1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2006 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21
22 #include "libata.h"
23
24 static struct workqueue_struct *ata_sff_wq;
25
26 const struct ata_port_operations ata_sff_port_ops = {
27 .inherits = &ata_base_port_ops,
28
29 .qc_prep = ata_noop_qc_prep,
30 .qc_issue = ata_sff_qc_issue,
31 .qc_fill_rtf = ata_sff_qc_fill_rtf,
32
33 .freeze = ata_sff_freeze,
34 .thaw = ata_sff_thaw,
35 .prereset = ata_sff_prereset,
36 .softreset = ata_sff_softreset,
37 .hardreset = sata_sff_hardreset,
38 .postreset = ata_sff_postreset,
39 .error_handler = ata_sff_error_handler,
40
41 .sff_dev_select = ata_sff_dev_select,
42 .sff_check_status = ata_sff_check_status,
43 .sff_tf_load = ata_sff_tf_load,
44 .sff_tf_read = ata_sff_tf_read,
45 .sff_exec_command = ata_sff_exec_command,
46 .sff_data_xfer = ata_sff_data_xfer,
47 .sff_drain_fifo = ata_sff_drain_fifo,
48
49 .lost_interrupt = ata_sff_lost_interrupt,
50 };
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52
53 /**
54 * ata_sff_check_status - Read device status reg & clear interrupt
55 * @ap: port where the device is
56 *
57 * Reads ATA taskfile status register for currently-selected device
58 * and return its value. This also clears pending interrupts
59 * from this device
60 *
61 * LOCKING:
62 * Inherited from caller.
63 */
ata_sff_check_status(struct ata_port * ap)64 u8 ata_sff_check_status(struct ata_port *ap)
65 {
66 return ioread8(ap->ioaddr.status_addr);
67 }
68 EXPORT_SYMBOL_GPL(ata_sff_check_status);
69
70 /**
71 * ata_sff_altstatus - Read device alternate status reg
72 * @ap: port where the device is
73 *
74 * Reads ATA taskfile alternate status register for
75 * currently-selected device and return its value.
76 *
77 * Note: may NOT be used as the check_altstatus() entry in
78 * ata_port_operations.
79 *
80 * LOCKING:
81 * Inherited from caller.
82 */
ata_sff_altstatus(struct ata_port * ap)83 static u8 ata_sff_altstatus(struct ata_port *ap)
84 {
85 if (ap->ops->sff_check_altstatus)
86 return ap->ops->sff_check_altstatus(ap);
87
88 return ioread8(ap->ioaddr.altstatus_addr);
89 }
90
91 /**
92 * ata_sff_irq_status - Check if the device is busy
93 * @ap: port where the device is
94 *
95 * Determine if the port is currently busy. Uses altstatus
96 * if available in order to avoid clearing shared IRQ status
97 * when finding an IRQ source. Non ctl capable devices don't
98 * share interrupt lines fortunately for us.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
ata_sff_irq_status(struct ata_port * ap)103 static u8 ata_sff_irq_status(struct ata_port *ap)
104 {
105 u8 status;
106
107 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
108 status = ata_sff_altstatus(ap);
109 /* Not us: We are busy */
110 if (status & ATA_BUSY)
111 return status;
112 }
113 /* Clear INTRQ latch */
114 status = ap->ops->sff_check_status(ap);
115 return status;
116 }
117
118 /**
119 * ata_sff_sync - Flush writes
120 * @ap: Port to wait for.
121 *
122 * CAUTION:
123 * If we have an mmio device with no ctl and no altstatus
124 * method this will fail. No such devices are known to exist.
125 *
126 * LOCKING:
127 * Inherited from caller.
128 */
129
ata_sff_sync(struct ata_port * ap)130 static void ata_sff_sync(struct ata_port *ap)
131 {
132 if (ap->ops->sff_check_altstatus)
133 ap->ops->sff_check_altstatus(ap);
134 else if (ap->ioaddr.altstatus_addr)
135 ioread8(ap->ioaddr.altstatus_addr);
136 }
137
138 /**
139 * ata_sff_pause - Flush writes and wait 400nS
140 * @ap: Port to pause for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
ata_sff_pause(struct ata_port * ap)150 void ata_sff_pause(struct ata_port *ap)
151 {
152 ata_sff_sync(ap);
153 ndelay(400);
154 }
155 EXPORT_SYMBOL_GPL(ata_sff_pause);
156
157 /**
158 * ata_sff_dma_pause - Pause before commencing DMA
159 * @ap: Port to pause for.
160 *
161 * Perform I/O fencing and ensure sufficient cycle delays occur
162 * for the HDMA1:0 transition
163 */
164
ata_sff_dma_pause(struct ata_port * ap)165 void ata_sff_dma_pause(struct ata_port *ap)
166 {
167 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
168 /* An altstatus read will cause the needed delay without
169 messing up the IRQ status */
170 ata_sff_altstatus(ap);
171 return;
172 }
173 /* There are no DMA controllers without ctl. BUG here to ensure
174 we never violate the HDMA1:0 transition timing and risk
175 corruption. */
176 BUG();
177 }
178 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
179
180 /**
181 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
182 * @ap: port containing status register to be polled
183 * @tmout_pat: impatience timeout in msecs
184 * @tmout: overall timeout in msecs
185 *
186 * Sleep until ATA Status register bit BSY clears,
187 * or a timeout occurs.
188 *
189 * LOCKING:
190 * Kernel thread context (may sleep).
191 *
192 * RETURNS:
193 * 0 on success, -errno otherwise.
194 */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)195 int ata_sff_busy_sleep(struct ata_port *ap,
196 unsigned long tmout_pat, unsigned long tmout)
197 {
198 unsigned long timer_start, timeout;
199 u8 status;
200
201 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
202 timer_start = jiffies;
203 timeout = ata_deadline(timer_start, tmout_pat);
204 while (status != 0xff && (status & ATA_BUSY) &&
205 time_before(jiffies, timeout)) {
206 ata_msleep(ap, 50);
207 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
208 }
209
210 if (status != 0xff && (status & ATA_BUSY))
211 ata_port_warn(ap,
212 "port is slow to respond, please be patient (Status 0x%x)\n",
213 status);
214
215 timeout = ata_deadline(timer_start, tmout);
216 while (status != 0xff && (status & ATA_BUSY) &&
217 time_before(jiffies, timeout)) {
218 ata_msleep(ap, 50);
219 status = ap->ops->sff_check_status(ap);
220 }
221
222 if (status == 0xff)
223 return -ENODEV;
224
225 if (status & ATA_BUSY) {
226 ata_port_err(ap,
227 "port failed to respond (%lu secs, Status 0x%x)\n",
228 DIV_ROUND_UP(tmout, 1000), status);
229 return -EBUSY;
230 }
231
232 return 0;
233 }
234 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
235
ata_sff_check_ready(struct ata_link * link)236 static int ata_sff_check_ready(struct ata_link *link)
237 {
238 u8 status = link->ap->ops->sff_check_status(link->ap);
239
240 return ata_check_ready(status);
241 }
242
243 /**
244 * ata_sff_wait_ready - sleep until BSY clears, or timeout
245 * @link: SFF link to wait ready status for
246 * @deadline: deadline jiffies for the operation
247 *
248 * Sleep until ATA Status register bit BSY clears, or timeout
249 * occurs.
250 *
251 * LOCKING:
252 * Kernel thread context (may sleep).
253 *
254 * RETURNS:
255 * 0 on success, -errno otherwise.
256 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)257 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
258 {
259 return ata_wait_ready(link, deadline, ata_sff_check_ready);
260 }
261 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
262
263 /**
264 * ata_sff_set_devctl - Write device control reg
265 * @ap: port where the device is
266 * @ctl: value to write
267 *
268 * Writes ATA taskfile device control register.
269 *
270 * Note: may NOT be used as the sff_set_devctl() entry in
271 * ata_port_operations.
272 *
273 * LOCKING:
274 * Inherited from caller.
275 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)276 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
277 {
278 if (ap->ops->sff_set_devctl)
279 ap->ops->sff_set_devctl(ap, ctl);
280 else
281 iowrite8(ctl, ap->ioaddr.ctl_addr);
282 }
283
284 /**
285 * ata_sff_dev_select - Select device 0/1 on ATA bus
286 * @ap: ATA channel to manipulate
287 * @device: ATA device (numbered from zero) to select
288 *
289 * Use the method defined in the ATA specification to
290 * make either device 0, or device 1, active on the
291 * ATA channel. Works with both PIO and MMIO.
292 *
293 * May be used as the dev_select() entry in ata_port_operations.
294 *
295 * LOCKING:
296 * caller.
297 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)298 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
299 {
300 u8 tmp;
301
302 if (device == 0)
303 tmp = ATA_DEVICE_OBS;
304 else
305 tmp = ATA_DEVICE_OBS | ATA_DEV1;
306
307 iowrite8(tmp, ap->ioaddr.device_addr);
308 ata_sff_pause(ap); /* needed; also flushes, for mmio */
309 }
310 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
311
312 /**
313 * ata_dev_select - Select device 0/1 on ATA bus
314 * @ap: ATA channel to manipulate
315 * @device: ATA device (numbered from zero) to select
316 * @wait: non-zero to wait for Status register BSY bit to clear
317 * @can_sleep: non-zero if context allows sleeping
318 *
319 * Use the method defined in the ATA specification to
320 * make either device 0, or device 1, active on the
321 * ATA channel.
322 *
323 * This is a high-level version of ata_sff_dev_select(), which
324 * additionally provides the services of inserting the proper
325 * pauses and status polling, where needed.
326 *
327 * LOCKING:
328 * caller.
329 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)330 static void ata_dev_select(struct ata_port *ap, unsigned int device,
331 unsigned int wait, unsigned int can_sleep)
332 {
333 if (ata_msg_probe(ap))
334 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
335 device, wait);
336
337 if (wait)
338 ata_wait_idle(ap);
339
340 ap->ops->sff_dev_select(ap, device);
341
342 if (wait) {
343 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
344 ata_msleep(ap, 150);
345 ata_wait_idle(ap);
346 }
347 }
348
349 /**
350 * ata_sff_irq_on - Enable interrupts on a port.
351 * @ap: Port on which interrupts are enabled.
352 *
353 * Enable interrupts on a legacy IDE device using MMIO or PIO,
354 * wait for idle, clear any pending interrupts.
355 *
356 * Note: may NOT be used as the sff_irq_on() entry in
357 * ata_port_operations.
358 *
359 * LOCKING:
360 * Inherited from caller.
361 */
ata_sff_irq_on(struct ata_port * ap)362 void ata_sff_irq_on(struct ata_port *ap)
363 {
364 struct ata_ioports *ioaddr = &ap->ioaddr;
365
366 if (ap->ops->sff_irq_on) {
367 ap->ops->sff_irq_on(ap);
368 return;
369 }
370
371 ap->ctl &= ~ATA_NIEN;
372 ap->last_ctl = ap->ctl;
373
374 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
375 ata_sff_set_devctl(ap, ap->ctl);
376 ata_wait_idle(ap);
377
378 if (ap->ops->sff_irq_clear)
379 ap->ops->sff_irq_clear(ap);
380 }
381 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
382
383 /**
384 * ata_sff_tf_load - send taskfile registers to host controller
385 * @ap: Port to which output is sent
386 * @tf: ATA taskfile register set
387 *
388 * Outputs ATA taskfile to standard ATA host controller.
389 *
390 * LOCKING:
391 * Inherited from caller.
392 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)393 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
394 {
395 struct ata_ioports *ioaddr = &ap->ioaddr;
396 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
397
398 if (tf->ctl != ap->last_ctl) {
399 if (ioaddr->ctl_addr)
400 iowrite8(tf->ctl, ioaddr->ctl_addr);
401 ap->last_ctl = tf->ctl;
402 ata_wait_idle(ap);
403 }
404
405 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
406 WARN_ON_ONCE(!ioaddr->ctl_addr);
407 iowrite8(tf->hob_feature, ioaddr->feature_addr);
408 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
409 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
410 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
411 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
412 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
413 tf->hob_feature,
414 tf->hob_nsect,
415 tf->hob_lbal,
416 tf->hob_lbam,
417 tf->hob_lbah);
418 }
419
420 if (is_addr) {
421 iowrite8(tf->feature, ioaddr->feature_addr);
422 iowrite8(tf->nsect, ioaddr->nsect_addr);
423 iowrite8(tf->lbal, ioaddr->lbal_addr);
424 iowrite8(tf->lbam, ioaddr->lbam_addr);
425 iowrite8(tf->lbah, ioaddr->lbah_addr);
426 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
427 tf->feature,
428 tf->nsect,
429 tf->lbal,
430 tf->lbam,
431 tf->lbah);
432 }
433
434 if (tf->flags & ATA_TFLAG_DEVICE) {
435 iowrite8(tf->device, ioaddr->device_addr);
436 VPRINTK("device 0x%X\n", tf->device);
437 }
438
439 ata_wait_idle(ap);
440 }
441 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
442
443 /**
444 * ata_sff_tf_read - input device's ATA taskfile shadow registers
445 * @ap: Port from which input is read
446 * @tf: ATA taskfile register set for storing input
447 *
448 * Reads ATA taskfile registers for currently-selected device
449 * into @tf. Assumes the device has a fully SFF compliant task file
450 * layout and behaviour. If you device does not (eg has a different
451 * status method) then you will need to provide a replacement tf_read
452 *
453 * LOCKING:
454 * Inherited from caller.
455 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)456 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
457 {
458 struct ata_ioports *ioaddr = &ap->ioaddr;
459
460 tf->command = ata_sff_check_status(ap);
461 tf->feature = ioread8(ioaddr->error_addr);
462 tf->nsect = ioread8(ioaddr->nsect_addr);
463 tf->lbal = ioread8(ioaddr->lbal_addr);
464 tf->lbam = ioread8(ioaddr->lbam_addr);
465 tf->lbah = ioread8(ioaddr->lbah_addr);
466 tf->device = ioread8(ioaddr->device_addr);
467
468 if (tf->flags & ATA_TFLAG_LBA48) {
469 if (likely(ioaddr->ctl_addr)) {
470 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
471 tf->hob_feature = ioread8(ioaddr->error_addr);
472 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
473 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
474 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
475 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
476 iowrite8(tf->ctl, ioaddr->ctl_addr);
477 ap->last_ctl = tf->ctl;
478 } else
479 WARN_ON_ONCE(1);
480 }
481 }
482 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
483
484 /**
485 * ata_sff_exec_command - issue ATA command to host controller
486 * @ap: port to which command is being issued
487 * @tf: ATA taskfile register set
488 *
489 * Issues ATA command, with proper synchronization with interrupt
490 * handler / other threads.
491 *
492 * LOCKING:
493 * spin_lock_irqsave(host lock)
494 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)495 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
496 {
497 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
498
499 iowrite8(tf->command, ap->ioaddr.command_addr);
500 ata_sff_pause(ap);
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
503
504 /**
505 * ata_tf_to_host - issue ATA taskfile to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA taskfile register set to ATA host controller,
510 * with proper synchronization with interrupt handler and
511 * other threads.
512 *
513 * LOCKING:
514 * spin_lock_irqsave(host lock)
515 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)516 static inline void ata_tf_to_host(struct ata_port *ap,
517 const struct ata_taskfile *tf)
518 {
519 ap->ops->sff_tf_load(ap, tf);
520 ap->ops->sff_exec_command(ap, tf);
521 }
522
523 /**
524 * ata_sff_data_xfer - Transfer data by PIO
525 * @qc: queued command
526 * @buf: data buffer
527 * @buflen: buffer length
528 * @rw: read/write
529 *
530 * Transfer data from/to the device data register by PIO.
531 *
532 * LOCKING:
533 * Inherited from caller.
534 *
535 * RETURNS:
536 * Bytes consumed.
537 */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)538 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
539 unsigned int buflen, int rw)
540 {
541 struct ata_port *ap = qc->dev->link->ap;
542 void __iomem *data_addr = ap->ioaddr.data_addr;
543 unsigned int words = buflen >> 1;
544
545 /* Transfer multiple of 2 bytes */
546 if (rw == READ)
547 ioread16_rep(data_addr, buf, words);
548 else
549 iowrite16_rep(data_addr, buf, words);
550
551 /* Transfer trailing byte, if any. */
552 if (unlikely(buflen & 0x01)) {
553 unsigned char pad[2] = { };
554
555 /* Point buf to the tail of buffer */
556 buf += buflen - 1;
557
558 /*
559 * Use io*16_rep() accessors here as well to avoid pointlessly
560 * swapping bytes to and from on the big endian machines...
561 */
562 if (rw == READ) {
563 ioread16_rep(data_addr, pad, 1);
564 *buf = pad[0];
565 } else {
566 pad[0] = *buf;
567 iowrite16_rep(data_addr, pad, 1);
568 }
569 words++;
570 }
571
572 return words << 1;
573 }
574 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
575
576 /**
577 * ata_sff_data_xfer32 - Transfer data by PIO
578 * @qc: queued command
579 * @buf: data buffer
580 * @buflen: buffer length
581 * @rw: read/write
582 *
583 * Transfer data from/to the device data register by PIO using 32bit
584 * I/O operations.
585 *
586 * LOCKING:
587 * Inherited from caller.
588 *
589 * RETURNS:
590 * Bytes consumed.
591 */
592
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)593 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
594 unsigned int buflen, int rw)
595 {
596 struct ata_device *dev = qc->dev;
597 struct ata_port *ap = dev->link->ap;
598 void __iomem *data_addr = ap->ioaddr.data_addr;
599 unsigned int words = buflen >> 2;
600 int slop = buflen & 3;
601
602 if (!(ap->pflags & ATA_PFLAG_PIO32))
603 return ata_sff_data_xfer(qc, buf, buflen, rw);
604
605 /* Transfer multiple of 4 bytes */
606 if (rw == READ)
607 ioread32_rep(data_addr, buf, words);
608 else
609 iowrite32_rep(data_addr, buf, words);
610
611 /* Transfer trailing bytes, if any */
612 if (unlikely(slop)) {
613 unsigned char pad[4] = { };
614
615 /* Point buf to the tail of buffer */
616 buf += buflen - slop;
617
618 /*
619 * Use io*_rep() accessors here as well to avoid pointlessly
620 * swapping bytes to and from on the big endian machines...
621 */
622 if (rw == READ) {
623 if (slop < 3)
624 ioread16_rep(data_addr, pad, 1);
625 else
626 ioread32_rep(data_addr, pad, 1);
627 memcpy(buf, pad, slop);
628 } else {
629 memcpy(pad, buf, slop);
630 if (slop < 3)
631 iowrite16_rep(data_addr, pad, 1);
632 else
633 iowrite32_rep(data_addr, pad, 1);
634 }
635 }
636 return (buflen + 1) & ~1;
637 }
638 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
639
640 /**
641 * ata_pio_sector - Transfer a sector of data.
642 * @qc: Command on going
643 *
644 * Transfer qc->sect_size bytes of data from/to the ATA device.
645 *
646 * LOCKING:
647 * Inherited from caller.
648 */
ata_pio_sector(struct ata_queued_cmd * qc)649 static void ata_pio_sector(struct ata_queued_cmd *qc)
650 {
651 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
652 struct ata_port *ap = qc->ap;
653 struct page *page;
654 unsigned int offset;
655 unsigned char *buf;
656
657 if (!qc->cursg) {
658 qc->curbytes = qc->nbytes;
659 return;
660 }
661 if (qc->curbytes == qc->nbytes - qc->sect_size)
662 ap->hsm_task_state = HSM_ST_LAST;
663
664 page = sg_page(qc->cursg);
665 offset = qc->cursg->offset + qc->cursg_ofs;
666
667 /* get the current page and offset */
668 page = nth_page(page, (offset >> PAGE_SHIFT));
669 offset %= PAGE_SIZE;
670
671 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
672
673 /* do the actual data transfer */
674 buf = kmap_atomic(page);
675 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
676 kunmap_atomic(buf);
677
678 if (!do_write && !PageSlab(page))
679 flush_dcache_page(page);
680
681 qc->curbytes += qc->sect_size;
682 qc->cursg_ofs += qc->sect_size;
683
684 if (qc->cursg_ofs == qc->cursg->length) {
685 qc->cursg = sg_next(qc->cursg);
686 if (!qc->cursg)
687 ap->hsm_task_state = HSM_ST_LAST;
688 qc->cursg_ofs = 0;
689 }
690 }
691
692 /**
693 * ata_pio_sectors - Transfer one or many sectors.
694 * @qc: Command on going
695 *
696 * Transfer one or many sectors of data from/to the
697 * ATA device for the DRQ request.
698 *
699 * LOCKING:
700 * Inherited from caller.
701 */
ata_pio_sectors(struct ata_queued_cmd * qc)702 static void ata_pio_sectors(struct ata_queued_cmd *qc)
703 {
704 if (is_multi_taskfile(&qc->tf)) {
705 /* READ/WRITE MULTIPLE */
706 unsigned int nsect;
707
708 WARN_ON_ONCE(qc->dev->multi_count == 0);
709
710 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
711 qc->dev->multi_count);
712 while (nsect--)
713 ata_pio_sector(qc);
714 } else
715 ata_pio_sector(qc);
716
717 ata_sff_sync(qc->ap); /* flush */
718 }
719
720 /**
721 * atapi_send_cdb - Write CDB bytes to hardware
722 * @ap: Port to which ATAPI device is attached.
723 * @qc: Taskfile currently active
724 *
725 * When device has indicated its readiness to accept
726 * a CDB, this function is called. Send the CDB.
727 *
728 * LOCKING:
729 * caller.
730 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)731 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
732 {
733 /* send SCSI cdb */
734 DPRINTK("send cdb\n");
735 WARN_ON_ONCE(qc->dev->cdb_len < 12);
736
737 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
738 ata_sff_sync(ap);
739 /* FIXME: If the CDB is for DMA do we need to do the transition delay
740 or is bmdma_start guaranteed to do it ? */
741 switch (qc->tf.protocol) {
742 case ATAPI_PROT_PIO:
743 ap->hsm_task_state = HSM_ST;
744 break;
745 case ATAPI_PROT_NODATA:
746 ap->hsm_task_state = HSM_ST_LAST;
747 break;
748 #ifdef CONFIG_ATA_BMDMA
749 case ATAPI_PROT_DMA:
750 ap->hsm_task_state = HSM_ST_LAST;
751 /* initiate bmdma */
752 ap->ops->bmdma_start(qc);
753 break;
754 #endif /* CONFIG_ATA_BMDMA */
755 default:
756 BUG();
757 }
758 }
759
760 /**
761 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
762 * @qc: Command on going
763 * @bytes: number of bytes
764 *
765 * Transfer Transfer data from/to the ATAPI device.
766 *
767 * LOCKING:
768 * Inherited from caller.
769 *
770 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)771 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
772 {
773 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
774 struct ata_port *ap = qc->ap;
775 struct ata_device *dev = qc->dev;
776 struct ata_eh_info *ehi = &dev->link->eh_info;
777 struct scatterlist *sg;
778 struct page *page;
779 unsigned char *buf;
780 unsigned int offset, count, consumed;
781
782 next_sg:
783 sg = qc->cursg;
784 if (unlikely(!sg)) {
785 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
786 "buf=%u cur=%u bytes=%u",
787 qc->nbytes, qc->curbytes, bytes);
788 return -1;
789 }
790
791 page = sg_page(sg);
792 offset = sg->offset + qc->cursg_ofs;
793
794 /* get the current page and offset */
795 page = nth_page(page, (offset >> PAGE_SHIFT));
796 offset %= PAGE_SIZE;
797
798 /* don't overrun current sg */
799 count = min(sg->length - qc->cursg_ofs, bytes);
800
801 /* don't cross page boundaries */
802 count = min(count, (unsigned int)PAGE_SIZE - offset);
803
804 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
805
806 /* do the actual data transfer */
807 buf = kmap_atomic(page);
808 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
809 kunmap_atomic(buf);
810
811 bytes -= min(bytes, consumed);
812 qc->curbytes += count;
813 qc->cursg_ofs += count;
814
815 if (qc->cursg_ofs == sg->length) {
816 qc->cursg = sg_next(qc->cursg);
817 qc->cursg_ofs = 0;
818 }
819
820 /*
821 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
822 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
823 * check correctly as it doesn't know if it is the last request being
824 * made. Somebody should implement a proper sanity check.
825 */
826 if (bytes)
827 goto next_sg;
828 return 0;
829 }
830
831 /**
832 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
833 * @qc: Command on going
834 *
835 * Transfer Transfer data from/to the ATAPI device.
836 *
837 * LOCKING:
838 * Inherited from caller.
839 */
atapi_pio_bytes(struct ata_queued_cmd * qc)840 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
841 {
842 struct ata_port *ap = qc->ap;
843 struct ata_device *dev = qc->dev;
844 struct ata_eh_info *ehi = &dev->link->eh_info;
845 unsigned int ireason, bc_lo, bc_hi, bytes;
846 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
847
848 /* Abuse qc->result_tf for temp storage of intermediate TF
849 * here to save some kernel stack usage.
850 * For normal completion, qc->result_tf is not relevant. For
851 * error, qc->result_tf is later overwritten by ata_qc_complete().
852 * So, the correctness of qc->result_tf is not affected.
853 */
854 ap->ops->sff_tf_read(ap, &qc->result_tf);
855 ireason = qc->result_tf.nsect;
856 bc_lo = qc->result_tf.lbam;
857 bc_hi = qc->result_tf.lbah;
858 bytes = (bc_hi << 8) | bc_lo;
859
860 /* shall be cleared to zero, indicating xfer of data */
861 if (unlikely(ireason & ATAPI_COD))
862 goto atapi_check;
863
864 /* make sure transfer direction matches expected */
865 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
866 if (unlikely(do_write != i_write))
867 goto atapi_check;
868
869 if (unlikely(!bytes))
870 goto atapi_check;
871
872 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
873
874 if (unlikely(__atapi_pio_bytes(qc, bytes)))
875 goto err_out;
876 ata_sff_sync(ap); /* flush */
877
878 return;
879
880 atapi_check:
881 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
882 ireason, bytes);
883 err_out:
884 qc->err_mask |= AC_ERR_HSM;
885 ap->hsm_task_state = HSM_ST_ERR;
886 }
887
888 /**
889 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
890 * @ap: the target ata_port
891 * @qc: qc on going
892 *
893 * RETURNS:
894 * 1 if ok in workqueue, 0 otherwise.
895 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)896 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
897 struct ata_queued_cmd *qc)
898 {
899 if (qc->tf.flags & ATA_TFLAG_POLLING)
900 return 1;
901
902 if (ap->hsm_task_state == HSM_ST_FIRST) {
903 if (qc->tf.protocol == ATA_PROT_PIO &&
904 (qc->tf.flags & ATA_TFLAG_WRITE))
905 return 1;
906
907 if (ata_is_atapi(qc->tf.protocol) &&
908 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
909 return 1;
910 }
911
912 return 0;
913 }
914
915 /**
916 * ata_hsm_qc_complete - finish a qc running on standard HSM
917 * @qc: Command to complete
918 * @in_wq: 1 if called from workqueue, 0 otherwise
919 *
920 * Finish @qc which is running on standard HSM.
921 *
922 * LOCKING:
923 * If @in_wq is zero, spin_lock_irqsave(host lock).
924 * Otherwise, none on entry and grabs host lock.
925 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)926 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
927 {
928 struct ata_port *ap = qc->ap;
929
930 if (ap->ops->error_handler) {
931 if (in_wq) {
932 /* EH might have kicked in while host lock is
933 * released.
934 */
935 qc = ata_qc_from_tag(ap, qc->tag);
936 if (qc) {
937 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
938 ata_sff_irq_on(ap);
939 ata_qc_complete(qc);
940 } else
941 ata_port_freeze(ap);
942 }
943 } else {
944 if (likely(!(qc->err_mask & AC_ERR_HSM)))
945 ata_qc_complete(qc);
946 else
947 ata_port_freeze(ap);
948 }
949 } else {
950 if (in_wq) {
951 ata_sff_irq_on(ap);
952 ata_qc_complete(qc);
953 } else
954 ata_qc_complete(qc);
955 }
956 }
957
958 /**
959 * ata_sff_hsm_move - move the HSM to the next state.
960 * @ap: the target ata_port
961 * @qc: qc on going
962 * @status: current device status
963 * @in_wq: 1 if called from workqueue, 0 otherwise
964 *
965 * RETURNS:
966 * 1 when poll next status needed, 0 otherwise.
967 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)968 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
969 u8 status, int in_wq)
970 {
971 struct ata_link *link = qc->dev->link;
972 struct ata_eh_info *ehi = &link->eh_info;
973 int poll_next;
974
975 lockdep_assert_held(ap->lock);
976
977 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
978
979 /* Make sure ata_sff_qc_issue() does not throw things
980 * like DMA polling into the workqueue. Notice that
981 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
982 */
983 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
984
985 fsm_start:
986 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
987 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
988
989 switch (ap->hsm_task_state) {
990 case HSM_ST_FIRST:
991 /* Send first data block or PACKET CDB */
992
993 /* If polling, we will stay in the work queue after
994 * sending the data. Otherwise, interrupt handler
995 * takes over after sending the data.
996 */
997 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
998
999 /* check device status */
1000 if (unlikely((status & ATA_DRQ) == 0)) {
1001 /* handle BSY=0, DRQ=0 as error */
1002 if (likely(status & (ATA_ERR | ATA_DF)))
1003 /* device stops HSM for abort/error */
1004 qc->err_mask |= AC_ERR_DEV;
1005 else {
1006 /* HSM violation. Let EH handle this */
1007 ata_ehi_push_desc(ehi,
1008 "ST_FIRST: !(DRQ|ERR|DF)");
1009 qc->err_mask |= AC_ERR_HSM;
1010 }
1011
1012 ap->hsm_task_state = HSM_ST_ERR;
1013 goto fsm_start;
1014 }
1015
1016 /* Device should not ask for data transfer (DRQ=1)
1017 * when it finds something wrong.
1018 * We ignore DRQ here and stop the HSM by
1019 * changing hsm_task_state to HSM_ST_ERR and
1020 * let the EH abort the command or reset the device.
1021 */
1022 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1023 /* Some ATAPI tape drives forget to clear the ERR bit
1024 * when doing the next command (mostly request sense).
1025 * We ignore ERR here to workaround and proceed sending
1026 * the CDB.
1027 */
1028 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1029 ata_ehi_push_desc(ehi, "ST_FIRST: "
1030 "DRQ=1 with device error, "
1031 "dev_stat 0x%X", status);
1032 qc->err_mask |= AC_ERR_HSM;
1033 ap->hsm_task_state = HSM_ST_ERR;
1034 goto fsm_start;
1035 }
1036 }
1037
1038 if (qc->tf.protocol == ATA_PROT_PIO) {
1039 /* PIO data out protocol.
1040 * send first data block.
1041 */
1042
1043 /* ata_pio_sectors() might change the state
1044 * to HSM_ST_LAST. so, the state is changed here
1045 * before ata_pio_sectors().
1046 */
1047 ap->hsm_task_state = HSM_ST;
1048 ata_pio_sectors(qc);
1049 } else
1050 /* send CDB */
1051 atapi_send_cdb(ap, qc);
1052
1053 /* if polling, ata_sff_pio_task() handles the rest.
1054 * otherwise, interrupt handler takes over from here.
1055 */
1056 break;
1057
1058 case HSM_ST:
1059 /* complete command or read/write the data register */
1060 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1061 /* ATAPI PIO protocol */
1062 if ((status & ATA_DRQ) == 0) {
1063 /* No more data to transfer or device error.
1064 * Device error will be tagged in HSM_ST_LAST.
1065 */
1066 ap->hsm_task_state = HSM_ST_LAST;
1067 goto fsm_start;
1068 }
1069
1070 /* Device should not ask for data transfer (DRQ=1)
1071 * when it finds something wrong.
1072 * We ignore DRQ here and stop the HSM by
1073 * changing hsm_task_state to HSM_ST_ERR and
1074 * let the EH abort the command or reset the device.
1075 */
1076 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1077 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1078 "DRQ=1 with device error, "
1079 "dev_stat 0x%X", status);
1080 qc->err_mask |= AC_ERR_HSM;
1081 ap->hsm_task_state = HSM_ST_ERR;
1082 goto fsm_start;
1083 }
1084
1085 atapi_pio_bytes(qc);
1086
1087 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1088 /* bad ireason reported by device */
1089 goto fsm_start;
1090
1091 } else {
1092 /* ATA PIO protocol */
1093 if (unlikely((status & ATA_DRQ) == 0)) {
1094 /* handle BSY=0, DRQ=0 as error */
1095 if (likely(status & (ATA_ERR | ATA_DF))) {
1096 /* device stops HSM for abort/error */
1097 qc->err_mask |= AC_ERR_DEV;
1098
1099 /* If diagnostic failed and this is
1100 * IDENTIFY, it's likely a phantom
1101 * device. Mark hint.
1102 */
1103 if (qc->dev->horkage &
1104 ATA_HORKAGE_DIAGNOSTIC)
1105 qc->err_mask |=
1106 AC_ERR_NODEV_HINT;
1107 } else {
1108 /* HSM violation. Let EH handle this.
1109 * Phantom devices also trigger this
1110 * condition. Mark hint.
1111 */
1112 ata_ehi_push_desc(ehi, "ST-ATA: "
1113 "DRQ=0 without device error, "
1114 "dev_stat 0x%X", status);
1115 qc->err_mask |= AC_ERR_HSM |
1116 AC_ERR_NODEV_HINT;
1117 }
1118
1119 ap->hsm_task_state = HSM_ST_ERR;
1120 goto fsm_start;
1121 }
1122
1123 /* For PIO reads, some devices may ask for
1124 * data transfer (DRQ=1) alone with ERR=1.
1125 * We respect DRQ here and transfer one
1126 * block of junk data before changing the
1127 * hsm_task_state to HSM_ST_ERR.
1128 *
1129 * For PIO writes, ERR=1 DRQ=1 doesn't make
1130 * sense since the data block has been
1131 * transferred to the device.
1132 */
1133 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1134 /* data might be corrputed */
1135 qc->err_mask |= AC_ERR_DEV;
1136
1137 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1138 ata_pio_sectors(qc);
1139 status = ata_wait_idle(ap);
1140 }
1141
1142 if (status & (ATA_BUSY | ATA_DRQ)) {
1143 ata_ehi_push_desc(ehi, "ST-ATA: "
1144 "BUSY|DRQ persists on ERR|DF, "
1145 "dev_stat 0x%X", status);
1146 qc->err_mask |= AC_ERR_HSM;
1147 }
1148
1149 /* There are oddball controllers with
1150 * status register stuck at 0x7f and
1151 * lbal/m/h at zero which makes it
1152 * pass all other presence detection
1153 * mechanisms we have. Set NODEV_HINT
1154 * for it. Kernel bz#7241.
1155 */
1156 if (status == 0x7f)
1157 qc->err_mask |= AC_ERR_NODEV_HINT;
1158
1159 /* ata_pio_sectors() might change the
1160 * state to HSM_ST_LAST. so, the state
1161 * is changed after ata_pio_sectors().
1162 */
1163 ap->hsm_task_state = HSM_ST_ERR;
1164 goto fsm_start;
1165 }
1166
1167 ata_pio_sectors(qc);
1168
1169 if (ap->hsm_task_state == HSM_ST_LAST &&
1170 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1171 /* all data read */
1172 status = ata_wait_idle(ap);
1173 goto fsm_start;
1174 }
1175 }
1176
1177 poll_next = 1;
1178 break;
1179
1180 case HSM_ST_LAST:
1181 if (unlikely(!ata_ok(status))) {
1182 qc->err_mask |= __ac_err_mask(status);
1183 ap->hsm_task_state = HSM_ST_ERR;
1184 goto fsm_start;
1185 }
1186
1187 /* no more data to transfer */
1188 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1189 ap->print_id, qc->dev->devno, status);
1190
1191 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1192
1193 ap->hsm_task_state = HSM_ST_IDLE;
1194
1195 /* complete taskfile transaction */
1196 ata_hsm_qc_complete(qc, in_wq);
1197
1198 poll_next = 0;
1199 break;
1200
1201 case HSM_ST_ERR:
1202 ap->hsm_task_state = HSM_ST_IDLE;
1203
1204 /* complete taskfile transaction */
1205 ata_hsm_qc_complete(qc, in_wq);
1206
1207 poll_next = 0;
1208 break;
1209 default:
1210 poll_next = 0;
1211 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1212 ap->print_id, ap->hsm_task_state);
1213 }
1214
1215 return poll_next;
1216 }
1217 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1218
ata_sff_queue_work(struct work_struct * work)1219 void ata_sff_queue_work(struct work_struct *work)
1220 {
1221 queue_work(ata_sff_wq, work);
1222 }
1223 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1224
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1225 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1226 {
1227 queue_delayed_work(ata_sff_wq, dwork, delay);
1228 }
1229 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1230
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1231 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1232 {
1233 struct ata_port *ap = link->ap;
1234
1235 WARN_ON((ap->sff_pio_task_link != NULL) &&
1236 (ap->sff_pio_task_link != link));
1237 ap->sff_pio_task_link = link;
1238
1239 /* may fail if ata_sff_flush_pio_task() in progress */
1240 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1241 }
1242 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1243
ata_sff_flush_pio_task(struct ata_port * ap)1244 void ata_sff_flush_pio_task(struct ata_port *ap)
1245 {
1246 DPRINTK("ENTER\n");
1247
1248 cancel_delayed_work_sync(&ap->sff_pio_task);
1249
1250 /*
1251 * We wanna reset the HSM state to IDLE. If we do so without
1252 * grabbing the port lock, critical sections protected by it which
1253 * expect the HSM state to stay stable may get surprised. For
1254 * example, we may set IDLE in between the time
1255 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1256 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1257 */
1258 spin_lock_irq(ap->lock);
1259 ap->hsm_task_state = HSM_ST_IDLE;
1260 spin_unlock_irq(ap->lock);
1261
1262 ap->sff_pio_task_link = NULL;
1263
1264 if (ata_msg_ctl(ap))
1265 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1266 }
1267
ata_sff_pio_task(struct work_struct * work)1268 static void ata_sff_pio_task(struct work_struct *work)
1269 {
1270 struct ata_port *ap =
1271 container_of(work, struct ata_port, sff_pio_task.work);
1272 struct ata_link *link = ap->sff_pio_task_link;
1273 struct ata_queued_cmd *qc;
1274 u8 status;
1275 int poll_next;
1276
1277 spin_lock_irq(ap->lock);
1278
1279 BUG_ON(ap->sff_pio_task_link == NULL);
1280 /* qc can be NULL if timeout occurred */
1281 qc = ata_qc_from_tag(ap, link->active_tag);
1282 if (!qc) {
1283 ap->sff_pio_task_link = NULL;
1284 goto out_unlock;
1285 }
1286
1287 fsm_start:
1288 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1289
1290 /*
1291 * This is purely heuristic. This is a fast path.
1292 * Sometimes when we enter, BSY will be cleared in
1293 * a chk-status or two. If not, the drive is probably seeking
1294 * or something. Snooze for a couple msecs, then
1295 * chk-status again. If still busy, queue delayed work.
1296 */
1297 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1298 if (status & ATA_BUSY) {
1299 spin_unlock_irq(ap->lock);
1300 ata_msleep(ap, 2);
1301 spin_lock_irq(ap->lock);
1302
1303 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1304 if (status & ATA_BUSY) {
1305 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1306 goto out_unlock;
1307 }
1308 }
1309
1310 /*
1311 * hsm_move() may trigger another command to be processed.
1312 * clean the link beforehand.
1313 */
1314 ap->sff_pio_task_link = NULL;
1315 /* move the HSM */
1316 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1317
1318 /* another command or interrupt handler
1319 * may be running at this point.
1320 */
1321 if (poll_next)
1322 goto fsm_start;
1323 out_unlock:
1324 spin_unlock_irq(ap->lock);
1325 }
1326
1327 /**
1328 * ata_sff_qc_issue - issue taskfile to a SFF controller
1329 * @qc: command to issue to device
1330 *
1331 * This function issues a PIO or NODATA command to a SFF
1332 * controller.
1333 *
1334 * LOCKING:
1335 * spin_lock_irqsave(host lock)
1336 *
1337 * RETURNS:
1338 * Zero on success, AC_ERR_* mask on failure
1339 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1340 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1341 {
1342 struct ata_port *ap = qc->ap;
1343 struct ata_link *link = qc->dev->link;
1344
1345 /* Use polling pio if the LLD doesn't handle
1346 * interrupt driven pio and atapi CDB interrupt.
1347 */
1348 if (ap->flags & ATA_FLAG_PIO_POLLING)
1349 qc->tf.flags |= ATA_TFLAG_POLLING;
1350
1351 /* select the device */
1352 ata_dev_select(ap, qc->dev->devno, 1, 0);
1353
1354 /* start the command */
1355 switch (qc->tf.protocol) {
1356 case ATA_PROT_NODATA:
1357 if (qc->tf.flags & ATA_TFLAG_POLLING)
1358 ata_qc_set_polling(qc);
1359
1360 ata_tf_to_host(ap, &qc->tf);
1361 ap->hsm_task_state = HSM_ST_LAST;
1362
1363 if (qc->tf.flags & ATA_TFLAG_POLLING)
1364 ata_sff_queue_pio_task(link, 0);
1365
1366 break;
1367
1368 case ATA_PROT_PIO:
1369 if (qc->tf.flags & ATA_TFLAG_POLLING)
1370 ata_qc_set_polling(qc);
1371
1372 ata_tf_to_host(ap, &qc->tf);
1373
1374 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1375 /* PIO data out protocol */
1376 ap->hsm_task_state = HSM_ST_FIRST;
1377 ata_sff_queue_pio_task(link, 0);
1378
1379 /* always send first data block using the
1380 * ata_sff_pio_task() codepath.
1381 */
1382 } else {
1383 /* PIO data in protocol */
1384 ap->hsm_task_state = HSM_ST;
1385
1386 if (qc->tf.flags & ATA_TFLAG_POLLING)
1387 ata_sff_queue_pio_task(link, 0);
1388
1389 /* if polling, ata_sff_pio_task() handles the
1390 * rest. otherwise, interrupt handler takes
1391 * over from here.
1392 */
1393 }
1394
1395 break;
1396
1397 case ATAPI_PROT_PIO:
1398 case ATAPI_PROT_NODATA:
1399 if (qc->tf.flags & ATA_TFLAG_POLLING)
1400 ata_qc_set_polling(qc);
1401
1402 ata_tf_to_host(ap, &qc->tf);
1403
1404 ap->hsm_task_state = HSM_ST_FIRST;
1405
1406 /* send cdb by polling if no cdb interrupt */
1407 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1408 (qc->tf.flags & ATA_TFLAG_POLLING))
1409 ata_sff_queue_pio_task(link, 0);
1410 break;
1411
1412 default:
1413 return AC_ERR_SYSTEM;
1414 }
1415
1416 return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1419
1420 /**
1421 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1422 * @qc: qc to fill result TF for
1423 *
1424 * @qc is finished and result TF needs to be filled. Fill it
1425 * using ->sff_tf_read.
1426 *
1427 * LOCKING:
1428 * spin_lock_irqsave(host lock)
1429 *
1430 * RETURNS:
1431 * true indicating that result TF is successfully filled.
1432 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1433 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1434 {
1435 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1436 return true;
1437 }
1438 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1439
ata_sff_idle_irq(struct ata_port * ap)1440 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1441 {
1442 ap->stats.idle_irq++;
1443
1444 #ifdef ATA_IRQ_TRAP
1445 if ((ap->stats.idle_irq % 1000) == 0) {
1446 ap->ops->sff_check_status(ap);
1447 if (ap->ops->sff_irq_clear)
1448 ap->ops->sff_irq_clear(ap);
1449 ata_port_warn(ap, "irq trap\n");
1450 return 1;
1451 }
1452 #endif
1453 return 0; /* irq not handled */
1454 }
1455
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1456 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1457 struct ata_queued_cmd *qc,
1458 bool hsmv_on_idle)
1459 {
1460 u8 status;
1461
1462 VPRINTK("ata%u: protocol %d task_state %d\n",
1463 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1464
1465 /* Check whether we are expecting interrupt in this state */
1466 switch (ap->hsm_task_state) {
1467 case HSM_ST_FIRST:
1468 /* Some pre-ATAPI-4 devices assert INTRQ
1469 * at this state when ready to receive CDB.
1470 */
1471
1472 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1473 * The flag was turned on only for atapi devices. No
1474 * need to check ata_is_atapi(qc->tf.protocol) again.
1475 */
1476 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1477 return ata_sff_idle_irq(ap);
1478 break;
1479 case HSM_ST_IDLE:
1480 return ata_sff_idle_irq(ap);
1481 default:
1482 break;
1483 }
1484
1485 /* check main status, clearing INTRQ if needed */
1486 status = ata_sff_irq_status(ap);
1487 if (status & ATA_BUSY) {
1488 if (hsmv_on_idle) {
1489 /* BMDMA engine is already stopped, we're screwed */
1490 qc->err_mask |= AC_ERR_HSM;
1491 ap->hsm_task_state = HSM_ST_ERR;
1492 } else
1493 return ata_sff_idle_irq(ap);
1494 }
1495
1496 /* clear irq events */
1497 if (ap->ops->sff_irq_clear)
1498 ap->ops->sff_irq_clear(ap);
1499
1500 ata_sff_hsm_move(ap, qc, status, 0);
1501
1502 return 1; /* irq handled */
1503 }
1504
1505 /**
1506 * ata_sff_port_intr - Handle SFF port interrupt
1507 * @ap: Port on which interrupt arrived (possibly...)
1508 * @qc: Taskfile currently active in engine
1509 *
1510 * Handle port interrupt for given queued command.
1511 *
1512 * LOCKING:
1513 * spin_lock_irqsave(host lock)
1514 *
1515 * RETURNS:
1516 * One if interrupt was handled, zero if not (shared irq).
1517 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1518 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1519 {
1520 return __ata_sff_port_intr(ap, qc, false);
1521 }
1522 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1523
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1524 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1525 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1526 {
1527 struct ata_host *host = dev_instance;
1528 bool retried = false;
1529 unsigned int i;
1530 unsigned int handled, idle, polling;
1531 unsigned long flags;
1532
1533 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1534 spin_lock_irqsave(&host->lock, flags);
1535
1536 retry:
1537 handled = idle = polling = 0;
1538 for (i = 0; i < host->n_ports; i++) {
1539 struct ata_port *ap = host->ports[i];
1540 struct ata_queued_cmd *qc;
1541
1542 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1543 if (qc) {
1544 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1545 handled |= port_intr(ap, qc);
1546 else
1547 polling |= 1 << i;
1548 } else
1549 idle |= 1 << i;
1550 }
1551
1552 /*
1553 * If no port was expecting IRQ but the controller is actually
1554 * asserting IRQ line, nobody cared will ensue. Check IRQ
1555 * pending status if available and clear spurious IRQ.
1556 */
1557 if (!handled && !retried) {
1558 bool retry = false;
1559
1560 for (i = 0; i < host->n_ports; i++) {
1561 struct ata_port *ap = host->ports[i];
1562
1563 if (polling & (1 << i))
1564 continue;
1565
1566 if (!ap->ops->sff_irq_check ||
1567 !ap->ops->sff_irq_check(ap))
1568 continue;
1569
1570 if (idle & (1 << i)) {
1571 ap->ops->sff_check_status(ap);
1572 if (ap->ops->sff_irq_clear)
1573 ap->ops->sff_irq_clear(ap);
1574 } else {
1575 /* clear INTRQ and check if BUSY cleared */
1576 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1577 retry |= true;
1578 /*
1579 * With command in flight, we can't do
1580 * sff_irq_clear() w/o racing with completion.
1581 */
1582 }
1583 }
1584
1585 if (retry) {
1586 retried = true;
1587 goto retry;
1588 }
1589 }
1590
1591 spin_unlock_irqrestore(&host->lock, flags);
1592
1593 return IRQ_RETVAL(handled);
1594 }
1595
1596 /**
1597 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1598 * @irq: irq line (unused)
1599 * @dev_instance: pointer to our ata_host information structure
1600 *
1601 * Default interrupt handler for PCI IDE devices. Calls
1602 * ata_sff_port_intr() for each port that is not disabled.
1603 *
1604 * LOCKING:
1605 * Obtains host lock during operation.
1606 *
1607 * RETURNS:
1608 * IRQ_NONE or IRQ_HANDLED.
1609 */
ata_sff_interrupt(int irq,void * dev_instance)1610 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1611 {
1612 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1613 }
1614 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1615
1616 /**
1617 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1618 * @ap: port that appears to have timed out
1619 *
1620 * Called from the libata error handlers when the core code suspects
1621 * an interrupt has been lost. If it has complete anything we can and
1622 * then return. Interface must support altstatus for this faster
1623 * recovery to occur.
1624 *
1625 * Locking:
1626 * Caller holds host lock
1627 */
1628
ata_sff_lost_interrupt(struct ata_port * ap)1629 void ata_sff_lost_interrupt(struct ata_port *ap)
1630 {
1631 u8 status;
1632 struct ata_queued_cmd *qc;
1633
1634 /* Only one outstanding command per SFF channel */
1635 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1636 /* We cannot lose an interrupt on a non-existent or polled command */
1637 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1638 return;
1639 /* See if the controller thinks it is still busy - if so the command
1640 isn't a lost IRQ but is still in progress */
1641 status = ata_sff_altstatus(ap);
1642 if (status & ATA_BUSY)
1643 return;
1644
1645 /* There was a command running, we are no longer busy and we have
1646 no interrupt. */
1647 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1648 status);
1649 /* Run the host interrupt logic as if the interrupt had not been
1650 lost */
1651 ata_sff_port_intr(ap, qc);
1652 }
1653 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1654
1655 /**
1656 * ata_sff_freeze - Freeze SFF controller port
1657 * @ap: port to freeze
1658 *
1659 * Freeze SFF controller port.
1660 *
1661 * LOCKING:
1662 * Inherited from caller.
1663 */
ata_sff_freeze(struct ata_port * ap)1664 void ata_sff_freeze(struct ata_port *ap)
1665 {
1666 ap->ctl |= ATA_NIEN;
1667 ap->last_ctl = ap->ctl;
1668
1669 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1670 ata_sff_set_devctl(ap, ap->ctl);
1671
1672 /* Under certain circumstances, some controllers raise IRQ on
1673 * ATA_NIEN manipulation. Also, many controllers fail to mask
1674 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1675 */
1676 ap->ops->sff_check_status(ap);
1677
1678 if (ap->ops->sff_irq_clear)
1679 ap->ops->sff_irq_clear(ap);
1680 }
1681 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1682
1683 /**
1684 * ata_sff_thaw - Thaw SFF controller port
1685 * @ap: port to thaw
1686 *
1687 * Thaw SFF controller port.
1688 *
1689 * LOCKING:
1690 * Inherited from caller.
1691 */
ata_sff_thaw(struct ata_port * ap)1692 void ata_sff_thaw(struct ata_port *ap)
1693 {
1694 /* clear & re-enable interrupts */
1695 ap->ops->sff_check_status(ap);
1696 if (ap->ops->sff_irq_clear)
1697 ap->ops->sff_irq_clear(ap);
1698 ata_sff_irq_on(ap);
1699 }
1700 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1701
1702 /**
1703 * ata_sff_prereset - prepare SFF link for reset
1704 * @link: SFF link to be reset
1705 * @deadline: deadline jiffies for the operation
1706 *
1707 * SFF link @link is about to be reset. Initialize it. It first
1708 * calls ata_std_prereset() and wait for !BSY if the port is
1709 * being softreset.
1710 *
1711 * LOCKING:
1712 * Kernel thread context (may sleep)
1713 *
1714 * RETURNS:
1715 * 0 on success, -errno otherwise.
1716 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1717 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1718 {
1719 struct ata_eh_context *ehc = &link->eh_context;
1720 int rc;
1721
1722 rc = ata_std_prereset(link, deadline);
1723 if (rc)
1724 return rc;
1725
1726 /* if we're about to do hardreset, nothing more to do */
1727 if (ehc->i.action & ATA_EH_HARDRESET)
1728 return 0;
1729
1730 /* wait for !BSY if we don't know that no device is attached */
1731 if (!ata_link_offline(link)) {
1732 rc = ata_sff_wait_ready(link, deadline);
1733 if (rc && rc != -ENODEV) {
1734 ata_link_warn(link,
1735 "device not ready (errno=%d), forcing hardreset\n",
1736 rc);
1737 ehc->i.action |= ATA_EH_HARDRESET;
1738 }
1739 }
1740
1741 return 0;
1742 }
1743 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1744
1745 /**
1746 * ata_devchk - PATA device presence detection
1747 * @ap: ATA channel to examine
1748 * @device: Device to examine (starting at zero)
1749 *
1750 * This technique was originally described in
1751 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1752 * later found its way into the ATA/ATAPI spec.
1753 *
1754 * Write a pattern to the ATA shadow registers,
1755 * and if a device is present, it will respond by
1756 * correctly storing and echoing back the
1757 * ATA shadow register contents.
1758 *
1759 * LOCKING:
1760 * caller.
1761 */
ata_devchk(struct ata_port * ap,unsigned int device)1762 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1763 {
1764 struct ata_ioports *ioaddr = &ap->ioaddr;
1765 u8 nsect, lbal;
1766
1767 ap->ops->sff_dev_select(ap, device);
1768
1769 iowrite8(0x55, ioaddr->nsect_addr);
1770 iowrite8(0xaa, ioaddr->lbal_addr);
1771
1772 iowrite8(0xaa, ioaddr->nsect_addr);
1773 iowrite8(0x55, ioaddr->lbal_addr);
1774
1775 iowrite8(0x55, ioaddr->nsect_addr);
1776 iowrite8(0xaa, ioaddr->lbal_addr);
1777
1778 nsect = ioread8(ioaddr->nsect_addr);
1779 lbal = ioread8(ioaddr->lbal_addr);
1780
1781 if ((nsect == 0x55) && (lbal == 0xaa))
1782 return 1; /* we found a device */
1783
1784 return 0; /* nothing found */
1785 }
1786
1787 /**
1788 * ata_sff_dev_classify - Parse returned ATA device signature
1789 * @dev: ATA device to classify (starting at zero)
1790 * @present: device seems present
1791 * @r_err: Value of error register on completion
1792 *
1793 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1794 * an ATA/ATAPI-defined set of values is placed in the ATA
1795 * shadow registers, indicating the results of device detection
1796 * and diagnostics.
1797 *
1798 * Select the ATA device, and read the values from the ATA shadow
1799 * registers. Then parse according to the Error register value,
1800 * and the spec-defined values examined by ata_dev_classify().
1801 *
1802 * LOCKING:
1803 * caller.
1804 *
1805 * RETURNS:
1806 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1807 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1808 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1809 u8 *r_err)
1810 {
1811 struct ata_port *ap = dev->link->ap;
1812 struct ata_taskfile tf;
1813 unsigned int class;
1814 u8 err;
1815
1816 ap->ops->sff_dev_select(ap, dev->devno);
1817
1818 memset(&tf, 0, sizeof(tf));
1819
1820 ap->ops->sff_tf_read(ap, &tf);
1821 err = tf.feature;
1822 if (r_err)
1823 *r_err = err;
1824
1825 /* see if device passed diags: continue and warn later */
1826 if (err == 0)
1827 /* diagnostic fail : do nothing _YET_ */
1828 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1829 else if (err == 1)
1830 /* do nothing */ ;
1831 else if ((dev->devno == 0) && (err == 0x81))
1832 /* do nothing */ ;
1833 else
1834 return ATA_DEV_NONE;
1835
1836 /* determine if device is ATA or ATAPI */
1837 class = ata_dev_classify(&tf);
1838
1839 if (class == ATA_DEV_UNKNOWN) {
1840 /* If the device failed diagnostic, it's likely to
1841 * have reported incorrect device signature too.
1842 * Assume ATA device if the device seems present but
1843 * device signature is invalid with diagnostic
1844 * failure.
1845 */
1846 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1847 class = ATA_DEV_ATA;
1848 else
1849 class = ATA_DEV_NONE;
1850 } else if ((class == ATA_DEV_ATA) &&
1851 (ap->ops->sff_check_status(ap) == 0))
1852 class = ATA_DEV_NONE;
1853
1854 return class;
1855 }
1856 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1857
1858 /**
1859 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1860 * @link: SFF link which is just reset
1861 * @devmask: mask of present devices
1862 * @deadline: deadline jiffies for the operation
1863 *
1864 * Wait devices attached to SFF @link to become ready after
1865 * reset. It contains preceding 150ms wait to avoid accessing TF
1866 * status register too early.
1867 *
1868 * LOCKING:
1869 * Kernel thread context (may sleep).
1870 *
1871 * RETURNS:
1872 * 0 on success, -ENODEV if some or all of devices in @devmask
1873 * don't seem to exist. -errno on other errors.
1874 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1875 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1876 unsigned long deadline)
1877 {
1878 struct ata_port *ap = link->ap;
1879 struct ata_ioports *ioaddr = &ap->ioaddr;
1880 unsigned int dev0 = devmask & (1 << 0);
1881 unsigned int dev1 = devmask & (1 << 1);
1882 int rc, ret = 0;
1883
1884 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1885
1886 /* always check readiness of the master device */
1887 rc = ata_sff_wait_ready(link, deadline);
1888 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1889 * and TF status is 0xff, bail out on it too.
1890 */
1891 if (rc)
1892 return rc;
1893
1894 /* if device 1 was found in ata_devchk, wait for register
1895 * access briefly, then wait for BSY to clear.
1896 */
1897 if (dev1) {
1898 int i;
1899
1900 ap->ops->sff_dev_select(ap, 1);
1901
1902 /* Wait for register access. Some ATAPI devices fail
1903 * to set nsect/lbal after reset, so don't waste too
1904 * much time on it. We're gonna wait for !BSY anyway.
1905 */
1906 for (i = 0; i < 2; i++) {
1907 u8 nsect, lbal;
1908
1909 nsect = ioread8(ioaddr->nsect_addr);
1910 lbal = ioread8(ioaddr->lbal_addr);
1911 if ((nsect == 1) && (lbal == 1))
1912 break;
1913 ata_msleep(ap, 50); /* give drive a breather */
1914 }
1915
1916 rc = ata_sff_wait_ready(link, deadline);
1917 if (rc) {
1918 if (rc != -ENODEV)
1919 return rc;
1920 ret = rc;
1921 }
1922 }
1923
1924 /* is all this really necessary? */
1925 ap->ops->sff_dev_select(ap, 0);
1926 if (dev1)
1927 ap->ops->sff_dev_select(ap, 1);
1928 if (dev0)
1929 ap->ops->sff_dev_select(ap, 0);
1930
1931 return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1934
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1935 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1936 unsigned long deadline)
1937 {
1938 struct ata_ioports *ioaddr = &ap->ioaddr;
1939
1940 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1941
1942 if (ap->ioaddr.ctl_addr) {
1943 /* software reset. causes dev0 to be selected */
1944 iowrite8(ap->ctl, ioaddr->ctl_addr);
1945 udelay(20); /* FIXME: flush */
1946 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1947 udelay(20); /* FIXME: flush */
1948 iowrite8(ap->ctl, ioaddr->ctl_addr);
1949 ap->last_ctl = ap->ctl;
1950 }
1951
1952 /* wait the port to become ready */
1953 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1954 }
1955
1956 /**
1957 * ata_sff_softreset - reset host port via ATA SRST
1958 * @link: ATA link to reset
1959 * @classes: resulting classes of attached devices
1960 * @deadline: deadline jiffies for the operation
1961 *
1962 * Reset host port using ATA SRST.
1963 *
1964 * LOCKING:
1965 * Kernel thread context (may sleep)
1966 *
1967 * RETURNS:
1968 * 0 on success, -errno otherwise.
1969 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)1970 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1971 unsigned long deadline)
1972 {
1973 struct ata_port *ap = link->ap;
1974 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1975 unsigned int devmask = 0;
1976 int rc;
1977 u8 err;
1978
1979 DPRINTK("ENTER\n");
1980
1981 /* determine if device 0/1 are present */
1982 if (ata_devchk(ap, 0))
1983 devmask |= (1 << 0);
1984 if (slave_possible && ata_devchk(ap, 1))
1985 devmask |= (1 << 1);
1986
1987 /* select device 0 again */
1988 ap->ops->sff_dev_select(ap, 0);
1989
1990 /* issue bus reset */
1991 DPRINTK("about to softreset, devmask=%x\n", devmask);
1992 rc = ata_bus_softreset(ap, devmask, deadline);
1993 /* if link is occupied, -ENODEV too is an error */
1994 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1995 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1996 return rc;
1997 }
1998
1999 /* determine by signature whether we have ATA or ATAPI devices */
2000 classes[0] = ata_sff_dev_classify(&link->device[0],
2001 devmask & (1 << 0), &err);
2002 if (slave_possible && err != 0x81)
2003 classes[1] = ata_sff_dev_classify(&link->device[1],
2004 devmask & (1 << 1), &err);
2005
2006 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2007 return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2010
2011 /**
2012 * sata_sff_hardreset - reset host port via SATA phy reset
2013 * @link: link to reset
2014 * @class: resulting class of attached device
2015 * @deadline: deadline jiffies for the operation
2016 *
2017 * SATA phy-reset host port using DET bits of SControl register,
2018 * wait for !BSY and classify the attached device.
2019 *
2020 * LOCKING:
2021 * Kernel thread context (may sleep)
2022 *
2023 * RETURNS:
2024 * 0 on success, -errno otherwise.
2025 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2026 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2027 unsigned long deadline)
2028 {
2029 struct ata_eh_context *ehc = &link->eh_context;
2030 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2031 bool online;
2032 int rc;
2033
2034 rc = sata_link_hardreset(link, timing, deadline, &online,
2035 ata_sff_check_ready);
2036 if (online)
2037 *class = ata_sff_dev_classify(link->device, 1, NULL);
2038
2039 DPRINTK("EXIT, class=%u\n", *class);
2040 return rc;
2041 }
2042 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2043
2044 /**
2045 * ata_sff_postreset - SFF postreset callback
2046 * @link: the target SFF ata_link
2047 * @classes: classes of attached devices
2048 *
2049 * This function is invoked after a successful reset. It first
2050 * calls ata_std_postreset() and performs SFF specific postreset
2051 * processing.
2052 *
2053 * LOCKING:
2054 * Kernel thread context (may sleep)
2055 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2056 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2057 {
2058 struct ata_port *ap = link->ap;
2059
2060 ata_std_postreset(link, classes);
2061
2062 /* is double-select really necessary? */
2063 if (classes[0] != ATA_DEV_NONE)
2064 ap->ops->sff_dev_select(ap, 1);
2065 if (classes[1] != ATA_DEV_NONE)
2066 ap->ops->sff_dev_select(ap, 0);
2067
2068 /* bail out if no device is present */
2069 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2070 DPRINTK("EXIT, no device\n");
2071 return;
2072 }
2073
2074 /* set up device control */
2075 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2076 ata_sff_set_devctl(ap, ap->ctl);
2077 ap->last_ctl = ap->ctl;
2078 }
2079 }
2080 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2081
2082 /**
2083 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2084 * @qc: command
2085 *
2086 * Drain the FIFO and device of any stuck data following a command
2087 * failing to complete. In some cases this is necessary before a
2088 * reset will recover the device.
2089 *
2090 */
2091
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2092 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2093 {
2094 int count;
2095 struct ata_port *ap;
2096
2097 /* We only need to flush incoming data when a command was running */
2098 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2099 return;
2100
2101 ap = qc->ap;
2102 /* Drain up to 64K of data before we give up this recovery method */
2103 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2104 && count < 65536; count += 2)
2105 ioread16(ap->ioaddr.data_addr);
2106
2107 /* Can become DEBUG later */
2108 if (count)
2109 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2110
2111 }
2112 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2113
2114 /**
2115 * ata_sff_error_handler - Stock error handler for SFF controller
2116 * @ap: port to handle error for
2117 *
2118 * Stock error handler for SFF controller. It can handle both
2119 * PATA and SATA controllers. Many controllers should be able to
2120 * use this EH as-is or with some added handling before and
2121 * after.
2122 *
2123 * LOCKING:
2124 * Kernel thread context (may sleep)
2125 */
ata_sff_error_handler(struct ata_port * ap)2126 void ata_sff_error_handler(struct ata_port *ap)
2127 {
2128 ata_reset_fn_t softreset = ap->ops->softreset;
2129 ata_reset_fn_t hardreset = ap->ops->hardreset;
2130 struct ata_queued_cmd *qc;
2131 unsigned long flags;
2132
2133 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2134 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2135 qc = NULL;
2136
2137 spin_lock_irqsave(ap->lock, flags);
2138
2139 /*
2140 * We *MUST* do FIFO draining before we issue a reset as
2141 * several devices helpfully clear their internal state and
2142 * will lock solid if we touch the data port post reset. Pass
2143 * qc in case anyone wants to do different PIO/DMA recovery or
2144 * has per command fixups
2145 */
2146 if (ap->ops->sff_drain_fifo)
2147 ap->ops->sff_drain_fifo(qc);
2148
2149 spin_unlock_irqrestore(ap->lock, flags);
2150
2151 /* ignore built-in hardresets if SCR access is not available */
2152 if ((hardreset == sata_std_hardreset ||
2153 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2154 hardreset = NULL;
2155
2156 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2157 ap->ops->postreset);
2158 }
2159 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2160
2161 /**
2162 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2163 * @ioaddr: IO address structure to be initialized
2164 *
2165 * Utility function which initializes data_addr, error_addr,
2166 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2167 * device_addr, status_addr, and command_addr to standard offsets
2168 * relative to cmd_addr.
2169 *
2170 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2171 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2172 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2173 {
2174 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2175 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2176 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2177 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2178 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2179 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2180 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2181 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2182 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2183 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2184 }
2185 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2186
2187 #ifdef CONFIG_PCI
2188
ata_resources_present(struct pci_dev * pdev,int port)2189 static int ata_resources_present(struct pci_dev *pdev, int port)
2190 {
2191 int i;
2192
2193 /* Check the PCI resources for this channel are enabled */
2194 port = port * 2;
2195 for (i = 0; i < 2; i++) {
2196 if (pci_resource_start(pdev, port + i) == 0 ||
2197 pci_resource_len(pdev, port + i) == 0)
2198 return 0;
2199 }
2200 return 1;
2201 }
2202
2203 /**
2204 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2205 * @host: target ATA host
2206 *
2207 * Acquire native PCI ATA resources for @host and initialize the
2208 * first two ports of @host accordingly. Ports marked dummy are
2209 * skipped and allocation failure makes the port dummy.
2210 *
2211 * Note that native PCI resources are valid even for legacy hosts
2212 * as we fix up pdev resources array early in boot, so this
2213 * function can be used for both native and legacy SFF hosts.
2214 *
2215 * LOCKING:
2216 * Inherited from calling layer (may sleep).
2217 *
2218 * RETURNS:
2219 * 0 if at least one port is initialized, -ENODEV if no port is
2220 * available.
2221 */
ata_pci_sff_init_host(struct ata_host * host)2222 int ata_pci_sff_init_host(struct ata_host *host)
2223 {
2224 struct device *gdev = host->dev;
2225 struct pci_dev *pdev = to_pci_dev(gdev);
2226 unsigned int mask = 0;
2227 int i, rc;
2228
2229 /* request, iomap BARs and init port addresses accordingly */
2230 for (i = 0; i < 2; i++) {
2231 struct ata_port *ap = host->ports[i];
2232 int base = i * 2;
2233 void __iomem * const *iomap;
2234
2235 if (ata_port_is_dummy(ap))
2236 continue;
2237
2238 /* Discard disabled ports. Some controllers show
2239 * their unused channels this way. Disabled ports are
2240 * made dummy.
2241 */
2242 if (!ata_resources_present(pdev, i)) {
2243 ap->ops = &ata_dummy_port_ops;
2244 continue;
2245 }
2246
2247 rc = pcim_iomap_regions(pdev, 0x3 << base,
2248 dev_driver_string(gdev));
2249 if (rc) {
2250 dev_warn(gdev,
2251 "failed to request/iomap BARs for port %d (errno=%d)\n",
2252 i, rc);
2253 if (rc == -EBUSY)
2254 pcim_pin_device(pdev);
2255 ap->ops = &ata_dummy_port_ops;
2256 continue;
2257 }
2258 host->iomap = iomap = pcim_iomap_table(pdev);
2259
2260 ap->ioaddr.cmd_addr = iomap[base];
2261 ap->ioaddr.altstatus_addr =
2262 ap->ioaddr.ctl_addr = (void __iomem *)
2263 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2264 ata_sff_std_ports(&ap->ioaddr);
2265
2266 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2267 (unsigned long long)pci_resource_start(pdev, base),
2268 (unsigned long long)pci_resource_start(pdev, base + 1));
2269
2270 mask |= 1 << i;
2271 }
2272
2273 if (!mask) {
2274 dev_err(gdev, "no available native port\n");
2275 return -ENODEV;
2276 }
2277
2278 return 0;
2279 }
2280 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2281
2282 /**
2283 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2284 * @pdev: target PCI device
2285 * @ppi: array of port_info, must be enough for two ports
2286 * @r_host: out argument for the initialized ATA host
2287 *
2288 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2289 * all PCI resources and initialize it accordingly in one go.
2290 *
2291 * LOCKING:
2292 * Inherited from calling layer (may sleep).
2293 *
2294 * RETURNS:
2295 * 0 on success, -errno otherwise.
2296 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2297 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2298 const struct ata_port_info * const *ppi,
2299 struct ata_host **r_host)
2300 {
2301 struct ata_host *host;
2302 int rc;
2303
2304 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2305 return -ENOMEM;
2306
2307 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2308 if (!host) {
2309 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2310 rc = -ENOMEM;
2311 goto err_out;
2312 }
2313
2314 rc = ata_pci_sff_init_host(host);
2315 if (rc)
2316 goto err_out;
2317
2318 devres_remove_group(&pdev->dev, NULL);
2319 *r_host = host;
2320 return 0;
2321
2322 err_out:
2323 devres_release_group(&pdev->dev, NULL);
2324 return rc;
2325 }
2326 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2327
2328 /**
2329 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2330 * @host: target SFF ATA host
2331 * @irq_handler: irq_handler used when requesting IRQ(s)
2332 * @sht: scsi_host_template to use when registering the host
2333 *
2334 * This is the counterpart of ata_host_activate() for SFF ATA
2335 * hosts. This separate helper is necessary because SFF hosts
2336 * use two separate interrupts in legacy mode.
2337 *
2338 * LOCKING:
2339 * Inherited from calling layer (may sleep).
2340 *
2341 * RETURNS:
2342 * 0 on success, -errno otherwise.
2343 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2344 int ata_pci_sff_activate_host(struct ata_host *host,
2345 irq_handler_t irq_handler,
2346 struct scsi_host_template *sht)
2347 {
2348 struct device *dev = host->dev;
2349 struct pci_dev *pdev = to_pci_dev(dev);
2350 const char *drv_name = dev_driver_string(host->dev);
2351 int legacy_mode = 0, rc;
2352
2353 rc = ata_host_start(host);
2354 if (rc)
2355 return rc;
2356
2357 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2358 u8 tmp8, mask = 0;
2359
2360 /*
2361 * ATA spec says we should use legacy mode when one
2362 * port is in legacy mode, but disabled ports on some
2363 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2364 * on which the secondary port is not wired, so
2365 * ignore ports that are marked as 'dummy' during
2366 * this check
2367 */
2368 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2369 if (!ata_port_is_dummy(host->ports[0]))
2370 mask |= (1 << 0);
2371 if (!ata_port_is_dummy(host->ports[1]))
2372 mask |= (1 << 2);
2373 if ((tmp8 & mask) != mask)
2374 legacy_mode = 1;
2375 }
2376
2377 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2378 return -ENOMEM;
2379
2380 if (!legacy_mode && pdev->irq) {
2381 int i;
2382
2383 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2384 IRQF_SHARED, drv_name, host);
2385 if (rc)
2386 goto out;
2387
2388 for (i = 0; i < 2; i++) {
2389 if (ata_port_is_dummy(host->ports[i]))
2390 continue;
2391 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2392 }
2393 } else if (legacy_mode) {
2394 if (!ata_port_is_dummy(host->ports[0])) {
2395 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2396 irq_handler, IRQF_SHARED,
2397 drv_name, host);
2398 if (rc)
2399 goto out;
2400
2401 ata_port_desc(host->ports[0], "irq %d",
2402 ATA_PRIMARY_IRQ(pdev));
2403 }
2404
2405 if (!ata_port_is_dummy(host->ports[1])) {
2406 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2407 irq_handler, IRQF_SHARED,
2408 drv_name, host);
2409 if (rc)
2410 goto out;
2411
2412 ata_port_desc(host->ports[1], "irq %d",
2413 ATA_SECONDARY_IRQ(pdev));
2414 }
2415 }
2416
2417 rc = ata_host_register(host, sht);
2418 out:
2419 if (rc == 0)
2420 devres_remove_group(dev, NULL);
2421 else
2422 devres_release_group(dev, NULL);
2423
2424 return rc;
2425 }
2426 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2427
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2428 static const struct ata_port_info *ata_sff_find_valid_pi(
2429 const struct ata_port_info * const *ppi)
2430 {
2431 int i;
2432
2433 /* look up the first valid port_info */
2434 for (i = 0; i < 2 && ppi[i]; i++)
2435 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2436 return ppi[i];
2437
2438 return NULL;
2439 }
2440
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2441 static int ata_pci_init_one(struct pci_dev *pdev,
2442 const struct ata_port_info * const *ppi,
2443 struct scsi_host_template *sht, void *host_priv,
2444 int hflags, bool bmdma)
2445 {
2446 struct device *dev = &pdev->dev;
2447 const struct ata_port_info *pi;
2448 struct ata_host *host = NULL;
2449 int rc;
2450
2451 DPRINTK("ENTER\n");
2452
2453 pi = ata_sff_find_valid_pi(ppi);
2454 if (!pi) {
2455 dev_err(&pdev->dev, "no valid port_info specified\n");
2456 return -EINVAL;
2457 }
2458
2459 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2460 return -ENOMEM;
2461
2462 rc = pcim_enable_device(pdev);
2463 if (rc)
2464 goto out;
2465
2466 #ifdef CONFIG_ATA_BMDMA
2467 if (bmdma)
2468 /* prepare and activate BMDMA host */
2469 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2470 else
2471 #endif
2472 /* prepare and activate SFF host */
2473 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2474 if (rc)
2475 goto out;
2476 host->private_data = host_priv;
2477 host->flags |= hflags;
2478
2479 #ifdef CONFIG_ATA_BMDMA
2480 if (bmdma) {
2481 pci_set_master(pdev);
2482 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2483 } else
2484 #endif
2485 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2486 out:
2487 if (rc == 0)
2488 devres_remove_group(&pdev->dev, NULL);
2489 else
2490 devres_release_group(&pdev->dev, NULL);
2491
2492 return rc;
2493 }
2494
2495 /**
2496 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2497 * @pdev: Controller to be initialized
2498 * @ppi: array of port_info, must be enough for two ports
2499 * @sht: scsi_host_template to use when registering the host
2500 * @host_priv: host private_data
2501 * @hflag: host flags
2502 *
2503 * This is a helper function which can be called from a driver's
2504 * xxx_init_one() probe function if the hardware uses traditional
2505 * IDE taskfile registers and is PIO only.
2506 *
2507 * ASSUMPTION:
2508 * Nobody makes a single channel controller that appears solely as
2509 * the secondary legacy port on PCI.
2510 *
2511 * LOCKING:
2512 * Inherited from PCI layer (may sleep).
2513 *
2514 * RETURNS:
2515 * Zero on success, negative on errno-based value on error.
2516 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2517 int ata_pci_sff_init_one(struct pci_dev *pdev,
2518 const struct ata_port_info * const *ppi,
2519 struct scsi_host_template *sht, void *host_priv, int hflag)
2520 {
2521 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2522 }
2523 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2524
2525 #endif /* CONFIG_PCI */
2526
2527 /*
2528 * BMDMA support
2529 */
2530
2531 #ifdef CONFIG_ATA_BMDMA
2532
2533 const struct ata_port_operations ata_bmdma_port_ops = {
2534 .inherits = &ata_sff_port_ops,
2535
2536 .error_handler = ata_bmdma_error_handler,
2537 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2538
2539 .qc_prep = ata_bmdma_qc_prep,
2540 .qc_issue = ata_bmdma_qc_issue,
2541
2542 .sff_irq_clear = ata_bmdma_irq_clear,
2543 .bmdma_setup = ata_bmdma_setup,
2544 .bmdma_start = ata_bmdma_start,
2545 .bmdma_stop = ata_bmdma_stop,
2546 .bmdma_status = ata_bmdma_status,
2547
2548 .port_start = ata_bmdma_port_start,
2549 };
2550 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2551
2552 const struct ata_port_operations ata_bmdma32_port_ops = {
2553 .inherits = &ata_bmdma_port_ops,
2554
2555 .sff_data_xfer = ata_sff_data_xfer32,
2556 .port_start = ata_bmdma_port_start32,
2557 };
2558 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2559
2560 /**
2561 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2562 * @qc: Metadata associated with taskfile to be transferred
2563 *
2564 * Fill PCI IDE PRD (scatter-gather) table with segments
2565 * associated with the current disk command.
2566 *
2567 * LOCKING:
2568 * spin_lock_irqsave(host lock)
2569 *
2570 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2571 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2572 {
2573 struct ata_port *ap = qc->ap;
2574 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2575 struct scatterlist *sg;
2576 unsigned int si, pi;
2577
2578 pi = 0;
2579 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2580 u32 addr, offset;
2581 u32 sg_len, len;
2582
2583 /* determine if physical DMA addr spans 64K boundary.
2584 * Note h/w doesn't support 64-bit, so we unconditionally
2585 * truncate dma_addr_t to u32.
2586 */
2587 addr = (u32) sg_dma_address(sg);
2588 sg_len = sg_dma_len(sg);
2589
2590 while (sg_len) {
2591 offset = addr & 0xffff;
2592 len = sg_len;
2593 if ((offset + sg_len) > 0x10000)
2594 len = 0x10000 - offset;
2595
2596 prd[pi].addr = cpu_to_le32(addr);
2597 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2598 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2599
2600 pi++;
2601 sg_len -= len;
2602 addr += len;
2603 }
2604 }
2605
2606 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2607 }
2608
2609 /**
2610 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2611 * @qc: Metadata associated with taskfile to be transferred
2612 *
2613 * Fill PCI IDE PRD (scatter-gather) table with segments
2614 * associated with the current disk command. Perform the fill
2615 * so that we avoid writing any length 64K records for
2616 * controllers that don't follow the spec.
2617 *
2618 * LOCKING:
2619 * spin_lock_irqsave(host lock)
2620 *
2621 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2622 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2623 {
2624 struct ata_port *ap = qc->ap;
2625 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2626 struct scatterlist *sg;
2627 unsigned int si, pi;
2628
2629 pi = 0;
2630 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2631 u32 addr, offset;
2632 u32 sg_len, len, blen;
2633
2634 /* determine if physical DMA addr spans 64K boundary.
2635 * Note h/w doesn't support 64-bit, so we unconditionally
2636 * truncate dma_addr_t to u32.
2637 */
2638 addr = (u32) sg_dma_address(sg);
2639 sg_len = sg_dma_len(sg);
2640
2641 while (sg_len) {
2642 offset = addr & 0xffff;
2643 len = sg_len;
2644 if ((offset + sg_len) > 0x10000)
2645 len = 0x10000 - offset;
2646
2647 blen = len & 0xffff;
2648 prd[pi].addr = cpu_to_le32(addr);
2649 if (blen == 0) {
2650 /* Some PATA chipsets like the CS5530 can't
2651 cope with 0x0000 meaning 64K as the spec
2652 says */
2653 prd[pi].flags_len = cpu_to_le32(0x8000);
2654 blen = 0x8000;
2655 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2656 }
2657 prd[pi].flags_len = cpu_to_le32(blen);
2658 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2659
2660 pi++;
2661 sg_len -= len;
2662 addr += len;
2663 }
2664 }
2665
2666 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2667 }
2668
2669 /**
2670 * ata_bmdma_qc_prep - Prepare taskfile for submission
2671 * @qc: Metadata associated with taskfile to be prepared
2672 *
2673 * Prepare ATA taskfile for submission.
2674 *
2675 * LOCKING:
2676 * spin_lock_irqsave(host lock)
2677 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2678 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2679 {
2680 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2681 return AC_ERR_OK;
2682
2683 ata_bmdma_fill_sg(qc);
2684
2685 return AC_ERR_OK;
2686 }
2687 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2688
2689 /**
2690 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2691 * @qc: Metadata associated with taskfile to be prepared
2692 *
2693 * Prepare ATA taskfile for submission.
2694 *
2695 * LOCKING:
2696 * spin_lock_irqsave(host lock)
2697 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2698 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2699 {
2700 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2701 return AC_ERR_OK;
2702
2703 ata_bmdma_fill_sg_dumb(qc);
2704
2705 return AC_ERR_OK;
2706 }
2707 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2708
2709 /**
2710 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2711 * @qc: command to issue to device
2712 *
2713 * This function issues a PIO, NODATA or DMA command to a
2714 * SFF/BMDMA controller. PIO and NODATA are handled by
2715 * ata_sff_qc_issue().
2716 *
2717 * LOCKING:
2718 * spin_lock_irqsave(host lock)
2719 *
2720 * RETURNS:
2721 * Zero on success, AC_ERR_* mask on failure
2722 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2723 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2724 {
2725 struct ata_port *ap = qc->ap;
2726 struct ata_link *link = qc->dev->link;
2727
2728 /* defer PIO handling to sff_qc_issue */
2729 if (!ata_is_dma(qc->tf.protocol))
2730 return ata_sff_qc_issue(qc);
2731
2732 /* select the device */
2733 ata_dev_select(ap, qc->dev->devno, 1, 0);
2734
2735 /* start the command */
2736 switch (qc->tf.protocol) {
2737 case ATA_PROT_DMA:
2738 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2739
2740 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2741 ap->ops->bmdma_setup(qc); /* set up bmdma */
2742 ap->ops->bmdma_start(qc); /* initiate bmdma */
2743 ap->hsm_task_state = HSM_ST_LAST;
2744 break;
2745
2746 case ATAPI_PROT_DMA:
2747 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2748
2749 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2750 ap->ops->bmdma_setup(qc); /* set up bmdma */
2751 ap->hsm_task_state = HSM_ST_FIRST;
2752
2753 /* send cdb by polling if no cdb interrupt */
2754 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2755 ata_sff_queue_pio_task(link, 0);
2756 break;
2757
2758 default:
2759 WARN_ON(1);
2760 return AC_ERR_SYSTEM;
2761 }
2762
2763 return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2766
2767 /**
2768 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2769 * @ap: Port on which interrupt arrived (possibly...)
2770 * @qc: Taskfile currently active in engine
2771 *
2772 * Handle port interrupt for given queued command.
2773 *
2774 * LOCKING:
2775 * spin_lock_irqsave(host lock)
2776 *
2777 * RETURNS:
2778 * One if interrupt was handled, zero if not (shared irq).
2779 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2780 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2781 {
2782 struct ata_eh_info *ehi = &ap->link.eh_info;
2783 u8 host_stat = 0;
2784 bool bmdma_stopped = false;
2785 unsigned int handled;
2786
2787 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2788 /* check status of DMA engine */
2789 host_stat = ap->ops->bmdma_status(ap);
2790 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2791
2792 /* if it's not our irq... */
2793 if (!(host_stat & ATA_DMA_INTR))
2794 return ata_sff_idle_irq(ap);
2795
2796 /* before we do anything else, clear DMA-Start bit */
2797 ap->ops->bmdma_stop(qc);
2798 bmdma_stopped = true;
2799
2800 if (unlikely(host_stat & ATA_DMA_ERR)) {
2801 /* error when transferring data to/from memory */
2802 qc->err_mask |= AC_ERR_HOST_BUS;
2803 ap->hsm_task_state = HSM_ST_ERR;
2804 }
2805 }
2806
2807 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2808
2809 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2810 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2811
2812 return handled;
2813 }
2814 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2815
2816 /**
2817 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818 * @irq: irq line (unused)
2819 * @dev_instance: pointer to our ata_host information structure
2820 *
2821 * Default interrupt handler for PCI IDE devices. Calls
2822 * ata_bmdma_port_intr() for each port that is not disabled.
2823 *
2824 * LOCKING:
2825 * Obtains host lock during operation.
2826 *
2827 * RETURNS:
2828 * IRQ_NONE or IRQ_HANDLED.
2829 */
ata_bmdma_interrupt(int irq,void * dev_instance)2830 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2831 {
2832 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2833 }
2834 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2835
2836 /**
2837 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838 * @ap: port to handle error for
2839 *
2840 * Stock error handler for BMDMA controller. It can handle both
2841 * PATA and SATA controllers. Most BMDMA controllers should be
2842 * able to use this EH as-is or with some added handling before
2843 * and after.
2844 *
2845 * LOCKING:
2846 * Kernel thread context (may sleep)
2847 */
ata_bmdma_error_handler(struct ata_port * ap)2848 void ata_bmdma_error_handler(struct ata_port *ap)
2849 {
2850 struct ata_queued_cmd *qc;
2851 unsigned long flags;
2852 bool thaw = false;
2853
2854 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2855 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2856 qc = NULL;
2857
2858 /* reset PIO HSM and stop DMA engine */
2859 spin_lock_irqsave(ap->lock, flags);
2860
2861 if (qc && ata_is_dma(qc->tf.protocol)) {
2862 u8 host_stat;
2863
2864 host_stat = ap->ops->bmdma_status(ap);
2865
2866 /* BMDMA controllers indicate host bus error by
2867 * setting DMA_ERR bit and timing out. As it wasn't
2868 * really a timeout event, adjust error mask and
2869 * cancel frozen state.
2870 */
2871 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2872 qc->err_mask = AC_ERR_HOST_BUS;
2873 thaw = true;
2874 }
2875
2876 ap->ops->bmdma_stop(qc);
2877
2878 /* if we're gonna thaw, make sure IRQ is clear */
2879 if (thaw) {
2880 ap->ops->sff_check_status(ap);
2881 if (ap->ops->sff_irq_clear)
2882 ap->ops->sff_irq_clear(ap);
2883 }
2884 }
2885
2886 spin_unlock_irqrestore(ap->lock, flags);
2887
2888 if (thaw)
2889 ata_eh_thaw_port(ap);
2890
2891 ata_sff_error_handler(ap);
2892 }
2893 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2894
2895 /**
2896 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2897 * @qc: internal command to clean up
2898 *
2899 * LOCKING:
2900 * Kernel thread context (may sleep)
2901 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2902 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2903 {
2904 struct ata_port *ap = qc->ap;
2905 unsigned long flags;
2906
2907 if (ata_is_dma(qc->tf.protocol)) {
2908 spin_lock_irqsave(ap->lock, flags);
2909 ap->ops->bmdma_stop(qc);
2910 spin_unlock_irqrestore(ap->lock, flags);
2911 }
2912 }
2913 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2914
2915 /**
2916 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2917 * @ap: Port associated with this ATA transaction.
2918 *
2919 * Clear interrupt and error flags in DMA status register.
2920 *
2921 * May be used as the irq_clear() entry in ata_port_operations.
2922 *
2923 * LOCKING:
2924 * spin_lock_irqsave(host lock)
2925 */
ata_bmdma_irq_clear(struct ata_port * ap)2926 void ata_bmdma_irq_clear(struct ata_port *ap)
2927 {
2928 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2929
2930 if (!mmio)
2931 return;
2932
2933 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2934 }
2935 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2936
2937 /**
2938 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2939 * @qc: Info associated with this ATA transaction.
2940 *
2941 * LOCKING:
2942 * spin_lock_irqsave(host lock)
2943 */
ata_bmdma_setup(struct ata_queued_cmd * qc)2944 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2945 {
2946 struct ata_port *ap = qc->ap;
2947 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2948 u8 dmactl;
2949
2950 /* load PRD table addr. */
2951 mb(); /* make sure PRD table writes are visible to controller */
2952 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2953
2954 /* specify data direction, triple-check start bit is clear */
2955 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2956 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2957 if (!rw)
2958 dmactl |= ATA_DMA_WR;
2959 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2960
2961 /* issue r/w command */
2962 ap->ops->sff_exec_command(ap, &qc->tf);
2963 }
2964 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2965
2966 /**
2967 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2968 * @qc: Info associated with this ATA transaction.
2969 *
2970 * LOCKING:
2971 * spin_lock_irqsave(host lock)
2972 */
ata_bmdma_start(struct ata_queued_cmd * qc)2973 void ata_bmdma_start(struct ata_queued_cmd *qc)
2974 {
2975 struct ata_port *ap = qc->ap;
2976 u8 dmactl;
2977
2978 /* start host DMA transaction */
2979 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2980 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2981
2982 /* Strictly, one may wish to issue an ioread8() here, to
2983 * flush the mmio write. However, control also passes
2984 * to the hardware at this point, and it will interrupt
2985 * us when we are to resume control. So, in effect,
2986 * we don't care when the mmio write flushes.
2987 * Further, a read of the DMA status register _immediately_
2988 * following the write may not be what certain flaky hardware
2989 * is expected, so I think it is best to not add a readb()
2990 * without first all the MMIO ATA cards/mobos.
2991 * Or maybe I'm just being paranoid.
2992 *
2993 * FIXME: The posting of this write means I/O starts are
2994 * unnecessarily delayed for MMIO
2995 */
2996 }
2997 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2998
2999 /**
3000 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3001 * @qc: Command we are ending DMA for
3002 *
3003 * Clears the ATA_DMA_START flag in the dma control register
3004 *
3005 * May be used as the bmdma_stop() entry in ata_port_operations.
3006 *
3007 * LOCKING:
3008 * spin_lock_irqsave(host lock)
3009 */
ata_bmdma_stop(struct ata_queued_cmd * qc)3010 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3011 {
3012 struct ata_port *ap = qc->ap;
3013 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3014
3015 /* clear start/stop bit */
3016 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3017 mmio + ATA_DMA_CMD);
3018
3019 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3020 ata_sff_dma_pause(ap);
3021 }
3022 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3023
3024 /**
3025 * ata_bmdma_status - Read PCI IDE BMDMA status
3026 * @ap: Port associated with this ATA transaction.
3027 *
3028 * Read and return BMDMA status register.
3029 *
3030 * May be used as the bmdma_status() entry in ata_port_operations.
3031 *
3032 * LOCKING:
3033 * spin_lock_irqsave(host lock)
3034 */
ata_bmdma_status(struct ata_port * ap)3035 u8 ata_bmdma_status(struct ata_port *ap)
3036 {
3037 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3038 }
3039 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3040
3041
3042 /**
3043 * ata_bmdma_port_start - Set port up for bmdma.
3044 * @ap: Port to initialize
3045 *
3046 * Called just after data structures for each port are
3047 * initialized. Allocates space for PRD table.
3048 *
3049 * May be used as the port_start() entry in ata_port_operations.
3050 *
3051 * LOCKING:
3052 * Inherited from caller.
3053 */
ata_bmdma_port_start(struct ata_port * ap)3054 int ata_bmdma_port_start(struct ata_port *ap)
3055 {
3056 if (ap->mwdma_mask || ap->udma_mask) {
3057 ap->bmdma_prd =
3058 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3059 &ap->bmdma_prd_dma, GFP_KERNEL);
3060 if (!ap->bmdma_prd)
3061 return -ENOMEM;
3062 }
3063
3064 return 0;
3065 }
3066 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3067
3068 /**
3069 * ata_bmdma_port_start32 - Set port up for dma.
3070 * @ap: Port to initialize
3071 *
3072 * Called just after data structures for each port are
3073 * initialized. Enables 32bit PIO and allocates space for PRD
3074 * table.
3075 *
3076 * May be used as the port_start() entry in ata_port_operations for
3077 * devices that are capable of 32bit PIO.
3078 *
3079 * LOCKING:
3080 * Inherited from caller.
3081 */
ata_bmdma_port_start32(struct ata_port * ap)3082 int ata_bmdma_port_start32(struct ata_port *ap)
3083 {
3084 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3085 return ata_bmdma_port_start(ap);
3086 }
3087 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3088
3089 #ifdef CONFIG_PCI
3090
3091 /**
3092 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3093 * @pdev: PCI device
3094 *
3095 * Some PCI ATA devices report simplex mode but in fact can be told to
3096 * enter non simplex mode. This implements the necessary logic to
3097 * perform the task on such devices. Calling it on other devices will
3098 * have -undefined- behaviour.
3099 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3100 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3101 {
3102 unsigned long bmdma = pci_resource_start(pdev, 4);
3103 u8 simplex;
3104
3105 if (bmdma == 0)
3106 return -ENOENT;
3107
3108 simplex = inb(bmdma + 0x02);
3109 outb(simplex & 0x60, bmdma + 0x02);
3110 simplex = inb(bmdma + 0x02);
3111 if (simplex & 0x80)
3112 return -EOPNOTSUPP;
3113 return 0;
3114 }
3115 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3116
ata_bmdma_nodma(struct ata_host * host,const char * reason)3117 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3118 {
3119 int i;
3120
3121 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3122
3123 for (i = 0; i < 2; i++) {
3124 host->ports[i]->mwdma_mask = 0;
3125 host->ports[i]->udma_mask = 0;
3126 }
3127 }
3128
3129 /**
3130 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3131 * @host: target ATA host
3132 *
3133 * Acquire PCI BMDMA resources and initialize @host accordingly.
3134 *
3135 * LOCKING:
3136 * Inherited from calling layer (may sleep).
3137 */
ata_pci_bmdma_init(struct ata_host * host)3138 void ata_pci_bmdma_init(struct ata_host *host)
3139 {
3140 struct device *gdev = host->dev;
3141 struct pci_dev *pdev = to_pci_dev(gdev);
3142 int i, rc;
3143
3144 /* No BAR4 allocation: No DMA */
3145 if (pci_resource_start(pdev, 4) == 0) {
3146 ata_bmdma_nodma(host, "BAR4 is zero");
3147 return;
3148 }
3149
3150 /*
3151 * Some controllers require BMDMA region to be initialized
3152 * even if DMA is not in use to clear IRQ status via
3153 * ->sff_irq_clear method. Try to initialize bmdma_addr
3154 * regardless of dma masks.
3155 */
3156 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3157 if (rc)
3158 ata_bmdma_nodma(host, "failed to set dma mask");
3159
3160 /* request and iomap DMA region */
3161 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3162 if (rc) {
3163 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3164 return;
3165 }
3166 host->iomap = pcim_iomap_table(pdev);
3167
3168 for (i = 0; i < 2; i++) {
3169 struct ata_port *ap = host->ports[i];
3170 void __iomem *bmdma = host->iomap[4] + 8 * i;
3171
3172 if (ata_port_is_dummy(ap))
3173 continue;
3174
3175 ap->ioaddr.bmdma_addr = bmdma;
3176 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3177 (ioread8(bmdma + 2) & 0x80))
3178 host->flags |= ATA_HOST_SIMPLEX;
3179
3180 ata_port_desc(ap, "bmdma 0x%llx",
3181 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3182 }
3183 }
3184 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3185
3186 /**
3187 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3188 * @pdev: target PCI device
3189 * @ppi: array of port_info, must be enough for two ports
3190 * @r_host: out argument for the initialized ATA host
3191 *
3192 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3193 * resources and initialize it accordingly in one go.
3194 *
3195 * LOCKING:
3196 * Inherited from calling layer (may sleep).
3197 *
3198 * RETURNS:
3199 * 0 on success, -errno otherwise.
3200 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3201 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3202 const struct ata_port_info * const * ppi,
3203 struct ata_host **r_host)
3204 {
3205 int rc;
3206
3207 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3208 if (rc)
3209 return rc;
3210
3211 ata_pci_bmdma_init(*r_host);
3212 return 0;
3213 }
3214 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3215
3216 /**
3217 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3218 * @pdev: Controller to be initialized
3219 * @ppi: array of port_info, must be enough for two ports
3220 * @sht: scsi_host_template to use when registering the host
3221 * @host_priv: host private_data
3222 * @hflags: host flags
3223 *
3224 * This function is similar to ata_pci_sff_init_one() but also
3225 * takes care of BMDMA initialization.
3226 *
3227 * LOCKING:
3228 * Inherited from PCI layer (may sleep).
3229 *
3230 * RETURNS:
3231 * Zero on success, negative on errno-based value on error.
3232 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3233 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3234 const struct ata_port_info * const * ppi,
3235 struct scsi_host_template *sht, void *host_priv,
3236 int hflags)
3237 {
3238 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3239 }
3240 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3241
3242 #endif /* CONFIG_PCI */
3243 #endif /* CONFIG_ATA_BMDMA */
3244
3245 /**
3246 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3247 * @ap: Port to initialize
3248 *
3249 * Called on port allocation to initialize SFF/BMDMA specific
3250 * fields.
3251 *
3252 * LOCKING:
3253 * None.
3254 */
ata_sff_port_init(struct ata_port * ap)3255 void ata_sff_port_init(struct ata_port *ap)
3256 {
3257 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3258 ap->ctl = ATA_DEVCTL_OBS;
3259 ap->last_ctl = 0xFF;
3260 }
3261
ata_sff_init(void)3262 int __init ata_sff_init(void)
3263 {
3264 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3265 if (!ata_sff_wq)
3266 return -ENOMEM;
3267
3268 return 0;
3269 }
3270
ata_sff_exit(void)3271 void ata_sff_exit(void)
3272 {
3273 destroy_workqueue(ata_sff_wq);
3274 }
3275