1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41
42 #include "libata.h"
43
44 static struct workqueue_struct *ata_sff_wq;
45
46 const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
60
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
68
69 .lost_interrupt = ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73 /**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
ata_sff_check_status(struct ata_port * ap)84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90 /**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
ata_sff_altstatus(struct ata_port * ap)103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109 }
110
111 /**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
ata_sff_irq_status(struct ata_port * ap)123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
132 }
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
136 }
137
138 /**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
ata_sff_sync(struct ata_port * ap)150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156 }
157
158 /**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
ata_sff_pause(struct ata_port * ap)170 void ata_sff_pause(struct ata_port *ap)
171 {
172 ata_sff_sync(ap);
173 ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177 /**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
184
ata_sff_dma_pause(struct ata_port * ap)185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200 /**
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)215 int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
217 {
218 unsigned long timer_start, timeout;
219 u8 status;
220
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
234
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
250 }
251
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
ata_sff_check_ready(struct ata_link * link)256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
260 return ata_check_ready(status);
261 }
262
263 /**
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283 /**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303
304 /**
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332 /**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
346 *
347 * LOCKING:
348 * caller.
349 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
352 {
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
356
357 if (wait)
358 ata_wait_idle(ap);
359
360 ap->ops->sff_dev_select(ap, device);
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
366 }
367 }
368
369 /**
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
ata_sff_irq_on(struct ata_port * ap)382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 struct ata_ioports *ioaddr = &ap->ioaddr;
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
397
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403 /**
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
458
459 ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463 /**
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
500 }
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504 /**
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524 /**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)536 static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538 {
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
541 }
542
543 /**
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @qc: queued command
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
559 unsigned int buflen, int rw)
560 {
561 struct ata_port *ap = qc->dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
574
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
581 */
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
588 }
589 words++;
590 }
591
592 return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596 /**
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @qc: queued command
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
614 unsigned int buflen, int rw)
615 {
616 struct ata_device *dev = qc->dev;
617 struct ata_port *ap = dev->link->ap;
618 void __iomem *data_addr = ap->ioaddr.data_addr;
619 unsigned int words = buflen >> 2;
620 int slop = buflen & 3;
621
622 if (!(ap->pflags & ATA_PFLAG_PIO32))
623 return ata_sff_data_xfer(qc, buf, buflen, rw);
624
625 /* Transfer multiple of 4 bytes */
626 if (rw == READ)
627 ioread32_rep(data_addr, buf, words);
628 else
629 iowrite32_rep(data_addr, buf, words);
630
631 /* Transfer trailing bytes, if any */
632 if (unlikely(slop)) {
633 unsigned char pad[4] = { };
634
635 /* Point buf to the tail of buffer */
636 buf += buflen - slop;
637
638 /*
639 * Use io*_rep() accessors here as well to avoid pointlessly
640 * swapping bytes to and from on the big endian machines...
641 */
642 if (rw == READ) {
643 if (slop < 3)
644 ioread16_rep(data_addr, pad, 1);
645 else
646 ioread32_rep(data_addr, pad, 1);
647 memcpy(buf, pad, slop);
648 } else {
649 memcpy(pad, buf, slop);
650 if (slop < 3)
651 iowrite16_rep(data_addr, pad, 1);
652 else
653 iowrite32_rep(data_addr, pad, 1);
654 }
655 }
656 return (buflen + 1) & ~1;
657 }
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659
660 /**
661 * ata_pio_sector - Transfer a sector of data.
662 * @qc: Command on going
663 *
664 * Transfer qc->sect_size bytes of data from/to the ATA device.
665 *
666 * LOCKING:
667 * Inherited from caller.
668 */
ata_pio_sector(struct ata_queued_cmd * qc)669 static void ata_pio_sector(struct ata_queued_cmd *qc)
670 {
671 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
672 struct ata_port *ap = qc->ap;
673 struct page *page;
674 unsigned int offset;
675 unsigned char *buf;
676
677 if (qc->curbytes == qc->nbytes - qc->sect_size)
678 ap->hsm_task_state = HSM_ST_LAST;
679
680 page = sg_page(qc->cursg);
681 offset = qc->cursg->offset + qc->cursg_ofs;
682
683 /* get the current page and offset */
684 page = nth_page(page, (offset >> PAGE_SHIFT));
685 offset %= PAGE_SIZE;
686
687 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
688
689 /* do the actual data transfer */
690 buf = kmap_atomic(page);
691 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
692 kunmap_atomic(buf);
693
694 if (!do_write && !PageSlab(page))
695 flush_dcache_page(page);
696
697 qc->curbytes += qc->sect_size;
698 qc->cursg_ofs += qc->sect_size;
699
700 if (qc->cursg_ofs == qc->cursg->length) {
701 qc->cursg = sg_next(qc->cursg);
702 qc->cursg_ofs = 0;
703 }
704 }
705
706 /**
707 * ata_pio_sectors - Transfer one or many sectors.
708 * @qc: Command on going
709 *
710 * Transfer one or many sectors of data from/to the
711 * ATA device for the DRQ request.
712 *
713 * LOCKING:
714 * Inherited from caller.
715 */
ata_pio_sectors(struct ata_queued_cmd * qc)716 static void ata_pio_sectors(struct ata_queued_cmd *qc)
717 {
718 if (is_multi_taskfile(&qc->tf)) {
719 /* READ/WRITE MULTIPLE */
720 unsigned int nsect;
721
722 WARN_ON_ONCE(qc->dev->multi_count == 0);
723
724 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
725 qc->dev->multi_count);
726 while (nsect--)
727 ata_pio_sector(qc);
728 } else
729 ata_pio_sector(qc);
730
731 ata_sff_sync(qc->ap); /* flush */
732 }
733
734 /**
735 * atapi_send_cdb - Write CDB bytes to hardware
736 * @ap: Port to which ATAPI device is attached.
737 * @qc: Taskfile currently active
738 *
739 * When device has indicated its readiness to accept
740 * a CDB, this function is called. Send the CDB.
741 *
742 * LOCKING:
743 * caller.
744 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)745 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
746 {
747 /* send SCSI cdb */
748 DPRINTK("send cdb\n");
749 WARN_ON_ONCE(qc->dev->cdb_len < 12);
750
751 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
752 ata_sff_sync(ap);
753 /* FIXME: If the CDB is for DMA do we need to do the transition delay
754 or is bmdma_start guaranteed to do it ? */
755 switch (qc->tf.protocol) {
756 case ATAPI_PROT_PIO:
757 ap->hsm_task_state = HSM_ST;
758 break;
759 case ATAPI_PROT_NODATA:
760 ap->hsm_task_state = HSM_ST_LAST;
761 break;
762 #ifdef CONFIG_ATA_BMDMA
763 case ATAPI_PROT_DMA:
764 ap->hsm_task_state = HSM_ST_LAST;
765 /* initiate bmdma */
766 ap->ops->bmdma_start(qc);
767 break;
768 #endif /* CONFIG_ATA_BMDMA */
769 default:
770 BUG();
771 }
772 }
773
774 /**
775 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
776 * @qc: Command on going
777 * @bytes: number of bytes
778 *
779 * Transfer Transfer data from/to the ATAPI device.
780 *
781 * LOCKING:
782 * Inherited from caller.
783 *
784 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)785 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
786 {
787 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
788 struct ata_port *ap = qc->ap;
789 struct ata_device *dev = qc->dev;
790 struct ata_eh_info *ehi = &dev->link->eh_info;
791 struct scatterlist *sg;
792 struct page *page;
793 unsigned char *buf;
794 unsigned int offset, count, consumed;
795
796 next_sg:
797 sg = qc->cursg;
798 if (unlikely(!sg)) {
799 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
800 "buf=%u cur=%u bytes=%u",
801 qc->nbytes, qc->curbytes, bytes);
802 return -1;
803 }
804
805 page = sg_page(sg);
806 offset = sg->offset + qc->cursg_ofs;
807
808 /* get the current page and offset */
809 page = nth_page(page, (offset >> PAGE_SHIFT));
810 offset %= PAGE_SIZE;
811
812 /* don't overrun current sg */
813 count = min(sg->length - qc->cursg_ofs, bytes);
814
815 /* don't cross page boundaries */
816 count = min(count, (unsigned int)PAGE_SIZE - offset);
817
818 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
819
820 /* do the actual data transfer */
821 buf = kmap_atomic(page);
822 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
823 kunmap_atomic(buf);
824
825 bytes -= min(bytes, consumed);
826 qc->curbytes += count;
827 qc->cursg_ofs += count;
828
829 if (qc->cursg_ofs == sg->length) {
830 qc->cursg = sg_next(qc->cursg);
831 qc->cursg_ofs = 0;
832 }
833
834 /*
835 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
836 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
837 * check correctly as it doesn't know if it is the last request being
838 * made. Somebody should implement a proper sanity check.
839 */
840 if (bytes)
841 goto next_sg;
842 return 0;
843 }
844
845 /**
846 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
847 * @qc: Command on going
848 *
849 * Transfer Transfer data from/to the ATAPI device.
850 *
851 * LOCKING:
852 * Inherited from caller.
853 */
atapi_pio_bytes(struct ata_queued_cmd * qc)854 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
855 {
856 struct ata_port *ap = qc->ap;
857 struct ata_device *dev = qc->dev;
858 struct ata_eh_info *ehi = &dev->link->eh_info;
859 unsigned int ireason, bc_lo, bc_hi, bytes;
860 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
861
862 /* Abuse qc->result_tf for temp storage of intermediate TF
863 * here to save some kernel stack usage.
864 * For normal completion, qc->result_tf is not relevant. For
865 * error, qc->result_tf is later overwritten by ata_qc_complete().
866 * So, the correctness of qc->result_tf is not affected.
867 */
868 ap->ops->sff_tf_read(ap, &qc->result_tf);
869 ireason = qc->result_tf.nsect;
870 bc_lo = qc->result_tf.lbam;
871 bc_hi = qc->result_tf.lbah;
872 bytes = (bc_hi << 8) | bc_lo;
873
874 /* shall be cleared to zero, indicating xfer of data */
875 if (unlikely(ireason & ATAPI_COD))
876 goto atapi_check;
877
878 /* make sure transfer direction matches expected */
879 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
880 if (unlikely(do_write != i_write))
881 goto atapi_check;
882
883 if (unlikely(!bytes))
884 goto atapi_check;
885
886 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
887
888 if (unlikely(__atapi_pio_bytes(qc, bytes)))
889 goto err_out;
890 ata_sff_sync(ap); /* flush */
891
892 return;
893
894 atapi_check:
895 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
896 ireason, bytes);
897 err_out:
898 qc->err_mask |= AC_ERR_HSM;
899 ap->hsm_task_state = HSM_ST_ERR;
900 }
901
902 /**
903 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
904 * @ap: the target ata_port
905 * @qc: qc on going
906 *
907 * RETURNS:
908 * 1 if ok in workqueue, 0 otherwise.
909 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)910 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
911 struct ata_queued_cmd *qc)
912 {
913 if (qc->tf.flags & ATA_TFLAG_POLLING)
914 return 1;
915
916 if (ap->hsm_task_state == HSM_ST_FIRST) {
917 if (qc->tf.protocol == ATA_PROT_PIO &&
918 (qc->tf.flags & ATA_TFLAG_WRITE))
919 return 1;
920
921 if (ata_is_atapi(qc->tf.protocol) &&
922 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
923 return 1;
924 }
925
926 return 0;
927 }
928
929 /**
930 * ata_hsm_qc_complete - finish a qc running on standard HSM
931 * @qc: Command to complete
932 * @in_wq: 1 if called from workqueue, 0 otherwise
933 *
934 * Finish @qc which is running on standard HSM.
935 *
936 * LOCKING:
937 * If @in_wq is zero, spin_lock_irqsave(host lock).
938 * Otherwise, none on entry and grabs host lock.
939 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)940 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
941 {
942 struct ata_port *ap = qc->ap;
943
944 if (ap->ops->error_handler) {
945 if (in_wq) {
946 /* EH might have kicked in while host lock is
947 * released.
948 */
949 qc = ata_qc_from_tag(ap, qc->tag);
950 if (qc) {
951 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
952 ata_sff_irq_on(ap);
953 ata_qc_complete(qc);
954 } else
955 ata_port_freeze(ap);
956 }
957 } else {
958 if (likely(!(qc->err_mask & AC_ERR_HSM)))
959 ata_qc_complete(qc);
960 else
961 ata_port_freeze(ap);
962 }
963 } else {
964 if (in_wq) {
965 ata_sff_irq_on(ap);
966 ata_qc_complete(qc);
967 } else
968 ata_qc_complete(qc);
969 }
970 }
971
972 /**
973 * ata_sff_hsm_move - move the HSM to the next state.
974 * @ap: the target ata_port
975 * @qc: qc on going
976 * @status: current device status
977 * @in_wq: 1 if called from workqueue, 0 otherwise
978 *
979 * RETURNS:
980 * 1 when poll next status needed, 0 otherwise.
981 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)982 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
983 u8 status, int in_wq)
984 {
985 struct ata_link *link = qc->dev->link;
986 struct ata_eh_info *ehi = &link->eh_info;
987 int poll_next;
988
989 lockdep_assert_held(ap->lock);
990
991 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
992
993 /* Make sure ata_sff_qc_issue() does not throw things
994 * like DMA polling into the workqueue. Notice that
995 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
996 */
997 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
998
999 fsm_start:
1000 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1001 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1002
1003 switch (ap->hsm_task_state) {
1004 case HSM_ST_FIRST:
1005 /* Send first data block or PACKET CDB */
1006
1007 /* If polling, we will stay in the work queue after
1008 * sending the data. Otherwise, interrupt handler
1009 * takes over after sending the data.
1010 */
1011 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1012
1013 /* check device status */
1014 if (unlikely((status & ATA_DRQ) == 0)) {
1015 /* handle BSY=0, DRQ=0 as error */
1016 if (likely(status & (ATA_ERR | ATA_DF)))
1017 /* device stops HSM for abort/error */
1018 qc->err_mask |= AC_ERR_DEV;
1019 else {
1020 /* HSM violation. Let EH handle this */
1021 ata_ehi_push_desc(ehi,
1022 "ST_FIRST: !(DRQ|ERR|DF)");
1023 qc->err_mask |= AC_ERR_HSM;
1024 }
1025
1026 ap->hsm_task_state = HSM_ST_ERR;
1027 goto fsm_start;
1028 }
1029
1030 /* Device should not ask for data transfer (DRQ=1)
1031 * when it finds something wrong.
1032 * We ignore DRQ here and stop the HSM by
1033 * changing hsm_task_state to HSM_ST_ERR and
1034 * let the EH abort the command or reset the device.
1035 */
1036 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1037 /* Some ATAPI tape drives forget to clear the ERR bit
1038 * when doing the next command (mostly request sense).
1039 * We ignore ERR here to workaround and proceed sending
1040 * the CDB.
1041 */
1042 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1043 ata_ehi_push_desc(ehi, "ST_FIRST: "
1044 "DRQ=1 with device error, "
1045 "dev_stat 0x%X", status);
1046 qc->err_mask |= AC_ERR_HSM;
1047 ap->hsm_task_state = HSM_ST_ERR;
1048 goto fsm_start;
1049 }
1050 }
1051
1052 if (qc->tf.protocol == ATA_PROT_PIO) {
1053 /* PIO data out protocol.
1054 * send first data block.
1055 */
1056
1057 /* ata_pio_sectors() might change the state
1058 * to HSM_ST_LAST. so, the state is changed here
1059 * before ata_pio_sectors().
1060 */
1061 ap->hsm_task_state = HSM_ST;
1062 ata_pio_sectors(qc);
1063 } else
1064 /* send CDB */
1065 atapi_send_cdb(ap, qc);
1066
1067 /* if polling, ata_sff_pio_task() handles the rest.
1068 * otherwise, interrupt handler takes over from here.
1069 */
1070 break;
1071
1072 case HSM_ST:
1073 /* complete command or read/write the data register */
1074 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1075 /* ATAPI PIO protocol */
1076 if ((status & ATA_DRQ) == 0) {
1077 /* No more data to transfer or device error.
1078 * Device error will be tagged in HSM_ST_LAST.
1079 */
1080 ap->hsm_task_state = HSM_ST_LAST;
1081 goto fsm_start;
1082 }
1083
1084 /* Device should not ask for data transfer (DRQ=1)
1085 * when it finds something wrong.
1086 * We ignore DRQ here and stop the HSM by
1087 * changing hsm_task_state to HSM_ST_ERR and
1088 * let the EH abort the command or reset the device.
1089 */
1090 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1091 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1092 "DRQ=1 with device error, "
1093 "dev_stat 0x%X", status);
1094 qc->err_mask |= AC_ERR_HSM;
1095 ap->hsm_task_state = HSM_ST_ERR;
1096 goto fsm_start;
1097 }
1098
1099 atapi_pio_bytes(qc);
1100
1101 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1102 /* bad ireason reported by device */
1103 goto fsm_start;
1104
1105 } else {
1106 /* ATA PIO protocol */
1107 if (unlikely((status & ATA_DRQ) == 0)) {
1108 /* handle BSY=0, DRQ=0 as error */
1109 if (likely(status & (ATA_ERR | ATA_DF))) {
1110 /* device stops HSM for abort/error */
1111 qc->err_mask |= AC_ERR_DEV;
1112
1113 /* If diagnostic failed and this is
1114 * IDENTIFY, it's likely a phantom
1115 * device. Mark hint.
1116 */
1117 if (qc->dev->horkage &
1118 ATA_HORKAGE_DIAGNOSTIC)
1119 qc->err_mask |=
1120 AC_ERR_NODEV_HINT;
1121 } else {
1122 /* HSM violation. Let EH handle this.
1123 * Phantom devices also trigger this
1124 * condition. Mark hint.
1125 */
1126 ata_ehi_push_desc(ehi, "ST-ATA: "
1127 "DRQ=0 without device error, "
1128 "dev_stat 0x%X", status);
1129 qc->err_mask |= AC_ERR_HSM |
1130 AC_ERR_NODEV_HINT;
1131 }
1132
1133 ap->hsm_task_state = HSM_ST_ERR;
1134 goto fsm_start;
1135 }
1136
1137 /* For PIO reads, some devices may ask for
1138 * data transfer (DRQ=1) alone with ERR=1.
1139 * We respect DRQ here and transfer one
1140 * block of junk data before changing the
1141 * hsm_task_state to HSM_ST_ERR.
1142 *
1143 * For PIO writes, ERR=1 DRQ=1 doesn't make
1144 * sense since the data block has been
1145 * transferred to the device.
1146 */
1147 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148 /* data might be corrputed */
1149 qc->err_mask |= AC_ERR_DEV;
1150
1151 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1152 ata_pio_sectors(qc);
1153 status = ata_wait_idle(ap);
1154 }
1155
1156 if (status & (ATA_BUSY | ATA_DRQ)) {
1157 ata_ehi_push_desc(ehi, "ST-ATA: "
1158 "BUSY|DRQ persists on ERR|DF, "
1159 "dev_stat 0x%X", status);
1160 qc->err_mask |= AC_ERR_HSM;
1161 }
1162
1163 /* There are oddball controllers with
1164 * status register stuck at 0x7f and
1165 * lbal/m/h at zero which makes it
1166 * pass all other presence detection
1167 * mechanisms we have. Set NODEV_HINT
1168 * for it. Kernel bz#7241.
1169 */
1170 if (status == 0x7f)
1171 qc->err_mask |= AC_ERR_NODEV_HINT;
1172
1173 /* ata_pio_sectors() might change the
1174 * state to HSM_ST_LAST. so, the state
1175 * is changed after ata_pio_sectors().
1176 */
1177 ap->hsm_task_state = HSM_ST_ERR;
1178 goto fsm_start;
1179 }
1180
1181 ata_pio_sectors(qc);
1182
1183 if (ap->hsm_task_state == HSM_ST_LAST &&
1184 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1185 /* all data read */
1186 status = ata_wait_idle(ap);
1187 goto fsm_start;
1188 }
1189 }
1190
1191 poll_next = 1;
1192 break;
1193
1194 case HSM_ST_LAST:
1195 if (unlikely(!ata_ok(status))) {
1196 qc->err_mask |= __ac_err_mask(status);
1197 ap->hsm_task_state = HSM_ST_ERR;
1198 goto fsm_start;
1199 }
1200
1201 /* no more data to transfer */
1202 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1203 ap->print_id, qc->dev->devno, status);
1204
1205 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1206
1207 ap->hsm_task_state = HSM_ST_IDLE;
1208
1209 /* complete taskfile transaction */
1210 ata_hsm_qc_complete(qc, in_wq);
1211
1212 poll_next = 0;
1213 break;
1214
1215 case HSM_ST_ERR:
1216 ap->hsm_task_state = HSM_ST_IDLE;
1217
1218 /* complete taskfile transaction */
1219 ata_hsm_qc_complete(qc, in_wq);
1220
1221 poll_next = 0;
1222 break;
1223 default:
1224 poll_next = 0;
1225 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1226 ap->print_id, ap->hsm_task_state);
1227 }
1228
1229 return poll_next;
1230 }
1231 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1232
ata_sff_queue_work(struct work_struct * work)1233 void ata_sff_queue_work(struct work_struct *work)
1234 {
1235 queue_work(ata_sff_wq, work);
1236 }
1237 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1238
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1239 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1240 {
1241 queue_delayed_work(ata_sff_wq, dwork, delay);
1242 }
1243 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1244
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1245 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1246 {
1247 struct ata_port *ap = link->ap;
1248
1249 WARN_ON((ap->sff_pio_task_link != NULL) &&
1250 (ap->sff_pio_task_link != link));
1251 ap->sff_pio_task_link = link;
1252
1253 /* may fail if ata_sff_flush_pio_task() in progress */
1254 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1255 }
1256 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1257
ata_sff_flush_pio_task(struct ata_port * ap)1258 void ata_sff_flush_pio_task(struct ata_port *ap)
1259 {
1260 DPRINTK("ENTER\n");
1261
1262 cancel_delayed_work_sync(&ap->sff_pio_task);
1263
1264 /*
1265 * We wanna reset the HSM state to IDLE. If we do so without
1266 * grabbing the port lock, critical sections protected by it which
1267 * expect the HSM state to stay stable may get surprised. For
1268 * example, we may set IDLE in between the time
1269 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1270 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1271 */
1272 spin_lock_irq(ap->lock);
1273 ap->hsm_task_state = HSM_ST_IDLE;
1274 spin_unlock_irq(ap->lock);
1275
1276 ap->sff_pio_task_link = NULL;
1277
1278 if (ata_msg_ctl(ap))
1279 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1280 }
1281
ata_sff_pio_task(struct work_struct * work)1282 static void ata_sff_pio_task(struct work_struct *work)
1283 {
1284 struct ata_port *ap =
1285 container_of(work, struct ata_port, sff_pio_task.work);
1286 struct ata_link *link = ap->sff_pio_task_link;
1287 struct ata_queued_cmd *qc;
1288 u8 status;
1289 int poll_next;
1290
1291 spin_lock_irq(ap->lock);
1292
1293 BUG_ON(ap->sff_pio_task_link == NULL);
1294 /* qc can be NULL if timeout occurred */
1295 qc = ata_qc_from_tag(ap, link->active_tag);
1296 if (!qc) {
1297 ap->sff_pio_task_link = NULL;
1298 goto out_unlock;
1299 }
1300
1301 fsm_start:
1302 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1303
1304 /*
1305 * This is purely heuristic. This is a fast path.
1306 * Sometimes when we enter, BSY will be cleared in
1307 * a chk-status or two. If not, the drive is probably seeking
1308 * or something. Snooze for a couple msecs, then
1309 * chk-status again. If still busy, queue delayed work.
1310 */
1311 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1312 if (status & ATA_BUSY) {
1313 spin_unlock_irq(ap->lock);
1314 ata_msleep(ap, 2);
1315 spin_lock_irq(ap->lock);
1316
1317 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1318 if (status & ATA_BUSY) {
1319 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1320 goto out_unlock;
1321 }
1322 }
1323
1324 /*
1325 * hsm_move() may trigger another command to be processed.
1326 * clean the link beforehand.
1327 */
1328 ap->sff_pio_task_link = NULL;
1329 /* move the HSM */
1330 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1331
1332 /* another command or interrupt handler
1333 * may be running at this point.
1334 */
1335 if (poll_next)
1336 goto fsm_start;
1337 out_unlock:
1338 spin_unlock_irq(ap->lock);
1339 }
1340
1341 /**
1342 * ata_sff_qc_issue - issue taskfile to a SFF controller
1343 * @qc: command to issue to device
1344 *
1345 * This function issues a PIO or NODATA command to a SFF
1346 * controller.
1347 *
1348 * LOCKING:
1349 * spin_lock_irqsave(host lock)
1350 *
1351 * RETURNS:
1352 * Zero on success, AC_ERR_* mask on failure
1353 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1354 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1355 {
1356 struct ata_port *ap = qc->ap;
1357 struct ata_link *link = qc->dev->link;
1358
1359 /* Use polling pio if the LLD doesn't handle
1360 * interrupt driven pio and atapi CDB interrupt.
1361 */
1362 if (ap->flags & ATA_FLAG_PIO_POLLING)
1363 qc->tf.flags |= ATA_TFLAG_POLLING;
1364
1365 /* select the device */
1366 ata_dev_select(ap, qc->dev->devno, 1, 0);
1367
1368 /* start the command */
1369 switch (qc->tf.protocol) {
1370 case ATA_PROT_NODATA:
1371 if (qc->tf.flags & ATA_TFLAG_POLLING)
1372 ata_qc_set_polling(qc);
1373
1374 ata_tf_to_host(ap, &qc->tf);
1375 ap->hsm_task_state = HSM_ST_LAST;
1376
1377 if (qc->tf.flags & ATA_TFLAG_POLLING)
1378 ata_sff_queue_pio_task(link, 0);
1379
1380 break;
1381
1382 case ATA_PROT_PIO:
1383 if (qc->tf.flags & ATA_TFLAG_POLLING)
1384 ata_qc_set_polling(qc);
1385
1386 ata_tf_to_host(ap, &qc->tf);
1387
1388 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1389 /* PIO data out protocol */
1390 ap->hsm_task_state = HSM_ST_FIRST;
1391 ata_sff_queue_pio_task(link, 0);
1392
1393 /* always send first data block using the
1394 * ata_sff_pio_task() codepath.
1395 */
1396 } else {
1397 /* PIO data in protocol */
1398 ap->hsm_task_state = HSM_ST;
1399
1400 if (qc->tf.flags & ATA_TFLAG_POLLING)
1401 ata_sff_queue_pio_task(link, 0);
1402
1403 /* if polling, ata_sff_pio_task() handles the
1404 * rest. otherwise, interrupt handler takes
1405 * over from here.
1406 */
1407 }
1408
1409 break;
1410
1411 case ATAPI_PROT_PIO:
1412 case ATAPI_PROT_NODATA:
1413 if (qc->tf.flags & ATA_TFLAG_POLLING)
1414 ata_qc_set_polling(qc);
1415
1416 ata_tf_to_host(ap, &qc->tf);
1417
1418 ap->hsm_task_state = HSM_ST_FIRST;
1419
1420 /* send cdb by polling if no cdb interrupt */
1421 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1422 (qc->tf.flags & ATA_TFLAG_POLLING))
1423 ata_sff_queue_pio_task(link, 0);
1424 break;
1425
1426 default:
1427 return AC_ERR_SYSTEM;
1428 }
1429
1430 return 0;
1431 }
1432 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1433
1434 /**
1435 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1436 * @qc: qc to fill result TF for
1437 *
1438 * @qc is finished and result TF needs to be filled. Fill it
1439 * using ->sff_tf_read.
1440 *
1441 * LOCKING:
1442 * spin_lock_irqsave(host lock)
1443 *
1444 * RETURNS:
1445 * true indicating that result TF is successfully filled.
1446 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1447 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1448 {
1449 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1450 return true;
1451 }
1452 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1453
ata_sff_idle_irq(struct ata_port * ap)1454 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1455 {
1456 ap->stats.idle_irq++;
1457
1458 #ifdef ATA_IRQ_TRAP
1459 if ((ap->stats.idle_irq % 1000) == 0) {
1460 ap->ops->sff_check_status(ap);
1461 if (ap->ops->sff_irq_clear)
1462 ap->ops->sff_irq_clear(ap);
1463 ata_port_warn(ap, "irq trap\n");
1464 return 1;
1465 }
1466 #endif
1467 return 0; /* irq not handled */
1468 }
1469
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1470 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1471 struct ata_queued_cmd *qc,
1472 bool hsmv_on_idle)
1473 {
1474 u8 status;
1475
1476 VPRINTK("ata%u: protocol %d task_state %d\n",
1477 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1478
1479 /* Check whether we are expecting interrupt in this state */
1480 switch (ap->hsm_task_state) {
1481 case HSM_ST_FIRST:
1482 /* Some pre-ATAPI-4 devices assert INTRQ
1483 * at this state when ready to receive CDB.
1484 */
1485
1486 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1487 * The flag was turned on only for atapi devices. No
1488 * need to check ata_is_atapi(qc->tf.protocol) again.
1489 */
1490 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1491 return ata_sff_idle_irq(ap);
1492 break;
1493 case HSM_ST_IDLE:
1494 return ata_sff_idle_irq(ap);
1495 default:
1496 break;
1497 }
1498
1499 /* check main status, clearing INTRQ if needed */
1500 status = ata_sff_irq_status(ap);
1501 if (status & ATA_BUSY) {
1502 if (hsmv_on_idle) {
1503 /* BMDMA engine is already stopped, we're screwed */
1504 qc->err_mask |= AC_ERR_HSM;
1505 ap->hsm_task_state = HSM_ST_ERR;
1506 } else
1507 return ata_sff_idle_irq(ap);
1508 }
1509
1510 /* clear irq events */
1511 if (ap->ops->sff_irq_clear)
1512 ap->ops->sff_irq_clear(ap);
1513
1514 ata_sff_hsm_move(ap, qc, status, 0);
1515
1516 return 1; /* irq handled */
1517 }
1518
1519 /**
1520 * ata_sff_port_intr - Handle SFF port interrupt
1521 * @ap: Port on which interrupt arrived (possibly...)
1522 * @qc: Taskfile currently active in engine
1523 *
1524 * Handle port interrupt for given queued command.
1525 *
1526 * LOCKING:
1527 * spin_lock_irqsave(host lock)
1528 *
1529 * RETURNS:
1530 * One if interrupt was handled, zero if not (shared irq).
1531 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1532 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1533 {
1534 return __ata_sff_port_intr(ap, qc, false);
1535 }
1536 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1537
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1538 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1539 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1540 {
1541 struct ata_host *host = dev_instance;
1542 bool retried = false;
1543 unsigned int i;
1544 unsigned int handled, idle, polling;
1545 unsigned long flags;
1546
1547 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1548 spin_lock_irqsave(&host->lock, flags);
1549
1550 retry:
1551 handled = idle = polling = 0;
1552 for (i = 0; i < host->n_ports; i++) {
1553 struct ata_port *ap = host->ports[i];
1554 struct ata_queued_cmd *qc;
1555
1556 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1557 if (qc) {
1558 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1559 handled |= port_intr(ap, qc);
1560 else
1561 polling |= 1 << i;
1562 } else
1563 idle |= 1 << i;
1564 }
1565
1566 /*
1567 * If no port was expecting IRQ but the controller is actually
1568 * asserting IRQ line, nobody cared will ensue. Check IRQ
1569 * pending status if available and clear spurious IRQ.
1570 */
1571 if (!handled && !retried) {
1572 bool retry = false;
1573
1574 for (i = 0; i < host->n_ports; i++) {
1575 struct ata_port *ap = host->ports[i];
1576
1577 if (polling & (1 << i))
1578 continue;
1579
1580 if (!ap->ops->sff_irq_check ||
1581 !ap->ops->sff_irq_check(ap))
1582 continue;
1583
1584 if (idle & (1 << i)) {
1585 ap->ops->sff_check_status(ap);
1586 if (ap->ops->sff_irq_clear)
1587 ap->ops->sff_irq_clear(ap);
1588 } else {
1589 /* clear INTRQ and check if BUSY cleared */
1590 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1591 retry |= true;
1592 /*
1593 * With command in flight, we can't do
1594 * sff_irq_clear() w/o racing with completion.
1595 */
1596 }
1597 }
1598
1599 if (retry) {
1600 retried = true;
1601 goto retry;
1602 }
1603 }
1604
1605 spin_unlock_irqrestore(&host->lock, flags);
1606
1607 return IRQ_RETVAL(handled);
1608 }
1609
1610 /**
1611 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1612 * @irq: irq line (unused)
1613 * @dev_instance: pointer to our ata_host information structure
1614 *
1615 * Default interrupt handler for PCI IDE devices. Calls
1616 * ata_sff_port_intr() for each port that is not disabled.
1617 *
1618 * LOCKING:
1619 * Obtains host lock during operation.
1620 *
1621 * RETURNS:
1622 * IRQ_NONE or IRQ_HANDLED.
1623 */
ata_sff_interrupt(int irq,void * dev_instance)1624 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1625 {
1626 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1627 }
1628 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1629
1630 /**
1631 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1632 * @ap: port that appears to have timed out
1633 *
1634 * Called from the libata error handlers when the core code suspects
1635 * an interrupt has been lost. If it has complete anything we can and
1636 * then return. Interface must support altstatus for this faster
1637 * recovery to occur.
1638 *
1639 * Locking:
1640 * Caller holds host lock
1641 */
1642
ata_sff_lost_interrupt(struct ata_port * ap)1643 void ata_sff_lost_interrupt(struct ata_port *ap)
1644 {
1645 u8 status;
1646 struct ata_queued_cmd *qc;
1647
1648 /* Only one outstanding command per SFF channel */
1649 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1650 /* We cannot lose an interrupt on a non-existent or polled command */
1651 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1652 return;
1653 /* See if the controller thinks it is still busy - if so the command
1654 isn't a lost IRQ but is still in progress */
1655 status = ata_sff_altstatus(ap);
1656 if (status & ATA_BUSY)
1657 return;
1658
1659 /* There was a command running, we are no longer busy and we have
1660 no interrupt. */
1661 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1662 status);
1663 /* Run the host interrupt logic as if the interrupt had not been
1664 lost */
1665 ata_sff_port_intr(ap, qc);
1666 }
1667 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1668
1669 /**
1670 * ata_sff_freeze - Freeze SFF controller port
1671 * @ap: port to freeze
1672 *
1673 * Freeze SFF controller port.
1674 *
1675 * LOCKING:
1676 * Inherited from caller.
1677 */
ata_sff_freeze(struct ata_port * ap)1678 void ata_sff_freeze(struct ata_port *ap)
1679 {
1680 ap->ctl |= ATA_NIEN;
1681 ap->last_ctl = ap->ctl;
1682
1683 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1684 ata_sff_set_devctl(ap, ap->ctl);
1685
1686 /* Under certain circumstances, some controllers raise IRQ on
1687 * ATA_NIEN manipulation. Also, many controllers fail to mask
1688 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1689 */
1690 ap->ops->sff_check_status(ap);
1691
1692 if (ap->ops->sff_irq_clear)
1693 ap->ops->sff_irq_clear(ap);
1694 }
1695 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1696
1697 /**
1698 * ata_sff_thaw - Thaw SFF controller port
1699 * @ap: port to thaw
1700 *
1701 * Thaw SFF controller port.
1702 *
1703 * LOCKING:
1704 * Inherited from caller.
1705 */
ata_sff_thaw(struct ata_port * ap)1706 void ata_sff_thaw(struct ata_port *ap)
1707 {
1708 /* clear & re-enable interrupts */
1709 ap->ops->sff_check_status(ap);
1710 if (ap->ops->sff_irq_clear)
1711 ap->ops->sff_irq_clear(ap);
1712 ata_sff_irq_on(ap);
1713 }
1714 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1715
1716 /**
1717 * ata_sff_prereset - prepare SFF link for reset
1718 * @link: SFF link to be reset
1719 * @deadline: deadline jiffies for the operation
1720 *
1721 * SFF link @link is about to be reset. Initialize it. It first
1722 * calls ata_std_prereset() and wait for !BSY if the port is
1723 * being softreset.
1724 *
1725 * LOCKING:
1726 * Kernel thread context (may sleep)
1727 *
1728 * RETURNS:
1729 * 0 on success, -errno otherwise.
1730 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1731 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1732 {
1733 struct ata_eh_context *ehc = &link->eh_context;
1734 int rc;
1735
1736 rc = ata_std_prereset(link, deadline);
1737 if (rc)
1738 return rc;
1739
1740 /* if we're about to do hardreset, nothing more to do */
1741 if (ehc->i.action & ATA_EH_HARDRESET)
1742 return 0;
1743
1744 /* wait for !BSY if we don't know that no device is attached */
1745 if (!ata_link_offline(link)) {
1746 rc = ata_sff_wait_ready(link, deadline);
1747 if (rc && rc != -ENODEV) {
1748 ata_link_warn(link,
1749 "device not ready (errno=%d), forcing hardreset\n",
1750 rc);
1751 ehc->i.action |= ATA_EH_HARDRESET;
1752 }
1753 }
1754
1755 return 0;
1756 }
1757 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1758
1759 /**
1760 * ata_devchk - PATA device presence detection
1761 * @ap: ATA channel to examine
1762 * @device: Device to examine (starting at zero)
1763 *
1764 * This technique was originally described in
1765 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1766 * later found its way into the ATA/ATAPI spec.
1767 *
1768 * Write a pattern to the ATA shadow registers,
1769 * and if a device is present, it will respond by
1770 * correctly storing and echoing back the
1771 * ATA shadow register contents.
1772 *
1773 * LOCKING:
1774 * caller.
1775 */
ata_devchk(struct ata_port * ap,unsigned int device)1776 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1777 {
1778 struct ata_ioports *ioaddr = &ap->ioaddr;
1779 u8 nsect, lbal;
1780
1781 ap->ops->sff_dev_select(ap, device);
1782
1783 iowrite8(0x55, ioaddr->nsect_addr);
1784 iowrite8(0xaa, ioaddr->lbal_addr);
1785
1786 iowrite8(0xaa, ioaddr->nsect_addr);
1787 iowrite8(0x55, ioaddr->lbal_addr);
1788
1789 iowrite8(0x55, ioaddr->nsect_addr);
1790 iowrite8(0xaa, ioaddr->lbal_addr);
1791
1792 nsect = ioread8(ioaddr->nsect_addr);
1793 lbal = ioread8(ioaddr->lbal_addr);
1794
1795 if ((nsect == 0x55) && (lbal == 0xaa))
1796 return 1; /* we found a device */
1797
1798 return 0; /* nothing found */
1799 }
1800
1801 /**
1802 * ata_sff_dev_classify - Parse returned ATA device signature
1803 * @dev: ATA device to classify (starting at zero)
1804 * @present: device seems present
1805 * @r_err: Value of error register on completion
1806 *
1807 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1808 * an ATA/ATAPI-defined set of values is placed in the ATA
1809 * shadow registers, indicating the results of device detection
1810 * and diagnostics.
1811 *
1812 * Select the ATA device, and read the values from the ATA shadow
1813 * registers. Then parse according to the Error register value,
1814 * and the spec-defined values examined by ata_dev_classify().
1815 *
1816 * LOCKING:
1817 * caller.
1818 *
1819 * RETURNS:
1820 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1821 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1822 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1823 u8 *r_err)
1824 {
1825 struct ata_port *ap = dev->link->ap;
1826 struct ata_taskfile tf;
1827 unsigned int class;
1828 u8 err;
1829
1830 ap->ops->sff_dev_select(ap, dev->devno);
1831
1832 memset(&tf, 0, sizeof(tf));
1833
1834 ap->ops->sff_tf_read(ap, &tf);
1835 err = tf.feature;
1836 if (r_err)
1837 *r_err = err;
1838
1839 /* see if device passed diags: continue and warn later */
1840 if (err == 0)
1841 /* diagnostic fail : do nothing _YET_ */
1842 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1843 else if (err == 1)
1844 /* do nothing */ ;
1845 else if ((dev->devno == 0) && (err == 0x81))
1846 /* do nothing */ ;
1847 else
1848 return ATA_DEV_NONE;
1849
1850 /* determine if device is ATA or ATAPI */
1851 class = ata_dev_classify(&tf);
1852
1853 if (class == ATA_DEV_UNKNOWN) {
1854 /* If the device failed diagnostic, it's likely to
1855 * have reported incorrect device signature too.
1856 * Assume ATA device if the device seems present but
1857 * device signature is invalid with diagnostic
1858 * failure.
1859 */
1860 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1861 class = ATA_DEV_ATA;
1862 else
1863 class = ATA_DEV_NONE;
1864 } else if ((class == ATA_DEV_ATA) &&
1865 (ap->ops->sff_check_status(ap) == 0))
1866 class = ATA_DEV_NONE;
1867
1868 return class;
1869 }
1870 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1871
1872 /**
1873 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1874 * @link: SFF link which is just reset
1875 * @devmask: mask of present devices
1876 * @deadline: deadline jiffies for the operation
1877 *
1878 * Wait devices attached to SFF @link to become ready after
1879 * reset. It contains preceding 150ms wait to avoid accessing TF
1880 * status register too early.
1881 *
1882 * LOCKING:
1883 * Kernel thread context (may sleep).
1884 *
1885 * RETURNS:
1886 * 0 on success, -ENODEV if some or all of devices in @devmask
1887 * don't seem to exist. -errno on other errors.
1888 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1889 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1890 unsigned long deadline)
1891 {
1892 struct ata_port *ap = link->ap;
1893 struct ata_ioports *ioaddr = &ap->ioaddr;
1894 unsigned int dev0 = devmask & (1 << 0);
1895 unsigned int dev1 = devmask & (1 << 1);
1896 int rc, ret = 0;
1897
1898 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1899
1900 /* always check readiness of the master device */
1901 rc = ata_sff_wait_ready(link, deadline);
1902 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1903 * and TF status is 0xff, bail out on it too.
1904 */
1905 if (rc)
1906 return rc;
1907
1908 /* if device 1 was found in ata_devchk, wait for register
1909 * access briefly, then wait for BSY to clear.
1910 */
1911 if (dev1) {
1912 int i;
1913
1914 ap->ops->sff_dev_select(ap, 1);
1915
1916 /* Wait for register access. Some ATAPI devices fail
1917 * to set nsect/lbal after reset, so don't waste too
1918 * much time on it. We're gonna wait for !BSY anyway.
1919 */
1920 for (i = 0; i < 2; i++) {
1921 u8 nsect, lbal;
1922
1923 nsect = ioread8(ioaddr->nsect_addr);
1924 lbal = ioread8(ioaddr->lbal_addr);
1925 if ((nsect == 1) && (lbal == 1))
1926 break;
1927 ata_msleep(ap, 50); /* give drive a breather */
1928 }
1929
1930 rc = ata_sff_wait_ready(link, deadline);
1931 if (rc) {
1932 if (rc != -ENODEV)
1933 return rc;
1934 ret = rc;
1935 }
1936 }
1937
1938 /* is all this really necessary? */
1939 ap->ops->sff_dev_select(ap, 0);
1940 if (dev1)
1941 ap->ops->sff_dev_select(ap, 1);
1942 if (dev0)
1943 ap->ops->sff_dev_select(ap, 0);
1944
1945 return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1948
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1949 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1950 unsigned long deadline)
1951 {
1952 struct ata_ioports *ioaddr = &ap->ioaddr;
1953
1954 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1955
1956 if (ap->ioaddr.ctl_addr) {
1957 /* software reset. causes dev0 to be selected */
1958 iowrite8(ap->ctl, ioaddr->ctl_addr);
1959 udelay(20); /* FIXME: flush */
1960 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1961 udelay(20); /* FIXME: flush */
1962 iowrite8(ap->ctl, ioaddr->ctl_addr);
1963 ap->last_ctl = ap->ctl;
1964 }
1965
1966 /* wait the port to become ready */
1967 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1968 }
1969
1970 /**
1971 * ata_sff_softreset - reset host port via ATA SRST
1972 * @link: ATA link to reset
1973 * @classes: resulting classes of attached devices
1974 * @deadline: deadline jiffies for the operation
1975 *
1976 * Reset host port using ATA SRST.
1977 *
1978 * LOCKING:
1979 * Kernel thread context (may sleep)
1980 *
1981 * RETURNS:
1982 * 0 on success, -errno otherwise.
1983 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)1984 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1985 unsigned long deadline)
1986 {
1987 struct ata_port *ap = link->ap;
1988 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1989 unsigned int devmask = 0;
1990 int rc;
1991 u8 err;
1992
1993 DPRINTK("ENTER\n");
1994
1995 /* determine if device 0/1 are present */
1996 if (ata_devchk(ap, 0))
1997 devmask |= (1 << 0);
1998 if (slave_possible && ata_devchk(ap, 1))
1999 devmask |= (1 << 1);
2000
2001 /* select device 0 again */
2002 ap->ops->sff_dev_select(ap, 0);
2003
2004 /* issue bus reset */
2005 DPRINTK("about to softreset, devmask=%x\n", devmask);
2006 rc = ata_bus_softreset(ap, devmask, deadline);
2007 /* if link is occupied, -ENODEV too is an error */
2008 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2009 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2010 return rc;
2011 }
2012
2013 /* determine by signature whether we have ATA or ATAPI devices */
2014 classes[0] = ata_sff_dev_classify(&link->device[0],
2015 devmask & (1 << 0), &err);
2016 if (slave_possible && err != 0x81)
2017 classes[1] = ata_sff_dev_classify(&link->device[1],
2018 devmask & (1 << 1), &err);
2019
2020 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2021 return 0;
2022 }
2023 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2024
2025 /**
2026 * sata_sff_hardreset - reset host port via SATA phy reset
2027 * @link: link to reset
2028 * @class: resulting class of attached device
2029 * @deadline: deadline jiffies for the operation
2030 *
2031 * SATA phy-reset host port using DET bits of SControl register,
2032 * wait for !BSY and classify the attached device.
2033 *
2034 * LOCKING:
2035 * Kernel thread context (may sleep)
2036 *
2037 * RETURNS:
2038 * 0 on success, -errno otherwise.
2039 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2040 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2041 unsigned long deadline)
2042 {
2043 struct ata_eh_context *ehc = &link->eh_context;
2044 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2045 bool online;
2046 int rc;
2047
2048 rc = sata_link_hardreset(link, timing, deadline, &online,
2049 ata_sff_check_ready);
2050 if (online)
2051 *class = ata_sff_dev_classify(link->device, 1, NULL);
2052
2053 DPRINTK("EXIT, class=%u\n", *class);
2054 return rc;
2055 }
2056 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2057
2058 /**
2059 * ata_sff_postreset - SFF postreset callback
2060 * @link: the target SFF ata_link
2061 * @classes: classes of attached devices
2062 *
2063 * This function is invoked after a successful reset. It first
2064 * calls ata_std_postreset() and performs SFF specific postreset
2065 * processing.
2066 *
2067 * LOCKING:
2068 * Kernel thread context (may sleep)
2069 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2070 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2071 {
2072 struct ata_port *ap = link->ap;
2073
2074 ata_std_postreset(link, classes);
2075
2076 /* is double-select really necessary? */
2077 if (classes[0] != ATA_DEV_NONE)
2078 ap->ops->sff_dev_select(ap, 1);
2079 if (classes[1] != ATA_DEV_NONE)
2080 ap->ops->sff_dev_select(ap, 0);
2081
2082 /* bail out if no device is present */
2083 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2084 DPRINTK("EXIT, no device\n");
2085 return;
2086 }
2087
2088 /* set up device control */
2089 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2090 ata_sff_set_devctl(ap, ap->ctl);
2091 ap->last_ctl = ap->ctl;
2092 }
2093 }
2094 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2095
2096 /**
2097 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2098 * @qc: command
2099 *
2100 * Drain the FIFO and device of any stuck data following a command
2101 * failing to complete. In some cases this is necessary before a
2102 * reset will recover the device.
2103 *
2104 */
2105
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2106 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2107 {
2108 int count;
2109 struct ata_port *ap;
2110
2111 /* We only need to flush incoming data when a command was running */
2112 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2113 return;
2114
2115 ap = qc->ap;
2116 /* Drain up to 64K of data before we give up this recovery method */
2117 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2118 && count < 65536; count += 2)
2119 ioread16(ap->ioaddr.data_addr);
2120
2121 /* Can become DEBUG later */
2122 if (count)
2123 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2124
2125 }
2126 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2127
2128 /**
2129 * ata_sff_error_handler - Stock error handler for SFF controller
2130 * @ap: port to handle error for
2131 *
2132 * Stock error handler for SFF controller. It can handle both
2133 * PATA and SATA controllers. Many controllers should be able to
2134 * use this EH as-is or with some added handling before and
2135 * after.
2136 *
2137 * LOCKING:
2138 * Kernel thread context (may sleep)
2139 */
ata_sff_error_handler(struct ata_port * ap)2140 void ata_sff_error_handler(struct ata_port *ap)
2141 {
2142 ata_reset_fn_t softreset = ap->ops->softreset;
2143 ata_reset_fn_t hardreset = ap->ops->hardreset;
2144 struct ata_queued_cmd *qc;
2145 unsigned long flags;
2146
2147 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2148 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2149 qc = NULL;
2150
2151 spin_lock_irqsave(ap->lock, flags);
2152
2153 /*
2154 * We *MUST* do FIFO draining before we issue a reset as
2155 * several devices helpfully clear their internal state and
2156 * will lock solid if we touch the data port post reset. Pass
2157 * qc in case anyone wants to do different PIO/DMA recovery or
2158 * has per command fixups
2159 */
2160 if (ap->ops->sff_drain_fifo)
2161 ap->ops->sff_drain_fifo(qc);
2162
2163 spin_unlock_irqrestore(ap->lock, flags);
2164
2165 /* ignore built-in hardresets if SCR access is not available */
2166 if ((hardreset == sata_std_hardreset ||
2167 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2168 hardreset = NULL;
2169
2170 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2171 ap->ops->postreset);
2172 }
2173 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2174
2175 /**
2176 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2177 * @ioaddr: IO address structure to be initialized
2178 *
2179 * Utility function which initializes data_addr, error_addr,
2180 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2181 * device_addr, status_addr, and command_addr to standard offsets
2182 * relative to cmd_addr.
2183 *
2184 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2185 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2186 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2187 {
2188 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2189 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2190 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2191 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2192 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2193 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2194 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2195 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2196 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2197 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2198 }
2199 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2200
2201 #ifdef CONFIG_PCI
2202
ata_resources_present(struct pci_dev * pdev,int port)2203 static int ata_resources_present(struct pci_dev *pdev, int port)
2204 {
2205 int i;
2206
2207 /* Check the PCI resources for this channel are enabled */
2208 port = port * 2;
2209 for (i = 0; i < 2; i++) {
2210 if (pci_resource_start(pdev, port + i) == 0 ||
2211 pci_resource_len(pdev, port + i) == 0)
2212 return 0;
2213 }
2214 return 1;
2215 }
2216
2217 /**
2218 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2219 * @host: target ATA host
2220 *
2221 * Acquire native PCI ATA resources for @host and initialize the
2222 * first two ports of @host accordingly. Ports marked dummy are
2223 * skipped and allocation failure makes the port dummy.
2224 *
2225 * Note that native PCI resources are valid even for legacy hosts
2226 * as we fix up pdev resources array early in boot, so this
2227 * function can be used for both native and legacy SFF hosts.
2228 *
2229 * LOCKING:
2230 * Inherited from calling layer (may sleep).
2231 *
2232 * RETURNS:
2233 * 0 if at least one port is initialized, -ENODEV if no port is
2234 * available.
2235 */
ata_pci_sff_init_host(struct ata_host * host)2236 int ata_pci_sff_init_host(struct ata_host *host)
2237 {
2238 struct device *gdev = host->dev;
2239 struct pci_dev *pdev = to_pci_dev(gdev);
2240 unsigned int mask = 0;
2241 int i, rc;
2242
2243 /* request, iomap BARs and init port addresses accordingly */
2244 for (i = 0; i < 2; i++) {
2245 struct ata_port *ap = host->ports[i];
2246 int base = i * 2;
2247 void __iomem * const *iomap;
2248
2249 if (ata_port_is_dummy(ap))
2250 continue;
2251
2252 /* Discard disabled ports. Some controllers show
2253 * their unused channels this way. Disabled ports are
2254 * made dummy.
2255 */
2256 if (!ata_resources_present(pdev, i)) {
2257 ap->ops = &ata_dummy_port_ops;
2258 continue;
2259 }
2260
2261 rc = pcim_iomap_regions(pdev, 0x3 << base,
2262 dev_driver_string(gdev));
2263 if (rc) {
2264 dev_warn(gdev,
2265 "failed to request/iomap BARs for port %d (errno=%d)\n",
2266 i, rc);
2267 if (rc == -EBUSY)
2268 pcim_pin_device(pdev);
2269 ap->ops = &ata_dummy_port_ops;
2270 continue;
2271 }
2272 host->iomap = iomap = pcim_iomap_table(pdev);
2273
2274 ap->ioaddr.cmd_addr = iomap[base];
2275 ap->ioaddr.altstatus_addr =
2276 ap->ioaddr.ctl_addr = (void __iomem *)
2277 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2278 ata_sff_std_ports(&ap->ioaddr);
2279
2280 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2281 (unsigned long long)pci_resource_start(pdev, base),
2282 (unsigned long long)pci_resource_start(pdev, base + 1));
2283
2284 mask |= 1 << i;
2285 }
2286
2287 if (!mask) {
2288 dev_err(gdev, "no available native port\n");
2289 return -ENODEV;
2290 }
2291
2292 return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2295
2296 /**
2297 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2298 * @pdev: target PCI device
2299 * @ppi: array of port_info, must be enough for two ports
2300 * @r_host: out argument for the initialized ATA host
2301 *
2302 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2303 * all PCI resources and initialize it accordingly in one go.
2304 *
2305 * LOCKING:
2306 * Inherited from calling layer (may sleep).
2307 *
2308 * RETURNS:
2309 * 0 on success, -errno otherwise.
2310 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2311 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2312 const struct ata_port_info * const *ppi,
2313 struct ata_host **r_host)
2314 {
2315 struct ata_host *host;
2316 int rc;
2317
2318 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2319 return -ENOMEM;
2320
2321 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2322 if (!host) {
2323 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2324 rc = -ENOMEM;
2325 goto err_out;
2326 }
2327
2328 rc = ata_pci_sff_init_host(host);
2329 if (rc)
2330 goto err_out;
2331
2332 devres_remove_group(&pdev->dev, NULL);
2333 *r_host = host;
2334 return 0;
2335
2336 err_out:
2337 devres_release_group(&pdev->dev, NULL);
2338 return rc;
2339 }
2340 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2341
2342 /**
2343 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2344 * @host: target SFF ATA host
2345 * @irq_handler: irq_handler used when requesting IRQ(s)
2346 * @sht: scsi_host_template to use when registering the host
2347 *
2348 * This is the counterpart of ata_host_activate() for SFF ATA
2349 * hosts. This separate helper is necessary because SFF hosts
2350 * use two separate interrupts in legacy mode.
2351 *
2352 * LOCKING:
2353 * Inherited from calling layer (may sleep).
2354 *
2355 * RETURNS:
2356 * 0 on success, -errno otherwise.
2357 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2358 int ata_pci_sff_activate_host(struct ata_host *host,
2359 irq_handler_t irq_handler,
2360 struct scsi_host_template *sht)
2361 {
2362 struct device *dev = host->dev;
2363 struct pci_dev *pdev = to_pci_dev(dev);
2364 const char *drv_name = dev_driver_string(host->dev);
2365 int legacy_mode = 0, rc;
2366
2367 rc = ata_host_start(host);
2368 if (rc)
2369 return rc;
2370
2371 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2372 u8 tmp8, mask = 0;
2373
2374 /*
2375 * ATA spec says we should use legacy mode when one
2376 * port is in legacy mode, but disabled ports on some
2377 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2378 * on which the secondary port is not wired, so
2379 * ignore ports that are marked as 'dummy' during
2380 * this check
2381 */
2382 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2383 if (!ata_port_is_dummy(host->ports[0]))
2384 mask |= (1 << 0);
2385 if (!ata_port_is_dummy(host->ports[1]))
2386 mask |= (1 << 2);
2387 if ((tmp8 & mask) != mask)
2388 legacy_mode = 1;
2389 }
2390
2391 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2392 return -ENOMEM;
2393
2394 if (!legacy_mode && pdev->irq) {
2395 int i;
2396
2397 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2398 IRQF_SHARED, drv_name, host);
2399 if (rc)
2400 goto out;
2401
2402 for (i = 0; i < 2; i++) {
2403 if (ata_port_is_dummy(host->ports[i]))
2404 continue;
2405 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2406 }
2407 } else if (legacy_mode) {
2408 if (!ata_port_is_dummy(host->ports[0])) {
2409 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2410 irq_handler, IRQF_SHARED,
2411 drv_name, host);
2412 if (rc)
2413 goto out;
2414
2415 ata_port_desc(host->ports[0], "irq %d",
2416 ATA_PRIMARY_IRQ(pdev));
2417 }
2418
2419 if (!ata_port_is_dummy(host->ports[1])) {
2420 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2421 irq_handler, IRQF_SHARED,
2422 drv_name, host);
2423 if (rc)
2424 goto out;
2425
2426 ata_port_desc(host->ports[1], "irq %d",
2427 ATA_SECONDARY_IRQ(pdev));
2428 }
2429 }
2430
2431 rc = ata_host_register(host, sht);
2432 out:
2433 if (rc == 0)
2434 devres_remove_group(dev, NULL);
2435 else
2436 devres_release_group(dev, NULL);
2437
2438 return rc;
2439 }
2440 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2441
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2442 static const struct ata_port_info *ata_sff_find_valid_pi(
2443 const struct ata_port_info * const *ppi)
2444 {
2445 int i;
2446
2447 /* look up the first valid port_info */
2448 for (i = 0; i < 2 && ppi[i]; i++)
2449 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2450 return ppi[i];
2451
2452 return NULL;
2453 }
2454
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2455 static int ata_pci_init_one(struct pci_dev *pdev,
2456 const struct ata_port_info * const *ppi,
2457 struct scsi_host_template *sht, void *host_priv,
2458 int hflags, bool bmdma)
2459 {
2460 struct device *dev = &pdev->dev;
2461 const struct ata_port_info *pi;
2462 struct ata_host *host = NULL;
2463 int rc;
2464
2465 DPRINTK("ENTER\n");
2466
2467 pi = ata_sff_find_valid_pi(ppi);
2468 if (!pi) {
2469 dev_err(&pdev->dev, "no valid port_info specified\n");
2470 return -EINVAL;
2471 }
2472
2473 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2474 return -ENOMEM;
2475
2476 rc = pcim_enable_device(pdev);
2477 if (rc)
2478 goto out;
2479
2480 #ifdef CONFIG_ATA_BMDMA
2481 if (bmdma)
2482 /* prepare and activate BMDMA host */
2483 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2484 else
2485 #endif
2486 /* prepare and activate SFF host */
2487 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2488 if (rc)
2489 goto out;
2490 host->private_data = host_priv;
2491 host->flags |= hflags;
2492
2493 #ifdef CONFIG_ATA_BMDMA
2494 if (bmdma) {
2495 pci_set_master(pdev);
2496 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2497 } else
2498 #endif
2499 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2500 out:
2501 if (rc == 0)
2502 devres_remove_group(&pdev->dev, NULL);
2503 else
2504 devres_release_group(&pdev->dev, NULL);
2505
2506 return rc;
2507 }
2508
2509 /**
2510 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2511 * @pdev: Controller to be initialized
2512 * @ppi: array of port_info, must be enough for two ports
2513 * @sht: scsi_host_template to use when registering the host
2514 * @host_priv: host private_data
2515 * @hflag: host flags
2516 *
2517 * This is a helper function which can be called from a driver's
2518 * xxx_init_one() probe function if the hardware uses traditional
2519 * IDE taskfile registers and is PIO only.
2520 *
2521 * ASSUMPTION:
2522 * Nobody makes a single channel controller that appears solely as
2523 * the secondary legacy port on PCI.
2524 *
2525 * LOCKING:
2526 * Inherited from PCI layer (may sleep).
2527 *
2528 * RETURNS:
2529 * Zero on success, negative on errno-based value on error.
2530 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2531 int ata_pci_sff_init_one(struct pci_dev *pdev,
2532 const struct ata_port_info * const *ppi,
2533 struct scsi_host_template *sht, void *host_priv, int hflag)
2534 {
2535 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2536 }
2537 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2538
2539 #endif /* CONFIG_PCI */
2540
2541 /*
2542 * BMDMA support
2543 */
2544
2545 #ifdef CONFIG_ATA_BMDMA
2546
2547 const struct ata_port_operations ata_bmdma_port_ops = {
2548 .inherits = &ata_sff_port_ops,
2549
2550 .error_handler = ata_bmdma_error_handler,
2551 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2552
2553 .qc_prep = ata_bmdma_qc_prep,
2554 .qc_issue = ata_bmdma_qc_issue,
2555
2556 .sff_irq_clear = ata_bmdma_irq_clear,
2557 .bmdma_setup = ata_bmdma_setup,
2558 .bmdma_start = ata_bmdma_start,
2559 .bmdma_stop = ata_bmdma_stop,
2560 .bmdma_status = ata_bmdma_status,
2561
2562 .port_start = ata_bmdma_port_start,
2563 };
2564 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2565
2566 const struct ata_port_operations ata_bmdma32_port_ops = {
2567 .inherits = &ata_bmdma_port_ops,
2568
2569 .sff_data_xfer = ata_sff_data_xfer32,
2570 .port_start = ata_bmdma_port_start32,
2571 };
2572 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2573
2574 /**
2575 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2576 * @qc: Metadata associated with taskfile to be transferred
2577 *
2578 * Fill PCI IDE PRD (scatter-gather) table with segments
2579 * associated with the current disk command.
2580 *
2581 * LOCKING:
2582 * spin_lock_irqsave(host lock)
2583 *
2584 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2585 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2586 {
2587 struct ata_port *ap = qc->ap;
2588 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2589 struct scatterlist *sg;
2590 unsigned int si, pi;
2591
2592 pi = 0;
2593 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2594 u32 addr, offset;
2595 u32 sg_len, len;
2596
2597 /* determine if physical DMA addr spans 64K boundary.
2598 * Note h/w doesn't support 64-bit, so we unconditionally
2599 * truncate dma_addr_t to u32.
2600 */
2601 addr = (u32) sg_dma_address(sg);
2602 sg_len = sg_dma_len(sg);
2603
2604 while (sg_len) {
2605 offset = addr & 0xffff;
2606 len = sg_len;
2607 if ((offset + sg_len) > 0x10000)
2608 len = 0x10000 - offset;
2609
2610 prd[pi].addr = cpu_to_le32(addr);
2611 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2612 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2613
2614 pi++;
2615 sg_len -= len;
2616 addr += len;
2617 }
2618 }
2619
2620 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2621 }
2622
2623 /**
2624 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2625 * @qc: Metadata associated with taskfile to be transferred
2626 *
2627 * Fill PCI IDE PRD (scatter-gather) table with segments
2628 * associated with the current disk command. Perform the fill
2629 * so that we avoid writing any length 64K records for
2630 * controllers that don't follow the spec.
2631 *
2632 * LOCKING:
2633 * spin_lock_irqsave(host lock)
2634 *
2635 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2636 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2637 {
2638 struct ata_port *ap = qc->ap;
2639 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2640 struct scatterlist *sg;
2641 unsigned int si, pi;
2642
2643 pi = 0;
2644 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2645 u32 addr, offset;
2646 u32 sg_len, len, blen;
2647
2648 /* determine if physical DMA addr spans 64K boundary.
2649 * Note h/w doesn't support 64-bit, so we unconditionally
2650 * truncate dma_addr_t to u32.
2651 */
2652 addr = (u32) sg_dma_address(sg);
2653 sg_len = sg_dma_len(sg);
2654
2655 while (sg_len) {
2656 offset = addr & 0xffff;
2657 len = sg_len;
2658 if ((offset + sg_len) > 0x10000)
2659 len = 0x10000 - offset;
2660
2661 blen = len & 0xffff;
2662 prd[pi].addr = cpu_to_le32(addr);
2663 if (blen == 0) {
2664 /* Some PATA chipsets like the CS5530 can't
2665 cope with 0x0000 meaning 64K as the spec
2666 says */
2667 prd[pi].flags_len = cpu_to_le32(0x8000);
2668 blen = 0x8000;
2669 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2670 }
2671 prd[pi].flags_len = cpu_to_le32(blen);
2672 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2673
2674 pi++;
2675 sg_len -= len;
2676 addr += len;
2677 }
2678 }
2679
2680 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2681 }
2682
2683 /**
2684 * ata_bmdma_qc_prep - Prepare taskfile for submission
2685 * @qc: Metadata associated with taskfile to be prepared
2686 *
2687 * Prepare ATA taskfile for submission.
2688 *
2689 * LOCKING:
2690 * spin_lock_irqsave(host lock)
2691 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2692 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2693 {
2694 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2695 return;
2696
2697 ata_bmdma_fill_sg(qc);
2698 }
2699 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2700
2701 /**
2702 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2703 * @qc: Metadata associated with taskfile to be prepared
2704 *
2705 * Prepare ATA taskfile for submission.
2706 *
2707 * LOCKING:
2708 * spin_lock_irqsave(host lock)
2709 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2710 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2711 {
2712 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2713 return;
2714
2715 ata_bmdma_fill_sg_dumb(qc);
2716 }
2717 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2718
2719 /**
2720 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2721 * @qc: command to issue to device
2722 *
2723 * This function issues a PIO, NODATA or DMA command to a
2724 * SFF/BMDMA controller. PIO and NODATA are handled by
2725 * ata_sff_qc_issue().
2726 *
2727 * LOCKING:
2728 * spin_lock_irqsave(host lock)
2729 *
2730 * RETURNS:
2731 * Zero on success, AC_ERR_* mask on failure
2732 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2733 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2734 {
2735 struct ata_port *ap = qc->ap;
2736 struct ata_link *link = qc->dev->link;
2737
2738 /* defer PIO handling to sff_qc_issue */
2739 if (!ata_is_dma(qc->tf.protocol))
2740 return ata_sff_qc_issue(qc);
2741
2742 /* select the device */
2743 ata_dev_select(ap, qc->dev->devno, 1, 0);
2744
2745 /* start the command */
2746 switch (qc->tf.protocol) {
2747 case ATA_PROT_DMA:
2748 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2749
2750 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2751 ap->ops->bmdma_setup(qc); /* set up bmdma */
2752 ap->ops->bmdma_start(qc); /* initiate bmdma */
2753 ap->hsm_task_state = HSM_ST_LAST;
2754 break;
2755
2756 case ATAPI_PROT_DMA:
2757 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2758
2759 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2760 ap->ops->bmdma_setup(qc); /* set up bmdma */
2761 ap->hsm_task_state = HSM_ST_FIRST;
2762
2763 /* send cdb by polling if no cdb interrupt */
2764 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2765 ata_sff_queue_pio_task(link, 0);
2766 break;
2767
2768 default:
2769 WARN_ON(1);
2770 return AC_ERR_SYSTEM;
2771 }
2772
2773 return 0;
2774 }
2775 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2776
2777 /**
2778 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2779 * @ap: Port on which interrupt arrived (possibly...)
2780 * @qc: Taskfile currently active in engine
2781 *
2782 * Handle port interrupt for given queued command.
2783 *
2784 * LOCKING:
2785 * spin_lock_irqsave(host lock)
2786 *
2787 * RETURNS:
2788 * One if interrupt was handled, zero if not (shared irq).
2789 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2790 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2791 {
2792 struct ata_eh_info *ehi = &ap->link.eh_info;
2793 u8 host_stat = 0;
2794 bool bmdma_stopped = false;
2795 unsigned int handled;
2796
2797 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2798 /* check status of DMA engine */
2799 host_stat = ap->ops->bmdma_status(ap);
2800 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2801
2802 /* if it's not our irq... */
2803 if (!(host_stat & ATA_DMA_INTR))
2804 return ata_sff_idle_irq(ap);
2805
2806 /* before we do anything else, clear DMA-Start bit */
2807 ap->ops->bmdma_stop(qc);
2808 bmdma_stopped = true;
2809
2810 if (unlikely(host_stat & ATA_DMA_ERR)) {
2811 /* error when transferring data to/from memory */
2812 qc->err_mask |= AC_ERR_HOST_BUS;
2813 ap->hsm_task_state = HSM_ST_ERR;
2814 }
2815 }
2816
2817 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2818
2819 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2820 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2821
2822 return handled;
2823 }
2824 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2825
2826 /**
2827 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2828 * @irq: irq line (unused)
2829 * @dev_instance: pointer to our ata_host information structure
2830 *
2831 * Default interrupt handler for PCI IDE devices. Calls
2832 * ata_bmdma_port_intr() for each port that is not disabled.
2833 *
2834 * LOCKING:
2835 * Obtains host lock during operation.
2836 *
2837 * RETURNS:
2838 * IRQ_NONE or IRQ_HANDLED.
2839 */
ata_bmdma_interrupt(int irq,void * dev_instance)2840 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2841 {
2842 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2843 }
2844 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2845
2846 /**
2847 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2848 * @ap: port to handle error for
2849 *
2850 * Stock error handler for BMDMA controller. It can handle both
2851 * PATA and SATA controllers. Most BMDMA controllers should be
2852 * able to use this EH as-is or with some added handling before
2853 * and after.
2854 *
2855 * LOCKING:
2856 * Kernel thread context (may sleep)
2857 */
ata_bmdma_error_handler(struct ata_port * ap)2858 void ata_bmdma_error_handler(struct ata_port *ap)
2859 {
2860 struct ata_queued_cmd *qc;
2861 unsigned long flags;
2862 bool thaw = false;
2863
2864 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2865 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2866 qc = NULL;
2867
2868 /* reset PIO HSM and stop DMA engine */
2869 spin_lock_irqsave(ap->lock, flags);
2870
2871 if (qc && ata_is_dma(qc->tf.protocol)) {
2872 u8 host_stat;
2873
2874 host_stat = ap->ops->bmdma_status(ap);
2875
2876 /* BMDMA controllers indicate host bus error by
2877 * setting DMA_ERR bit and timing out. As it wasn't
2878 * really a timeout event, adjust error mask and
2879 * cancel frozen state.
2880 */
2881 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2882 qc->err_mask = AC_ERR_HOST_BUS;
2883 thaw = true;
2884 }
2885
2886 ap->ops->bmdma_stop(qc);
2887
2888 /* if we're gonna thaw, make sure IRQ is clear */
2889 if (thaw) {
2890 ap->ops->sff_check_status(ap);
2891 if (ap->ops->sff_irq_clear)
2892 ap->ops->sff_irq_clear(ap);
2893 }
2894 }
2895
2896 spin_unlock_irqrestore(ap->lock, flags);
2897
2898 if (thaw)
2899 ata_eh_thaw_port(ap);
2900
2901 ata_sff_error_handler(ap);
2902 }
2903 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2904
2905 /**
2906 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2907 * @qc: internal command to clean up
2908 *
2909 * LOCKING:
2910 * Kernel thread context (may sleep)
2911 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2912 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2913 {
2914 struct ata_port *ap = qc->ap;
2915 unsigned long flags;
2916
2917 if (ata_is_dma(qc->tf.protocol)) {
2918 spin_lock_irqsave(ap->lock, flags);
2919 ap->ops->bmdma_stop(qc);
2920 spin_unlock_irqrestore(ap->lock, flags);
2921 }
2922 }
2923 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2924
2925 /**
2926 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2927 * @ap: Port associated with this ATA transaction.
2928 *
2929 * Clear interrupt and error flags in DMA status register.
2930 *
2931 * May be used as the irq_clear() entry in ata_port_operations.
2932 *
2933 * LOCKING:
2934 * spin_lock_irqsave(host lock)
2935 */
ata_bmdma_irq_clear(struct ata_port * ap)2936 void ata_bmdma_irq_clear(struct ata_port *ap)
2937 {
2938 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2939
2940 if (!mmio)
2941 return;
2942
2943 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2944 }
2945 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2946
2947 /**
2948 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2949 * @qc: Info associated with this ATA transaction.
2950 *
2951 * LOCKING:
2952 * spin_lock_irqsave(host lock)
2953 */
ata_bmdma_setup(struct ata_queued_cmd * qc)2954 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2955 {
2956 struct ata_port *ap = qc->ap;
2957 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2958 u8 dmactl;
2959
2960 /* load PRD table addr. */
2961 mb(); /* make sure PRD table writes are visible to controller */
2962 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2963
2964 /* specify data direction, triple-check start bit is clear */
2965 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2966 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2967 if (!rw)
2968 dmactl |= ATA_DMA_WR;
2969 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2970
2971 /* issue r/w command */
2972 ap->ops->sff_exec_command(ap, &qc->tf);
2973 }
2974 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2975
2976 /**
2977 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2978 * @qc: Info associated with this ATA transaction.
2979 *
2980 * LOCKING:
2981 * spin_lock_irqsave(host lock)
2982 */
ata_bmdma_start(struct ata_queued_cmd * qc)2983 void ata_bmdma_start(struct ata_queued_cmd *qc)
2984 {
2985 struct ata_port *ap = qc->ap;
2986 u8 dmactl;
2987
2988 /* start host DMA transaction */
2989 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2990 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2991
2992 /* Strictly, one may wish to issue an ioread8() here, to
2993 * flush the mmio write. However, control also passes
2994 * to the hardware at this point, and it will interrupt
2995 * us when we are to resume control. So, in effect,
2996 * we don't care when the mmio write flushes.
2997 * Further, a read of the DMA status register _immediately_
2998 * following the write may not be what certain flaky hardware
2999 * is expected, so I think it is best to not add a readb()
3000 * without first all the MMIO ATA cards/mobos.
3001 * Or maybe I'm just being paranoid.
3002 *
3003 * FIXME: The posting of this write means I/O starts are
3004 * unnecessarily delayed for MMIO
3005 */
3006 }
3007 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3008
3009 /**
3010 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3011 * @qc: Command we are ending DMA for
3012 *
3013 * Clears the ATA_DMA_START flag in the dma control register
3014 *
3015 * May be used as the bmdma_stop() entry in ata_port_operations.
3016 *
3017 * LOCKING:
3018 * spin_lock_irqsave(host lock)
3019 */
ata_bmdma_stop(struct ata_queued_cmd * qc)3020 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3021 {
3022 struct ata_port *ap = qc->ap;
3023 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3024
3025 /* clear start/stop bit */
3026 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3027 mmio + ATA_DMA_CMD);
3028
3029 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3030 ata_sff_dma_pause(ap);
3031 }
3032 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3033
3034 /**
3035 * ata_bmdma_status - Read PCI IDE BMDMA status
3036 * @ap: Port associated with this ATA transaction.
3037 *
3038 * Read and return BMDMA status register.
3039 *
3040 * May be used as the bmdma_status() entry in ata_port_operations.
3041 *
3042 * LOCKING:
3043 * spin_lock_irqsave(host lock)
3044 */
ata_bmdma_status(struct ata_port * ap)3045 u8 ata_bmdma_status(struct ata_port *ap)
3046 {
3047 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3048 }
3049 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3050
3051
3052 /**
3053 * ata_bmdma_port_start - Set port up for bmdma.
3054 * @ap: Port to initialize
3055 *
3056 * Called just after data structures for each port are
3057 * initialized. Allocates space for PRD table.
3058 *
3059 * May be used as the port_start() entry in ata_port_operations.
3060 *
3061 * LOCKING:
3062 * Inherited from caller.
3063 */
ata_bmdma_port_start(struct ata_port * ap)3064 int ata_bmdma_port_start(struct ata_port *ap)
3065 {
3066 if (ap->mwdma_mask || ap->udma_mask) {
3067 ap->bmdma_prd =
3068 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3069 &ap->bmdma_prd_dma, GFP_KERNEL);
3070 if (!ap->bmdma_prd)
3071 return -ENOMEM;
3072 }
3073
3074 return 0;
3075 }
3076 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3077
3078 /**
3079 * ata_bmdma_port_start32 - Set port up for dma.
3080 * @ap: Port to initialize
3081 *
3082 * Called just after data structures for each port are
3083 * initialized. Enables 32bit PIO and allocates space for PRD
3084 * table.
3085 *
3086 * May be used as the port_start() entry in ata_port_operations for
3087 * devices that are capable of 32bit PIO.
3088 *
3089 * LOCKING:
3090 * Inherited from caller.
3091 */
ata_bmdma_port_start32(struct ata_port * ap)3092 int ata_bmdma_port_start32(struct ata_port *ap)
3093 {
3094 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3095 return ata_bmdma_port_start(ap);
3096 }
3097 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3098
3099 #ifdef CONFIG_PCI
3100
3101 /**
3102 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3103 * @pdev: PCI device
3104 *
3105 * Some PCI ATA devices report simplex mode but in fact can be told to
3106 * enter non simplex mode. This implements the necessary logic to
3107 * perform the task on such devices. Calling it on other devices will
3108 * have -undefined- behaviour.
3109 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3110 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3111 {
3112 unsigned long bmdma = pci_resource_start(pdev, 4);
3113 u8 simplex;
3114
3115 if (bmdma == 0)
3116 return -ENOENT;
3117
3118 simplex = inb(bmdma + 0x02);
3119 outb(simplex & 0x60, bmdma + 0x02);
3120 simplex = inb(bmdma + 0x02);
3121 if (simplex & 0x80)
3122 return -EOPNOTSUPP;
3123 return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3126
ata_bmdma_nodma(struct ata_host * host,const char * reason)3127 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3128 {
3129 int i;
3130
3131 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3132
3133 for (i = 0; i < 2; i++) {
3134 host->ports[i]->mwdma_mask = 0;
3135 host->ports[i]->udma_mask = 0;
3136 }
3137 }
3138
3139 /**
3140 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3141 * @host: target ATA host
3142 *
3143 * Acquire PCI BMDMA resources and initialize @host accordingly.
3144 *
3145 * LOCKING:
3146 * Inherited from calling layer (may sleep).
3147 */
ata_pci_bmdma_init(struct ata_host * host)3148 void ata_pci_bmdma_init(struct ata_host *host)
3149 {
3150 struct device *gdev = host->dev;
3151 struct pci_dev *pdev = to_pci_dev(gdev);
3152 int i, rc;
3153
3154 /* No BAR4 allocation: No DMA */
3155 if (pci_resource_start(pdev, 4) == 0) {
3156 ata_bmdma_nodma(host, "BAR4 is zero");
3157 return;
3158 }
3159
3160 /*
3161 * Some controllers require BMDMA region to be initialized
3162 * even if DMA is not in use to clear IRQ status via
3163 * ->sff_irq_clear method. Try to initialize bmdma_addr
3164 * regardless of dma masks.
3165 */
3166 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3167 if (rc)
3168 ata_bmdma_nodma(host, "failed to set dma mask");
3169 if (!rc) {
3170 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3171 if (rc)
3172 ata_bmdma_nodma(host,
3173 "failed to set consistent dma mask");
3174 }
3175
3176 /* request and iomap DMA region */
3177 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3178 if (rc) {
3179 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3180 return;
3181 }
3182 host->iomap = pcim_iomap_table(pdev);
3183
3184 for (i = 0; i < 2; i++) {
3185 struct ata_port *ap = host->ports[i];
3186 void __iomem *bmdma = host->iomap[4] + 8 * i;
3187
3188 if (ata_port_is_dummy(ap))
3189 continue;
3190
3191 ap->ioaddr.bmdma_addr = bmdma;
3192 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3193 (ioread8(bmdma + 2) & 0x80))
3194 host->flags |= ATA_HOST_SIMPLEX;
3195
3196 ata_port_desc(ap, "bmdma 0x%llx",
3197 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3198 }
3199 }
3200 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3201
3202 /**
3203 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3204 * @pdev: target PCI device
3205 * @ppi: array of port_info, must be enough for two ports
3206 * @r_host: out argument for the initialized ATA host
3207 *
3208 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3209 * resources and initialize it accordingly in one go.
3210 *
3211 * LOCKING:
3212 * Inherited from calling layer (may sleep).
3213 *
3214 * RETURNS:
3215 * 0 on success, -errno otherwise.
3216 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3217 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3218 const struct ata_port_info * const * ppi,
3219 struct ata_host **r_host)
3220 {
3221 int rc;
3222
3223 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3224 if (rc)
3225 return rc;
3226
3227 ata_pci_bmdma_init(*r_host);
3228 return 0;
3229 }
3230 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3231
3232 /**
3233 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3234 * @pdev: Controller to be initialized
3235 * @ppi: array of port_info, must be enough for two ports
3236 * @sht: scsi_host_template to use when registering the host
3237 * @host_priv: host private_data
3238 * @hflags: host flags
3239 *
3240 * This function is similar to ata_pci_sff_init_one() but also
3241 * takes care of BMDMA initialization.
3242 *
3243 * LOCKING:
3244 * Inherited from PCI layer (may sleep).
3245 *
3246 * RETURNS:
3247 * Zero on success, negative on errno-based value on error.
3248 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3249 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3250 const struct ata_port_info * const * ppi,
3251 struct scsi_host_template *sht, void *host_priv,
3252 int hflags)
3253 {
3254 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3255 }
3256 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3257
3258 #endif /* CONFIG_PCI */
3259 #endif /* CONFIG_ATA_BMDMA */
3260
3261 /**
3262 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3263 * @ap: Port to initialize
3264 *
3265 * Called on port allocation to initialize SFF/BMDMA specific
3266 * fields.
3267 *
3268 * LOCKING:
3269 * None.
3270 */
ata_sff_port_init(struct ata_port * ap)3271 void ata_sff_port_init(struct ata_port *ap)
3272 {
3273 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3274 ap->ctl = ATA_DEVCTL_OBS;
3275 ap->last_ctl = 0xFF;
3276 }
3277
ata_sff_init(void)3278 int __init ata_sff_init(void)
3279 {
3280 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3281 if (!ata_sff_wq)
3282 return -ENOMEM;
3283
3284 return 0;
3285 }
3286
ata_sff_exit(void)3287 void ata_sff_exit(void)
3288 {
3289 destroy_workqueue(ata_sff_wq);
3290 }
3291