1 /*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
31 *
32 * This version is adapted from the Attansic reference driver.
33 *
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38 *
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
45 */
46
47 #include <linux/atomic.h>
48 #include <asm/byteorder.h>
49
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
80
81 #include <net/checksum.h>
82
83 #include "atl1.h"
84
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87 "Chris Snook <csnook@redhat.com>, "
88 "Jay Cliburn <jcliburn@gmail.com>");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(ATLX_DRIVER_VERSION);
91
92 /* Temporary hack for merging atl1 and atl2 */
93 #include "atlx.c"
94
95 static const struct ethtool_ops atl1_ethtool_ops;
96
97 /*
98 * This is the only thing that needs to be changed to adjust the
99 * maximum number of ports that the driver can manage.
100 */
101 #define ATL1_MAX_NIC 4
102
103 #define OPTION_UNSET -1
104 #define OPTION_DISABLED 0
105 #define OPTION_ENABLED 1
106
107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108
109 /*
110 * Interrupt Moderate Timer in units of 2 us
111 *
112 * Valid Range: 10-65535
113 *
114 * Default Value: 100 (200us)
115 */
116 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117 static unsigned int num_int_mod_timer;
118 module_param_array_named(int_mod_timer, int_mod_timer, int,
119 &num_int_mod_timer, 0);
120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121
122 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
123 #define MAX_INT_MOD_CNT 65000
124 #define MIN_INT_MOD_CNT 50
125
126 struct atl1_option {
127 enum { enable_option, range_option, list_option } type;
128 char *name;
129 char *err;
130 int def;
131 union {
132 struct { /* range_option info */
133 int min;
134 int max;
135 } r;
136 struct { /* list_option info */
137 int nr;
138 struct atl1_opt_list {
139 int i;
140 char *str;
141 } *p;
142 } l;
143 } arg;
144 };
145
atl1_validate_option(int * value,struct atl1_option * opt,struct pci_dev * pdev)146 static int atl1_validate_option(int *value, struct atl1_option *opt,
147 struct pci_dev *pdev)
148 {
149 if (*value == OPTION_UNSET) {
150 *value = opt->def;
151 return 0;
152 }
153
154 switch (opt->type) {
155 case enable_option:
156 switch (*value) {
157 case OPTION_ENABLED:
158 dev_info(&pdev->dev, "%s enabled\n", opt->name);
159 return 0;
160 case OPTION_DISABLED:
161 dev_info(&pdev->dev, "%s disabled\n", opt->name);
162 return 0;
163 }
164 break;
165 case range_option:
166 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168 *value);
169 return 0;
170 }
171 break;
172 case list_option:{
173 int i;
174 struct atl1_opt_list *ent;
175
176 for (i = 0; i < opt->arg.l.nr; i++) {
177 ent = &opt->arg.l.p[i];
178 if (*value == ent->i) {
179 if (ent->str[0] != '\0')
180 dev_info(&pdev->dev, "%s\n",
181 ent->str);
182 return 0;
183 }
184 }
185 }
186 break;
187
188 default:
189 break;
190 }
191
192 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193 opt->name, *value, opt->err);
194 *value = opt->def;
195 return -1;
196 }
197
198 /**
199 * atl1_check_options - Range Checking for Command Line Parameters
200 * @adapter: board private structure
201 *
202 * This routine checks all command line parameters for valid user
203 * input. If an invalid value is given, or if no user specified
204 * value exists, a default value is used. The final value is stored
205 * in a variable in the adapter structure.
206 */
atl1_check_options(struct atl1_adapter * adapter)207 static void atl1_check_options(struct atl1_adapter *adapter)
208 {
209 struct pci_dev *pdev = adapter->pdev;
210 int bd = adapter->bd_number;
211 if (bd >= ATL1_MAX_NIC) {
212 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213 dev_notice(&pdev->dev, "using defaults for all values\n");
214 }
215 { /* Interrupt Moderate Timer */
216 struct atl1_option opt = {
217 .type = range_option,
218 .name = "Interrupt Moderator Timer",
219 .err = "using default of "
220 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
221 .def = DEFAULT_INT_MOD_CNT,
222 .arg = {.r = {.min = MIN_INT_MOD_CNT,
223 .max = MAX_INT_MOD_CNT} }
224 };
225 int val;
226 if (num_int_mod_timer > bd) {
227 val = int_mod_timer[bd];
228 atl1_validate_option(&val, &opt, pdev);
229 adapter->imt = (u16) val;
230 } else
231 adapter->imt = (u16) (opt.def);
232 }
233 }
234
235 /*
236 * atl1_pci_tbl - PCI Device ID Table
237 */
238 static const struct pci_device_id atl1_pci_tbl[] = {
239 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240 /* required last entry */
241 {0,}
242 };
243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244
245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247
248 static int debug = -1;
249 module_param(debug, int, 0);
250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251
252 /*
253 * Reset the transmit and receive units; mask and clear all interrupts.
254 * hw - Struct containing variables accessed by shared code
255 * return : 0 or idle status (if error)
256 */
atl1_reset_hw(struct atl1_hw * hw)257 static s32 atl1_reset_hw(struct atl1_hw *hw)
258 {
259 struct pci_dev *pdev = hw->back->pdev;
260 struct atl1_adapter *adapter = hw->back;
261 u32 icr;
262 int i;
263
264 /*
265 * Clear Interrupt mask to stop board from generating
266 * interrupts & Clear any pending interrupt events
267 */
268 /*
269 * atlx_irq_disable(adapter);
270 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271 */
272
273 /*
274 * Issue Soft Reset to the MAC. This will reset the chip's
275 * transmit, receive, DMA. It will not effect
276 * the current PCI configuration. The global reset bit is self-
277 * clearing, and should clear within a microsecond.
278 */
279 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280 ioread32(hw->hw_addr + REG_MASTER_CTRL);
281
282 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283 ioread16(hw->hw_addr + REG_PHY_ENABLE);
284
285 /* delay about 1ms */
286 msleep(1);
287
288 /* Wait at least 10ms for All module to be Idle */
289 for (i = 0; i < 10; i++) {
290 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291 if (!icr)
292 break;
293 /* delay 1 ms */
294 msleep(1);
295 /* FIXME: still the right way to do this? */
296 cpu_relax();
297 }
298
299 if (icr) {
300 if (netif_msg_hw(adapter))
301 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302 return icr;
303 }
304
305 return 0;
306 }
307
308 /* function about EEPROM
309 *
310 * check_eeprom_exist
311 * return 0 if eeprom exist
312 */
atl1_check_eeprom_exist(struct atl1_hw * hw)313 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314 {
315 u32 value;
316 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317 if (value & SPI_FLASH_CTRL_EN_VPD) {
318 value &= ~SPI_FLASH_CTRL_EN_VPD;
319 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320 }
321
322 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324 }
325
atl1_read_eeprom(struct atl1_hw * hw,u32 offset,u32 * p_value)326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327 {
328 int i;
329 u32 control;
330
331 if (offset & 3)
332 /* address do not align */
333 return false;
334
335 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338 ioread32(hw->hw_addr + REG_VPD_CAP);
339
340 for (i = 0; i < 10; i++) {
341 msleep(2);
342 control = ioread32(hw->hw_addr + REG_VPD_CAP);
343 if (control & VPD_CAP_VPD_FLAG)
344 break;
345 }
346 if (control & VPD_CAP_VPD_FLAG) {
347 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348 return true;
349 }
350 /* timeout */
351 return false;
352 }
353
354 /*
355 * Reads the value from a PHY register
356 * hw - Struct containing variables accessed by shared code
357 * reg_addr - address of the PHY register to read
358 */
atl1_read_phy_reg(struct atl1_hw * hw,u16 reg_addr,u16 * phy_data)359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360 {
361 u32 val;
362 int i;
363
364 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366 MDIO_CLK_SEL_SHIFT;
367 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368 ioread32(hw->hw_addr + REG_MDIO_CTRL);
369
370 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371 udelay(2);
372 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373 if (!(val & (MDIO_START | MDIO_BUSY)))
374 break;
375 }
376 if (!(val & (MDIO_START | MDIO_BUSY))) {
377 *phy_data = (u16) val;
378 return 0;
379 }
380 return ATLX_ERR_PHY;
381 }
382
383 #define CUSTOM_SPI_CS_SETUP 2
384 #define CUSTOM_SPI_CLK_HI 2
385 #define CUSTOM_SPI_CLK_LO 2
386 #define CUSTOM_SPI_CS_HOLD 2
387 #define CUSTOM_SPI_CS_HI 3
388
atl1_spi_read(struct atl1_hw * hw,u32 addr,u32 * buf)389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390 {
391 int i;
392 u32 value;
393
394 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396
397 value = SPI_FLASH_CTRL_WAIT_READY |
398 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400 SPI_FLASH_CTRL_CLK_HI_MASK) <<
401 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402 SPI_FLASH_CTRL_CLK_LO_MASK) <<
403 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406 SPI_FLASH_CTRL_CS_HI_MASK) <<
407 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408 SPI_FLASH_CTRL_INS_SHIFT;
409
410 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411
412 value |= SPI_FLASH_CTRL_START;
413 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415
416 for (i = 0; i < 10; i++) {
417 msleep(1);
418 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419 if (!(value & SPI_FLASH_CTRL_START))
420 break;
421 }
422
423 if (value & SPI_FLASH_CTRL_START)
424 return false;
425
426 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427
428 return true;
429 }
430
431 /*
432 * get_permanent_address
433 * return 0 if get valid mac address,
434 */
atl1_get_permanent_address(struct atl1_hw * hw)435 static int atl1_get_permanent_address(struct atl1_hw *hw)
436 {
437 u32 addr[2];
438 u32 i, control;
439 u16 reg;
440 u8 eth_addr[ETH_ALEN];
441 bool key_valid;
442
443 if (is_valid_ether_addr(hw->perm_mac_addr))
444 return 0;
445
446 /* init */
447 addr[0] = addr[1] = 0;
448
449 if (!atl1_check_eeprom_exist(hw)) {
450 reg = 0;
451 key_valid = false;
452 /* Read out all EEPROM content */
453 i = 0;
454 while (1) {
455 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456 if (key_valid) {
457 if (reg == REG_MAC_STA_ADDR)
458 addr[0] = control;
459 else if (reg == (REG_MAC_STA_ADDR + 4))
460 addr[1] = control;
461 key_valid = false;
462 } else if ((control & 0xff) == 0x5A) {
463 key_valid = true;
464 reg = (u16) (control >> 16);
465 } else
466 break;
467 } else
468 /* read error */
469 break;
470 i += 4;
471 }
472
473 *(u32 *) ð_addr[2] = swab32(addr[0]);
474 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
475 if (is_valid_ether_addr(eth_addr)) {
476 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477 return 0;
478 }
479 }
480
481 /* see if SPI FLAGS exist ? */
482 addr[0] = addr[1] = 0;
483 reg = 0;
484 key_valid = false;
485 i = 0;
486 while (1) {
487 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488 if (key_valid) {
489 if (reg == REG_MAC_STA_ADDR)
490 addr[0] = control;
491 else if (reg == (REG_MAC_STA_ADDR + 4))
492 addr[1] = control;
493 key_valid = false;
494 } else if ((control & 0xff) == 0x5A) {
495 key_valid = true;
496 reg = (u16) (control >> 16);
497 } else
498 /* data end */
499 break;
500 } else
501 /* read error */
502 break;
503 i += 4;
504 }
505
506 *(u32 *) ð_addr[2] = swab32(addr[0]);
507 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
508 if (is_valid_ether_addr(eth_addr)) {
509 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510 return 0;
511 }
512
513 /*
514 * On some motherboards, the MAC address is written by the
515 * BIOS directly to the MAC register during POST, and is
516 * not stored in eeprom. If all else thus far has failed
517 * to fetch the permanent MAC address, try reading it directly.
518 */
519 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521 *(u32 *) ð_addr[2] = swab32(addr[0]);
522 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
523 if (is_valid_ether_addr(eth_addr)) {
524 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525 return 0;
526 }
527
528 return 1;
529 }
530
531 /*
532 * Reads the adapter's MAC address from the EEPROM
533 * hw - Struct containing variables accessed by shared code
534 */
atl1_read_mac_addr(struct atl1_hw * hw)535 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536 {
537 s32 ret = 0;
538 u16 i;
539
540 if (atl1_get_permanent_address(hw)) {
541 eth_random_addr(hw->perm_mac_addr);
542 ret = 1;
543 }
544
545 for (i = 0; i < ETH_ALEN; i++)
546 hw->mac_addr[i] = hw->perm_mac_addr[i];
547 return ret;
548 }
549
550 /*
551 * Hashes an address to determine its location in the multicast table
552 * hw - Struct containing variables accessed by shared code
553 * mc_addr - the multicast address to hash
554 *
555 * atl1_hash_mc_addr
556 * purpose
557 * set hash value for a multicast address
558 * hash calcu processing :
559 * 1. calcu 32bit CRC for multicast address
560 * 2. reverse crc with MSB to LSB
561 */
atl1_hash_mc_addr(struct atl1_hw * hw,u8 * mc_addr)562 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
563 {
564 u32 crc32, value = 0;
565 int i;
566
567 crc32 = ether_crc_le(6, mc_addr);
568 for (i = 0; i < 32; i++)
569 value |= (((crc32 >> i) & 1) << (31 - i));
570
571 return value;
572 }
573
574 /*
575 * Sets the bit in the multicast table corresponding to the hash value.
576 * hw - Struct containing variables accessed by shared code
577 * hash_value - Multicast address hash value
578 */
atl1_hash_set(struct atl1_hw * hw,u32 hash_value)579 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
580 {
581 u32 hash_bit, hash_reg;
582 u32 mta;
583
584 /*
585 * The HASH Table is a register array of 2 32-bit registers.
586 * It is treated like an array of 64 bits. We want to set
587 * bit BitArray[hash_value]. So we figure out what register
588 * the bit is in, read it, OR in the new bit, then write
589 * back the new value. The register is determined by the
590 * upper 7 bits of the hash value and the bit within that
591 * register are determined by the lower 5 bits of the value.
592 */
593 hash_reg = (hash_value >> 31) & 0x1;
594 hash_bit = (hash_value >> 26) & 0x1F;
595 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
596 mta |= (1 << hash_bit);
597 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
598 }
599
600 /*
601 * Writes a value to a PHY register
602 * hw - Struct containing variables accessed by shared code
603 * reg_addr - address of the PHY register to write
604 * data - data to write to the PHY
605 */
atl1_write_phy_reg(struct atl1_hw * hw,u32 reg_addr,u16 phy_data)606 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
607 {
608 int i;
609 u32 val;
610
611 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
612 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
613 MDIO_SUP_PREAMBLE |
614 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
615 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
616 ioread32(hw->hw_addr + REG_MDIO_CTRL);
617
618 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
619 udelay(2);
620 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
621 if (!(val & (MDIO_START | MDIO_BUSY)))
622 break;
623 }
624
625 if (!(val & (MDIO_START | MDIO_BUSY)))
626 return 0;
627
628 return ATLX_ERR_PHY;
629 }
630
631 /*
632 * Make L001's PHY out of Power Saving State (bug)
633 * hw - Struct containing variables accessed by shared code
634 * when power on, L001's PHY always on Power saving State
635 * (Gigabit Link forbidden)
636 */
atl1_phy_leave_power_saving(struct atl1_hw * hw)637 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
638 {
639 s32 ret;
640 ret = atl1_write_phy_reg(hw, 29, 0x0029);
641 if (ret)
642 return ret;
643 return atl1_write_phy_reg(hw, 30, 0);
644 }
645
646 /*
647 * Resets the PHY and make all config validate
648 * hw - Struct containing variables accessed by shared code
649 *
650 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
651 */
atl1_phy_reset(struct atl1_hw * hw)652 static s32 atl1_phy_reset(struct atl1_hw *hw)
653 {
654 struct pci_dev *pdev = hw->back->pdev;
655 struct atl1_adapter *adapter = hw->back;
656 s32 ret_val;
657 u16 phy_data;
658
659 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
660 hw->media_type == MEDIA_TYPE_1000M_FULL)
661 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
662 else {
663 switch (hw->media_type) {
664 case MEDIA_TYPE_100M_FULL:
665 phy_data =
666 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
667 MII_CR_RESET;
668 break;
669 case MEDIA_TYPE_100M_HALF:
670 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
671 break;
672 case MEDIA_TYPE_10M_FULL:
673 phy_data =
674 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
675 break;
676 default:
677 /* MEDIA_TYPE_10M_HALF: */
678 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
679 break;
680 }
681 }
682
683 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
684 if (ret_val) {
685 u32 val;
686 int i;
687 /* pcie serdes link may be down! */
688 if (netif_msg_hw(adapter))
689 dev_dbg(&pdev->dev, "pcie phy link down\n");
690
691 for (i = 0; i < 25; i++) {
692 msleep(1);
693 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
694 if (!(val & (MDIO_START | MDIO_BUSY)))
695 break;
696 }
697
698 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
699 if (netif_msg_hw(adapter))
700 dev_warn(&pdev->dev,
701 "pcie link down at least 25ms\n");
702 return ret_val;
703 }
704 }
705 return 0;
706 }
707
708 /*
709 * Configures PHY autoneg and flow control advertisement settings
710 * hw - Struct containing variables accessed by shared code
711 */
atl1_phy_setup_autoneg_adv(struct atl1_hw * hw)712 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
713 {
714 s32 ret_val;
715 s16 mii_autoneg_adv_reg;
716 s16 mii_1000t_ctrl_reg;
717
718 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
719 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
720
721 /* Read the MII 1000Base-T Control Register (Address 9). */
722 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
723
724 /*
725 * First we clear all the 10/100 mb speed bits in the Auto-Neg
726 * Advertisement Register (Address 4) and the 1000 mb speed bits in
727 * the 1000Base-T Control Register (Address 9).
728 */
729 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
730 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
731
732 /*
733 * Need to parse media_type and set up
734 * the appropriate PHY registers.
735 */
736 switch (hw->media_type) {
737 case MEDIA_TYPE_AUTO_SENSOR:
738 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
739 MII_AR_10T_FD_CAPS |
740 MII_AR_100TX_HD_CAPS |
741 MII_AR_100TX_FD_CAPS);
742 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
743 break;
744
745 case MEDIA_TYPE_1000M_FULL:
746 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
747 break;
748
749 case MEDIA_TYPE_100M_FULL:
750 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
751 break;
752
753 case MEDIA_TYPE_100M_HALF:
754 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
755 break;
756
757 case MEDIA_TYPE_10M_FULL:
758 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
759 break;
760
761 default:
762 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
763 break;
764 }
765
766 /* flow control fixed to enable all */
767 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
768
769 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
770 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
771
772 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
773 if (ret_val)
774 return ret_val;
775
776 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
777 if (ret_val)
778 return ret_val;
779
780 return 0;
781 }
782
783 /*
784 * Configures link settings.
785 * hw - Struct containing variables accessed by shared code
786 * Assumes the hardware has previously been reset and the
787 * transmitter and receiver are not enabled.
788 */
atl1_setup_link(struct atl1_hw * hw)789 static s32 atl1_setup_link(struct atl1_hw *hw)
790 {
791 struct pci_dev *pdev = hw->back->pdev;
792 struct atl1_adapter *adapter = hw->back;
793 s32 ret_val;
794
795 /*
796 * Options:
797 * PHY will advertise value(s) parsed from
798 * autoneg_advertised and fc
799 * no matter what autoneg is , We will not wait link result.
800 */
801 ret_val = atl1_phy_setup_autoneg_adv(hw);
802 if (ret_val) {
803 if (netif_msg_link(adapter))
804 dev_dbg(&pdev->dev,
805 "error setting up autonegotiation\n");
806 return ret_val;
807 }
808 /* SW.Reset , En-Auto-Neg if needed */
809 ret_val = atl1_phy_reset(hw);
810 if (ret_val) {
811 if (netif_msg_link(adapter))
812 dev_dbg(&pdev->dev, "error resetting phy\n");
813 return ret_val;
814 }
815 hw->phy_configured = true;
816 return ret_val;
817 }
818
atl1_init_flash_opcode(struct atl1_hw * hw)819 static void atl1_init_flash_opcode(struct atl1_hw *hw)
820 {
821 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
822 /* Atmel */
823 hw->flash_vendor = 0;
824
825 /* Init OP table */
826 iowrite8(flash_table[hw->flash_vendor].cmd_program,
827 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
828 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
829 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
830 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
831 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
832 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
833 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
834 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
835 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
836 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
837 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
838 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
839 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
840 iowrite8(flash_table[hw->flash_vendor].cmd_read,
841 hw->hw_addr + REG_SPI_FLASH_OP_READ);
842 }
843
844 /*
845 * Performs basic configuration of the adapter.
846 * hw - Struct containing variables accessed by shared code
847 * Assumes that the controller has previously been reset and is in a
848 * post-reset uninitialized state. Initializes multicast table,
849 * and Calls routines to setup link
850 * Leaves the transmit and receive units disabled and uninitialized.
851 */
atl1_init_hw(struct atl1_hw * hw)852 static s32 atl1_init_hw(struct atl1_hw *hw)
853 {
854 u32 ret_val = 0;
855
856 /* Zero out the Multicast HASH table */
857 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
858 /* clear the old settings from the multicast hash table */
859 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
860
861 atl1_init_flash_opcode(hw);
862
863 if (!hw->phy_configured) {
864 /* enable GPHY LinkChange Interrupt */
865 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
866 if (ret_val)
867 return ret_val;
868 /* make PHY out of power-saving state */
869 ret_val = atl1_phy_leave_power_saving(hw);
870 if (ret_val)
871 return ret_val;
872 /* Call a subroutine to configure the link */
873 ret_val = atl1_setup_link(hw);
874 }
875 return ret_val;
876 }
877
878 /*
879 * Detects the current speed and duplex settings of the hardware.
880 * hw - Struct containing variables accessed by shared code
881 * speed - Speed of the connection
882 * duplex - Duplex setting of the connection
883 */
atl1_get_speed_and_duplex(struct atl1_hw * hw,u16 * speed,u16 * duplex)884 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
885 {
886 struct pci_dev *pdev = hw->back->pdev;
887 struct atl1_adapter *adapter = hw->back;
888 s32 ret_val;
889 u16 phy_data;
890
891 /* ; --- Read PHY Specific Status Register (17) */
892 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
893 if (ret_val)
894 return ret_val;
895
896 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
897 return ATLX_ERR_PHY_RES;
898
899 switch (phy_data & MII_ATLX_PSSR_SPEED) {
900 case MII_ATLX_PSSR_1000MBS:
901 *speed = SPEED_1000;
902 break;
903 case MII_ATLX_PSSR_100MBS:
904 *speed = SPEED_100;
905 break;
906 case MII_ATLX_PSSR_10MBS:
907 *speed = SPEED_10;
908 break;
909 default:
910 if (netif_msg_hw(adapter))
911 dev_dbg(&pdev->dev, "error getting speed\n");
912 return ATLX_ERR_PHY_SPEED;
913 }
914 if (phy_data & MII_ATLX_PSSR_DPLX)
915 *duplex = FULL_DUPLEX;
916 else
917 *duplex = HALF_DUPLEX;
918
919 return 0;
920 }
921
atl1_set_mac_addr(struct atl1_hw * hw)922 static void atl1_set_mac_addr(struct atl1_hw *hw)
923 {
924 u32 value;
925 /*
926 * 00-0B-6A-F6-00-DC
927 * 0: 6AF600DC 1: 000B
928 * low dword
929 */
930 value = (((u32) hw->mac_addr[2]) << 24) |
931 (((u32) hw->mac_addr[3]) << 16) |
932 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
933 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
934 /* high dword */
935 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
936 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
937 }
938
939 /**
940 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
941 * @adapter: board private structure to initialize
942 *
943 * atl1_sw_init initializes the Adapter private data structure.
944 * Fields are initialized based on PCI device information and
945 * OS network device settings (MTU size).
946 */
atl1_sw_init(struct atl1_adapter * adapter)947 static int atl1_sw_init(struct atl1_adapter *adapter)
948 {
949 struct atl1_hw *hw = &adapter->hw;
950 struct net_device *netdev = adapter->netdev;
951
952 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
953 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
954
955 adapter->wol = 0;
956 device_set_wakeup_enable(&adapter->pdev->dev, false);
957 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
958 adapter->ict = 50000; /* 100ms */
959 adapter->link_speed = SPEED_0; /* hardware init */
960 adapter->link_duplex = FULL_DUPLEX;
961
962 hw->phy_configured = false;
963 hw->preamble_len = 7;
964 hw->ipgt = 0x60;
965 hw->min_ifg = 0x50;
966 hw->ipgr1 = 0x40;
967 hw->ipgr2 = 0x60;
968 hw->max_retry = 0xf;
969 hw->lcol = 0x37;
970 hw->jam_ipg = 7;
971 hw->rfd_burst = 8;
972 hw->rrd_burst = 8;
973 hw->rfd_fetch_gap = 1;
974 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
975 hw->rx_jumbo_lkah = 1;
976 hw->rrd_ret_timer = 16;
977 hw->tpd_burst = 4;
978 hw->tpd_fetch_th = 16;
979 hw->txf_burst = 0x100;
980 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
981 hw->tpd_fetch_gap = 1;
982 hw->rcb_value = atl1_rcb_64;
983 hw->dma_ord = atl1_dma_ord_enh;
984 hw->dmar_block = atl1_dma_req_256;
985 hw->dmaw_block = atl1_dma_req_256;
986 hw->cmb_rrd = 4;
987 hw->cmb_tpd = 4;
988 hw->cmb_rx_timer = 1; /* about 2us */
989 hw->cmb_tx_timer = 1; /* about 2us */
990 hw->smb_timer = 100000; /* about 200ms */
991
992 spin_lock_init(&adapter->lock);
993 spin_lock_init(&adapter->mb_lock);
994
995 return 0;
996 }
997
mdio_read(struct net_device * netdev,int phy_id,int reg_num)998 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
999 {
1000 struct atl1_adapter *adapter = netdev_priv(netdev);
1001 u16 result;
1002
1003 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1004
1005 return result;
1006 }
1007
mdio_write(struct net_device * netdev,int phy_id,int reg_num,int val)1008 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1009 int val)
1010 {
1011 struct atl1_adapter *adapter = netdev_priv(netdev);
1012
1013 atl1_write_phy_reg(&adapter->hw, reg_num, val);
1014 }
1015
atl1_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1016 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1017 {
1018 struct atl1_adapter *adapter = netdev_priv(netdev);
1019 unsigned long flags;
1020 int retval;
1021
1022 if (!netif_running(netdev))
1023 return -EINVAL;
1024
1025 spin_lock_irqsave(&adapter->lock, flags);
1026 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027 spin_unlock_irqrestore(&adapter->lock, flags);
1028
1029 return retval;
1030 }
1031
1032 /**
1033 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034 * @adapter: board private structure
1035 *
1036 * Return 0 on success, negative on failure
1037 */
atl1_setup_ring_resources(struct atl1_adapter * adapter)1038 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1039 {
1040 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043 struct atl1_ring_header *ring_header = &adapter->ring_header;
1044 struct pci_dev *pdev = adapter->pdev;
1045 int size;
1046 u8 offset = 0;
1047
1048 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050 if (unlikely(!tpd_ring->buffer_info)) {
1051 if (netif_msg_drv(adapter))
1052 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053 size);
1054 goto err_nomem;
1055 }
1056 rfd_ring->buffer_info =
1057 (tpd_ring->buffer_info + tpd_ring->count);
1058
1059 /*
1060 * real ring DMA buffer
1061 * each ring/block may need up to 8 bytes for alignment, hence the
1062 * additional 40 bytes tacked onto the end.
1063 */
1064 ring_header->size = size =
1065 sizeof(struct tx_packet_desc) * tpd_ring->count
1066 + sizeof(struct rx_free_desc) * rfd_ring->count
1067 + sizeof(struct rx_return_desc) * rrd_ring->count
1068 + sizeof(struct coals_msg_block)
1069 + sizeof(struct stats_msg_block)
1070 + 40;
1071
1072 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073 &ring_header->dma);
1074 if (unlikely(!ring_header->desc)) {
1075 if (netif_msg_drv(adapter))
1076 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077 goto err_nomem;
1078 }
1079
1080 memset(ring_header->desc, 0, ring_header->size);
1081
1082 /* init TPD ring */
1083 tpd_ring->dma = ring_header->dma;
1084 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085 tpd_ring->dma += offset;
1086 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1088
1089 /* init RFD ring */
1090 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092 rfd_ring->dma += offset;
1093 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1095
1096
1097 /* init RRD ring */
1098 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100 rrd_ring->dma += offset;
1101 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1103
1104
1105 /* init CMB */
1106 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108 adapter->cmb.dma += offset;
1109 adapter->cmb.cmb = (struct coals_msg_block *)
1110 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1111
1112 /* init SMB */
1113 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115 adapter->smb.dma += offset;
1116 adapter->smb.smb = (struct stats_msg_block *)
1117 ((u8 *) adapter->cmb.cmb +
1118 (sizeof(struct coals_msg_block) + offset));
1119
1120 return 0;
1121
1122 err_nomem:
1123 kfree(tpd_ring->buffer_info);
1124 return -ENOMEM;
1125 }
1126
atl1_init_ring_ptrs(struct atl1_adapter * adapter)1127 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1128 {
1129 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132
1133 atomic_set(&tpd_ring->next_to_use, 0);
1134 atomic_set(&tpd_ring->next_to_clean, 0);
1135
1136 rfd_ring->next_to_clean = 0;
1137 atomic_set(&rfd_ring->next_to_use, 0);
1138
1139 rrd_ring->next_to_use = 0;
1140 atomic_set(&rrd_ring->next_to_clean, 0);
1141 }
1142
1143 /**
1144 * atl1_clean_rx_ring - Free RFD Buffers
1145 * @adapter: board private structure
1146 */
atl1_clean_rx_ring(struct atl1_adapter * adapter)1147 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1148 {
1149 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151 struct atl1_buffer *buffer_info;
1152 struct pci_dev *pdev = adapter->pdev;
1153 unsigned long size;
1154 unsigned int i;
1155
1156 /* Free all the Rx ring sk_buffs */
1157 for (i = 0; i < rfd_ring->count; i++) {
1158 buffer_info = &rfd_ring->buffer_info[i];
1159 if (buffer_info->dma) {
1160 pci_unmap_page(pdev, buffer_info->dma,
1161 buffer_info->length, PCI_DMA_FROMDEVICE);
1162 buffer_info->dma = 0;
1163 }
1164 if (buffer_info->skb) {
1165 dev_kfree_skb(buffer_info->skb);
1166 buffer_info->skb = NULL;
1167 }
1168 }
1169
1170 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171 memset(rfd_ring->buffer_info, 0, size);
1172
1173 /* Zero out the descriptor ring */
1174 memset(rfd_ring->desc, 0, rfd_ring->size);
1175
1176 rfd_ring->next_to_clean = 0;
1177 atomic_set(&rfd_ring->next_to_use, 0);
1178
1179 rrd_ring->next_to_use = 0;
1180 atomic_set(&rrd_ring->next_to_clean, 0);
1181 }
1182
1183 /**
1184 * atl1_clean_tx_ring - Free Tx Buffers
1185 * @adapter: board private structure
1186 */
atl1_clean_tx_ring(struct atl1_adapter * adapter)1187 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1188 {
1189 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190 struct atl1_buffer *buffer_info;
1191 struct pci_dev *pdev = adapter->pdev;
1192 unsigned long size;
1193 unsigned int i;
1194
1195 /* Free all the Tx ring sk_buffs */
1196 for (i = 0; i < tpd_ring->count; i++) {
1197 buffer_info = &tpd_ring->buffer_info[i];
1198 if (buffer_info->dma) {
1199 pci_unmap_page(pdev, buffer_info->dma,
1200 buffer_info->length, PCI_DMA_TODEVICE);
1201 buffer_info->dma = 0;
1202 }
1203 }
1204
1205 for (i = 0; i < tpd_ring->count; i++) {
1206 buffer_info = &tpd_ring->buffer_info[i];
1207 if (buffer_info->skb) {
1208 dev_kfree_skb_any(buffer_info->skb);
1209 buffer_info->skb = NULL;
1210 }
1211 }
1212
1213 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214 memset(tpd_ring->buffer_info, 0, size);
1215
1216 /* Zero out the descriptor ring */
1217 memset(tpd_ring->desc, 0, tpd_ring->size);
1218
1219 atomic_set(&tpd_ring->next_to_use, 0);
1220 atomic_set(&tpd_ring->next_to_clean, 0);
1221 }
1222
1223 /**
1224 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225 * @adapter: board private structure
1226 *
1227 * Free all transmit software resources
1228 */
atl1_free_ring_resources(struct atl1_adapter * adapter)1229 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1230 {
1231 struct pci_dev *pdev = adapter->pdev;
1232 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235 struct atl1_ring_header *ring_header = &adapter->ring_header;
1236
1237 atl1_clean_tx_ring(adapter);
1238 atl1_clean_rx_ring(adapter);
1239
1240 kfree(tpd_ring->buffer_info);
1241 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242 ring_header->dma);
1243
1244 tpd_ring->buffer_info = NULL;
1245 tpd_ring->desc = NULL;
1246 tpd_ring->dma = 0;
1247
1248 rfd_ring->buffer_info = NULL;
1249 rfd_ring->desc = NULL;
1250 rfd_ring->dma = 0;
1251
1252 rrd_ring->desc = NULL;
1253 rrd_ring->dma = 0;
1254
1255 adapter->cmb.dma = 0;
1256 adapter->cmb.cmb = NULL;
1257
1258 adapter->smb.dma = 0;
1259 adapter->smb.smb = NULL;
1260 }
1261
atl1_setup_mac_ctrl(struct atl1_adapter * adapter)1262 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1263 {
1264 u32 value;
1265 struct atl1_hw *hw = &adapter->hw;
1266 struct net_device *netdev = adapter->netdev;
1267 /* Config MAC CTRL Register */
1268 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1269 /* duplex */
1270 if (FULL_DUPLEX == adapter->link_duplex)
1271 value |= MAC_CTRL_DUPLX;
1272 /* speed */
1273 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1274 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1275 MAC_CTRL_SPEED_SHIFT);
1276 /* flow control */
1277 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1278 /* PAD & CRC */
1279 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1280 /* preamble length */
1281 value |= (((u32) adapter->hw.preamble_len
1282 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1283 /* vlan */
1284 __atlx_vlan_mode(netdev->features, &value);
1285 /* rx checksum
1286 if (adapter->rx_csum)
1287 value |= MAC_CTRL_RX_CHKSUM_EN;
1288 */
1289 /* filter mode */
1290 value |= MAC_CTRL_BC_EN;
1291 if (netdev->flags & IFF_PROMISC)
1292 value |= MAC_CTRL_PROMIS_EN;
1293 else if (netdev->flags & IFF_ALLMULTI)
1294 value |= MAC_CTRL_MC_ALL_EN;
1295 /* value |= MAC_CTRL_LOOPBACK; */
1296 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1297 }
1298
atl1_check_link(struct atl1_adapter * adapter)1299 static u32 atl1_check_link(struct atl1_adapter *adapter)
1300 {
1301 struct atl1_hw *hw = &adapter->hw;
1302 struct net_device *netdev = adapter->netdev;
1303 u32 ret_val;
1304 u16 speed, duplex, phy_data;
1305 int reconfig = 0;
1306
1307 /* MII_BMSR must read twice */
1308 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1309 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310 if (!(phy_data & BMSR_LSTATUS)) {
1311 /* link down */
1312 if (netif_carrier_ok(netdev)) {
1313 /* old link state: Up */
1314 if (netif_msg_link(adapter))
1315 dev_info(&adapter->pdev->dev, "link is down\n");
1316 adapter->link_speed = SPEED_0;
1317 netif_carrier_off(netdev);
1318 }
1319 return 0;
1320 }
1321
1322 /* Link Up */
1323 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1324 if (ret_val)
1325 return ret_val;
1326
1327 switch (hw->media_type) {
1328 case MEDIA_TYPE_1000M_FULL:
1329 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1330 reconfig = 1;
1331 break;
1332 case MEDIA_TYPE_100M_FULL:
1333 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1334 reconfig = 1;
1335 break;
1336 case MEDIA_TYPE_100M_HALF:
1337 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1338 reconfig = 1;
1339 break;
1340 case MEDIA_TYPE_10M_FULL:
1341 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1342 reconfig = 1;
1343 break;
1344 case MEDIA_TYPE_10M_HALF:
1345 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1346 reconfig = 1;
1347 break;
1348 }
1349
1350 /* link result is our setting */
1351 if (!reconfig) {
1352 if (adapter->link_speed != speed ||
1353 adapter->link_duplex != duplex) {
1354 adapter->link_speed = speed;
1355 adapter->link_duplex = duplex;
1356 atl1_setup_mac_ctrl(adapter);
1357 if (netif_msg_link(adapter))
1358 dev_info(&adapter->pdev->dev,
1359 "%s link is up %d Mbps %s\n",
1360 netdev->name, adapter->link_speed,
1361 adapter->link_duplex == FULL_DUPLEX ?
1362 "full duplex" : "half duplex");
1363 }
1364 if (!netif_carrier_ok(netdev)) {
1365 /* Link down -> Up */
1366 netif_carrier_on(netdev);
1367 }
1368 return 0;
1369 }
1370
1371 /* change original link status */
1372 if (netif_carrier_ok(netdev)) {
1373 adapter->link_speed = SPEED_0;
1374 netif_carrier_off(netdev);
1375 netif_stop_queue(netdev);
1376 }
1377
1378 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1379 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1380 switch (hw->media_type) {
1381 case MEDIA_TYPE_100M_FULL:
1382 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1383 MII_CR_RESET;
1384 break;
1385 case MEDIA_TYPE_100M_HALF:
1386 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1387 break;
1388 case MEDIA_TYPE_10M_FULL:
1389 phy_data =
1390 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1391 break;
1392 default:
1393 /* MEDIA_TYPE_10M_HALF: */
1394 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1395 break;
1396 }
1397 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1398 return 0;
1399 }
1400
1401 /* auto-neg, insert timer to re-config phy */
1402 if (!adapter->phy_timer_pending) {
1403 adapter->phy_timer_pending = true;
1404 mod_timer(&adapter->phy_config_timer,
1405 round_jiffies(jiffies + 3 * HZ));
1406 }
1407
1408 return 0;
1409 }
1410
set_flow_ctrl_old(struct atl1_adapter * adapter)1411 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1412 {
1413 u32 hi, lo, value;
1414
1415 /* RFD Flow Control */
1416 value = adapter->rfd_ring.count;
1417 hi = value / 16;
1418 if (hi < 2)
1419 hi = 2;
1420 lo = value * 7 / 8;
1421
1422 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1423 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1424 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1425
1426 /* RRD Flow Control */
1427 value = adapter->rrd_ring.count;
1428 lo = value / 16;
1429 hi = value * 7 / 8;
1430 if (lo < 2)
1431 lo = 2;
1432 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1433 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1434 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1435 }
1436
set_flow_ctrl_new(struct atl1_hw * hw)1437 static void set_flow_ctrl_new(struct atl1_hw *hw)
1438 {
1439 u32 hi, lo, value;
1440
1441 /* RXF Flow Control */
1442 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1443 lo = value / 16;
1444 if (lo < 192)
1445 lo = 192;
1446 hi = value * 7 / 8;
1447 if (hi < lo)
1448 hi = lo + 16;
1449 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1450 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1451 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1452
1453 /* RRD Flow Control */
1454 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1455 lo = value / 8;
1456 hi = value * 7 / 8;
1457 if (lo < 2)
1458 lo = 2;
1459 if (hi < lo)
1460 hi = lo + 3;
1461 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1462 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1463 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1464 }
1465
1466 /**
1467 * atl1_configure - Configure Transmit&Receive Unit after Reset
1468 * @adapter: board private structure
1469 *
1470 * Configure the Tx /Rx unit of the MAC after a reset.
1471 */
atl1_configure(struct atl1_adapter * adapter)1472 static u32 atl1_configure(struct atl1_adapter *adapter)
1473 {
1474 struct atl1_hw *hw = &adapter->hw;
1475 u32 value;
1476
1477 /* clear interrupt status */
1478 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1479
1480 /* set MAC Address */
1481 value = (((u32) hw->mac_addr[2]) << 24) |
1482 (((u32) hw->mac_addr[3]) << 16) |
1483 (((u32) hw->mac_addr[4]) << 8) |
1484 (((u32) hw->mac_addr[5]));
1485 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1486 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1487 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1488
1489 /* tx / rx ring */
1490
1491 /* HI base address */
1492 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1493 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1494 /* LO base address */
1495 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1496 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1497 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1498 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1499 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1500 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1501 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1502 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1503 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1504 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1505
1506 /* element count */
1507 value = adapter->rrd_ring.count;
1508 value <<= 16;
1509 value += adapter->rfd_ring.count;
1510 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1511 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1512 REG_DESC_TPD_RING_SIZE);
1513
1514 /* Load Ptr */
1515 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1516
1517 /* config Mailbox */
1518 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1519 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1520 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1521 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1522 ((atomic_read(&adapter->rfd_ring.next_to_use)
1523 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1524 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1525
1526 /* config IPG/IFG */
1527 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1528 << MAC_IPG_IFG_IPGT_SHIFT) |
1529 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1530 << MAC_IPG_IFG_MIFG_SHIFT) |
1531 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1532 << MAC_IPG_IFG_IPGR1_SHIFT) |
1533 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1534 << MAC_IPG_IFG_IPGR2_SHIFT);
1535 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1536
1537 /* config Half-Duplex Control */
1538 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1539 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1540 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1541 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1542 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1543 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1544 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1545 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1546
1547 /* set Interrupt Moderator Timer */
1548 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1549 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1550
1551 /* set Interrupt Clear Timer */
1552 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1553
1554 /* set max frame size hw will accept */
1555 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1556
1557 /* jumbo size & rrd retirement timer */
1558 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1559 << RXQ_JMBOSZ_TH_SHIFT) |
1560 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1561 << RXQ_JMBO_LKAH_SHIFT) |
1562 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1563 << RXQ_RRD_TIMER_SHIFT);
1564 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1565
1566 /* Flow Control */
1567 switch (hw->dev_rev) {
1568 case 0x8001:
1569 case 0x9001:
1570 case 0x9002:
1571 case 0x9003:
1572 set_flow_ctrl_old(adapter);
1573 break;
1574 default:
1575 set_flow_ctrl_new(hw);
1576 break;
1577 }
1578
1579 /* config TXQ */
1580 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1581 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1582 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1583 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1584 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1585 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1586 TXQ_CTRL_EN;
1587 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1588
1589 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1590 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1591 << TX_JUMBO_TASK_TH_SHIFT) |
1592 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1593 << TX_TPD_MIN_IPG_SHIFT);
1594 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1595
1596 /* config RXQ */
1597 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1598 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1599 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1600 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1601 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1602 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1603 RXQ_CTRL_EN;
1604 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1605
1606 /* config DMA Engine */
1607 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1608 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1609 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1610 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1611 DMA_CTRL_DMAW_EN;
1612 value |= (u32) hw->dma_ord;
1613 if (atl1_rcb_128 == hw->rcb_value)
1614 value |= DMA_CTRL_RCB_VALUE;
1615 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1616
1617 /* config CMB / SMB */
1618 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1619 hw->cmb_tpd : adapter->tpd_ring.count;
1620 value <<= 16;
1621 value |= hw->cmb_rrd;
1622 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1623 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1624 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1625 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1626
1627 /* --- enable CMB / SMB */
1628 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1629 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1630
1631 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1632 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1633 value = 1; /* config failed */
1634 else
1635 value = 0;
1636
1637 /* clear all interrupt status */
1638 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1639 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1640 return value;
1641 }
1642
1643 /*
1644 * atl1_pcie_patch - Patch for PCIE module
1645 */
atl1_pcie_patch(struct atl1_adapter * adapter)1646 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1647 {
1648 u32 value;
1649
1650 /* much vendor magic here */
1651 value = 0x6500;
1652 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1653 /* pcie flow control mode change */
1654 value = ioread32(adapter->hw.hw_addr + 0x1008);
1655 value |= 0x8000;
1656 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1657 }
1658
1659 /*
1660 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1661 * on PCI Command register is disable.
1662 * The function enable this bit.
1663 * Brackett, 2006/03/15
1664 */
atl1_via_workaround(struct atl1_adapter * adapter)1665 static void atl1_via_workaround(struct atl1_adapter *adapter)
1666 {
1667 unsigned long value;
1668
1669 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1670 if (value & PCI_COMMAND_INTX_DISABLE)
1671 value &= ~PCI_COMMAND_INTX_DISABLE;
1672 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1673 }
1674
atl1_inc_smb(struct atl1_adapter * adapter)1675 static void atl1_inc_smb(struct atl1_adapter *adapter)
1676 {
1677 struct net_device *netdev = adapter->netdev;
1678 struct stats_msg_block *smb = adapter->smb.smb;
1679
1680 u64 new_rx_errors = smb->rx_frag +
1681 smb->rx_fcs_err +
1682 smb->rx_len_err +
1683 smb->rx_sz_ov +
1684 smb->rx_rxf_ov +
1685 smb->rx_rrd_ov +
1686 smb->rx_align_err;
1687 u64 new_tx_errors = smb->tx_late_col +
1688 smb->tx_abort_col +
1689 smb->tx_underrun +
1690 smb->tx_trunc;
1691
1692 /* Fill out the OS statistics structure */
1693 adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1694 adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1695 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1696 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1697 adapter->soft_stats.multicast += smb->rx_mcast;
1698 adapter->soft_stats.collisions += smb->tx_1_col +
1699 smb->tx_2_col +
1700 smb->tx_late_col +
1701 smb->tx_abort_col;
1702
1703 /* Rx Errors */
1704 adapter->soft_stats.rx_errors += new_rx_errors;
1705 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1706 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1707 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1708 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1709
1710 adapter->soft_stats.rx_pause += smb->rx_pause;
1711 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1712 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1713
1714 /* Tx Errors */
1715 adapter->soft_stats.tx_errors += new_tx_errors;
1716 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1717 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1718 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1719
1720 adapter->soft_stats.excecol += smb->tx_abort_col;
1721 adapter->soft_stats.deffer += smb->tx_defer;
1722 adapter->soft_stats.scc += smb->tx_1_col;
1723 adapter->soft_stats.mcc += smb->tx_2_col;
1724 adapter->soft_stats.latecol += smb->tx_late_col;
1725 adapter->soft_stats.tx_underun += smb->tx_underrun;
1726 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1727 adapter->soft_stats.tx_pause += smb->tx_pause;
1728
1729 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1730 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1731 netdev->stats.multicast = adapter->soft_stats.multicast;
1732 netdev->stats.collisions = adapter->soft_stats.collisions;
1733 netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1734 netdev->stats.rx_length_errors =
1735 adapter->soft_stats.rx_length_errors;
1736 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1737 netdev->stats.rx_frame_errors =
1738 adapter->soft_stats.rx_frame_errors;
1739 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1740 netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1741 netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743 netdev->stats.tx_aborted_errors =
1744 adapter->soft_stats.tx_aborted_errors;
1745 netdev->stats.tx_window_errors =
1746 adapter->soft_stats.tx_window_errors;
1747 netdev->stats.tx_carrier_errors =
1748 adapter->soft_stats.tx_carrier_errors;
1749
1750 netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1751 netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1752 }
1753
atl1_update_mailbox(struct atl1_adapter * adapter)1754 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1755 {
1756 unsigned long flags;
1757 u32 tpd_next_to_use;
1758 u32 rfd_next_to_use;
1759 u32 rrd_next_to_clean;
1760 u32 value;
1761
1762 spin_lock_irqsave(&adapter->mb_lock, flags);
1763
1764 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1765 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1766 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1767
1768 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1769 MB_RFD_PROD_INDX_SHIFT) |
1770 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1771 MB_RRD_CONS_INDX_SHIFT) |
1772 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1773 MB_TPD_PROD_INDX_SHIFT);
1774 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1775
1776 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1777 }
1778
atl1_clean_alloc_flag(struct atl1_adapter * adapter,struct rx_return_desc * rrd,u16 offset)1779 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1780 struct rx_return_desc *rrd, u16 offset)
1781 {
1782 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1783
1784 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1785 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1786 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1787 rfd_ring->next_to_clean = 0;
1788 }
1789 }
1790 }
1791
atl1_update_rfd_index(struct atl1_adapter * adapter,struct rx_return_desc * rrd)1792 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1793 struct rx_return_desc *rrd)
1794 {
1795 u16 num_buf;
1796
1797 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1798 adapter->rx_buffer_len;
1799 if (rrd->num_buf == num_buf)
1800 /* clean alloc flag for bad rrd */
1801 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1802 }
1803
atl1_rx_checksum(struct atl1_adapter * adapter,struct rx_return_desc * rrd,struct sk_buff * skb)1804 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1805 struct rx_return_desc *rrd, struct sk_buff *skb)
1806 {
1807 struct pci_dev *pdev = adapter->pdev;
1808
1809 /*
1810 * The L1 hardware contains a bug that erroneously sets the
1811 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1812 * fragmented IP packet is received, even though the packet
1813 * is perfectly valid and its checksum is correct. There's
1814 * no way to distinguish between one of these good packets
1815 * and a packet that actually contains a TCP/UDP checksum
1816 * error, so all we can do is allow it to be handed up to
1817 * the higher layers and let it be sorted out there.
1818 */
1819
1820 skb_checksum_none_assert(skb);
1821
1822 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1823 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1824 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1825 adapter->hw_csum_err++;
1826 if (netif_msg_rx_err(adapter))
1827 dev_printk(KERN_DEBUG, &pdev->dev,
1828 "rx checksum error\n");
1829 return;
1830 }
1831 }
1832
1833 /* not IPv4 */
1834 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1835 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1836 return;
1837
1838 /* IPv4 packet */
1839 if (likely(!(rrd->err_flg &
1840 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1841 skb->ip_summed = CHECKSUM_UNNECESSARY;
1842 adapter->hw_csum_good++;
1843 return;
1844 }
1845 }
1846
1847 /**
1848 * atl1_alloc_rx_buffers - Replace used receive buffers
1849 * @adapter: address of board private structure
1850 */
atl1_alloc_rx_buffers(struct atl1_adapter * adapter)1851 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1852 {
1853 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1854 struct pci_dev *pdev = adapter->pdev;
1855 struct page *page;
1856 unsigned long offset;
1857 struct atl1_buffer *buffer_info, *next_info;
1858 struct sk_buff *skb;
1859 u16 num_alloc = 0;
1860 u16 rfd_next_to_use, next_next;
1861 struct rx_free_desc *rfd_desc;
1862
1863 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1864 if (++next_next == rfd_ring->count)
1865 next_next = 0;
1866 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1867 next_info = &rfd_ring->buffer_info[next_next];
1868
1869 while (!buffer_info->alloced && !next_info->alloced) {
1870 if (buffer_info->skb) {
1871 buffer_info->alloced = 1;
1872 goto next;
1873 }
1874
1875 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1876
1877 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1878 adapter->rx_buffer_len);
1879 if (unlikely(!skb)) {
1880 /* Better luck next round */
1881 adapter->soft_stats.rx_dropped++;
1882 break;
1883 }
1884
1885 buffer_info->alloced = 1;
1886 buffer_info->skb = skb;
1887 buffer_info->length = (u16) adapter->rx_buffer_len;
1888 page = virt_to_page(skb->data);
1889 offset = offset_in_page(skb->data);
1890 buffer_info->dma = pci_map_page(pdev, page, offset,
1891 adapter->rx_buffer_len,
1892 PCI_DMA_FROMDEVICE);
1893 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1894 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1895 rfd_desc->coalese = 0;
1896
1897 next:
1898 rfd_next_to_use = next_next;
1899 if (unlikely(++next_next == rfd_ring->count))
1900 next_next = 0;
1901
1902 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1903 next_info = &rfd_ring->buffer_info[next_next];
1904 num_alloc++;
1905 }
1906
1907 if (num_alloc) {
1908 /*
1909 * Force memory writes to complete before letting h/w
1910 * know there are new descriptors to fetch. (Only
1911 * applicable for weak-ordered memory model archs,
1912 * such as IA-64).
1913 */
1914 wmb();
1915 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1916 }
1917 return num_alloc;
1918 }
1919
atl1_intr_rx(struct atl1_adapter * adapter,int budget)1920 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1921 {
1922 int i, count;
1923 u16 length;
1924 u16 rrd_next_to_clean;
1925 u32 value;
1926 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1927 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1928 struct atl1_buffer *buffer_info;
1929 struct rx_return_desc *rrd;
1930 struct sk_buff *skb;
1931
1932 count = 0;
1933
1934 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1935
1936 while (count < budget) {
1937 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1938 i = 1;
1939 if (likely(rrd->xsz.valid)) { /* packet valid */
1940 chk_rrd:
1941 /* check rrd status */
1942 if (likely(rrd->num_buf == 1))
1943 goto rrd_ok;
1944 else if (netif_msg_rx_err(adapter)) {
1945 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1946 "unexpected RRD buffer count\n");
1947 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948 "rx_buf_len = %d\n",
1949 adapter->rx_buffer_len);
1950 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951 "RRD num_buf = %d\n",
1952 rrd->num_buf);
1953 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954 "RRD pkt_len = %d\n",
1955 rrd->xsz.xsum_sz.pkt_size);
1956 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957 "RRD pkt_flg = 0x%08X\n",
1958 rrd->pkt_flg);
1959 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960 "RRD err_flg = 0x%08X\n",
1961 rrd->err_flg);
1962 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963 "RRD vlan_tag = 0x%08X\n",
1964 rrd->vlan_tag);
1965 }
1966
1967 /* rrd seems to be bad */
1968 if (unlikely(i-- > 0)) {
1969 /* rrd may not be DMAed completely */
1970 udelay(1);
1971 goto chk_rrd;
1972 }
1973 /* bad rrd */
1974 if (netif_msg_rx_err(adapter))
1975 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1976 "bad RRD\n");
1977 /* see if update RFD index */
1978 if (rrd->num_buf > 1)
1979 atl1_update_rfd_index(adapter, rrd);
1980
1981 /* update rrd */
1982 rrd->xsz.valid = 0;
1983 if (++rrd_next_to_clean == rrd_ring->count)
1984 rrd_next_to_clean = 0;
1985 count++;
1986 continue;
1987 } else { /* current rrd still not be updated */
1988
1989 break;
1990 }
1991 rrd_ok:
1992 /* clean alloc flag for bad rrd */
1993 atl1_clean_alloc_flag(adapter, rrd, 0);
1994
1995 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1996 if (++rfd_ring->next_to_clean == rfd_ring->count)
1997 rfd_ring->next_to_clean = 0;
1998
1999 /* update rrd next to clean */
2000 if (++rrd_next_to_clean == rrd_ring->count)
2001 rrd_next_to_clean = 0;
2002 count++;
2003
2004 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2005 if (!(rrd->err_flg &
2006 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2007 | ERR_FLAG_LEN))) {
2008 /* packet error, don't need upstream */
2009 buffer_info->alloced = 0;
2010 rrd->xsz.valid = 0;
2011 continue;
2012 }
2013 }
2014
2015 /* Good Receive */
2016 pci_unmap_page(adapter->pdev, buffer_info->dma,
2017 buffer_info->length, PCI_DMA_FROMDEVICE);
2018 buffer_info->dma = 0;
2019 skb = buffer_info->skb;
2020 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2021
2022 skb_put(skb, length - ETH_FCS_LEN);
2023
2024 /* Receive Checksum Offload */
2025 atl1_rx_checksum(adapter, rrd, skb);
2026 skb->protocol = eth_type_trans(skb, adapter->netdev);
2027
2028 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2029 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2030 ((rrd->vlan_tag & 7) << 13) |
2031 ((rrd->vlan_tag & 8) << 9);
2032
2033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2034 }
2035 netif_receive_skb(skb);
2036
2037 /* let protocol layer free skb */
2038 buffer_info->skb = NULL;
2039 buffer_info->alloced = 0;
2040 rrd->xsz.valid = 0;
2041 }
2042
2043 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2044
2045 atl1_alloc_rx_buffers(adapter);
2046
2047 /* update mailbox ? */
2048 if (count) {
2049 u32 tpd_next_to_use;
2050 u32 rfd_next_to_use;
2051
2052 spin_lock(&adapter->mb_lock);
2053
2054 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2055 rfd_next_to_use =
2056 atomic_read(&adapter->rfd_ring.next_to_use);
2057 rrd_next_to_clean =
2058 atomic_read(&adapter->rrd_ring.next_to_clean);
2059 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2060 MB_RFD_PROD_INDX_SHIFT) |
2061 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2062 MB_RRD_CONS_INDX_SHIFT) |
2063 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2064 MB_TPD_PROD_INDX_SHIFT);
2065 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2066 spin_unlock(&adapter->mb_lock);
2067 }
2068
2069 return count;
2070 }
2071
atl1_intr_tx(struct atl1_adapter * adapter)2072 static int atl1_intr_tx(struct atl1_adapter *adapter)
2073 {
2074 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2075 struct atl1_buffer *buffer_info;
2076 u16 sw_tpd_next_to_clean;
2077 u16 cmb_tpd_next_to_clean;
2078 int count = 0;
2079
2080 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2081 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2082
2083 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2084 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2085 if (buffer_info->dma) {
2086 pci_unmap_page(adapter->pdev, buffer_info->dma,
2087 buffer_info->length, PCI_DMA_TODEVICE);
2088 buffer_info->dma = 0;
2089 }
2090
2091 if (buffer_info->skb) {
2092 dev_kfree_skb_irq(buffer_info->skb);
2093 buffer_info->skb = NULL;
2094 }
2095
2096 if (++sw_tpd_next_to_clean == tpd_ring->count)
2097 sw_tpd_next_to_clean = 0;
2098
2099 count++;
2100 }
2101 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2102
2103 if (netif_queue_stopped(adapter->netdev) &&
2104 netif_carrier_ok(adapter->netdev))
2105 netif_wake_queue(adapter->netdev);
2106
2107 return count;
2108 }
2109
atl1_tpd_avail(struct atl1_tpd_ring * tpd_ring)2110 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2111 {
2112 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2113 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2114 return (next_to_clean > next_to_use) ?
2115 next_to_clean - next_to_use - 1 :
2116 tpd_ring->count + next_to_clean - next_to_use - 1;
2117 }
2118
atl1_tso(struct atl1_adapter * adapter,struct sk_buff * skb,struct tx_packet_desc * ptpd)2119 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2120 struct tx_packet_desc *ptpd)
2121 {
2122 u8 hdr_len, ip_off;
2123 u32 real_len;
2124
2125 if (skb_shinfo(skb)->gso_size) {
2126 int err;
2127
2128 err = skb_cow_head(skb, 0);
2129 if (err < 0)
2130 return err;
2131
2132 if (skb->protocol == htons(ETH_P_IP)) {
2133 struct iphdr *iph = ip_hdr(skb);
2134
2135 real_len = (((unsigned char *)iph - skb->data) +
2136 ntohs(iph->tot_len));
2137 if (real_len < skb->len)
2138 pskb_trim(skb, real_len);
2139 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2140 if (skb->len == hdr_len) {
2141 iph->check = 0;
2142 tcp_hdr(skb)->check =
2143 ~csum_tcpudp_magic(iph->saddr,
2144 iph->daddr, tcp_hdrlen(skb),
2145 IPPROTO_TCP, 0);
2146 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2147 TPD_IPHL_SHIFT;
2148 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2149 TPD_TCPHDRLEN_MASK) <<
2150 TPD_TCPHDRLEN_SHIFT;
2151 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2152 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2153 return 1;
2154 }
2155
2156 iph->check = 0;
2157 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2158 iph->daddr, 0, IPPROTO_TCP, 0);
2159 ip_off = (unsigned char *)iph -
2160 (unsigned char *) skb_network_header(skb);
2161 if (ip_off == 8) /* 802.3-SNAP frame */
2162 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2163 else if (ip_off != 0)
2164 return -2;
2165
2166 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2167 TPD_IPHL_SHIFT;
2168 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2169 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2170 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2171 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2172 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2173 return 3;
2174 }
2175 }
2176 return 0;
2177 }
2178
atl1_tx_csum(struct atl1_adapter * adapter,struct sk_buff * skb,struct tx_packet_desc * ptpd)2179 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2180 struct tx_packet_desc *ptpd)
2181 {
2182 u8 css, cso;
2183
2184 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2185 css = skb_checksum_start_offset(skb);
2186 cso = css + (u8) skb->csum_offset;
2187 if (unlikely(css & 0x1)) {
2188 /* L1 hardware requires an even number here */
2189 if (netif_msg_tx_err(adapter))
2190 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2191 "payload offset not an even number\n");
2192 return -1;
2193 }
2194 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2195 TPD_PLOADOFFSET_SHIFT;
2196 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2197 TPD_CCSUMOFFSET_SHIFT;
2198 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2199 return true;
2200 }
2201 return 0;
2202 }
2203
atl1_tx_map(struct atl1_adapter * adapter,struct sk_buff * skb,struct tx_packet_desc * ptpd)2204 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2205 struct tx_packet_desc *ptpd)
2206 {
2207 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2208 struct atl1_buffer *buffer_info;
2209 u16 buf_len = skb->len;
2210 struct page *page;
2211 unsigned long offset;
2212 unsigned int nr_frags;
2213 unsigned int f;
2214 int retval;
2215 u16 next_to_use;
2216 u16 data_len;
2217 u8 hdr_len;
2218
2219 buf_len -= skb->data_len;
2220 nr_frags = skb_shinfo(skb)->nr_frags;
2221 next_to_use = atomic_read(&tpd_ring->next_to_use);
2222 buffer_info = &tpd_ring->buffer_info[next_to_use];
2223 BUG_ON(buffer_info->skb);
2224 /* put skb in last TPD */
2225 buffer_info->skb = NULL;
2226
2227 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2228 if (retval) {
2229 /* TSO */
2230 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2231 buffer_info->length = hdr_len;
2232 page = virt_to_page(skb->data);
2233 offset = offset_in_page(skb->data);
2234 buffer_info->dma = pci_map_page(adapter->pdev, page,
2235 offset, hdr_len,
2236 PCI_DMA_TODEVICE);
2237
2238 if (++next_to_use == tpd_ring->count)
2239 next_to_use = 0;
2240
2241 if (buf_len > hdr_len) {
2242 int i, nseg;
2243
2244 data_len = buf_len - hdr_len;
2245 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2246 ATL1_MAX_TX_BUF_LEN;
2247 for (i = 0; i < nseg; i++) {
2248 buffer_info =
2249 &tpd_ring->buffer_info[next_to_use];
2250 buffer_info->skb = NULL;
2251 buffer_info->length =
2252 (ATL1_MAX_TX_BUF_LEN >=
2253 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2254 data_len -= buffer_info->length;
2255 page = virt_to_page(skb->data +
2256 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2257 offset = offset_in_page(skb->data +
2258 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2259 buffer_info->dma = pci_map_page(adapter->pdev,
2260 page, offset, buffer_info->length,
2261 PCI_DMA_TODEVICE);
2262 if (++next_to_use == tpd_ring->count)
2263 next_to_use = 0;
2264 }
2265 }
2266 } else {
2267 /* not TSO */
2268 buffer_info->length = buf_len;
2269 page = virt_to_page(skb->data);
2270 offset = offset_in_page(skb->data);
2271 buffer_info->dma = pci_map_page(adapter->pdev, page,
2272 offset, buf_len, PCI_DMA_TODEVICE);
2273 if (++next_to_use == tpd_ring->count)
2274 next_to_use = 0;
2275 }
2276
2277 for (f = 0; f < nr_frags; f++) {
2278 const struct skb_frag_struct *frag;
2279 u16 i, nseg;
2280
2281 frag = &skb_shinfo(skb)->frags[f];
2282 buf_len = skb_frag_size(frag);
2283
2284 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2285 ATL1_MAX_TX_BUF_LEN;
2286 for (i = 0; i < nseg; i++) {
2287 buffer_info = &tpd_ring->buffer_info[next_to_use];
2288 BUG_ON(buffer_info->skb);
2289
2290 buffer_info->skb = NULL;
2291 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2292 ATL1_MAX_TX_BUF_LEN : buf_len;
2293 buf_len -= buffer_info->length;
2294 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2295 frag, i * ATL1_MAX_TX_BUF_LEN,
2296 buffer_info->length, DMA_TO_DEVICE);
2297
2298 if (++next_to_use == tpd_ring->count)
2299 next_to_use = 0;
2300 }
2301 }
2302
2303 /* last tpd's buffer-info */
2304 buffer_info->skb = skb;
2305 }
2306
atl1_tx_queue(struct atl1_adapter * adapter,u16 count,struct tx_packet_desc * ptpd)2307 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2308 struct tx_packet_desc *ptpd)
2309 {
2310 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2311 struct atl1_buffer *buffer_info;
2312 struct tx_packet_desc *tpd;
2313 u16 j;
2314 u32 val;
2315 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2316
2317 for (j = 0; j < count; j++) {
2318 buffer_info = &tpd_ring->buffer_info[next_to_use];
2319 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2320 if (tpd != ptpd)
2321 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2322 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2323 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2324 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2325 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2326
2327 /*
2328 * if this is the first packet in a TSO chain, set
2329 * TPD_HDRFLAG, otherwise, clear it.
2330 */
2331 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2332 TPD_SEGMENT_EN_MASK;
2333 if (val) {
2334 if (!j)
2335 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2336 else
2337 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2338 }
2339
2340 if (j == (count - 1))
2341 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2342
2343 if (++next_to_use == tpd_ring->count)
2344 next_to_use = 0;
2345 }
2346 /*
2347 * Force memory writes to complete before letting h/w
2348 * know there are new descriptors to fetch. (Only
2349 * applicable for weak-ordered memory model archs,
2350 * such as IA-64).
2351 */
2352 wmb();
2353
2354 atomic_set(&tpd_ring->next_to_use, next_to_use);
2355 }
2356
atl1_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2357 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2358 struct net_device *netdev)
2359 {
2360 struct atl1_adapter *adapter = netdev_priv(netdev);
2361 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2362 int len;
2363 int tso;
2364 int count = 1;
2365 int ret_val;
2366 struct tx_packet_desc *ptpd;
2367 u16 vlan_tag;
2368 unsigned int nr_frags = 0;
2369 unsigned int mss = 0;
2370 unsigned int f;
2371 unsigned int proto_hdr_len;
2372
2373 len = skb_headlen(skb);
2374
2375 if (unlikely(skb->len <= 0)) {
2376 dev_kfree_skb_any(skb);
2377 return NETDEV_TX_OK;
2378 }
2379
2380 nr_frags = skb_shinfo(skb)->nr_frags;
2381 for (f = 0; f < nr_frags; f++) {
2382 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2383 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2384 ATL1_MAX_TX_BUF_LEN;
2385 }
2386
2387 mss = skb_shinfo(skb)->gso_size;
2388 if (mss) {
2389 if (skb->protocol == htons(ETH_P_IP)) {
2390 proto_hdr_len = (skb_transport_offset(skb) +
2391 tcp_hdrlen(skb));
2392 if (unlikely(proto_hdr_len > len)) {
2393 dev_kfree_skb_any(skb);
2394 return NETDEV_TX_OK;
2395 }
2396 /* need additional TPD ? */
2397 if (proto_hdr_len != len)
2398 count += (len - proto_hdr_len +
2399 ATL1_MAX_TX_BUF_LEN - 1) /
2400 ATL1_MAX_TX_BUF_LEN;
2401 }
2402 }
2403
2404 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2405 /* not enough descriptors */
2406 netif_stop_queue(netdev);
2407 if (netif_msg_tx_queued(adapter))
2408 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2409 "tx busy\n");
2410 return NETDEV_TX_BUSY;
2411 }
2412
2413 ptpd = ATL1_TPD_DESC(tpd_ring,
2414 (u16) atomic_read(&tpd_ring->next_to_use));
2415 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2416
2417 if (skb_vlan_tag_present(skb)) {
2418 vlan_tag = skb_vlan_tag_get(skb);
2419 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2420 ((vlan_tag >> 9) & 0x8);
2421 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2422 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2423 TPD_VLANTAG_SHIFT;
2424 }
2425
2426 tso = atl1_tso(adapter, skb, ptpd);
2427 if (tso < 0) {
2428 dev_kfree_skb_any(skb);
2429 return NETDEV_TX_OK;
2430 }
2431
2432 if (!tso) {
2433 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2434 if (ret_val < 0) {
2435 dev_kfree_skb_any(skb);
2436 return NETDEV_TX_OK;
2437 }
2438 }
2439
2440 atl1_tx_map(adapter, skb, ptpd);
2441 atl1_tx_queue(adapter, count, ptpd);
2442 atl1_update_mailbox(adapter);
2443 mmiowb();
2444 return NETDEV_TX_OK;
2445 }
2446
atl1_rings_clean(struct napi_struct * napi,int budget)2447 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2448 {
2449 struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2450 int work_done = atl1_intr_rx(adapter, budget);
2451
2452 if (atl1_intr_tx(adapter))
2453 work_done = budget;
2454
2455 /* Let's come again to process some more packets */
2456 if (work_done >= budget)
2457 return work_done;
2458
2459 napi_complete_done(napi, work_done);
2460 /* re-enable Interrupt */
2461 if (likely(adapter->int_enabled))
2462 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2463 return work_done;
2464 }
2465
atl1_sched_rings_clean(struct atl1_adapter * adapter)2466 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2467 {
2468 if (!napi_schedule_prep(&adapter->napi))
2469 /* It is possible in case even the RX/TX ints are disabled via IMR
2470 * register the ISR bits are set anyway (but do not produce IRQ).
2471 * To handle such situation the napi functions used to check is
2472 * something scheduled or not.
2473 */
2474 return 0;
2475
2476 __napi_schedule(&adapter->napi);
2477
2478 /*
2479 * Disable RX/TX ints via IMR register if it is
2480 * allowed. NAPI handler must reenable them in same
2481 * way.
2482 */
2483 if (!adapter->int_enabled)
2484 return 1;
2485
2486 atlx_imr_set(adapter, IMR_NORXTX_MASK);
2487 return 1;
2488 }
2489
2490 /**
2491 * atl1_intr - Interrupt Handler
2492 * @irq: interrupt number
2493 * @data: pointer to a network interface device structure
2494 */
atl1_intr(int irq,void * data)2495 static irqreturn_t atl1_intr(int irq, void *data)
2496 {
2497 struct atl1_adapter *adapter = netdev_priv(data);
2498 u32 status;
2499
2500 status = adapter->cmb.cmb->int_stats;
2501 if (!status)
2502 return IRQ_NONE;
2503
2504 /* clear CMB interrupt status at once,
2505 * but leave rx/tx interrupt status in case it should be dropped
2506 * only if rx/tx processing queued. In other case interrupt
2507 * can be lost.
2508 */
2509 adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2510
2511 if (status & ISR_GPHY) /* clear phy status */
2512 atlx_clear_phy_int(adapter);
2513
2514 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2515 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2516
2517 /* check if SMB intr */
2518 if (status & ISR_SMB)
2519 atl1_inc_smb(adapter);
2520
2521 /* check if PCIE PHY Link down */
2522 if (status & ISR_PHY_LINKDOWN) {
2523 if (netif_msg_intr(adapter))
2524 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2525 "pcie phy link down %x\n", status);
2526 if (netif_running(adapter->netdev)) { /* reset MAC */
2527 atlx_irq_disable(adapter);
2528 schedule_work(&adapter->reset_dev_task);
2529 return IRQ_HANDLED;
2530 }
2531 }
2532
2533 /* check if DMA read/write error ? */
2534 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2535 if (netif_msg_intr(adapter))
2536 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2537 "pcie DMA r/w error (status = 0x%x)\n",
2538 status);
2539 atlx_irq_disable(adapter);
2540 schedule_work(&adapter->reset_dev_task);
2541 return IRQ_HANDLED;
2542 }
2543
2544 /* link event */
2545 if (status & ISR_GPHY) {
2546 adapter->soft_stats.tx_carrier_errors++;
2547 atl1_check_for_link(adapter);
2548 }
2549
2550 /* transmit or receive event */
2551 if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2552 atl1_sched_rings_clean(adapter))
2553 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2554 ~(ISR_CMB_TX | ISR_CMB_RX);
2555
2556 /* rx exception */
2557 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2558 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2559 ISR_HOST_RRD_OV))) {
2560 if (netif_msg_intr(adapter))
2561 dev_printk(KERN_DEBUG,
2562 &adapter->pdev->dev,
2563 "rx exception, ISR = 0x%x\n",
2564 status);
2565 atl1_sched_rings_clean(adapter);
2566 }
2567
2568 /* re-enable Interrupt */
2569 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2570 return IRQ_HANDLED;
2571 }
2572
2573
2574 /**
2575 * atl1_phy_config - Timer Call-back
2576 * @data: pointer to netdev cast into an unsigned long
2577 */
atl1_phy_config(struct timer_list * t)2578 static void atl1_phy_config(struct timer_list *t)
2579 {
2580 struct atl1_adapter *adapter = from_timer(adapter, t,
2581 phy_config_timer);
2582 struct atl1_hw *hw = &adapter->hw;
2583 unsigned long flags;
2584
2585 spin_lock_irqsave(&adapter->lock, flags);
2586 adapter->phy_timer_pending = false;
2587 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2588 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2589 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2590 spin_unlock_irqrestore(&adapter->lock, flags);
2591 }
2592
2593 /*
2594 * Orphaned vendor comment left intact here:
2595 * <vendor comment>
2596 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2597 * will assert. We do soft reset <0x1400=1> according
2598 * with the SPEC. BUT, it seemes that PCIE or DMA
2599 * state-machine will not be reset. DMAR_TO_INT will
2600 * assert again and again.
2601 * </vendor comment>
2602 */
2603
atl1_reset(struct atl1_adapter * adapter)2604 static int atl1_reset(struct atl1_adapter *adapter)
2605 {
2606 int ret;
2607 ret = atl1_reset_hw(&adapter->hw);
2608 if (ret)
2609 return ret;
2610 return atl1_init_hw(&adapter->hw);
2611 }
2612
atl1_up(struct atl1_adapter * adapter)2613 static s32 atl1_up(struct atl1_adapter *adapter)
2614 {
2615 struct net_device *netdev = adapter->netdev;
2616 int err;
2617 int irq_flags = 0;
2618
2619 /* hardware has been reset, we need to reload some things */
2620 atlx_set_multi(netdev);
2621 atl1_init_ring_ptrs(adapter);
2622 atlx_restore_vlan(adapter);
2623 err = atl1_alloc_rx_buffers(adapter);
2624 if (unlikely(!err))
2625 /* no RX BUFFER allocated */
2626 return -ENOMEM;
2627
2628 if (unlikely(atl1_configure(adapter))) {
2629 err = -EIO;
2630 goto err_up;
2631 }
2632
2633 err = pci_enable_msi(adapter->pdev);
2634 if (err) {
2635 if (netif_msg_ifup(adapter))
2636 dev_info(&adapter->pdev->dev,
2637 "Unable to enable MSI: %d\n", err);
2638 irq_flags |= IRQF_SHARED;
2639 }
2640
2641 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2642 netdev->name, netdev);
2643 if (unlikely(err))
2644 goto err_up;
2645
2646 napi_enable(&adapter->napi);
2647 atlx_irq_enable(adapter);
2648 atl1_check_link(adapter);
2649 netif_start_queue(netdev);
2650 return 0;
2651
2652 err_up:
2653 pci_disable_msi(adapter->pdev);
2654 /* free rx_buffers */
2655 atl1_clean_rx_ring(adapter);
2656 return err;
2657 }
2658
atl1_down(struct atl1_adapter * adapter)2659 static void atl1_down(struct atl1_adapter *adapter)
2660 {
2661 struct net_device *netdev = adapter->netdev;
2662
2663 napi_disable(&adapter->napi);
2664 netif_stop_queue(netdev);
2665 del_timer_sync(&adapter->phy_config_timer);
2666 adapter->phy_timer_pending = false;
2667
2668 atlx_irq_disable(adapter);
2669 free_irq(adapter->pdev->irq, netdev);
2670 pci_disable_msi(adapter->pdev);
2671 atl1_reset_hw(&adapter->hw);
2672 adapter->cmb.cmb->int_stats = 0;
2673
2674 adapter->link_speed = SPEED_0;
2675 adapter->link_duplex = -1;
2676 netif_carrier_off(netdev);
2677
2678 atl1_clean_tx_ring(adapter);
2679 atl1_clean_rx_ring(adapter);
2680 }
2681
atl1_reset_dev_task(struct work_struct * work)2682 static void atl1_reset_dev_task(struct work_struct *work)
2683 {
2684 struct atl1_adapter *adapter =
2685 container_of(work, struct atl1_adapter, reset_dev_task);
2686 struct net_device *netdev = adapter->netdev;
2687
2688 netif_device_detach(netdev);
2689 atl1_down(adapter);
2690 atl1_up(adapter);
2691 netif_device_attach(netdev);
2692 }
2693
2694 /**
2695 * atl1_change_mtu - Change the Maximum Transfer Unit
2696 * @netdev: network interface device structure
2697 * @new_mtu: new value for maximum frame size
2698 *
2699 * Returns 0 on success, negative on failure
2700 */
atl1_change_mtu(struct net_device * netdev,int new_mtu)2701 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2702 {
2703 struct atl1_adapter *adapter = netdev_priv(netdev);
2704 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2705
2706 adapter->hw.max_frame_size = max_frame;
2707 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2708 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2709 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2710
2711 netdev->mtu = new_mtu;
2712 if (netif_running(netdev)) {
2713 atl1_down(adapter);
2714 atl1_up(adapter);
2715 }
2716
2717 return 0;
2718 }
2719
2720 /**
2721 * atl1_open - Called when a network interface is made active
2722 * @netdev: network interface device structure
2723 *
2724 * Returns 0 on success, negative value on failure
2725 *
2726 * The open entry point is called when a network interface is made
2727 * active by the system (IFF_UP). At this point all resources needed
2728 * for transmit and receive operations are allocated, the interrupt
2729 * handler is registered with the OS, the watchdog timer is started,
2730 * and the stack is notified that the interface is ready.
2731 */
atl1_open(struct net_device * netdev)2732 static int atl1_open(struct net_device *netdev)
2733 {
2734 struct atl1_adapter *adapter = netdev_priv(netdev);
2735 int err;
2736
2737 netif_carrier_off(netdev);
2738
2739 /* allocate transmit descriptors */
2740 err = atl1_setup_ring_resources(adapter);
2741 if (err)
2742 return err;
2743
2744 err = atl1_up(adapter);
2745 if (err)
2746 goto err_up;
2747
2748 return 0;
2749
2750 err_up:
2751 atl1_reset(adapter);
2752 return err;
2753 }
2754
2755 /**
2756 * atl1_close - Disables a network interface
2757 * @netdev: network interface device structure
2758 *
2759 * Returns 0, this is not allowed to fail
2760 *
2761 * The close entry point is called when an interface is de-activated
2762 * by the OS. The hardware is still under the drivers control, but
2763 * needs to be disabled. A global MAC reset is issued to stop the
2764 * hardware, and all transmit and receive resources are freed.
2765 */
atl1_close(struct net_device * netdev)2766 static int atl1_close(struct net_device *netdev)
2767 {
2768 struct atl1_adapter *adapter = netdev_priv(netdev);
2769 atl1_down(adapter);
2770 atl1_free_ring_resources(adapter);
2771 return 0;
2772 }
2773
2774 #ifdef CONFIG_PM_SLEEP
atl1_suspend(struct device * dev)2775 static int atl1_suspend(struct device *dev)
2776 {
2777 struct pci_dev *pdev = to_pci_dev(dev);
2778 struct net_device *netdev = pci_get_drvdata(pdev);
2779 struct atl1_adapter *adapter = netdev_priv(netdev);
2780 struct atl1_hw *hw = &adapter->hw;
2781 u32 ctrl = 0;
2782 u32 wufc = adapter->wol;
2783 u32 val;
2784 u16 speed;
2785 u16 duplex;
2786
2787 netif_device_detach(netdev);
2788 if (netif_running(netdev))
2789 atl1_down(adapter);
2790
2791 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2792 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2793 val = ctrl & BMSR_LSTATUS;
2794 if (val)
2795 wufc &= ~ATLX_WUFC_LNKC;
2796 if (!wufc)
2797 goto disable_wol;
2798
2799 if (val) {
2800 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2801 if (val) {
2802 if (netif_msg_ifdown(adapter))
2803 dev_printk(KERN_DEBUG, &pdev->dev,
2804 "error getting speed/duplex\n");
2805 goto disable_wol;
2806 }
2807
2808 ctrl = 0;
2809
2810 /* enable magic packet WOL */
2811 if (wufc & ATLX_WUFC_MAG)
2812 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2813 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2814 ioread32(hw->hw_addr + REG_WOL_CTRL);
2815
2816 /* configure the mac */
2817 ctrl = MAC_CTRL_RX_EN;
2818 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2819 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2820 if (duplex == FULL_DUPLEX)
2821 ctrl |= MAC_CTRL_DUPLX;
2822 ctrl |= (((u32)adapter->hw.preamble_len &
2823 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2824 __atlx_vlan_mode(netdev->features, &ctrl);
2825 if (wufc & ATLX_WUFC_MAG)
2826 ctrl |= MAC_CTRL_BC_EN;
2827 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2828 ioread32(hw->hw_addr + REG_MAC_CTRL);
2829
2830 /* poke the PHY */
2831 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2832 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2833 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2834 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2835 } else {
2836 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2837 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2838 ioread32(hw->hw_addr + REG_WOL_CTRL);
2839 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2840 ioread32(hw->hw_addr + REG_MAC_CTRL);
2841 hw->phy_configured = false;
2842 }
2843
2844 return 0;
2845
2846 disable_wol:
2847 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2848 ioread32(hw->hw_addr + REG_WOL_CTRL);
2849 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2850 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2851 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2852 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2853 hw->phy_configured = false;
2854
2855 return 0;
2856 }
2857
atl1_resume(struct device * dev)2858 static int atl1_resume(struct device *dev)
2859 {
2860 struct pci_dev *pdev = to_pci_dev(dev);
2861 struct net_device *netdev = pci_get_drvdata(pdev);
2862 struct atl1_adapter *adapter = netdev_priv(netdev);
2863
2864 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2865
2866 atl1_reset_hw(&adapter->hw);
2867
2868 if (netif_running(netdev)) {
2869 adapter->cmb.cmb->int_stats = 0;
2870 atl1_up(adapter);
2871 }
2872 netif_device_attach(netdev);
2873
2874 return 0;
2875 }
2876 #endif
2877
2878 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2879
atl1_shutdown(struct pci_dev * pdev)2880 static void atl1_shutdown(struct pci_dev *pdev)
2881 {
2882 struct net_device *netdev = pci_get_drvdata(pdev);
2883 struct atl1_adapter *adapter = netdev_priv(netdev);
2884
2885 #ifdef CONFIG_PM_SLEEP
2886 atl1_suspend(&pdev->dev);
2887 #endif
2888 pci_wake_from_d3(pdev, adapter->wol);
2889 pci_set_power_state(pdev, PCI_D3hot);
2890 }
2891
2892 #ifdef CONFIG_NET_POLL_CONTROLLER
atl1_poll_controller(struct net_device * netdev)2893 static void atl1_poll_controller(struct net_device *netdev)
2894 {
2895 disable_irq(netdev->irq);
2896 atl1_intr(netdev->irq, netdev);
2897 enable_irq(netdev->irq);
2898 }
2899 #endif
2900
2901 static const struct net_device_ops atl1_netdev_ops = {
2902 .ndo_open = atl1_open,
2903 .ndo_stop = atl1_close,
2904 .ndo_start_xmit = atl1_xmit_frame,
2905 .ndo_set_rx_mode = atlx_set_multi,
2906 .ndo_validate_addr = eth_validate_addr,
2907 .ndo_set_mac_address = atl1_set_mac,
2908 .ndo_change_mtu = atl1_change_mtu,
2909 .ndo_fix_features = atlx_fix_features,
2910 .ndo_set_features = atlx_set_features,
2911 .ndo_do_ioctl = atlx_ioctl,
2912 .ndo_tx_timeout = atlx_tx_timeout,
2913 #ifdef CONFIG_NET_POLL_CONTROLLER
2914 .ndo_poll_controller = atl1_poll_controller,
2915 #endif
2916 };
2917
2918 /**
2919 * atl1_probe - Device Initialization Routine
2920 * @pdev: PCI device information struct
2921 * @ent: entry in atl1_pci_tbl
2922 *
2923 * Returns 0 on success, negative on failure
2924 *
2925 * atl1_probe initializes an adapter identified by a pci_dev structure.
2926 * The OS initialization, configuring of the adapter private structure,
2927 * and a hardware reset occur.
2928 */
atl1_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2929 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2930 {
2931 struct net_device *netdev;
2932 struct atl1_adapter *adapter;
2933 static int cards_found = 0;
2934 int err;
2935
2936 err = pci_enable_device(pdev);
2937 if (err)
2938 return err;
2939
2940 /*
2941 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2942 * shared register for the high 32 bits, so only a single, aligned,
2943 * 4 GB physical address range can be used at a time.
2944 *
2945 * Supporting 64-bit DMA on this hardware is more trouble than it's
2946 * worth. It is far easier to limit to 32-bit DMA than update
2947 * various kernel subsystems to support the mechanics required by a
2948 * fixed-high-32-bit system.
2949 */
2950 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2951 if (err) {
2952 dev_err(&pdev->dev, "no usable DMA configuration\n");
2953 goto err_dma;
2954 }
2955 /*
2956 * Mark all PCI regions associated with PCI device
2957 * pdev as being reserved by owner atl1_driver_name
2958 */
2959 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2960 if (err)
2961 goto err_request_regions;
2962
2963 /*
2964 * Enables bus-mastering on the device and calls
2965 * pcibios_set_master to do the needed arch specific settings
2966 */
2967 pci_set_master(pdev);
2968
2969 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2970 if (!netdev) {
2971 err = -ENOMEM;
2972 goto err_alloc_etherdev;
2973 }
2974 SET_NETDEV_DEV(netdev, &pdev->dev);
2975
2976 pci_set_drvdata(pdev, netdev);
2977 adapter = netdev_priv(netdev);
2978 adapter->netdev = netdev;
2979 adapter->pdev = pdev;
2980 adapter->hw.back = adapter;
2981 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2982
2983 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2984 if (!adapter->hw.hw_addr) {
2985 err = -EIO;
2986 goto err_pci_iomap;
2987 }
2988 /* get device revision number */
2989 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2990 (REG_MASTER_CTRL + 2));
2991 if (netif_msg_probe(adapter))
2992 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2993
2994 /* set default ring resource counts */
2995 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2996 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2997
2998 adapter->mii.dev = netdev;
2999 adapter->mii.mdio_read = mdio_read;
3000 adapter->mii.mdio_write = mdio_write;
3001 adapter->mii.phy_id_mask = 0x1f;
3002 adapter->mii.reg_num_mask = 0x1f;
3003
3004 netdev->netdev_ops = &atl1_netdev_ops;
3005 netdev->watchdog_timeo = 5 * HZ;
3006 netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3007
3008 netdev->ethtool_ops = &atl1_ethtool_ops;
3009 adapter->bd_number = cards_found;
3010
3011 /* setup the private structure */
3012 err = atl1_sw_init(adapter);
3013 if (err)
3014 goto err_common;
3015
3016 netdev->features = NETIF_F_HW_CSUM;
3017 netdev->features |= NETIF_F_SG;
3018 netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3019
3020 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3021 NETIF_F_HW_VLAN_CTAG_RX;
3022
3023 /* is this valid? see atl1_setup_mac_ctrl() */
3024 netdev->features |= NETIF_F_RXCSUM;
3025
3026 /* MTU range: 42 - 10218 */
3027 netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3028 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3029 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3030
3031 /*
3032 * patch for some L1 of old version,
3033 * the final version of L1 may not need these
3034 * patches
3035 */
3036 /* atl1_pcie_patch(adapter); */
3037
3038 /* really reset GPHY core */
3039 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3040
3041 /*
3042 * reset the controller to
3043 * put the device in a known good starting state
3044 */
3045 if (atl1_reset_hw(&adapter->hw)) {
3046 err = -EIO;
3047 goto err_common;
3048 }
3049
3050 /* copy the MAC address out of the EEPROM */
3051 if (atl1_read_mac_addr(&adapter->hw)) {
3052 /* mark random mac */
3053 netdev->addr_assign_type = NET_ADDR_RANDOM;
3054 }
3055 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3056
3057 if (!is_valid_ether_addr(netdev->dev_addr)) {
3058 err = -EIO;
3059 goto err_common;
3060 }
3061
3062 atl1_check_options(adapter);
3063
3064 /* pre-init the MAC, and setup link */
3065 err = atl1_init_hw(&adapter->hw);
3066 if (err) {
3067 err = -EIO;
3068 goto err_common;
3069 }
3070
3071 atl1_pcie_patch(adapter);
3072 /* assume we have no link for now */
3073 netif_carrier_off(netdev);
3074
3075 timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3076 adapter->phy_timer_pending = false;
3077
3078 INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3079
3080 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3081
3082 err = register_netdev(netdev);
3083 if (err)
3084 goto err_common;
3085
3086 cards_found++;
3087 atl1_via_workaround(adapter);
3088 return 0;
3089
3090 err_common:
3091 pci_iounmap(pdev, adapter->hw.hw_addr);
3092 err_pci_iomap:
3093 free_netdev(netdev);
3094 err_alloc_etherdev:
3095 pci_release_regions(pdev);
3096 err_dma:
3097 err_request_regions:
3098 pci_disable_device(pdev);
3099 return err;
3100 }
3101
3102 /**
3103 * atl1_remove - Device Removal Routine
3104 * @pdev: PCI device information struct
3105 *
3106 * atl1_remove is called by the PCI subsystem to alert the driver
3107 * that it should release a PCI device. The could be caused by a
3108 * Hot-Plug event, or because the driver is going to be removed from
3109 * memory.
3110 */
atl1_remove(struct pci_dev * pdev)3111 static void atl1_remove(struct pci_dev *pdev)
3112 {
3113 struct net_device *netdev = pci_get_drvdata(pdev);
3114 struct atl1_adapter *adapter;
3115 /* Device not available. Return. */
3116 if (!netdev)
3117 return;
3118
3119 adapter = netdev_priv(netdev);
3120
3121 /*
3122 * Some atl1 boards lack persistent storage for their MAC, and get it
3123 * from the BIOS during POST. If we've been messing with the MAC
3124 * address, we need to save the permanent one.
3125 */
3126 if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3127 adapter->hw.perm_mac_addr)) {
3128 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3129 ETH_ALEN);
3130 atl1_set_mac_addr(&adapter->hw);
3131 }
3132
3133 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3134 unregister_netdev(netdev);
3135 pci_iounmap(pdev, adapter->hw.hw_addr);
3136 pci_release_regions(pdev);
3137 free_netdev(netdev);
3138 pci_disable_device(pdev);
3139 }
3140
3141 static struct pci_driver atl1_driver = {
3142 .name = ATLX_DRIVER_NAME,
3143 .id_table = atl1_pci_tbl,
3144 .probe = atl1_probe,
3145 .remove = atl1_remove,
3146 .shutdown = atl1_shutdown,
3147 .driver.pm = &atl1_pm_ops,
3148 };
3149
3150 struct atl1_stats {
3151 char stat_string[ETH_GSTRING_LEN];
3152 int sizeof_stat;
3153 int stat_offset;
3154 };
3155
3156 #define ATL1_STAT(m) \
3157 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3158
3159 static struct atl1_stats atl1_gstrings_stats[] = {
3160 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3161 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3162 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3163 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3164 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3165 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3166 {"multicast", ATL1_STAT(soft_stats.multicast)},
3167 {"collisions", ATL1_STAT(soft_stats.collisions)},
3168 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3169 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3170 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3171 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3172 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3173 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3174 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3175 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3176 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3177 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3178 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3179 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3180 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3181 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3182 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3183 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3184 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3185 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3186 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3187 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3188 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3189 };
3190
atl1_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)3191 static void atl1_get_ethtool_stats(struct net_device *netdev,
3192 struct ethtool_stats *stats, u64 *data)
3193 {
3194 struct atl1_adapter *adapter = netdev_priv(netdev);
3195 int i;
3196 char *p;
3197
3198 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3199 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3200 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3201 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3202 }
3203
3204 }
3205
atl1_get_sset_count(struct net_device * netdev,int sset)3206 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3207 {
3208 switch (sset) {
3209 case ETH_SS_STATS:
3210 return ARRAY_SIZE(atl1_gstrings_stats);
3211 default:
3212 return -EOPNOTSUPP;
3213 }
3214 }
3215
atl1_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)3216 static int atl1_get_link_ksettings(struct net_device *netdev,
3217 struct ethtool_link_ksettings *cmd)
3218 {
3219 struct atl1_adapter *adapter = netdev_priv(netdev);
3220 struct atl1_hw *hw = &adapter->hw;
3221 u32 supported, advertising;
3222
3223 supported = (SUPPORTED_10baseT_Half |
3224 SUPPORTED_10baseT_Full |
3225 SUPPORTED_100baseT_Half |
3226 SUPPORTED_100baseT_Full |
3227 SUPPORTED_1000baseT_Full |
3228 SUPPORTED_Autoneg | SUPPORTED_TP);
3229 advertising = ADVERTISED_TP;
3230 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3231 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3232 advertising |= ADVERTISED_Autoneg;
3233 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3234 advertising |= ADVERTISED_Autoneg;
3235 advertising |=
3236 (ADVERTISED_10baseT_Half |
3237 ADVERTISED_10baseT_Full |
3238 ADVERTISED_100baseT_Half |
3239 ADVERTISED_100baseT_Full |
3240 ADVERTISED_1000baseT_Full);
3241 } else
3242 advertising |= (ADVERTISED_1000baseT_Full);
3243 }
3244 cmd->base.port = PORT_TP;
3245 cmd->base.phy_address = 0;
3246
3247 if (netif_carrier_ok(adapter->netdev)) {
3248 u16 link_speed, link_duplex;
3249 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3250 cmd->base.speed = link_speed;
3251 if (link_duplex == FULL_DUPLEX)
3252 cmd->base.duplex = DUPLEX_FULL;
3253 else
3254 cmd->base.duplex = DUPLEX_HALF;
3255 } else {
3256 cmd->base.speed = SPEED_UNKNOWN;
3257 cmd->base.duplex = DUPLEX_UNKNOWN;
3258 }
3259 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3260 hw->media_type == MEDIA_TYPE_1000M_FULL)
3261 cmd->base.autoneg = AUTONEG_ENABLE;
3262 else
3263 cmd->base.autoneg = AUTONEG_DISABLE;
3264
3265 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3266 supported);
3267 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3268 advertising);
3269
3270 return 0;
3271 }
3272
atl1_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)3273 static int atl1_set_link_ksettings(struct net_device *netdev,
3274 const struct ethtool_link_ksettings *cmd)
3275 {
3276 struct atl1_adapter *adapter = netdev_priv(netdev);
3277 struct atl1_hw *hw = &adapter->hw;
3278 u16 phy_data;
3279 int ret_val = 0;
3280 u16 old_media_type = hw->media_type;
3281 u32 advertising;
3282
3283 if (netif_running(adapter->netdev)) {
3284 if (netif_msg_link(adapter))
3285 dev_dbg(&adapter->pdev->dev,
3286 "ethtool shutting down adapter\n");
3287 atl1_down(adapter);
3288 }
3289
3290 if (cmd->base.autoneg == AUTONEG_ENABLE)
3291 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3292 else {
3293 u32 speed = cmd->base.speed;
3294 if (speed == SPEED_1000) {
3295 if (cmd->base.duplex != DUPLEX_FULL) {
3296 if (netif_msg_link(adapter))
3297 dev_warn(&adapter->pdev->dev,
3298 "1000M half is invalid\n");
3299 ret_val = -EINVAL;
3300 goto exit_sset;
3301 }
3302 hw->media_type = MEDIA_TYPE_1000M_FULL;
3303 } else if (speed == SPEED_100) {
3304 if (cmd->base.duplex == DUPLEX_FULL)
3305 hw->media_type = MEDIA_TYPE_100M_FULL;
3306 else
3307 hw->media_type = MEDIA_TYPE_100M_HALF;
3308 } else {
3309 if (cmd->base.duplex == DUPLEX_FULL)
3310 hw->media_type = MEDIA_TYPE_10M_FULL;
3311 else
3312 hw->media_type = MEDIA_TYPE_10M_HALF;
3313 }
3314 }
3315 switch (hw->media_type) {
3316 case MEDIA_TYPE_AUTO_SENSOR:
3317 advertising =
3318 ADVERTISED_10baseT_Half |
3319 ADVERTISED_10baseT_Full |
3320 ADVERTISED_100baseT_Half |
3321 ADVERTISED_100baseT_Full |
3322 ADVERTISED_1000baseT_Full |
3323 ADVERTISED_Autoneg | ADVERTISED_TP;
3324 break;
3325 case MEDIA_TYPE_1000M_FULL:
3326 advertising =
3327 ADVERTISED_1000baseT_Full |
3328 ADVERTISED_Autoneg | ADVERTISED_TP;
3329 break;
3330 default:
3331 advertising = 0;
3332 break;
3333 }
3334 if (atl1_phy_setup_autoneg_adv(hw)) {
3335 ret_val = -EINVAL;
3336 if (netif_msg_link(adapter))
3337 dev_warn(&adapter->pdev->dev,
3338 "invalid ethtool speed/duplex setting\n");
3339 goto exit_sset;
3340 }
3341 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3342 hw->media_type == MEDIA_TYPE_1000M_FULL)
3343 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3344 else {
3345 switch (hw->media_type) {
3346 case MEDIA_TYPE_100M_FULL:
3347 phy_data =
3348 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3349 MII_CR_RESET;
3350 break;
3351 case MEDIA_TYPE_100M_HALF:
3352 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3353 break;
3354 case MEDIA_TYPE_10M_FULL:
3355 phy_data =
3356 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3357 break;
3358 default:
3359 /* MEDIA_TYPE_10M_HALF: */
3360 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3361 break;
3362 }
3363 }
3364 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3365 exit_sset:
3366 if (ret_val)
3367 hw->media_type = old_media_type;
3368
3369 if (netif_running(adapter->netdev)) {
3370 if (netif_msg_link(adapter))
3371 dev_dbg(&adapter->pdev->dev,
3372 "ethtool starting adapter\n");
3373 atl1_up(adapter);
3374 } else if (!ret_val) {
3375 if (netif_msg_link(adapter))
3376 dev_dbg(&adapter->pdev->dev,
3377 "ethtool resetting adapter\n");
3378 atl1_reset(adapter);
3379 }
3380 return ret_val;
3381 }
3382
atl1_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)3383 static void atl1_get_drvinfo(struct net_device *netdev,
3384 struct ethtool_drvinfo *drvinfo)
3385 {
3386 struct atl1_adapter *adapter = netdev_priv(netdev);
3387
3388 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3389 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3390 sizeof(drvinfo->version));
3391 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3392 sizeof(drvinfo->bus_info));
3393 }
3394
atl1_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)3395 static void atl1_get_wol(struct net_device *netdev,
3396 struct ethtool_wolinfo *wol)
3397 {
3398 struct atl1_adapter *adapter = netdev_priv(netdev);
3399
3400 wol->supported = WAKE_MAGIC;
3401 wol->wolopts = 0;
3402 if (adapter->wol & ATLX_WUFC_MAG)
3403 wol->wolopts |= WAKE_MAGIC;
3404 }
3405
atl1_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)3406 static int atl1_set_wol(struct net_device *netdev,
3407 struct ethtool_wolinfo *wol)
3408 {
3409 struct atl1_adapter *adapter = netdev_priv(netdev);
3410
3411 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3412 WAKE_ARP | WAKE_MAGICSECURE))
3413 return -EOPNOTSUPP;
3414 adapter->wol = 0;
3415 if (wol->wolopts & WAKE_MAGIC)
3416 adapter->wol |= ATLX_WUFC_MAG;
3417
3418 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3419
3420 return 0;
3421 }
3422
atl1_get_msglevel(struct net_device * netdev)3423 static u32 atl1_get_msglevel(struct net_device *netdev)
3424 {
3425 struct atl1_adapter *adapter = netdev_priv(netdev);
3426 return adapter->msg_enable;
3427 }
3428
atl1_set_msglevel(struct net_device * netdev,u32 value)3429 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3430 {
3431 struct atl1_adapter *adapter = netdev_priv(netdev);
3432 adapter->msg_enable = value;
3433 }
3434
atl1_get_regs_len(struct net_device * netdev)3435 static int atl1_get_regs_len(struct net_device *netdev)
3436 {
3437 return ATL1_REG_COUNT * sizeof(u32);
3438 }
3439
atl1_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)3440 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3441 void *p)
3442 {
3443 struct atl1_adapter *adapter = netdev_priv(netdev);
3444 struct atl1_hw *hw = &adapter->hw;
3445 unsigned int i;
3446 u32 *regbuf = p;
3447
3448 for (i = 0; i < ATL1_REG_COUNT; i++) {
3449 /*
3450 * This switch statement avoids reserved regions
3451 * of register space.
3452 */
3453 switch (i) {
3454 case 6 ... 9:
3455 case 14:
3456 case 29 ... 31:
3457 case 34 ... 63:
3458 case 75 ... 127:
3459 case 136 ... 1023:
3460 case 1027 ... 1087:
3461 case 1091 ... 1151:
3462 case 1194 ... 1195:
3463 case 1200 ... 1201:
3464 case 1206 ... 1213:
3465 case 1216 ... 1279:
3466 case 1290 ... 1311:
3467 case 1323 ... 1343:
3468 case 1358 ... 1359:
3469 case 1368 ... 1375:
3470 case 1378 ... 1383:
3471 case 1388 ... 1391:
3472 case 1393 ... 1395:
3473 case 1402 ... 1403:
3474 case 1410 ... 1471:
3475 case 1522 ... 1535:
3476 /* reserved region; don't read it */
3477 regbuf[i] = 0;
3478 break;
3479 default:
3480 /* unreserved region */
3481 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3482 }
3483 }
3484 }
3485
atl1_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)3486 static void atl1_get_ringparam(struct net_device *netdev,
3487 struct ethtool_ringparam *ring)
3488 {
3489 struct atl1_adapter *adapter = netdev_priv(netdev);
3490 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3491 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3492
3493 ring->rx_max_pending = ATL1_MAX_RFD;
3494 ring->tx_max_pending = ATL1_MAX_TPD;
3495 ring->rx_pending = rxdr->count;
3496 ring->tx_pending = txdr->count;
3497 }
3498
atl1_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)3499 static int atl1_set_ringparam(struct net_device *netdev,
3500 struct ethtool_ringparam *ring)
3501 {
3502 struct atl1_adapter *adapter = netdev_priv(netdev);
3503 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3504 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3505 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3506
3507 struct atl1_tpd_ring tpd_old, tpd_new;
3508 struct atl1_rfd_ring rfd_old, rfd_new;
3509 struct atl1_rrd_ring rrd_old, rrd_new;
3510 struct atl1_ring_header rhdr_old, rhdr_new;
3511 struct atl1_smb smb;
3512 struct atl1_cmb cmb;
3513 int err;
3514
3515 tpd_old = adapter->tpd_ring;
3516 rfd_old = adapter->rfd_ring;
3517 rrd_old = adapter->rrd_ring;
3518 rhdr_old = adapter->ring_header;
3519
3520 if (netif_running(adapter->netdev))
3521 atl1_down(adapter);
3522
3523 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3524 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3525 rfdr->count;
3526 rfdr->count = (rfdr->count + 3) & ~3;
3527 rrdr->count = rfdr->count;
3528
3529 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3530 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3531 tpdr->count;
3532 tpdr->count = (tpdr->count + 3) & ~3;
3533
3534 if (netif_running(adapter->netdev)) {
3535 /* try to get new resources before deleting old */
3536 err = atl1_setup_ring_resources(adapter);
3537 if (err)
3538 goto err_setup_ring;
3539
3540 /*
3541 * save the new, restore the old in order to free it,
3542 * then restore the new back again
3543 */
3544
3545 rfd_new = adapter->rfd_ring;
3546 rrd_new = adapter->rrd_ring;
3547 tpd_new = adapter->tpd_ring;
3548 rhdr_new = adapter->ring_header;
3549 adapter->rfd_ring = rfd_old;
3550 adapter->rrd_ring = rrd_old;
3551 adapter->tpd_ring = tpd_old;
3552 adapter->ring_header = rhdr_old;
3553 /*
3554 * Save SMB and CMB, since atl1_free_ring_resources
3555 * will clear them.
3556 */
3557 smb = adapter->smb;
3558 cmb = adapter->cmb;
3559 atl1_free_ring_resources(adapter);
3560 adapter->rfd_ring = rfd_new;
3561 adapter->rrd_ring = rrd_new;
3562 adapter->tpd_ring = tpd_new;
3563 adapter->ring_header = rhdr_new;
3564 adapter->smb = smb;
3565 adapter->cmb = cmb;
3566
3567 err = atl1_up(adapter);
3568 if (err)
3569 return err;
3570 }
3571 return 0;
3572
3573 err_setup_ring:
3574 adapter->rfd_ring = rfd_old;
3575 adapter->rrd_ring = rrd_old;
3576 adapter->tpd_ring = tpd_old;
3577 adapter->ring_header = rhdr_old;
3578 atl1_up(adapter);
3579 return err;
3580 }
3581
atl1_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * epause)3582 static void atl1_get_pauseparam(struct net_device *netdev,
3583 struct ethtool_pauseparam *epause)
3584 {
3585 struct atl1_adapter *adapter = netdev_priv(netdev);
3586 struct atl1_hw *hw = &adapter->hw;
3587
3588 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3589 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3590 epause->autoneg = AUTONEG_ENABLE;
3591 } else {
3592 epause->autoneg = AUTONEG_DISABLE;
3593 }
3594 epause->rx_pause = 1;
3595 epause->tx_pause = 1;
3596 }
3597
atl1_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * epause)3598 static int atl1_set_pauseparam(struct net_device *netdev,
3599 struct ethtool_pauseparam *epause)
3600 {
3601 struct atl1_adapter *adapter = netdev_priv(netdev);
3602 struct atl1_hw *hw = &adapter->hw;
3603
3604 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3605 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3606 epause->autoneg = AUTONEG_ENABLE;
3607 } else {
3608 epause->autoneg = AUTONEG_DISABLE;
3609 }
3610
3611 epause->rx_pause = 1;
3612 epause->tx_pause = 1;
3613
3614 return 0;
3615 }
3616
atl1_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3617 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3618 u8 *data)
3619 {
3620 u8 *p = data;
3621 int i;
3622
3623 switch (stringset) {
3624 case ETH_SS_STATS:
3625 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3626 memcpy(p, atl1_gstrings_stats[i].stat_string,
3627 ETH_GSTRING_LEN);
3628 p += ETH_GSTRING_LEN;
3629 }
3630 break;
3631 }
3632 }
3633
atl1_nway_reset(struct net_device * netdev)3634 static int atl1_nway_reset(struct net_device *netdev)
3635 {
3636 struct atl1_adapter *adapter = netdev_priv(netdev);
3637 struct atl1_hw *hw = &adapter->hw;
3638
3639 if (netif_running(netdev)) {
3640 u16 phy_data;
3641 atl1_down(adapter);
3642
3643 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3644 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3645 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3646 } else {
3647 switch (hw->media_type) {
3648 case MEDIA_TYPE_100M_FULL:
3649 phy_data = MII_CR_FULL_DUPLEX |
3650 MII_CR_SPEED_100 | MII_CR_RESET;
3651 break;
3652 case MEDIA_TYPE_100M_HALF:
3653 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3654 break;
3655 case MEDIA_TYPE_10M_FULL:
3656 phy_data = MII_CR_FULL_DUPLEX |
3657 MII_CR_SPEED_10 | MII_CR_RESET;
3658 break;
3659 default:
3660 /* MEDIA_TYPE_10M_HALF */
3661 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3662 }
3663 }
3664 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3665 atl1_up(adapter);
3666 }
3667 return 0;
3668 }
3669
3670 static const struct ethtool_ops atl1_ethtool_ops = {
3671 .get_drvinfo = atl1_get_drvinfo,
3672 .get_wol = atl1_get_wol,
3673 .set_wol = atl1_set_wol,
3674 .get_msglevel = atl1_get_msglevel,
3675 .set_msglevel = atl1_set_msglevel,
3676 .get_regs_len = atl1_get_regs_len,
3677 .get_regs = atl1_get_regs,
3678 .get_ringparam = atl1_get_ringparam,
3679 .set_ringparam = atl1_set_ringparam,
3680 .get_pauseparam = atl1_get_pauseparam,
3681 .set_pauseparam = atl1_set_pauseparam,
3682 .get_link = ethtool_op_get_link,
3683 .get_strings = atl1_get_strings,
3684 .nway_reset = atl1_nway_reset,
3685 .get_ethtool_stats = atl1_get_ethtool_stats,
3686 .get_sset_count = atl1_get_sset_count,
3687 .get_link_ksettings = atl1_get_link_ksettings,
3688 .set_link_ksettings = atl1_set_link_ksettings,
3689 };
3690
3691 module_pci_driver(atl1_driver);
3692