1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned int xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags_on;
100 u16 lflags_off;
101 };
102
103 struct ata_force_ent {
104 int port;
105 int device;
106 struct ata_force_param param;
107 };
108
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162
ata_dev_print_info(struct ata_device * dev)163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 struct ata_eh_context *ehc = &dev->link->eh_context;
166
167 return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169
ata_sstatus_online(u32 sstatus)170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 return (sstatus & 0xf) == 0x3;
173 }
174
175 /**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189 {
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 fallthrough;
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 fallthrough;
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 fallthrough;
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234
235 /**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249 {
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288
289 /**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
ata_dev_phys_link(struct ata_device * dev)303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312 }
313
314 #ifdef CONFIG_ATA_FORCE
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
ata_force_cbl(struct ata_port * ap)328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
ata_force_link_limits(struct ata_link * link)363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags_on) {
391 link->flags |= fe->param.lflags_on;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags_on, link->flags);
395 }
396 if (fe->param.lflags_off) {
397 link->flags &= ~fe->param.lflags_off;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x cleared -> 0x%x\n",
400 fe->param.lflags_off, link->flags);
401 }
402 }
403 }
404
405 /**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
ata_force_xfermask(struct ata_device * dev)416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned int pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457 }
458
459 /**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
ata_force_horkage(struct ata_device * dev)470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500 }
501 #else
ata_force_link_limits(struct ata_link * link)502 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)503 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506
507 /**
508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 * @opcode: SCSI opcode
510 *
511 * Determine ATAPI command type from @opcode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
atapi_cmd_type(u8 opcode)519 int atapi_cmd_type(u8 opcode)
520 {
521 switch (opcode) {
522 case GPCMD_READ_10:
523 case GPCMD_READ_12:
524 return ATAPI_READ;
525
526 case GPCMD_WRITE_10:
527 case GPCMD_WRITE_12:
528 case GPCMD_WRITE_AND_VERIFY_10:
529 return ATAPI_WRITE;
530
531 case GPCMD_READ_CD:
532 case GPCMD_READ_CD_MSF:
533 return ATAPI_READ_CD;
534
535 case ATA_16:
536 case ATA_12:
537 if (atapi_passthru16)
538 return ATAPI_PASS_THRU;
539 fallthrough;
540 default:
541 return ATAPI_MISC;
542 }
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546 static const u8 ata_rw_cmds[] = {
547 /* pio multi */
548 ATA_CMD_READ_MULTI,
549 ATA_CMD_WRITE_MULTI,
550 ATA_CMD_READ_MULTI_EXT,
551 ATA_CMD_WRITE_MULTI_EXT,
552 0,
553 0,
554 0,
555 0,
556 /* pio */
557 ATA_CMD_PIO_READ,
558 ATA_CMD_PIO_WRITE,
559 ATA_CMD_PIO_READ_EXT,
560 ATA_CMD_PIO_WRITE_EXT,
561 0,
562 0,
563 0,
564 0,
565 /* dma */
566 ATA_CMD_READ,
567 ATA_CMD_WRITE,
568 ATA_CMD_READ_EXT,
569 ATA_CMD_WRITE_EXT,
570 0,
571 0,
572 0,
573 ATA_CMD_WRITE_FUA_EXT
574 };
575
576 /**
577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578 * @dev: target device for the taskfile
579 * @tf: taskfile to examine and configure
580 *
581 * Examine the device configuration and tf->flags to determine
582 * the proper read/write command and protocol to use for @tf.
583 *
584 * LOCKING:
585 * caller.
586 */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)587 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 struct ata_taskfile *tf)
589 {
590 u8 cmd;
591
592 int index, fua, lba48, write;
593
594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597
598 if (dev->flags & ATA_DFLAG_PIO) {
599 tf->protocol = ATA_PROT_PIO;
600 index = dev->multi_count ? 0 : 8;
601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 /* Unable to use DMA due to host limitation */
603 tf->protocol = ATA_PROT_PIO;
604 index = dev->multi_count ? 0 : 8;
605 } else {
606 tf->protocol = ATA_PROT_DMA;
607 index = 16;
608 }
609
610 cmd = ata_rw_cmds[index + fua + lba48 + write];
611 if (!cmd)
612 return false;
613
614 tf->command = cmd;
615
616 return true;
617 }
618
619 /**
620 * ata_tf_read_block - Read block address from ATA taskfile
621 * @tf: ATA taskfile of interest
622 * @dev: ATA device @tf belongs to
623 *
624 * LOCKING:
625 * None.
626 *
627 * Read block address from @tf. This function can handle all
628 * three address formats - LBA, LBA48 and CHS. tf->protocol and
629 * flags select the address format to use.
630 *
631 * RETURNS:
632 * Block address read from @tf.
633 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635 {
636 u64 block = 0;
637
638 if (tf->flags & ATA_TFLAG_LBA) {
639 if (tf->flags & ATA_TFLAG_LBA48) {
640 block |= (u64)tf->hob_lbah << 40;
641 block |= (u64)tf->hob_lbam << 32;
642 block |= (u64)tf->hob_lbal << 24;
643 } else
644 block |= (tf->device & 0xf) << 24;
645
646 block |= tf->lbah << 16;
647 block |= tf->lbam << 8;
648 block |= tf->lbal;
649 } else {
650 u32 cyl, head, sect;
651
652 cyl = tf->lbam | (tf->lbah << 8);
653 head = tf->device & 0xf;
654 sect = tf->lbal;
655
656 if (!sect) {
657 ata_dev_warn(dev,
658 "device reported invalid CHS sector 0\n");
659 return U64_MAX;
660 }
661
662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 }
664
665 return block;
666 }
667
668 /*
669 * Set a taskfile command duration limit index.
670 */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672 {
673 struct ata_taskfile *tf = &qc->tf;
674
675 if (tf->protocol == ATA_PROT_NCQ)
676 tf->auxiliary |= cdl;
677 else
678 tf->feature |= cdl;
679
680 /*
681 * Mark this command as having a CDL and request the result
682 * task file so that we can inspect the sense data available
683 * bit on completion.
684 */
685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686 }
687
688 /**
689 * ata_build_rw_tf - Build ATA taskfile for given read/write request
690 * @qc: Metadata associated with the taskfile to build
691 * @block: Block address
692 * @n_block: Number of blocks
693 * @tf_flags: RW/FUA etc...
694 * @cdl: Command duration limit index
695 * @class: IO priority class
696 *
697 * LOCKING:
698 * None.
699 *
700 * Build ATA taskfile for the command @qc for read/write request described
701 * by @block, @n_block, @tf_flags and @class.
702 *
703 * RETURNS:
704 *
705 * 0 on success, -ERANGE if the request is too large for @dev,
706 * -EINVAL if the request is invalid.
707 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709 unsigned int tf_flags, int cdl, int class)
710 {
711 struct ata_taskfile *tf = &qc->tf;
712 struct ata_device *dev = qc->dev;
713
714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715 tf->flags |= tf_flags;
716
717 if (ata_ncq_enabled(dev)) {
718 /* yay, NCQ */
719 if (!lba_48_ok(block, n_block))
720 return -ERANGE;
721
722 tf->protocol = ATA_PROT_NCQ;
723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724
725 if (tf->flags & ATA_TFLAG_WRITE)
726 tf->command = ATA_CMD_FPDMA_WRITE;
727 else
728 tf->command = ATA_CMD_FPDMA_READ;
729
730 tf->nsect = qc->hw_tag << 3;
731 tf->hob_feature = (n_block >> 8) & 0xff;
732 tf->feature = n_block & 0xff;
733
734 tf->hob_lbah = (block >> 40) & 0xff;
735 tf->hob_lbam = (block >> 32) & 0xff;
736 tf->hob_lbal = (block >> 24) & 0xff;
737 tf->lbah = (block >> 16) & 0xff;
738 tf->lbam = (block >> 8) & 0xff;
739 tf->lbal = block & 0xff;
740
741 tf->device = ATA_LBA;
742 if (tf->flags & ATA_TFLAG_FUA)
743 tf->device |= 1 << 7;
744
745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746 class == IOPRIO_CLASS_RT)
747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748
749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750 ata_set_tf_cdl(qc, cdl);
751
752 } else if (dev->flags & ATA_DFLAG_LBA) {
753 tf->flags |= ATA_TFLAG_LBA;
754
755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756 ata_set_tf_cdl(qc, cdl);
757
758 /* Both FUA writes and a CDL index require 48-bit commands */
759 if (!(tf->flags & ATA_TFLAG_FUA) &&
760 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761 lba_28_ok(block, n_block)) {
762 /* use LBA28 */
763 tf->device |= (block >> 24) & 0xf;
764 } else if (lba_48_ok(block, n_block)) {
765 if (!(dev->flags & ATA_DFLAG_LBA48))
766 return -ERANGE;
767
768 /* use LBA48 */
769 tf->flags |= ATA_TFLAG_LBA48;
770
771 tf->hob_nsect = (n_block >> 8) & 0xff;
772
773 tf->hob_lbah = (block >> 40) & 0xff;
774 tf->hob_lbam = (block >> 32) & 0xff;
775 tf->hob_lbal = (block >> 24) & 0xff;
776 } else {
777 /* request too large even for LBA48 */
778 return -ERANGE;
779 }
780
781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782 return -EINVAL;
783
784 tf->nsect = n_block & 0xff;
785
786 tf->lbah = (block >> 16) & 0xff;
787 tf->lbam = (block >> 8) & 0xff;
788 tf->lbal = block & 0xff;
789
790 tf->device |= ATA_LBA;
791 } else {
792 /* CHS */
793 u32 sect, head, cyl, track;
794
795 /* The request -may- be too large for CHS addressing. */
796 if (!lba_28_ok(block, n_block))
797 return -ERANGE;
798
799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 return -EINVAL;
801
802 /* Convert LBA to CHS */
803 track = (u32)block / dev->sectors;
804 cyl = track / dev->heads;
805 head = track % dev->heads;
806 sect = (u32)block % dev->sectors + 1;
807
808 /* Check whether the converted CHS can fit.
809 Cylinder: 0-65535
810 Head: 0-15
811 Sector: 1-255*/
812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813 return -ERANGE;
814
815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816 tf->lbal = sect;
817 tf->lbam = cyl;
818 tf->lbah = cyl >> 8;
819 tf->device |= head;
820 }
821
822 return 0;
823 }
824
825 /**
826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827 * @pio_mask: pio_mask
828 * @mwdma_mask: mwdma_mask
829 * @udma_mask: udma_mask
830 *
831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832 * unsigned int xfer_mask.
833 *
834 * LOCKING:
835 * None.
836 *
837 * RETURNS:
838 * Packed xfer_mask.
839 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)840 unsigned int ata_pack_xfermask(unsigned int pio_mask,
841 unsigned int mwdma_mask,
842 unsigned int udma_mask)
843 {
844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847 }
848 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849
850 /**
851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852 * @xfer_mask: xfer_mask to unpack
853 * @pio_mask: resulting pio_mask
854 * @mwdma_mask: resulting mwdma_mask
855 * @udma_mask: resulting udma_mask
856 *
857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858 * Any NULL destination masks will be ignored.
859 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861 unsigned int *mwdma_mask, unsigned int *udma_mask)
862 {
863 if (pio_mask)
864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865 if (mwdma_mask)
866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867 if (udma_mask)
868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869 }
870
871 static const struct ata_xfer_ent {
872 int shift, bits;
873 u8 base;
874 } ata_xfer_tbl[] = {
875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878 { -1, },
879 };
880
881 /**
882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883 * @xfer_mask: xfer_mask of interest
884 *
885 * Return matching XFER_* value for @xfer_mask. Only the highest
886 * bit of @xfer_mask is considered.
887 *
888 * LOCKING:
889 * None.
890 *
891 * RETURNS:
892 * Matching XFER_* value, 0xff if no match found.
893 */
ata_xfer_mask2mode(unsigned int xfer_mask)894 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895 {
896 int highbit = fls(xfer_mask) - 1;
897 const struct ata_xfer_ent *ent;
898
899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901 return ent->base + highbit - ent->shift;
902 return 0xff;
903 }
904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905
906 /**
907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908 * @xfer_mode: XFER_* of interest
909 *
910 * Return matching xfer_mask for @xfer_mode.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching xfer_mask, 0 if no match found.
917 */
ata_xfer_mode2mask(u8 xfer_mode)918 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919 {
920 const struct ata_xfer_ent *ent;
921
922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925 & ~((1 << ent->shift) - 1);
926 return 0;
927 }
928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929
930 /**
931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932 * @xfer_mode: XFER_* of interest
933 *
934 * Return matching xfer_shift for @xfer_mode.
935 *
936 * LOCKING:
937 * None.
938 *
939 * RETURNS:
940 * Matching xfer_shift, -1 if no match found.
941 */
ata_xfer_mode2shift(u8 xfer_mode)942 int ata_xfer_mode2shift(u8 xfer_mode)
943 {
944 const struct ata_xfer_ent *ent;
945
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ent->shift;
949 return -1;
950 }
951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952
953 /**
954 * ata_mode_string - convert xfer_mask to string
955 * @xfer_mask: mask of bits supported; only highest bit counts.
956 *
957 * Determine string which represents the highest speed
958 * (highest bit in @modemask).
959 *
960 * LOCKING:
961 * None.
962 *
963 * RETURNS:
964 * Constant C string representing highest speed listed in
965 * @mode_mask, or the constant C string "<n/a>".
966 */
ata_mode_string(unsigned int xfer_mask)967 const char *ata_mode_string(unsigned int xfer_mask)
968 {
969 static const char * const xfer_mode_str[] = {
970 "PIO0",
971 "PIO1",
972 "PIO2",
973 "PIO3",
974 "PIO4",
975 "PIO5",
976 "PIO6",
977 "MWDMA0",
978 "MWDMA1",
979 "MWDMA2",
980 "MWDMA3",
981 "MWDMA4",
982 "UDMA/16",
983 "UDMA/25",
984 "UDMA/33",
985 "UDMA/44",
986 "UDMA/66",
987 "UDMA/100",
988 "UDMA/133",
989 "UDMA7",
990 };
991 int highbit;
992
993 highbit = fls(xfer_mask) - 1;
994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995 return xfer_mode_str[highbit];
996 return "<n/a>";
997 }
998 EXPORT_SYMBOL_GPL(ata_mode_string);
999
sata_spd_string(unsigned int spd)1000 const char *sata_spd_string(unsigned int spd)
1001 {
1002 static const char * const spd_str[] = {
1003 "1.5 Gbps",
1004 "3.0 Gbps",
1005 "6.0 Gbps",
1006 };
1007
1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009 return "<unknown>";
1010 return spd_str[spd - 1];
1011 }
1012
1013 /**
1014 * ata_dev_classify - determine device type based on ATA-spec signature
1015 * @tf: ATA taskfile register set for device to be identified
1016 *
1017 * Determine from taskfile register contents whether a device is
1018 * ATA or ATAPI, as per "Signature and persistence" section
1019 * of ATA/PI spec (volume 1, sect 5.14).
1020 *
1021 * LOCKING:
1022 * None.
1023 *
1024 * RETURNS:
1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027 */
ata_dev_classify(const struct ata_taskfile * tf)1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029 {
1030 /* Apple's open source Darwin code hints that some devices only
1031 * put a proper signature into the LBA mid/high registers,
1032 * So, we only check those. It's sufficient for uniqueness.
1033 *
1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035 * signatures for ATA and ATAPI devices attached on SerialATA,
1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1037 * spec has never mentioned about using different signatures
1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1039 * Multiplier specification began to use 0x69/0x96 to identify
1040 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042 * 0x69/0x96 shortly and described them as reserved for
1043 * SerialATA.
1044 *
1045 * We follow the current spec and consider that 0x69/0x96
1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048 * SEMB signature. This is worked around in
1049 * ata_dev_read_id().
1050 */
1051 if (tf->lbam == 0 && tf->lbah == 0)
1052 return ATA_DEV_ATA;
1053
1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055 return ATA_DEV_ATAPI;
1056
1057 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058 return ATA_DEV_PMP;
1059
1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061 return ATA_DEV_SEMB;
1062
1063 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064 return ATA_DEV_ZAC;
1065
1066 return ATA_DEV_UNKNOWN;
1067 }
1068 EXPORT_SYMBOL_GPL(ata_dev_classify);
1069
1070 /**
1071 * ata_id_string - Convert IDENTIFY DEVICE page into string
1072 * @id: IDENTIFY DEVICE results we will examine
1073 * @s: string into which data is output
1074 * @ofs: offset into identify device page
1075 * @len: length of string to return. must be an even number.
1076 *
1077 * The strings in the IDENTIFY DEVICE page are broken up into
1078 * 16-bit chunks. Run through the string, and output each
1079 * 8-bit chunk linearly, regardless of platform.
1080 *
1081 * LOCKING:
1082 * caller.
1083 */
1084
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1085 void ata_id_string(const u16 *id, unsigned char *s,
1086 unsigned int ofs, unsigned int len)
1087 {
1088 unsigned int c;
1089
1090 BUG_ON(len & 1);
1091
1092 while (len > 0) {
1093 c = id[ofs] >> 8;
1094 *s = c;
1095 s++;
1096
1097 c = id[ofs] & 0xff;
1098 *s = c;
1099 s++;
1100
1101 ofs++;
1102 len -= 2;
1103 }
1104 }
1105 EXPORT_SYMBOL_GPL(ata_id_string);
1106
1107 /**
1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109 * @id: IDENTIFY DEVICE results we will examine
1110 * @s: string into which data is output
1111 * @ofs: offset into identify device page
1112 * @len: length of string to return. must be an odd number.
1113 *
1114 * This function is identical to ata_id_string except that it
1115 * trims trailing spaces and terminates the resulting string with
1116 * null. @len must be actual maximum length (even number) + 1.
1117 *
1118 * LOCKING:
1119 * caller.
1120 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1121 void ata_id_c_string(const u16 *id, unsigned char *s,
1122 unsigned int ofs, unsigned int len)
1123 {
1124 unsigned char *p;
1125
1126 ata_id_string(id, s, ofs, len - 1);
1127
1128 p = s + strnlen(s, len - 1);
1129 while (p > s && p[-1] == ' ')
1130 p--;
1131 *p = '\0';
1132 }
1133 EXPORT_SYMBOL_GPL(ata_id_c_string);
1134
ata_id_n_sectors(const u16 * id)1135 static u64 ata_id_n_sectors(const u16 *id)
1136 {
1137 if (ata_id_has_lba(id)) {
1138 if (ata_id_has_lba48(id))
1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140
1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142 }
1143
1144 if (ata_id_current_chs_valid(id))
1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146 (u32)id[ATA_ID_CUR_SECTORS];
1147
1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149 (u32)id[ATA_ID_SECTORS];
1150 }
1151
ata_tf_to_lba48(const struct ata_taskfile * tf)1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153 {
1154 u64 sectors = 0;
1155
1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159 sectors |= (tf->lbah & 0xff) << 16;
1160 sectors |= (tf->lbam & 0xff) << 8;
1161 sectors |= (tf->lbal & 0xff);
1162
1163 return sectors;
1164 }
1165
ata_tf_to_lba(const struct ata_taskfile * tf)1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167 {
1168 u64 sectors = 0;
1169
1170 sectors |= (tf->device & 0x0f) << 24;
1171 sectors |= (tf->lbah & 0xff) << 16;
1172 sectors |= (tf->lbam & 0xff) << 8;
1173 sectors |= (tf->lbal & 0xff);
1174
1175 return sectors;
1176 }
1177
1178 /**
1179 * ata_read_native_max_address - Read native max address
1180 * @dev: target device
1181 * @max_sectors: out parameter for the result native max address
1182 *
1183 * Perform an LBA48 or LBA28 native size query upon the device in
1184 * question.
1185 *
1186 * RETURNS:
1187 * 0 on success, -EACCES if command is aborted by the drive.
1188 * -EIO on other errors.
1189 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191 {
1192 unsigned int err_mask;
1193 struct ata_taskfile tf;
1194 int lba48 = ata_id_has_lba48(dev->id);
1195
1196 ata_tf_init(dev, &tf);
1197
1198 /* always clear all address registers */
1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200
1201 if (lba48) {
1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203 tf.flags |= ATA_TFLAG_LBA48;
1204 } else
1205 tf.command = ATA_CMD_READ_NATIVE_MAX;
1206
1207 tf.protocol = ATA_PROT_NODATA;
1208 tf.device |= ATA_LBA;
1209
1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211 if (err_mask) {
1212 ata_dev_warn(dev,
1213 "failed to read native max address (err_mask=0x%x)\n",
1214 err_mask);
1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216 return -EACCES;
1217 return -EIO;
1218 }
1219
1220 if (lba48)
1221 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1222 else
1223 *max_sectors = ata_tf_to_lba(&tf) + 1;
1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225 (*max_sectors)--;
1226 return 0;
1227 }
1228
1229 /**
1230 * ata_set_max_sectors - Set max sectors
1231 * @dev: target device
1232 * @new_sectors: new max sectors value to set for the device
1233 *
1234 * Set max sectors of @dev to @new_sectors.
1235 *
1236 * RETURNS:
1237 * 0 on success, -EACCES if command is aborted or denied (due to
1238 * previous non-volatile SET_MAX) by the drive. -EIO on other
1239 * errors.
1240 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242 {
1243 unsigned int err_mask;
1244 struct ata_taskfile tf;
1245 int lba48 = ata_id_has_lba48(dev->id);
1246
1247 new_sectors--;
1248
1249 ata_tf_init(dev, &tf);
1250
1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252
1253 if (lba48) {
1254 tf.command = ATA_CMD_SET_MAX_EXT;
1255 tf.flags |= ATA_TFLAG_LBA48;
1256
1257 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260 } else {
1261 tf.command = ATA_CMD_SET_MAX;
1262
1263 tf.device |= (new_sectors >> 24) & 0xf;
1264 }
1265
1266 tf.protocol = ATA_PROT_NODATA;
1267 tf.device |= ATA_LBA;
1268
1269 tf.lbal = (new_sectors >> 0) & 0xff;
1270 tf.lbam = (new_sectors >> 8) & 0xff;
1271 tf.lbah = (new_sectors >> 16) & 0xff;
1272
1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274 if (err_mask) {
1275 ata_dev_warn(dev,
1276 "failed to set max address (err_mask=0x%x)\n",
1277 err_mask);
1278 if (err_mask == AC_ERR_DEV &&
1279 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280 return -EACCES;
1281 return -EIO;
1282 }
1283
1284 return 0;
1285 }
1286
1287 /**
1288 * ata_hpa_resize - Resize a device with an HPA set
1289 * @dev: Device to resize
1290 *
1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292 * it if required to the full size of the media. The caller must check
1293 * the drive has the HPA feature set enabled.
1294 *
1295 * RETURNS:
1296 * 0 on success, -errno on failure.
1297 */
ata_hpa_resize(struct ata_device * dev)1298 static int ata_hpa_resize(struct ata_device *dev)
1299 {
1300 bool print_info = ata_dev_print_info(dev);
1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302 u64 sectors = ata_id_n_sectors(dev->id);
1303 u64 native_sectors;
1304 int rc;
1305
1306 /* do we need to do it? */
1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310 return 0;
1311
1312 /* read native max address */
1313 rc = ata_read_native_max_address(dev, &native_sectors);
1314 if (rc) {
1315 /* If device aborted the command or HPA isn't going to
1316 * be unlocked, skip HPA resizing.
1317 */
1318 if (rc == -EACCES || !unlock_hpa) {
1319 ata_dev_warn(dev,
1320 "HPA support seems broken, skipping HPA handling\n");
1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322
1323 /* we can continue if device aborted the command */
1324 if (rc == -EACCES)
1325 rc = 0;
1326 }
1327
1328 return rc;
1329 }
1330 dev->n_native_sectors = native_sectors;
1331
1332 /* nothing to do? */
1333 if (native_sectors <= sectors || !unlock_hpa) {
1334 if (!print_info || native_sectors == sectors)
1335 return 0;
1336
1337 if (native_sectors > sectors)
1338 ata_dev_info(dev,
1339 "HPA detected: current %llu, native %llu\n",
1340 (unsigned long long)sectors,
1341 (unsigned long long)native_sectors);
1342 else if (native_sectors < sectors)
1343 ata_dev_warn(dev,
1344 "native sectors (%llu) is smaller than sectors (%llu)\n",
1345 (unsigned long long)native_sectors,
1346 (unsigned long long)sectors);
1347 return 0;
1348 }
1349
1350 /* let's unlock HPA */
1351 rc = ata_set_max_sectors(dev, native_sectors);
1352 if (rc == -EACCES) {
1353 /* if device aborted the command, skip HPA resizing */
1354 ata_dev_warn(dev,
1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356 (unsigned long long)sectors,
1357 (unsigned long long)native_sectors);
1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359 return 0;
1360 } else if (rc)
1361 return rc;
1362
1363 /* re-read IDENTIFY data */
1364 rc = ata_dev_reread_id(dev, 0);
1365 if (rc) {
1366 ata_dev_err(dev,
1367 "failed to re-read IDENTIFY data after HPA resizing\n");
1368 return rc;
1369 }
1370
1371 if (print_info) {
1372 u64 new_sectors = ata_id_n_sectors(dev->id);
1373 ata_dev_info(dev,
1374 "HPA unlocked: %llu -> %llu, native %llu\n",
1375 (unsigned long long)sectors,
1376 (unsigned long long)new_sectors,
1377 (unsigned long long)native_sectors);
1378 }
1379
1380 return 0;
1381 }
1382
1383 /**
1384 * ata_dump_id - IDENTIFY DEVICE info debugging output
1385 * @dev: device from which the information is fetched
1386 * @id: IDENTIFY DEVICE page to dump
1387 *
1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1389 * page.
1390 *
1391 * LOCKING:
1392 * caller.
1393 */
1394
ata_dump_id(struct ata_device * dev,const u16 * id)1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396 {
1397 ata_dev_dbg(dev,
1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1400 "88==0x%04x 93==0x%04x\n",
1401 id[49], id[53], id[63], id[64], id[75], id[80],
1402 id[81], id[82], id[83], id[84], id[88], id[93]);
1403 }
1404
1405 /**
1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407 * @id: IDENTIFY data to compute xfer mask from
1408 *
1409 * Compute the xfermask for this device. This is not as trivial
1410 * as it seems if we must consider early devices correctly.
1411 *
1412 * FIXME: pre IDE drive timing (do we care ?).
1413 *
1414 * LOCKING:
1415 * None.
1416 *
1417 * RETURNS:
1418 * Computed xfermask
1419 */
ata_id_xfermask(const u16 * id)1420 unsigned int ata_id_xfermask(const u16 *id)
1421 {
1422 unsigned int pio_mask, mwdma_mask, udma_mask;
1423
1424 /* Usual case. Word 53 indicates word 64 is valid */
1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427 pio_mask <<= 3;
1428 pio_mask |= 0x7;
1429 } else {
1430 /* If word 64 isn't valid then Word 51 high byte holds
1431 * the PIO timing number for the maximum. Turn it into
1432 * a mask.
1433 */
1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435 if (mode < 5) /* Valid PIO range */
1436 pio_mask = (2 << mode) - 1;
1437 else
1438 pio_mask = 1;
1439
1440 /* But wait.. there's more. Design your standards by
1441 * committee and you too can get a free iordy field to
1442 * process. However it is the speeds not the modes that
1443 * are supported... Note drivers using the timing API
1444 * will get this right anyway
1445 */
1446 }
1447
1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449
1450 if (ata_id_is_cfa(id)) {
1451 /*
1452 * Process compact flash extended modes
1453 */
1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456
1457 if (pio)
1458 pio_mask |= (1 << 5);
1459 if (pio > 1)
1460 pio_mask |= (1 << 6);
1461 if (dma)
1462 mwdma_mask |= (1 << 3);
1463 if (dma > 1)
1464 mwdma_mask |= (1 << 4);
1465 }
1466
1467 udma_mask = 0;
1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470
1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472 }
1473 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474
ata_qc_complete_internal(struct ata_queued_cmd * qc)1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476 {
1477 struct completion *waiting = qc->private_data;
1478
1479 complete(waiting);
1480 }
1481
1482 /**
1483 * ata_exec_internal_sg - execute libata internal command
1484 * @dev: Device to which the command is sent
1485 * @tf: Taskfile registers for the command and the result
1486 * @cdb: CDB for packet command
1487 * @dma_dir: Data transfer direction of the command
1488 * @sgl: sg list for the data buffer of the command
1489 * @n_elem: Number of sg entries
1490 * @timeout: Timeout in msecs (0 for default)
1491 *
1492 * Executes libata internal command with timeout. @tf contains
1493 * command on entry and result on return. Timeout and error
1494 * conditions are reported via return value. No recovery action
1495 * is taken after a command times out. It's caller's duty to
1496 * clean up after timeout.
1497 *
1498 * LOCKING:
1499 * None. Should be called with kernel context, might sleep.
1500 *
1501 * RETURNS:
1502 * Zero on success, AC_ERR_* mask on failure
1503 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned int timeout)1504 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505 struct ata_taskfile *tf, const u8 *cdb,
1506 int dma_dir, struct scatterlist *sgl,
1507 unsigned int n_elem, unsigned int timeout)
1508 {
1509 struct ata_link *link = dev->link;
1510 struct ata_port *ap = link->ap;
1511 u8 command = tf->command;
1512 int auto_timeout = 0;
1513 struct ata_queued_cmd *qc;
1514 unsigned int preempted_tag;
1515 u32 preempted_sactive;
1516 u64 preempted_qc_active;
1517 int preempted_nr_active_links;
1518 DECLARE_COMPLETION_ONSTACK(wait);
1519 unsigned long flags;
1520 unsigned int err_mask;
1521 int rc;
1522
1523 spin_lock_irqsave(ap->lock, flags);
1524
1525 /* no internal command while frozen */
1526 if (ata_port_is_frozen(ap)) {
1527 spin_unlock_irqrestore(ap->lock, flags);
1528 return AC_ERR_SYSTEM;
1529 }
1530
1531 /* initialize internal qc */
1532 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1533
1534 qc->tag = ATA_TAG_INTERNAL;
1535 qc->hw_tag = 0;
1536 qc->scsicmd = NULL;
1537 qc->ap = ap;
1538 qc->dev = dev;
1539 ata_qc_reinit(qc);
1540
1541 preempted_tag = link->active_tag;
1542 preempted_sactive = link->sactive;
1543 preempted_qc_active = ap->qc_active;
1544 preempted_nr_active_links = ap->nr_active_links;
1545 link->active_tag = ATA_TAG_POISON;
1546 link->sactive = 0;
1547 ap->qc_active = 0;
1548 ap->nr_active_links = 0;
1549
1550 /* prepare & issue qc */
1551 qc->tf = *tf;
1552 if (cdb)
1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554
1555 /* some SATA bridges need us to indicate data xfer direction */
1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557 dma_dir == DMA_FROM_DEVICE)
1558 qc->tf.feature |= ATAPI_DMADIR;
1559
1560 qc->flags |= ATA_QCFLAG_RESULT_TF;
1561 qc->dma_dir = dma_dir;
1562 if (dma_dir != DMA_NONE) {
1563 unsigned int i, buflen = 0;
1564 struct scatterlist *sg;
1565
1566 for_each_sg(sgl, sg, n_elem, i)
1567 buflen += sg->length;
1568
1569 ata_sg_init(qc, sgl, n_elem);
1570 qc->nbytes = buflen;
1571 }
1572
1573 qc->private_data = &wait;
1574 qc->complete_fn = ata_qc_complete_internal;
1575
1576 ata_qc_issue(qc);
1577
1578 spin_unlock_irqrestore(ap->lock, flags);
1579
1580 if (!timeout) {
1581 if (ata_probe_timeout)
1582 timeout = ata_probe_timeout * 1000;
1583 else {
1584 timeout = ata_internal_cmd_timeout(dev, command);
1585 auto_timeout = 1;
1586 }
1587 }
1588
1589 ata_eh_release(ap);
1590
1591 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1592
1593 ata_eh_acquire(ap);
1594
1595 ata_sff_flush_pio_task(ap);
1596
1597 if (!rc) {
1598 spin_lock_irqsave(ap->lock, flags);
1599
1600 /* We're racing with irq here. If we lose, the
1601 * following test prevents us from completing the qc
1602 * twice. If we win, the port is frozen and will be
1603 * cleaned up by ->post_internal_cmd().
1604 */
1605 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1606 qc->err_mask |= AC_ERR_TIMEOUT;
1607
1608 ata_port_freeze(ap);
1609
1610 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1611 timeout, command);
1612 }
1613
1614 spin_unlock_irqrestore(ap->lock, flags);
1615 }
1616
1617 /* do post_internal_cmd */
1618 if (ap->ops->post_internal_cmd)
1619 ap->ops->post_internal_cmd(qc);
1620
1621 /* perform minimal error analysis */
1622 if (qc->flags & ATA_QCFLAG_EH) {
1623 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1624 qc->err_mask |= AC_ERR_DEV;
1625
1626 if (!qc->err_mask)
1627 qc->err_mask |= AC_ERR_OTHER;
1628
1629 if (qc->err_mask & ~AC_ERR_OTHER)
1630 qc->err_mask &= ~AC_ERR_OTHER;
1631 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1632 qc->result_tf.status |= ATA_SENSE;
1633 }
1634
1635 /* finish up */
1636 spin_lock_irqsave(ap->lock, flags);
1637
1638 *tf = qc->result_tf;
1639 err_mask = qc->err_mask;
1640
1641 ata_qc_free(qc);
1642 link->active_tag = preempted_tag;
1643 link->sactive = preempted_sactive;
1644 ap->qc_active = preempted_qc_active;
1645 ap->nr_active_links = preempted_nr_active_links;
1646
1647 spin_unlock_irqrestore(ap->lock, flags);
1648
1649 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1650 ata_internal_cmd_timed_out(dev, command);
1651
1652 return err_mask;
1653 }
1654
1655 /**
1656 * ata_exec_internal - execute libata internal command
1657 * @dev: Device to which the command is sent
1658 * @tf: Taskfile registers for the command and the result
1659 * @cdb: CDB for packet command
1660 * @dma_dir: Data transfer direction of the command
1661 * @buf: Data buffer of the command
1662 * @buflen: Length of data buffer
1663 * @timeout: Timeout in msecs (0 for default)
1664 *
1665 * Wrapper around ata_exec_internal_sg() which takes simple
1666 * buffer instead of sg list.
1667 *
1668 * LOCKING:
1669 * None. Should be called with kernel context, might sleep.
1670 *
1671 * RETURNS:
1672 * Zero on success, AC_ERR_* mask on failure
1673 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1674 unsigned ata_exec_internal(struct ata_device *dev,
1675 struct ata_taskfile *tf, const u8 *cdb,
1676 int dma_dir, void *buf, unsigned int buflen,
1677 unsigned int timeout)
1678 {
1679 struct scatterlist *psg = NULL, sg;
1680 unsigned int n_elem = 0;
1681
1682 if (dma_dir != DMA_NONE) {
1683 WARN_ON(!buf);
1684 sg_init_one(&sg, buf, buflen);
1685 psg = &sg;
1686 n_elem++;
1687 }
1688
1689 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1690 timeout);
1691 }
1692
1693 /**
1694 * ata_pio_need_iordy - check if iordy needed
1695 * @adev: ATA device
1696 *
1697 * Check if the current speed of the device requires IORDY. Used
1698 * by various controllers for chip configuration.
1699 */
ata_pio_need_iordy(const struct ata_device * adev)1700 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1701 {
1702 /* Don't set IORDY if we're preparing for reset. IORDY may
1703 * lead to controller lock up on certain controllers if the
1704 * port is not occupied. See bko#11703 for details.
1705 */
1706 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1707 return 0;
1708 /* Controller doesn't support IORDY. Probably a pointless
1709 * check as the caller should know this.
1710 */
1711 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1712 return 0;
1713 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1714 if (ata_id_is_cfa(adev->id)
1715 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1716 return 0;
1717 /* PIO3 and higher it is mandatory */
1718 if (adev->pio_mode > XFER_PIO_2)
1719 return 1;
1720 /* We turn it on when possible */
1721 if (ata_id_has_iordy(adev->id))
1722 return 1;
1723 return 0;
1724 }
1725 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1726
1727 /**
1728 * ata_pio_mask_no_iordy - Return the non IORDY mask
1729 * @adev: ATA device
1730 *
1731 * Compute the highest mode possible if we are not using iordy. Return
1732 * -1 if no iordy mode is available.
1733 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1734 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1735 {
1736 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1738 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1739 /* Is the speed faster than the drive allows non IORDY ? */
1740 if (pio) {
1741 /* This is cycle times not frequency - watch the logic! */
1742 if (pio > 240) /* PIO2 is 240nS per cycle */
1743 return 3 << ATA_SHIFT_PIO;
1744 return 7 << ATA_SHIFT_PIO;
1745 }
1746 }
1747 return 3 << ATA_SHIFT_PIO;
1748 }
1749
1750 /**
1751 * ata_do_dev_read_id - default ID read method
1752 * @dev: device
1753 * @tf: proposed taskfile
1754 * @id: data buffer
1755 *
1756 * Issue the identify taskfile and hand back the buffer containing
1757 * identify data. For some RAID controllers and for pre ATA devices
1758 * this function is wrapped or replaced by the driver
1759 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1760 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1761 struct ata_taskfile *tf, __le16 *id)
1762 {
1763 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1764 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1765 }
1766 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1767
1768 /**
1769 * ata_dev_read_id - Read ID data from the specified device
1770 * @dev: target device
1771 * @p_class: pointer to class of the target device (may be changed)
1772 * @flags: ATA_READID_* flags
1773 * @id: buffer to read IDENTIFY data into
1774 *
1775 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1776 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1777 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1778 * for pre-ATA4 drives.
1779 *
1780 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1781 * now we abort if we hit that case.
1782 *
1783 * LOCKING:
1784 * Kernel thread context (may sleep)
1785 *
1786 * RETURNS:
1787 * 0 on success, -errno otherwise.
1788 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1789 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1790 unsigned int flags, u16 *id)
1791 {
1792 struct ata_port *ap = dev->link->ap;
1793 unsigned int class = *p_class;
1794 struct ata_taskfile tf;
1795 unsigned int err_mask = 0;
1796 const char *reason;
1797 bool is_semb = class == ATA_DEV_SEMB;
1798 int may_fallback = 1, tried_spinup = 0;
1799 int rc;
1800
1801 retry:
1802 ata_tf_init(dev, &tf);
1803
1804 switch (class) {
1805 case ATA_DEV_SEMB:
1806 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1807 fallthrough;
1808 case ATA_DEV_ATA:
1809 case ATA_DEV_ZAC:
1810 tf.command = ATA_CMD_ID_ATA;
1811 break;
1812 case ATA_DEV_ATAPI:
1813 tf.command = ATA_CMD_ID_ATAPI;
1814 break;
1815 default:
1816 rc = -ENODEV;
1817 reason = "unsupported class";
1818 goto err_out;
1819 }
1820
1821 tf.protocol = ATA_PROT_PIO;
1822
1823 /* Some devices choke if TF registers contain garbage. Make
1824 * sure those are properly initialized.
1825 */
1826 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1827
1828 /* Device presence detection is unreliable on some
1829 * controllers. Always poll IDENTIFY if available.
1830 */
1831 tf.flags |= ATA_TFLAG_POLLING;
1832
1833 if (ap->ops->read_id)
1834 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1835 else
1836 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1837
1838 if (err_mask) {
1839 if (err_mask & AC_ERR_NODEV_HINT) {
1840 ata_dev_dbg(dev, "NODEV after polling detection\n");
1841 return -ENOENT;
1842 }
1843
1844 if (is_semb) {
1845 ata_dev_info(dev,
1846 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1847 /* SEMB is not supported yet */
1848 *p_class = ATA_DEV_SEMB_UNSUP;
1849 return 0;
1850 }
1851
1852 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1853 /* Device or controller might have reported
1854 * the wrong device class. Give a shot at the
1855 * other IDENTIFY if the current one is
1856 * aborted by the device.
1857 */
1858 if (may_fallback) {
1859 may_fallback = 0;
1860
1861 if (class == ATA_DEV_ATA)
1862 class = ATA_DEV_ATAPI;
1863 else
1864 class = ATA_DEV_ATA;
1865 goto retry;
1866 }
1867
1868 /* Control reaches here iff the device aborted
1869 * both flavors of IDENTIFYs which happens
1870 * sometimes with phantom devices.
1871 */
1872 ata_dev_dbg(dev,
1873 "both IDENTIFYs aborted, assuming NODEV\n");
1874 return -ENOENT;
1875 }
1876
1877 rc = -EIO;
1878 reason = "I/O error";
1879 goto err_out;
1880 }
1881
1882 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1883 ata_dev_info(dev, "dumping IDENTIFY data, "
1884 "class=%d may_fallback=%d tried_spinup=%d\n",
1885 class, may_fallback, tried_spinup);
1886 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1887 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1888 }
1889
1890 /* Falling back doesn't make sense if ID data was read
1891 * successfully at least once.
1892 */
1893 may_fallback = 0;
1894
1895 swap_buf_le16(id, ATA_ID_WORDS);
1896
1897 /* sanity check */
1898 rc = -EINVAL;
1899 reason = "device reports invalid type";
1900
1901 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1902 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1903 goto err_out;
1904 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1905 ata_id_is_ata(id)) {
1906 ata_dev_dbg(dev,
1907 "host indicates ignore ATA devices, ignored\n");
1908 return -ENOENT;
1909 }
1910 } else {
1911 if (ata_id_is_ata(id))
1912 goto err_out;
1913 }
1914
1915 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1916 tried_spinup = 1;
1917 /*
1918 * Drive powered-up in standby mode, and requires a specific
1919 * SET_FEATURES spin-up subcommand before it will accept
1920 * anything other than the original IDENTIFY command.
1921 */
1922 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1923 if (err_mask && id[2] != 0x738c) {
1924 rc = -EIO;
1925 reason = "SPINUP failed";
1926 goto err_out;
1927 }
1928 /*
1929 * If the drive initially returned incomplete IDENTIFY info,
1930 * we now must reissue the IDENTIFY command.
1931 */
1932 if (id[2] == 0x37c8)
1933 goto retry;
1934 }
1935
1936 if ((flags & ATA_READID_POSTRESET) &&
1937 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1938 /*
1939 * The exact sequence expected by certain pre-ATA4 drives is:
1940 * SRST RESET
1941 * IDENTIFY (optional in early ATA)
1942 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1943 * anything else..
1944 * Some drives were very specific about that exact sequence.
1945 *
1946 * Note that ATA4 says lba is mandatory so the second check
1947 * should never trigger.
1948 */
1949 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1950 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1951 if (err_mask) {
1952 rc = -EIO;
1953 reason = "INIT_DEV_PARAMS failed";
1954 goto err_out;
1955 }
1956
1957 /* current CHS translation info (id[53-58]) might be
1958 * changed. reread the identify device info.
1959 */
1960 flags &= ~ATA_READID_POSTRESET;
1961 goto retry;
1962 }
1963 }
1964
1965 *p_class = class;
1966
1967 return 0;
1968
1969 err_out:
1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 reason, err_mask);
1972 return rc;
1973 }
1974
1975 /**
1976 * ata_dev_power_set_standby - Set a device power mode to standby
1977 * @dev: target device
1978 *
1979 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1980 * For an HDD device, this spins down the disks.
1981 *
1982 * LOCKING:
1983 * Kernel thread context (may sleep).
1984 */
ata_dev_power_set_standby(struct ata_device * dev)1985 void ata_dev_power_set_standby(struct ata_device *dev)
1986 {
1987 unsigned long ap_flags = dev->link->ap->flags;
1988 struct ata_taskfile tf;
1989 unsigned int err_mask;
1990
1991 /* Issue STANDBY IMMEDIATE command only if supported by the device */
1992 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1993 return;
1994
1995 /*
1996 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1997 * causing some drives to spin up and down again. For these, do nothing
1998 * if we are being called on shutdown.
1999 */
2000 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2001 system_state == SYSTEM_POWER_OFF)
2002 return;
2003
2004 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2005 system_entering_hibernation())
2006 return;
2007
2008 ata_tf_init(dev, &tf);
2009 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2010 tf.protocol = ATA_PROT_NODATA;
2011 tf.command = ATA_CMD_STANDBYNOW1;
2012
2013 ata_dev_notice(dev, "Entering standby power mode\n");
2014
2015 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2016 if (err_mask)
2017 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2018 err_mask);
2019 }
2020
2021 /**
2022 * ata_dev_power_set_active - Set a device power mode to active
2023 * @dev: target device
2024 *
2025 * Issue a VERIFY command to enter to ensure that the device is in the
2026 * active power mode. For a spun-down HDD (standby or idle power mode),
2027 * the VERIFY command will complete after the disk spins up.
2028 *
2029 * LOCKING:
2030 * Kernel thread context (may sleep).
2031 */
ata_dev_power_set_active(struct ata_device * dev)2032 void ata_dev_power_set_active(struct ata_device *dev)
2033 {
2034 struct ata_taskfile tf;
2035 unsigned int err_mask;
2036
2037 /*
2038 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2039 * if supported by the device.
2040 */
2041 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
2042 return;
2043
2044 ata_tf_init(dev, &tf);
2045 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2046 tf.protocol = ATA_PROT_NODATA;
2047 tf.command = ATA_CMD_VERIFY;
2048 tf.nsect = 1;
2049 if (dev->flags & ATA_DFLAG_LBA) {
2050 tf.flags |= ATA_TFLAG_LBA;
2051 tf.device |= ATA_LBA;
2052 } else {
2053 /* CHS */
2054 tf.lbal = 0x1; /* sect */
2055 }
2056
2057 ata_dev_notice(dev, "Entering active power mode\n");
2058
2059 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2060 if (err_mask)
2061 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2062 err_mask);
2063 }
2064
2065 /**
2066 * ata_read_log_page - read a specific log page
2067 * @dev: target device
2068 * @log: log to read
2069 * @page: page to read
2070 * @buf: buffer to store read page
2071 * @sectors: number of sectors to read
2072 *
2073 * Read log page using READ_LOG_EXT command.
2074 *
2075 * LOCKING:
2076 * Kernel thread context (may sleep).
2077 *
2078 * RETURNS:
2079 * 0 on success, AC_ERR_* mask otherwise.
2080 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2081 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2082 u8 page, void *buf, unsigned int sectors)
2083 {
2084 unsigned long ap_flags = dev->link->ap->flags;
2085 struct ata_taskfile tf;
2086 unsigned int err_mask;
2087 bool dma = false;
2088
2089 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2090
2091 /*
2092 * Return error without actually issuing the command on controllers
2093 * which e.g. lockup on a read log page.
2094 */
2095 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2096 return AC_ERR_DEV;
2097
2098 retry:
2099 ata_tf_init(dev, &tf);
2100 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2101 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2102 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2103 tf.protocol = ATA_PROT_DMA;
2104 dma = true;
2105 } else {
2106 tf.command = ATA_CMD_READ_LOG_EXT;
2107 tf.protocol = ATA_PROT_PIO;
2108 dma = false;
2109 }
2110 tf.lbal = log;
2111 tf.lbam = page;
2112 tf.nsect = sectors;
2113 tf.hob_nsect = sectors >> 8;
2114 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2115
2116 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2117 buf, sectors * ATA_SECT_SIZE, 0);
2118
2119 if (err_mask) {
2120 if (dma) {
2121 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2122 if (!ata_port_is_frozen(dev->link->ap))
2123 goto retry;
2124 }
2125 ata_dev_err(dev,
2126 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2127 (unsigned int)log, (unsigned int)page, err_mask);
2128 }
2129
2130 return err_mask;
2131 }
2132
ata_log_supported(struct ata_device * dev,u8 log)2133 static int ata_log_supported(struct ata_device *dev, u8 log)
2134 {
2135 struct ata_port *ap = dev->link->ap;
2136
2137 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2138 return 0;
2139
2140 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2141 return 0;
2142 return get_unaligned_le16(&ap->sector_buf[log * 2]);
2143 }
2144
ata_identify_page_supported(struct ata_device * dev,u8 page)2145 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2146 {
2147 struct ata_port *ap = dev->link->ap;
2148 unsigned int err, i;
2149
2150 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2151 return false;
2152
2153 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2154 /*
2155 * IDENTIFY DEVICE data log is defined as mandatory starting
2156 * with ACS-3 (ATA version 10). Warn about the missing log
2157 * for drives which implement this ATA level or above.
2158 */
2159 if (ata_id_major_version(dev->id) >= 10)
2160 ata_dev_warn(dev,
2161 "ATA Identify Device Log not supported\n");
2162 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2163 return false;
2164 }
2165
2166 /*
2167 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2168 * supported.
2169 */
2170 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2171 1);
2172 if (err)
2173 return false;
2174
2175 for (i = 0; i < ap->sector_buf[8]; i++) {
2176 if (ap->sector_buf[9 + i] == page)
2177 return true;
2178 }
2179
2180 return false;
2181 }
2182
ata_do_link_spd_horkage(struct ata_device * dev)2183 static int ata_do_link_spd_horkage(struct ata_device *dev)
2184 {
2185 struct ata_link *plink = ata_dev_phys_link(dev);
2186 u32 target, target_limit;
2187
2188 if (!sata_scr_valid(plink))
2189 return 0;
2190
2191 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2192 target = 1;
2193 else
2194 return 0;
2195
2196 target_limit = (1 << target) - 1;
2197
2198 /* if already on stricter limit, no need to push further */
2199 if (plink->sata_spd_limit <= target_limit)
2200 return 0;
2201
2202 plink->sata_spd_limit = target_limit;
2203
2204 /* Request another EH round by returning -EAGAIN if link is
2205 * going faster than the target speed. Forward progress is
2206 * guaranteed by setting sata_spd_limit to target_limit above.
2207 */
2208 if (plink->sata_spd > target) {
2209 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2210 sata_spd_string(target));
2211 return -EAGAIN;
2212 }
2213 return 0;
2214 }
2215
ata_dev_knobble(struct ata_device * dev)2216 static inline u8 ata_dev_knobble(struct ata_device *dev)
2217 {
2218 struct ata_port *ap = dev->link->ap;
2219
2220 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2221 return 0;
2222
2223 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2224 }
2225
ata_dev_config_ncq_send_recv(struct ata_device * dev)2226 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2227 {
2228 struct ata_port *ap = dev->link->ap;
2229 unsigned int err_mask;
2230
2231 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2232 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2233 return;
2234 }
2235 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2236 0, ap->sector_buf, 1);
2237 if (!err_mask) {
2238 u8 *cmds = dev->ncq_send_recv_cmds;
2239
2240 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2241 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2242
2243 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2244 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2245 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2246 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2247 }
2248 }
2249 }
2250
ata_dev_config_ncq_non_data(struct ata_device * dev)2251 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2252 {
2253 struct ata_port *ap = dev->link->ap;
2254 unsigned int err_mask;
2255
2256 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2257 ata_dev_warn(dev,
2258 "NCQ Send/Recv Log not supported\n");
2259 return;
2260 }
2261 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2262 0, ap->sector_buf, 1);
2263 if (!err_mask) {
2264 u8 *cmds = dev->ncq_non_data_cmds;
2265
2266 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2267 }
2268 }
2269
ata_dev_config_ncq_prio(struct ata_device * dev)2270 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2271 {
2272 struct ata_port *ap = dev->link->ap;
2273 unsigned int err_mask;
2274
2275 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2276 return;
2277
2278 err_mask = ata_read_log_page(dev,
2279 ATA_LOG_IDENTIFY_DEVICE,
2280 ATA_LOG_SATA_SETTINGS,
2281 ap->sector_buf,
2282 1);
2283 if (err_mask)
2284 goto not_supported;
2285
2286 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2287 goto not_supported;
2288
2289 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2290
2291 return;
2292
2293 not_supported:
2294 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2295 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2296 }
2297
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2298 static bool ata_dev_check_adapter(struct ata_device *dev,
2299 unsigned short vendor_id)
2300 {
2301 struct pci_dev *pcidev = NULL;
2302 struct device *parent_dev = NULL;
2303
2304 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2305 parent_dev = parent_dev->parent) {
2306 if (dev_is_pci(parent_dev)) {
2307 pcidev = to_pci_dev(parent_dev);
2308 if (pcidev->vendor == vendor_id)
2309 return true;
2310 break;
2311 }
2312 }
2313
2314 return false;
2315 }
2316
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2317 static int ata_dev_config_ncq(struct ata_device *dev,
2318 char *desc, size_t desc_sz)
2319 {
2320 struct ata_port *ap = dev->link->ap;
2321 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2322 unsigned int err_mask;
2323 char *aa_desc = "";
2324
2325 if (!ata_id_has_ncq(dev->id)) {
2326 desc[0] = '\0';
2327 return 0;
2328 }
2329 if (!IS_ENABLED(CONFIG_SATA_HOST))
2330 return 0;
2331 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2332 snprintf(desc, desc_sz, "NCQ (not used)");
2333 return 0;
2334 }
2335
2336 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2337 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2338 snprintf(desc, desc_sz, "NCQ (not used)");
2339 return 0;
2340 }
2341
2342 if (ap->flags & ATA_FLAG_NCQ) {
2343 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2344 dev->flags |= ATA_DFLAG_NCQ;
2345 }
2346
2347 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2348 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2349 ata_id_has_fpdma_aa(dev->id)) {
2350 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2351 SATA_FPDMA_AA);
2352 if (err_mask) {
2353 ata_dev_err(dev,
2354 "failed to enable AA (error_mask=0x%x)\n",
2355 err_mask);
2356 if (err_mask != AC_ERR_DEV) {
2357 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2358 return -EIO;
2359 }
2360 } else
2361 aa_desc = ", AA";
2362 }
2363
2364 if (hdepth >= ddepth)
2365 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2366 else
2367 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2368 ddepth, aa_desc);
2369
2370 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2371 if (ata_id_has_ncq_send_and_recv(dev->id))
2372 ata_dev_config_ncq_send_recv(dev);
2373 if (ata_id_has_ncq_non_data(dev->id))
2374 ata_dev_config_ncq_non_data(dev);
2375 if (ata_id_has_ncq_prio(dev->id))
2376 ata_dev_config_ncq_prio(dev);
2377 }
2378
2379 return 0;
2380 }
2381
ata_dev_config_sense_reporting(struct ata_device * dev)2382 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2383 {
2384 unsigned int err_mask;
2385
2386 if (!ata_id_has_sense_reporting(dev->id))
2387 return;
2388
2389 if (ata_id_sense_reporting_enabled(dev->id))
2390 return;
2391
2392 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2393 if (err_mask) {
2394 ata_dev_dbg(dev,
2395 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2396 err_mask);
2397 }
2398 }
2399
ata_dev_config_zac(struct ata_device * dev)2400 static void ata_dev_config_zac(struct ata_device *dev)
2401 {
2402 struct ata_port *ap = dev->link->ap;
2403 unsigned int err_mask;
2404 u8 *identify_buf = ap->sector_buf;
2405
2406 dev->zac_zones_optimal_open = U32_MAX;
2407 dev->zac_zones_optimal_nonseq = U32_MAX;
2408 dev->zac_zones_max_open = U32_MAX;
2409
2410 /*
2411 * Always set the 'ZAC' flag for Host-managed devices.
2412 */
2413 if (dev->class == ATA_DEV_ZAC)
2414 dev->flags |= ATA_DFLAG_ZAC;
2415 else if (ata_id_zoned_cap(dev->id) == 0x01)
2416 /*
2417 * Check for host-aware devices.
2418 */
2419 dev->flags |= ATA_DFLAG_ZAC;
2420
2421 if (!(dev->flags & ATA_DFLAG_ZAC))
2422 return;
2423
2424 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2425 ata_dev_warn(dev,
2426 "ATA Zoned Information Log not supported\n");
2427 return;
2428 }
2429
2430 /*
2431 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2432 */
2433 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2434 ATA_LOG_ZONED_INFORMATION,
2435 identify_buf, 1);
2436 if (!err_mask) {
2437 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2438
2439 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2440 if ((zoned_cap >> 63))
2441 dev->zac_zoned_cap = (zoned_cap & 1);
2442 opt_open = get_unaligned_le64(&identify_buf[24]);
2443 if ((opt_open >> 63))
2444 dev->zac_zones_optimal_open = (u32)opt_open;
2445 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2446 if ((opt_nonseq >> 63))
2447 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2448 max_open = get_unaligned_le64(&identify_buf[40]);
2449 if ((max_open >> 63))
2450 dev->zac_zones_max_open = (u32)max_open;
2451 }
2452 }
2453
ata_dev_config_trusted(struct ata_device * dev)2454 static void ata_dev_config_trusted(struct ata_device *dev)
2455 {
2456 struct ata_port *ap = dev->link->ap;
2457 u64 trusted_cap;
2458 unsigned int err;
2459
2460 if (!ata_id_has_trusted(dev->id))
2461 return;
2462
2463 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2464 ata_dev_warn(dev,
2465 "Security Log not supported\n");
2466 return;
2467 }
2468
2469 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2470 ap->sector_buf, 1);
2471 if (err)
2472 return;
2473
2474 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2475 if (!(trusted_cap & (1ULL << 63))) {
2476 ata_dev_dbg(dev,
2477 "Trusted Computing capability qword not valid!\n");
2478 return;
2479 }
2480
2481 if (trusted_cap & (1 << 0))
2482 dev->flags |= ATA_DFLAG_TRUSTED;
2483 }
2484
ata_dev_config_cdl(struct ata_device * dev)2485 static void ata_dev_config_cdl(struct ata_device *dev)
2486 {
2487 struct ata_port *ap = dev->link->ap;
2488 unsigned int err_mask;
2489 bool cdl_enabled;
2490 u64 val;
2491
2492 if (ata_id_major_version(dev->id) < 12)
2493 goto not_supported;
2494
2495 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2496 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2497 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2498 goto not_supported;
2499
2500 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2501 ATA_LOG_SUPPORTED_CAPABILITIES,
2502 ap->sector_buf, 1);
2503 if (err_mask)
2504 goto not_supported;
2505
2506 /* Check Command Duration Limit Supported bits */
2507 val = get_unaligned_le64(&ap->sector_buf[168]);
2508 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2509 goto not_supported;
2510
2511 /* Warn the user if command duration guideline is not supported */
2512 if (!(val & BIT_ULL(1)))
2513 ata_dev_warn(dev,
2514 "Command duration guideline is not supported\n");
2515
2516 /*
2517 * We must have support for the sense data for successful NCQ commands
2518 * log indicated by the successful NCQ command sense data supported bit.
2519 */
2520 val = get_unaligned_le64(&ap->sector_buf[8]);
2521 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2522 ata_dev_warn(dev,
2523 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2524 goto not_supported;
2525 }
2526
2527 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2528 if (!ata_id_has_ncq_autosense(dev->id)) {
2529 ata_dev_warn(dev,
2530 "CDL supported but NCQ autosense is not supported\n");
2531 goto not_supported;
2532 }
2533
2534 /*
2535 * If CDL is marked as enabled, make sure the feature is enabled too.
2536 * Conversely, if CDL is disabled, make sure the feature is turned off.
2537 */
2538 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2539 ATA_LOG_CURRENT_SETTINGS,
2540 ap->sector_buf, 1);
2541 if (err_mask)
2542 goto not_supported;
2543
2544 val = get_unaligned_le64(&ap->sector_buf[8]);
2545 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2546 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2547 if (!cdl_enabled) {
2548 /* Enable CDL on the device */
2549 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2550 if (err_mask) {
2551 ata_dev_err(dev,
2552 "Enable CDL feature failed\n");
2553 goto not_supported;
2554 }
2555 }
2556 } else {
2557 if (cdl_enabled) {
2558 /* Disable CDL on the device */
2559 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2560 if (err_mask) {
2561 ata_dev_err(dev,
2562 "Disable CDL feature failed\n");
2563 goto not_supported;
2564 }
2565 }
2566 }
2567
2568 /*
2569 * While CDL itself has to be enabled using sysfs, CDL requires that
2570 * sense data for successful NCQ commands is enabled to work properly.
2571 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2572 * if supported.
2573 */
2574 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2575 err_mask = ata_dev_set_feature(dev,
2576 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2577 if (err_mask) {
2578 ata_dev_warn(dev,
2579 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2580 err_mask);
2581 goto not_supported;
2582 }
2583 }
2584
2585 /*
2586 * Allocate a buffer to handle reading the sense data for successful
2587 * NCQ Commands log page for commands using a CDL with one of the limit
2588 * policy set to 0xD (successful completion with sense data available
2589 * bit set).
2590 */
2591 if (!ap->ncq_sense_buf) {
2592 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2593 if (!ap->ncq_sense_buf)
2594 goto not_supported;
2595 }
2596
2597 /*
2598 * Command duration limits is supported: cache the CDL log page 18h
2599 * (command duration descriptors).
2600 */
2601 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2602 if (err_mask) {
2603 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2604 goto not_supported;
2605 }
2606
2607 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2608 dev->flags |= ATA_DFLAG_CDL;
2609
2610 return;
2611
2612 not_supported:
2613 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2614 kfree(ap->ncq_sense_buf);
2615 ap->ncq_sense_buf = NULL;
2616 }
2617
ata_dev_config_lba(struct ata_device * dev)2618 static int ata_dev_config_lba(struct ata_device *dev)
2619 {
2620 const u16 *id = dev->id;
2621 const char *lba_desc;
2622 char ncq_desc[32];
2623 int ret;
2624
2625 dev->flags |= ATA_DFLAG_LBA;
2626
2627 if (ata_id_has_lba48(id)) {
2628 lba_desc = "LBA48";
2629 dev->flags |= ATA_DFLAG_LBA48;
2630 if (dev->n_sectors >= (1UL << 28) &&
2631 ata_id_has_flush_ext(id))
2632 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2633 } else {
2634 lba_desc = "LBA";
2635 }
2636
2637 /* config NCQ */
2638 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2639
2640 /* print device info to dmesg */
2641 if (ata_dev_print_info(dev))
2642 ata_dev_info(dev,
2643 "%llu sectors, multi %u: %s %s\n",
2644 (unsigned long long)dev->n_sectors,
2645 dev->multi_count, lba_desc, ncq_desc);
2646
2647 return ret;
2648 }
2649
ata_dev_config_chs(struct ata_device * dev)2650 static void ata_dev_config_chs(struct ata_device *dev)
2651 {
2652 const u16 *id = dev->id;
2653
2654 if (ata_id_current_chs_valid(id)) {
2655 /* Current CHS translation is valid. */
2656 dev->cylinders = id[54];
2657 dev->heads = id[55];
2658 dev->sectors = id[56];
2659 } else {
2660 /* Default translation */
2661 dev->cylinders = id[1];
2662 dev->heads = id[3];
2663 dev->sectors = id[6];
2664 }
2665
2666 /* print device info to dmesg */
2667 if (ata_dev_print_info(dev))
2668 ata_dev_info(dev,
2669 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2670 (unsigned long long)dev->n_sectors,
2671 dev->multi_count, dev->cylinders,
2672 dev->heads, dev->sectors);
2673 }
2674
ata_dev_config_fua(struct ata_device * dev)2675 static void ata_dev_config_fua(struct ata_device *dev)
2676 {
2677 /* Ignore FUA support if its use is disabled globally */
2678 if (!libata_fua)
2679 goto nofua;
2680
2681 /* Ignore devices without support for WRITE DMA FUA EXT */
2682 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2683 goto nofua;
2684
2685 /* Ignore known bad devices and devices that lack NCQ support */
2686 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2687 goto nofua;
2688
2689 dev->flags |= ATA_DFLAG_FUA;
2690
2691 return;
2692
2693 nofua:
2694 dev->flags &= ~ATA_DFLAG_FUA;
2695 }
2696
ata_dev_config_devslp(struct ata_device * dev)2697 static void ata_dev_config_devslp(struct ata_device *dev)
2698 {
2699 u8 *sata_setting = dev->link->ap->sector_buf;
2700 unsigned int err_mask;
2701 int i, j;
2702
2703 /*
2704 * Check device sleep capability. Get DevSlp timing variables
2705 * from SATA Settings page of Identify Device Data Log.
2706 */
2707 if (!ata_id_has_devslp(dev->id) ||
2708 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2709 return;
2710
2711 err_mask = ata_read_log_page(dev,
2712 ATA_LOG_IDENTIFY_DEVICE,
2713 ATA_LOG_SATA_SETTINGS,
2714 sata_setting, 1);
2715 if (err_mask)
2716 return;
2717
2718 dev->flags |= ATA_DFLAG_DEVSLP;
2719 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2720 j = ATA_LOG_DEVSLP_OFFSET + i;
2721 dev->devslp_timing[i] = sata_setting[j];
2722 }
2723 }
2724
ata_dev_config_cpr(struct ata_device * dev)2725 static void ata_dev_config_cpr(struct ata_device *dev)
2726 {
2727 unsigned int err_mask;
2728 size_t buf_len;
2729 int i, nr_cpr = 0;
2730 struct ata_cpr_log *cpr_log = NULL;
2731 u8 *desc, *buf = NULL;
2732
2733 if (ata_id_major_version(dev->id) < 11)
2734 goto out;
2735
2736 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2737 if (buf_len == 0)
2738 goto out;
2739
2740 /*
2741 * Read the concurrent positioning ranges log (0x47). We can have at
2742 * most 255 32B range descriptors plus a 64B header. This log varies in
2743 * size, so use the size reported in the GPL directory. Reading beyond
2744 * the supported length will result in an error.
2745 */
2746 buf_len <<= 9;
2747 buf = kzalloc(buf_len, GFP_KERNEL);
2748 if (!buf)
2749 goto out;
2750
2751 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2752 0, buf, buf_len >> 9);
2753 if (err_mask)
2754 goto out;
2755
2756 nr_cpr = buf[0];
2757 if (!nr_cpr)
2758 goto out;
2759
2760 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2761 if (!cpr_log)
2762 goto out;
2763
2764 cpr_log->nr_cpr = nr_cpr;
2765 desc = &buf[64];
2766 for (i = 0; i < nr_cpr; i++, desc += 32) {
2767 cpr_log->cpr[i].num = desc[0];
2768 cpr_log->cpr[i].num_storage_elements = desc[1];
2769 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2770 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2771 }
2772
2773 out:
2774 swap(dev->cpr_log, cpr_log);
2775 kfree(cpr_log);
2776 kfree(buf);
2777 }
2778
ata_dev_print_features(struct ata_device * dev)2779 static void ata_dev_print_features(struct ata_device *dev)
2780 {
2781 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2782 return;
2783
2784 ata_dev_info(dev,
2785 "Features:%s%s%s%s%s%s%s%s\n",
2786 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2787 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2788 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2789 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2790 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2791 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2792 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2793 dev->cpr_log ? " CPR" : "");
2794 }
2795
2796 /**
2797 * ata_dev_configure - Configure the specified ATA/ATAPI device
2798 * @dev: Target device to configure
2799 *
2800 * Configure @dev according to @dev->id. Generic and low-level
2801 * driver specific fixups are also applied.
2802 *
2803 * LOCKING:
2804 * Kernel thread context (may sleep)
2805 *
2806 * RETURNS:
2807 * 0 on success, -errno otherwise
2808 */
ata_dev_configure(struct ata_device * dev)2809 int ata_dev_configure(struct ata_device *dev)
2810 {
2811 struct ata_port *ap = dev->link->ap;
2812 bool print_info = ata_dev_print_info(dev);
2813 const u16 *id = dev->id;
2814 unsigned int xfer_mask;
2815 unsigned int err_mask;
2816 char revbuf[7]; /* XYZ-99\0 */
2817 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2818 char modelbuf[ATA_ID_PROD_LEN+1];
2819 int rc;
2820
2821 if (!ata_dev_enabled(dev)) {
2822 ata_dev_dbg(dev, "no device\n");
2823 return 0;
2824 }
2825
2826 /* set horkage */
2827 dev->horkage |= ata_dev_blacklisted(dev);
2828 ata_force_horkage(dev);
2829
2830 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2831 ata_dev_info(dev, "unsupported device, disabling\n");
2832 ata_dev_disable(dev);
2833 return 0;
2834 }
2835
2836 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2837 dev->class == ATA_DEV_ATAPI) {
2838 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2839 atapi_enabled ? "not supported with this driver"
2840 : "disabled");
2841 ata_dev_disable(dev);
2842 return 0;
2843 }
2844
2845 rc = ata_do_link_spd_horkage(dev);
2846 if (rc)
2847 return rc;
2848
2849 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2850 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2851 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2852 dev->horkage |= ATA_HORKAGE_NOLPM;
2853
2854 if (ap->flags & ATA_FLAG_NO_LPM)
2855 dev->horkage |= ATA_HORKAGE_NOLPM;
2856
2857 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2858 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2859 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2860 }
2861
2862 /* let ACPI work its magic */
2863 rc = ata_acpi_on_devcfg(dev);
2864 if (rc)
2865 return rc;
2866
2867 /* massage HPA, do it early as it might change IDENTIFY data */
2868 rc = ata_hpa_resize(dev);
2869 if (rc)
2870 return rc;
2871
2872 /* print device capabilities */
2873 ata_dev_dbg(dev,
2874 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2875 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2876 __func__,
2877 id[49], id[82], id[83], id[84],
2878 id[85], id[86], id[87], id[88]);
2879
2880 /* initialize to-be-configured parameters */
2881 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2882 dev->max_sectors = 0;
2883 dev->cdb_len = 0;
2884 dev->n_sectors = 0;
2885 dev->cylinders = 0;
2886 dev->heads = 0;
2887 dev->sectors = 0;
2888 dev->multi_count = 0;
2889
2890 /*
2891 * common ATA, ATAPI feature tests
2892 */
2893
2894 /* find max transfer mode; for printk only */
2895 xfer_mask = ata_id_xfermask(id);
2896
2897 ata_dump_id(dev, id);
2898
2899 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2900 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2901 sizeof(fwrevbuf));
2902
2903 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2904 sizeof(modelbuf));
2905
2906 /* ATA-specific feature tests */
2907 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2908 if (ata_id_is_cfa(id)) {
2909 /* CPRM may make this media unusable */
2910 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2911 ata_dev_warn(dev,
2912 "supports DRM functions and may not be fully accessible\n");
2913 snprintf(revbuf, 7, "CFA");
2914 } else {
2915 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2916 /* Warn the user if the device has TPM extensions */
2917 if (ata_id_has_tpm(id))
2918 ata_dev_warn(dev,
2919 "supports DRM functions and may not be fully accessible\n");
2920 }
2921
2922 dev->n_sectors = ata_id_n_sectors(id);
2923
2924 /* get current R/W Multiple count setting */
2925 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2926 unsigned int max = dev->id[47] & 0xff;
2927 unsigned int cnt = dev->id[59] & 0xff;
2928 /* only recognize/allow powers of two here */
2929 if (is_power_of_2(max) && is_power_of_2(cnt))
2930 if (cnt <= max)
2931 dev->multi_count = cnt;
2932 }
2933
2934 /* print device info to dmesg */
2935 if (print_info)
2936 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2937 revbuf, modelbuf, fwrevbuf,
2938 ata_mode_string(xfer_mask));
2939
2940 if (ata_id_has_lba(id)) {
2941 rc = ata_dev_config_lba(dev);
2942 if (rc)
2943 return rc;
2944 } else {
2945 ata_dev_config_chs(dev);
2946 }
2947
2948 ata_dev_config_fua(dev);
2949 ata_dev_config_devslp(dev);
2950 ata_dev_config_sense_reporting(dev);
2951 ata_dev_config_zac(dev);
2952 ata_dev_config_trusted(dev);
2953 ata_dev_config_cpr(dev);
2954 ata_dev_config_cdl(dev);
2955 dev->cdb_len = 32;
2956
2957 if (print_info)
2958 ata_dev_print_features(dev);
2959 }
2960
2961 /* ATAPI-specific feature tests */
2962 else if (dev->class == ATA_DEV_ATAPI) {
2963 const char *cdb_intr_string = "";
2964 const char *atapi_an_string = "";
2965 const char *dma_dir_string = "";
2966 u32 sntf;
2967
2968 rc = atapi_cdb_len(id);
2969 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2970 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2971 rc = -EINVAL;
2972 goto err_out_nosup;
2973 }
2974 dev->cdb_len = (unsigned int) rc;
2975
2976 /* Enable ATAPI AN if both the host and device have
2977 * the support. If PMP is attached, SNTF is required
2978 * to enable ATAPI AN to discern between PHY status
2979 * changed notifications and ATAPI ANs.
2980 */
2981 if (atapi_an &&
2982 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2983 (!sata_pmp_attached(ap) ||
2984 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2985 /* issue SET feature command to turn this on */
2986 err_mask = ata_dev_set_feature(dev,
2987 SETFEATURES_SATA_ENABLE, SATA_AN);
2988 if (err_mask)
2989 ata_dev_err(dev,
2990 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2991 err_mask);
2992 else {
2993 dev->flags |= ATA_DFLAG_AN;
2994 atapi_an_string = ", ATAPI AN";
2995 }
2996 }
2997
2998 if (ata_id_cdb_intr(dev->id)) {
2999 dev->flags |= ATA_DFLAG_CDB_INTR;
3000 cdb_intr_string = ", CDB intr";
3001 }
3002
3003 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
3004 dev->flags |= ATA_DFLAG_DMADIR;
3005 dma_dir_string = ", DMADIR";
3006 }
3007
3008 if (ata_id_has_da(dev->id)) {
3009 dev->flags |= ATA_DFLAG_DA;
3010 zpodd_init(dev);
3011 }
3012
3013 /* print device info to dmesg */
3014 if (print_info)
3015 ata_dev_info(dev,
3016 "ATAPI: %s, %s, max %s%s%s%s\n",
3017 modelbuf, fwrevbuf,
3018 ata_mode_string(xfer_mask),
3019 cdb_intr_string, atapi_an_string,
3020 dma_dir_string);
3021 }
3022
3023 /* determine max_sectors */
3024 dev->max_sectors = ATA_MAX_SECTORS;
3025 if (dev->flags & ATA_DFLAG_LBA48)
3026 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3027
3028 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3029 200 sectors */
3030 if (ata_dev_knobble(dev)) {
3031 if (print_info)
3032 ata_dev_info(dev, "applying bridge limits\n");
3033 dev->udma_mask &= ATA_UDMA5;
3034 dev->max_sectors = ATA_MAX_SECTORS;
3035 }
3036
3037 if ((dev->class == ATA_DEV_ATAPI) &&
3038 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3039 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3040 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3041 }
3042
3043 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3044 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3045 dev->max_sectors);
3046
3047 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3048 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3049 dev->max_sectors);
3050
3051 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3052 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3053
3054 if (ap->ops->dev_config)
3055 ap->ops->dev_config(dev);
3056
3057 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3058 /* Let the user know. We don't want to disallow opens for
3059 rescue purposes, or in case the vendor is just a blithering
3060 idiot. Do this after the dev_config call as some controllers
3061 with buggy firmware may want to avoid reporting false device
3062 bugs */
3063
3064 if (print_info) {
3065 ata_dev_warn(dev,
3066 "Drive reports diagnostics failure. This may indicate a drive\n");
3067 ata_dev_warn(dev,
3068 "fault or invalid emulation. Contact drive vendor for information.\n");
3069 }
3070 }
3071
3072 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3073 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3074 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3075 }
3076
3077 return 0;
3078
3079 err_out_nosup:
3080 return rc;
3081 }
3082
3083 /**
3084 * ata_cable_40wire - return 40 wire cable type
3085 * @ap: port
3086 *
3087 * Helper method for drivers which want to hardwire 40 wire cable
3088 * detection.
3089 */
3090
ata_cable_40wire(struct ata_port * ap)3091 int ata_cable_40wire(struct ata_port *ap)
3092 {
3093 return ATA_CBL_PATA40;
3094 }
3095 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3096
3097 /**
3098 * ata_cable_80wire - return 80 wire cable type
3099 * @ap: port
3100 *
3101 * Helper method for drivers which want to hardwire 80 wire cable
3102 * detection.
3103 */
3104
ata_cable_80wire(struct ata_port * ap)3105 int ata_cable_80wire(struct ata_port *ap)
3106 {
3107 return ATA_CBL_PATA80;
3108 }
3109 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3110
3111 /**
3112 * ata_cable_unknown - return unknown PATA cable.
3113 * @ap: port
3114 *
3115 * Helper method for drivers which have no PATA cable detection.
3116 */
3117
ata_cable_unknown(struct ata_port * ap)3118 int ata_cable_unknown(struct ata_port *ap)
3119 {
3120 return ATA_CBL_PATA_UNK;
3121 }
3122 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3123
3124 /**
3125 * ata_cable_ignore - return ignored PATA cable.
3126 * @ap: port
3127 *
3128 * Helper method for drivers which don't use cable type to limit
3129 * transfer mode.
3130 */
ata_cable_ignore(struct ata_port * ap)3131 int ata_cable_ignore(struct ata_port *ap)
3132 {
3133 return ATA_CBL_PATA_IGN;
3134 }
3135 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3136
3137 /**
3138 * ata_cable_sata - return SATA cable type
3139 * @ap: port
3140 *
3141 * Helper method for drivers which have SATA cables
3142 */
3143
ata_cable_sata(struct ata_port * ap)3144 int ata_cable_sata(struct ata_port *ap)
3145 {
3146 return ATA_CBL_SATA;
3147 }
3148 EXPORT_SYMBOL_GPL(ata_cable_sata);
3149
3150 /**
3151 * sata_print_link_status - Print SATA link status
3152 * @link: SATA link to printk link status about
3153 *
3154 * This function prints link speed and status of a SATA link.
3155 *
3156 * LOCKING:
3157 * None.
3158 */
sata_print_link_status(struct ata_link * link)3159 static void sata_print_link_status(struct ata_link *link)
3160 {
3161 u32 sstatus, scontrol, tmp;
3162
3163 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3164 return;
3165 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3166 return;
3167
3168 if (ata_phys_link_online(link)) {
3169 tmp = (sstatus >> 4) & 0xf;
3170 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3171 sata_spd_string(tmp), sstatus, scontrol);
3172 } else {
3173 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3174 sstatus, scontrol);
3175 }
3176 }
3177
3178 /**
3179 * ata_dev_pair - return other device on cable
3180 * @adev: device
3181 *
3182 * Obtain the other device on the same cable, or if none is
3183 * present NULL is returned
3184 */
3185
ata_dev_pair(struct ata_device * adev)3186 struct ata_device *ata_dev_pair(struct ata_device *adev)
3187 {
3188 struct ata_link *link = adev->link;
3189 struct ata_device *pair = &link->device[1 - adev->devno];
3190 if (!ata_dev_enabled(pair))
3191 return NULL;
3192 return pair;
3193 }
3194 EXPORT_SYMBOL_GPL(ata_dev_pair);
3195
3196 /**
3197 * sata_down_spd_limit - adjust SATA spd limit downward
3198 * @link: Link to adjust SATA spd limit for
3199 * @spd_limit: Additional limit
3200 *
3201 * Adjust SATA spd limit of @link downward. Note that this
3202 * function only adjusts the limit. The change must be applied
3203 * using sata_set_spd().
3204 *
3205 * If @spd_limit is non-zero, the speed is limited to equal to or
3206 * lower than @spd_limit if such speed is supported. If
3207 * @spd_limit is slower than any supported speed, only the lowest
3208 * supported speed is allowed.
3209 *
3210 * LOCKING:
3211 * Inherited from caller.
3212 *
3213 * RETURNS:
3214 * 0 on success, negative errno on failure
3215 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3216 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3217 {
3218 u32 sstatus, spd, mask;
3219 int rc, bit;
3220
3221 if (!sata_scr_valid(link))
3222 return -EOPNOTSUPP;
3223
3224 /* If SCR can be read, use it to determine the current SPD.
3225 * If not, use cached value in link->sata_spd.
3226 */
3227 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3228 if (rc == 0 && ata_sstatus_online(sstatus))
3229 spd = (sstatus >> 4) & 0xf;
3230 else
3231 spd = link->sata_spd;
3232
3233 mask = link->sata_spd_limit;
3234 if (mask <= 1)
3235 return -EINVAL;
3236
3237 /* unconditionally mask off the highest bit */
3238 bit = fls(mask) - 1;
3239 mask &= ~(1 << bit);
3240
3241 /*
3242 * Mask off all speeds higher than or equal to the current one. At
3243 * this point, if current SPD is not available and we previously
3244 * recorded the link speed from SStatus, the driver has already
3245 * masked off the highest bit so mask should already be 1 or 0.
3246 * Otherwise, we should not force 1.5Gbps on a link where we have
3247 * not previously recorded speed from SStatus. Just return in this
3248 * case.
3249 */
3250 if (spd > 1)
3251 mask &= (1 << (spd - 1)) - 1;
3252 else if (link->sata_spd)
3253 return -EINVAL;
3254
3255 /* were we already at the bottom? */
3256 if (!mask)
3257 return -EINVAL;
3258
3259 if (spd_limit) {
3260 if (mask & ((1 << spd_limit) - 1))
3261 mask &= (1 << spd_limit) - 1;
3262 else {
3263 bit = ffs(mask) - 1;
3264 mask = 1 << bit;
3265 }
3266 }
3267
3268 link->sata_spd_limit = mask;
3269
3270 ata_link_warn(link, "limiting SATA link speed to %s\n",
3271 sata_spd_string(fls(mask)));
3272
3273 return 0;
3274 }
3275
3276 #ifdef CONFIG_ATA_ACPI
3277 /**
3278 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3279 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3280 * @cycle: cycle duration in ns
3281 *
3282 * Return matching xfer mode for @cycle. The returned mode is of
3283 * the transfer type specified by @xfer_shift. If @cycle is too
3284 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3285 * than the fastest known mode, the fasted mode is returned.
3286 *
3287 * LOCKING:
3288 * None.
3289 *
3290 * RETURNS:
3291 * Matching xfer_mode, 0xff if no match found.
3292 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3293 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3294 {
3295 u8 base_mode = 0xff, last_mode = 0xff;
3296 const struct ata_xfer_ent *ent;
3297 const struct ata_timing *t;
3298
3299 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3300 if (ent->shift == xfer_shift)
3301 base_mode = ent->base;
3302
3303 for (t = ata_timing_find_mode(base_mode);
3304 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3305 unsigned short this_cycle;
3306
3307 switch (xfer_shift) {
3308 case ATA_SHIFT_PIO:
3309 case ATA_SHIFT_MWDMA:
3310 this_cycle = t->cycle;
3311 break;
3312 case ATA_SHIFT_UDMA:
3313 this_cycle = t->udma;
3314 break;
3315 default:
3316 return 0xff;
3317 }
3318
3319 if (cycle > this_cycle)
3320 break;
3321
3322 last_mode = t->mode;
3323 }
3324
3325 return last_mode;
3326 }
3327 #endif
3328
3329 /**
3330 * ata_down_xfermask_limit - adjust dev xfer masks downward
3331 * @dev: Device to adjust xfer masks
3332 * @sel: ATA_DNXFER_* selector
3333 *
3334 * Adjust xfer masks of @dev downward. Note that this function
3335 * does not apply the change. Invoking ata_set_mode() afterwards
3336 * will apply the limit.
3337 *
3338 * LOCKING:
3339 * Inherited from caller.
3340 *
3341 * RETURNS:
3342 * 0 on success, negative errno on failure
3343 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3344 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3345 {
3346 char buf[32];
3347 unsigned int orig_mask, xfer_mask;
3348 unsigned int pio_mask, mwdma_mask, udma_mask;
3349 int quiet, highbit;
3350
3351 quiet = !!(sel & ATA_DNXFER_QUIET);
3352 sel &= ~ATA_DNXFER_QUIET;
3353
3354 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3355 dev->mwdma_mask,
3356 dev->udma_mask);
3357 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3358
3359 switch (sel) {
3360 case ATA_DNXFER_PIO:
3361 highbit = fls(pio_mask) - 1;
3362 pio_mask &= ~(1 << highbit);
3363 break;
3364
3365 case ATA_DNXFER_DMA:
3366 if (udma_mask) {
3367 highbit = fls(udma_mask) - 1;
3368 udma_mask &= ~(1 << highbit);
3369 if (!udma_mask)
3370 return -ENOENT;
3371 } else if (mwdma_mask) {
3372 highbit = fls(mwdma_mask) - 1;
3373 mwdma_mask &= ~(1 << highbit);
3374 if (!mwdma_mask)
3375 return -ENOENT;
3376 }
3377 break;
3378
3379 case ATA_DNXFER_40C:
3380 udma_mask &= ATA_UDMA_MASK_40C;
3381 break;
3382
3383 case ATA_DNXFER_FORCE_PIO0:
3384 pio_mask &= 1;
3385 fallthrough;
3386 case ATA_DNXFER_FORCE_PIO:
3387 mwdma_mask = 0;
3388 udma_mask = 0;
3389 break;
3390
3391 default:
3392 BUG();
3393 }
3394
3395 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3396
3397 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3398 return -ENOENT;
3399
3400 if (!quiet) {
3401 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3402 snprintf(buf, sizeof(buf), "%s:%s",
3403 ata_mode_string(xfer_mask),
3404 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3405 else
3406 snprintf(buf, sizeof(buf), "%s",
3407 ata_mode_string(xfer_mask));
3408
3409 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3410 }
3411
3412 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3413 &dev->udma_mask);
3414
3415 return 0;
3416 }
3417
ata_dev_set_mode(struct ata_device * dev)3418 static int ata_dev_set_mode(struct ata_device *dev)
3419 {
3420 struct ata_port *ap = dev->link->ap;
3421 struct ata_eh_context *ehc = &dev->link->eh_context;
3422 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3423 const char *dev_err_whine = "";
3424 int ign_dev_err = 0;
3425 unsigned int err_mask = 0;
3426 int rc;
3427
3428 dev->flags &= ~ATA_DFLAG_PIO;
3429 if (dev->xfer_shift == ATA_SHIFT_PIO)
3430 dev->flags |= ATA_DFLAG_PIO;
3431
3432 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3433 dev_err_whine = " (SET_XFERMODE skipped)";
3434 else {
3435 if (nosetxfer)
3436 ata_dev_warn(dev,
3437 "NOSETXFER but PATA detected - can't "
3438 "skip SETXFER, might malfunction\n");
3439 err_mask = ata_dev_set_xfermode(dev);
3440 }
3441
3442 if (err_mask & ~AC_ERR_DEV)
3443 goto fail;
3444
3445 /* revalidate */
3446 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3447 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3448 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3449 if (rc)
3450 return rc;
3451
3452 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3453 /* Old CFA may refuse this command, which is just fine */
3454 if (ata_id_is_cfa(dev->id))
3455 ign_dev_err = 1;
3456 /* Catch several broken garbage emulations plus some pre
3457 ATA devices */
3458 if (ata_id_major_version(dev->id) == 0 &&
3459 dev->pio_mode <= XFER_PIO_2)
3460 ign_dev_err = 1;
3461 /* Some very old devices and some bad newer ones fail
3462 any kind of SET_XFERMODE request but support PIO0-2
3463 timings and no IORDY */
3464 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3465 ign_dev_err = 1;
3466 }
3467 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3468 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3469 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3470 dev->dma_mode == XFER_MW_DMA_0 &&
3471 (dev->id[63] >> 8) & 1)
3472 ign_dev_err = 1;
3473
3474 /* if the device is actually configured correctly, ignore dev err */
3475 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3476 ign_dev_err = 1;
3477
3478 if (err_mask & AC_ERR_DEV) {
3479 if (!ign_dev_err)
3480 goto fail;
3481 else
3482 dev_err_whine = " (device error ignored)";
3483 }
3484
3485 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3486 dev->xfer_shift, (int)dev->xfer_mode);
3487
3488 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3489 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3490 ata_dev_info(dev, "configured for %s%s\n",
3491 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3492 dev_err_whine);
3493
3494 return 0;
3495
3496 fail:
3497 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3498 return -EIO;
3499 }
3500
3501 /**
3502 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3503 * @link: link on which timings will be programmed
3504 * @r_failed_dev: out parameter for failed device
3505 *
3506 * Standard implementation of the function used to tune and set
3507 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3508 * ata_dev_set_mode() fails, pointer to the failing device is
3509 * returned in @r_failed_dev.
3510 *
3511 * LOCKING:
3512 * PCI/etc. bus probe sem.
3513 *
3514 * RETURNS:
3515 * 0 on success, negative errno otherwise
3516 */
3517
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3518 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3519 {
3520 struct ata_port *ap = link->ap;
3521 struct ata_device *dev;
3522 int rc = 0, used_dma = 0, found = 0;
3523
3524 /* step 1: calculate xfer_mask */
3525 ata_for_each_dev(dev, link, ENABLED) {
3526 unsigned int pio_mask, dma_mask;
3527 unsigned int mode_mask;
3528
3529 mode_mask = ATA_DMA_MASK_ATA;
3530 if (dev->class == ATA_DEV_ATAPI)
3531 mode_mask = ATA_DMA_MASK_ATAPI;
3532 else if (ata_id_is_cfa(dev->id))
3533 mode_mask = ATA_DMA_MASK_CFA;
3534
3535 ata_dev_xfermask(dev);
3536 ata_force_xfermask(dev);
3537
3538 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3539
3540 if (libata_dma_mask & mode_mask)
3541 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3542 dev->udma_mask);
3543 else
3544 dma_mask = 0;
3545
3546 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3547 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3548
3549 found = 1;
3550 if (ata_dma_enabled(dev))
3551 used_dma = 1;
3552 }
3553 if (!found)
3554 goto out;
3555
3556 /* step 2: always set host PIO timings */
3557 ata_for_each_dev(dev, link, ENABLED) {
3558 if (dev->pio_mode == 0xff) {
3559 ata_dev_warn(dev, "no PIO support\n");
3560 rc = -EINVAL;
3561 goto out;
3562 }
3563
3564 dev->xfer_mode = dev->pio_mode;
3565 dev->xfer_shift = ATA_SHIFT_PIO;
3566 if (ap->ops->set_piomode)
3567 ap->ops->set_piomode(ap, dev);
3568 }
3569
3570 /* step 3: set host DMA timings */
3571 ata_for_each_dev(dev, link, ENABLED) {
3572 if (!ata_dma_enabled(dev))
3573 continue;
3574
3575 dev->xfer_mode = dev->dma_mode;
3576 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3577 if (ap->ops->set_dmamode)
3578 ap->ops->set_dmamode(ap, dev);
3579 }
3580
3581 /* step 4: update devices' xfer mode */
3582 ata_for_each_dev(dev, link, ENABLED) {
3583 rc = ata_dev_set_mode(dev);
3584 if (rc)
3585 goto out;
3586 }
3587
3588 /* Record simplex status. If we selected DMA then the other
3589 * host channels are not permitted to do so.
3590 */
3591 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3592 ap->host->simplex_claimed = ap;
3593
3594 out:
3595 if (rc)
3596 *r_failed_dev = dev;
3597 return rc;
3598 }
3599 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3600
3601 /**
3602 * ata_wait_ready - wait for link to become ready
3603 * @link: link to be waited on
3604 * @deadline: deadline jiffies for the operation
3605 * @check_ready: callback to check link readiness
3606 *
3607 * Wait for @link to become ready. @check_ready should return
3608 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3609 * link doesn't seem to be occupied, other errno for other error
3610 * conditions.
3611 *
3612 * Transient -ENODEV conditions are allowed for
3613 * ATA_TMOUT_FF_WAIT.
3614 *
3615 * LOCKING:
3616 * EH context.
3617 *
3618 * RETURNS:
3619 * 0 if @link is ready before @deadline; otherwise, -errno.
3620 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3621 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3622 int (*check_ready)(struct ata_link *link))
3623 {
3624 unsigned long start = jiffies;
3625 unsigned long nodev_deadline;
3626 int warned = 0;
3627
3628 /* choose which 0xff timeout to use, read comment in libata.h */
3629 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3630 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3631 else
3632 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3633
3634 /* Slave readiness can't be tested separately from master. On
3635 * M/S emulation configuration, this function should be called
3636 * only on the master and it will handle both master and slave.
3637 */
3638 WARN_ON(link == link->ap->slave_link);
3639
3640 if (time_after(nodev_deadline, deadline))
3641 nodev_deadline = deadline;
3642
3643 while (1) {
3644 unsigned long now = jiffies;
3645 int ready, tmp;
3646
3647 ready = tmp = check_ready(link);
3648 if (ready > 0)
3649 return 0;
3650
3651 /*
3652 * -ENODEV could be transient. Ignore -ENODEV if link
3653 * is online. Also, some SATA devices take a long
3654 * time to clear 0xff after reset. Wait for
3655 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3656 * offline.
3657 *
3658 * Note that some PATA controllers (pata_ali) explode
3659 * if status register is read more than once when
3660 * there's no device attached.
3661 */
3662 if (ready == -ENODEV) {
3663 if (ata_link_online(link))
3664 ready = 0;
3665 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3666 !ata_link_offline(link) &&
3667 time_before(now, nodev_deadline))
3668 ready = 0;
3669 }
3670
3671 if (ready)
3672 return ready;
3673 if (time_after(now, deadline))
3674 return -EBUSY;
3675
3676 if (!warned && time_after(now, start + 5 * HZ) &&
3677 (deadline - now > 3 * HZ)) {
3678 ata_link_warn(link,
3679 "link is slow to respond, please be patient "
3680 "(ready=%d)\n", tmp);
3681 warned = 1;
3682 }
3683
3684 ata_msleep(link->ap, 50);
3685 }
3686 }
3687
3688 /**
3689 * ata_wait_after_reset - wait for link to become ready after reset
3690 * @link: link to be waited on
3691 * @deadline: deadline jiffies for the operation
3692 * @check_ready: callback to check link readiness
3693 *
3694 * Wait for @link to become ready after reset.
3695 *
3696 * LOCKING:
3697 * EH context.
3698 *
3699 * RETURNS:
3700 * 0 if @link is ready before @deadline; otherwise, -errno.
3701 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3702 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3703 int (*check_ready)(struct ata_link *link))
3704 {
3705 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3706
3707 return ata_wait_ready(link, deadline, check_ready);
3708 }
3709 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3710
3711 /**
3712 * ata_std_prereset - prepare for reset
3713 * @link: ATA link to be reset
3714 * @deadline: deadline jiffies for the operation
3715 *
3716 * @link is about to be reset. Initialize it. Failure from
3717 * prereset makes libata abort whole reset sequence and give up
3718 * that port, so prereset should be best-effort. It does its
3719 * best to prepare for reset sequence but if things go wrong, it
3720 * should just whine, not fail.
3721 *
3722 * LOCKING:
3723 * Kernel thread context (may sleep)
3724 *
3725 * RETURNS:
3726 * Always 0.
3727 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3728 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3729 {
3730 struct ata_port *ap = link->ap;
3731 struct ata_eh_context *ehc = &link->eh_context;
3732 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3733 int rc;
3734
3735 /* if we're about to do hardreset, nothing more to do */
3736 if (ehc->i.action & ATA_EH_HARDRESET)
3737 return 0;
3738
3739 /* if SATA, resume link */
3740 if (ap->flags & ATA_FLAG_SATA) {
3741 rc = sata_link_resume(link, timing, deadline);
3742 /* whine about phy resume failure but proceed */
3743 if (rc && rc != -EOPNOTSUPP)
3744 ata_link_warn(link,
3745 "failed to resume link for reset (errno=%d)\n",
3746 rc);
3747 }
3748
3749 /* no point in trying softreset on offline link */
3750 if (ata_phys_link_offline(link))
3751 ehc->i.action &= ~ATA_EH_SOFTRESET;
3752
3753 return 0;
3754 }
3755 EXPORT_SYMBOL_GPL(ata_std_prereset);
3756
3757 /**
3758 * sata_std_hardreset - COMRESET w/o waiting or classification
3759 * @link: link to reset
3760 * @class: resulting class of attached device
3761 * @deadline: deadline jiffies for the operation
3762 *
3763 * Standard SATA COMRESET w/o waiting or classification.
3764 *
3765 * LOCKING:
3766 * Kernel thread context (may sleep)
3767 *
3768 * RETURNS:
3769 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3770 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3771 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3772 unsigned long deadline)
3773 {
3774 const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3775 bool online;
3776 int rc;
3777
3778 /* do hardreset */
3779 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3780 return online ? -EAGAIN : rc;
3781 }
3782 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3783
3784 /**
3785 * ata_std_postreset - standard postreset callback
3786 * @link: the target ata_link
3787 * @classes: classes of attached devices
3788 *
3789 * This function is invoked after a successful reset. Note that
3790 * the device might have been reset more than once using
3791 * different reset methods before postreset is invoked.
3792 *
3793 * LOCKING:
3794 * Kernel thread context (may sleep)
3795 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3796 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3797 {
3798 u32 serror;
3799
3800 /* reset complete, clear SError */
3801 if (!sata_scr_read(link, SCR_ERROR, &serror))
3802 sata_scr_write(link, SCR_ERROR, serror);
3803
3804 /* print link status */
3805 sata_print_link_status(link);
3806 }
3807 EXPORT_SYMBOL_GPL(ata_std_postreset);
3808
3809 /**
3810 * ata_dev_same_device - Determine whether new ID matches configured device
3811 * @dev: device to compare against
3812 * @new_class: class of the new device
3813 * @new_id: IDENTIFY page of the new device
3814 *
3815 * Compare @new_class and @new_id against @dev and determine
3816 * whether @dev is the device indicated by @new_class and
3817 * @new_id.
3818 *
3819 * LOCKING:
3820 * None.
3821 *
3822 * RETURNS:
3823 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3824 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3825 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3826 const u16 *new_id)
3827 {
3828 const u16 *old_id = dev->id;
3829 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3830 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3831
3832 if (dev->class != new_class) {
3833 ata_dev_info(dev, "class mismatch %d != %d\n",
3834 dev->class, new_class);
3835 return 0;
3836 }
3837
3838 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3839 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3840 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3841 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3842
3843 if (strcmp(model[0], model[1])) {
3844 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3845 model[0], model[1]);
3846 return 0;
3847 }
3848
3849 if (strcmp(serial[0], serial[1])) {
3850 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3851 serial[0], serial[1]);
3852 return 0;
3853 }
3854
3855 return 1;
3856 }
3857
3858 /**
3859 * ata_dev_reread_id - Re-read IDENTIFY data
3860 * @dev: target ATA device
3861 * @readid_flags: read ID flags
3862 *
3863 * Re-read IDENTIFY page and make sure @dev is still attached to
3864 * the port.
3865 *
3866 * LOCKING:
3867 * Kernel thread context (may sleep)
3868 *
3869 * RETURNS:
3870 * 0 on success, negative errno otherwise
3871 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3872 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3873 {
3874 unsigned int class = dev->class;
3875 u16 *id = (void *)dev->link->ap->sector_buf;
3876 int rc;
3877
3878 /* read ID data */
3879 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3880 if (rc)
3881 return rc;
3882
3883 /* is the device still there? */
3884 if (!ata_dev_same_device(dev, class, id))
3885 return -ENODEV;
3886
3887 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3888 return 0;
3889 }
3890
3891 /**
3892 * ata_dev_revalidate - Revalidate ATA device
3893 * @dev: device to revalidate
3894 * @new_class: new class code
3895 * @readid_flags: read ID flags
3896 *
3897 * Re-read IDENTIFY page, make sure @dev is still attached to the
3898 * port and reconfigure it according to the new IDENTIFY page.
3899 *
3900 * LOCKING:
3901 * Kernel thread context (may sleep)
3902 *
3903 * RETURNS:
3904 * 0 on success, negative errno otherwise
3905 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3906 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3907 unsigned int readid_flags)
3908 {
3909 u64 n_sectors = dev->n_sectors;
3910 u64 n_native_sectors = dev->n_native_sectors;
3911 int rc;
3912
3913 if (!ata_dev_enabled(dev))
3914 return -ENODEV;
3915
3916 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3917 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3918 ata_dev_info(dev, "class mismatch %u != %u\n",
3919 dev->class, new_class);
3920 rc = -ENODEV;
3921 goto fail;
3922 }
3923
3924 /* re-read ID */
3925 rc = ata_dev_reread_id(dev, readid_flags);
3926 if (rc)
3927 goto fail;
3928
3929 /* configure device according to the new ID */
3930 rc = ata_dev_configure(dev);
3931 if (rc)
3932 goto fail;
3933
3934 /* verify n_sectors hasn't changed */
3935 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3936 dev->n_sectors == n_sectors)
3937 return 0;
3938
3939 /* n_sectors has changed */
3940 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3941 (unsigned long long)n_sectors,
3942 (unsigned long long)dev->n_sectors);
3943
3944 /*
3945 * Something could have caused HPA to be unlocked
3946 * involuntarily. If n_native_sectors hasn't changed and the
3947 * new size matches it, keep the device.
3948 */
3949 if (dev->n_native_sectors == n_native_sectors &&
3950 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3951 ata_dev_warn(dev,
3952 "new n_sectors matches native, probably "
3953 "late HPA unlock, n_sectors updated\n");
3954 /* use the larger n_sectors */
3955 return 0;
3956 }
3957
3958 /*
3959 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3960 * unlocking HPA in those cases.
3961 *
3962 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3963 */
3964 if (dev->n_native_sectors == n_native_sectors &&
3965 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3966 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3967 ata_dev_warn(dev,
3968 "old n_sectors matches native, probably "
3969 "late HPA lock, will try to unlock HPA\n");
3970 /* try unlocking HPA */
3971 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3972 rc = -EIO;
3973 } else
3974 rc = -ENODEV;
3975
3976 /* restore original n_[native_]sectors and fail */
3977 dev->n_native_sectors = n_native_sectors;
3978 dev->n_sectors = n_sectors;
3979 fail:
3980 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3981 return rc;
3982 }
3983
3984 struct ata_blacklist_entry {
3985 const char *model_num;
3986 const char *model_rev;
3987 unsigned long horkage;
3988 };
3989
3990 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3991 /* Devices with DMA related problems under Linux */
3992 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3993 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3994 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3995 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3996 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3997 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3998 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3999 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4000 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4001 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4002 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4003 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4004 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4005 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4006 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4007 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4008 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4009 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4010 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4011 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4012 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4013 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4014 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4015 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4016 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4017 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4018 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4019 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4020 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4021 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4022 /* Odd clown on sil3726/4726 PMPs */
4023 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4024 /* Similar story with ASMedia 1092 */
4025 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
4026
4027 /* Weird ATAPI devices */
4028 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4029 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4030 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4031 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4032
4033 /*
4034 * Causes silent data corruption with higher max sects.
4035 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4036 */
4037 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4038
4039 /*
4040 * These devices time out with higher max sects.
4041 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4042 */
4043 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4044 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4045
4046 /* Devices we expect to fail diagnostics */
4047
4048 /* Devices where NCQ should be avoided */
4049 /* NCQ is slow */
4050 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4051 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ },
4052 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4053 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4054 /* NCQ is broken */
4055 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4056 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4057 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4058 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4059 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4060
4061 /* Seagate NCQ + FLUSH CACHE firmware bug */
4062 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4063 ATA_HORKAGE_FIRMWARE_WARN },
4064
4065 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4066 ATA_HORKAGE_FIRMWARE_WARN },
4067
4068 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4069 ATA_HORKAGE_FIRMWARE_WARN },
4070
4071 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4072 ATA_HORKAGE_FIRMWARE_WARN },
4073
4074 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4075 the ST disks also have LPM issues */
4076 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
4077 ATA_HORKAGE_NOLPM },
4078 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4079
4080 /* Blacklist entries taken from Silicon Image 3124/3132
4081 Windows driver .inf file - also several Linux problem reports */
4082 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ },
4083 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ },
4084 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ },
4085
4086 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4087 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ },
4088
4089 /* Sandisk SD7/8/9s lock up hard on large trims */
4090 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M },
4091
4092 /* devices which puke on READ_NATIVE_MAX */
4093 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA },
4094 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4095 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4096 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4097
4098 /* this one allows HPA unlocking but fails IOs on the area */
4099 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4100
4101 /* Devices which report 1 sector over size HPA */
4102 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE },
4103 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE },
4104 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE },
4105
4106 /* Devices which get the IVB wrong */
4107 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4108 /* Maybe we should just blacklist TSSTcorp... */
4109 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB },
4110
4111 /* Devices that do not need bridging limits applied */
4112 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK },
4113 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK },
4114
4115 /* Devices which aren't very happy with higher link speeds */
4116 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS },
4117 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS },
4118
4119 /*
4120 * Devices which choke on SETXFER. Applies only if both the
4121 * device and controller are SATA.
4122 */
4123 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4124 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4125 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4126 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4127 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4128
4129 /* These specific Pioneer models have LPM issues */
4130 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
4131 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
4132
4133 /* Crucial BX100 SSD 500GB has broken LPM support */
4134 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4135
4136 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4137 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4138 ATA_HORKAGE_ZERO_AFTER_TRIM |
4139 ATA_HORKAGE_NOLPM },
4140 /* 512GB MX100 with newer firmware has only LPM issues */
4141 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4142 ATA_HORKAGE_NOLPM },
4143
4144 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4145 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4146 ATA_HORKAGE_ZERO_AFTER_TRIM |
4147 ATA_HORKAGE_NOLPM },
4148 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4149 ATA_HORKAGE_ZERO_AFTER_TRIM |
4150 ATA_HORKAGE_NOLPM },
4151
4152 /* These specific Samsung models/firmware-revs do not handle LPM well */
4153 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4154 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM },
4155 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM },
4156 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4157
4158 /* devices that don't properly handle queued TRIM commands */
4159 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4160 ATA_HORKAGE_ZERO_AFTER_TRIM },
4161 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4162 ATA_HORKAGE_ZERO_AFTER_TRIM },
4163 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4164 ATA_HORKAGE_ZERO_AFTER_TRIM },
4165 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4166 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4167 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4168 ATA_HORKAGE_ZERO_AFTER_TRIM },
4169 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4170 ATA_HORKAGE_ZERO_AFTER_TRIM },
4171 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4172 ATA_HORKAGE_ZERO_AFTER_TRIM },
4173 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4174 ATA_HORKAGE_NO_DMA_LOG |
4175 ATA_HORKAGE_ZERO_AFTER_TRIM },
4176 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4177 ATA_HORKAGE_ZERO_AFTER_TRIM },
4178 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4179 ATA_HORKAGE_ZERO_AFTER_TRIM },
4180 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4181 ATA_HORKAGE_ZERO_AFTER_TRIM |
4182 ATA_HORKAGE_NO_NCQ_ON_ATI },
4183 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4184 ATA_HORKAGE_ZERO_AFTER_TRIM |
4185 ATA_HORKAGE_NO_NCQ_ON_ATI },
4186 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4187 ATA_HORKAGE_ZERO_AFTER_TRIM |
4188 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4189 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4190 ATA_HORKAGE_ZERO_AFTER_TRIM },
4191
4192 /* devices that don't properly handle TRIM commands */
4193 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM },
4194 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM },
4195
4196 /*
4197 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4198 * (Return Zero After Trim) flags in the ATA Command Set are
4199 * unreliable in the sense that they only define what happens if
4200 * the device successfully executed the DSM TRIM command. TRIM
4201 * is only advisory, however, and the device is free to silently
4202 * ignore all or parts of the request.
4203 *
4204 * Whitelist drives that are known to reliably return zeroes
4205 * after TRIM.
4206 */
4207
4208 /*
4209 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4210 * that model before whitelisting all other intel SSDs.
4211 */
4212 { "INTEL*SSDSC2MH*", NULL, 0 },
4213
4214 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4215 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4216 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4217 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4218 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4219 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4220 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4221 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4222
4223 /*
4224 * Some WD SATA-I drives spin up and down erratically when the link
4225 * is put into the slumber mode. We don't have full list of the
4226 * affected devices. Disable LPM if the device matches one of the
4227 * known prefixes and is SATA-1. As a side effect LPM partial is
4228 * lost too.
4229 *
4230 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4231 */
4232 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4233 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4234 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4235 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4236 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4237 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4238 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4239
4240 /*
4241 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4242 * log page is accessed. Ensure we never ask for this log page with
4243 * these devices.
4244 */
4245 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR },
4246
4247 /* Buggy FUA */
4248 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA },
4249 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA },
4250 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA },
4251 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA },
4252
4253 /* End Marker */
4254 { }
4255 };
4256
ata_dev_blacklisted(const struct ata_device * dev)4257 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4258 {
4259 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4260 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4261 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4262
4263 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4264 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4265
4266 while (ad->model_num) {
4267 if (glob_match(ad->model_num, model_num)) {
4268 if (ad->model_rev == NULL)
4269 return ad->horkage;
4270 if (glob_match(ad->model_rev, model_rev))
4271 return ad->horkage;
4272 }
4273 ad++;
4274 }
4275 return 0;
4276 }
4277
ata_dma_blacklisted(const struct ata_device * dev)4278 static int ata_dma_blacklisted(const struct ata_device *dev)
4279 {
4280 /* We don't support polling DMA.
4281 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4282 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4283 */
4284 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4285 (dev->flags & ATA_DFLAG_CDB_INTR))
4286 return 1;
4287 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4288 }
4289
4290 /**
4291 * ata_is_40wire - check drive side detection
4292 * @dev: device
4293 *
4294 * Perform drive side detection decoding, allowing for device vendors
4295 * who can't follow the documentation.
4296 */
4297
ata_is_40wire(struct ata_device * dev)4298 static int ata_is_40wire(struct ata_device *dev)
4299 {
4300 if (dev->horkage & ATA_HORKAGE_IVB)
4301 return ata_drive_40wire_relaxed(dev->id);
4302 return ata_drive_40wire(dev->id);
4303 }
4304
4305 /**
4306 * cable_is_40wire - 40/80/SATA decider
4307 * @ap: port to consider
4308 *
4309 * This function encapsulates the policy for speed management
4310 * in one place. At the moment we don't cache the result but
4311 * there is a good case for setting ap->cbl to the result when
4312 * we are called with unknown cables (and figuring out if it
4313 * impacts hotplug at all).
4314 *
4315 * Return 1 if the cable appears to be 40 wire.
4316 */
4317
cable_is_40wire(struct ata_port * ap)4318 static int cable_is_40wire(struct ata_port *ap)
4319 {
4320 struct ata_link *link;
4321 struct ata_device *dev;
4322
4323 /* If the controller thinks we are 40 wire, we are. */
4324 if (ap->cbl == ATA_CBL_PATA40)
4325 return 1;
4326
4327 /* If the controller thinks we are 80 wire, we are. */
4328 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4329 return 0;
4330
4331 /* If the system is known to be 40 wire short cable (eg
4332 * laptop), then we allow 80 wire modes even if the drive
4333 * isn't sure.
4334 */
4335 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4336 return 0;
4337
4338 /* If the controller doesn't know, we scan.
4339 *
4340 * Note: We look for all 40 wire detects at this point. Any
4341 * 80 wire detect is taken to be 80 wire cable because
4342 * - in many setups only the one drive (slave if present) will
4343 * give a valid detect
4344 * - if you have a non detect capable drive you don't want it
4345 * to colour the choice
4346 */
4347 ata_for_each_link(link, ap, EDGE) {
4348 ata_for_each_dev(dev, link, ENABLED) {
4349 if (!ata_is_40wire(dev))
4350 return 0;
4351 }
4352 }
4353 return 1;
4354 }
4355
4356 /**
4357 * ata_dev_xfermask - Compute supported xfermask of the given device
4358 * @dev: Device to compute xfermask for
4359 *
4360 * Compute supported xfermask of @dev and store it in
4361 * dev->*_mask. This function is responsible for applying all
4362 * known limits including host controller limits, device
4363 * blacklist, etc...
4364 *
4365 * LOCKING:
4366 * None.
4367 */
ata_dev_xfermask(struct ata_device * dev)4368 static void ata_dev_xfermask(struct ata_device *dev)
4369 {
4370 struct ata_link *link = dev->link;
4371 struct ata_port *ap = link->ap;
4372 struct ata_host *host = ap->host;
4373 unsigned int xfer_mask;
4374
4375 /* controller modes available */
4376 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4377 ap->mwdma_mask, ap->udma_mask);
4378
4379 /* drive modes available */
4380 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4381 dev->mwdma_mask, dev->udma_mask);
4382 xfer_mask &= ata_id_xfermask(dev->id);
4383
4384 /*
4385 * CFA Advanced TrueIDE timings are not allowed on a shared
4386 * cable
4387 */
4388 if (ata_dev_pair(dev)) {
4389 /* No PIO5 or PIO6 */
4390 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4391 /* No MWDMA3 or MWDMA 4 */
4392 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4393 }
4394
4395 if (ata_dma_blacklisted(dev)) {
4396 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4397 ata_dev_warn(dev,
4398 "device is on DMA blacklist, disabling DMA\n");
4399 }
4400
4401 if ((host->flags & ATA_HOST_SIMPLEX) &&
4402 host->simplex_claimed && host->simplex_claimed != ap) {
4403 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4404 ata_dev_warn(dev,
4405 "simplex DMA is claimed by other device, disabling DMA\n");
4406 }
4407
4408 if (ap->flags & ATA_FLAG_NO_IORDY)
4409 xfer_mask &= ata_pio_mask_no_iordy(dev);
4410
4411 if (ap->ops->mode_filter)
4412 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4413
4414 /* Apply cable rule here. Don't apply it early because when
4415 * we handle hot plug the cable type can itself change.
4416 * Check this last so that we know if the transfer rate was
4417 * solely limited by the cable.
4418 * Unknown or 80 wire cables reported host side are checked
4419 * drive side as well. Cases where we know a 40wire cable
4420 * is used safely for 80 are not checked here.
4421 */
4422 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4423 /* UDMA/44 or higher would be available */
4424 if (cable_is_40wire(ap)) {
4425 ata_dev_warn(dev,
4426 "limited to UDMA/33 due to 40-wire cable\n");
4427 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4428 }
4429
4430 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4431 &dev->mwdma_mask, &dev->udma_mask);
4432 }
4433
4434 /**
4435 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4436 * @dev: Device to which command will be sent
4437 *
4438 * Issue SET FEATURES - XFER MODE command to device @dev
4439 * on port @ap.
4440 *
4441 * LOCKING:
4442 * PCI/etc. bus probe sem.
4443 *
4444 * RETURNS:
4445 * 0 on success, AC_ERR_* mask otherwise.
4446 */
4447
ata_dev_set_xfermode(struct ata_device * dev)4448 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4449 {
4450 struct ata_taskfile tf;
4451
4452 /* set up set-features taskfile */
4453 ata_dev_dbg(dev, "set features - xfer mode\n");
4454
4455 /* Some controllers and ATAPI devices show flaky interrupt
4456 * behavior after setting xfer mode. Use polling instead.
4457 */
4458 ata_tf_init(dev, &tf);
4459 tf.command = ATA_CMD_SET_FEATURES;
4460 tf.feature = SETFEATURES_XFER;
4461 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4462 tf.protocol = ATA_PROT_NODATA;
4463 /* If we are using IORDY we must send the mode setting command */
4464 if (ata_pio_need_iordy(dev))
4465 tf.nsect = dev->xfer_mode;
4466 /* If the device has IORDY and the controller does not - turn it off */
4467 else if (ata_id_has_iordy(dev->id))
4468 tf.nsect = 0x01;
4469 else /* In the ancient relic department - skip all of this */
4470 return 0;
4471
4472 /*
4473 * On some disks, this command causes spin-up, so we need longer
4474 * timeout.
4475 */
4476 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4477 }
4478
4479 /**
4480 * ata_dev_set_feature - Issue SET FEATURES
4481 * @dev: Device to which command will be sent
4482 * @subcmd: The SET FEATURES subcommand to be sent
4483 * @action: The sector count represents a subcommand specific action
4484 *
4485 * Issue SET FEATURES command to device @dev on port @ap with sector count
4486 *
4487 * LOCKING:
4488 * PCI/etc. bus probe sem.
4489 *
4490 * RETURNS:
4491 * 0 on success, AC_ERR_* mask otherwise.
4492 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4493 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4494 {
4495 struct ata_taskfile tf;
4496 unsigned int timeout = 0;
4497
4498 /* set up set-features taskfile */
4499 ata_dev_dbg(dev, "set features\n");
4500
4501 ata_tf_init(dev, &tf);
4502 tf.command = ATA_CMD_SET_FEATURES;
4503 tf.feature = subcmd;
4504 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4505 tf.protocol = ATA_PROT_NODATA;
4506 tf.nsect = action;
4507
4508 if (subcmd == SETFEATURES_SPINUP)
4509 timeout = ata_probe_timeout ?
4510 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4511
4512 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4513 }
4514 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4515
4516 /**
4517 * ata_dev_init_params - Issue INIT DEV PARAMS command
4518 * @dev: Device to which command will be sent
4519 * @heads: Number of heads (taskfile parameter)
4520 * @sectors: Number of sectors (taskfile parameter)
4521 *
4522 * LOCKING:
4523 * Kernel thread context (may sleep)
4524 *
4525 * RETURNS:
4526 * 0 on success, AC_ERR_* mask otherwise.
4527 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4528 static unsigned int ata_dev_init_params(struct ata_device *dev,
4529 u16 heads, u16 sectors)
4530 {
4531 struct ata_taskfile tf;
4532 unsigned int err_mask;
4533
4534 /* Number of sectors per track 1-255. Number of heads 1-16 */
4535 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4536 return AC_ERR_INVALID;
4537
4538 /* set up init dev params taskfile */
4539 ata_dev_dbg(dev, "init dev params \n");
4540
4541 ata_tf_init(dev, &tf);
4542 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4543 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4544 tf.protocol = ATA_PROT_NODATA;
4545 tf.nsect = sectors;
4546 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4547
4548 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4549 /* A clean abort indicates an original or just out of spec drive
4550 and we should continue as we issue the setup based on the
4551 drive reported working geometry */
4552 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4553 err_mask = 0;
4554
4555 return err_mask;
4556 }
4557
4558 /**
4559 * atapi_check_dma - Check whether ATAPI DMA can be supported
4560 * @qc: Metadata associated with taskfile to check
4561 *
4562 * Allow low-level driver to filter ATA PACKET commands, returning
4563 * a status indicating whether or not it is OK to use DMA for the
4564 * supplied PACKET command.
4565 *
4566 * LOCKING:
4567 * spin_lock_irqsave(host lock)
4568 *
4569 * RETURNS: 0 when ATAPI DMA can be used
4570 * nonzero otherwise
4571 */
atapi_check_dma(struct ata_queued_cmd * qc)4572 int atapi_check_dma(struct ata_queued_cmd *qc)
4573 {
4574 struct ata_port *ap = qc->ap;
4575
4576 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4577 * few ATAPI devices choke on such DMA requests.
4578 */
4579 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4580 unlikely(qc->nbytes & 15))
4581 return 1;
4582
4583 if (ap->ops->check_atapi_dma)
4584 return ap->ops->check_atapi_dma(qc);
4585
4586 return 0;
4587 }
4588
4589 /**
4590 * ata_std_qc_defer - Check whether a qc needs to be deferred
4591 * @qc: ATA command in question
4592 *
4593 * Non-NCQ commands cannot run with any other command, NCQ or
4594 * not. As upper layer only knows the queue depth, we are
4595 * responsible for maintaining exclusion. This function checks
4596 * whether a new command @qc can be issued.
4597 *
4598 * LOCKING:
4599 * spin_lock_irqsave(host lock)
4600 *
4601 * RETURNS:
4602 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4603 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4604 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4605 {
4606 struct ata_link *link = qc->dev->link;
4607
4608 if (ata_is_ncq(qc->tf.protocol)) {
4609 if (!ata_tag_valid(link->active_tag))
4610 return 0;
4611 } else {
4612 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4613 return 0;
4614 }
4615
4616 return ATA_DEFER_LINK;
4617 }
4618 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4619
ata_noop_qc_prep(struct ata_queued_cmd * qc)4620 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4621 {
4622 return AC_ERR_OK;
4623 }
4624 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4625
4626 /**
4627 * ata_sg_init - Associate command with scatter-gather table.
4628 * @qc: Command to be associated
4629 * @sg: Scatter-gather table.
4630 * @n_elem: Number of elements in s/g table.
4631 *
4632 * Initialize the data-related elements of queued_cmd @qc
4633 * to point to a scatter-gather table @sg, containing @n_elem
4634 * elements.
4635 *
4636 * LOCKING:
4637 * spin_lock_irqsave(host lock)
4638 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4639 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4640 unsigned int n_elem)
4641 {
4642 qc->sg = sg;
4643 qc->n_elem = n_elem;
4644 qc->cursg = qc->sg;
4645 }
4646
4647 #ifdef CONFIG_HAS_DMA
4648
4649 /**
4650 * ata_sg_clean - Unmap DMA memory associated with command
4651 * @qc: Command containing DMA memory to be released
4652 *
4653 * Unmap all mapped DMA memory associated with this command.
4654 *
4655 * LOCKING:
4656 * spin_lock_irqsave(host lock)
4657 */
ata_sg_clean(struct ata_queued_cmd * qc)4658 static void ata_sg_clean(struct ata_queued_cmd *qc)
4659 {
4660 struct ata_port *ap = qc->ap;
4661 struct scatterlist *sg = qc->sg;
4662 int dir = qc->dma_dir;
4663
4664 WARN_ON_ONCE(sg == NULL);
4665
4666 if (qc->n_elem)
4667 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4668
4669 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4670 qc->sg = NULL;
4671 }
4672
4673 /**
4674 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4675 * @qc: Command with scatter-gather table to be mapped.
4676 *
4677 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4678 *
4679 * LOCKING:
4680 * spin_lock_irqsave(host lock)
4681 *
4682 * RETURNS:
4683 * Zero on success, negative on error.
4684 *
4685 */
ata_sg_setup(struct ata_queued_cmd * qc)4686 static int ata_sg_setup(struct ata_queued_cmd *qc)
4687 {
4688 struct ata_port *ap = qc->ap;
4689 unsigned int n_elem;
4690
4691 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4692 if (n_elem < 1)
4693 return -1;
4694
4695 qc->orig_n_elem = qc->n_elem;
4696 qc->n_elem = n_elem;
4697 qc->flags |= ATA_QCFLAG_DMAMAP;
4698
4699 return 0;
4700 }
4701
4702 #else /* !CONFIG_HAS_DMA */
4703
ata_sg_clean(struct ata_queued_cmd * qc)4704 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4705 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4706
4707 #endif /* !CONFIG_HAS_DMA */
4708
4709 /**
4710 * swap_buf_le16 - swap halves of 16-bit words in place
4711 * @buf: Buffer to swap
4712 * @buf_words: Number of 16-bit words in buffer.
4713 *
4714 * Swap halves of 16-bit words if needed to convert from
4715 * little-endian byte order to native cpu byte order, or
4716 * vice-versa.
4717 *
4718 * LOCKING:
4719 * Inherited from caller.
4720 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4721 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4722 {
4723 #ifdef __BIG_ENDIAN
4724 unsigned int i;
4725
4726 for (i = 0; i < buf_words; i++)
4727 buf[i] = le16_to_cpu(buf[i]);
4728 #endif /* __BIG_ENDIAN */
4729 }
4730
4731 /**
4732 * ata_qc_free - free unused ata_queued_cmd
4733 * @qc: Command to complete
4734 *
4735 * Designed to free unused ata_queued_cmd object
4736 * in case something prevents using it.
4737 *
4738 * LOCKING:
4739 * spin_lock_irqsave(host lock)
4740 */
ata_qc_free(struct ata_queued_cmd * qc)4741 void ata_qc_free(struct ata_queued_cmd *qc)
4742 {
4743 qc->flags = 0;
4744 if (ata_tag_valid(qc->tag))
4745 qc->tag = ATA_TAG_POISON;
4746 }
4747
__ata_qc_complete(struct ata_queued_cmd * qc)4748 void __ata_qc_complete(struct ata_queued_cmd *qc)
4749 {
4750 struct ata_port *ap;
4751 struct ata_link *link;
4752
4753 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4754 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4755 ap = qc->ap;
4756 link = qc->dev->link;
4757
4758 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4759 ata_sg_clean(qc);
4760
4761 /* command should be marked inactive atomically with qc completion */
4762 if (ata_is_ncq(qc->tf.protocol)) {
4763 link->sactive &= ~(1 << qc->hw_tag);
4764 if (!link->sactive)
4765 ap->nr_active_links--;
4766 } else {
4767 link->active_tag = ATA_TAG_POISON;
4768 ap->nr_active_links--;
4769 }
4770
4771 /* clear exclusive status */
4772 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4773 ap->excl_link == link))
4774 ap->excl_link = NULL;
4775
4776 /* atapi: mark qc as inactive to prevent the interrupt handler
4777 * from completing the command twice later, before the error handler
4778 * is called. (when rc != 0 and atapi request sense is needed)
4779 */
4780 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4781 ap->qc_active &= ~(1ULL << qc->tag);
4782
4783 /* call completion callback */
4784 qc->complete_fn(qc);
4785 }
4786
fill_result_tf(struct ata_queued_cmd * qc)4787 static void fill_result_tf(struct ata_queued_cmd *qc)
4788 {
4789 struct ata_port *ap = qc->ap;
4790
4791 qc->result_tf.flags = qc->tf.flags;
4792 ap->ops->qc_fill_rtf(qc);
4793 }
4794
ata_verify_xfer(struct ata_queued_cmd * qc)4795 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4796 {
4797 struct ata_device *dev = qc->dev;
4798
4799 if (!ata_is_data(qc->tf.protocol))
4800 return;
4801
4802 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4803 return;
4804
4805 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4806 }
4807
4808 /**
4809 * ata_qc_complete - Complete an active ATA command
4810 * @qc: Command to complete
4811 *
4812 * Indicate to the mid and upper layers that an ATA command has
4813 * completed, with either an ok or not-ok status.
4814 *
4815 * Refrain from calling this function multiple times when
4816 * successfully completing multiple NCQ commands.
4817 * ata_qc_complete_multiple() should be used instead, which will
4818 * properly update IRQ expect state.
4819 *
4820 * LOCKING:
4821 * spin_lock_irqsave(host lock)
4822 */
ata_qc_complete(struct ata_queued_cmd * qc)4823 void ata_qc_complete(struct ata_queued_cmd *qc)
4824 {
4825 struct ata_port *ap = qc->ap;
4826 struct ata_device *dev = qc->dev;
4827 struct ata_eh_info *ehi = &dev->link->eh_info;
4828
4829 /* Trigger the LED (if available) */
4830 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4831
4832 /*
4833 * In order to synchronize EH with the regular execution path, a qc that
4834 * is owned by EH is marked with ATA_QCFLAG_EH.
4835 *
4836 * The normal execution path is responsible for not accessing a qc owned
4837 * by EH. libata core enforces the rule by returning NULL from
4838 * ata_qc_from_tag() for qcs owned by EH.
4839 */
4840 if (unlikely(qc->err_mask))
4841 qc->flags |= ATA_QCFLAG_EH;
4842
4843 /*
4844 * Finish internal commands without any further processing and always
4845 * with the result TF filled.
4846 */
4847 if (unlikely(ata_tag_internal(qc->tag))) {
4848 fill_result_tf(qc);
4849 trace_ata_qc_complete_internal(qc);
4850 __ata_qc_complete(qc);
4851 return;
4852 }
4853
4854 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4855 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4856 fill_result_tf(qc);
4857 trace_ata_qc_complete_failed(qc);
4858 ata_qc_schedule_eh(qc);
4859 return;
4860 }
4861
4862 WARN_ON_ONCE(ata_port_is_frozen(ap));
4863
4864 /* read result TF if requested */
4865 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4866 fill_result_tf(qc);
4867
4868 trace_ata_qc_complete_done(qc);
4869
4870 /*
4871 * For CDL commands that completed without an error, check if we have
4872 * sense data (ATA_SENSE is set). If we do, then the command may have
4873 * been aborted by the device due to a limit timeout using the policy
4874 * 0xD. For these commands, invoke EH to get the command sense data.
4875 */
4876 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4877 qc->result_tf.status & ATA_SENSE) {
4878 /*
4879 * Tell SCSI EH to not overwrite scmd->result even if this
4880 * command is finished with result SAM_STAT_GOOD.
4881 */
4882 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4883 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4884 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4885
4886 /*
4887 * set pending so that ata_qc_schedule_eh() does not trigger
4888 * fast drain, and freeze the port.
4889 */
4890 ap->pflags |= ATA_PFLAG_EH_PENDING;
4891 ata_qc_schedule_eh(qc);
4892 return;
4893 }
4894
4895 /* Some commands need post-processing after successful completion. */
4896 switch (qc->tf.command) {
4897 case ATA_CMD_SET_FEATURES:
4898 if (qc->tf.feature != SETFEATURES_WC_ON &&
4899 qc->tf.feature != SETFEATURES_WC_OFF &&
4900 qc->tf.feature != SETFEATURES_RA_ON &&
4901 qc->tf.feature != SETFEATURES_RA_OFF)
4902 break;
4903 fallthrough;
4904 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4905 case ATA_CMD_SET_MULTI: /* multi_count changed */
4906 /* revalidate device */
4907 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4908 ata_port_schedule_eh(ap);
4909 break;
4910
4911 case ATA_CMD_SLEEP:
4912 dev->flags |= ATA_DFLAG_SLEEPING;
4913 break;
4914 }
4915
4916 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4917 ata_verify_xfer(qc);
4918
4919 __ata_qc_complete(qc);
4920 }
4921 EXPORT_SYMBOL_GPL(ata_qc_complete);
4922
4923 /**
4924 * ata_qc_get_active - get bitmask of active qcs
4925 * @ap: port in question
4926 *
4927 * LOCKING:
4928 * spin_lock_irqsave(host lock)
4929 *
4930 * RETURNS:
4931 * Bitmask of active qcs
4932 */
ata_qc_get_active(struct ata_port * ap)4933 u64 ata_qc_get_active(struct ata_port *ap)
4934 {
4935 u64 qc_active = ap->qc_active;
4936
4937 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4938 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4939 qc_active |= (1 << 0);
4940 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4941 }
4942
4943 return qc_active;
4944 }
4945 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4946
4947 /**
4948 * ata_qc_issue - issue taskfile to device
4949 * @qc: command to issue to device
4950 *
4951 * Prepare an ATA command to submission to device.
4952 * This includes mapping the data into a DMA-able
4953 * area, filling in the S/G table, and finally
4954 * writing the taskfile to hardware, starting the command.
4955 *
4956 * LOCKING:
4957 * spin_lock_irqsave(host lock)
4958 */
ata_qc_issue(struct ata_queued_cmd * qc)4959 void ata_qc_issue(struct ata_queued_cmd *qc)
4960 {
4961 struct ata_port *ap = qc->ap;
4962 struct ata_link *link = qc->dev->link;
4963 u8 prot = qc->tf.protocol;
4964
4965 /* Make sure only one non-NCQ command is outstanding. */
4966 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4967
4968 if (ata_is_ncq(prot)) {
4969 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4970
4971 if (!link->sactive)
4972 ap->nr_active_links++;
4973 link->sactive |= 1 << qc->hw_tag;
4974 } else {
4975 WARN_ON_ONCE(link->sactive);
4976
4977 ap->nr_active_links++;
4978 link->active_tag = qc->tag;
4979 }
4980
4981 qc->flags |= ATA_QCFLAG_ACTIVE;
4982 ap->qc_active |= 1ULL << qc->tag;
4983
4984 /*
4985 * We guarantee to LLDs that they will have at least one
4986 * non-zero sg if the command is a data command.
4987 */
4988 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4989 goto sys_err;
4990
4991 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4992 (ap->flags & ATA_FLAG_PIO_DMA)))
4993 if (ata_sg_setup(qc))
4994 goto sys_err;
4995
4996 /* if device is sleeping, schedule reset and abort the link */
4997 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4998 link->eh_info.action |= ATA_EH_RESET;
4999 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5000 ata_link_abort(link);
5001 return;
5002 }
5003
5004 trace_ata_qc_prep(qc);
5005 qc->err_mask |= ap->ops->qc_prep(qc);
5006 if (unlikely(qc->err_mask))
5007 goto err;
5008 trace_ata_qc_issue(qc);
5009 qc->err_mask |= ap->ops->qc_issue(qc);
5010 if (unlikely(qc->err_mask))
5011 goto err;
5012 return;
5013
5014 sys_err:
5015 qc->err_mask |= AC_ERR_SYSTEM;
5016 err:
5017 ata_qc_complete(qc);
5018 }
5019
5020 /**
5021 * ata_phys_link_online - test whether the given link is online
5022 * @link: ATA link to test
5023 *
5024 * Test whether @link is online. Note that this function returns
5025 * 0 if online status of @link cannot be obtained, so
5026 * ata_link_online(link) != !ata_link_offline(link).
5027 *
5028 * LOCKING:
5029 * None.
5030 *
5031 * RETURNS:
5032 * True if the port online status is available and online.
5033 */
ata_phys_link_online(struct ata_link * link)5034 bool ata_phys_link_online(struct ata_link *link)
5035 {
5036 u32 sstatus;
5037
5038 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5039 ata_sstatus_online(sstatus))
5040 return true;
5041 return false;
5042 }
5043
5044 /**
5045 * ata_phys_link_offline - test whether the given link is offline
5046 * @link: ATA link to test
5047 *
5048 * Test whether @link is offline. Note that this function
5049 * returns 0 if offline status of @link cannot be obtained, so
5050 * ata_link_online(link) != !ata_link_offline(link).
5051 *
5052 * LOCKING:
5053 * None.
5054 *
5055 * RETURNS:
5056 * True if the port offline status is available and offline.
5057 */
ata_phys_link_offline(struct ata_link * link)5058 bool ata_phys_link_offline(struct ata_link *link)
5059 {
5060 u32 sstatus;
5061
5062 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5063 !ata_sstatus_online(sstatus))
5064 return true;
5065 return false;
5066 }
5067
5068 /**
5069 * ata_link_online - test whether the given link is online
5070 * @link: ATA link to test
5071 *
5072 * Test whether @link is online. This is identical to
5073 * ata_phys_link_online() when there's no slave link. When
5074 * there's a slave link, this function should only be called on
5075 * the master link and will return true if any of M/S links is
5076 * online.
5077 *
5078 * LOCKING:
5079 * None.
5080 *
5081 * RETURNS:
5082 * True if the port online status is available and online.
5083 */
ata_link_online(struct ata_link * link)5084 bool ata_link_online(struct ata_link *link)
5085 {
5086 struct ata_link *slave = link->ap->slave_link;
5087
5088 WARN_ON(link == slave); /* shouldn't be called on slave link */
5089
5090 return ata_phys_link_online(link) ||
5091 (slave && ata_phys_link_online(slave));
5092 }
5093 EXPORT_SYMBOL_GPL(ata_link_online);
5094
5095 /**
5096 * ata_link_offline - test whether the given link is offline
5097 * @link: ATA link to test
5098 *
5099 * Test whether @link is offline. This is identical to
5100 * ata_phys_link_offline() when there's no slave link. When
5101 * there's a slave link, this function should only be called on
5102 * the master link and will return true if both M/S links are
5103 * offline.
5104 *
5105 * LOCKING:
5106 * None.
5107 *
5108 * RETURNS:
5109 * True if the port offline status is available and offline.
5110 */
ata_link_offline(struct ata_link * link)5111 bool ata_link_offline(struct ata_link *link)
5112 {
5113 struct ata_link *slave = link->ap->slave_link;
5114
5115 WARN_ON(link == slave); /* shouldn't be called on slave link */
5116
5117 return ata_phys_link_offline(link) &&
5118 (!slave || ata_phys_link_offline(slave));
5119 }
5120 EXPORT_SYMBOL_GPL(ata_link_offline);
5121
5122 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5123 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5124 unsigned int action, unsigned int ehi_flags,
5125 bool async)
5126 {
5127 struct ata_link *link;
5128 unsigned long flags;
5129
5130 spin_lock_irqsave(ap->lock, flags);
5131
5132 /*
5133 * A previous PM operation might still be in progress. Wait for
5134 * ATA_PFLAG_PM_PENDING to clear.
5135 */
5136 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5137 spin_unlock_irqrestore(ap->lock, flags);
5138 ata_port_wait_eh(ap);
5139 spin_lock_irqsave(ap->lock, flags);
5140 }
5141
5142 /* Request PM operation to EH */
5143 ap->pm_mesg = mesg;
5144 ap->pflags |= ATA_PFLAG_PM_PENDING;
5145 ata_for_each_link(link, ap, HOST_FIRST) {
5146 link->eh_info.action |= action;
5147 link->eh_info.flags |= ehi_flags;
5148 }
5149
5150 ata_port_schedule_eh(ap);
5151
5152 spin_unlock_irqrestore(ap->lock, flags);
5153
5154 if (!async)
5155 ata_port_wait_eh(ap);
5156 }
5157
5158 /*
5159 * On some hardware, device fails to respond after spun down for suspend. As
5160 * the device won't be used before being resumed, we don't need to touch the
5161 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5162 *
5163 * http://thread.gmane.org/gmane.linux.ide/46764
5164 */
5165 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5166 | ATA_EHI_NO_AUTOPSY
5167 | ATA_EHI_NO_RECOVERY;
5168
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5169 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5170 {
5171 /*
5172 * We are about to suspend the port, so we do not care about
5173 * scsi_rescan_device() calls scheduled by previous resume operations.
5174 * The next resume will schedule the rescan again. So cancel any rescan
5175 * that is not done yet.
5176 */
5177 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5178
5179 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5180 }
5181
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5182 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5183 {
5184 /*
5185 * We are about to suspend the port, so we do not care about
5186 * scsi_rescan_device() calls scheduled by previous resume operations.
5187 * The next resume will schedule the rescan again. So cancel any rescan
5188 * that is not done yet.
5189 */
5190 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5191
5192 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5193 }
5194
ata_port_pm_suspend(struct device * dev)5195 static int ata_port_pm_suspend(struct device *dev)
5196 {
5197 struct ata_port *ap = to_ata_port(dev);
5198
5199 if (pm_runtime_suspended(dev))
5200 return 0;
5201
5202 ata_port_suspend(ap, PMSG_SUSPEND);
5203 return 0;
5204 }
5205
ata_port_pm_freeze(struct device * dev)5206 static int ata_port_pm_freeze(struct device *dev)
5207 {
5208 struct ata_port *ap = to_ata_port(dev);
5209
5210 if (pm_runtime_suspended(dev))
5211 return 0;
5212
5213 ata_port_suspend(ap, PMSG_FREEZE);
5214 return 0;
5215 }
5216
ata_port_pm_poweroff(struct device * dev)5217 static int ata_port_pm_poweroff(struct device *dev)
5218 {
5219 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5220 return 0;
5221 }
5222
5223 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5224 | ATA_EHI_QUIET;
5225
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5226 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5227 {
5228 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5229 }
5230
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5231 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5232 {
5233 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5234 }
5235
ata_port_pm_resume(struct device * dev)5236 static int ata_port_pm_resume(struct device *dev)
5237 {
5238 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5239 pm_runtime_disable(dev);
5240 pm_runtime_set_active(dev);
5241 pm_runtime_enable(dev);
5242 return 0;
5243 }
5244
5245 /*
5246 * For ODDs, the upper layer will poll for media change every few seconds,
5247 * which will make it enter and leave suspend state every few seconds. And
5248 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5249 * is very little and the ODD may malfunction after constantly being reset.
5250 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5251 * ODD is attached to the port.
5252 */
ata_port_runtime_idle(struct device * dev)5253 static int ata_port_runtime_idle(struct device *dev)
5254 {
5255 struct ata_port *ap = to_ata_port(dev);
5256 struct ata_link *link;
5257 struct ata_device *adev;
5258
5259 ata_for_each_link(link, ap, HOST_FIRST) {
5260 ata_for_each_dev(adev, link, ENABLED)
5261 if (adev->class == ATA_DEV_ATAPI &&
5262 !zpodd_dev_enabled(adev))
5263 return -EBUSY;
5264 }
5265
5266 return 0;
5267 }
5268
ata_port_runtime_suspend(struct device * dev)5269 static int ata_port_runtime_suspend(struct device *dev)
5270 {
5271 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5272 return 0;
5273 }
5274
ata_port_runtime_resume(struct device * dev)5275 static int ata_port_runtime_resume(struct device *dev)
5276 {
5277 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5278 return 0;
5279 }
5280
5281 static const struct dev_pm_ops ata_port_pm_ops = {
5282 .suspend = ata_port_pm_suspend,
5283 .resume = ata_port_pm_resume,
5284 .freeze = ata_port_pm_freeze,
5285 .thaw = ata_port_pm_resume,
5286 .poweroff = ata_port_pm_poweroff,
5287 .restore = ata_port_pm_resume,
5288
5289 .runtime_suspend = ata_port_runtime_suspend,
5290 .runtime_resume = ata_port_runtime_resume,
5291 .runtime_idle = ata_port_runtime_idle,
5292 };
5293
5294 /* sas ports don't participate in pm runtime management of ata_ports,
5295 * and need to resume ata devices at the domain level, not the per-port
5296 * level. sas suspend/resume is async to allow parallel port recovery
5297 * since sas has multiple ata_port instances per Scsi_Host.
5298 */
ata_sas_port_suspend(struct ata_port * ap)5299 void ata_sas_port_suspend(struct ata_port *ap)
5300 {
5301 ata_port_suspend_async(ap, PMSG_SUSPEND);
5302 }
5303 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5304
ata_sas_port_resume(struct ata_port * ap)5305 void ata_sas_port_resume(struct ata_port *ap)
5306 {
5307 ata_port_resume_async(ap, PMSG_RESUME);
5308 }
5309 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5310
5311 /**
5312 * ata_host_suspend - suspend host
5313 * @host: host to suspend
5314 * @mesg: PM message
5315 *
5316 * Suspend @host. Actual operation is performed by port suspend.
5317 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5318 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5319 {
5320 host->dev->power.power_state = mesg;
5321 }
5322 EXPORT_SYMBOL_GPL(ata_host_suspend);
5323
5324 /**
5325 * ata_host_resume - resume host
5326 * @host: host to resume
5327 *
5328 * Resume @host. Actual operation is performed by port resume.
5329 */
ata_host_resume(struct ata_host * host)5330 void ata_host_resume(struct ata_host *host)
5331 {
5332 host->dev->power.power_state = PMSG_ON;
5333 }
5334 EXPORT_SYMBOL_GPL(ata_host_resume);
5335 #endif
5336
5337 const struct device_type ata_port_type = {
5338 .name = ATA_PORT_TYPE_NAME,
5339 #ifdef CONFIG_PM
5340 .pm = &ata_port_pm_ops,
5341 #endif
5342 };
5343
5344 /**
5345 * ata_dev_init - Initialize an ata_device structure
5346 * @dev: Device structure to initialize
5347 *
5348 * Initialize @dev in preparation for probing.
5349 *
5350 * LOCKING:
5351 * Inherited from caller.
5352 */
ata_dev_init(struct ata_device * dev)5353 void ata_dev_init(struct ata_device *dev)
5354 {
5355 struct ata_link *link = ata_dev_phys_link(dev);
5356 struct ata_port *ap = link->ap;
5357 unsigned long flags;
5358
5359 /* SATA spd limit is bound to the attached device, reset together */
5360 link->sata_spd_limit = link->hw_sata_spd_limit;
5361 link->sata_spd = 0;
5362
5363 /* High bits of dev->flags are used to record warm plug
5364 * requests which occur asynchronously. Synchronize using
5365 * host lock.
5366 */
5367 spin_lock_irqsave(ap->lock, flags);
5368 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5369 dev->horkage = 0;
5370 spin_unlock_irqrestore(ap->lock, flags);
5371
5372 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5373 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5374 dev->pio_mask = UINT_MAX;
5375 dev->mwdma_mask = UINT_MAX;
5376 dev->udma_mask = UINT_MAX;
5377 }
5378
5379 /**
5380 * ata_link_init - Initialize an ata_link structure
5381 * @ap: ATA port link is attached to
5382 * @link: Link structure to initialize
5383 * @pmp: Port multiplier port number
5384 *
5385 * Initialize @link.
5386 *
5387 * LOCKING:
5388 * Kernel thread context (may sleep)
5389 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5390 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5391 {
5392 int i;
5393
5394 /* clear everything except for devices */
5395 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5396 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5397
5398 link->ap = ap;
5399 link->pmp = pmp;
5400 link->active_tag = ATA_TAG_POISON;
5401 link->hw_sata_spd_limit = UINT_MAX;
5402
5403 /* can't use iterator, ap isn't initialized yet */
5404 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5405 struct ata_device *dev = &link->device[i];
5406
5407 dev->link = link;
5408 dev->devno = dev - link->device;
5409 #ifdef CONFIG_ATA_ACPI
5410 dev->gtf_filter = ata_acpi_gtf_filter;
5411 #endif
5412 ata_dev_init(dev);
5413 }
5414 }
5415
5416 /**
5417 * sata_link_init_spd - Initialize link->sata_spd_limit
5418 * @link: Link to configure sata_spd_limit for
5419 *
5420 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5421 * configured value.
5422 *
5423 * LOCKING:
5424 * Kernel thread context (may sleep).
5425 *
5426 * RETURNS:
5427 * 0 on success, -errno on failure.
5428 */
sata_link_init_spd(struct ata_link * link)5429 int sata_link_init_spd(struct ata_link *link)
5430 {
5431 u8 spd;
5432 int rc;
5433
5434 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5435 if (rc)
5436 return rc;
5437
5438 spd = (link->saved_scontrol >> 4) & 0xf;
5439 if (spd)
5440 link->hw_sata_spd_limit &= (1 << spd) - 1;
5441
5442 ata_force_link_limits(link);
5443
5444 link->sata_spd_limit = link->hw_sata_spd_limit;
5445
5446 return 0;
5447 }
5448
5449 /**
5450 * ata_port_alloc - allocate and initialize basic ATA port resources
5451 * @host: ATA host this allocated port belongs to
5452 *
5453 * Allocate and initialize basic ATA port resources.
5454 *
5455 * RETURNS:
5456 * Allocate ATA port on success, NULL on failure.
5457 *
5458 * LOCKING:
5459 * Inherited from calling layer (may sleep).
5460 */
ata_port_alloc(struct ata_host * host)5461 struct ata_port *ata_port_alloc(struct ata_host *host)
5462 {
5463 struct ata_port *ap;
5464
5465 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5466 if (!ap)
5467 return NULL;
5468
5469 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5470 ap->lock = &host->lock;
5471 ap->print_id = -1;
5472 ap->local_port_no = -1;
5473 ap->host = host;
5474 ap->dev = host->dev;
5475
5476 mutex_init(&ap->scsi_scan_mutex);
5477 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5478 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5479 INIT_LIST_HEAD(&ap->eh_done_q);
5480 init_waitqueue_head(&ap->eh_wait_q);
5481 init_completion(&ap->park_req_pending);
5482 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5483 TIMER_DEFERRABLE);
5484
5485 ap->cbl = ATA_CBL_NONE;
5486
5487 ata_link_init(ap, &ap->link, 0);
5488
5489 #ifdef ATA_IRQ_TRAP
5490 ap->stats.unhandled_irq = 1;
5491 ap->stats.idle_irq = 1;
5492 #endif
5493 ata_sff_port_init(ap);
5494
5495 return ap;
5496 }
5497
ata_devres_release(struct device * gendev,void * res)5498 static void ata_devres_release(struct device *gendev, void *res)
5499 {
5500 struct ata_host *host = dev_get_drvdata(gendev);
5501 int i;
5502
5503 for (i = 0; i < host->n_ports; i++) {
5504 struct ata_port *ap = host->ports[i];
5505
5506 if (!ap)
5507 continue;
5508
5509 if (ap->scsi_host)
5510 scsi_host_put(ap->scsi_host);
5511
5512 }
5513
5514 dev_set_drvdata(gendev, NULL);
5515 ata_host_put(host);
5516 }
5517
ata_host_release(struct kref * kref)5518 static void ata_host_release(struct kref *kref)
5519 {
5520 struct ata_host *host = container_of(kref, struct ata_host, kref);
5521 int i;
5522
5523 for (i = 0; i < host->n_ports; i++) {
5524 struct ata_port *ap = host->ports[i];
5525
5526 kfree(ap->pmp_link);
5527 kfree(ap->slave_link);
5528 kfree(ap->ncq_sense_buf);
5529 kfree(ap);
5530 host->ports[i] = NULL;
5531 }
5532 kfree(host);
5533 }
5534
ata_host_get(struct ata_host * host)5535 void ata_host_get(struct ata_host *host)
5536 {
5537 kref_get(&host->kref);
5538 }
5539
ata_host_put(struct ata_host * host)5540 void ata_host_put(struct ata_host *host)
5541 {
5542 kref_put(&host->kref, ata_host_release);
5543 }
5544 EXPORT_SYMBOL_GPL(ata_host_put);
5545
5546 /**
5547 * ata_host_alloc - allocate and init basic ATA host resources
5548 * @dev: generic device this host is associated with
5549 * @max_ports: maximum number of ATA ports associated with this host
5550 *
5551 * Allocate and initialize basic ATA host resources. LLD calls
5552 * this function to allocate a host, initializes it fully and
5553 * attaches it using ata_host_register().
5554 *
5555 * @max_ports ports are allocated and host->n_ports is
5556 * initialized to @max_ports. The caller is allowed to decrease
5557 * host->n_ports before calling ata_host_register(). The unused
5558 * ports will be automatically freed on registration.
5559 *
5560 * RETURNS:
5561 * Allocate ATA host on success, NULL on failure.
5562 *
5563 * LOCKING:
5564 * Inherited from calling layer (may sleep).
5565 */
ata_host_alloc(struct device * dev,int max_ports)5566 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5567 {
5568 struct ata_host *host;
5569 size_t sz;
5570 int i;
5571 void *dr;
5572
5573 /* alloc a container for our list of ATA ports (buses) */
5574 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5575 host = kzalloc(sz, GFP_KERNEL);
5576 if (!host)
5577 return NULL;
5578
5579 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5580 goto err_free;
5581
5582 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5583 if (!dr)
5584 goto err_out;
5585
5586 devres_add(dev, dr);
5587 dev_set_drvdata(dev, host);
5588
5589 spin_lock_init(&host->lock);
5590 mutex_init(&host->eh_mutex);
5591 host->dev = dev;
5592 host->n_ports = max_ports;
5593 kref_init(&host->kref);
5594
5595 /* allocate ports bound to this host */
5596 for (i = 0; i < max_ports; i++) {
5597 struct ata_port *ap;
5598
5599 ap = ata_port_alloc(host);
5600 if (!ap)
5601 goto err_out;
5602
5603 ap->port_no = i;
5604 host->ports[i] = ap;
5605 }
5606
5607 devres_remove_group(dev, NULL);
5608 return host;
5609
5610 err_out:
5611 devres_release_group(dev, NULL);
5612 err_free:
5613 kfree(host);
5614 return NULL;
5615 }
5616 EXPORT_SYMBOL_GPL(ata_host_alloc);
5617
5618 /**
5619 * ata_host_alloc_pinfo - alloc host and init with port_info array
5620 * @dev: generic device this host is associated with
5621 * @ppi: array of ATA port_info to initialize host with
5622 * @n_ports: number of ATA ports attached to this host
5623 *
5624 * Allocate ATA host and initialize with info from @ppi. If NULL
5625 * terminated, @ppi may contain fewer entries than @n_ports. The
5626 * last entry will be used for the remaining ports.
5627 *
5628 * RETURNS:
5629 * Allocate ATA host on success, NULL on failure.
5630 *
5631 * LOCKING:
5632 * Inherited from calling layer (may sleep).
5633 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5634 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5635 const struct ata_port_info * const * ppi,
5636 int n_ports)
5637 {
5638 const struct ata_port_info *pi = &ata_dummy_port_info;
5639 struct ata_host *host;
5640 int i, j;
5641
5642 host = ata_host_alloc(dev, n_ports);
5643 if (!host)
5644 return NULL;
5645
5646 for (i = 0, j = 0; i < host->n_ports; i++) {
5647 struct ata_port *ap = host->ports[i];
5648
5649 if (ppi[j])
5650 pi = ppi[j++];
5651
5652 ap->pio_mask = pi->pio_mask;
5653 ap->mwdma_mask = pi->mwdma_mask;
5654 ap->udma_mask = pi->udma_mask;
5655 ap->flags |= pi->flags;
5656 ap->link.flags |= pi->link_flags;
5657 ap->ops = pi->port_ops;
5658
5659 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5660 host->ops = pi->port_ops;
5661 }
5662
5663 return host;
5664 }
5665 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5666
ata_host_stop(struct device * gendev,void * res)5667 static void ata_host_stop(struct device *gendev, void *res)
5668 {
5669 struct ata_host *host = dev_get_drvdata(gendev);
5670 int i;
5671
5672 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5673
5674 for (i = 0; i < host->n_ports; i++) {
5675 struct ata_port *ap = host->ports[i];
5676
5677 if (ap->ops->port_stop)
5678 ap->ops->port_stop(ap);
5679 }
5680
5681 if (host->ops->host_stop)
5682 host->ops->host_stop(host);
5683 }
5684
5685 /**
5686 * ata_finalize_port_ops - finalize ata_port_operations
5687 * @ops: ata_port_operations to finalize
5688 *
5689 * An ata_port_operations can inherit from another ops and that
5690 * ops can again inherit from another. This can go on as many
5691 * times as necessary as long as there is no loop in the
5692 * inheritance chain.
5693 *
5694 * Ops tables are finalized when the host is started. NULL or
5695 * unspecified entries are inherited from the closet ancestor
5696 * which has the method and the entry is populated with it.
5697 * After finalization, the ops table directly points to all the
5698 * methods and ->inherits is no longer necessary and cleared.
5699 *
5700 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5701 *
5702 * LOCKING:
5703 * None.
5704 */
ata_finalize_port_ops(struct ata_port_operations * ops)5705 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5706 {
5707 static DEFINE_SPINLOCK(lock);
5708 const struct ata_port_operations *cur;
5709 void **begin = (void **)ops;
5710 void **end = (void **)&ops->inherits;
5711 void **pp;
5712
5713 if (!ops || !ops->inherits)
5714 return;
5715
5716 spin_lock(&lock);
5717
5718 for (cur = ops->inherits; cur; cur = cur->inherits) {
5719 void **inherit = (void **)cur;
5720
5721 for (pp = begin; pp < end; pp++, inherit++)
5722 if (!*pp)
5723 *pp = *inherit;
5724 }
5725
5726 for (pp = begin; pp < end; pp++)
5727 if (IS_ERR(*pp))
5728 *pp = NULL;
5729
5730 ops->inherits = NULL;
5731
5732 spin_unlock(&lock);
5733 }
5734
5735 /**
5736 * ata_host_start - start and freeze ports of an ATA host
5737 * @host: ATA host to start ports for
5738 *
5739 * Start and then freeze ports of @host. Started status is
5740 * recorded in host->flags, so this function can be called
5741 * multiple times. Ports are guaranteed to get started only
5742 * once. If host->ops is not initialized yet, it is set to the
5743 * first non-dummy port ops.
5744 *
5745 * LOCKING:
5746 * Inherited from calling layer (may sleep).
5747 *
5748 * RETURNS:
5749 * 0 if all ports are started successfully, -errno otherwise.
5750 */
ata_host_start(struct ata_host * host)5751 int ata_host_start(struct ata_host *host)
5752 {
5753 int have_stop = 0;
5754 void *start_dr = NULL;
5755 int i, rc;
5756
5757 if (host->flags & ATA_HOST_STARTED)
5758 return 0;
5759
5760 ata_finalize_port_ops(host->ops);
5761
5762 for (i = 0; i < host->n_ports; i++) {
5763 struct ata_port *ap = host->ports[i];
5764
5765 ata_finalize_port_ops(ap->ops);
5766
5767 if (!host->ops && !ata_port_is_dummy(ap))
5768 host->ops = ap->ops;
5769
5770 if (ap->ops->port_stop)
5771 have_stop = 1;
5772 }
5773
5774 if (host->ops && host->ops->host_stop)
5775 have_stop = 1;
5776
5777 if (have_stop) {
5778 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5779 if (!start_dr)
5780 return -ENOMEM;
5781 }
5782
5783 for (i = 0; i < host->n_ports; i++) {
5784 struct ata_port *ap = host->ports[i];
5785
5786 if (ap->ops->port_start) {
5787 rc = ap->ops->port_start(ap);
5788 if (rc) {
5789 if (rc != -ENODEV)
5790 dev_err(host->dev,
5791 "failed to start port %d (errno=%d)\n",
5792 i, rc);
5793 goto err_out;
5794 }
5795 }
5796 ata_eh_freeze_port(ap);
5797 }
5798
5799 if (start_dr)
5800 devres_add(host->dev, start_dr);
5801 host->flags |= ATA_HOST_STARTED;
5802 return 0;
5803
5804 err_out:
5805 while (--i >= 0) {
5806 struct ata_port *ap = host->ports[i];
5807
5808 if (ap->ops->port_stop)
5809 ap->ops->port_stop(ap);
5810 }
5811 devres_free(start_dr);
5812 return rc;
5813 }
5814 EXPORT_SYMBOL_GPL(ata_host_start);
5815
5816 /**
5817 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5818 * @host: host to initialize
5819 * @dev: device host is attached to
5820 * @ops: port_ops
5821 *
5822 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5823 void ata_host_init(struct ata_host *host, struct device *dev,
5824 struct ata_port_operations *ops)
5825 {
5826 spin_lock_init(&host->lock);
5827 mutex_init(&host->eh_mutex);
5828 host->n_tags = ATA_MAX_QUEUE;
5829 host->dev = dev;
5830 host->ops = ops;
5831 kref_init(&host->kref);
5832 }
5833 EXPORT_SYMBOL_GPL(ata_host_init);
5834
ata_port_probe(struct ata_port * ap)5835 void ata_port_probe(struct ata_port *ap)
5836 {
5837 struct ata_eh_info *ehi = &ap->link.eh_info;
5838 unsigned long flags;
5839
5840 /* kick EH for boot probing */
5841 spin_lock_irqsave(ap->lock, flags);
5842
5843 ehi->probe_mask |= ATA_ALL_DEVICES;
5844 ehi->action |= ATA_EH_RESET;
5845 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5846
5847 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5848 ap->pflags |= ATA_PFLAG_LOADING;
5849 ata_port_schedule_eh(ap);
5850
5851 spin_unlock_irqrestore(ap->lock, flags);
5852 }
5853 EXPORT_SYMBOL_GPL(ata_port_probe);
5854
async_port_probe(void * data,async_cookie_t cookie)5855 static void async_port_probe(void *data, async_cookie_t cookie)
5856 {
5857 struct ata_port *ap = data;
5858
5859 /*
5860 * If we're not allowed to scan this host in parallel,
5861 * we need to wait until all previous scans have completed
5862 * before going further.
5863 * Jeff Garzik says this is only within a controller, so we
5864 * don't need to wait for port 0, only for later ports.
5865 */
5866 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5867 async_synchronize_cookie(cookie);
5868
5869 ata_port_probe(ap);
5870 ata_port_wait_eh(ap);
5871
5872 /* in order to keep device order, we need to synchronize at this point */
5873 async_synchronize_cookie(cookie);
5874
5875 ata_scsi_scan_host(ap, 1);
5876 }
5877
5878 /**
5879 * ata_host_register - register initialized ATA host
5880 * @host: ATA host to register
5881 * @sht: template for SCSI host
5882 *
5883 * Register initialized ATA host. @host is allocated using
5884 * ata_host_alloc() and fully initialized by LLD. This function
5885 * starts ports, registers @host with ATA and SCSI layers and
5886 * probe registered devices.
5887 *
5888 * LOCKING:
5889 * Inherited from calling layer (may sleep).
5890 *
5891 * RETURNS:
5892 * 0 on success, -errno otherwise.
5893 */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5894 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5895 {
5896 int i, rc;
5897
5898 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5899
5900 /* host must have been started */
5901 if (!(host->flags & ATA_HOST_STARTED)) {
5902 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5903 WARN_ON(1);
5904 return -EINVAL;
5905 }
5906
5907 /* Blow away unused ports. This happens when LLD can't
5908 * determine the exact number of ports to allocate at
5909 * allocation time.
5910 */
5911 for (i = host->n_ports; host->ports[i]; i++)
5912 kfree(host->ports[i]);
5913
5914 /* give ports names and add SCSI hosts */
5915 for (i = 0; i < host->n_ports; i++) {
5916 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5917 host->ports[i]->local_port_no = i + 1;
5918 }
5919
5920 /* Create associated sysfs transport objects */
5921 for (i = 0; i < host->n_ports; i++) {
5922 rc = ata_tport_add(host->dev,host->ports[i]);
5923 if (rc) {
5924 goto err_tadd;
5925 }
5926 }
5927
5928 rc = ata_scsi_add_hosts(host, sht);
5929 if (rc)
5930 goto err_tadd;
5931
5932 /* set cable, sata_spd_limit and report */
5933 for (i = 0; i < host->n_ports; i++) {
5934 struct ata_port *ap = host->ports[i];
5935 unsigned int xfer_mask;
5936
5937 /* set SATA cable type if still unset */
5938 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5939 ap->cbl = ATA_CBL_SATA;
5940
5941 /* init sata_spd_limit to the current value */
5942 sata_link_init_spd(&ap->link);
5943 if (ap->slave_link)
5944 sata_link_init_spd(ap->slave_link);
5945
5946 /* print per-port info to dmesg */
5947 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5948 ap->udma_mask);
5949
5950 if (!ata_port_is_dummy(ap)) {
5951 ata_port_info(ap, "%cATA max %s %s\n",
5952 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5953 ata_mode_string(xfer_mask),
5954 ap->link.eh_info.desc);
5955 ata_ehi_clear_desc(&ap->link.eh_info);
5956 } else
5957 ata_port_info(ap, "DUMMY\n");
5958 }
5959
5960 /* perform each probe asynchronously */
5961 for (i = 0; i < host->n_ports; i++) {
5962 struct ata_port *ap = host->ports[i];
5963 ap->cookie = async_schedule(async_port_probe, ap);
5964 }
5965
5966 return 0;
5967
5968 err_tadd:
5969 while (--i >= 0) {
5970 ata_tport_delete(host->ports[i]);
5971 }
5972 return rc;
5973
5974 }
5975 EXPORT_SYMBOL_GPL(ata_host_register);
5976
5977 /**
5978 * ata_host_activate - start host, request IRQ and register it
5979 * @host: target ATA host
5980 * @irq: IRQ to request
5981 * @irq_handler: irq_handler used when requesting IRQ
5982 * @irq_flags: irq_flags used when requesting IRQ
5983 * @sht: scsi_host_template to use when registering the host
5984 *
5985 * After allocating an ATA host and initializing it, most libata
5986 * LLDs perform three steps to activate the host - start host,
5987 * request IRQ and register it. This helper takes necessary
5988 * arguments and performs the three steps in one go.
5989 *
5990 * An invalid IRQ skips the IRQ registration and expects the host to
5991 * have set polling mode on the port. In this case, @irq_handler
5992 * should be NULL.
5993 *
5994 * LOCKING:
5995 * Inherited from calling layer (may sleep).
5996 *
5997 * RETURNS:
5998 * 0 on success, -errno otherwise.
5999 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)6000 int ata_host_activate(struct ata_host *host, int irq,
6001 irq_handler_t irq_handler, unsigned long irq_flags,
6002 const struct scsi_host_template *sht)
6003 {
6004 int i, rc;
6005 char *irq_desc;
6006
6007 rc = ata_host_start(host);
6008 if (rc)
6009 return rc;
6010
6011 /* Special case for polling mode */
6012 if (!irq) {
6013 WARN_ON(irq_handler);
6014 return ata_host_register(host, sht);
6015 }
6016
6017 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6018 dev_driver_string(host->dev),
6019 dev_name(host->dev));
6020 if (!irq_desc)
6021 return -ENOMEM;
6022
6023 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6024 irq_desc, host);
6025 if (rc)
6026 return rc;
6027
6028 for (i = 0; i < host->n_ports; i++)
6029 ata_port_desc(host->ports[i], "irq %d", irq);
6030
6031 rc = ata_host_register(host, sht);
6032 /* if failed, just free the IRQ and leave ports alone */
6033 if (rc)
6034 devm_free_irq(host->dev, irq, host);
6035
6036 return rc;
6037 }
6038 EXPORT_SYMBOL_GPL(ata_host_activate);
6039
6040 /**
6041 * ata_port_detach - Detach ATA port in preparation of device removal
6042 * @ap: ATA port to be detached
6043 *
6044 * Detach all ATA devices and the associated SCSI devices of @ap;
6045 * then, remove the associated SCSI host. @ap is guaranteed to
6046 * be quiescent on return from this function.
6047 *
6048 * LOCKING:
6049 * Kernel thread context (may sleep).
6050 */
ata_port_detach(struct ata_port * ap)6051 static void ata_port_detach(struct ata_port *ap)
6052 {
6053 unsigned long flags;
6054 struct ata_link *link;
6055 struct ata_device *dev;
6056
6057 /* Wait for any ongoing EH */
6058 ata_port_wait_eh(ap);
6059
6060 mutex_lock(&ap->scsi_scan_mutex);
6061 spin_lock_irqsave(ap->lock, flags);
6062
6063 /* Remove scsi devices */
6064 ata_for_each_link(link, ap, HOST_FIRST) {
6065 ata_for_each_dev(dev, link, ALL) {
6066 if (dev->sdev) {
6067 spin_unlock_irqrestore(ap->lock, flags);
6068 scsi_remove_device(dev->sdev);
6069 spin_lock_irqsave(ap->lock, flags);
6070 dev->sdev = NULL;
6071 }
6072 }
6073 }
6074
6075 /* Tell EH to disable all devices */
6076 ap->pflags |= ATA_PFLAG_UNLOADING;
6077 ata_port_schedule_eh(ap);
6078
6079 spin_unlock_irqrestore(ap->lock, flags);
6080 mutex_unlock(&ap->scsi_scan_mutex);
6081
6082 /* wait till EH commits suicide */
6083 ata_port_wait_eh(ap);
6084
6085 /* it better be dead now */
6086 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6087
6088 cancel_delayed_work_sync(&ap->hotplug_task);
6089 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6090
6091 /* clean up zpodd on port removal */
6092 ata_for_each_link(link, ap, HOST_FIRST) {
6093 ata_for_each_dev(dev, link, ALL) {
6094 if (zpodd_dev_enabled(dev))
6095 zpodd_exit(dev);
6096 }
6097 }
6098 if (ap->pmp_link) {
6099 int i;
6100 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6101 ata_tlink_delete(&ap->pmp_link[i]);
6102 }
6103 /* remove the associated SCSI host */
6104 scsi_remove_host(ap->scsi_host);
6105 ata_tport_delete(ap);
6106 }
6107
6108 /**
6109 * ata_host_detach - Detach all ports of an ATA host
6110 * @host: Host to detach
6111 *
6112 * Detach all ports of @host.
6113 *
6114 * LOCKING:
6115 * Kernel thread context (may sleep).
6116 */
ata_host_detach(struct ata_host * host)6117 void ata_host_detach(struct ata_host *host)
6118 {
6119 int i;
6120
6121 for (i = 0; i < host->n_ports; i++) {
6122 /* Ensure ata_port probe has completed */
6123 async_synchronize_cookie(host->ports[i]->cookie + 1);
6124 ata_port_detach(host->ports[i]);
6125 }
6126
6127 /* the host is dead now, dissociate ACPI */
6128 ata_acpi_dissociate(host);
6129 }
6130 EXPORT_SYMBOL_GPL(ata_host_detach);
6131
6132 #ifdef CONFIG_PCI
6133
6134 /**
6135 * ata_pci_remove_one - PCI layer callback for device removal
6136 * @pdev: PCI device that was removed
6137 *
6138 * PCI layer indicates to libata via this hook that hot-unplug or
6139 * module unload event has occurred. Detach all ports. Resource
6140 * release is handled via devres.
6141 *
6142 * LOCKING:
6143 * Inherited from PCI layer (may sleep).
6144 */
ata_pci_remove_one(struct pci_dev * pdev)6145 void ata_pci_remove_one(struct pci_dev *pdev)
6146 {
6147 struct ata_host *host = pci_get_drvdata(pdev);
6148
6149 ata_host_detach(host);
6150 }
6151 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6152
ata_pci_shutdown_one(struct pci_dev * pdev)6153 void ata_pci_shutdown_one(struct pci_dev *pdev)
6154 {
6155 struct ata_host *host = pci_get_drvdata(pdev);
6156 int i;
6157
6158 for (i = 0; i < host->n_ports; i++) {
6159 struct ata_port *ap = host->ports[i];
6160
6161 ap->pflags |= ATA_PFLAG_FROZEN;
6162
6163 /* Disable port interrupts */
6164 if (ap->ops->freeze)
6165 ap->ops->freeze(ap);
6166
6167 /* Stop the port DMA engines */
6168 if (ap->ops->port_stop)
6169 ap->ops->port_stop(ap);
6170 }
6171 }
6172 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6173
6174 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6175 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6176 {
6177 unsigned long tmp = 0;
6178
6179 switch (bits->width) {
6180 case 1: {
6181 u8 tmp8 = 0;
6182 pci_read_config_byte(pdev, bits->reg, &tmp8);
6183 tmp = tmp8;
6184 break;
6185 }
6186 case 2: {
6187 u16 tmp16 = 0;
6188 pci_read_config_word(pdev, bits->reg, &tmp16);
6189 tmp = tmp16;
6190 break;
6191 }
6192 case 4: {
6193 u32 tmp32 = 0;
6194 pci_read_config_dword(pdev, bits->reg, &tmp32);
6195 tmp = tmp32;
6196 break;
6197 }
6198
6199 default:
6200 return -EINVAL;
6201 }
6202
6203 tmp &= bits->mask;
6204
6205 return (tmp == bits->val) ? 1 : 0;
6206 }
6207 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6208
6209 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6210 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6211 {
6212 pci_save_state(pdev);
6213 pci_disable_device(pdev);
6214
6215 if (mesg.event & PM_EVENT_SLEEP)
6216 pci_set_power_state(pdev, PCI_D3hot);
6217 }
6218 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6219
ata_pci_device_do_resume(struct pci_dev * pdev)6220 int ata_pci_device_do_resume(struct pci_dev *pdev)
6221 {
6222 int rc;
6223
6224 pci_set_power_state(pdev, PCI_D0);
6225 pci_restore_state(pdev);
6226
6227 rc = pcim_enable_device(pdev);
6228 if (rc) {
6229 dev_err(&pdev->dev,
6230 "failed to enable device after resume (%d)\n", rc);
6231 return rc;
6232 }
6233
6234 pci_set_master(pdev);
6235 return 0;
6236 }
6237 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6238
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6239 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6240 {
6241 struct ata_host *host = pci_get_drvdata(pdev);
6242
6243 ata_host_suspend(host, mesg);
6244
6245 ata_pci_device_do_suspend(pdev, mesg);
6246
6247 return 0;
6248 }
6249 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6250
ata_pci_device_resume(struct pci_dev * pdev)6251 int ata_pci_device_resume(struct pci_dev *pdev)
6252 {
6253 struct ata_host *host = pci_get_drvdata(pdev);
6254 int rc;
6255
6256 rc = ata_pci_device_do_resume(pdev);
6257 if (rc == 0)
6258 ata_host_resume(host);
6259 return rc;
6260 }
6261 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6262 #endif /* CONFIG_PM */
6263 #endif /* CONFIG_PCI */
6264
6265 /**
6266 * ata_platform_remove_one - Platform layer callback for device removal
6267 * @pdev: Platform device that was removed
6268 *
6269 * Platform layer indicates to libata via this hook that hot-unplug or
6270 * module unload event has occurred. Detach all ports. Resource
6271 * release is handled via devres.
6272 *
6273 * LOCKING:
6274 * Inherited from platform layer (may sleep).
6275 */
ata_platform_remove_one(struct platform_device * pdev)6276 void ata_platform_remove_one(struct platform_device *pdev)
6277 {
6278 struct ata_host *host = platform_get_drvdata(pdev);
6279
6280 ata_host_detach(host);
6281 }
6282 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6283
6284 #ifdef CONFIG_ATA_FORCE
6285
6286 #define force_cbl(name, flag) \
6287 { #name, .cbl = (flag) }
6288
6289 #define force_spd_limit(spd, val) \
6290 { #spd, .spd_limit = (val) }
6291
6292 #define force_xfer(mode, shift) \
6293 { #mode, .xfer_mask = (1UL << (shift)) }
6294
6295 #define force_lflag_on(name, flags) \
6296 { #name, .lflags_on = (flags) }
6297
6298 #define force_lflag_onoff(name, flags) \
6299 { "no" #name, .lflags_on = (flags) }, \
6300 { #name, .lflags_off = (flags) }
6301
6302 #define force_horkage_on(name, flag) \
6303 { #name, .horkage_on = (flag) }
6304
6305 #define force_horkage_onoff(name, flag) \
6306 { "no" #name, .horkage_on = (flag) }, \
6307 { #name, .horkage_off = (flag) }
6308
6309 static const struct ata_force_param force_tbl[] __initconst = {
6310 force_cbl(40c, ATA_CBL_PATA40),
6311 force_cbl(80c, ATA_CBL_PATA80),
6312 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6313 force_cbl(unk, ATA_CBL_PATA_UNK),
6314 force_cbl(ign, ATA_CBL_PATA_IGN),
6315 force_cbl(sata, ATA_CBL_SATA),
6316
6317 force_spd_limit(1.5Gbps, 1),
6318 force_spd_limit(3.0Gbps, 2),
6319
6320 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6321 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6322 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6323 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6324 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6325 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6326 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6327 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6328 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6329 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6330 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6331 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6332 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6333 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6334 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6335 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6336 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6337 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6338 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6339 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6340 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6341 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6342 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6343 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6344 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6345 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6346 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6347 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6348 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6349 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6350 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6351 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6352 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6353 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6354
6355 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6356 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6357 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6358 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6359 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6360
6361 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ),
6362 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM),
6363 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI),
6364
6365 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM),
6366 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM),
6367 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6368
6369 force_horkage_onoff(dma, ATA_HORKAGE_NODMA),
6370 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR),
6371 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6372
6373 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG),
6374 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG),
6375 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR),
6376
6377 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128),
6378 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024),
6379 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48),
6380
6381 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM),
6382 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER),
6383 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID),
6384 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA),
6385
6386 force_horkage_on(disable, ATA_HORKAGE_DISABLE),
6387 };
6388
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6389 static int __init ata_parse_force_one(char **cur,
6390 struct ata_force_ent *force_ent,
6391 const char **reason)
6392 {
6393 char *start = *cur, *p = *cur;
6394 char *id, *val, *endp;
6395 const struct ata_force_param *match_fp = NULL;
6396 int nr_matches = 0, i;
6397
6398 /* find where this param ends and update *cur */
6399 while (*p != '\0' && *p != ',')
6400 p++;
6401
6402 if (*p == '\0')
6403 *cur = p;
6404 else
6405 *cur = p + 1;
6406
6407 *p = '\0';
6408
6409 /* parse */
6410 p = strchr(start, ':');
6411 if (!p) {
6412 val = strstrip(start);
6413 goto parse_val;
6414 }
6415 *p = '\0';
6416
6417 id = strstrip(start);
6418 val = strstrip(p + 1);
6419
6420 /* parse id */
6421 p = strchr(id, '.');
6422 if (p) {
6423 *p++ = '\0';
6424 force_ent->device = simple_strtoul(p, &endp, 10);
6425 if (p == endp || *endp != '\0') {
6426 *reason = "invalid device";
6427 return -EINVAL;
6428 }
6429 }
6430
6431 force_ent->port = simple_strtoul(id, &endp, 10);
6432 if (id == endp || *endp != '\0') {
6433 *reason = "invalid port/link";
6434 return -EINVAL;
6435 }
6436
6437 parse_val:
6438 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6439 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6440 const struct ata_force_param *fp = &force_tbl[i];
6441
6442 if (strncasecmp(val, fp->name, strlen(val)))
6443 continue;
6444
6445 nr_matches++;
6446 match_fp = fp;
6447
6448 if (strcasecmp(val, fp->name) == 0) {
6449 nr_matches = 1;
6450 break;
6451 }
6452 }
6453
6454 if (!nr_matches) {
6455 *reason = "unknown value";
6456 return -EINVAL;
6457 }
6458 if (nr_matches > 1) {
6459 *reason = "ambiguous value";
6460 return -EINVAL;
6461 }
6462
6463 force_ent->param = *match_fp;
6464
6465 return 0;
6466 }
6467
ata_parse_force_param(void)6468 static void __init ata_parse_force_param(void)
6469 {
6470 int idx = 0, size = 1;
6471 int last_port = -1, last_device = -1;
6472 char *p, *cur, *next;
6473
6474 /* Calculate maximum number of params and allocate ata_force_tbl */
6475 for (p = ata_force_param_buf; *p; p++)
6476 if (*p == ',')
6477 size++;
6478
6479 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6480 if (!ata_force_tbl) {
6481 printk(KERN_WARNING "ata: failed to extend force table, "
6482 "libata.force ignored\n");
6483 return;
6484 }
6485
6486 /* parse and populate the table */
6487 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6488 const char *reason = "";
6489 struct ata_force_ent te = { .port = -1, .device = -1 };
6490
6491 next = cur;
6492 if (ata_parse_force_one(&next, &te, &reason)) {
6493 printk(KERN_WARNING "ata: failed to parse force "
6494 "parameter \"%s\" (%s)\n",
6495 cur, reason);
6496 continue;
6497 }
6498
6499 if (te.port == -1) {
6500 te.port = last_port;
6501 te.device = last_device;
6502 }
6503
6504 ata_force_tbl[idx++] = te;
6505
6506 last_port = te.port;
6507 last_device = te.device;
6508 }
6509
6510 ata_force_tbl_size = idx;
6511 }
6512
ata_free_force_param(void)6513 static void ata_free_force_param(void)
6514 {
6515 kfree(ata_force_tbl);
6516 }
6517 #else
ata_parse_force_param(void)6518 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6519 static inline void ata_free_force_param(void) { }
6520 #endif
6521
ata_init(void)6522 static int __init ata_init(void)
6523 {
6524 int rc;
6525
6526 ata_parse_force_param();
6527
6528 rc = ata_sff_init();
6529 if (rc) {
6530 ata_free_force_param();
6531 return rc;
6532 }
6533
6534 libata_transport_init();
6535 ata_scsi_transport_template = ata_attach_transport();
6536 if (!ata_scsi_transport_template) {
6537 ata_sff_exit();
6538 rc = -ENOMEM;
6539 goto err_out;
6540 }
6541
6542 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6543 return 0;
6544
6545 err_out:
6546 return rc;
6547 }
6548
ata_exit(void)6549 static void __exit ata_exit(void)
6550 {
6551 ata_release_transport(ata_scsi_transport_template);
6552 libata_transport_exit();
6553 ata_sff_exit();
6554 ata_free_force_param();
6555 }
6556
6557 subsys_initcall(ata_init);
6558 module_exit(ata_exit);
6559
6560 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6561
ata_ratelimit(void)6562 int ata_ratelimit(void)
6563 {
6564 return __ratelimit(&ratelimit);
6565 }
6566 EXPORT_SYMBOL_GPL(ata_ratelimit);
6567
6568 /**
6569 * ata_msleep - ATA EH owner aware msleep
6570 * @ap: ATA port to attribute the sleep to
6571 * @msecs: duration to sleep in milliseconds
6572 *
6573 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6574 * ownership is released before going to sleep and reacquired
6575 * after the sleep is complete. IOW, other ports sharing the
6576 * @ap->host will be allowed to own the EH while this task is
6577 * sleeping.
6578 *
6579 * LOCKING:
6580 * Might sleep.
6581 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6582 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6583 {
6584 bool owns_eh = ap && ap->host->eh_owner == current;
6585
6586 if (owns_eh)
6587 ata_eh_release(ap);
6588
6589 if (msecs < 20) {
6590 unsigned long usecs = msecs * USEC_PER_MSEC;
6591 usleep_range(usecs, usecs + 50);
6592 } else {
6593 msleep(msecs);
6594 }
6595
6596 if (owns_eh)
6597 ata_eh_acquire(ap);
6598 }
6599 EXPORT_SYMBOL_GPL(ata_msleep);
6600
6601 /**
6602 * ata_wait_register - wait until register value changes
6603 * @ap: ATA port to wait register for, can be NULL
6604 * @reg: IO-mapped register
6605 * @mask: Mask to apply to read register value
6606 * @val: Wait condition
6607 * @interval: polling interval in milliseconds
6608 * @timeout: timeout in milliseconds
6609 *
6610 * Waiting for some bits of register to change is a common
6611 * operation for ATA controllers. This function reads 32bit LE
6612 * IO-mapped register @reg and tests for the following condition.
6613 *
6614 * (*@reg & mask) != val
6615 *
6616 * If the condition is met, it returns; otherwise, the process is
6617 * repeated after @interval_msec until timeout.
6618 *
6619 * LOCKING:
6620 * Kernel thread context (may sleep)
6621 *
6622 * RETURNS:
6623 * The final register value.
6624 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6625 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6626 unsigned int interval, unsigned int timeout)
6627 {
6628 unsigned long deadline;
6629 u32 tmp;
6630
6631 tmp = ioread32(reg);
6632
6633 /* Calculate timeout _after_ the first read to make sure
6634 * preceding writes reach the controller before starting to
6635 * eat away the timeout.
6636 */
6637 deadline = ata_deadline(jiffies, timeout);
6638
6639 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6640 ata_msleep(ap, interval);
6641 tmp = ioread32(reg);
6642 }
6643
6644 return tmp;
6645 }
6646 EXPORT_SYMBOL_GPL(ata_wait_register);
6647
6648 /*
6649 * Dummy port_ops
6650 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6651 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6652 {
6653 return AC_ERR_SYSTEM;
6654 }
6655
ata_dummy_error_handler(struct ata_port * ap)6656 static void ata_dummy_error_handler(struct ata_port *ap)
6657 {
6658 /* truly dummy */
6659 }
6660
6661 struct ata_port_operations ata_dummy_port_ops = {
6662 .qc_prep = ata_noop_qc_prep,
6663 .qc_issue = ata_dummy_qc_issue,
6664 .error_handler = ata_dummy_error_handler,
6665 .sched_eh = ata_std_sched_eh,
6666 .end_eh = ata_std_end_eh,
6667 };
6668 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6669
6670 const struct ata_port_info ata_dummy_port_info = {
6671 .port_ops = &ata_dummy_port_ops,
6672 };
6673 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6674
ata_print_version(const struct device * dev,const char * version)6675 void ata_print_version(const struct device *dev, const char *version)
6676 {
6677 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6678 }
6679 EXPORT_SYMBOL(ata_print_version);
6680
6681 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6682 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6683 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6684 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6685 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6686