1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25 
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
ath9k_hw_set_clockrate(struct ath_hw * ah)40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 	struct ath_common *common = ath9k_hw_common(ah);
43 	struct ath9k_channel *chan = ah->curchan;
44 	unsigned int clockrate;
45 
46 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 		clockrate = 117;
49 	else if (!chan) /* should really check for CCK instead */
50 		clockrate = ATH9K_CLOCK_RATE_CCK;
51 	else if (IS_CHAN_2GHZ(chan))
52 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 	else
56 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57 
58 	if (chan) {
59 		if (IS_CHAN_HT40(chan))
60 			clockrate *= 2;
61 		if (IS_CHAN_HALF_RATE(chan))
62 			clockrate /= 2;
63 		if (IS_CHAN_QUARTER_RATE(chan))
64 			clockrate /= 4;
65 	}
66 
67 	common->clockrate = clockrate;
68 }
69 
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 	struct ath_common *common = ath9k_hw_common(ah);
73 
74 	return usecs * common->clockrate;
75 }
76 
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_dbg(ath9k_hw_common(ah), ANY,
91 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 			  int hw_delay)
100 {
101 	hw_delay /= 10;
102 
103 	if (IS_CHAN_HALF_RATE(chan))
104 		hw_delay *= 2;
105 	else if (IS_CHAN_QUARTER_RATE(chan))
106 		hw_delay *= 4;
107 
108 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110 
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 			  int column, unsigned int *writecnt)
113 {
114 	int r;
115 
116 	ENABLE_REGWRITE_BUFFER(ah);
117 	for (r = 0; r < array->ia_rows; r++) {
118 		REG_WRITE(ah, INI_RA(array, r, 0),
119 			  INI_RA(array, r, column));
120 		DO_DELAY(*writecnt);
121 	}
122 	REGWRITE_BUFFER_FLUSH(ah);
123 }
124 
ath9k_hw_read_array(struct ath_hw * ah,u32 array[][2],int size)125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126 {
127 	u32 *tmp_reg_list, *tmp_data;
128 	int i;
129 
130 	tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
131 	if (!tmp_reg_list) {
132 		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 		return;
134 	}
135 
136 	tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
137 	if (!tmp_data) {
138 		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 		goto error_tmp_data;
140 	}
141 
142 	for (i = 0; i < size; i++)
143 		tmp_reg_list[i] = array[i][0];
144 
145 	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146 
147 	for (i = 0; i < size; i++)
148 		array[i][1] = tmp_data[i];
149 
150 	kfree(tmp_data);
151 error_tmp_data:
152 	kfree(tmp_reg_list);
153 }
154 
ath9k_hw_reverse_bits(u32 val,u32 n)155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156 {
157 	u32 retval;
158 	int i;
159 
160 	for (i = 0, retval = 0; i < n; i++) {
161 		retval = (retval << 1) | (val & 1);
162 		val >>= 1;
163 	}
164 	return retval;
165 }
166 
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 			   u8 phy, int kbps,
169 			   u32 frameLen, u16 rateix,
170 			   bool shortPreamble)
171 {
172 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173 
174 	if (kbps == 0)
175 		return 0;
176 
177 	switch (phy) {
178 	case WLAN_RC_PHY_CCK:
179 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 		if (shortPreamble)
181 			phyTime >>= 1;
182 		numBits = frameLen << 3;
183 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 		break;
185 	case WLAN_RC_PHY_OFDM:
186 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 			bitsPerSymbol =
188 				((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
190 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191 			txTime = OFDM_SIFS_TIME_QUARTER
192 				+ OFDM_PREAMBLE_TIME_QUARTER
193 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194 		} else if (ah->curchan &&
195 			   IS_CHAN_HALF_RATE(ah->curchan)) {
196 			bitsPerSymbol =
197 				((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
198 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200 			txTime = OFDM_SIFS_TIME_HALF +
201 				OFDM_PREAMBLE_TIME_HALF
202 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
203 		} else {
204 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208 				+ (numSymbols * OFDM_SYMBOL_TIME);
209 		}
210 		break;
211 	default:
212 		ath_err(ath9k_hw_common(ah),
213 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
214 		txTime = 0;
215 		break;
216 	}
217 
218 	return txTime;
219 }
220 EXPORT_SYMBOL(ath9k_hw_computetxtime);
221 
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)222 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223 				  struct ath9k_channel *chan,
224 				  struct chan_centers *centers)
225 {
226 	int8_t extoff;
227 
228 	if (!IS_CHAN_HT40(chan)) {
229 		centers->ctl_center = centers->ext_center =
230 			centers->synth_center = chan->channel;
231 		return;
232 	}
233 
234 	if (IS_CHAN_HT40PLUS(chan)) {
235 		centers->synth_center =
236 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237 		extoff = 1;
238 	} else {
239 		centers->synth_center =
240 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241 		extoff = -1;
242 	}
243 
244 	centers->ctl_center =
245 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246 	/* 25 MHz spacing is supported by hw but not on upper layers */
247 	centers->ext_center =
248 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 }
250 
251 /******************/
252 /* Chip Revisions */
253 /******************/
254 
ath9k_hw_read_revisions(struct ath_hw * ah)255 static void ath9k_hw_read_revisions(struct ath_hw *ah)
256 {
257 	u32 val;
258 
259 	if (ah->get_mac_revision)
260 		ah->hw_version.macRev = ah->get_mac_revision();
261 
262 	switch (ah->hw_version.devid) {
263 	case AR5416_AR9100_DEVID:
264 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
265 		break;
266 	case AR9300_DEVID_AR9330:
267 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
268 		if (!ah->get_mac_revision) {
269 			val = REG_READ(ah, AR_SREV);
270 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271 		}
272 		return;
273 	case AR9300_DEVID_AR9340:
274 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275 		return;
276 	case AR9300_DEVID_QCA955X:
277 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
278 		return;
279 	case AR9300_DEVID_AR953X:
280 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
281 		return;
282 	case AR9300_DEVID_QCA956X:
283 		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
284 		return;
285 	}
286 
287 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
288 
289 	if (val == 0xFF) {
290 		val = REG_READ(ah, AR_SREV);
291 		ah->hw_version.macVersion =
292 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
293 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
294 
295 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
296 			ah->is_pciexpress = true;
297 		else
298 			ah->is_pciexpress = (val &
299 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
300 	} else {
301 		if (!AR_SREV_9100(ah))
302 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
303 
304 		ah->hw_version.macRev = val & AR_SREV_REVISION;
305 
306 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
307 			ah->is_pciexpress = true;
308 	}
309 }
310 
311 /************************************/
312 /* HW Attach, Detach, Init Routines */
313 /************************************/
314 
ath9k_hw_disablepcie(struct ath_hw * ah)315 static void ath9k_hw_disablepcie(struct ath_hw *ah)
316 {
317 	if (!AR_SREV_5416(ah))
318 		return;
319 
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
323 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
324 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
325 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
326 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
327 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
328 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
329 
330 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
331 }
332 
333 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)334 static bool ath9k_hw_chip_test(struct ath_hw *ah)
335 {
336 	struct ath_common *common = ath9k_hw_common(ah);
337 	u32 regAddr[2] = { AR_STA_ID0 };
338 	u32 regHold[2];
339 	static const u32 patternData[4] = {
340 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
341 	};
342 	int i, j, loop_max;
343 
344 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
345 		loop_max = 2;
346 		regAddr[1] = AR_PHY_BASE + (8 << 2);
347 	} else
348 		loop_max = 1;
349 
350 	for (i = 0; i < loop_max; i++) {
351 		u32 addr = regAddr[i];
352 		u32 wrData, rdData;
353 
354 		regHold[i] = REG_READ(ah, addr);
355 		for (j = 0; j < 0x100; j++) {
356 			wrData = (j << 16) | j;
357 			REG_WRITE(ah, addr, wrData);
358 			rdData = REG_READ(ah, addr);
359 			if (rdData != wrData) {
360 				ath_err(common,
361 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
362 					addr, wrData, rdData);
363 				return false;
364 			}
365 		}
366 		for (j = 0; j < 4; j++) {
367 			wrData = patternData[j];
368 			REG_WRITE(ah, addr, wrData);
369 			rdData = REG_READ(ah, addr);
370 			if (wrData != rdData) {
371 				ath_err(common,
372 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
373 					addr, wrData, rdData);
374 				return false;
375 			}
376 		}
377 		REG_WRITE(ah, regAddr[i], regHold[i]);
378 	}
379 	udelay(100);
380 
381 	return true;
382 }
383 
ath9k_hw_init_config(struct ath_hw * ah)384 static void ath9k_hw_init_config(struct ath_hw *ah)
385 {
386 	struct ath_common *common = ath9k_hw_common(ah);
387 
388 	ah->config.dma_beacon_response_time = 1;
389 	ah->config.sw_beacon_response_time = 6;
390 	ah->config.cwm_ignore_extcca = false;
391 	ah->config.analog_shiftreg = 1;
392 
393 	ah->config.rx_intr_mitigation = true;
394 
395 	if (AR_SREV_9300_20_OR_LATER(ah)) {
396 		ah->config.rimt_last = 500;
397 		ah->config.rimt_first = 2000;
398 	} else {
399 		ah->config.rimt_last = 250;
400 		ah->config.rimt_first = 700;
401 	}
402 
403 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
404 		ah->config.pll_pwrsave = 7;
405 
406 	/*
407 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
408 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
409 	 * This means we use it for all AR5416 devices, and the few
410 	 * minor PCI AR9280 devices out there.
411 	 *
412 	 * Serialization is required because these devices do not handle
413 	 * well the case of two concurrent reads/writes due to the latency
414 	 * involved. During one read/write another read/write can be issued
415 	 * on another CPU while the previous read/write may still be working
416 	 * on our hardware, if we hit this case the hardware poops in a loop.
417 	 * We prevent this by serializing reads and writes.
418 	 *
419 	 * This issue is not present on PCI-Express devices or pre-AR5416
420 	 * devices (legacy, 802.11abg).
421 	 */
422 	if (num_possible_cpus() > 1)
423 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
424 
425 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
426 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
427 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
428 		     !ah->is_pciexpress)) {
429 			ah->config.serialize_regmode = SER_REG_MODE_ON;
430 		} else {
431 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
432 		}
433 	}
434 
435 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
436 		ah->config.serialize_regmode);
437 
438 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
439 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
440 	else
441 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
442 }
443 
ath9k_hw_init_defaults(struct ath_hw * ah)444 static void ath9k_hw_init_defaults(struct ath_hw *ah)
445 {
446 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
447 
448 	regulatory->country_code = CTRY_DEFAULT;
449 	regulatory->power_limit = MAX_RATE_POWER;
450 
451 	ah->hw_version.magic = AR5416_MAGIC;
452 	ah->hw_version.subvendorid = 0;
453 
454 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
455 			       AR_STA_ID1_MCAST_KSRCH;
456 	if (AR_SREV_9100(ah))
457 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
458 
459 	ah->slottime = 9;
460 	ah->globaltxtimeout = (u32) -1;
461 	ah->power_mode = ATH9K_PM_UNDEFINED;
462 	ah->htc_reset_init = true;
463 
464 	ah->tpc_enabled = false;
465 
466 	ah->ani_function = ATH9K_ANI_ALL;
467 	if (!AR_SREV_9300_20_OR_LATER(ah))
468 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
469 
470 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
471 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
472 	else
473 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
474 }
475 
ath9k_hw_init_macaddr(struct ath_hw * ah)476 static void ath9k_hw_init_macaddr(struct ath_hw *ah)
477 {
478 	struct ath_common *common = ath9k_hw_common(ah);
479 	int i;
480 	u16 eeval;
481 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
482 
483 	/* MAC address may already be loaded via ath9k_platform_data */
484 	if (is_valid_ether_addr(common->macaddr))
485 		return;
486 
487 	for (i = 0; i < 3; i++) {
488 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
489 		common->macaddr[2 * i] = eeval >> 8;
490 		common->macaddr[2 * i + 1] = eeval & 0xff;
491 	}
492 
493 	if (is_valid_ether_addr(common->macaddr))
494 		return;
495 
496 	ath_err(common, "eeprom contains invalid mac address: %pM\n",
497 		common->macaddr);
498 
499 	eth_random_addr(common->macaddr);
500 	ath_err(common, "random mac address will be used: %pM\n",
501 		common->macaddr);
502 
503 	return;
504 }
505 
ath9k_hw_post_init(struct ath_hw * ah)506 static int ath9k_hw_post_init(struct ath_hw *ah)
507 {
508 	struct ath_common *common = ath9k_hw_common(ah);
509 	int ecode;
510 
511 	if (common->bus_ops->ath_bus_type != ATH_USB) {
512 		if (!ath9k_hw_chip_test(ah))
513 			return -ENODEV;
514 	}
515 
516 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
517 		ecode = ar9002_hw_rf_claim(ah);
518 		if (ecode != 0)
519 			return ecode;
520 	}
521 
522 	ecode = ath9k_hw_eeprom_init(ah);
523 	if (ecode != 0)
524 		return ecode;
525 
526 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
527 		ah->eep_ops->get_eeprom_ver(ah),
528 		ah->eep_ops->get_eeprom_rev(ah));
529 
530 	ath9k_hw_ani_init(ah);
531 
532 	/*
533 	 * EEPROM needs to be initialized before we do this.
534 	 * This is required for regulatory compliance.
535 	 */
536 	if (AR_SREV_9300_20_OR_LATER(ah)) {
537 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
538 		if ((regdmn & 0xF0) == CTL_FCC) {
539 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
540 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
541 		}
542 	}
543 
544 	return 0;
545 }
546 
ath9k_hw_attach_ops(struct ath_hw * ah)547 static int ath9k_hw_attach_ops(struct ath_hw *ah)
548 {
549 	if (!AR_SREV_9300_20_OR_LATER(ah))
550 		return ar9002_hw_attach_ops(ah);
551 
552 	ar9003_hw_attach_ops(ah);
553 	return 0;
554 }
555 
556 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)557 static int __ath9k_hw_init(struct ath_hw *ah)
558 {
559 	struct ath_common *common = ath9k_hw_common(ah);
560 	int r = 0;
561 
562 	ath9k_hw_read_revisions(ah);
563 
564 	switch (ah->hw_version.macVersion) {
565 	case AR_SREV_VERSION_5416_PCI:
566 	case AR_SREV_VERSION_5416_PCIE:
567 	case AR_SREV_VERSION_9160:
568 	case AR_SREV_VERSION_9100:
569 	case AR_SREV_VERSION_9280:
570 	case AR_SREV_VERSION_9285:
571 	case AR_SREV_VERSION_9287:
572 	case AR_SREV_VERSION_9271:
573 	case AR_SREV_VERSION_9300:
574 	case AR_SREV_VERSION_9330:
575 	case AR_SREV_VERSION_9485:
576 	case AR_SREV_VERSION_9340:
577 	case AR_SREV_VERSION_9462:
578 	case AR_SREV_VERSION_9550:
579 	case AR_SREV_VERSION_9565:
580 	case AR_SREV_VERSION_9531:
581 	case AR_SREV_VERSION_9561:
582 		break;
583 	default:
584 		ath_err(common,
585 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
586 			ah->hw_version.macVersion, ah->hw_version.macRev);
587 		return -EOPNOTSUPP;
588 	}
589 
590 	/*
591 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
592 	 * We need to do this to avoid RMW of this register. We cannot
593 	 * read the reg when chip is asleep.
594 	 */
595 	if (AR_SREV_9300_20_OR_LATER(ah)) {
596 		ah->WARegVal = REG_READ(ah, AR_WA);
597 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
598 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
599 	}
600 
601 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
602 		ath_err(common, "Couldn't reset chip\n");
603 		return -EIO;
604 	}
605 
606 	if (AR_SREV_9565(ah)) {
607 		ah->WARegVal |= AR_WA_BIT22;
608 		REG_WRITE(ah, AR_WA, ah->WARegVal);
609 	}
610 
611 	ath9k_hw_init_defaults(ah);
612 	ath9k_hw_init_config(ah);
613 
614 	r = ath9k_hw_attach_ops(ah);
615 	if (r)
616 		return r;
617 
618 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
619 		ath_err(common, "Couldn't wakeup chip\n");
620 		return -EIO;
621 	}
622 
623 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
624 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
625 		ah->is_pciexpress = false;
626 
627 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
628 	ath9k_hw_init_cal_settings(ah);
629 
630 	if (!ah->is_pciexpress)
631 		ath9k_hw_disablepcie(ah);
632 
633 	r = ath9k_hw_post_init(ah);
634 	if (r)
635 		return r;
636 
637 	ath9k_hw_init_mode_gain_regs(ah);
638 	r = ath9k_hw_fill_cap_info(ah);
639 	if (r)
640 		return r;
641 
642 	ath9k_hw_init_macaddr(ah);
643 	ath9k_hw_init_hang_checks(ah);
644 
645 	common->state = ATH_HW_INITIALIZED;
646 
647 	return 0;
648 }
649 
ath9k_hw_init(struct ath_hw * ah)650 int ath9k_hw_init(struct ath_hw *ah)
651 {
652 	int ret;
653 	struct ath_common *common = ath9k_hw_common(ah);
654 
655 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
656 	switch (ah->hw_version.devid) {
657 	case AR5416_DEVID_PCI:
658 	case AR5416_DEVID_PCIE:
659 	case AR5416_AR9100_DEVID:
660 	case AR9160_DEVID_PCI:
661 	case AR9280_DEVID_PCI:
662 	case AR9280_DEVID_PCIE:
663 	case AR9285_DEVID_PCIE:
664 	case AR9287_DEVID_PCI:
665 	case AR9287_DEVID_PCIE:
666 	case AR2427_DEVID_PCIE:
667 	case AR9300_DEVID_PCIE:
668 	case AR9300_DEVID_AR9485_PCIE:
669 	case AR9300_DEVID_AR9330:
670 	case AR9300_DEVID_AR9340:
671 	case AR9300_DEVID_QCA955X:
672 	case AR9300_DEVID_AR9580:
673 	case AR9300_DEVID_AR9462:
674 	case AR9485_DEVID_AR1111:
675 	case AR9300_DEVID_AR9565:
676 	case AR9300_DEVID_AR953X:
677 	case AR9300_DEVID_QCA956X:
678 		break;
679 	default:
680 		if (common->bus_ops->ath_bus_type == ATH_USB)
681 			break;
682 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
683 			ah->hw_version.devid);
684 		return -EOPNOTSUPP;
685 	}
686 
687 	ret = __ath9k_hw_init(ah);
688 	if (ret) {
689 		ath_err(common,
690 			"Unable to initialize hardware; initialization status: %d\n",
691 			ret);
692 		return ret;
693 	}
694 
695 	ath_dynack_init(ah);
696 
697 	return 0;
698 }
699 EXPORT_SYMBOL(ath9k_hw_init);
700 
ath9k_hw_init_qos(struct ath_hw * ah)701 static void ath9k_hw_init_qos(struct ath_hw *ah)
702 {
703 	ENABLE_REGWRITE_BUFFER(ah);
704 
705 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
706 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
707 
708 	REG_WRITE(ah, AR_QOS_NO_ACK,
709 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
710 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
711 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
712 
713 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
714 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
715 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
716 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
717 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
718 
719 	REGWRITE_BUFFER_FLUSH(ah);
720 }
721 
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)722 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
723 {
724 	struct ath_common *common = ath9k_hw_common(ah);
725 	int i = 0;
726 
727 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
728 	udelay(100);
729 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
730 
731 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
732 
733 		udelay(100);
734 
735 		if (WARN_ON_ONCE(i >= 100)) {
736 			ath_err(common, "PLL4 measurement not done\n");
737 			break;
738 		}
739 
740 		i++;
741 	}
742 
743 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
744 }
745 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
746 
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)747 static void ath9k_hw_init_pll(struct ath_hw *ah,
748 			      struct ath9k_channel *chan)
749 {
750 	u32 pll;
751 
752 	pll = ath9k_hw_compute_pll_control(ah, chan);
753 
754 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
755 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
756 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
757 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
758 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759 			      AR_CH0_DPLL2_KD, 0x40);
760 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
761 			      AR_CH0_DPLL2_KI, 0x4);
762 
763 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
764 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
766 			      AR_CH0_BB_DPLL1_NINI, 0x58);
767 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
768 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
769 
770 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
771 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
772 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
774 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
775 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
776 
777 		/* program BB PLL phase_shift to 0x6 */
778 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
779 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
780 
781 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
782 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
783 		udelay(1000);
784 	} else if (AR_SREV_9330(ah)) {
785 		u32 ddr_dpll2, pll_control2, kd;
786 
787 		if (ah->is_clk_25mhz) {
788 			ddr_dpll2 = 0x18e82f01;
789 			pll_control2 = 0xe04a3d;
790 			kd = 0x1d;
791 		} else {
792 			ddr_dpll2 = 0x19e82f01;
793 			pll_control2 = 0x886666;
794 			kd = 0x3d;
795 		}
796 
797 		/* program DDR PLL ki and kd value */
798 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
799 
800 		/* program DDR PLL phase_shift */
801 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
802 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
803 
804 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
805 			  pll | AR_RTC_9300_PLL_BYPASS);
806 		udelay(1000);
807 
808 		/* program refdiv, nint, frac to RTC register */
809 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
810 
811 		/* program BB PLL kd and ki value */
812 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
814 
815 		/* program BB PLL phase_shift */
816 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
817 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
818 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
819 		   AR_SREV_9561(ah)) {
820 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
821 
822 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
823 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
824 		udelay(1000);
825 
826 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
827 		udelay(100);
828 
829 		if (ah->is_clk_25mhz) {
830 			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
831 				pll2_divint = 0x1c;
832 				pll2_divfrac = 0xa3d2;
833 				refdiv = 1;
834 			} else {
835 				pll2_divint = 0x54;
836 				pll2_divfrac = 0x1eb85;
837 				refdiv = 3;
838 			}
839 		} else {
840 			if (AR_SREV_9340(ah)) {
841 				pll2_divint = 88;
842 				pll2_divfrac = 0;
843 				refdiv = 5;
844 			} else {
845 				pll2_divint = 0x11;
846 				pll2_divfrac = (AR_SREV_9531(ah) ||
847 						AR_SREV_9561(ah)) ?
848 						0x26665 : 0x26666;
849 				refdiv = 1;
850 			}
851 		}
852 
853 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
854 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
855 			regval |= (0x1 << 22);
856 		else
857 			regval |= (0x1 << 16);
858 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
859 		udelay(100);
860 
861 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
862 			  (pll2_divint << 18) | pll2_divfrac);
863 		udelay(100);
864 
865 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
866 		if (AR_SREV_9340(ah))
867 			regval = (regval & 0x80071fff) |
868 				(0x1 << 30) |
869 				(0x1 << 13) |
870 				(0x4 << 26) |
871 				(0x18 << 19);
872 		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
873 			regval = (regval & 0x01c00fff) |
874 				(0x1 << 31) |
875 				(0x2 << 29) |
876 				(0xa << 25) |
877 				(0x1 << 19);
878 
879 			if (AR_SREV_9531(ah))
880 				regval |= (0x6 << 12);
881 		} else
882 			regval = (regval & 0x80071fff) |
883 				(0x3 << 30) |
884 				(0x1 << 13) |
885 				(0x4 << 26) |
886 				(0x60 << 19);
887 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
888 
889 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
890 			REG_WRITE(ah, AR_PHY_PLL_MODE,
891 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
892 		else
893 			REG_WRITE(ah, AR_PHY_PLL_MODE,
894 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
895 
896 		udelay(1000);
897 	}
898 
899 	if (AR_SREV_9565(ah))
900 		pll |= 0x40000;
901 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
902 
903 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
904 	    AR_SREV_9550(ah))
905 		udelay(1000);
906 
907 	/* Switch the core clock for ar9271 to 117Mhz */
908 	if (AR_SREV_9271(ah)) {
909 		udelay(500);
910 		REG_WRITE(ah, 0x50040, 0x304);
911 	}
912 
913 	udelay(RTC_PLL_SETTLE_DELAY);
914 
915 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
916 }
917 
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)918 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
919 					  enum nl80211_iftype opmode)
920 {
921 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
922 	u32 imr_reg = AR_IMR_TXERR |
923 		AR_IMR_TXURN |
924 		AR_IMR_RXERR |
925 		AR_IMR_RXORN |
926 		AR_IMR_BCNMISC;
927 	u32 msi_cfg = 0;
928 
929 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
930 	    AR_SREV_9561(ah))
931 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
932 
933 	if (AR_SREV_9300_20_OR_LATER(ah)) {
934 		imr_reg |= AR_IMR_RXOK_HP;
935 		if (ah->config.rx_intr_mitigation) {
936 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
937 			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
938 		} else {
939 			imr_reg |= AR_IMR_RXOK_LP;
940 			msi_cfg |= AR_INTCFG_MSI_RXOK;
941 		}
942 	} else {
943 		if (ah->config.rx_intr_mitigation) {
944 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
945 			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
946 		} else {
947 			imr_reg |= AR_IMR_RXOK;
948 			msi_cfg |= AR_INTCFG_MSI_RXOK;
949 		}
950 	}
951 
952 	if (ah->config.tx_intr_mitigation) {
953 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
954 		msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
955 	} else {
956 		imr_reg |= AR_IMR_TXOK;
957 		msi_cfg |= AR_INTCFG_MSI_TXOK;
958 	}
959 
960 	ENABLE_REGWRITE_BUFFER(ah);
961 
962 	REG_WRITE(ah, AR_IMR, imr_reg);
963 	ah->imrs2_reg |= AR_IMR_S2_GTT;
964 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
965 
966 	if (ah->msi_enabled) {
967 		ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
968 		ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
969 		ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
970 		REG_WRITE(ah, AR_INTCFG, msi_cfg);
971 		ath_dbg(ath9k_hw_common(ah), ANY,
972 			"value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
973 			REG_READ(ah, AR_INTCFG), msi_cfg);
974 	}
975 
976 	if (!AR_SREV_9100(ah)) {
977 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
978 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
979 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
980 	}
981 
982 	REGWRITE_BUFFER_FLUSH(ah);
983 
984 	if (AR_SREV_9300_20_OR_LATER(ah)) {
985 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
986 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
987 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
988 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
989 	}
990 }
991 
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)992 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
993 {
994 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
995 	val = min(val, (u32) 0xFFFF);
996 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
997 }
998 
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)999 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1000 {
1001 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1002 	val = min(val, (u32) 0xFFFF);
1003 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1004 }
1005 
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)1006 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1007 {
1008 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1009 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1010 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1011 }
1012 
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)1013 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1014 {
1015 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1016 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1017 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1018 }
1019 
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)1020 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1021 {
1022 	if (tu > 0xFFFF) {
1023 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1024 			tu);
1025 		ah->globaltxtimeout = (u32) -1;
1026 		return false;
1027 	} else {
1028 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1029 		ah->globaltxtimeout = tu;
1030 		return true;
1031 	}
1032 }
1033 
ath9k_hw_init_global_settings(struct ath_hw * ah)1034 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1035 {
1036 	struct ath_common *common = ath9k_hw_common(ah);
1037 	const struct ath9k_channel *chan = ah->curchan;
1038 	int acktimeout, ctstimeout, ack_offset = 0;
1039 	int slottime;
1040 	int sifstime;
1041 	int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1042 	u32 reg;
1043 
1044 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1045 		ah->misc_mode);
1046 
1047 	if (!chan)
1048 		return;
1049 
1050 	if (ah->misc_mode != 0)
1051 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1052 
1053 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1054 		rx_lat = 41;
1055 	else
1056 		rx_lat = 37;
1057 	tx_lat = 54;
1058 
1059 	if (IS_CHAN_5GHZ(chan))
1060 		sifstime = 16;
1061 	else
1062 		sifstime = 10;
1063 
1064 	if (IS_CHAN_HALF_RATE(chan)) {
1065 		eifs = 175;
1066 		rx_lat *= 2;
1067 		tx_lat *= 2;
1068 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1069 		    tx_lat += 11;
1070 
1071 		sifstime = 32;
1072 		ack_offset = 16;
1073 		ack_shift = 3;
1074 		slottime = 13;
1075 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1076 		eifs = 340;
1077 		rx_lat = (rx_lat * 4) - 1;
1078 		tx_lat *= 4;
1079 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1080 		    tx_lat += 22;
1081 
1082 		sifstime = 64;
1083 		ack_offset = 32;
1084 		ack_shift = 1;
1085 		slottime = 21;
1086 	} else {
1087 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1088 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1089 			reg = AR_USEC_ASYNC_FIFO;
1090 		} else {
1091 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1092 				common->clockrate;
1093 			reg = REG_READ(ah, AR_USEC);
1094 		}
1095 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1096 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1097 
1098 		slottime = ah->slottime;
1099 	}
1100 
1101 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1102 	slottime += 3 * ah->coverage_class;
1103 	acktimeout = slottime + sifstime + ack_offset;
1104 	ctstimeout = acktimeout;
1105 
1106 	/*
1107 	 * Workaround for early ACK timeouts, add an offset to match the
1108 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1109 	 * This was initially only meant to work around an issue with delayed
1110 	 * BA frames in some implementations, but it has been found to fix ACK
1111 	 * timeout issues in other cases as well.
1112 	 */
1113 	if (IS_CHAN_2GHZ(chan) &&
1114 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1115 		acktimeout += 64 - sifstime - ah->slottime;
1116 		ctstimeout += 48 - sifstime - ah->slottime;
1117 	}
1118 
1119 	if (ah->dynack.enabled) {
1120 		acktimeout = ah->dynack.ackto;
1121 		ctstimeout = acktimeout;
1122 		slottime = (acktimeout - 3) / 2;
1123 	} else {
1124 		ah->dynack.ackto = acktimeout;
1125 	}
1126 
1127 	ath9k_hw_set_sifs_time(ah, sifstime);
1128 	ath9k_hw_setslottime(ah, slottime);
1129 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1130 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1131 	if (ah->globaltxtimeout != (u32) -1)
1132 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1133 
1134 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1135 	REG_RMW(ah, AR_USEC,
1136 		(common->clockrate - 1) |
1137 		SM(rx_lat, AR_USEC_RX_LAT) |
1138 		SM(tx_lat, AR_USEC_TX_LAT),
1139 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1140 
1141 	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1142 		REG_RMW(ah, AR_TXSIFS,
1143 			sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1144 			(AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1145 }
1146 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1147 
ath9k_hw_deinit(struct ath_hw * ah)1148 void ath9k_hw_deinit(struct ath_hw *ah)
1149 {
1150 	struct ath_common *common = ath9k_hw_common(ah);
1151 
1152 	if (common->state < ATH_HW_INITIALIZED)
1153 		return;
1154 
1155 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1156 }
1157 EXPORT_SYMBOL(ath9k_hw_deinit);
1158 
1159 /*******/
1160 /* INI */
1161 /*******/
1162 
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1163 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1164 {
1165 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1166 
1167 	if (IS_CHAN_2GHZ(chan))
1168 		ctl |= CTL_11G;
1169 	else
1170 		ctl |= CTL_11A;
1171 
1172 	return ctl;
1173 }
1174 
1175 /****************************************/
1176 /* Reset and Channel Switching Routines */
1177 /****************************************/
1178 
ath9k_hw_set_dma(struct ath_hw * ah)1179 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1180 {
1181 	struct ath_common *common = ath9k_hw_common(ah);
1182 	int txbuf_size;
1183 
1184 	ENABLE_REGWRITE_BUFFER(ah);
1185 
1186 	/*
1187 	 * set AHB_MODE not to do cacheline prefetches
1188 	*/
1189 	if (!AR_SREV_9300_20_OR_LATER(ah))
1190 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1191 
1192 	/*
1193 	 * let mac dma reads be in 128 byte chunks
1194 	 */
1195 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1196 
1197 	REGWRITE_BUFFER_FLUSH(ah);
1198 
1199 	/*
1200 	 * Restore TX Trigger Level to its pre-reset value.
1201 	 * The initial value depends on whether aggregation is enabled, and is
1202 	 * adjusted whenever underruns are detected.
1203 	 */
1204 	if (!AR_SREV_9300_20_OR_LATER(ah))
1205 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1206 
1207 	ENABLE_REGWRITE_BUFFER(ah);
1208 
1209 	/*
1210 	 * let mac dma writes be in 128 byte chunks
1211 	 */
1212 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1213 
1214 	/*
1215 	 * Setup receive FIFO threshold to hold off TX activities
1216 	 */
1217 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1218 
1219 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1220 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1221 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1222 
1223 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1224 			ah->caps.rx_status_len);
1225 	}
1226 
1227 	/*
1228 	 * reduce the number of usable entries in PCU TXBUF to avoid
1229 	 * wrap around issues.
1230 	 */
1231 	if (AR_SREV_9285(ah)) {
1232 		/* For AR9285 the number of Fifos are reduced to half.
1233 		 * So set the usable tx buf size also to half to
1234 		 * avoid data/delimiter underruns
1235 		 */
1236 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1237 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1238 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1239 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1240 	} else {
1241 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1242 	}
1243 
1244 	if (!AR_SREV_9271(ah))
1245 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1246 
1247 	REGWRITE_BUFFER_FLUSH(ah);
1248 
1249 	if (AR_SREV_9300_20_OR_LATER(ah))
1250 		ath9k_hw_reset_txstatus_ring(ah);
1251 }
1252 
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1253 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1254 {
1255 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1256 	u32 set = AR_STA_ID1_KSRCH_MODE;
1257 
1258 	ENABLE_REG_RMW_BUFFER(ah);
1259 	switch (opmode) {
1260 	case NL80211_IFTYPE_ADHOC:
1261 		if (!AR_SREV_9340_13(ah)) {
1262 			set |= AR_STA_ID1_ADHOC;
1263 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1264 			break;
1265 		}
1266 		/* fall through */
1267 	case NL80211_IFTYPE_OCB:
1268 	case NL80211_IFTYPE_MESH_POINT:
1269 	case NL80211_IFTYPE_AP:
1270 		set |= AR_STA_ID1_STA_AP;
1271 		/* fall through */
1272 	case NL80211_IFTYPE_STATION:
1273 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1274 		break;
1275 	default:
1276 		if (!ah->is_monitoring)
1277 			set = 0;
1278 		break;
1279 	}
1280 	REG_RMW(ah, AR_STA_ID1, set, mask);
1281 	REG_RMW_BUFFER_FLUSH(ah);
1282 }
1283 
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1284 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1285 				   u32 *coef_mantissa, u32 *coef_exponent)
1286 {
1287 	u32 coef_exp, coef_man;
1288 
1289 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1290 		if ((coef_scaled >> coef_exp) & 0x1)
1291 			break;
1292 
1293 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1294 
1295 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1296 
1297 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1298 	*coef_exponent = coef_exp - 16;
1299 }
1300 
1301 /* AR9330 WAR:
1302  * call external reset function to reset WMAC if:
1303  * - doing a cold reset
1304  * - we have pending frames in the TX queues.
1305  */
ath9k_hw_ar9330_reset_war(struct ath_hw * ah,int type)1306 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1307 {
1308 	int i, npend = 0;
1309 
1310 	for (i = 0; i < AR_NUM_QCU; i++) {
1311 		npend = ath9k_hw_numtxpending(ah, i);
1312 		if (npend)
1313 			break;
1314 	}
1315 
1316 	if (ah->external_reset &&
1317 	    (npend || type == ATH9K_RESET_COLD)) {
1318 		int reset_err = 0;
1319 
1320 		ath_dbg(ath9k_hw_common(ah), RESET,
1321 			"reset MAC via external reset\n");
1322 
1323 		reset_err = ah->external_reset();
1324 		if (reset_err) {
1325 			ath_err(ath9k_hw_common(ah),
1326 				"External reset failed, err=%d\n",
1327 				reset_err);
1328 			return false;
1329 		}
1330 
1331 		REG_WRITE(ah, AR_RTC_RESET, 1);
1332 	}
1333 
1334 	return true;
1335 }
1336 
ath9k_hw_set_reset(struct ath_hw * ah,int type)1337 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1338 {
1339 	u32 rst_flags;
1340 	u32 tmpReg;
1341 
1342 	if (AR_SREV_9100(ah)) {
1343 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1344 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1345 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1346 	}
1347 
1348 	ENABLE_REGWRITE_BUFFER(ah);
1349 
1350 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1351 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1352 		udelay(10);
1353 	}
1354 
1355 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1356 		  AR_RTC_FORCE_WAKE_ON_INT);
1357 
1358 	if (AR_SREV_9100(ah)) {
1359 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1360 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1361 	} else {
1362 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1363 		if (AR_SREV_9340(ah))
1364 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1365 		else
1366 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1367 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1368 
1369 		if (tmpReg) {
1370 			u32 val;
1371 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1372 
1373 			val = AR_RC_HOSTIF;
1374 			if (!AR_SREV_9300_20_OR_LATER(ah))
1375 				val |= AR_RC_AHB;
1376 			REG_WRITE(ah, AR_RC, val);
1377 
1378 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1379 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1380 
1381 		rst_flags = AR_RTC_RC_MAC_WARM;
1382 		if (type == ATH9K_RESET_COLD)
1383 			rst_flags |= AR_RTC_RC_MAC_COLD;
1384 	}
1385 
1386 	if (AR_SREV_9330(ah)) {
1387 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1388 			return false;
1389 	}
1390 
1391 	if (ath9k_hw_mci_is_enabled(ah))
1392 		ar9003_mci_check_gpm_offset(ah);
1393 
1394 	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1395 	 * RTC_RC reg read
1396 	 */
1397 	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1398 		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1399 		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1400 			      20 * AH_WAIT_TIMEOUT);
1401 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1402 	}
1403 
1404 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1405 
1406 	REGWRITE_BUFFER_FLUSH(ah);
1407 
1408 	if (AR_SREV_9300_20_OR_LATER(ah))
1409 		udelay(50);
1410 	else if (AR_SREV_9100(ah))
1411 		mdelay(10);
1412 	else
1413 		udelay(100);
1414 
1415 	REG_WRITE(ah, AR_RTC_RC, 0);
1416 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1417 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1418 		return false;
1419 	}
1420 
1421 	if (!AR_SREV_9100(ah))
1422 		REG_WRITE(ah, AR_RC, 0);
1423 
1424 	if (AR_SREV_9100(ah))
1425 		udelay(50);
1426 
1427 	return true;
1428 }
1429 
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1430 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1431 {
1432 	ENABLE_REGWRITE_BUFFER(ah);
1433 
1434 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1435 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1436 		udelay(10);
1437 	}
1438 
1439 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1440 		  AR_RTC_FORCE_WAKE_ON_INT);
1441 
1442 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1443 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1444 
1445 	REG_WRITE(ah, AR_RTC_RESET, 0);
1446 
1447 	REGWRITE_BUFFER_FLUSH(ah);
1448 
1449 	udelay(2);
1450 
1451 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1452 		REG_WRITE(ah, AR_RC, 0);
1453 
1454 	REG_WRITE(ah, AR_RTC_RESET, 1);
1455 
1456 	if (!ath9k_hw_wait(ah,
1457 			   AR_RTC_STATUS,
1458 			   AR_RTC_STATUS_M,
1459 			   AR_RTC_STATUS_ON,
1460 			   AH_WAIT_TIMEOUT)) {
1461 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1462 		return false;
1463 	}
1464 
1465 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1466 }
1467 
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1468 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1469 {
1470 	bool ret = false;
1471 
1472 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1473 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1474 		udelay(10);
1475 	}
1476 
1477 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1478 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1479 
1480 	if (!ah->reset_power_on)
1481 		type = ATH9K_RESET_POWER_ON;
1482 
1483 	switch (type) {
1484 	case ATH9K_RESET_POWER_ON:
1485 		ret = ath9k_hw_set_reset_power_on(ah);
1486 		if (ret)
1487 			ah->reset_power_on = true;
1488 		break;
1489 	case ATH9K_RESET_WARM:
1490 	case ATH9K_RESET_COLD:
1491 		ret = ath9k_hw_set_reset(ah, type);
1492 		break;
1493 	default:
1494 		break;
1495 	}
1496 
1497 	return ret;
1498 }
1499 
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1500 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1501 				struct ath9k_channel *chan)
1502 {
1503 	int reset_type = ATH9K_RESET_WARM;
1504 
1505 	if (AR_SREV_9280(ah)) {
1506 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1507 			reset_type = ATH9K_RESET_POWER_ON;
1508 		else
1509 			reset_type = ATH9K_RESET_COLD;
1510 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1511 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1512 		reset_type = ATH9K_RESET_COLD;
1513 
1514 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1515 		return false;
1516 
1517 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1518 		return false;
1519 
1520 	ah->chip_fullsleep = false;
1521 
1522 	if (AR_SREV_9330(ah))
1523 		ar9003_hw_internal_regulator_apply(ah);
1524 	ath9k_hw_init_pll(ah, chan);
1525 
1526 	return true;
1527 }
1528 
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1529 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1530 				    struct ath9k_channel *chan)
1531 {
1532 	struct ath_common *common = ath9k_hw_common(ah);
1533 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1534 	bool band_switch = false, mode_diff = false;
1535 	u8 ini_reloaded = 0;
1536 	u32 qnum;
1537 	int r;
1538 
1539 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1540 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1541 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1542 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1543 	}
1544 
1545 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1546 		if (ath9k_hw_numtxpending(ah, qnum)) {
1547 			ath_dbg(common, QUEUE,
1548 				"Transmit frames pending on queue %d\n", qnum);
1549 			return false;
1550 		}
1551 	}
1552 
1553 	if (!ath9k_hw_rfbus_req(ah)) {
1554 		ath_err(common, "Could not kill baseband RX\n");
1555 		return false;
1556 	}
1557 
1558 	if (band_switch || mode_diff) {
1559 		ath9k_hw_mark_phy_inactive(ah);
1560 		udelay(5);
1561 
1562 		if (band_switch)
1563 			ath9k_hw_init_pll(ah, chan);
1564 
1565 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1566 			ath_err(common, "Failed to do fast channel change\n");
1567 			return false;
1568 		}
1569 	}
1570 
1571 	ath9k_hw_set_channel_regs(ah, chan);
1572 
1573 	r = ath9k_hw_rf_set_freq(ah, chan);
1574 	if (r) {
1575 		ath_err(common, "Failed to set channel\n");
1576 		return false;
1577 	}
1578 	ath9k_hw_set_clockrate(ah);
1579 	ath9k_hw_apply_txpower(ah, chan, false);
1580 
1581 	ath9k_hw_set_delta_slope(ah, chan);
1582 	ath9k_hw_spur_mitigate_freq(ah, chan);
1583 
1584 	if (band_switch || ini_reloaded)
1585 		ah->eep_ops->set_board_values(ah, chan);
1586 
1587 	ath9k_hw_init_bb(ah, chan);
1588 	ath9k_hw_rfbus_done(ah);
1589 
1590 	if (band_switch || ini_reloaded) {
1591 		ah->ah_flags |= AH_FASTCC;
1592 		ath9k_hw_init_cal(ah, chan);
1593 		ah->ah_flags &= ~AH_FASTCC;
1594 	}
1595 
1596 	return true;
1597 }
1598 
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1599 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1600 {
1601 	u32 gpio_mask = ah->gpio_mask;
1602 	int i;
1603 
1604 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1605 		if (!(gpio_mask & 1))
1606 			continue;
1607 
1608 		ath9k_hw_gpio_request_out(ah, i, NULL,
1609 					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1610 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1611 		ath9k_hw_gpio_free(ah, i);
1612 	}
1613 }
1614 
ath9k_hw_check_nav(struct ath_hw * ah)1615 void ath9k_hw_check_nav(struct ath_hw *ah)
1616 {
1617 	struct ath_common *common = ath9k_hw_common(ah);
1618 	u32 val;
1619 
1620 	val = REG_READ(ah, AR_NAV);
1621 	if (val != 0xdeadbeef && val > 0x7fff) {
1622 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1623 		REG_WRITE(ah, AR_NAV, 0);
1624 	}
1625 }
1626 EXPORT_SYMBOL(ath9k_hw_check_nav);
1627 
ath9k_hw_check_alive(struct ath_hw * ah)1628 bool ath9k_hw_check_alive(struct ath_hw *ah)
1629 {
1630 	int count = 50;
1631 	u32 reg, last_val;
1632 
1633 	/* Check if chip failed to wake up */
1634 	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1635 		return false;
1636 
1637 	if (AR_SREV_9300(ah))
1638 		return !ath9k_hw_detect_mac_hang(ah);
1639 
1640 	if (AR_SREV_9285_12_OR_LATER(ah))
1641 		return true;
1642 
1643 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1644 	do {
1645 		reg = REG_READ(ah, AR_OBS_BUS_1);
1646 		if (reg != last_val)
1647 			return true;
1648 
1649 		udelay(1);
1650 		last_val = reg;
1651 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1652 			continue;
1653 
1654 		switch (reg & 0x7E000B00) {
1655 		case 0x1E000000:
1656 		case 0x52000B00:
1657 		case 0x18000B00:
1658 			continue;
1659 		default:
1660 			return true;
1661 		}
1662 	} while (count-- > 0);
1663 
1664 	return false;
1665 }
1666 EXPORT_SYMBOL(ath9k_hw_check_alive);
1667 
ath9k_hw_init_mfp(struct ath_hw * ah)1668 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1669 {
1670 	/* Setup MFP options for CCMP */
1671 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1672 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1673 		 * frames when constructing CCMP AAD. */
1674 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1675 			      0xc7ff);
1676 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1677 			ah->sw_mgmt_crypto_tx = true;
1678 		else
1679 			ah->sw_mgmt_crypto_tx = false;
1680 		ah->sw_mgmt_crypto_rx = false;
1681 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1682 		/* Disable hardware crypto for management frames */
1683 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1684 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1685 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1686 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1687 		ah->sw_mgmt_crypto_tx = true;
1688 		ah->sw_mgmt_crypto_rx = true;
1689 	} else {
1690 		ah->sw_mgmt_crypto_tx = true;
1691 		ah->sw_mgmt_crypto_rx = true;
1692 	}
1693 }
1694 
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1695 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1696 				  u32 macStaId1, u32 saveDefAntenna)
1697 {
1698 	struct ath_common *common = ath9k_hw_common(ah);
1699 
1700 	ENABLE_REGWRITE_BUFFER(ah);
1701 
1702 	REG_RMW(ah, AR_STA_ID1, macStaId1
1703 		  | AR_STA_ID1_RTS_USE_DEF
1704 		  | ah->sta_id1_defaults,
1705 		  ~AR_STA_ID1_SADH_MASK);
1706 	ath_hw_setbssidmask(common);
1707 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1708 	ath9k_hw_write_associd(ah);
1709 	REG_WRITE(ah, AR_ISR, ~0);
1710 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1711 
1712 	REGWRITE_BUFFER_FLUSH(ah);
1713 
1714 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1715 }
1716 
ath9k_hw_init_queues(struct ath_hw * ah)1717 static void ath9k_hw_init_queues(struct ath_hw *ah)
1718 {
1719 	int i;
1720 
1721 	ENABLE_REGWRITE_BUFFER(ah);
1722 
1723 	for (i = 0; i < AR_NUM_DCU; i++)
1724 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1725 
1726 	REGWRITE_BUFFER_FLUSH(ah);
1727 
1728 	ah->intr_txqs = 0;
1729 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1730 		ath9k_hw_resettxqueue(ah, i);
1731 }
1732 
1733 /*
1734  * For big endian systems turn on swapping for descriptors
1735  */
ath9k_hw_init_desc(struct ath_hw * ah)1736 static void ath9k_hw_init_desc(struct ath_hw *ah)
1737 {
1738 	struct ath_common *common = ath9k_hw_common(ah);
1739 
1740 	if (AR_SREV_9100(ah)) {
1741 		u32 mask;
1742 		mask = REG_READ(ah, AR_CFG);
1743 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1744 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1745 				mask);
1746 		} else {
1747 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1748 			REG_WRITE(ah, AR_CFG, mask);
1749 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1750 				REG_READ(ah, AR_CFG));
1751 		}
1752 	} else {
1753 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1754 			/* Configure AR9271 target WLAN */
1755 			if (AR_SREV_9271(ah))
1756 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1757 			else
1758 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1759 		}
1760 #ifdef __BIG_ENDIAN
1761 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1762 			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1763 			 AR_SREV_9561(ah))
1764 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1765 		else
1766 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1767 #endif
1768 	}
1769 }
1770 
1771 /*
1772  * Fast channel change:
1773  * (Change synthesizer based on channel freq without resetting chip)
1774  */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1775 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1776 {
1777 	struct ath_common *common = ath9k_hw_common(ah);
1778 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1779 	int ret;
1780 
1781 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1782 		goto fail;
1783 
1784 	if (ah->chip_fullsleep)
1785 		goto fail;
1786 
1787 	if (!ah->curchan)
1788 		goto fail;
1789 
1790 	if (chan->channel == ah->curchan->channel)
1791 		goto fail;
1792 
1793 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1794 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1795 		goto fail;
1796 
1797 	/*
1798 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1799 	 */
1800 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1801 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1802 		goto fail;
1803 
1804 	if (!ath9k_hw_check_alive(ah))
1805 		goto fail;
1806 
1807 	/*
1808 	 * For AR9462, make sure that calibration data for
1809 	 * re-using are present.
1810 	 */
1811 	if (AR_SREV_9462(ah) && (ah->caldata &&
1812 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1813 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1814 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1815 		goto fail;
1816 
1817 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1818 		ah->curchan->channel, chan->channel);
1819 
1820 	ret = ath9k_hw_channel_change(ah, chan);
1821 	if (!ret)
1822 		goto fail;
1823 
1824 	if (ath9k_hw_mci_is_enabled(ah))
1825 		ar9003_mci_2g5g_switch(ah, false);
1826 
1827 	ath9k_hw_loadnf(ah, ah->curchan);
1828 	ath9k_hw_start_nfcal(ah, true);
1829 
1830 	if (AR_SREV_9271(ah))
1831 		ar9002_hw_load_ani_reg(ah, chan);
1832 
1833 	return 0;
1834 fail:
1835 	return -EINVAL;
1836 }
1837 
ath9k_hw_get_tsf_offset(struct timespec64 * last,struct timespec64 * cur)1838 u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1839 {
1840 	struct timespec64 ts;
1841 	s64 usec;
1842 
1843 	if (!cur) {
1844 		ktime_get_raw_ts64(&ts);
1845 		cur = &ts;
1846 	}
1847 
1848 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1849 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1850 
1851 	return (u32) usec;
1852 }
1853 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1854 
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1855 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1856 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1857 {
1858 	struct ath_common *common = ath9k_hw_common(ah);
1859 	u32 saveLedState;
1860 	u32 saveDefAntenna;
1861 	u32 macStaId1;
1862 	struct timespec64 tsf_ts;
1863 	u32 tsf_offset;
1864 	u64 tsf = 0;
1865 	int r;
1866 	bool start_mci_reset = false;
1867 	bool save_fullsleep = ah->chip_fullsleep;
1868 
1869 	if (ath9k_hw_mci_is_enabled(ah)) {
1870 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1871 		if (start_mci_reset)
1872 			return 0;
1873 	}
1874 
1875 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1876 		return -EIO;
1877 
1878 	if (ah->curchan && !ah->chip_fullsleep)
1879 		ath9k_hw_getnf(ah, ah->curchan);
1880 
1881 	ah->caldata = caldata;
1882 	if (caldata && (chan->channel != caldata->channel ||
1883 			chan->channelFlags != caldata->channelFlags)) {
1884 		/* Operating channel changed, reset channel calibration data */
1885 		memset(caldata, 0, sizeof(*caldata));
1886 		ath9k_init_nfcal_hist_buffer(ah, chan);
1887 	} else if (caldata) {
1888 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1889 	}
1890 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1891 
1892 	if (fastcc) {
1893 		r = ath9k_hw_do_fastcc(ah, chan);
1894 		if (!r)
1895 			return r;
1896 	}
1897 
1898 	if (ath9k_hw_mci_is_enabled(ah))
1899 		ar9003_mci_stop_bt(ah, save_fullsleep);
1900 
1901 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1902 	if (saveDefAntenna == 0)
1903 		saveDefAntenna = 1;
1904 
1905 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1906 
1907 	/* Save TSF before chip reset, a cold reset clears it */
1908 	ktime_get_raw_ts64(&tsf_ts);
1909 	tsf = ath9k_hw_gettsf64(ah);
1910 
1911 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1912 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1913 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1914 
1915 	ath9k_hw_mark_phy_inactive(ah);
1916 
1917 	ah->paprd_table_write_done = false;
1918 
1919 	/* Only required on the first reset */
1920 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1921 		REG_WRITE(ah,
1922 			  AR9271_RESET_POWER_DOWN_CONTROL,
1923 			  AR9271_RADIO_RF_RST);
1924 		udelay(50);
1925 	}
1926 
1927 	if (!ath9k_hw_chip_reset(ah, chan)) {
1928 		ath_err(common, "Chip reset failed\n");
1929 		return -EINVAL;
1930 	}
1931 
1932 	/* Only required on the first reset */
1933 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1934 		ah->htc_reset_init = false;
1935 		REG_WRITE(ah,
1936 			  AR9271_RESET_POWER_DOWN_CONTROL,
1937 			  AR9271_GATE_MAC_CTL);
1938 		udelay(50);
1939 	}
1940 
1941 	/* Restore TSF */
1942 	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1943 	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1944 
1945 	if (AR_SREV_9280_20_OR_LATER(ah))
1946 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1947 
1948 	if (!AR_SREV_9300_20_OR_LATER(ah))
1949 		ar9002_hw_enable_async_fifo(ah);
1950 
1951 	r = ath9k_hw_process_ini(ah, chan);
1952 	if (r)
1953 		return r;
1954 
1955 	ath9k_hw_set_rfmode(ah, chan);
1956 
1957 	if (ath9k_hw_mci_is_enabled(ah))
1958 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1959 
1960 	/*
1961 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1962 	 * right after the chip reset. When that happens, write a new
1963 	 * value after the initvals have been applied.
1964 	 */
1965 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1966 		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1967 		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1968 	}
1969 
1970 	ath9k_hw_init_mfp(ah);
1971 
1972 	ath9k_hw_set_delta_slope(ah, chan);
1973 	ath9k_hw_spur_mitigate_freq(ah, chan);
1974 	ah->eep_ops->set_board_values(ah, chan);
1975 
1976 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1977 
1978 	r = ath9k_hw_rf_set_freq(ah, chan);
1979 	if (r)
1980 		return r;
1981 
1982 	ath9k_hw_set_clockrate(ah);
1983 
1984 	ath9k_hw_init_queues(ah);
1985 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1986 	ath9k_hw_ani_cache_ini_regs(ah);
1987 	ath9k_hw_init_qos(ah);
1988 
1989 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1990 		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
1991 
1992 	ath9k_hw_init_global_settings(ah);
1993 
1994 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1995 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1996 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1997 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1998 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1999 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2000 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2001 	}
2002 
2003 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2004 
2005 	ath9k_hw_set_dma(ah);
2006 
2007 	if (!ath9k_hw_mci_is_enabled(ah))
2008 		REG_WRITE(ah, AR_OBS, 8);
2009 
2010 	ENABLE_REG_RMW_BUFFER(ah);
2011 	if (ah->config.rx_intr_mitigation) {
2012 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2013 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2014 	}
2015 
2016 	if (ah->config.tx_intr_mitigation) {
2017 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2018 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2019 	}
2020 	REG_RMW_BUFFER_FLUSH(ah);
2021 
2022 	ath9k_hw_init_bb(ah, chan);
2023 
2024 	if (caldata) {
2025 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2026 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2027 	}
2028 	if (!ath9k_hw_init_cal(ah, chan))
2029 		return -EIO;
2030 
2031 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2032 		return -EIO;
2033 
2034 	ENABLE_REGWRITE_BUFFER(ah);
2035 
2036 	ath9k_hw_restore_chainmask(ah);
2037 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2038 
2039 	REGWRITE_BUFFER_FLUSH(ah);
2040 
2041 	ath9k_hw_gen_timer_start_tsf2(ah);
2042 
2043 	ath9k_hw_init_desc(ah);
2044 
2045 	if (ath9k_hw_btcoex_is_enabled(ah))
2046 		ath9k_hw_btcoex_enable(ah);
2047 
2048 	if (ath9k_hw_mci_is_enabled(ah))
2049 		ar9003_mci_check_bt(ah);
2050 
2051 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2052 		ath9k_hw_loadnf(ah, chan);
2053 		ath9k_hw_start_nfcal(ah, true);
2054 	}
2055 
2056 	if (AR_SREV_9300_20_OR_LATER(ah))
2057 		ar9003_hw_bb_watchdog_config(ah);
2058 
2059 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2060 		ar9003_hw_disable_phy_restart(ah);
2061 
2062 	ath9k_hw_apply_gpio_override(ah);
2063 
2064 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2065 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2066 
2067 	if (ah->hw->conf.radar_enabled) {
2068 		/* set HW specific DFS configuration */
2069 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2070 		ath9k_hw_set_radar_params(ah);
2071 	}
2072 
2073 	return 0;
2074 }
2075 EXPORT_SYMBOL(ath9k_hw_reset);
2076 
2077 /******************************/
2078 /* Power Management (Chipset) */
2079 /******************************/
2080 
2081 /*
2082  * Notify Power Mgt is disabled in self-generated frames.
2083  * If requested, force chip to sleep.
2084  */
ath9k_set_power_sleep(struct ath_hw * ah)2085 static void ath9k_set_power_sleep(struct ath_hw *ah)
2086 {
2087 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2088 
2089 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2090 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2091 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2092 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2093 		/* xxx Required for WLAN only case ? */
2094 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2095 		udelay(100);
2096 	}
2097 
2098 	/*
2099 	 * Clear the RTC force wake bit to allow the
2100 	 * mac to go to sleep.
2101 	 */
2102 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2103 
2104 	if (ath9k_hw_mci_is_enabled(ah))
2105 		udelay(100);
2106 
2107 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2108 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2109 
2110 	/* Shutdown chip. Active low */
2111 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2112 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2113 		udelay(2);
2114 	}
2115 
2116 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2117 	if (AR_SREV_9300_20_OR_LATER(ah))
2118 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2119 }
2120 
2121 /*
2122  * Notify Power Management is enabled in self-generating
2123  * frames. If request, set power mode of chip to
2124  * auto/normal.  Duration in units of 128us (1/8 TU).
2125  */
ath9k_set_power_network_sleep(struct ath_hw * ah)2126 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2127 {
2128 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2129 
2130 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2131 
2132 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2133 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2134 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2135 			  AR_RTC_FORCE_WAKE_ON_INT);
2136 	} else {
2137 
2138 		/* When chip goes into network sleep, it could be waken
2139 		 * up by MCI_INT interrupt caused by BT's HW messages
2140 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2141 		 * rate (~100us). This will cause chip to leave and
2142 		 * re-enter network sleep mode frequently, which in
2143 		 * consequence will have WLAN MCI HW to generate lots of
2144 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2145 		 * BT CPU to busy to process.
2146 		 */
2147 		if (ath9k_hw_mci_is_enabled(ah))
2148 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2149 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2150 		/*
2151 		 * Clear the RTC force wake bit to allow the
2152 		 * mac to go to sleep.
2153 		 */
2154 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2155 
2156 		if (ath9k_hw_mci_is_enabled(ah))
2157 			udelay(30);
2158 	}
2159 
2160 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2161 	if (AR_SREV_9300_20_OR_LATER(ah))
2162 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2163 }
2164 
ath9k_hw_set_power_awake(struct ath_hw * ah)2165 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2166 {
2167 	u32 val;
2168 	int i;
2169 
2170 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2171 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2172 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2173 		udelay(10);
2174 	}
2175 
2176 	if ((REG_READ(ah, AR_RTC_STATUS) &
2177 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2178 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2179 			return false;
2180 		}
2181 		if (!AR_SREV_9300_20_OR_LATER(ah))
2182 			ath9k_hw_init_pll(ah, NULL);
2183 	}
2184 	if (AR_SREV_9100(ah))
2185 		REG_SET_BIT(ah, AR_RTC_RESET,
2186 			    AR_RTC_RESET_EN);
2187 
2188 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2189 		    AR_RTC_FORCE_WAKE_EN);
2190 	if (AR_SREV_9100(ah))
2191 		mdelay(10);
2192 	else
2193 		udelay(50);
2194 
2195 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2196 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2197 		if (val == AR_RTC_STATUS_ON)
2198 			break;
2199 		udelay(50);
2200 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2201 			    AR_RTC_FORCE_WAKE_EN);
2202 	}
2203 	if (i == 0) {
2204 		ath_err(ath9k_hw_common(ah),
2205 			"Failed to wakeup in %uus\n",
2206 			POWER_UP_TIME / 20);
2207 		return false;
2208 	}
2209 
2210 	if (ath9k_hw_mci_is_enabled(ah))
2211 		ar9003_mci_set_power_awake(ah);
2212 
2213 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2214 
2215 	return true;
2216 }
2217 
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2218 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2219 {
2220 	struct ath_common *common = ath9k_hw_common(ah);
2221 	int status = true;
2222 	static const char *modes[] = {
2223 		"AWAKE",
2224 		"FULL-SLEEP",
2225 		"NETWORK SLEEP",
2226 		"UNDEFINED"
2227 	};
2228 
2229 	if (ah->power_mode == mode)
2230 		return status;
2231 
2232 	ath_dbg(common, RESET, "%s -> %s\n",
2233 		modes[ah->power_mode], modes[mode]);
2234 
2235 	switch (mode) {
2236 	case ATH9K_PM_AWAKE:
2237 		status = ath9k_hw_set_power_awake(ah);
2238 		break;
2239 	case ATH9K_PM_FULL_SLEEP:
2240 		if (ath9k_hw_mci_is_enabled(ah))
2241 			ar9003_mci_set_full_sleep(ah);
2242 
2243 		ath9k_set_power_sleep(ah);
2244 		ah->chip_fullsleep = true;
2245 		break;
2246 	case ATH9K_PM_NETWORK_SLEEP:
2247 		ath9k_set_power_network_sleep(ah);
2248 		break;
2249 	default:
2250 		ath_err(common, "Unknown power mode %u\n", mode);
2251 		return false;
2252 	}
2253 	ah->power_mode = mode;
2254 
2255 	/*
2256 	 * XXX: If this warning never comes up after a while then
2257 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2258 	 * ath9k_hw_setpower() return type void.
2259 	 */
2260 
2261 	if (!(ah->ah_flags & AH_UNPLUGGED))
2262 		ATH_DBG_WARN_ON_ONCE(!status);
2263 
2264 	return status;
2265 }
2266 EXPORT_SYMBOL(ath9k_hw_setpower);
2267 
2268 /*******************/
2269 /* Beacon Handling */
2270 /*******************/
2271 
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2272 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2273 {
2274 	int flags = 0;
2275 
2276 	ENABLE_REGWRITE_BUFFER(ah);
2277 
2278 	switch (ah->opmode) {
2279 	case NL80211_IFTYPE_ADHOC:
2280 		REG_SET_BIT(ah, AR_TXCFG,
2281 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2282 	case NL80211_IFTYPE_MESH_POINT:
2283 	case NL80211_IFTYPE_AP:
2284 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2285 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2286 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2287 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2288 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2289 		flags |=
2290 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2291 		break;
2292 	default:
2293 		ath_dbg(ath9k_hw_common(ah), BEACON,
2294 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2295 		return;
2296 		break;
2297 	}
2298 
2299 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2300 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2301 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2302 
2303 	REGWRITE_BUFFER_FLUSH(ah);
2304 
2305 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2306 }
2307 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2308 
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2309 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2310 				    const struct ath9k_beacon_state *bs)
2311 {
2312 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2313 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2314 	struct ath_common *common = ath9k_hw_common(ah);
2315 
2316 	ENABLE_REGWRITE_BUFFER(ah);
2317 
2318 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2319 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2320 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2321 
2322 	REGWRITE_BUFFER_FLUSH(ah);
2323 
2324 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2325 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2326 
2327 	beaconintval = bs->bs_intval;
2328 
2329 	if (bs->bs_sleepduration > beaconintval)
2330 		beaconintval = bs->bs_sleepduration;
2331 
2332 	dtimperiod = bs->bs_dtimperiod;
2333 	if (bs->bs_sleepduration > dtimperiod)
2334 		dtimperiod = bs->bs_sleepduration;
2335 
2336 	if (beaconintval == dtimperiod)
2337 		nextTbtt = bs->bs_nextdtim;
2338 	else
2339 		nextTbtt = bs->bs_nexttbtt;
2340 
2341 	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2342 	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2343 	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2344 	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2345 
2346 	ENABLE_REGWRITE_BUFFER(ah);
2347 
2348 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2349 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2350 
2351 	REG_WRITE(ah, AR_SLEEP1,
2352 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2353 		  | AR_SLEEP1_ASSUME_DTIM);
2354 
2355 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2356 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2357 	else
2358 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2359 
2360 	REG_WRITE(ah, AR_SLEEP2,
2361 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2362 
2363 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2364 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2365 
2366 	REGWRITE_BUFFER_FLUSH(ah);
2367 
2368 	REG_SET_BIT(ah, AR_TIMER_MODE,
2369 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2370 		    AR_DTIM_TIMER_EN);
2371 
2372 	/* TSF Out of Range Threshold */
2373 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2374 }
2375 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2376 
2377 /*******************/
2378 /* HW Capabilities */
2379 /*******************/
2380 
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2381 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2382 {
2383 	eeprom_chainmask &= chip_chainmask;
2384 	if (eeprom_chainmask)
2385 		return eeprom_chainmask;
2386 	else
2387 		return chip_chainmask;
2388 }
2389 
2390 /**
2391  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2392  * @ah: the atheros hardware data structure
2393  *
2394  * We enable DFS support upstream on chipsets which have passed a series
2395  * of tests. The testing requirements are going to be documented. Desired
2396  * test requirements are documented at:
2397  *
2398  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2399  *
2400  * Once a new chipset gets properly tested an individual commit can be used
2401  * to document the testing for DFS for that chipset.
2402  */
ath9k_hw_dfs_tested(struct ath_hw * ah)2403 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2404 {
2405 
2406 	switch (ah->hw_version.macVersion) {
2407 	/* for temporary testing DFS with 9280 */
2408 	case AR_SREV_VERSION_9280:
2409 	/* AR9580 will likely be our first target to get testing on */
2410 	case AR_SREV_VERSION_9580:
2411 		return true;
2412 	default:
2413 		return false;
2414 	}
2415 }
2416 
ath9k_gpio_cap_init(struct ath_hw * ah)2417 static void ath9k_gpio_cap_init(struct ath_hw *ah)
2418 {
2419 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2420 
2421 	if (AR_SREV_9271(ah)) {
2422 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2423 		pCap->gpio_mask = AR9271_GPIO_MASK;
2424 	} else if (AR_DEVID_7010(ah)) {
2425 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2426 		pCap->gpio_mask = AR7010_GPIO_MASK;
2427 	} else if (AR_SREV_9287(ah)) {
2428 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2429 		pCap->gpio_mask = AR9287_GPIO_MASK;
2430 	} else if (AR_SREV_9285(ah)) {
2431 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2432 		pCap->gpio_mask = AR9285_GPIO_MASK;
2433 	} else if (AR_SREV_9280(ah)) {
2434 		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2435 		pCap->gpio_mask = AR9280_GPIO_MASK;
2436 	} else if (AR_SREV_9300(ah)) {
2437 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2438 		pCap->gpio_mask = AR9300_GPIO_MASK;
2439 	} else if (AR_SREV_9330(ah)) {
2440 		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2441 		pCap->gpio_mask = AR9330_GPIO_MASK;
2442 	} else if (AR_SREV_9340(ah)) {
2443 		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2444 		pCap->gpio_mask = AR9340_GPIO_MASK;
2445 	} else if (AR_SREV_9462(ah)) {
2446 		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2447 		pCap->gpio_mask = AR9462_GPIO_MASK;
2448 	} else if (AR_SREV_9485(ah)) {
2449 		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2450 		pCap->gpio_mask = AR9485_GPIO_MASK;
2451 	} else if (AR_SREV_9531(ah)) {
2452 		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2453 		pCap->gpio_mask = AR9531_GPIO_MASK;
2454 	} else if (AR_SREV_9550(ah)) {
2455 		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2456 		pCap->gpio_mask = AR9550_GPIO_MASK;
2457 	} else if (AR_SREV_9561(ah)) {
2458 		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2459 		pCap->gpio_mask = AR9561_GPIO_MASK;
2460 	} else if (AR_SREV_9565(ah)) {
2461 		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2462 		pCap->gpio_mask = AR9565_GPIO_MASK;
2463 	} else if (AR_SREV_9580(ah)) {
2464 		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2465 		pCap->gpio_mask = AR9580_GPIO_MASK;
2466 	} else {
2467 		pCap->num_gpio_pins = AR_NUM_GPIO;
2468 		pCap->gpio_mask = AR_GPIO_MASK;
2469 	}
2470 }
2471 
ath9k_hw_fill_cap_info(struct ath_hw * ah)2472 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2473 {
2474 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2475 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2476 	struct ath_common *common = ath9k_hw_common(ah);
2477 
2478 	u16 eeval;
2479 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2480 
2481 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2482 	regulatory->current_rd = eeval;
2483 
2484 	if (ah->opmode != NL80211_IFTYPE_AP &&
2485 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2486 		if (regulatory->current_rd == 0x64 ||
2487 		    regulatory->current_rd == 0x65)
2488 			regulatory->current_rd += 5;
2489 		else if (regulatory->current_rd == 0x41)
2490 			regulatory->current_rd = 0x43;
2491 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2492 			regulatory->current_rd);
2493 	}
2494 
2495 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2496 
2497 	if (eeval & AR5416_OPFLAGS_11A) {
2498 		if (ah->disable_5ghz)
2499 			ath_warn(common, "disabling 5GHz band\n");
2500 		else
2501 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2502 	}
2503 
2504 	if (eeval & AR5416_OPFLAGS_11G) {
2505 		if (ah->disable_2ghz)
2506 			ath_warn(common, "disabling 2GHz band\n");
2507 		else
2508 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2509 	}
2510 
2511 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2512 		ath_err(common, "both bands are disabled\n");
2513 		return -EINVAL;
2514 	}
2515 
2516 	ath9k_gpio_cap_init(ah);
2517 
2518 	if (AR_SREV_9485(ah) ||
2519 	    AR_SREV_9285(ah) ||
2520 	    AR_SREV_9330(ah) ||
2521 	    AR_SREV_9565(ah))
2522 		pCap->chip_chainmask = 1;
2523 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2524 		pCap->chip_chainmask = 7;
2525 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2526 		 AR_SREV_9340(ah) ||
2527 		 AR_SREV_9462(ah) ||
2528 		 AR_SREV_9531(ah))
2529 		pCap->chip_chainmask = 3;
2530 	else
2531 		pCap->chip_chainmask = 7;
2532 
2533 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2534 	/*
2535 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2536 	 * the EEPROM.
2537 	 */
2538 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2539 	    !(eeval & AR5416_OPFLAGS_11A) &&
2540 	    !(AR_SREV_9271(ah)))
2541 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2542 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2543 	else if (AR_SREV_9100(ah))
2544 		pCap->rx_chainmask = 0x7;
2545 	else
2546 		/* Use rx_chainmask from EEPROM. */
2547 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2548 
2549 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2550 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2551 	ah->txchainmask = pCap->tx_chainmask;
2552 	ah->rxchainmask = pCap->rx_chainmask;
2553 
2554 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2555 
2556 	/* enable key search for every frame in an aggregate */
2557 	if (AR_SREV_9300_20_OR_LATER(ah))
2558 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2559 
2560 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2561 
2562 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2563 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2564 	else
2565 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2566 
2567 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2568 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2569 	else
2570 		pCap->rts_aggr_limit = (8 * 1024);
2571 
2572 #ifdef CONFIG_ATH9K_RFKILL
2573 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2574 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2575 		ah->rfkill_gpio =
2576 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2577 		ah->rfkill_polarity =
2578 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2579 
2580 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2581 	}
2582 #endif
2583 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2584 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2585 	else
2586 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2587 
2588 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2589 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2590 	else
2591 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2592 
2593 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2594 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2595 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2596 		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2597 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2598 
2599 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2600 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2601 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2602 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2603 		pCap->txs_len = sizeof(struct ar9003_txs);
2604 	} else {
2605 		pCap->tx_desc_len = sizeof(struct ath_desc);
2606 		if (AR_SREV_9280_20(ah))
2607 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2608 	}
2609 
2610 	if (AR_SREV_9300_20_OR_LATER(ah))
2611 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2612 
2613 	if (AR_SREV_9561(ah))
2614 		ah->ent_mode = 0x3BDA000;
2615 	else if (AR_SREV_9300_20_OR_LATER(ah))
2616 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2617 
2618 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2619 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2620 
2621 	if (AR_SREV_9285(ah)) {
2622 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2623 			ant_div_ctl1 =
2624 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2625 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2626 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2627 				ath_info(common, "Enable LNA combining\n");
2628 			}
2629 		}
2630 	}
2631 
2632 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2633 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2634 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2635 	}
2636 
2637 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2638 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2639 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2640 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2641 			ath_info(common, "Enable LNA combining\n");
2642 		}
2643 	}
2644 
2645 	if (ath9k_hw_dfs_tested(ah))
2646 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2647 
2648 	tx_chainmask = pCap->tx_chainmask;
2649 	rx_chainmask = pCap->rx_chainmask;
2650 	while (tx_chainmask || rx_chainmask) {
2651 		if (tx_chainmask & BIT(0))
2652 			pCap->max_txchains++;
2653 		if (rx_chainmask & BIT(0))
2654 			pCap->max_rxchains++;
2655 
2656 		tx_chainmask >>= 1;
2657 		rx_chainmask >>= 1;
2658 	}
2659 
2660 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2661 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2662 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2663 
2664 		if (AR_SREV_9462_20_OR_LATER(ah))
2665 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2666 	}
2667 
2668 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2669 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2670 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2671 
2672 #ifdef CONFIG_ATH9K_WOW
2673 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2674 		ah->wow.max_patterns = MAX_NUM_PATTERN;
2675 	else
2676 		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2677 #endif
2678 
2679 	return 0;
2680 }
2681 
2682 /****************************/
2683 /* GPIO / RFKILL / Antennae */
2684 /****************************/
2685 
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2686 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2687 {
2688 	int addr;
2689 	u32 gpio_shift, tmp;
2690 
2691 	if (gpio > 11)
2692 		addr = AR_GPIO_OUTPUT_MUX3;
2693 	else if (gpio > 5)
2694 		addr = AR_GPIO_OUTPUT_MUX2;
2695 	else
2696 		addr = AR_GPIO_OUTPUT_MUX1;
2697 
2698 	gpio_shift = (gpio % 6) * 5;
2699 
2700 	if (AR_SREV_9280_20_OR_LATER(ah) ||
2701 	    (addr != AR_GPIO_OUTPUT_MUX1)) {
2702 		REG_RMW(ah, addr, (type << gpio_shift),
2703 			(0x1f << gpio_shift));
2704 	} else {
2705 		tmp = REG_READ(ah, addr);
2706 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2707 		tmp &= ~(0x1f << gpio_shift);
2708 		tmp |= (type << gpio_shift);
2709 		REG_WRITE(ah, addr, tmp);
2710 	}
2711 }
2712 
2713 /* BSP should set the corresponding MUX register correctly.
2714  */
ath9k_hw_gpio_cfg_soc(struct ath_hw * ah,u32 gpio,bool out,const char * label)2715 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2716 				  const char *label)
2717 {
2718 	if (ah->caps.gpio_requested & BIT(gpio))
2719 		return;
2720 
2721 	/* may be requested by BSP, free anyway */
2722 	gpio_free(gpio);
2723 
2724 	if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
2725 		return;
2726 
2727 	ah->caps.gpio_requested |= BIT(gpio);
2728 }
2729 
ath9k_hw_gpio_cfg_wmac(struct ath_hw * ah,u32 gpio,bool out,u32 ah_signal_type)2730 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2731 				   u32 ah_signal_type)
2732 {
2733 	u32 gpio_set, gpio_shift = gpio;
2734 
2735 	if (AR_DEVID_7010(ah)) {
2736 		gpio_set = out ?
2737 			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2738 		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2739 			AR7010_GPIO_OE_MASK << gpio_shift);
2740 	} else if (AR_SREV_SOC(ah)) {
2741 		gpio_set = out ? 1 : 0;
2742 		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2743 			gpio_set << gpio_shift);
2744 	} else {
2745 		gpio_shift = gpio << 1;
2746 		gpio_set = out ?
2747 			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2748 		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2749 			AR_GPIO_OE_OUT_DRV << gpio_shift);
2750 
2751 		if (out)
2752 			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2753 	}
2754 }
2755 
ath9k_hw_gpio_request(struct ath_hw * ah,u32 gpio,bool out,const char * label,u32 ah_signal_type)2756 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2757 				  const char *label, u32 ah_signal_type)
2758 {
2759 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2760 
2761 	if (BIT(gpio) & ah->caps.gpio_mask)
2762 		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2763 	else if (AR_SREV_SOC(ah))
2764 		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2765 	else
2766 		WARN_ON(1);
2767 }
2768 
ath9k_hw_gpio_request_in(struct ath_hw * ah,u32 gpio,const char * label)2769 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2770 {
2771 	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2772 }
2773 EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2774 
ath9k_hw_gpio_request_out(struct ath_hw * ah,u32 gpio,const char * label,u32 ah_signal_type)2775 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2776 			       u32 ah_signal_type)
2777 {
2778 	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2779 }
2780 EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2781 
ath9k_hw_gpio_free(struct ath_hw * ah,u32 gpio)2782 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2783 {
2784 	if (!AR_SREV_SOC(ah))
2785 		return;
2786 
2787 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2788 
2789 	if (ah->caps.gpio_requested & BIT(gpio)) {
2790 		gpio_free(gpio);
2791 		ah->caps.gpio_requested &= ~BIT(gpio);
2792 	}
2793 }
2794 EXPORT_SYMBOL(ath9k_hw_gpio_free);
2795 
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2796 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2797 {
2798 	u32 val = 0xffffffff;
2799 
2800 #define MS_REG_READ(x, y) \
2801 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2802 
2803 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2804 
2805 	if (BIT(gpio) & ah->caps.gpio_mask) {
2806 		if (AR_SREV_9271(ah))
2807 			val = MS_REG_READ(AR9271, gpio);
2808 		else if (AR_SREV_9287(ah))
2809 			val = MS_REG_READ(AR9287, gpio);
2810 		else if (AR_SREV_9285(ah))
2811 			val = MS_REG_READ(AR9285, gpio);
2812 		else if (AR_SREV_9280(ah))
2813 			val = MS_REG_READ(AR928X, gpio);
2814 		else if (AR_DEVID_7010(ah))
2815 			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2816 		else if (AR_SREV_9300_20_OR_LATER(ah))
2817 			val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2818 		else
2819 			val = MS_REG_READ(AR, gpio);
2820 	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2821 		val = gpio_get_value(gpio) & BIT(gpio);
2822 	} else {
2823 		WARN_ON(1);
2824 	}
2825 
2826 	return !!val;
2827 }
2828 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2829 
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2830 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2831 {
2832 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2833 
2834 	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2835 		val = !val;
2836 	else
2837 		val = !!val;
2838 
2839 	if (BIT(gpio) & ah->caps.gpio_mask) {
2840 		u32 out_addr = AR_DEVID_7010(ah) ?
2841 			AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2842 
2843 		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2844 	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2845 		gpio_set_value(gpio, val);
2846 	} else {
2847 		WARN_ON(1);
2848 	}
2849 }
2850 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2851 
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2852 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2853 {
2854 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2855 }
2856 EXPORT_SYMBOL(ath9k_hw_setantenna);
2857 
2858 /*********************/
2859 /* General Operation */
2860 /*********************/
2861 
ath9k_hw_getrxfilter(struct ath_hw * ah)2862 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2863 {
2864 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2865 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2866 
2867 	if (phybits & AR_PHY_ERR_RADAR)
2868 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2869 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2870 		bits |= ATH9K_RX_FILTER_PHYERR;
2871 
2872 	return bits;
2873 }
2874 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2875 
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2876 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2877 {
2878 	u32 phybits;
2879 
2880 	ENABLE_REGWRITE_BUFFER(ah);
2881 
2882 	REG_WRITE(ah, AR_RX_FILTER, bits);
2883 
2884 	phybits = 0;
2885 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2886 		phybits |= AR_PHY_ERR_RADAR;
2887 	if (bits & ATH9K_RX_FILTER_PHYERR)
2888 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2889 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2890 
2891 	if (phybits)
2892 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2893 	else
2894 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2895 
2896 	REGWRITE_BUFFER_FLUSH(ah);
2897 }
2898 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2899 
ath9k_hw_phy_disable(struct ath_hw * ah)2900 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2901 {
2902 	if (ath9k_hw_mci_is_enabled(ah))
2903 		ar9003_mci_bt_gain_ctrl(ah);
2904 
2905 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2906 		return false;
2907 
2908 	ath9k_hw_init_pll(ah, NULL);
2909 	ah->htc_reset_init = true;
2910 	return true;
2911 }
2912 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2913 
ath9k_hw_disable(struct ath_hw * ah)2914 bool ath9k_hw_disable(struct ath_hw *ah)
2915 {
2916 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2917 		return false;
2918 
2919 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2920 		return false;
2921 
2922 	ath9k_hw_init_pll(ah, NULL);
2923 	return true;
2924 }
2925 EXPORT_SYMBOL(ath9k_hw_disable);
2926 
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2927 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2928 {
2929 	enum eeprom_param gain_param;
2930 
2931 	if (IS_CHAN_2GHZ(chan))
2932 		gain_param = EEP_ANTENNA_GAIN_2G;
2933 	else
2934 		gain_param = EEP_ANTENNA_GAIN_5G;
2935 
2936 	return ah->eep_ops->get_eeprom(ah, gain_param);
2937 }
2938 
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2939 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2940 			    bool test)
2941 {
2942 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2943 	struct ieee80211_channel *channel;
2944 	int chan_pwr, new_pwr;
2945 	u16 ctl = NO_CTL;
2946 
2947 	if (!chan)
2948 		return;
2949 
2950 	if (!test)
2951 		ctl = ath9k_regd_get_ctl(reg, chan);
2952 
2953 	channel = chan->chan;
2954 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2955 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2956 
2957 	ah->eep_ops->set_txpower(ah, chan, ctl,
2958 				 get_antenna_gain(ah, chan), new_pwr, test);
2959 }
2960 
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2961 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2962 {
2963 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2964 	struct ath9k_channel *chan = ah->curchan;
2965 	struct ieee80211_channel *channel = chan->chan;
2966 
2967 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2968 	if (test)
2969 		channel->max_power = MAX_RATE_POWER / 2;
2970 
2971 	ath9k_hw_apply_txpower(ah, chan, test);
2972 
2973 	if (test)
2974 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2975 }
2976 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2977 
ath9k_hw_setopmode(struct ath_hw * ah)2978 void ath9k_hw_setopmode(struct ath_hw *ah)
2979 {
2980 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2981 }
2982 EXPORT_SYMBOL(ath9k_hw_setopmode);
2983 
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2984 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2985 {
2986 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2987 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2988 }
2989 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2990 
ath9k_hw_write_associd(struct ath_hw * ah)2991 void ath9k_hw_write_associd(struct ath_hw *ah)
2992 {
2993 	struct ath_common *common = ath9k_hw_common(ah);
2994 
2995 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2996 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2997 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2998 }
2999 EXPORT_SYMBOL(ath9k_hw_write_associd);
3000 
3001 #define ATH9K_MAX_TSF_READ 10
3002 
ath9k_hw_gettsf64(struct ath_hw * ah)3003 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3004 {
3005 	u32 tsf_lower, tsf_upper1, tsf_upper2;
3006 	int i;
3007 
3008 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3009 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3010 		tsf_lower = REG_READ(ah, AR_TSF_L32);
3011 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3012 		if (tsf_upper2 == tsf_upper1)
3013 			break;
3014 		tsf_upper1 = tsf_upper2;
3015 	}
3016 
3017 	WARN_ON( i == ATH9K_MAX_TSF_READ );
3018 
3019 	return (((u64)tsf_upper1 << 32) | tsf_lower);
3020 }
3021 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3022 
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)3023 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3024 {
3025 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3026 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3027 }
3028 EXPORT_SYMBOL(ath9k_hw_settsf64);
3029 
ath9k_hw_reset_tsf(struct ath_hw * ah)3030 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3031 {
3032 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3033 			   AH_TSF_WRITE_TIMEOUT))
3034 		ath_dbg(ath9k_hw_common(ah), RESET,
3035 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3036 
3037 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3038 }
3039 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3040 
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)3041 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3042 {
3043 	if (set)
3044 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3045 	else
3046 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3047 }
3048 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3049 
ath9k_hw_set11nmac2040(struct ath_hw * ah,struct ath9k_channel * chan)3050 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3051 {
3052 	u32 macmode;
3053 
3054 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3055 		macmode = AR_2040_JOINED_RX_CLEAR;
3056 	else
3057 		macmode = 0;
3058 
3059 	REG_WRITE(ah, AR_2040_MODE, macmode);
3060 }
3061 
3062 /* HW Generic timers configuration */
3063 
3064 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3065 {
3066 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3067 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3068 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3069 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3070 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3071 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3072 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3073 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3074 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3075 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3076 				AR_NDP2_TIMER_MODE, 0x0002},
3077 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3078 				AR_NDP2_TIMER_MODE, 0x0004},
3079 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3080 				AR_NDP2_TIMER_MODE, 0x0008},
3081 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3082 				AR_NDP2_TIMER_MODE, 0x0010},
3083 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3084 				AR_NDP2_TIMER_MODE, 0x0020},
3085 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3086 				AR_NDP2_TIMER_MODE, 0x0040},
3087 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3088 				AR_NDP2_TIMER_MODE, 0x0080}
3089 };
3090 
3091 /* HW generic timer primitives */
3092 
ath9k_hw_gettsf32(struct ath_hw * ah)3093 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3094 {
3095 	return REG_READ(ah, AR_TSF_L32);
3096 }
3097 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3098 
ath9k_hw_gen_timer_start_tsf2(struct ath_hw * ah)3099 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3100 {
3101 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3102 
3103 	if (timer_table->tsf2_enabled) {
3104 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3105 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3106 	}
3107 }
3108 
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)3109 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3110 					  void (*trigger)(void *),
3111 					  void (*overflow)(void *),
3112 					  void *arg,
3113 					  u8 timer_index)
3114 {
3115 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3116 	struct ath_gen_timer *timer;
3117 
3118 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3119 	    (timer_index >= ATH_MAX_GEN_TIMER))
3120 		return NULL;
3121 
3122 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3123 	    !AR_SREV_9300_20_OR_LATER(ah))
3124 		return NULL;
3125 
3126 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3127 	if (timer == NULL)
3128 		return NULL;
3129 
3130 	/* allocate a hardware generic timer slot */
3131 	timer_table->timers[timer_index] = timer;
3132 	timer->index = timer_index;
3133 	timer->trigger = trigger;
3134 	timer->overflow = overflow;
3135 	timer->arg = arg;
3136 
3137 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3138 		timer_table->tsf2_enabled = true;
3139 		ath9k_hw_gen_timer_start_tsf2(ah);
3140 	}
3141 
3142 	return timer;
3143 }
3144 EXPORT_SYMBOL(ath_gen_timer_alloc);
3145 
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 timer_next,u32 timer_period)3146 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3147 			      struct ath_gen_timer *timer,
3148 			      u32 timer_next,
3149 			      u32 timer_period)
3150 {
3151 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3152 	u32 mask = 0;
3153 
3154 	timer_table->timer_mask |= BIT(timer->index);
3155 
3156 	/*
3157 	 * Program generic timer registers
3158 	 */
3159 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3160 		 timer_next);
3161 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3162 		  timer_period);
3163 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3164 		    gen_tmr_configuration[timer->index].mode_mask);
3165 
3166 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3167 		/*
3168 		 * Starting from AR9462, each generic timer can select which tsf
3169 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3170 		 * 8 - 15  use tsf2.
3171 		 */
3172 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3173 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3174 				       (1 << timer->index));
3175 		else
3176 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3177 				       (1 << timer->index));
3178 	}
3179 
3180 	if (timer->trigger)
3181 		mask |= SM(AR_GENTMR_BIT(timer->index),
3182 			   AR_IMR_S5_GENTIMER_TRIG);
3183 	if (timer->overflow)
3184 		mask |= SM(AR_GENTMR_BIT(timer->index),
3185 			   AR_IMR_S5_GENTIMER_THRESH);
3186 
3187 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3188 
3189 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3190 		ah->imask |= ATH9K_INT_GENTIMER;
3191 		ath9k_hw_set_interrupts(ah);
3192 	}
3193 }
3194 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3195 
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3196 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3197 {
3198 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3199 
3200 	/* Clear generic timer enable bits. */
3201 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3202 			gen_tmr_configuration[timer->index].mode_mask);
3203 
3204 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3205 		/*
3206 		 * Need to switch back to TSF if it was using TSF2.
3207 		 */
3208 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3209 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3210 				    (1 << timer->index));
3211 		}
3212 	}
3213 
3214 	/* Disable both trigger and thresh interrupt masks */
3215 	REG_CLR_BIT(ah, AR_IMR_S5,
3216 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3217 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3218 
3219 	timer_table->timer_mask &= ~BIT(timer->index);
3220 
3221 	if (timer_table->timer_mask == 0) {
3222 		ah->imask &= ~ATH9K_INT_GENTIMER;
3223 		ath9k_hw_set_interrupts(ah);
3224 	}
3225 }
3226 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3227 
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3228 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3229 {
3230 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3231 
3232 	/* free the hardware generic timer slot */
3233 	timer_table->timers[timer->index] = NULL;
3234 	kfree(timer);
3235 }
3236 EXPORT_SYMBOL(ath_gen_timer_free);
3237 
3238 /*
3239  * Generic Timer Interrupts handling
3240  */
ath_gen_timer_isr(struct ath_hw * ah)3241 void ath_gen_timer_isr(struct ath_hw *ah)
3242 {
3243 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3244 	struct ath_gen_timer *timer;
3245 	unsigned long trigger_mask, thresh_mask;
3246 	unsigned int index;
3247 
3248 	/* get hardware generic timer interrupt status */
3249 	trigger_mask = ah->intr_gen_timer_trigger;
3250 	thresh_mask = ah->intr_gen_timer_thresh;
3251 	trigger_mask &= timer_table->timer_mask;
3252 	thresh_mask &= timer_table->timer_mask;
3253 
3254 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3255 		timer = timer_table->timers[index];
3256 		if (!timer)
3257 		    continue;
3258 		if (!timer->overflow)
3259 		    continue;
3260 
3261 		trigger_mask &= ~BIT(index);
3262 		timer->overflow(timer->arg);
3263 	}
3264 
3265 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3266 		timer = timer_table->timers[index];
3267 		if (!timer)
3268 		    continue;
3269 		if (!timer->trigger)
3270 		    continue;
3271 		timer->trigger(timer->arg);
3272 	}
3273 }
3274 EXPORT_SYMBOL(ath_gen_timer_isr);
3275 
3276 /********/
3277 /* HTC  */
3278 /********/
3279 
3280 static struct {
3281 	u32 version;
3282 	const char * name;
3283 } ath_mac_bb_names[] = {
3284 	/* Devices with external radios */
3285 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3286 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3287 	{ AR_SREV_VERSION_9100,		"9100" },
3288 	{ AR_SREV_VERSION_9160,		"9160" },
3289 	/* Single-chip solutions */
3290 	{ AR_SREV_VERSION_9280,		"9280" },
3291 	{ AR_SREV_VERSION_9285,		"9285" },
3292 	{ AR_SREV_VERSION_9287,         "9287" },
3293 	{ AR_SREV_VERSION_9271,         "9271" },
3294 	{ AR_SREV_VERSION_9300,         "9300" },
3295 	{ AR_SREV_VERSION_9330,         "9330" },
3296 	{ AR_SREV_VERSION_9340,		"9340" },
3297 	{ AR_SREV_VERSION_9485,         "9485" },
3298 	{ AR_SREV_VERSION_9462,         "9462" },
3299 	{ AR_SREV_VERSION_9550,         "9550" },
3300 	{ AR_SREV_VERSION_9565,         "9565" },
3301 	{ AR_SREV_VERSION_9531,         "9531" },
3302 	{ AR_SREV_VERSION_9561,         "9561" },
3303 };
3304 
3305 /* For devices with external radios */
3306 static struct {
3307 	u16 version;
3308 	const char * name;
3309 } ath_rf_names[] = {
3310 	{ 0,				"5133" },
3311 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3312 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3313 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3314 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3315 };
3316 
3317 /*
3318  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3319  */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3320 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3321 {
3322 	int i;
3323 
3324 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3325 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3326 			return ath_mac_bb_names[i].name;
3327 		}
3328 	}
3329 
3330 	return "????";
3331 }
3332 
3333 /*
3334  * Return the RF name. "????" is returned if the RF is unknown.
3335  * Used for devices with external radios.
3336  */
ath9k_hw_rf_name(u16 rf_version)3337 static const char *ath9k_hw_rf_name(u16 rf_version)
3338 {
3339 	int i;
3340 
3341 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3342 		if (ath_rf_names[i].version == rf_version) {
3343 			return ath_rf_names[i].name;
3344 		}
3345 	}
3346 
3347 	return "????";
3348 }
3349 
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3350 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3351 {
3352 	int used;
3353 
3354 	/* chipsets >= AR9280 are single-chip */
3355 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3356 		used = scnprintf(hw_name, len,
3357 				 "Atheros AR%s Rev:%x",
3358 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3359 				 ah->hw_version.macRev);
3360 	}
3361 	else {
3362 		used = scnprintf(hw_name, len,
3363 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3364 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3365 				 ah->hw_version.macRev,
3366 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3367 						  & AR_RADIO_SREV_MAJOR)),
3368 				 ah->hw_version.phyRev);
3369 	}
3370 
3371 	hw_name[used] = '\0';
3372 }
3373 EXPORT_SYMBOL(ath9k_hw_name);
3374