffer *ab;
1847 struct timespec64 t;
1848 unsigned int serial;
1849
1850 if (audit_initialized != AUDIT_INITIALIZED)
1851 return NULL;
1852
1853 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1854 return NULL;
1855
1856 /* NOTE: don't ever fail/sleep on these two conditions:
1857 * 1. auditd generated record - since we need auditd to drain the
1858 * queue; also, when we are checking for auditd, compare PIDs using
1859 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1860 * using a PID anchored in the caller's namespace
1861 * 2. generator holding the audit_cmd_mutex - we don't want to block
1862 * while holding the mutex, although we do penalize the sender
1863 * later in audit_receive() when it is safe to block
1864 */
1865 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1866 long stime = audit_backlog_wait_time;
1867
1868 while (audit_backlog_limit &&
1869 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1870 /* wake kauditd to try and flush the queue */
1871 wake_up_interruptible(&kauditd_wait);
1872
1873 /* sleep if we are allowed and we haven't exhausted our
1874 * backlog wait limit */
1875 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1876 long rtime = stime;
1877
1878 DECLARE_WAITQUEUE(wait, current);
1879
1880 add_wait_queue_exclusive(&audit_backlog_wait,
1881 &wait);
1882 set_current_state(TASK_UNINTERRUPTIBLE);
1883 stime = schedule_timeout(rtime);
1884 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1885 remove_wait_queue(&audit_backlog_wait, &wait);
1886 } else {
1887 if (audit_rate_check() && printk_ratelimit())
1888 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1889 skb_queue_len(&audit_queue),
1890 audit_backlog_limit);
1891 audit_log_lost("backlog limit exceeded");
1892 return NULL;
1893 }
1894 }
1895 }
1896
1897 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1898 if (!ab) {
1899 audit_log_lost("out of memory in audit_log_start");
1900 return NULL;
1901 }
1902
1903 audit_get_stamp(ab->ctx, &t, &serial);
1904 /* cancel dummy context to enable supporting records */
1905 if (ctx)
1906 ctx->dummy = 0;
1907 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1908 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1909
1910 return ab;
1911 }
1912
1913 /**
1914 * audit_expand - expand skb in the audit buffer
1915 * @ab: audit_buffer
1916 * @extra: space to add at tail of the skb
1917 *
1918 * Returns 0 (no space) on failed expansion, or available space if
1919 * successful.
1920 */
audit_expand(struct audit_buffer * ab,int extra)1921 static inline int audit_expand(struct audit_buffer *ab, int extra)
1922 {
1923 struct sk_buff *skb = ab->skb;
1924 int oldtail = skb_tailroom(skb);
1925 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1926 int newtail = skb_tailroom(skb);
1927
1928 if (ret < 0) {
1929 audit_log_lost("out of memory in audit_expand");
1930 return 0;
1931 }
1932
1933 skb->truesize += newtail - oldtail;
1934 return newtail;
1935 }
1936
1937 /*
1938 * Format an audit message into the audit buffer. If there isn't enough
1939 * room in the audit buffer, more room will be allocated and vsnprint
1940 * will be called a second time. Currently, we assume that a printk
1941 * can't format message larger than 1024 bytes, so we don't either.
1942 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1943 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1944 va_list args)
1945 {
1946 int len, avail;
1947 struct sk_buff *skb;
1948 va_list args2;
1949
1950 if (!ab)
1951 return;
1952
1953 BUG_ON(!ab->skb);
1954 skb = ab->skb;
1955 avail = skb_tailroom(skb);
1956 if (avail == 0) {
1957 avail = audit_expand(ab, AUDIT_BUFSIZ);
1958 if (!avail)
1959 goto out;
1960 }
1961 va_copy(args2, args);
1962 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1963 if (len >= avail) {
1964 /* The printk buffer is 1024 bytes long, so if we get
1965 * here and AUDIT_BUFSIZ is at least 1024, then we can
1966 * log everything that printk could have logged. */
1967 avail = audit_expand(ab,
1968 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1969 if (!avail)
1970 goto out_va_end;
1971 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1972 }
1973 if (len > 0)
1974 skb_put(skb, len);
1975 out_va_end:
1976 va_end(args2);
1977 out:
1978 return;
1979 }
1980
1981 /**
1982 * audit_log_format - format a message into the audit buffer.
1983 * @ab: audit_buffer
1984 * @fmt: format string
1985 * @...: optional parameters matching @fmt string
1986 *
1987 * All the work is done in audit_log_vformat.
1988 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1989 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1990 {
1991 va_list args;
1992
1993 if (!ab)
1994 return;
1995 va_start(args, fmt);
1996 audit_log_vformat(ab, fmt, args);
1997 va_end(args);
1998 }
1999
2000 /**
2001 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2002 * @ab: the audit_buffer
2003 * @buf: buffer to convert to hex
2004 * @len: length of @buf to be converted
2005 *
2006 * No return value; failure to expand is silently ignored.
2007 *
2008 * This function will take the passed buf and convert it into a string of
2009 * ascii hex digits. The new string is placed onto the skb.
2010 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2011 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2012 size_t len)
2013 {
2014 int i, avail, new_len;
2015 unsigned char *ptr;
2016 struct sk_buff *skb;
2017
2018 if (!ab)
2019 return;
2020
2021 BUG_ON(!ab->skb);
2022 skb = ab->skb;
2023 avail = skb_tailroom(skb);
2024 new_len = len<<1;
2025 if (new_len >= avail) {
2026 /* Round the buffer request up to the next multiple */
2027 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2028 avail = audit_expand(ab, new_len);
2029 if (!avail)
2030 return;
2031 }
2032
2033 ptr = skb_tail_pointer(skb);
2034 for (i = 0; i < len; i++)
2035 ptr = hex_byte_pack_upper(ptr, buf[i]);
2036 *ptr = 0;
2037 skb_put(skb, len << 1); /* new string is twice the old string */
2038 }
2039
2040 /*
2041 * Format a string of no more than slen characters into the audit buffer,
2042 * enclosed in quote marks.
2043 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2044 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2045 size_t slen)
2046 {
2047 int avail, new_len;
2048 unsigned char *ptr;
2049 struct sk_buff *skb;
2050
2051 if (!ab)
2052 return;
2053
2054 BUG_ON(!ab->skb);
2055 skb = ab->skb;
2056 avail = skb_tailroom(skb);
2057 new_len = slen + 3; /* enclosing quotes + null terminator */
2058 if (new_len > avail) {
2059 avail = audit_expand(ab, new_len);
2060 if (!avail)
2061 return;
2062 }
2063 ptr = skb_tail_pointer(skb);
2064 *ptr++ = '"';
2065 memcpy(ptr, string, slen);
2066 ptr += slen;
2067 *ptr++ = '"';
2068 *ptr = 0;
2069 skb_put(skb, slen + 2); /* don't include null terminator */
2070 }
2071
2072 /**
2073 * audit_string_contains_control - does a string need to be logged in hex
2074 * @string: string to be checked
2075 * @len: max length of the string to check
2076 */
audit_string_contains_control(const char * string,size_t len)2077 bool audit_string_contains_control(const char *string, size_t len)
2078 {
2079 const unsigned char *p;
2080 for (p = string; p < (const unsigned char *)string + len; p++) {
2081 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2082 return true;
2083 }
2084 return false;
2085 }
2086
2087 /**
2088 * audit_log_n_untrustedstring - log a string that may contain random characters
2089 * @ab: audit_buffer
2090 * @len: length of string (not including trailing null)
2091 * @string: string to be logged
2092 *
2093 * This code will escape a string that is passed to it if the string
2094 * contains a control character, unprintable character, double quote mark,
2095 * or a space. Unescaped strings will start and end with a double quote mark.
2096 * Strings that are escaped are printed in hex (2 digits per char).
2097 *
2098 * The caller specifies the number of characters in the string to log, which may
2099 * or may not be the entire string.
2100 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2101 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2102 size_t len)
2103 {
2104 if (audit_string_contains_control(string, len))
2105 audit_log_n_hex(ab, string, len);
2106 else
2107 audit_log_n_string(ab, string, len);
2108 }
2109
2110 /**
2111 * audit_log_untrustedstring - log a string that may contain random characters
2112 * @ab: audit_buffer
2113 * @string: string to be logged
2114 *
2115 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2116 * determine string length.
2117 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2118 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2119 {
2120 audit_log_n_untrustedstring(ab, string, strlen(string));
2121 }
2122
2123 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2124 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2125 const struct path *path)
2126 {
2127 char *p, *pathname;
2128
2129 if (prefix)
2130 audit_log_format(ab, "%s", prefix);
2131
2132 /* We will allow 11 spaces for ' (deleted)' to be appended */
2133 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2134 if (!pathname) {
2135 audit_log_format(ab, "\"<no_memory>\"");
2136 return;
2137 }
2138 p = d_path(path, pathname, PATH_MAX+11);
2139 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2140 /* FIXME: can we save some information here? */
2141 audit_log_format(ab, "\"<too_long>\"");
2142 } else
2143 audit_log_untrustedstring(ab, p);
2144 kfree(pathname);
2145 }
2146
audit_log_session_info(struct audit_buffer * ab)2147 void audit_log_session_info(struct audit_buffer *ab)
2148 {
2149 unsigned int sessionid = audit_get_sessionid(current);
2150 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2151
2152 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2153 }
2154
audit_log_key(struct audit_buffer * ab,char * key)2155 void audit_log_key(struct audit_buffer *ab, char *key)
2156 {
2157 audit_log_format(ab, " key=");
2158 if (key)
2159 audit_log_untrustedstring(ab, key);
2160 else
2161 audit_log_format(ab, "(null)");
2162 }
2163
audit_log_task_context(struct audit_buffer * ab)2164 int audit_log_task_context(struct audit_buffer *ab)
2165 {
2166 char *ctx = NULL;
2167 unsigned len;
2168 int error;
2169 u32 sid;
2170
2171 security_current_getsecid_subj(&sid);
2172 if (!sid)
2173 return 0;
2174
2175 error = security_secid_to_secctx(sid, &ctx, &len);
2176 if (error) {
2177 if (error != -EINVAL)
2178 goto error_path;
2179 return 0;
2180 }
2181
2182 audit_log_format(ab, " subj=%s", ctx);
2183 security_release_secctx(ctx, len);
2184 return 0;
2185
2186 error_path:
2187 audit_panic("error in audit_log_task_context");
2188 return error;
2189 }
2190 EXPORT_SYMBOL(audit_log_task_context);
2191
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2192 void audit_log_d_path_exe(struct audit_buffer *ab,
2193 struct mm_struct *mm)
2194 {
2195 struct file *exe_file;
2196
2197 if (!mm)
2198 goto out_null;
2199
2200 exe_file = get_mm_exe_file(mm);
2201 if (!exe_file)
2202 goto out_null;
2203
2204 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2205 fput(exe_file);
2206 return;
2207 out_null:
2208 audit_log_format(ab, " exe=(null)");
2209 }
2210
audit_get_tty(void)2211 struct tty_struct *audit_get_tty(void)
2212 {
2213 struct tty_struct *tty = NULL;
2214 unsigned long flags;
2215
2216 spin_lock_irqsave(¤t->sighand->siglock, flags);
2217 if (current->signal)
2218 tty = tty_kref_get(current->signal->tty);
2219 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2220 return tty;
2221 }
2222
audit_put_tty(struct tty_struct * tty)2223 void audit_put_tty(struct tty_struct *tty)
2224 {
2225 tty_kref_put(tty);
2226 }
2227
audit_log_task_info(struct audit_buffer * ab)2228 void audit_log_task_info(struct audit_buffer *ab)
2229 {
2230 const struct cred *cred;
2231 char comm[sizeof(current->comm)];
2232 struct tty_struct *tty;
2233
2234 if (!ab)
2235 return;
2236
2237 cred = current_cred();
2238 tty = audit_get_tty();
2239 audit_log_format(ab,
2240 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2241 " euid=%u suid=%u fsuid=%u"
2242 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2243 task_ppid_nr(current),
2244 task_tgid_nr(current),
2245 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2246 from_kuid(&init_user_ns, cred->uid),
2247 from_kgid(&init_user_ns, cred->gid),
2248 from_kuid(&init_user_ns, cred->euid),
2249 from_kuid(&init_user_ns, cred->suid),
2250 from_kuid(&init_user_ns, cred->fsuid),
2251 from_kgid(&init_user_ns, cred->egid),
2252 from_kgid(&init_user_ns, cred->sgid),
2253 from_kgid(&init_user_ns, cred->fsgid),
2254 tty ? tty_name(tty) : "(none)",
2255 audit_get_sessionid(current));
2256 audit_put_tty(tty);
2257 audit_log_format(ab, " comm=");
2258 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2259 audit_log_d_path_exe(ab, current->mm);
2260 audit_log_task_context(ab);
2261 }
2262 EXPORT_SYMBOL(audit_log_task_info);
2263
2264 /**
2265 * audit_log_path_denied - report a path restriction denial
2266 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2267 * @operation: specific operation name
2268 */
audit_log_path_denied(int type,const char * operation)2269 void audit_log_path_denied(int type, const char *operation)
2270 {
2271 struct audit_buffer *ab;
2272
2273 if (!audit_enabled || audit_dummy_context())
2274 return;
2275
2276 /* Generate log with subject, operation, outcome. */
2277 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2278 if (!ab)
2279 return;
2280 audit_log_format(ab, "op=%s", operation);
2281 audit_log_task_info(ab);
2282 audit_log_format(ab, " res=0");
2283 audit_log_end(ab);
2284 }
2285
2286 /* global counter which is incremented every time something logs in */
2287 static atomic_t session_id = ATOMIC_INIT(0);
2288
audit_set_loginuid_perm(kuid_t loginuid)2289 static int audit_set_loginuid_perm(kuid_t loginuid)
2290 {
2291 /* if we are unset, we don't need privs */
2292 if (!audit_loginuid_set(current))
2293 return 0;
2294 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2295 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2296 return -EPERM;
2297 /* it is set, you need permission */
2298 if (!capable(CAP_AUDIT_CONTROL))
2299 return -EPERM;
2300 /* reject if this is not an unset and we don't allow that */
2301 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2302 && uid_valid(loginuid))
2303 return -EPERM;
2304 return 0;
2305 }
2306
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2307 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2308 unsigned int oldsessionid,
2309 unsigned int sessionid, int rc)
2310 {
2311 struct audit_buffer *ab;
2312 uid_t uid, oldloginuid, loginuid;
2313 struct tty_struct *tty;
2314
2315 if (!audit_enabled)
2316 return;
2317
2318 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2319 if (!ab)
2320 return;
2321
2322 uid = from_kuid(&init_user_ns, task_uid(current));
2323 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2324 loginuid = from_kuid(&init_user_ns, kloginuid);
2325 tty = audit_get_tty();
2326
2327 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2328 audit_log_task_context(ab);
2329 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2330 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2331 oldsessionid, sessionid, !rc);
2332 audit_put_tty(tty);
2333 audit_log_end(ab);
2334 }
2335
2336 /**
2337 * audit_set_loginuid - set current task's loginuid
2338 * @loginuid: loginuid value
2339 *
2340 * Returns 0.
2341 *
2342 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2343 */
audit_set_loginuid(kuid_t loginuid)2344 int audit_set_loginuid(kuid_t loginuid)
2345 {
2346 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2347 kuid_t oldloginuid;
2348 int rc;
2349
2350 oldloginuid = audit_get_loginuid(current);
2351 oldsessionid = audit_get_sessionid(current);
2352
2353 rc = audit_set_loginuid_perm(loginuid);
2354 if (rc)
2355 goto out;
2356
2357 /* are we setting or clearing? */
2358 if (uid_valid(loginuid)) {
2359 sessionid = (unsigned int)atomic_inc_return(&session_id);
2360 if (unlikely(sessionid == AUDIT_SID_UNSET))
2361 sessionid = (unsigned int)atomic_inc_return(&session_id);
2362 }
2363
2364 current->sessionid = sessionid;
2365 current->loginuid = loginuid;
2366 out:
2367 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2368 return rc;
2369 }
2370
2371 /**
2372 * audit_signal_info - record signal info for shutting down audit subsystem
2373 * @sig: signal value
2374 * @t: task being signaled
2375 *
2376 * If the audit subsystem is being terminated, record the task (pid)
2377 * and uid that is doing that.
2378 */
audit_signal_info(int sig,struct task_struct * t)2379 int audit_signal_info(int sig, struct task_struct *t)
2380 {
2381 kuid_t uid = current_uid(), auid;
2382
2383 if (auditd_test_task(t) &&
2384 (sig == SIGTERM || sig == SIGHUP ||
2385 sig == SIGUSR1 || sig == SIGUSR2)) {
2386 audit_sig_pid = task_tgid_nr(current);
2387 auid = audit_get_loginuid(current);
2388 if (uid_valid(auid))
2389 audit_sig_uid = auid;
2390 else
2391 audit_sig_uid = uid;
2392 security_current_getsecid_subj(&audit_sig_sid);
2393 }
2394
2395 return audit_signal_info_syscall(t);
2396 }
2397
2398 /**
2399 * audit_log_end - end one audit record
2400 * @ab: the audit_buffer
2401 *
2402 * We can not do a netlink send inside an irq context because it blocks (last
2403 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2404 * queue and a kthread is scheduled to remove them from the queue outside the
2405 * irq context. May be called in any context.
2406 */
audit_log_end(struct audit_buffer * ab)2407 void audit_log_end(struct audit_buffer *ab)
2408 {
2409 struct sk_buff *skb;
2410 struct nlmsghdr *nlh;
2411
2412 if (!ab)
2413 return;
2414
2415 if (audit_rate_check()) {
2416 skb = ab->skb;
2417 ab->skb = NULL;
2418
2419 /* setup the netlink header, see the comments in
2420 * kauditd_send_multicast_skb() for length quirks */
2421 nlh = nlmsg_hdr(skb);
2422 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2423
2424 /* queue the netlink packet and poke the kauditd thread */
2425 skb_queue_tail(&audit_queue, skb);
2426 wake_up_interruptible(&kauditd_wait);
2427 } else
2428 audit_log_lost("rate limit exceeded");
2429
2430 audit_buffer_free(ab);
2431 }
2432
2433 /**
2434 * audit_log - Log an audit record
2435 * @ctx: audit context
2436 * @gfp_mask: type of allocation
2437 * @type: audit message type
2438 * @fmt: format string to use
2439 * @...: variable parameters matching the format string
2440 *
2441 * This is a convenience function that calls audit_log_start,
2442 * audit_log_vformat, and audit_log_end. It may be called
2443 * in any context.
2444 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2445 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2446 const char *fmt, ...)
2447 {
2448 struct audit_buffer *ab;
2449 va_list args;
2450
2451 ab = audit_log_start(ctx, gfp_mask, type);
2452 if (ab) {
2453 va_start(args, fmt);
2454 audit_log_vformat(ab, fmt, args);
2455 va_end(args);
2456 audit_log_end(ab);
2457 }
2458 }
2459
2460 EXPORT_SYMBOL(audit_log_start);
2461 EXPORT_SYMBOL(audit_log_end);
2462 EXPORT_SYMBOL(audit_log_format);
2463 EXPORT_SYMBOL(audit_log);
2464