1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cryptographic API.
4 *
5 * Support for ATMEL SHA1/SHA256 HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-sham.c drivers.
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <linux/cryptohash.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha.h>
37 #include <crypto/hash.h>
38 #include <crypto/internal/hash.h>
39 #include <linux/platform_data/crypto-atmel.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
42
43 /* SHA flags */
44 #define SHA_FLAGS_BUSY BIT(0)
45 #define SHA_FLAGS_FINAL BIT(1)
46 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
47 #define SHA_FLAGS_OUTPUT_READY BIT(3)
48 #define SHA_FLAGS_INIT BIT(4)
49 #define SHA_FLAGS_CPU BIT(5)
50 #define SHA_FLAGS_DMA_READY BIT(6)
51 #define SHA_FLAGS_DUMP_REG BIT(7)
52
53 /* bits[11:8] are reserved. */
54
55 #define SHA_FLAGS_FINUP BIT(16)
56 #define SHA_FLAGS_SG BIT(17)
57 #define SHA_FLAGS_ERROR BIT(23)
58 #define SHA_FLAGS_PAD BIT(24)
59 #define SHA_FLAGS_RESTORE BIT(25)
60 #define SHA_FLAGS_IDATAR0 BIT(26)
61 #define SHA_FLAGS_WAIT_DATARDY BIT(27)
62
63 #define SHA_OP_INIT 0
64 #define SHA_OP_UPDATE 1
65 #define SHA_OP_FINAL 2
66 #define SHA_OP_DIGEST 3
67
68 #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
69
70 #define ATMEL_SHA_DMA_THRESHOLD 56
71
72 struct atmel_sha_caps {
73 bool has_dma;
74 bool has_dualbuff;
75 bool has_sha224;
76 bool has_sha_384_512;
77 bool has_uihv;
78 bool has_hmac;
79 };
80
81 struct atmel_sha_dev;
82
83 /*
84 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
85 * tested by the ahash_prepare_alg() function.
86 */
87 struct atmel_sha_reqctx {
88 struct atmel_sha_dev *dd;
89 unsigned long flags;
90 unsigned long op;
91
92 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
93 u64 digcnt[2];
94 size_t bufcnt;
95 size_t buflen;
96 dma_addr_t dma_addr;
97
98 /* walk state */
99 struct scatterlist *sg;
100 unsigned int offset; /* offset in current sg */
101 unsigned int total; /* total request */
102
103 size_t block_size;
104 size_t hash_size;
105
106 u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
107 };
108
109 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
110
111 struct atmel_sha_ctx {
112 struct atmel_sha_dev *dd;
113 atmel_sha_fn_t start;
114
115 unsigned long flags;
116 };
117
118 #define ATMEL_SHA_QUEUE_LENGTH 50
119
120 struct atmel_sha_dma {
121 struct dma_chan *chan;
122 struct dma_slave_config dma_conf;
123 struct scatterlist *sg;
124 int nents;
125 unsigned int last_sg_length;
126 };
127
128 struct atmel_sha_dev {
129 struct list_head list;
130 unsigned long phys_base;
131 struct device *dev;
132 struct clk *iclk;
133 int irq;
134 void __iomem *io_base;
135
136 spinlock_t lock;
137 int err;
138 struct tasklet_struct done_task;
139 struct tasklet_struct queue_task;
140
141 unsigned long flags;
142 struct crypto_queue queue;
143 struct ahash_request *req;
144 bool is_async;
145 bool force_complete;
146 atmel_sha_fn_t resume;
147 atmel_sha_fn_t cpu_transfer_complete;
148
149 struct atmel_sha_dma dma_lch_in;
150
151 struct atmel_sha_caps caps;
152
153 struct scatterlist tmp;
154
155 u32 hw_version;
156 };
157
158 struct atmel_sha_drv {
159 struct list_head dev_list;
160 spinlock_t lock;
161 };
162
163 static struct atmel_sha_drv atmel_sha = {
164 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
165 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
166 };
167
168 #ifdef VERBOSE_DEBUG
atmel_sha_reg_name(u32 offset,char * tmp,size_t sz,bool wr)169 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
170 {
171 switch (offset) {
172 case SHA_CR:
173 return "CR";
174
175 case SHA_MR:
176 return "MR";
177
178 case SHA_IER:
179 return "IER";
180
181 case SHA_IDR:
182 return "IDR";
183
184 case SHA_IMR:
185 return "IMR";
186
187 case SHA_ISR:
188 return "ISR";
189
190 case SHA_MSR:
191 return "MSR";
192
193 case SHA_BCR:
194 return "BCR";
195
196 case SHA_REG_DIN(0):
197 case SHA_REG_DIN(1):
198 case SHA_REG_DIN(2):
199 case SHA_REG_DIN(3):
200 case SHA_REG_DIN(4):
201 case SHA_REG_DIN(5):
202 case SHA_REG_DIN(6):
203 case SHA_REG_DIN(7):
204 case SHA_REG_DIN(8):
205 case SHA_REG_DIN(9):
206 case SHA_REG_DIN(10):
207 case SHA_REG_DIN(11):
208 case SHA_REG_DIN(12):
209 case SHA_REG_DIN(13):
210 case SHA_REG_DIN(14):
211 case SHA_REG_DIN(15):
212 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
213 break;
214
215 case SHA_REG_DIGEST(0):
216 case SHA_REG_DIGEST(1):
217 case SHA_REG_DIGEST(2):
218 case SHA_REG_DIGEST(3):
219 case SHA_REG_DIGEST(4):
220 case SHA_REG_DIGEST(5):
221 case SHA_REG_DIGEST(6):
222 case SHA_REG_DIGEST(7):
223 case SHA_REG_DIGEST(8):
224 case SHA_REG_DIGEST(9):
225 case SHA_REG_DIGEST(10):
226 case SHA_REG_DIGEST(11):
227 case SHA_REG_DIGEST(12):
228 case SHA_REG_DIGEST(13):
229 case SHA_REG_DIGEST(14):
230 case SHA_REG_DIGEST(15):
231 if (wr)
232 snprintf(tmp, sz, "IDATAR[%u]",
233 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
234 else
235 snprintf(tmp, sz, "ODATAR[%u]",
236 (offset - SHA_REG_DIGEST(0)) >> 2);
237 break;
238
239 case SHA_HW_VERSION:
240 return "HWVER";
241
242 default:
243 snprintf(tmp, sz, "0x%02x", offset);
244 break;
245 }
246
247 return tmp;
248 }
249
250 #endif /* VERBOSE_DEBUG */
251
atmel_sha_read(struct atmel_sha_dev * dd,u32 offset)252 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
253 {
254 u32 value = readl_relaxed(dd->io_base + offset);
255
256 #ifdef VERBOSE_DEBUG
257 if (dd->flags & SHA_FLAGS_DUMP_REG) {
258 char tmp[16];
259
260 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
261 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
262 }
263 #endif /* VERBOSE_DEBUG */
264
265 return value;
266 }
267
atmel_sha_write(struct atmel_sha_dev * dd,u32 offset,u32 value)268 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
269 u32 offset, u32 value)
270 {
271 #ifdef VERBOSE_DEBUG
272 if (dd->flags & SHA_FLAGS_DUMP_REG) {
273 char tmp[16];
274
275 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
276 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
277 }
278 #endif /* VERBOSE_DEBUG */
279
280 writel_relaxed(value, dd->io_base + offset);
281 }
282
atmel_sha_complete(struct atmel_sha_dev * dd,int err)283 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
284 {
285 struct ahash_request *req = dd->req;
286
287 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
288 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
289 SHA_FLAGS_DUMP_REG);
290
291 clk_disable(dd->iclk);
292
293 if ((dd->is_async || dd->force_complete) && req->base.complete)
294 req->base.complete(&req->base, err);
295
296 /* handle new request */
297 tasklet_schedule(&dd->queue_task);
298
299 return err;
300 }
301
atmel_sha_append_sg(struct atmel_sha_reqctx * ctx)302 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
303 {
304 size_t count;
305
306 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
307 count = min(ctx->sg->length - ctx->offset, ctx->total);
308 count = min(count, ctx->buflen - ctx->bufcnt);
309
310 if (count <= 0) {
311 /*
312 * Check if count <= 0 because the buffer is full or
313 * because the sg length is 0. In the latest case,
314 * check if there is another sg in the list, a 0 length
315 * sg doesn't necessarily mean the end of the sg list.
316 */
317 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
318 ctx->sg = sg_next(ctx->sg);
319 continue;
320 } else {
321 break;
322 }
323 }
324
325 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
326 ctx->offset, count, 0);
327
328 ctx->bufcnt += count;
329 ctx->offset += count;
330 ctx->total -= count;
331
332 if (ctx->offset == ctx->sg->length) {
333 ctx->sg = sg_next(ctx->sg);
334 if (ctx->sg)
335 ctx->offset = 0;
336 else
337 ctx->total = 0;
338 }
339 }
340
341 return 0;
342 }
343
344 /*
345 * The purpose of this padding is to ensure that the padded message is a
346 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
347 * The bit "1" is appended at the end of the message followed by
348 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
349 * 128 bits block (SHA384/SHA512) equals to the message length in bits
350 * is appended.
351 *
352 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
353 * - if message length < 56 bytes then padlen = 56 - message length
354 * - else padlen = 64 + 56 - message length
355 *
356 * For SHA384/SHA512, padlen is calculated as followed:
357 * - if message length < 112 bytes then padlen = 112 - message length
358 * - else padlen = 128 + 112 - message length
359 */
atmel_sha_fill_padding(struct atmel_sha_reqctx * ctx,int length)360 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
361 {
362 unsigned int index, padlen;
363 u64 bits[2];
364 u64 size[2];
365
366 size[0] = ctx->digcnt[0];
367 size[1] = ctx->digcnt[1];
368
369 size[0] += ctx->bufcnt;
370 if (size[0] < ctx->bufcnt)
371 size[1]++;
372
373 size[0] += length;
374 if (size[0] < length)
375 size[1]++;
376
377 bits[1] = cpu_to_be64(size[0] << 3);
378 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
379
380 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
381 case SHA_FLAGS_SHA384:
382 case SHA_FLAGS_SHA512:
383 index = ctx->bufcnt & 0x7f;
384 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
385 *(ctx->buffer + ctx->bufcnt) = 0x80;
386 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
387 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
388 ctx->bufcnt += padlen + 16;
389 ctx->flags |= SHA_FLAGS_PAD;
390 break;
391
392 default:
393 index = ctx->bufcnt & 0x3f;
394 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
395 *(ctx->buffer + ctx->bufcnt) = 0x80;
396 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
397 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
398 ctx->bufcnt += padlen + 8;
399 ctx->flags |= SHA_FLAGS_PAD;
400 break;
401 }
402 }
403
atmel_sha_find_dev(struct atmel_sha_ctx * tctx)404 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
405 {
406 struct atmel_sha_dev *dd = NULL;
407 struct atmel_sha_dev *tmp;
408
409 spin_lock_bh(&atmel_sha.lock);
410 if (!tctx->dd) {
411 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
412 dd = tmp;
413 break;
414 }
415 tctx->dd = dd;
416 } else {
417 dd = tctx->dd;
418 }
419
420 spin_unlock_bh(&atmel_sha.lock);
421
422 return dd;
423 }
424
atmel_sha_init(struct ahash_request * req)425 static int atmel_sha_init(struct ahash_request *req)
426 {
427 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
428 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
429 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
430 struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
431
432 ctx->dd = dd;
433
434 ctx->flags = 0;
435
436 dev_dbg(dd->dev, "init: digest size: %d\n",
437 crypto_ahash_digestsize(tfm));
438
439 switch (crypto_ahash_digestsize(tfm)) {
440 case SHA1_DIGEST_SIZE:
441 ctx->flags |= SHA_FLAGS_SHA1;
442 ctx->block_size = SHA1_BLOCK_SIZE;
443 break;
444 case SHA224_DIGEST_SIZE:
445 ctx->flags |= SHA_FLAGS_SHA224;
446 ctx->block_size = SHA224_BLOCK_SIZE;
447 break;
448 case SHA256_DIGEST_SIZE:
449 ctx->flags |= SHA_FLAGS_SHA256;
450 ctx->block_size = SHA256_BLOCK_SIZE;
451 break;
452 case SHA384_DIGEST_SIZE:
453 ctx->flags |= SHA_FLAGS_SHA384;
454 ctx->block_size = SHA384_BLOCK_SIZE;
455 break;
456 case SHA512_DIGEST_SIZE:
457 ctx->flags |= SHA_FLAGS_SHA512;
458 ctx->block_size = SHA512_BLOCK_SIZE;
459 break;
460 default:
461 return -EINVAL;
462 break;
463 }
464
465 ctx->bufcnt = 0;
466 ctx->digcnt[0] = 0;
467 ctx->digcnt[1] = 0;
468 ctx->buflen = SHA_BUFFER_LEN;
469
470 return 0;
471 }
472
atmel_sha_write_ctrl(struct atmel_sha_dev * dd,int dma)473 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474 {
475 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476 u32 valmr = SHA_MR_MODE_AUTO;
477 unsigned int i, hashsize = 0;
478
479 if (likely(dma)) {
480 if (!dd->caps.has_dma)
481 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482 valmr = SHA_MR_MODE_PDC;
483 if (dd->caps.has_dualbuff)
484 valmr |= SHA_MR_DUALBUFF;
485 } else {
486 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487 }
488
489 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490 case SHA_FLAGS_SHA1:
491 valmr |= SHA_MR_ALGO_SHA1;
492 hashsize = SHA1_DIGEST_SIZE;
493 break;
494
495 case SHA_FLAGS_SHA224:
496 valmr |= SHA_MR_ALGO_SHA224;
497 hashsize = SHA256_DIGEST_SIZE;
498 break;
499
500 case SHA_FLAGS_SHA256:
501 valmr |= SHA_MR_ALGO_SHA256;
502 hashsize = SHA256_DIGEST_SIZE;
503 break;
504
505 case SHA_FLAGS_SHA384:
506 valmr |= SHA_MR_ALGO_SHA384;
507 hashsize = SHA512_DIGEST_SIZE;
508 break;
509
510 case SHA_FLAGS_SHA512:
511 valmr |= SHA_MR_ALGO_SHA512;
512 hashsize = SHA512_DIGEST_SIZE;
513 break;
514
515 default:
516 break;
517 }
518
519 /* Setting CR_FIRST only for the first iteration */
520 if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522 } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523 const u32 *hash = (const u32 *)ctx->digest;
524
525 /*
526 * Restore the hardware context: update the User Initialize
527 * Hash Value (UIHV) with the value saved when the latest
528 * 'update' operation completed on this very same crypto
529 * request.
530 */
531 ctx->flags &= ~SHA_FLAGS_RESTORE;
532 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533 for (i = 0; i < hashsize / sizeof(u32); ++i)
534 atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536 valmr |= SHA_MR_UIHV;
537 }
538 /*
539 * WARNING: If the UIHV feature is not available, the hardware CANNOT
540 * process concurrent requests: the internal registers used to store
541 * the hash/digest are still set to the partial digest output values
542 * computed during the latest round.
543 */
544
545 atmel_sha_write(dd, SHA_MR, valmr);
546 }
547
atmel_sha_wait_for_data_ready(struct atmel_sha_dev * dd,atmel_sha_fn_t resume)548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549 atmel_sha_fn_t resume)
550 {
551 u32 isr = atmel_sha_read(dd, SHA_ISR);
552
553 if (unlikely(isr & SHA_INT_DATARDY))
554 return resume(dd);
555
556 dd->resume = resume;
557 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558 return -EINPROGRESS;
559 }
560
atmel_sha_xmit_cpu(struct atmel_sha_dev * dd,const u8 * buf,size_t length,int final)561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562 size_t length, int final)
563 {
564 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565 int count, len32;
566 const u32 *buffer = (const u32 *)buf;
567
568 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569 ctx->digcnt[1], ctx->digcnt[0], length, final);
570
571 atmel_sha_write_ctrl(dd, 0);
572
573 /* should be non-zero before next lines to disable clocks later */
574 ctx->digcnt[0] += length;
575 if (ctx->digcnt[0] < length)
576 ctx->digcnt[1]++;
577
578 if (final)
579 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580
581 len32 = DIV_ROUND_UP(length, sizeof(u32));
582
583 dd->flags |= SHA_FLAGS_CPU;
584
585 for (count = 0; count < len32; count++)
586 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587
588 return -EINPROGRESS;
589 }
590
atmel_sha_xmit_pdc(struct atmel_sha_dev * dd,dma_addr_t dma_addr1,size_t length1,dma_addr_t dma_addr2,size_t length2,int final)591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593 {
594 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595 int len32;
596
597 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598 ctx->digcnt[1], ctx->digcnt[0], length1, final);
599
600 len32 = DIV_ROUND_UP(length1, sizeof(u32));
601 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602 atmel_sha_write(dd, SHA_TPR, dma_addr1);
603 atmel_sha_write(dd, SHA_TCR, len32);
604
605 len32 = DIV_ROUND_UP(length2, sizeof(u32));
606 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607 atmel_sha_write(dd, SHA_TNCR, len32);
608
609 atmel_sha_write_ctrl(dd, 1);
610
611 /* should be non-zero before next lines to disable clocks later */
612 ctx->digcnt[0] += length1;
613 if (ctx->digcnt[0] < length1)
614 ctx->digcnt[1]++;
615
616 if (final)
617 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618
619 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
620
621 /* Start DMA transfer */
622 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623
624 return -EINPROGRESS;
625 }
626
atmel_sha_dma_callback(void * data)627 static void atmel_sha_dma_callback(void *data)
628 {
629 struct atmel_sha_dev *dd = data;
630
631 dd->is_async = true;
632
633 /* dma_lch_in - completed - wait DATRDY */
634 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635 }
636
atmel_sha_xmit_dma(struct atmel_sha_dev * dd,dma_addr_t dma_addr1,size_t length1,dma_addr_t dma_addr2,size_t length2,int final)637 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639 {
640 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641 struct dma_async_tx_descriptor *in_desc;
642 struct scatterlist sg[2];
643
644 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645 ctx->digcnt[1], ctx->digcnt[0], length1, final);
646
647 dd->dma_lch_in.dma_conf.src_maxburst = 16;
648 dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649
650 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651
652 if (length2) {
653 sg_init_table(sg, 2);
654 sg_dma_address(&sg[0]) = dma_addr1;
655 sg_dma_len(&sg[0]) = length1;
656 sg_dma_address(&sg[1]) = dma_addr2;
657 sg_dma_len(&sg[1]) = length2;
658 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660 } else {
661 sg_init_table(sg, 1);
662 sg_dma_address(&sg[0]) = dma_addr1;
663 sg_dma_len(&sg[0]) = length1;
664 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666 }
667 if (!in_desc)
668 return atmel_sha_complete(dd, -EINVAL);
669
670 in_desc->callback = atmel_sha_dma_callback;
671 in_desc->callback_param = dd;
672
673 atmel_sha_write_ctrl(dd, 1);
674
675 /* should be non-zero before next lines to disable clocks later */
676 ctx->digcnt[0] += length1;
677 if (ctx->digcnt[0] < length1)
678 ctx->digcnt[1]++;
679
680 if (final)
681 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682
683 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
684
685 /* Start DMA transfer */
686 dmaengine_submit(in_desc);
687 dma_async_issue_pending(dd->dma_lch_in.chan);
688
689 return -EINPROGRESS;
690 }
691
atmel_sha_xmit_start(struct atmel_sha_dev * dd,dma_addr_t dma_addr1,size_t length1,dma_addr_t dma_addr2,size_t length2,int final)692 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694 {
695 if (dd->caps.has_dma)
696 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697 dma_addr2, length2, final);
698 else
699 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700 dma_addr2, length2, final);
701 }
702
atmel_sha_update_cpu(struct atmel_sha_dev * dd)703 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704 {
705 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706 int bufcnt;
707
708 atmel_sha_append_sg(ctx);
709 atmel_sha_fill_padding(ctx, 0);
710 bufcnt = ctx->bufcnt;
711 ctx->bufcnt = 0;
712
713 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714 }
715
atmel_sha_xmit_dma_map(struct atmel_sha_dev * dd,struct atmel_sha_reqctx * ctx,size_t length,int final)716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717 struct atmel_sha_reqctx *ctx,
718 size_t length, int final)
719 {
720 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724 ctx->block_size);
725 return atmel_sha_complete(dd, -EINVAL);
726 }
727
728 ctx->flags &= ~SHA_FLAGS_SG;
729
730 /* next call does not fail... so no unmap in the case of error */
731 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732 }
733
atmel_sha_update_dma_slow(struct atmel_sha_dev * dd)734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735 {
736 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737 unsigned int final;
738 size_t count;
739
740 atmel_sha_append_sg(ctx);
741
742 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743
744 dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746
747 if (final)
748 atmel_sha_fill_padding(ctx, 0);
749
750 if (final || (ctx->bufcnt == ctx->buflen)) {
751 count = ctx->bufcnt;
752 ctx->bufcnt = 0;
753 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754 }
755
756 return 0;
757 }
758
atmel_sha_update_dma_start(struct atmel_sha_dev * dd)759 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760 {
761 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762 unsigned int length, final, tail;
763 struct scatterlist *sg;
764 unsigned int count;
765
766 if (!ctx->total)
767 return 0;
768
769 if (ctx->bufcnt || ctx->offset)
770 return atmel_sha_update_dma_slow(dd);
771
772 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774
775 sg = ctx->sg;
776
777 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778 return atmel_sha_update_dma_slow(dd);
779
780 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781 /* size is not ctx->block_size aligned */
782 return atmel_sha_update_dma_slow(dd);
783
784 length = min(ctx->total, sg->length);
785
786 if (sg_is_last(sg)) {
787 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788 /* not last sg must be ctx->block_size aligned */
789 tail = length & (ctx->block_size - 1);
790 length -= tail;
791 }
792 }
793
794 ctx->total -= length;
795 ctx->offset = length; /* offset where to start slow */
796
797 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798
799 /* Add padding */
800 if (final) {
801 tail = length & (ctx->block_size - 1);
802 length -= tail;
803 ctx->total += tail;
804 ctx->offset = length; /* offset where to start slow */
805
806 sg = ctx->sg;
807 atmel_sha_append_sg(ctx);
808
809 atmel_sha_fill_padding(ctx, length);
810
811 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814 dev_err(dd->dev, "dma %zu bytes error\n",
815 ctx->buflen + ctx->block_size);
816 return atmel_sha_complete(dd, -EINVAL);
817 }
818
819 if (length == 0) {
820 ctx->flags &= ~SHA_FLAGS_SG;
821 count = ctx->bufcnt;
822 ctx->bufcnt = 0;
823 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824 0, final);
825 } else {
826 ctx->sg = sg;
827 if (!dma_map_sg(dd->dev, ctx->sg, 1,
828 DMA_TO_DEVICE)) {
829 dev_err(dd->dev, "dma_map_sg error\n");
830 return atmel_sha_complete(dd, -EINVAL);
831 }
832
833 ctx->flags |= SHA_FLAGS_SG;
834
835 count = ctx->bufcnt;
836 ctx->bufcnt = 0;
837 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838 length, ctx->dma_addr, count, final);
839 }
840 }
841
842 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843 dev_err(dd->dev, "dma_map_sg error\n");
844 return atmel_sha_complete(dd, -EINVAL);
845 }
846
847 ctx->flags |= SHA_FLAGS_SG;
848
849 /* next call does not fail... so no unmap in the case of error */
850 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851 0, final);
852 }
853
atmel_sha_update_dma_stop(struct atmel_sha_dev * dd)854 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855 {
856 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857
858 if (ctx->flags & SHA_FLAGS_SG) {
859 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860 if (ctx->sg->length == ctx->offset) {
861 ctx->sg = sg_next(ctx->sg);
862 if (ctx->sg)
863 ctx->offset = 0;
864 }
865 if (ctx->flags & SHA_FLAGS_PAD) {
866 dma_unmap_single(dd->dev, ctx->dma_addr,
867 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868 }
869 } else {
870 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871 ctx->block_size, DMA_TO_DEVICE);
872 }
873
874 return 0;
875 }
876
atmel_sha_update_req(struct atmel_sha_dev * dd)877 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
878 {
879 struct ahash_request *req = dd->req;
880 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
881 int err;
882
883 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
884 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
885
886 if (ctx->flags & SHA_FLAGS_CPU)
887 err = atmel_sha_update_cpu(dd);
888 else
889 err = atmel_sha_update_dma_start(dd);
890
891 /* wait for dma completion before can take more data */
892 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
893 err, ctx->digcnt[1], ctx->digcnt[0]);
894
895 return err;
896 }
897
atmel_sha_final_req(struct atmel_sha_dev * dd)898 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
899 {
900 struct ahash_request *req = dd->req;
901 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
902 int err = 0;
903 int count;
904
905 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
906 atmel_sha_fill_padding(ctx, 0);
907 count = ctx->bufcnt;
908 ctx->bufcnt = 0;
909 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
910 }
911 /* faster to handle last block with cpu */
912 else {
913 atmel_sha_fill_padding(ctx, 0);
914 count = ctx->bufcnt;
915 ctx->bufcnt = 0;
916 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
917 }
918
919 dev_dbg(dd->dev, "final_req: err: %d\n", err);
920
921 return err;
922 }
923
atmel_sha_copy_hash(struct ahash_request * req)924 static void atmel_sha_copy_hash(struct ahash_request *req)
925 {
926 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
927 u32 *hash = (u32 *)ctx->digest;
928 unsigned int i, hashsize;
929
930 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
931 case SHA_FLAGS_SHA1:
932 hashsize = SHA1_DIGEST_SIZE;
933 break;
934
935 case SHA_FLAGS_SHA224:
936 case SHA_FLAGS_SHA256:
937 hashsize = SHA256_DIGEST_SIZE;
938 break;
939
940 case SHA_FLAGS_SHA384:
941 case SHA_FLAGS_SHA512:
942 hashsize = SHA512_DIGEST_SIZE;
943 break;
944
945 default:
946 /* Should not happen... */
947 return;
948 }
949
950 for (i = 0; i < hashsize / sizeof(u32); ++i)
951 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
952 ctx->flags |= SHA_FLAGS_RESTORE;
953 }
954
atmel_sha_copy_ready_hash(struct ahash_request * req)955 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
956 {
957 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
958
959 if (!req->result)
960 return;
961
962 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
963 default:
964 case SHA_FLAGS_SHA1:
965 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
966 break;
967
968 case SHA_FLAGS_SHA224:
969 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
970 break;
971
972 case SHA_FLAGS_SHA256:
973 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
974 break;
975
976 case SHA_FLAGS_SHA384:
977 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
978 break;
979
980 case SHA_FLAGS_SHA512:
981 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
982 break;
983 }
984 }
985
atmel_sha_finish(struct ahash_request * req)986 static int atmel_sha_finish(struct ahash_request *req)
987 {
988 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
989 struct atmel_sha_dev *dd = ctx->dd;
990
991 if (ctx->digcnt[0] || ctx->digcnt[1])
992 atmel_sha_copy_ready_hash(req);
993
994 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
995 ctx->digcnt[0], ctx->bufcnt);
996
997 return 0;
998 }
999
atmel_sha_finish_req(struct ahash_request * req,int err)1000 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1001 {
1002 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1003 struct atmel_sha_dev *dd = ctx->dd;
1004
1005 if (!err) {
1006 atmel_sha_copy_hash(req);
1007 if (SHA_FLAGS_FINAL & dd->flags)
1008 err = atmel_sha_finish(req);
1009 } else {
1010 ctx->flags |= SHA_FLAGS_ERROR;
1011 }
1012
1013 /* atomic operation is not needed here */
1014 (void)atmel_sha_complete(dd, err);
1015 }
1016
atmel_sha_hw_init(struct atmel_sha_dev * dd)1017 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1018 {
1019 int err;
1020
1021 err = clk_enable(dd->iclk);
1022 if (err)
1023 return err;
1024
1025 if (!(SHA_FLAGS_INIT & dd->flags)) {
1026 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1027 dd->flags |= SHA_FLAGS_INIT;
1028 dd->err = 0;
1029 }
1030
1031 return 0;
1032 }
1033
atmel_sha_get_version(struct atmel_sha_dev * dd)1034 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1035 {
1036 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1037 }
1038
atmel_sha_hw_version_init(struct atmel_sha_dev * dd)1039 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1040 {
1041 atmel_sha_hw_init(dd);
1042
1043 dd->hw_version = atmel_sha_get_version(dd);
1044
1045 dev_info(dd->dev,
1046 "version: 0x%x\n", dd->hw_version);
1047
1048 clk_disable(dd->iclk);
1049 }
1050
atmel_sha_handle_queue(struct atmel_sha_dev * dd,struct ahash_request * req)1051 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1052 struct ahash_request *req)
1053 {
1054 struct crypto_async_request *async_req, *backlog;
1055 struct atmel_sha_ctx *ctx;
1056 unsigned long flags;
1057 bool start_async;
1058 int err = 0, ret = 0;
1059
1060 spin_lock_irqsave(&dd->lock, flags);
1061 if (req)
1062 ret = ahash_enqueue_request(&dd->queue, req);
1063
1064 if (SHA_FLAGS_BUSY & dd->flags) {
1065 spin_unlock_irqrestore(&dd->lock, flags);
1066 return ret;
1067 }
1068
1069 backlog = crypto_get_backlog(&dd->queue);
1070 async_req = crypto_dequeue_request(&dd->queue);
1071 if (async_req)
1072 dd->flags |= SHA_FLAGS_BUSY;
1073
1074 spin_unlock_irqrestore(&dd->lock, flags);
1075
1076 if (!async_req)
1077 return ret;
1078
1079 if (backlog)
1080 backlog->complete(backlog, -EINPROGRESS);
1081
1082 ctx = crypto_tfm_ctx(async_req->tfm);
1083
1084 dd->req = ahash_request_cast(async_req);
1085 start_async = (dd->req != req);
1086 dd->is_async = start_async;
1087 dd->force_complete = false;
1088
1089 /* WARNING: ctx->start() MAY change dd->is_async. */
1090 err = ctx->start(dd);
1091 return (start_async) ? ret : err;
1092 }
1093
1094 static int atmel_sha_done(struct atmel_sha_dev *dd);
1095
atmel_sha_start(struct atmel_sha_dev * dd)1096 static int atmel_sha_start(struct atmel_sha_dev *dd)
1097 {
1098 struct ahash_request *req = dd->req;
1099 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1100 int err;
1101
1102 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1103 ctx->op, req->nbytes);
1104
1105 err = atmel_sha_hw_init(dd);
1106 if (err)
1107 return atmel_sha_complete(dd, err);
1108
1109 /*
1110 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1111 * -EINPROGRESS: the hardware is busy and the SHA driver will resume
1112 * its job later in the done_task.
1113 * This is the main path.
1114 *
1115 * 0: the SHA driver can continue its job then release the hardware
1116 * later, if needed, with atmel_sha_finish_req().
1117 * This is the alternate path.
1118 *
1119 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1120 * been called, hence the hardware has been released.
1121 * The SHA driver must stop its job without calling
1122 * atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1123 * called a second time.
1124 *
1125 * Please note that currently, atmel_sha_final_req() never returns 0.
1126 */
1127
1128 dd->resume = atmel_sha_done;
1129 if (ctx->op == SHA_OP_UPDATE) {
1130 err = atmel_sha_update_req(dd);
1131 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1132 /* no final() after finup() */
1133 err = atmel_sha_final_req(dd);
1134 } else if (ctx->op == SHA_OP_FINAL) {
1135 err = atmel_sha_final_req(dd);
1136 }
1137
1138 if (!err)
1139 /* done_task will not finish it, so do it here */
1140 atmel_sha_finish_req(req, err);
1141
1142 dev_dbg(dd->dev, "exit, err: %d\n", err);
1143
1144 return err;
1145 }
1146
atmel_sha_enqueue(struct ahash_request * req,unsigned int op)1147 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1148 {
1149 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1150 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1151 struct atmel_sha_dev *dd = tctx->dd;
1152
1153 ctx->op = op;
1154
1155 return atmel_sha_handle_queue(dd, req);
1156 }
1157
atmel_sha_update(struct ahash_request * req)1158 static int atmel_sha_update(struct ahash_request *req)
1159 {
1160 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1161
1162 if (!req->nbytes)
1163 return 0;
1164
1165 ctx->total = req->nbytes;
1166 ctx->sg = req->src;
1167 ctx->offset = 0;
1168
1169 if (ctx->flags & SHA_FLAGS_FINUP) {
1170 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1171 /* faster to use CPU for short transfers */
1172 ctx->flags |= SHA_FLAGS_CPU;
1173 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1174 atmel_sha_append_sg(ctx);
1175 return 0;
1176 }
1177 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1178 }
1179
atmel_sha_final(struct ahash_request * req)1180 static int atmel_sha_final(struct ahash_request *req)
1181 {
1182 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1183
1184 ctx->flags |= SHA_FLAGS_FINUP;
1185
1186 if (ctx->flags & SHA_FLAGS_ERROR)
1187 return 0; /* uncompleted hash is not needed */
1188
1189 if (ctx->flags & SHA_FLAGS_PAD)
1190 /* copy ready hash (+ finalize hmac) */
1191 return atmel_sha_finish(req);
1192
1193 return atmel_sha_enqueue(req, SHA_OP_FINAL);
1194 }
1195
atmel_sha_finup(struct ahash_request * req)1196 static int atmel_sha_finup(struct ahash_request *req)
1197 {
1198 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1199 int err1, err2;
1200
1201 ctx->flags |= SHA_FLAGS_FINUP;
1202
1203 err1 = atmel_sha_update(req);
1204 if (err1 == -EINPROGRESS ||
1205 (err1 == -EBUSY && (ahash_request_flags(req) &
1206 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1207 return err1;
1208
1209 /*
1210 * final() has to be always called to cleanup resources
1211 * even if udpate() failed, except EINPROGRESS
1212 */
1213 err2 = atmel_sha_final(req);
1214
1215 return err1 ?: err2;
1216 }
1217
atmel_sha_digest(struct ahash_request * req)1218 static int atmel_sha_digest(struct ahash_request *req)
1219 {
1220 return atmel_sha_init(req) ?: atmel_sha_finup(req);
1221 }
1222
1223
atmel_sha_export(struct ahash_request * req,void * out)1224 static int atmel_sha_export(struct ahash_request *req, void *out)
1225 {
1226 const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1227
1228 memcpy(out, ctx, sizeof(*ctx));
1229 return 0;
1230 }
1231
atmel_sha_import(struct ahash_request * req,const void * in)1232 static int atmel_sha_import(struct ahash_request *req, const void *in)
1233 {
1234 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1235
1236 memcpy(ctx, in, sizeof(*ctx));
1237 return 0;
1238 }
1239
atmel_sha_cra_init(struct crypto_tfm * tfm)1240 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1241 {
1242 struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1243
1244 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1245 sizeof(struct atmel_sha_reqctx));
1246 ctx->start = atmel_sha_start;
1247
1248 return 0;
1249 }
1250
1251 static struct ahash_alg sha_1_256_algs[] = {
1252 {
1253 .init = atmel_sha_init,
1254 .update = atmel_sha_update,
1255 .final = atmel_sha_final,
1256 .finup = atmel_sha_finup,
1257 .digest = atmel_sha_digest,
1258 .export = atmel_sha_export,
1259 .import = atmel_sha_import,
1260 .halg = {
1261 .digestsize = SHA1_DIGEST_SIZE,
1262 .statesize = sizeof(struct atmel_sha_reqctx),
1263 .base = {
1264 .cra_name = "sha1",
1265 .cra_driver_name = "atmel-sha1",
1266 .cra_priority = 100,
1267 .cra_flags = CRYPTO_ALG_ASYNC,
1268 .cra_blocksize = SHA1_BLOCK_SIZE,
1269 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1270 .cra_alignmask = 0,
1271 .cra_module = THIS_MODULE,
1272 .cra_init = atmel_sha_cra_init,
1273 }
1274 }
1275 },
1276 {
1277 .init = atmel_sha_init,
1278 .update = atmel_sha_update,
1279 .final = atmel_sha_final,
1280 .finup = atmel_sha_finup,
1281 .digest = atmel_sha_digest,
1282 .export = atmel_sha_export,
1283 .import = atmel_sha_import,
1284 .halg = {
1285 .digestsize = SHA256_DIGEST_SIZE,
1286 .statesize = sizeof(struct atmel_sha_reqctx),
1287 .base = {
1288 .cra_name = "sha256",
1289 .cra_driver_name = "atmel-sha256",
1290 .cra_priority = 100,
1291 .cra_flags = CRYPTO_ALG_ASYNC,
1292 .cra_blocksize = SHA256_BLOCK_SIZE,
1293 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1294 .cra_alignmask = 0,
1295 .cra_module = THIS_MODULE,
1296 .cra_init = atmel_sha_cra_init,
1297 }
1298 }
1299 },
1300 };
1301
1302 static struct ahash_alg sha_224_alg = {
1303 .init = atmel_sha_init,
1304 .update = atmel_sha_update,
1305 .final = atmel_sha_final,
1306 .finup = atmel_sha_finup,
1307 .digest = atmel_sha_digest,
1308 .export = atmel_sha_export,
1309 .import = atmel_sha_import,
1310 .halg = {
1311 .digestsize = SHA224_DIGEST_SIZE,
1312 .statesize = sizeof(struct atmel_sha_reqctx),
1313 .base = {
1314 .cra_name = "sha224",
1315 .cra_driver_name = "atmel-sha224",
1316 .cra_priority = 100,
1317 .cra_flags = CRYPTO_ALG_ASYNC,
1318 .cra_blocksize = SHA224_BLOCK_SIZE,
1319 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1320 .cra_alignmask = 0,
1321 .cra_module = THIS_MODULE,
1322 .cra_init = atmel_sha_cra_init,
1323 }
1324 }
1325 };
1326
1327 static struct ahash_alg sha_384_512_algs[] = {
1328 {
1329 .init = atmel_sha_init,
1330 .update = atmel_sha_update,
1331 .final = atmel_sha_final,
1332 .finup = atmel_sha_finup,
1333 .digest = atmel_sha_digest,
1334 .export = atmel_sha_export,
1335 .import = atmel_sha_import,
1336 .halg = {
1337 .digestsize = SHA384_DIGEST_SIZE,
1338 .statesize = sizeof(struct atmel_sha_reqctx),
1339 .base = {
1340 .cra_name = "sha384",
1341 .cra_driver_name = "atmel-sha384",
1342 .cra_priority = 100,
1343 .cra_flags = CRYPTO_ALG_ASYNC,
1344 .cra_blocksize = SHA384_BLOCK_SIZE,
1345 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1346 .cra_alignmask = 0x3,
1347 .cra_module = THIS_MODULE,
1348 .cra_init = atmel_sha_cra_init,
1349 }
1350 }
1351 },
1352 {
1353 .init = atmel_sha_init,
1354 .update = atmel_sha_update,
1355 .final = atmel_sha_final,
1356 .finup = atmel_sha_finup,
1357 .digest = atmel_sha_digest,
1358 .export = atmel_sha_export,
1359 .import = atmel_sha_import,
1360 .halg = {
1361 .digestsize = SHA512_DIGEST_SIZE,
1362 .statesize = sizeof(struct atmel_sha_reqctx),
1363 .base = {
1364 .cra_name = "sha512",
1365 .cra_driver_name = "atmel-sha512",
1366 .cra_priority = 100,
1367 .cra_flags = CRYPTO_ALG_ASYNC,
1368 .cra_blocksize = SHA512_BLOCK_SIZE,
1369 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1370 .cra_alignmask = 0x3,
1371 .cra_module = THIS_MODULE,
1372 .cra_init = atmel_sha_cra_init,
1373 }
1374 }
1375 },
1376 };
1377
atmel_sha_queue_task(unsigned long data)1378 static void atmel_sha_queue_task(unsigned long data)
1379 {
1380 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1381
1382 atmel_sha_handle_queue(dd, NULL);
1383 }
1384
atmel_sha_done(struct atmel_sha_dev * dd)1385 static int atmel_sha_done(struct atmel_sha_dev *dd)
1386 {
1387 int err = 0;
1388
1389 if (SHA_FLAGS_CPU & dd->flags) {
1390 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1391 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1392 goto finish;
1393 }
1394 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1395 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1396 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1397 atmel_sha_update_dma_stop(dd);
1398 if (dd->err) {
1399 err = dd->err;
1400 goto finish;
1401 }
1402 }
1403 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1404 /* hash or semi-hash ready */
1405 dd->flags &= ~(SHA_FLAGS_DMA_READY |
1406 SHA_FLAGS_OUTPUT_READY);
1407 err = atmel_sha_update_dma_start(dd);
1408 if (err != -EINPROGRESS)
1409 goto finish;
1410 }
1411 }
1412 return err;
1413
1414 finish:
1415 /* finish curent request */
1416 atmel_sha_finish_req(dd->req, err);
1417
1418 return err;
1419 }
1420
atmel_sha_done_task(unsigned long data)1421 static void atmel_sha_done_task(unsigned long data)
1422 {
1423 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1424
1425 dd->is_async = true;
1426 (void)dd->resume(dd);
1427 }
1428
atmel_sha_irq(int irq,void * dev_id)1429 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1430 {
1431 struct atmel_sha_dev *sha_dd = dev_id;
1432 u32 reg;
1433
1434 reg = atmel_sha_read(sha_dd, SHA_ISR);
1435 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1436 atmel_sha_write(sha_dd, SHA_IDR, reg);
1437 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1438 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1439 if (!(SHA_FLAGS_CPU & sha_dd->flags))
1440 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1441 tasklet_schedule(&sha_dd->done_task);
1442 } else {
1443 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1444 }
1445 return IRQ_HANDLED;
1446 }
1447
1448 return IRQ_NONE;
1449 }
1450
1451
1452 /* DMA transfer functions */
1453
atmel_sha_dma_check_aligned(struct atmel_sha_dev * dd,struct scatterlist * sg,size_t len)1454 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1455 struct scatterlist *sg,
1456 size_t len)
1457 {
1458 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1459 struct ahash_request *req = dd->req;
1460 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1461 size_t bs = ctx->block_size;
1462 int nents;
1463
1464 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1465 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1466 return false;
1467
1468 /*
1469 * This is the last sg, the only one that is allowed to
1470 * have an unaligned length.
1471 */
1472 if (len <= sg->length) {
1473 dma->nents = nents + 1;
1474 dma->last_sg_length = sg->length;
1475 sg->length = ALIGN(len, sizeof(u32));
1476 return true;
1477 }
1478
1479 /* All other sg lengths MUST be aligned to the block size. */
1480 if (!IS_ALIGNED(sg->length, bs))
1481 return false;
1482
1483 len -= sg->length;
1484 }
1485
1486 return false;
1487 }
1488
atmel_sha_dma_callback2(void * data)1489 static void atmel_sha_dma_callback2(void *data)
1490 {
1491 struct atmel_sha_dev *dd = data;
1492 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1493 struct scatterlist *sg;
1494 int nents;
1495
1496 dmaengine_terminate_all(dma->chan);
1497 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1498
1499 sg = dma->sg;
1500 for (nents = 0; nents < dma->nents - 1; ++nents)
1501 sg = sg_next(sg);
1502 sg->length = dma->last_sg_length;
1503
1504 dd->is_async = true;
1505 (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1506 }
1507
atmel_sha_dma_start(struct atmel_sha_dev * dd,struct scatterlist * src,size_t len,atmel_sha_fn_t resume)1508 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1509 struct scatterlist *src,
1510 size_t len,
1511 atmel_sha_fn_t resume)
1512 {
1513 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1514 struct dma_slave_config *config = &dma->dma_conf;
1515 struct dma_chan *chan = dma->chan;
1516 struct dma_async_tx_descriptor *desc;
1517 dma_cookie_t cookie;
1518 unsigned int sg_len;
1519 int err;
1520
1521 dd->resume = resume;
1522
1523 /*
1524 * dma->nents has already been initialized by
1525 * atmel_sha_dma_check_aligned().
1526 */
1527 dma->sg = src;
1528 sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1529 if (!sg_len) {
1530 err = -ENOMEM;
1531 goto exit;
1532 }
1533
1534 config->src_maxburst = 16;
1535 config->dst_maxburst = 16;
1536 err = dmaengine_slave_config(chan, config);
1537 if (err)
1538 goto unmap_sg;
1539
1540 desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1541 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1542 if (!desc) {
1543 err = -ENOMEM;
1544 goto unmap_sg;
1545 }
1546
1547 desc->callback = atmel_sha_dma_callback2;
1548 desc->callback_param = dd;
1549 cookie = dmaengine_submit(desc);
1550 err = dma_submit_error(cookie);
1551 if (err)
1552 goto unmap_sg;
1553
1554 dma_async_issue_pending(chan);
1555
1556 return -EINPROGRESS;
1557
1558 unmap_sg:
1559 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1560 exit:
1561 return atmel_sha_complete(dd, err);
1562 }
1563
1564
1565 /* CPU transfer functions */
1566
atmel_sha_cpu_transfer(struct atmel_sha_dev * dd)1567 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1568 {
1569 struct ahash_request *req = dd->req;
1570 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1571 const u32 *words = (const u32 *)ctx->buffer;
1572 size_t i, num_words;
1573 u32 isr, din, din_inc;
1574
1575 din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1576 for (;;) {
1577 /* Write data into the Input Data Registers. */
1578 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1579 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1580 atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1581
1582 ctx->offset += ctx->bufcnt;
1583 ctx->total -= ctx->bufcnt;
1584
1585 if (!ctx->total)
1586 break;
1587
1588 /*
1589 * Prepare next block:
1590 * Fill ctx->buffer now with the next data to be written into
1591 * IDATARx: it gives time for the SHA hardware to process
1592 * the current data so the SHA_INT_DATARDY flag might be set
1593 * in SHA_ISR when polling this register at the beginning of
1594 * the next loop.
1595 */
1596 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1597 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1598 ctx->offset, ctx->bufcnt, 0);
1599
1600 /* Wait for hardware to be ready again. */
1601 isr = atmel_sha_read(dd, SHA_ISR);
1602 if (!(isr & SHA_INT_DATARDY)) {
1603 /* Not ready yet. */
1604 dd->resume = atmel_sha_cpu_transfer;
1605 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1606 return -EINPROGRESS;
1607 }
1608 }
1609
1610 if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1611 return dd->cpu_transfer_complete(dd);
1612
1613 return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1614 }
1615
atmel_sha_cpu_start(struct atmel_sha_dev * dd,struct scatterlist * sg,unsigned int len,bool idatar0_only,bool wait_data_ready,atmel_sha_fn_t resume)1616 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1617 struct scatterlist *sg,
1618 unsigned int len,
1619 bool idatar0_only,
1620 bool wait_data_ready,
1621 atmel_sha_fn_t resume)
1622 {
1623 struct ahash_request *req = dd->req;
1624 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1625
1626 if (!len)
1627 return resume(dd);
1628
1629 ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1630
1631 if (idatar0_only)
1632 ctx->flags |= SHA_FLAGS_IDATAR0;
1633
1634 if (wait_data_ready)
1635 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1636
1637 ctx->sg = sg;
1638 ctx->total = len;
1639 ctx->offset = 0;
1640
1641 /* Prepare the first block to be written. */
1642 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1643 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1644 ctx->offset, ctx->bufcnt, 0);
1645
1646 dd->cpu_transfer_complete = resume;
1647 return atmel_sha_cpu_transfer(dd);
1648 }
1649
atmel_sha_cpu_hash(struct atmel_sha_dev * dd,const void * data,unsigned int datalen,bool auto_padding,atmel_sha_fn_t resume)1650 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1651 const void *data, unsigned int datalen,
1652 bool auto_padding,
1653 atmel_sha_fn_t resume)
1654 {
1655 struct ahash_request *req = dd->req;
1656 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1657 u32 msglen = (auto_padding) ? datalen : 0;
1658 u32 mr = SHA_MR_MODE_AUTO;
1659
1660 if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1661 return atmel_sha_complete(dd, -EINVAL);
1662
1663 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1664 atmel_sha_write(dd, SHA_MR, mr);
1665 atmel_sha_write(dd, SHA_MSR, msglen);
1666 atmel_sha_write(dd, SHA_BCR, msglen);
1667 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1668
1669 sg_init_one(&dd->tmp, data, datalen);
1670 return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1671 }
1672
1673
1674 /* hmac functions */
1675
1676 struct atmel_sha_hmac_key {
1677 bool valid;
1678 unsigned int keylen;
1679 u8 buffer[SHA512_BLOCK_SIZE];
1680 u8 *keydup;
1681 };
1682
atmel_sha_hmac_key_init(struct atmel_sha_hmac_key * hkey)1683 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1684 {
1685 memset(hkey, 0, sizeof(*hkey));
1686 }
1687
atmel_sha_hmac_key_release(struct atmel_sha_hmac_key * hkey)1688 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1689 {
1690 kfree(hkey->keydup);
1691 memset(hkey, 0, sizeof(*hkey));
1692 }
1693
atmel_sha_hmac_key_set(struct atmel_sha_hmac_key * hkey,const u8 * key,unsigned int keylen)1694 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1695 const u8 *key,
1696 unsigned int keylen)
1697 {
1698 atmel_sha_hmac_key_release(hkey);
1699
1700 if (keylen > sizeof(hkey->buffer)) {
1701 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1702 if (!hkey->keydup)
1703 return -ENOMEM;
1704
1705 } else {
1706 memcpy(hkey->buffer, key, keylen);
1707 }
1708
1709 hkey->valid = true;
1710 hkey->keylen = keylen;
1711 return 0;
1712 }
1713
atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key * hkey,const u8 ** key,unsigned int * keylen)1714 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1715 const u8 **key,
1716 unsigned int *keylen)
1717 {
1718 if (!hkey->valid)
1719 return false;
1720
1721 *keylen = hkey->keylen;
1722 *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1723 return true;
1724 }
1725
1726
1727 struct atmel_sha_hmac_ctx {
1728 struct atmel_sha_ctx base;
1729
1730 struct atmel_sha_hmac_key hkey;
1731 u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1732 u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1733 atmel_sha_fn_t resume;
1734 };
1735
1736 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1737 atmel_sha_fn_t resume);
1738 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1739 const u8 *key, unsigned int keylen);
1740 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1741 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1742 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1743 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1744
1745 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1746 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1747 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1748 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1749
atmel_sha_hmac_setup(struct atmel_sha_dev * dd,atmel_sha_fn_t resume)1750 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1751 atmel_sha_fn_t resume)
1752 {
1753 struct ahash_request *req = dd->req;
1754 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1755 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1756 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1757 unsigned int keylen;
1758 const u8 *key;
1759 size_t bs;
1760
1761 hmac->resume = resume;
1762 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1763 case SHA_FLAGS_SHA1:
1764 ctx->block_size = SHA1_BLOCK_SIZE;
1765 ctx->hash_size = SHA1_DIGEST_SIZE;
1766 break;
1767
1768 case SHA_FLAGS_SHA224:
1769 ctx->block_size = SHA224_BLOCK_SIZE;
1770 ctx->hash_size = SHA256_DIGEST_SIZE;
1771 break;
1772
1773 case SHA_FLAGS_SHA256:
1774 ctx->block_size = SHA256_BLOCK_SIZE;
1775 ctx->hash_size = SHA256_DIGEST_SIZE;
1776 break;
1777
1778 case SHA_FLAGS_SHA384:
1779 ctx->block_size = SHA384_BLOCK_SIZE;
1780 ctx->hash_size = SHA512_DIGEST_SIZE;
1781 break;
1782
1783 case SHA_FLAGS_SHA512:
1784 ctx->block_size = SHA512_BLOCK_SIZE;
1785 ctx->hash_size = SHA512_DIGEST_SIZE;
1786 break;
1787
1788 default:
1789 return atmel_sha_complete(dd, -EINVAL);
1790 }
1791 bs = ctx->block_size;
1792
1793 if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1794 return resume(dd);
1795
1796 /* Compute K' from K. */
1797 if (unlikely(keylen > bs))
1798 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1799
1800 /* Prepare ipad. */
1801 memcpy((u8 *)hmac->ipad, key, keylen);
1802 memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1803 return atmel_sha_hmac_compute_ipad_hash(dd);
1804 }
1805
atmel_sha_hmac_prehash_key(struct atmel_sha_dev * dd,const u8 * key,unsigned int keylen)1806 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1807 const u8 *key, unsigned int keylen)
1808 {
1809 return atmel_sha_cpu_hash(dd, key, keylen, true,
1810 atmel_sha_hmac_prehash_key_done);
1811 }
1812
atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev * dd)1813 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1814 {
1815 struct ahash_request *req = dd->req;
1816 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1817 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1818 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819 size_t ds = crypto_ahash_digestsize(tfm);
1820 size_t bs = ctx->block_size;
1821 size_t i, num_words = ds / sizeof(u32);
1822
1823 /* Prepare ipad. */
1824 for (i = 0; i < num_words; ++i)
1825 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1826 memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1827 return atmel_sha_hmac_compute_ipad_hash(dd);
1828 }
1829
atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev * dd)1830 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1831 {
1832 struct ahash_request *req = dd->req;
1833 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1834 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1835 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1836 size_t bs = ctx->block_size;
1837 size_t i, num_words = bs / sizeof(u32);
1838
1839 memcpy(hmac->opad, hmac->ipad, bs);
1840 for (i = 0; i < num_words; ++i) {
1841 hmac->ipad[i] ^= 0x36363636;
1842 hmac->opad[i] ^= 0x5c5c5c5c;
1843 }
1844
1845 return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1846 atmel_sha_hmac_compute_opad_hash);
1847 }
1848
atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev * dd)1849 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1850 {
1851 struct ahash_request *req = dd->req;
1852 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1853 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1855 size_t bs = ctx->block_size;
1856 size_t hs = ctx->hash_size;
1857 size_t i, num_words = hs / sizeof(u32);
1858
1859 for (i = 0; i < num_words; ++i)
1860 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1861 return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1862 atmel_sha_hmac_setup_done);
1863 }
1864
atmel_sha_hmac_setup_done(struct atmel_sha_dev * dd)1865 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1866 {
1867 struct ahash_request *req = dd->req;
1868 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1869 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1870 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1871 size_t hs = ctx->hash_size;
1872 size_t i, num_words = hs / sizeof(u32);
1873
1874 for (i = 0; i < num_words; ++i)
1875 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1876 atmel_sha_hmac_key_release(&hmac->hkey);
1877 return hmac->resume(dd);
1878 }
1879
atmel_sha_hmac_start(struct atmel_sha_dev * dd)1880 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1881 {
1882 struct ahash_request *req = dd->req;
1883 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1884 int err;
1885
1886 err = atmel_sha_hw_init(dd);
1887 if (err)
1888 return atmel_sha_complete(dd, err);
1889
1890 switch (ctx->op) {
1891 case SHA_OP_INIT:
1892 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1893 break;
1894
1895 case SHA_OP_UPDATE:
1896 dd->resume = atmel_sha_done;
1897 err = atmel_sha_update_req(dd);
1898 break;
1899
1900 case SHA_OP_FINAL:
1901 dd->resume = atmel_sha_hmac_final;
1902 err = atmel_sha_final_req(dd);
1903 break;
1904
1905 case SHA_OP_DIGEST:
1906 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1907 break;
1908
1909 default:
1910 return atmel_sha_complete(dd, -EINVAL);
1911 }
1912
1913 return err;
1914 }
1915
atmel_sha_hmac_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1916 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1917 unsigned int keylen)
1918 {
1919 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1920
1921 if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1922 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1923 return -EINVAL;
1924 }
1925
1926 return 0;
1927 }
1928
atmel_sha_hmac_init(struct ahash_request * req)1929 static int atmel_sha_hmac_init(struct ahash_request *req)
1930 {
1931 int err;
1932
1933 err = atmel_sha_init(req);
1934 if (err)
1935 return err;
1936
1937 return atmel_sha_enqueue(req, SHA_OP_INIT);
1938 }
1939
atmel_sha_hmac_init_done(struct atmel_sha_dev * dd)1940 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1941 {
1942 struct ahash_request *req = dd->req;
1943 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1944 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1945 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1946 size_t bs = ctx->block_size;
1947 size_t hs = ctx->hash_size;
1948
1949 ctx->bufcnt = 0;
1950 ctx->digcnt[0] = bs;
1951 ctx->digcnt[1] = 0;
1952 ctx->flags |= SHA_FLAGS_RESTORE;
1953 memcpy(ctx->digest, hmac->ipad, hs);
1954 return atmel_sha_complete(dd, 0);
1955 }
1956
atmel_sha_hmac_final(struct atmel_sha_dev * dd)1957 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1958 {
1959 struct ahash_request *req = dd->req;
1960 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1961 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1962 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1963 u32 *digest = (u32 *)ctx->digest;
1964 size_t ds = crypto_ahash_digestsize(tfm);
1965 size_t bs = ctx->block_size;
1966 size_t hs = ctx->hash_size;
1967 size_t i, num_words;
1968 u32 mr;
1969
1970 /* Save d = SHA((K' + ipad) | msg). */
1971 num_words = ds / sizeof(u32);
1972 for (i = 0; i < num_words; ++i)
1973 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1974
1975 /* Restore context to finish computing SHA((K' + opad) | d). */
1976 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1977 num_words = hs / sizeof(u32);
1978 for (i = 0; i < num_words; ++i)
1979 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1980
1981 mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1982 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1983 atmel_sha_write(dd, SHA_MR, mr);
1984 atmel_sha_write(dd, SHA_MSR, bs + ds);
1985 atmel_sha_write(dd, SHA_BCR, ds);
1986 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1987
1988 sg_init_one(&dd->tmp, digest, ds);
1989 return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1990 atmel_sha_hmac_final_done);
1991 }
1992
atmel_sha_hmac_final_done(struct atmel_sha_dev * dd)1993 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1994 {
1995 /*
1996 * req->result might not be sizeof(u32) aligned, so copy the
1997 * digest into ctx->digest[] before memcpy() the data into
1998 * req->result.
1999 */
2000 atmel_sha_copy_hash(dd->req);
2001 atmel_sha_copy_ready_hash(dd->req);
2002 return atmel_sha_complete(dd, 0);
2003 }
2004
atmel_sha_hmac_digest(struct ahash_request * req)2005 static int atmel_sha_hmac_digest(struct ahash_request *req)
2006 {
2007 int err;
2008
2009 err = atmel_sha_init(req);
2010 if (err)
2011 return err;
2012
2013 return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2014 }
2015
atmel_sha_hmac_digest2(struct atmel_sha_dev * dd)2016 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2017 {
2018 struct ahash_request *req = dd->req;
2019 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2020 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2021 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2022 size_t hs = ctx->hash_size;
2023 size_t i, num_words = hs / sizeof(u32);
2024 bool use_dma = false;
2025 u32 mr;
2026
2027 /* Special case for empty message. */
2028 if (!req->nbytes)
2029 return atmel_sha_complete(dd, -EINVAL); // TODO:
2030
2031 /* Check DMA threshold and alignment. */
2032 if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2033 atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2034 use_dma = true;
2035
2036 /* Write both initial hash values to compute a HMAC. */
2037 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2038 for (i = 0; i < num_words; ++i)
2039 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2040
2041 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2042 for (i = 0; i < num_words; ++i)
2043 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2044
2045 /* Write the Mode, Message Size, Bytes Count then Control Registers. */
2046 mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2047 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2048 if (use_dma)
2049 mr |= SHA_MR_MODE_IDATAR0;
2050 else
2051 mr |= SHA_MR_MODE_AUTO;
2052 atmel_sha_write(dd, SHA_MR, mr);
2053
2054 atmel_sha_write(dd, SHA_MSR, req->nbytes);
2055 atmel_sha_write(dd, SHA_BCR, req->nbytes);
2056
2057 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2058
2059 /* Process data. */
2060 if (use_dma)
2061 return atmel_sha_dma_start(dd, req->src, req->nbytes,
2062 atmel_sha_hmac_final_done);
2063
2064 return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2065 atmel_sha_hmac_final_done);
2066 }
2067
atmel_sha_hmac_cra_init(struct crypto_tfm * tfm)2068 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2069 {
2070 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2071
2072 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2073 sizeof(struct atmel_sha_reqctx));
2074 hmac->base.start = atmel_sha_hmac_start;
2075 atmel_sha_hmac_key_init(&hmac->hkey);
2076
2077 return 0;
2078 }
2079
atmel_sha_hmac_cra_exit(struct crypto_tfm * tfm)2080 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2081 {
2082 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2083
2084 atmel_sha_hmac_key_release(&hmac->hkey);
2085 }
2086
2087 static struct ahash_alg sha_hmac_algs[] = {
2088 {
2089 .init = atmel_sha_hmac_init,
2090 .update = atmel_sha_update,
2091 .final = atmel_sha_final,
2092 .digest = atmel_sha_hmac_digest,
2093 .setkey = atmel_sha_hmac_setkey,
2094 .export = atmel_sha_export,
2095 .import = atmel_sha_import,
2096 .halg = {
2097 .digestsize = SHA1_DIGEST_SIZE,
2098 .statesize = sizeof(struct atmel_sha_reqctx),
2099 .base = {
2100 .cra_name = "hmac(sha1)",
2101 .cra_driver_name = "atmel-hmac-sha1",
2102 .cra_priority = 100,
2103 .cra_flags = CRYPTO_ALG_ASYNC,
2104 .cra_blocksize = SHA1_BLOCK_SIZE,
2105 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2106 .cra_alignmask = 0,
2107 .cra_module = THIS_MODULE,
2108 .cra_init = atmel_sha_hmac_cra_init,
2109 .cra_exit = atmel_sha_hmac_cra_exit,
2110 }
2111 }
2112 },
2113 {
2114 .init = atmel_sha_hmac_init,
2115 .update = atmel_sha_update,
2116 .final = atmel_sha_final,
2117 .digest = atmel_sha_hmac_digest,
2118 .setkey = atmel_sha_hmac_setkey,
2119 .export = atmel_sha_export,
2120 .import = atmel_sha_import,
2121 .halg = {
2122 .digestsize = SHA224_DIGEST_SIZE,
2123 .statesize = sizeof(struct atmel_sha_reqctx),
2124 .base = {
2125 .cra_name = "hmac(sha224)",
2126 .cra_driver_name = "atmel-hmac-sha224",
2127 .cra_priority = 100,
2128 .cra_flags = CRYPTO_ALG_ASYNC,
2129 .cra_blocksize = SHA224_BLOCK_SIZE,
2130 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2131 .cra_alignmask = 0,
2132 .cra_module = THIS_MODULE,
2133 .cra_init = atmel_sha_hmac_cra_init,
2134 .cra_exit = atmel_sha_hmac_cra_exit,
2135 }
2136 }
2137 },
2138 {
2139 .init = atmel_sha_hmac_init,
2140 .update = atmel_sha_update,
2141 .final = atmel_sha_final,
2142 .digest = atmel_sha_hmac_digest,
2143 .setkey = atmel_sha_hmac_setkey,
2144 .export = atmel_sha_export,
2145 .import = atmel_sha_import,
2146 .halg = {
2147 .digestsize = SHA256_DIGEST_SIZE,
2148 .statesize = sizeof(struct atmel_sha_reqctx),
2149 .base = {
2150 .cra_name = "hmac(sha256)",
2151 .cra_driver_name = "atmel-hmac-sha256",
2152 .cra_priority = 100,
2153 .cra_flags = CRYPTO_ALG_ASYNC,
2154 .cra_blocksize = SHA256_BLOCK_SIZE,
2155 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2156 .cra_alignmask = 0,
2157 .cra_module = THIS_MODULE,
2158 .cra_init = atmel_sha_hmac_cra_init,
2159 .cra_exit = atmel_sha_hmac_cra_exit,
2160 }
2161 }
2162 },
2163 {
2164 .init = atmel_sha_hmac_init,
2165 .update = atmel_sha_update,
2166 .final = atmel_sha_final,
2167 .digest = atmel_sha_hmac_digest,
2168 .setkey = atmel_sha_hmac_setkey,
2169 .export = atmel_sha_export,
2170 .import = atmel_sha_import,
2171 .halg = {
2172 .digestsize = SHA384_DIGEST_SIZE,
2173 .statesize = sizeof(struct atmel_sha_reqctx),
2174 .base = {
2175 .cra_name = "hmac(sha384)",
2176 .cra_driver_name = "atmel-hmac-sha384",
2177 .cra_priority = 100,
2178 .cra_flags = CRYPTO_ALG_ASYNC,
2179 .cra_blocksize = SHA384_BLOCK_SIZE,
2180 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2181 .cra_alignmask = 0,
2182 .cra_module = THIS_MODULE,
2183 .cra_init = atmel_sha_hmac_cra_init,
2184 .cra_exit = atmel_sha_hmac_cra_exit,
2185 }
2186 }
2187 },
2188 {
2189 .init = atmel_sha_hmac_init,
2190 .update = atmel_sha_update,
2191 .final = atmel_sha_final,
2192 .digest = atmel_sha_hmac_digest,
2193 .setkey = atmel_sha_hmac_setkey,
2194 .export = atmel_sha_export,
2195 .import = atmel_sha_import,
2196 .halg = {
2197 .digestsize = SHA512_DIGEST_SIZE,
2198 .statesize = sizeof(struct atmel_sha_reqctx),
2199 .base = {
2200 .cra_name = "hmac(sha512)",
2201 .cra_driver_name = "atmel-hmac-sha512",
2202 .cra_priority = 100,
2203 .cra_flags = CRYPTO_ALG_ASYNC,
2204 .cra_blocksize = SHA512_BLOCK_SIZE,
2205 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2206 .cra_alignmask = 0,
2207 .cra_module = THIS_MODULE,
2208 .cra_init = atmel_sha_hmac_cra_init,
2209 .cra_exit = atmel_sha_hmac_cra_exit,
2210 }
2211 }
2212 },
2213 };
2214
2215 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2216 /* authenc functions */
2217
2218 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2219 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2220 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2221
2222
2223 struct atmel_sha_authenc_ctx {
2224 struct crypto_ahash *tfm;
2225 };
2226
2227 struct atmel_sha_authenc_reqctx {
2228 struct atmel_sha_reqctx base;
2229
2230 atmel_aes_authenc_fn_t cb;
2231 struct atmel_aes_dev *aes_dev;
2232
2233 /* _init() parameters. */
2234 struct scatterlist *assoc;
2235 u32 assoclen;
2236 u32 textlen;
2237
2238 /* _final() parameters. */
2239 u32 *digest;
2240 unsigned int digestlen;
2241 };
2242
atmel_sha_authenc_complete(struct crypto_async_request * areq,int err)2243 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2244 int err)
2245 {
2246 struct ahash_request *req = areq->data;
2247 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2248
2249 authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2250 }
2251
atmel_sha_authenc_start(struct atmel_sha_dev * dd)2252 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2253 {
2254 struct ahash_request *req = dd->req;
2255 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2256 int err;
2257
2258 /*
2259 * Force atmel_sha_complete() to call req->base.complete(), ie
2260 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2261 */
2262 dd->force_complete = true;
2263
2264 err = atmel_sha_hw_init(dd);
2265 return authctx->cb(authctx->aes_dev, err, dd->is_async);
2266 }
2267
atmel_sha_authenc_is_ready(void)2268 bool atmel_sha_authenc_is_ready(void)
2269 {
2270 struct atmel_sha_ctx dummy;
2271
2272 dummy.dd = NULL;
2273 return (atmel_sha_find_dev(&dummy) != NULL);
2274 }
2275 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2276
atmel_sha_authenc_get_reqsize(void)2277 unsigned int atmel_sha_authenc_get_reqsize(void)
2278 {
2279 return sizeof(struct atmel_sha_authenc_reqctx);
2280 }
2281 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2282
atmel_sha_authenc_spawn(unsigned long mode)2283 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2284 {
2285 struct atmel_sha_authenc_ctx *auth;
2286 struct crypto_ahash *tfm;
2287 struct atmel_sha_ctx *tctx;
2288 const char *name;
2289 int err = -EINVAL;
2290
2291 switch (mode & SHA_FLAGS_MODE_MASK) {
2292 case SHA_FLAGS_HMAC_SHA1:
2293 name = "atmel-hmac-sha1";
2294 break;
2295
2296 case SHA_FLAGS_HMAC_SHA224:
2297 name = "atmel-hmac-sha224";
2298 break;
2299
2300 case SHA_FLAGS_HMAC_SHA256:
2301 name = "atmel-hmac-sha256";
2302 break;
2303
2304 case SHA_FLAGS_HMAC_SHA384:
2305 name = "atmel-hmac-sha384";
2306 break;
2307
2308 case SHA_FLAGS_HMAC_SHA512:
2309 name = "atmel-hmac-sha512";
2310 break;
2311
2312 default:
2313 goto error;
2314 }
2315
2316 tfm = crypto_alloc_ahash(name, 0, 0);
2317 if (IS_ERR(tfm)) {
2318 err = PTR_ERR(tfm);
2319 goto error;
2320 }
2321 tctx = crypto_ahash_ctx(tfm);
2322 tctx->start = atmel_sha_authenc_start;
2323 tctx->flags = mode;
2324
2325 auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2326 if (!auth) {
2327 err = -ENOMEM;
2328 goto err_free_ahash;
2329 }
2330 auth->tfm = tfm;
2331
2332 return auth;
2333
2334 err_free_ahash:
2335 crypto_free_ahash(tfm);
2336 error:
2337 return ERR_PTR(err);
2338 }
2339 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2340
atmel_sha_authenc_free(struct atmel_sha_authenc_ctx * auth)2341 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2342 {
2343 if (auth)
2344 crypto_free_ahash(auth->tfm);
2345 kfree(auth);
2346 }
2347 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2348
atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx * auth,const u8 * key,unsigned int keylen,u32 * flags)2349 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2350 const u8 *key, unsigned int keylen,
2351 u32 *flags)
2352 {
2353 struct crypto_ahash *tfm = auth->tfm;
2354 int err;
2355
2356 crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2357 crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2358 err = crypto_ahash_setkey(tfm, key, keylen);
2359 *flags = crypto_ahash_get_flags(tfm);
2360
2361 return err;
2362 }
2363 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2364
atmel_sha_authenc_schedule(struct ahash_request * req,struct atmel_sha_authenc_ctx * auth,atmel_aes_authenc_fn_t cb,struct atmel_aes_dev * aes_dev)2365 int atmel_sha_authenc_schedule(struct ahash_request *req,
2366 struct atmel_sha_authenc_ctx *auth,
2367 atmel_aes_authenc_fn_t cb,
2368 struct atmel_aes_dev *aes_dev)
2369 {
2370 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2371 struct atmel_sha_reqctx *ctx = &authctx->base;
2372 struct crypto_ahash *tfm = auth->tfm;
2373 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2374 struct atmel_sha_dev *dd;
2375
2376 /* Reset request context (MUST be done first). */
2377 memset(authctx, 0, sizeof(*authctx));
2378
2379 /* Get SHA device. */
2380 dd = atmel_sha_find_dev(tctx);
2381 if (!dd)
2382 return cb(aes_dev, -ENODEV, false);
2383
2384 /* Init request context. */
2385 ctx->dd = dd;
2386 ctx->buflen = SHA_BUFFER_LEN;
2387 authctx->cb = cb;
2388 authctx->aes_dev = aes_dev;
2389 ahash_request_set_tfm(req, tfm);
2390 ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2391
2392 return atmel_sha_handle_queue(dd, req);
2393 }
2394 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2395
atmel_sha_authenc_init(struct ahash_request * req,struct scatterlist * assoc,unsigned int assoclen,unsigned int textlen,atmel_aes_authenc_fn_t cb,struct atmel_aes_dev * aes_dev)2396 int atmel_sha_authenc_init(struct ahash_request *req,
2397 struct scatterlist *assoc, unsigned int assoclen,
2398 unsigned int textlen,
2399 atmel_aes_authenc_fn_t cb,
2400 struct atmel_aes_dev *aes_dev)
2401 {
2402 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2403 struct atmel_sha_reqctx *ctx = &authctx->base;
2404 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2405 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2406 struct atmel_sha_dev *dd = ctx->dd;
2407
2408 if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2409 return atmel_sha_complete(dd, -EINVAL);
2410
2411 authctx->cb = cb;
2412 authctx->aes_dev = aes_dev;
2413 authctx->assoc = assoc;
2414 authctx->assoclen = assoclen;
2415 authctx->textlen = textlen;
2416
2417 ctx->flags = hmac->base.flags;
2418 return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2419 }
2420 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2421
atmel_sha_authenc_init2(struct atmel_sha_dev * dd)2422 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2423 {
2424 struct ahash_request *req = dd->req;
2425 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2426 struct atmel_sha_reqctx *ctx = &authctx->base;
2427 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2428 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2429 size_t hs = ctx->hash_size;
2430 size_t i, num_words = hs / sizeof(u32);
2431 u32 mr, msg_size;
2432
2433 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2434 for (i = 0; i < num_words; ++i)
2435 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2436
2437 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2438 for (i = 0; i < num_words; ++i)
2439 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2440
2441 mr = (SHA_MR_MODE_IDATAR0 |
2442 SHA_MR_HMAC |
2443 SHA_MR_DUALBUFF);
2444 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2445 atmel_sha_write(dd, SHA_MR, mr);
2446
2447 msg_size = authctx->assoclen + authctx->textlen;
2448 atmel_sha_write(dd, SHA_MSR, msg_size);
2449 atmel_sha_write(dd, SHA_BCR, msg_size);
2450
2451 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2452
2453 /* Process assoc data. */
2454 return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2455 true, false,
2456 atmel_sha_authenc_init_done);
2457 }
2458
atmel_sha_authenc_init_done(struct atmel_sha_dev * dd)2459 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2460 {
2461 struct ahash_request *req = dd->req;
2462 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2463
2464 return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2465 }
2466
atmel_sha_authenc_final(struct ahash_request * req,u32 * digest,unsigned int digestlen,atmel_aes_authenc_fn_t cb,struct atmel_aes_dev * aes_dev)2467 int atmel_sha_authenc_final(struct ahash_request *req,
2468 u32 *digest, unsigned int digestlen,
2469 atmel_aes_authenc_fn_t cb,
2470 struct atmel_aes_dev *aes_dev)
2471 {
2472 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2473 struct atmel_sha_reqctx *ctx = &authctx->base;
2474 struct atmel_sha_dev *dd = ctx->dd;
2475
2476 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2477 case SHA_FLAGS_SHA1:
2478 authctx->digestlen = SHA1_DIGEST_SIZE;
2479 break;
2480
2481 case SHA_FLAGS_SHA224:
2482 authctx->digestlen = SHA224_DIGEST_SIZE;
2483 break;
2484
2485 case SHA_FLAGS_SHA256:
2486 authctx->digestlen = SHA256_DIGEST_SIZE;
2487 break;
2488
2489 case SHA_FLAGS_SHA384:
2490 authctx->digestlen = SHA384_DIGEST_SIZE;
2491 break;
2492
2493 case SHA_FLAGS_SHA512:
2494 authctx->digestlen = SHA512_DIGEST_SIZE;
2495 break;
2496
2497 default:
2498 return atmel_sha_complete(dd, -EINVAL);
2499 }
2500 if (authctx->digestlen > digestlen)
2501 authctx->digestlen = digestlen;
2502
2503 authctx->cb = cb;
2504 authctx->aes_dev = aes_dev;
2505 authctx->digest = digest;
2506 return atmel_sha_wait_for_data_ready(dd,
2507 atmel_sha_authenc_final_done);
2508 }
2509 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2510
atmel_sha_authenc_final_done(struct atmel_sha_dev * dd)2511 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2512 {
2513 struct ahash_request *req = dd->req;
2514 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2515 size_t i, num_words = authctx->digestlen / sizeof(u32);
2516
2517 for (i = 0; i < num_words; ++i)
2518 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2519
2520 return atmel_sha_complete(dd, 0);
2521 }
2522
atmel_sha_authenc_abort(struct ahash_request * req)2523 void atmel_sha_authenc_abort(struct ahash_request *req)
2524 {
2525 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2526 struct atmel_sha_reqctx *ctx = &authctx->base;
2527 struct atmel_sha_dev *dd = ctx->dd;
2528
2529 /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2530 dd->is_async = false;
2531 dd->force_complete = false;
2532 (void)atmel_sha_complete(dd, 0);
2533 }
2534 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2535
2536 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2537
2538
atmel_sha_unregister_algs(struct atmel_sha_dev * dd)2539 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2540 {
2541 int i;
2542
2543 if (dd->caps.has_hmac)
2544 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2545 crypto_unregister_ahash(&sha_hmac_algs[i]);
2546
2547 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2548 crypto_unregister_ahash(&sha_1_256_algs[i]);
2549
2550 if (dd->caps.has_sha224)
2551 crypto_unregister_ahash(&sha_224_alg);
2552
2553 if (dd->caps.has_sha_384_512) {
2554 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2555 crypto_unregister_ahash(&sha_384_512_algs[i]);
2556 }
2557 }
2558
atmel_sha_register_algs(struct atmel_sha_dev * dd)2559 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2560 {
2561 int err, i, j;
2562
2563 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2564 err = crypto_register_ahash(&sha_1_256_algs[i]);
2565 if (err)
2566 goto err_sha_1_256_algs;
2567 }
2568
2569 if (dd->caps.has_sha224) {
2570 err = crypto_register_ahash(&sha_224_alg);
2571 if (err)
2572 goto err_sha_224_algs;
2573 }
2574
2575 if (dd->caps.has_sha_384_512) {
2576 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2577 err = crypto_register_ahash(&sha_384_512_algs[i]);
2578 if (err)
2579 goto err_sha_384_512_algs;
2580 }
2581 }
2582
2583 if (dd->caps.has_hmac) {
2584 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2585 err = crypto_register_ahash(&sha_hmac_algs[i]);
2586 if (err)
2587 goto err_sha_hmac_algs;
2588 }
2589 }
2590
2591 return 0;
2592
2593 /*i = ARRAY_SIZE(sha_hmac_algs);*/
2594 err_sha_hmac_algs:
2595 for (j = 0; j < i; j++)
2596 crypto_unregister_ahash(&sha_hmac_algs[j]);
2597 i = ARRAY_SIZE(sha_384_512_algs);
2598 err_sha_384_512_algs:
2599 for (j = 0; j < i; j++)
2600 crypto_unregister_ahash(&sha_384_512_algs[j]);
2601 crypto_unregister_ahash(&sha_224_alg);
2602 err_sha_224_algs:
2603 i = ARRAY_SIZE(sha_1_256_algs);
2604 err_sha_1_256_algs:
2605 for (j = 0; j < i; j++)
2606 crypto_unregister_ahash(&sha_1_256_algs[j]);
2607
2608 return err;
2609 }
2610
atmel_sha_filter(struct dma_chan * chan,void * slave)2611 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2612 {
2613 struct at_dma_slave *sl = slave;
2614
2615 if (sl && sl->dma_dev == chan->device->dev) {
2616 chan->private = sl;
2617 return true;
2618 } else {
2619 return false;
2620 }
2621 }
2622
atmel_sha_dma_init(struct atmel_sha_dev * dd,struct crypto_platform_data * pdata)2623 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2624 struct crypto_platform_data *pdata)
2625 {
2626 dma_cap_mask_t mask_in;
2627
2628 /* Try to grab DMA channel */
2629 dma_cap_zero(mask_in);
2630 dma_cap_set(DMA_SLAVE, mask_in);
2631
2632 dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2633 atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2634 if (!dd->dma_lch_in.chan) {
2635 dev_warn(dd->dev, "no DMA channel available\n");
2636 return -ENODEV;
2637 }
2638
2639 dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2640 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2641 SHA_REG_DIN(0);
2642 dd->dma_lch_in.dma_conf.src_maxburst = 1;
2643 dd->dma_lch_in.dma_conf.src_addr_width =
2644 DMA_SLAVE_BUSWIDTH_4_BYTES;
2645 dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2646 dd->dma_lch_in.dma_conf.dst_addr_width =
2647 DMA_SLAVE_BUSWIDTH_4_BYTES;
2648 dd->dma_lch_in.dma_conf.device_fc = false;
2649
2650 return 0;
2651 }
2652
atmel_sha_dma_cleanup(struct atmel_sha_dev * dd)2653 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2654 {
2655 dma_release_channel(dd->dma_lch_in.chan);
2656 }
2657
atmel_sha_get_cap(struct atmel_sha_dev * dd)2658 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2659 {
2660
2661 dd->caps.has_dma = 0;
2662 dd->caps.has_dualbuff = 0;
2663 dd->caps.has_sha224 = 0;
2664 dd->caps.has_sha_384_512 = 0;
2665 dd->caps.has_uihv = 0;
2666 dd->caps.has_hmac = 0;
2667
2668 /* keep only major version number */
2669 switch (dd->hw_version & 0xff0) {
2670 case 0x510:
2671 dd->caps.has_dma = 1;
2672 dd->caps.has_dualbuff = 1;
2673 dd->caps.has_sha224 = 1;
2674 dd->caps.has_sha_384_512 = 1;
2675 dd->caps.has_uihv = 1;
2676 dd->caps.has_hmac = 1;
2677 break;
2678 case 0x420:
2679 dd->caps.has_dma = 1;
2680 dd->caps.has_dualbuff = 1;
2681 dd->caps.has_sha224 = 1;
2682 dd->caps.has_sha_384_512 = 1;
2683 dd->caps.has_uihv = 1;
2684 break;
2685 case 0x410:
2686 dd->caps.has_dma = 1;
2687 dd->caps.has_dualbuff = 1;
2688 dd->caps.has_sha224 = 1;
2689 dd->caps.has_sha_384_512 = 1;
2690 break;
2691 case 0x400:
2692 dd->caps.has_dma = 1;
2693 dd->caps.has_dualbuff = 1;
2694 dd->caps.has_sha224 = 1;
2695 break;
2696 case 0x320:
2697 break;
2698 default:
2699 dev_warn(dd->dev,
2700 "Unmanaged sha version, set minimum capabilities\n");
2701 break;
2702 }
2703 }
2704
2705 #if defined(CONFIG_OF)
2706 static const struct of_device_id atmel_sha_dt_ids[] = {
2707 { .compatible = "atmel,at91sam9g46-sha" },
2708 { /* sentinel */ }
2709 };
2710
2711 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2712
atmel_sha_of_init(struct platform_device * pdev)2713 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2714 {
2715 struct device_node *np = pdev->dev.of_node;
2716 struct crypto_platform_data *pdata;
2717
2718 if (!np) {
2719 dev_err(&pdev->dev, "device node not found\n");
2720 return ERR_PTR(-EINVAL);
2721 }
2722
2723 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2724 if (!pdata)
2725 return ERR_PTR(-ENOMEM);
2726
2727 pdata->dma_slave = devm_kzalloc(&pdev->dev,
2728 sizeof(*(pdata->dma_slave)),
2729 GFP_KERNEL);
2730 if (!pdata->dma_slave)
2731 return ERR_PTR(-ENOMEM);
2732
2733 return pdata;
2734 }
2735 #else /* CONFIG_OF */
atmel_sha_of_init(struct platform_device * dev)2736 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2737 {
2738 return ERR_PTR(-EINVAL);
2739 }
2740 #endif
2741
atmel_sha_probe(struct platform_device * pdev)2742 static int atmel_sha_probe(struct platform_device *pdev)
2743 {
2744 struct atmel_sha_dev *sha_dd;
2745 struct crypto_platform_data *pdata;
2746 struct device *dev = &pdev->dev;
2747 struct resource *sha_res;
2748 int err;
2749
2750 sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2751 if (sha_dd == NULL) {
2752 err = -ENOMEM;
2753 goto sha_dd_err;
2754 }
2755
2756 sha_dd->dev = dev;
2757
2758 platform_set_drvdata(pdev, sha_dd);
2759
2760 INIT_LIST_HEAD(&sha_dd->list);
2761 spin_lock_init(&sha_dd->lock);
2762
2763 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2764 (unsigned long)sha_dd);
2765 tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2766 (unsigned long)sha_dd);
2767
2768 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2769
2770 /* Get the base address */
2771 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2772 if (!sha_res) {
2773 dev_err(dev, "no MEM resource info\n");
2774 err = -ENODEV;
2775 goto res_err;
2776 }
2777 sha_dd->phys_base = sha_res->start;
2778
2779 /* Get the IRQ */
2780 sha_dd->irq = platform_get_irq(pdev, 0);
2781 if (sha_dd->irq < 0) {
2782 err = sha_dd->irq;
2783 goto res_err;
2784 }
2785
2786 err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2787 IRQF_SHARED, "atmel-sha", sha_dd);
2788 if (err) {
2789 dev_err(dev, "unable to request sha irq.\n");
2790 goto res_err;
2791 }
2792
2793 /* Initializing the clock */
2794 sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2795 if (IS_ERR(sha_dd->iclk)) {
2796 dev_err(dev, "clock initialization failed.\n");
2797 err = PTR_ERR(sha_dd->iclk);
2798 goto res_err;
2799 }
2800
2801 sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2802 if (IS_ERR(sha_dd->io_base)) {
2803 dev_err(dev, "can't ioremap\n");
2804 err = PTR_ERR(sha_dd->io_base);
2805 goto res_err;
2806 }
2807
2808 err = clk_prepare(sha_dd->iclk);
2809 if (err)
2810 goto res_err;
2811
2812 atmel_sha_hw_version_init(sha_dd);
2813
2814 atmel_sha_get_cap(sha_dd);
2815
2816 if (sha_dd->caps.has_dma) {
2817 pdata = pdev->dev.platform_data;
2818 if (!pdata) {
2819 pdata = atmel_sha_of_init(pdev);
2820 if (IS_ERR(pdata)) {
2821 dev_err(&pdev->dev, "platform data not available\n");
2822 err = PTR_ERR(pdata);
2823 goto iclk_unprepare;
2824 }
2825 }
2826 if (!pdata->dma_slave) {
2827 err = -ENXIO;
2828 goto iclk_unprepare;
2829 }
2830 err = atmel_sha_dma_init(sha_dd, pdata);
2831 if (err)
2832 goto err_sha_dma;
2833
2834 dev_info(dev, "using %s for DMA transfers\n",
2835 dma_chan_name(sha_dd->dma_lch_in.chan));
2836 }
2837
2838 spin_lock(&atmel_sha.lock);
2839 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2840 spin_unlock(&atmel_sha.lock);
2841
2842 err = atmel_sha_register_algs(sha_dd);
2843 if (err)
2844 goto err_algs;
2845
2846 dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2847 sha_dd->caps.has_sha224 ? "/SHA224" : "",
2848 sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2849
2850 return 0;
2851
2852 err_algs:
2853 spin_lock(&atmel_sha.lock);
2854 list_del(&sha_dd->list);
2855 spin_unlock(&atmel_sha.lock);
2856 if (sha_dd->caps.has_dma)
2857 atmel_sha_dma_cleanup(sha_dd);
2858 err_sha_dma:
2859 iclk_unprepare:
2860 clk_unprepare(sha_dd->iclk);
2861 res_err:
2862 tasklet_kill(&sha_dd->queue_task);
2863 tasklet_kill(&sha_dd->done_task);
2864 sha_dd_err:
2865 dev_err(dev, "initialization failed.\n");
2866
2867 return err;
2868 }
2869
atmel_sha_remove(struct platform_device * pdev)2870 static int atmel_sha_remove(struct platform_device *pdev)
2871 {
2872 struct atmel_sha_dev *sha_dd;
2873
2874 sha_dd = platform_get_drvdata(pdev);
2875 if (!sha_dd)
2876 return -ENODEV;
2877 spin_lock(&atmel_sha.lock);
2878 list_del(&sha_dd->list);
2879 spin_unlock(&atmel_sha.lock);
2880
2881 atmel_sha_unregister_algs(sha_dd);
2882
2883 tasklet_kill(&sha_dd->queue_task);
2884 tasklet_kill(&sha_dd->done_task);
2885
2886 if (sha_dd->caps.has_dma)
2887 atmel_sha_dma_cleanup(sha_dd);
2888
2889 clk_unprepare(sha_dd->iclk);
2890
2891 return 0;
2892 }
2893
2894 static struct platform_driver atmel_sha_driver = {
2895 .probe = atmel_sha_probe,
2896 .remove = atmel_sha_remove,
2897 .driver = {
2898 .name = "atmel_sha",
2899 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2900 },
2901 };
2902
2903 module_platform_driver(atmel_sha_driver);
2904
2905 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2906 MODULE_LICENSE("GPL v2");
2907 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2908