1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned long xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags;
100 };
101
102 struct ata_force_ent {
103 int port;
104 int device;
105 struct ata_force_param param;
106 };
107
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161
ata_dev_print_info(struct ata_device * dev)162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 struct ata_eh_context *ehc = &dev->link->eh_context;
165
166 return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168
ata_sstatus_online(u32 sstatus)169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 return (sstatus & 0xf) == 0x3;
172 }
173
174 /**
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
179 *
180 * LOCKING:
181 * Host lock or EH context.
182 *
183 * RETURNS:
184 * Pointer to the next link.
185 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
188 {
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191
192 /* NULL link indicates start of iteration */
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 fallthrough;
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
202 }
203
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 fallthrough;
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
213 return ap->slave_link;
214 fallthrough;
215 case ATA_LITER_EDGE:
216 return NULL;
217 }
218
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
222
223 /* we were over a PMP link */
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
226
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
229
230 return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233
234 /**
235 * ata_dev_next - device iteration helper
236 * @dev: the previous device, NULL to start
237 * @link: ATA link containing devices to iterate
238 * @mode: iteration mode, one of ATA_DITER_*
239 *
240 * LOCKING:
241 * Host lock or EH context.
242 *
243 * RETURNS:
244 * Pointer to the next device.
245 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 enum ata_dev_iter_mode mode)
248 {
249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251
252 /* NULL dev indicates start of iteration */
253 if (!dev)
254 switch (mode) {
255 case ATA_DITER_ENABLED:
256 case ATA_DITER_ALL:
257 dev = link->device;
258 goto check;
259 case ATA_DITER_ENABLED_REVERSE:
260 case ATA_DITER_ALL_REVERSE:
261 dev = link->device + ata_link_max_devices(link) - 1;
262 goto check;
263 }
264
265 next:
266 /* move to the next one */
267 switch (mode) {
268 case ATA_DITER_ENABLED:
269 case ATA_DITER_ALL:
270 if (++dev < link->device + ata_link_max_devices(link))
271 goto check;
272 return NULL;
273 case ATA_DITER_ENABLED_REVERSE:
274 case ATA_DITER_ALL_REVERSE:
275 if (--dev >= link->device)
276 goto check;
277 return NULL;
278 }
279
280 check:
281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 !ata_dev_enabled(dev))
283 goto next;
284 return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287
288 /**
289 * ata_dev_phys_link - find physical link for a device
290 * @dev: ATA device to look up physical link for
291 *
292 * Look up physical link which @dev is attached to. Note that
293 * this is different from @dev->link only when @dev is on slave
294 * link. For all other cases, it's the same as @dev->link.
295 *
296 * LOCKING:
297 * Don't care.
298 *
299 * RETURNS:
300 * Pointer to the found physical link.
301 */
ata_dev_phys_link(struct ata_device * dev)302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 struct ata_port *ap = dev->link->ap;
305
306 if (!ap->slave_link)
307 return dev->link;
308 if (!dev->devno)
309 return &ap->link;
310 return ap->slave_link;
311 }
312
313 #ifdef CONFIG_ATA_FORCE
314 /**
315 * ata_force_cbl - force cable type according to libata.force
316 * @ap: ATA port of interest
317 *
318 * Force cable type according to libata.force and whine about it.
319 * The last entry which has matching port number is used, so it
320 * can be specified as part of device force parameters. For
321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322 * same effect.
323 *
324 * LOCKING:
325 * EH context.
326 */
ata_force_cbl(struct ata_port * ap)327 void ata_force_cbl(struct ata_port *ap)
328 {
329 int i;
330
331 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 const struct ata_force_ent *fe = &ata_force_tbl[i];
333
334 if (fe->port != -1 && fe->port != ap->print_id)
335 continue;
336
337 if (fe->param.cbl == ATA_CBL_NONE)
338 continue;
339
340 ap->cbl = fe->param.cbl;
341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 return;
343 }
344 }
345
346 /**
347 * ata_force_link_limits - force link limits according to libata.force
348 * @link: ATA link of interest
349 *
350 * Force link flags and SATA spd limit according to libata.force
351 * and whine about it. When only the port part is specified
352 * (e.g. 1:), the limit applies to all links connected to both
353 * the host link and all fan-out ports connected via PMP. If the
354 * device part is specified as 0 (e.g. 1.00:), it specifies the
355 * first fan-out link not the host link. Device number 15 always
356 * points to the host link whether PMP is attached or not. If the
357 * controller has slave link, device number 16 points to it.
358 *
359 * LOCKING:
360 * EH context.
361 */
ata_force_link_limits(struct ata_link * link)362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 bool did_spd = false;
365 int linkno = link->pmp;
366 int i;
367
368 if (ata_is_host_link(link))
369 linkno += 15;
370
371 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 const struct ata_force_ent *fe = &ata_force_tbl[i];
373
374 if (fe->port != -1 && fe->port != link->ap->print_id)
375 continue;
376
377 if (fe->device != -1 && fe->device != linkno)
378 continue;
379
380 /* only honor the first spd limit */
381 if (!did_spd && fe->param.spd_limit) {
382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 fe->param.name);
385 did_spd = true;
386 }
387
388 /* let lflags stack */
389 if (fe->param.lflags) {
390 link->flags |= fe->param.lflags;
391 ata_link_notice(link,
392 "FORCE: link flag 0x%x forced -> 0x%x\n",
393 fe->param.lflags, link->flags);
394 }
395 }
396 }
397
398 /**
399 * ata_force_xfermask - force xfermask according to libata.force
400 * @dev: ATA device of interest
401 *
402 * Force xfer_mask according to libata.force and whine about it.
403 * For consistency with link selection, device number 15 selects
404 * the first device connected to the host link.
405 *
406 * LOCKING:
407 * EH context.
408 */
ata_force_xfermask(struct ata_device * dev)409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 int devno = dev->link->pmp + dev->devno;
412 int alt_devno = devno;
413 int i;
414
415 /* allow n.15/16 for devices attached to host port */
416 if (ata_is_host_link(dev->link))
417 alt_devno += 15;
418
419 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 const struct ata_force_ent *fe = &ata_force_tbl[i];
421 unsigned long pio_mask, mwdma_mask, udma_mask;
422
423 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 continue;
425
426 if (fe->device != -1 && fe->device != devno &&
427 fe->device != alt_devno)
428 continue;
429
430 if (!fe->param.xfer_mask)
431 continue;
432
433 ata_unpack_xfermask(fe->param.xfer_mask,
434 &pio_mask, &mwdma_mask, &udma_mask);
435 if (udma_mask)
436 dev->udma_mask = udma_mask;
437 else if (mwdma_mask) {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = mwdma_mask;
440 } else {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = 0;
443 dev->pio_mask = pio_mask;
444 }
445
446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 fe->param.name);
448 return;
449 }
450 }
451
452 /**
453 * ata_force_horkage - force horkage according to libata.force
454 * @dev: ATA device of interest
455 *
456 * Force horkage according to libata.force and whine about it.
457 * For consistency with link selection, device number 15 selects
458 * the first device connected to the host link.
459 *
460 * LOCKING:
461 * EH context.
462 */
ata_force_horkage(struct ata_device * dev)463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 int devno = dev->link->pmp + dev->devno;
466 int alt_devno = devno;
467 int i;
468
469 /* allow n.15/16 for devices attached to host port */
470 if (ata_is_host_link(dev->link))
471 alt_devno += 15;
472
473 for (i = 0; i < ata_force_tbl_size; i++) {
474 const struct ata_force_ent *fe = &ata_force_tbl[i];
475
476 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 continue;
478
479 if (fe->device != -1 && fe->device != devno &&
480 fe->device != alt_devno)
481 continue;
482
483 if (!(~dev->horkage & fe->param.horkage_on) &&
484 !(dev->horkage & fe->param.horkage_off))
485 continue;
486
487 dev->horkage |= fe->param.horkage_on;
488 dev->horkage &= ~fe->param.horkage_off;
489
490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 fe->param.name);
492 }
493 }
494 #else
ata_force_link_limits(struct ata_link * link)495 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)496 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499
500 /**
501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502 * @opcode: SCSI opcode
503 *
504 * Determine ATAPI command type from @opcode.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511 */
atapi_cmd_type(u8 opcode)512 int atapi_cmd_type(u8 opcode)
513 {
514 switch (opcode) {
515 case GPCMD_READ_10:
516 case GPCMD_READ_12:
517 return ATAPI_READ;
518
519 case GPCMD_WRITE_10:
520 case GPCMD_WRITE_12:
521 case GPCMD_WRITE_AND_VERIFY_10:
522 return ATAPI_WRITE;
523
524 case GPCMD_READ_CD:
525 case GPCMD_READ_CD_MSF:
526 return ATAPI_READ_CD;
527
528 case ATA_16:
529 case ATA_12:
530 if (atapi_passthru16)
531 return ATAPI_PASS_THRU;
532 fallthrough;
533 default:
534 return ATAPI_MISC;
535 }
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538
539 static const u8 ata_rw_cmds[] = {
540 /* pio multi */
541 ATA_CMD_READ_MULTI,
542 ATA_CMD_WRITE_MULTI,
543 ATA_CMD_READ_MULTI_EXT,
544 ATA_CMD_WRITE_MULTI_EXT,
545 0,
546 0,
547 0,
548 ATA_CMD_WRITE_MULTI_FUA_EXT,
549 /* pio */
550 ATA_CMD_PIO_READ,
551 ATA_CMD_PIO_WRITE,
552 ATA_CMD_PIO_READ_EXT,
553 ATA_CMD_PIO_WRITE_EXT,
554 0,
555 0,
556 0,
557 0,
558 /* dma */
559 ATA_CMD_READ,
560 ATA_CMD_WRITE,
561 ATA_CMD_READ_EXT,
562 ATA_CMD_WRITE_EXT,
563 0,
564 0,
565 0,
566 ATA_CMD_WRITE_FUA_EXT
567 };
568
569 /**
570 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
571 * @tf: command to examine and configure
572 * @dev: device tf belongs to
573 *
574 * Examine the device configuration and tf->flags to calculate
575 * the proper read/write commands and protocol to use.
576 *
577 * LOCKING:
578 * caller.
579 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 u8 cmd;
583
584 int index, fua, lba48, write;
585
586 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589
590 if (dev->flags & ATA_DFLAG_PIO) {
591 tf->protocol = ATA_PROT_PIO;
592 index = dev->multi_count ? 0 : 8;
593 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 /* Unable to use DMA due to host limitation */
595 tf->protocol = ATA_PROT_PIO;
596 index = dev->multi_count ? 0 : 8;
597 } else {
598 tf->protocol = ATA_PROT_DMA;
599 index = 16;
600 }
601
602 cmd = ata_rw_cmds[index + fua + lba48 + write];
603 if (cmd) {
604 tf->command = cmd;
605 return 0;
606 }
607 return -1;
608 }
609
610 /**
611 * ata_tf_read_block - Read block address from ATA taskfile
612 * @tf: ATA taskfile of interest
613 * @dev: ATA device @tf belongs to
614 *
615 * LOCKING:
616 * None.
617 *
618 * Read block address from @tf. This function can handle all
619 * three address formats - LBA, LBA48 and CHS. tf->protocol and
620 * flags select the address format to use.
621 *
622 * RETURNS:
623 * Block address read from @tf.
624 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 u64 block = 0;
628
629 if (tf->flags & ATA_TFLAG_LBA) {
630 if (tf->flags & ATA_TFLAG_LBA48) {
631 block |= (u64)tf->hob_lbah << 40;
632 block |= (u64)tf->hob_lbam << 32;
633 block |= (u64)tf->hob_lbal << 24;
634 } else
635 block |= (tf->device & 0xf) << 24;
636
637 block |= tf->lbah << 16;
638 block |= tf->lbam << 8;
639 block |= tf->lbal;
640 } else {
641 u32 cyl, head, sect;
642
643 cyl = tf->lbam | (tf->lbah << 8);
644 head = tf->device & 0xf;
645 sect = tf->lbal;
646
647 if (!sect) {
648 ata_dev_warn(dev,
649 "device reported invalid CHS sector 0\n");
650 return U64_MAX;
651 }
652
653 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 }
655
656 return block;
657 }
658
659 /**
660 * ata_build_rw_tf - Build ATA taskfile for given read/write request
661 * @tf: Target ATA taskfile
662 * @dev: ATA device @tf belongs to
663 * @block: Block address
664 * @n_block: Number of blocks
665 * @tf_flags: RW/FUA etc...
666 * @tag: tag
667 * @class: IO priority class
668 *
669 * LOCKING:
670 * None.
671 *
672 * Build ATA taskfile @tf for read/write request described by
673 * @block, @n_block, @tf_flags and @tag on @dev.
674 *
675 * RETURNS:
676 *
677 * 0 on success, -ERANGE if the request is too large for @dev,
678 * -EINVAL if the request is invalid.
679 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag,int class)680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 u64 block, u32 n_block, unsigned int tf_flags,
682 unsigned int tag, int class)
683 {
684 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 tf->flags |= tf_flags;
686
687 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 /* yay, NCQ */
689 if (!lba_48_ok(block, n_block))
690 return -ERANGE;
691
692 tf->protocol = ATA_PROT_NCQ;
693 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694
695 if (tf->flags & ATA_TFLAG_WRITE)
696 tf->command = ATA_CMD_FPDMA_WRITE;
697 else
698 tf->command = ATA_CMD_FPDMA_READ;
699
700 tf->nsect = tag << 3;
701 tf->hob_feature = (n_block >> 8) & 0xff;
702 tf->feature = n_block & 0xff;
703
704 tf->hob_lbah = (block >> 40) & 0xff;
705 tf->hob_lbam = (block >> 32) & 0xff;
706 tf->hob_lbal = (block >> 24) & 0xff;
707 tf->lbah = (block >> 16) & 0xff;
708 tf->lbam = (block >> 8) & 0xff;
709 tf->lbal = block & 0xff;
710
711 tf->device = ATA_LBA;
712 if (tf->flags & ATA_TFLAG_FUA)
713 tf->device |= 1 << 7;
714
715 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 class == IOPRIO_CLASS_RT)
717 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 } else if (dev->flags & ATA_DFLAG_LBA) {
719 tf->flags |= ATA_TFLAG_LBA;
720
721 if (lba_28_ok(block, n_block)) {
722 /* use LBA28 */
723 tf->device |= (block >> 24) & 0xf;
724 } else if (lba_48_ok(block, n_block)) {
725 if (!(dev->flags & ATA_DFLAG_LBA48))
726 return -ERANGE;
727
728 /* use LBA48 */
729 tf->flags |= ATA_TFLAG_LBA48;
730
731 tf->hob_nsect = (n_block >> 8) & 0xff;
732
733 tf->hob_lbah = (block >> 40) & 0xff;
734 tf->hob_lbam = (block >> 32) & 0xff;
735 tf->hob_lbal = (block >> 24) & 0xff;
736 } else
737 /* request too large even for LBA48 */
738 return -ERANGE;
739
740 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 return -EINVAL;
742
743 tf->nsect = n_block & 0xff;
744
745 tf->lbah = (block >> 16) & 0xff;
746 tf->lbam = (block >> 8) & 0xff;
747 tf->lbal = block & 0xff;
748
749 tf->device |= ATA_LBA;
750 } else {
751 /* CHS */
752 u32 sect, head, cyl, track;
753
754 /* The request -may- be too large for CHS addressing. */
755 if (!lba_28_ok(block, n_block))
756 return -ERANGE;
757
758 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 return -EINVAL;
760
761 /* Convert LBA to CHS */
762 track = (u32)block / dev->sectors;
763 cyl = track / dev->heads;
764 head = track % dev->heads;
765 sect = (u32)block % dev->sectors + 1;
766
767 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
768 (u32)block, track, cyl, head, sect);
769
770 /* Check whether the converted CHS can fit.
771 Cylinder: 0-65535
772 Head: 0-15
773 Sector: 1-255*/
774 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
775 return -ERANGE;
776
777 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
778 tf->lbal = sect;
779 tf->lbam = cyl;
780 tf->lbah = cyl >> 8;
781 tf->device |= head;
782 }
783
784 return 0;
785 }
786
787 /**
788 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
789 * @pio_mask: pio_mask
790 * @mwdma_mask: mwdma_mask
791 * @udma_mask: udma_mask
792 *
793 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
794 * unsigned int xfer_mask.
795 *
796 * LOCKING:
797 * None.
798 *
799 * RETURNS:
800 * Packed xfer_mask.
801 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)802 unsigned long ata_pack_xfermask(unsigned long pio_mask,
803 unsigned long mwdma_mask,
804 unsigned long udma_mask)
805 {
806 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
807 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
808 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
809 }
810 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
811
812 /**
813 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
814 * @xfer_mask: xfer_mask to unpack
815 * @pio_mask: resulting pio_mask
816 * @mwdma_mask: resulting mwdma_mask
817 * @udma_mask: resulting udma_mask
818 *
819 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
820 * Any NULL destination masks will be ignored.
821 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
823 unsigned long *mwdma_mask, unsigned long *udma_mask)
824 {
825 if (pio_mask)
826 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
827 if (mwdma_mask)
828 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
829 if (udma_mask)
830 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
831 }
832
833 static const struct ata_xfer_ent {
834 int shift, bits;
835 u8 base;
836 } ata_xfer_tbl[] = {
837 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
838 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
839 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
840 { -1, },
841 };
842
843 /**
844 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
845 * @xfer_mask: xfer_mask of interest
846 *
847 * Return matching XFER_* value for @xfer_mask. Only the highest
848 * bit of @xfer_mask is considered.
849 *
850 * LOCKING:
851 * None.
852 *
853 * RETURNS:
854 * Matching XFER_* value, 0xff if no match found.
855 */
ata_xfer_mask2mode(unsigned long xfer_mask)856 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
857 {
858 int highbit = fls(xfer_mask) - 1;
859 const struct ata_xfer_ent *ent;
860
861 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
862 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
863 return ent->base + highbit - ent->shift;
864 return 0xff;
865 }
866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
867
868 /**
869 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
870 * @xfer_mode: XFER_* of interest
871 *
872 * Return matching xfer_mask for @xfer_mode.
873 *
874 * LOCKING:
875 * None.
876 *
877 * RETURNS:
878 * Matching xfer_mask, 0 if no match found.
879 */
ata_xfer_mode2mask(u8 xfer_mode)880 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
881 {
882 const struct ata_xfer_ent *ent;
883
884 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
885 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
886 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
887 & ~((1 << ent->shift) - 1);
888 return 0;
889 }
890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
891
892 /**
893 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
894 * @xfer_mode: XFER_* of interest
895 *
896 * Return matching xfer_shift for @xfer_mode.
897 *
898 * LOCKING:
899 * None.
900 *
901 * RETURNS:
902 * Matching xfer_shift, -1 if no match found.
903 */
ata_xfer_mode2shift(unsigned long xfer_mode)904 int ata_xfer_mode2shift(unsigned long xfer_mode)
905 {
906 const struct ata_xfer_ent *ent;
907
908 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
909 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
910 return ent->shift;
911 return -1;
912 }
913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
914
915 /**
916 * ata_mode_string - convert xfer_mask to string
917 * @xfer_mask: mask of bits supported; only highest bit counts.
918 *
919 * Determine string which represents the highest speed
920 * (highest bit in @modemask).
921 *
922 * LOCKING:
923 * None.
924 *
925 * RETURNS:
926 * Constant C string representing highest speed listed in
927 * @mode_mask, or the constant C string "<n/a>".
928 */
ata_mode_string(unsigned long xfer_mask)929 const char *ata_mode_string(unsigned long xfer_mask)
930 {
931 static const char * const xfer_mode_str[] = {
932 "PIO0",
933 "PIO1",
934 "PIO2",
935 "PIO3",
936 "PIO4",
937 "PIO5",
938 "PIO6",
939 "MWDMA0",
940 "MWDMA1",
941 "MWDMA2",
942 "MWDMA3",
943 "MWDMA4",
944 "UDMA/16",
945 "UDMA/25",
946 "UDMA/33",
947 "UDMA/44",
948 "UDMA/66",
949 "UDMA/100",
950 "UDMA/133",
951 "UDMA7",
952 };
953 int highbit;
954
955 highbit = fls(xfer_mask) - 1;
956 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
957 return xfer_mode_str[highbit];
958 return "<n/a>";
959 }
960 EXPORT_SYMBOL_GPL(ata_mode_string);
961
sata_spd_string(unsigned int spd)962 const char *sata_spd_string(unsigned int spd)
963 {
964 static const char * const spd_str[] = {
965 "1.5 Gbps",
966 "3.0 Gbps",
967 "6.0 Gbps",
968 };
969
970 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
971 return "<unknown>";
972 return spd_str[spd - 1];
973 }
974
975 /**
976 * ata_dev_classify - determine device type based on ATA-spec signature
977 * @tf: ATA taskfile register set for device to be identified
978 *
979 * Determine from taskfile register contents whether a device is
980 * ATA or ATAPI, as per "Signature and persistence" section
981 * of ATA/PI spec (volume 1, sect 5.14).
982 *
983 * LOCKING:
984 * None.
985 *
986 * RETURNS:
987 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
988 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
989 */
ata_dev_classify(const struct ata_taskfile * tf)990 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
991 {
992 /* Apple's open source Darwin code hints that some devices only
993 * put a proper signature into the LBA mid/high registers,
994 * So, we only check those. It's sufficient for uniqueness.
995 *
996 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
997 * signatures for ATA and ATAPI devices attached on SerialATA,
998 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
999 * spec has never mentioned about using different signatures
1000 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1001 * Multiplier specification began to use 0x69/0x96 to identify
1002 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1003 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1004 * 0x69/0x96 shortly and described them as reserved for
1005 * SerialATA.
1006 *
1007 * We follow the current spec and consider that 0x69/0x96
1008 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1009 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1010 * SEMB signature. This is worked around in
1011 * ata_dev_read_id().
1012 */
1013 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1014 DPRINTK("found ATA device by sig\n");
1015 return ATA_DEV_ATA;
1016 }
1017
1018 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1019 DPRINTK("found ATAPI device by sig\n");
1020 return ATA_DEV_ATAPI;
1021 }
1022
1023 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1024 DPRINTK("found PMP device by sig\n");
1025 return ATA_DEV_PMP;
1026 }
1027
1028 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1029 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1030 return ATA_DEV_SEMB;
1031 }
1032
1033 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1034 DPRINTK("found ZAC device by sig\n");
1035 return ATA_DEV_ZAC;
1036 }
1037
1038 DPRINTK("unknown device\n");
1039 return ATA_DEV_UNKNOWN;
1040 }
1041 EXPORT_SYMBOL_GPL(ata_dev_classify);
1042
1043 /**
1044 * ata_id_string - Convert IDENTIFY DEVICE page into string
1045 * @id: IDENTIFY DEVICE results we will examine
1046 * @s: string into which data is output
1047 * @ofs: offset into identify device page
1048 * @len: length of string to return. must be an even number.
1049 *
1050 * The strings in the IDENTIFY DEVICE page are broken up into
1051 * 16-bit chunks. Run through the string, and output each
1052 * 8-bit chunk linearly, regardless of platform.
1053 *
1054 * LOCKING:
1055 * caller.
1056 */
1057
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1058 void ata_id_string(const u16 *id, unsigned char *s,
1059 unsigned int ofs, unsigned int len)
1060 {
1061 unsigned int c;
1062
1063 BUG_ON(len & 1);
1064
1065 while (len > 0) {
1066 c = id[ofs] >> 8;
1067 *s = c;
1068 s++;
1069
1070 c = id[ofs] & 0xff;
1071 *s = c;
1072 s++;
1073
1074 ofs++;
1075 len -= 2;
1076 }
1077 }
1078 EXPORT_SYMBOL_GPL(ata_id_string);
1079
1080 /**
1081 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1082 * @id: IDENTIFY DEVICE results we will examine
1083 * @s: string into which data is output
1084 * @ofs: offset into identify device page
1085 * @len: length of string to return. must be an odd number.
1086 *
1087 * This function is identical to ata_id_string except that it
1088 * trims trailing spaces and terminates the resulting string with
1089 * null. @len must be actual maximum length (even number) + 1.
1090 *
1091 * LOCKING:
1092 * caller.
1093 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1094 void ata_id_c_string(const u16 *id, unsigned char *s,
1095 unsigned int ofs, unsigned int len)
1096 {
1097 unsigned char *p;
1098
1099 ata_id_string(id, s, ofs, len - 1);
1100
1101 p = s + strnlen(s, len - 1);
1102 while (p > s && p[-1] == ' ')
1103 p--;
1104 *p = '\0';
1105 }
1106 EXPORT_SYMBOL_GPL(ata_id_c_string);
1107
ata_id_n_sectors(const u16 * id)1108 static u64 ata_id_n_sectors(const u16 *id)
1109 {
1110 if (ata_id_has_lba(id)) {
1111 if (ata_id_has_lba48(id))
1112 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1113 else
1114 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1115 } else {
1116 if (ata_id_current_chs_valid(id))
1117 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1118 id[ATA_ID_CUR_SECTORS];
1119 else
1120 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1121 id[ATA_ID_SECTORS];
1122 }
1123 }
1124
ata_tf_to_lba48(const struct ata_taskfile * tf)1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1126 {
1127 u64 sectors = 0;
1128
1129 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1130 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1131 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1132 sectors |= (tf->lbah & 0xff) << 16;
1133 sectors |= (tf->lbam & 0xff) << 8;
1134 sectors |= (tf->lbal & 0xff);
1135
1136 return sectors;
1137 }
1138
ata_tf_to_lba(const struct ata_taskfile * tf)1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1140 {
1141 u64 sectors = 0;
1142
1143 sectors |= (tf->device & 0x0f) << 24;
1144 sectors |= (tf->lbah & 0xff) << 16;
1145 sectors |= (tf->lbam & 0xff) << 8;
1146 sectors |= (tf->lbal & 0xff);
1147
1148 return sectors;
1149 }
1150
1151 /**
1152 * ata_read_native_max_address - Read native max address
1153 * @dev: target device
1154 * @max_sectors: out parameter for the result native max address
1155 *
1156 * Perform an LBA48 or LBA28 native size query upon the device in
1157 * question.
1158 *
1159 * RETURNS:
1160 * 0 on success, -EACCES if command is aborted by the drive.
1161 * -EIO on other errors.
1162 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1164 {
1165 unsigned int err_mask;
1166 struct ata_taskfile tf;
1167 int lba48 = ata_id_has_lba48(dev->id);
1168
1169 ata_tf_init(dev, &tf);
1170
1171 /* always clear all address registers */
1172 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1173
1174 if (lba48) {
1175 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1176 tf.flags |= ATA_TFLAG_LBA48;
1177 } else
1178 tf.command = ATA_CMD_READ_NATIVE_MAX;
1179
1180 tf.protocol = ATA_PROT_NODATA;
1181 tf.device |= ATA_LBA;
1182
1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184 if (err_mask) {
1185 ata_dev_warn(dev,
1186 "failed to read native max address (err_mask=0x%x)\n",
1187 err_mask);
1188 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1189 return -EACCES;
1190 return -EIO;
1191 }
1192
1193 if (lba48)
1194 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1195 else
1196 *max_sectors = ata_tf_to_lba(&tf) + 1;
1197 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1198 (*max_sectors)--;
1199 return 0;
1200 }
1201
1202 /**
1203 * ata_set_max_sectors - Set max sectors
1204 * @dev: target device
1205 * @new_sectors: new max sectors value to set for the device
1206 *
1207 * Set max sectors of @dev to @new_sectors.
1208 *
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted or denied (due to
1211 * previous non-volatile SET_MAX) by the drive. -EIO on other
1212 * errors.
1213 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1215 {
1216 unsigned int err_mask;
1217 struct ata_taskfile tf;
1218 int lba48 = ata_id_has_lba48(dev->id);
1219
1220 new_sectors--;
1221
1222 ata_tf_init(dev, &tf);
1223
1224 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1225
1226 if (lba48) {
1227 tf.command = ATA_CMD_SET_MAX_EXT;
1228 tf.flags |= ATA_TFLAG_LBA48;
1229
1230 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1231 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1232 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1233 } else {
1234 tf.command = ATA_CMD_SET_MAX;
1235
1236 tf.device |= (new_sectors >> 24) & 0xf;
1237 }
1238
1239 tf.protocol = ATA_PROT_NODATA;
1240 tf.device |= ATA_LBA;
1241
1242 tf.lbal = (new_sectors >> 0) & 0xff;
1243 tf.lbam = (new_sectors >> 8) & 0xff;
1244 tf.lbah = (new_sectors >> 16) & 0xff;
1245
1246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1247 if (err_mask) {
1248 ata_dev_warn(dev,
1249 "failed to set max address (err_mask=0x%x)\n",
1250 err_mask);
1251 if (err_mask == AC_ERR_DEV &&
1252 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1253 return -EACCES;
1254 return -EIO;
1255 }
1256
1257 return 0;
1258 }
1259
1260 /**
1261 * ata_hpa_resize - Resize a device with an HPA set
1262 * @dev: Device to resize
1263 *
1264 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1265 * it if required to the full size of the media. The caller must check
1266 * the drive has the HPA feature set enabled.
1267 *
1268 * RETURNS:
1269 * 0 on success, -errno on failure.
1270 */
ata_hpa_resize(struct ata_device * dev)1271 static int ata_hpa_resize(struct ata_device *dev)
1272 {
1273 bool print_info = ata_dev_print_info(dev);
1274 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1275 u64 sectors = ata_id_n_sectors(dev->id);
1276 u64 native_sectors;
1277 int rc;
1278
1279 /* do we need to do it? */
1280 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1281 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1282 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1283 return 0;
1284
1285 /* read native max address */
1286 rc = ata_read_native_max_address(dev, &native_sectors);
1287 if (rc) {
1288 /* If device aborted the command or HPA isn't going to
1289 * be unlocked, skip HPA resizing.
1290 */
1291 if (rc == -EACCES || !unlock_hpa) {
1292 ata_dev_warn(dev,
1293 "HPA support seems broken, skipping HPA handling\n");
1294 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1295
1296 /* we can continue if device aborted the command */
1297 if (rc == -EACCES)
1298 rc = 0;
1299 }
1300
1301 return rc;
1302 }
1303 dev->n_native_sectors = native_sectors;
1304
1305 /* nothing to do? */
1306 if (native_sectors <= sectors || !unlock_hpa) {
1307 if (!print_info || native_sectors == sectors)
1308 return 0;
1309
1310 if (native_sectors > sectors)
1311 ata_dev_info(dev,
1312 "HPA detected: current %llu, native %llu\n",
1313 (unsigned long long)sectors,
1314 (unsigned long long)native_sectors);
1315 else if (native_sectors < sectors)
1316 ata_dev_warn(dev,
1317 "native sectors (%llu) is smaller than sectors (%llu)\n",
1318 (unsigned long long)native_sectors,
1319 (unsigned long long)sectors);
1320 return 0;
1321 }
1322
1323 /* let's unlock HPA */
1324 rc = ata_set_max_sectors(dev, native_sectors);
1325 if (rc == -EACCES) {
1326 /* if device aborted the command, skip HPA resizing */
1327 ata_dev_warn(dev,
1328 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1329 (unsigned long long)sectors,
1330 (unsigned long long)native_sectors);
1331 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1332 return 0;
1333 } else if (rc)
1334 return rc;
1335
1336 /* re-read IDENTIFY data */
1337 rc = ata_dev_reread_id(dev, 0);
1338 if (rc) {
1339 ata_dev_err(dev,
1340 "failed to re-read IDENTIFY data after HPA resizing\n");
1341 return rc;
1342 }
1343
1344 if (print_info) {
1345 u64 new_sectors = ata_id_n_sectors(dev->id);
1346 ata_dev_info(dev,
1347 "HPA unlocked: %llu -> %llu, native %llu\n",
1348 (unsigned long long)sectors,
1349 (unsigned long long)new_sectors,
1350 (unsigned long long)native_sectors);
1351 }
1352
1353 return 0;
1354 }
1355
1356 /**
1357 * ata_dump_id - IDENTIFY DEVICE info debugging output
1358 * @id: IDENTIFY DEVICE page to dump
1359 *
1360 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1361 * page.
1362 *
1363 * LOCKING:
1364 * caller.
1365 */
1366
ata_dump_id(const u16 * id)1367 static inline void ata_dump_id(const u16 *id)
1368 {
1369 DPRINTK("49==0x%04x "
1370 "53==0x%04x "
1371 "63==0x%04x "
1372 "64==0x%04x "
1373 "75==0x%04x \n",
1374 id[49],
1375 id[53],
1376 id[63],
1377 id[64],
1378 id[75]);
1379 DPRINTK("80==0x%04x "
1380 "81==0x%04x "
1381 "82==0x%04x "
1382 "83==0x%04x "
1383 "84==0x%04x \n",
1384 id[80],
1385 id[81],
1386 id[82],
1387 id[83],
1388 id[84]);
1389 DPRINTK("88==0x%04x "
1390 "93==0x%04x\n",
1391 id[88],
1392 id[93]);
1393 }
1394
1395 /**
1396 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1397 * @id: IDENTIFY data to compute xfer mask from
1398 *
1399 * Compute the xfermask for this device. This is not as trivial
1400 * as it seems if we must consider early devices correctly.
1401 *
1402 * FIXME: pre IDE drive timing (do we care ?).
1403 *
1404 * LOCKING:
1405 * None.
1406 *
1407 * RETURNS:
1408 * Computed xfermask
1409 */
ata_id_xfermask(const u16 * id)1410 unsigned long ata_id_xfermask(const u16 *id)
1411 {
1412 unsigned long pio_mask, mwdma_mask, udma_mask;
1413
1414 /* Usual case. Word 53 indicates word 64 is valid */
1415 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1416 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1417 pio_mask <<= 3;
1418 pio_mask |= 0x7;
1419 } else {
1420 /* If word 64 isn't valid then Word 51 high byte holds
1421 * the PIO timing number for the maximum. Turn it into
1422 * a mask.
1423 */
1424 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1425 if (mode < 5) /* Valid PIO range */
1426 pio_mask = (2 << mode) - 1;
1427 else
1428 pio_mask = 1;
1429
1430 /* But wait.. there's more. Design your standards by
1431 * committee and you too can get a free iordy field to
1432 * process. However its the speeds not the modes that
1433 * are supported... Note drivers using the timing API
1434 * will get this right anyway
1435 */
1436 }
1437
1438 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1439
1440 if (ata_id_is_cfa(id)) {
1441 /*
1442 * Process compact flash extended modes
1443 */
1444 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1445 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1446
1447 if (pio)
1448 pio_mask |= (1 << 5);
1449 if (pio > 1)
1450 pio_mask |= (1 << 6);
1451 if (dma)
1452 mwdma_mask |= (1 << 3);
1453 if (dma > 1)
1454 mwdma_mask |= (1 << 4);
1455 }
1456
1457 udma_mask = 0;
1458 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1459 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1460
1461 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1462 }
1463 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1464
ata_qc_complete_internal(struct ata_queued_cmd * qc)1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1466 {
1467 struct completion *waiting = qc->private_data;
1468
1469 complete(waiting);
1470 }
1471
1472 /**
1473 * ata_exec_internal_sg - execute libata internal command
1474 * @dev: Device to which the command is sent
1475 * @tf: Taskfile registers for the command and the result
1476 * @cdb: CDB for packet command
1477 * @dma_dir: Data transfer direction of the command
1478 * @sgl: sg list for the data buffer of the command
1479 * @n_elem: Number of sg entries
1480 * @timeout: Timeout in msecs (0 for default)
1481 *
1482 * Executes libata internal command with timeout. @tf contains
1483 * command on entry and result on return. Timeout and error
1484 * conditions are reported via return value. No recovery action
1485 * is taken after a command times out. It's caller's duty to
1486 * clean up after timeout.
1487 *
1488 * LOCKING:
1489 * None. Should be called with kernel context, might sleep.
1490 *
1491 * RETURNS:
1492 * Zero on success, AC_ERR_* mask on failure
1493 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1494 unsigned ata_exec_internal_sg(struct ata_device *dev,
1495 struct ata_taskfile *tf, const u8 *cdb,
1496 int dma_dir, struct scatterlist *sgl,
1497 unsigned int n_elem, unsigned long timeout)
1498 {
1499 struct ata_link *link = dev->link;
1500 struct ata_port *ap = link->ap;
1501 u8 command = tf->command;
1502 int auto_timeout = 0;
1503 struct ata_queued_cmd *qc;
1504 unsigned int preempted_tag;
1505 u32 preempted_sactive;
1506 u64 preempted_qc_active;
1507 int preempted_nr_active_links;
1508 DECLARE_COMPLETION_ONSTACK(wait);
1509 unsigned long flags;
1510 unsigned int err_mask;
1511 int rc;
1512
1513 spin_lock_irqsave(ap->lock, flags);
1514
1515 /* no internal command while frozen */
1516 if (ap->pflags & ATA_PFLAG_FROZEN) {
1517 spin_unlock_irqrestore(ap->lock, flags);
1518 return AC_ERR_SYSTEM;
1519 }
1520
1521 /* initialize internal qc */
1522 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1523
1524 qc->tag = ATA_TAG_INTERNAL;
1525 qc->hw_tag = 0;
1526 qc->scsicmd = NULL;
1527 qc->ap = ap;
1528 qc->dev = dev;
1529 ata_qc_reinit(qc);
1530
1531 preempted_tag = link->active_tag;
1532 preempted_sactive = link->sactive;
1533 preempted_qc_active = ap->qc_active;
1534 preempted_nr_active_links = ap->nr_active_links;
1535 link->active_tag = ATA_TAG_POISON;
1536 link->sactive = 0;
1537 ap->qc_active = 0;
1538 ap->nr_active_links = 0;
1539
1540 /* prepare & issue qc */
1541 qc->tf = *tf;
1542 if (cdb)
1543 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1544
1545 /* some SATA bridges need us to indicate data xfer direction */
1546 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1547 dma_dir == DMA_FROM_DEVICE)
1548 qc->tf.feature |= ATAPI_DMADIR;
1549
1550 qc->flags |= ATA_QCFLAG_RESULT_TF;
1551 qc->dma_dir = dma_dir;
1552 if (dma_dir != DMA_NONE) {
1553 unsigned int i, buflen = 0;
1554 struct scatterlist *sg;
1555
1556 for_each_sg(sgl, sg, n_elem, i)
1557 buflen += sg->length;
1558
1559 ata_sg_init(qc, sgl, n_elem);
1560 qc->nbytes = buflen;
1561 }
1562
1563 qc->private_data = &wait;
1564 qc->complete_fn = ata_qc_complete_internal;
1565
1566 ata_qc_issue(qc);
1567
1568 spin_unlock_irqrestore(ap->lock, flags);
1569
1570 if (!timeout) {
1571 if (ata_probe_timeout)
1572 timeout = ata_probe_timeout * 1000;
1573 else {
1574 timeout = ata_internal_cmd_timeout(dev, command);
1575 auto_timeout = 1;
1576 }
1577 }
1578
1579 if (ap->ops->error_handler)
1580 ata_eh_release(ap);
1581
1582 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1583
1584 if (ap->ops->error_handler)
1585 ata_eh_acquire(ap);
1586
1587 ata_sff_flush_pio_task(ap);
1588
1589 if (!rc) {
1590 spin_lock_irqsave(ap->lock, flags);
1591
1592 /* We're racing with irq here. If we lose, the
1593 * following test prevents us from completing the qc
1594 * twice. If we win, the port is frozen and will be
1595 * cleaned up by ->post_internal_cmd().
1596 */
1597 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1598 qc->err_mask |= AC_ERR_TIMEOUT;
1599
1600 if (ap->ops->error_handler)
1601 ata_port_freeze(ap);
1602 else
1603 ata_qc_complete(qc);
1604
1605 if (ata_msg_warn(ap))
1606 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1607 command);
1608 }
1609
1610 spin_unlock_irqrestore(ap->lock, flags);
1611 }
1612
1613 /* do post_internal_cmd */
1614 if (ap->ops->post_internal_cmd)
1615 ap->ops->post_internal_cmd(qc);
1616
1617 /* perform minimal error analysis */
1618 if (qc->flags & ATA_QCFLAG_FAILED) {
1619 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1620 qc->err_mask |= AC_ERR_DEV;
1621
1622 if (!qc->err_mask)
1623 qc->err_mask |= AC_ERR_OTHER;
1624
1625 if (qc->err_mask & ~AC_ERR_OTHER)
1626 qc->err_mask &= ~AC_ERR_OTHER;
1627 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1628 qc->result_tf.command |= ATA_SENSE;
1629 }
1630
1631 /* finish up */
1632 spin_lock_irqsave(ap->lock, flags);
1633
1634 *tf = qc->result_tf;
1635 err_mask = qc->err_mask;
1636
1637 ata_qc_free(qc);
1638 link->active_tag = preempted_tag;
1639 link->sactive = preempted_sactive;
1640 ap->qc_active = preempted_qc_active;
1641 ap->nr_active_links = preempted_nr_active_links;
1642
1643 spin_unlock_irqrestore(ap->lock, flags);
1644
1645 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1646 ata_internal_cmd_timed_out(dev, command);
1647
1648 return err_mask;
1649 }
1650
1651 /**
1652 * ata_exec_internal - execute libata internal command
1653 * @dev: Device to which the command is sent
1654 * @tf: Taskfile registers for the command and the result
1655 * @cdb: CDB for packet command
1656 * @dma_dir: Data transfer direction of the command
1657 * @buf: Data buffer of the command
1658 * @buflen: Length of data buffer
1659 * @timeout: Timeout in msecs (0 for default)
1660 *
1661 * Wrapper around ata_exec_internal_sg() which takes simple
1662 * buffer instead of sg list.
1663 *
1664 * LOCKING:
1665 * None. Should be called with kernel context, might sleep.
1666 *
1667 * RETURNS:
1668 * Zero on success, AC_ERR_* mask on failure
1669 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1670 unsigned ata_exec_internal(struct ata_device *dev,
1671 struct ata_taskfile *tf, const u8 *cdb,
1672 int dma_dir, void *buf, unsigned int buflen,
1673 unsigned long timeout)
1674 {
1675 struct scatterlist *psg = NULL, sg;
1676 unsigned int n_elem = 0;
1677
1678 if (dma_dir != DMA_NONE) {
1679 WARN_ON(!buf);
1680 sg_init_one(&sg, buf, buflen);
1681 psg = &sg;
1682 n_elem++;
1683 }
1684
1685 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1686 timeout);
1687 }
1688
1689 /**
1690 * ata_pio_need_iordy - check if iordy needed
1691 * @adev: ATA device
1692 *
1693 * Check if the current speed of the device requires IORDY. Used
1694 * by various controllers for chip configuration.
1695 */
ata_pio_need_iordy(const struct ata_device * adev)1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1697 {
1698 /* Don't set IORDY if we're preparing for reset. IORDY may
1699 * lead to controller lock up on certain controllers if the
1700 * port is not occupied. See bko#11703 for details.
1701 */
1702 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1703 return 0;
1704 /* Controller doesn't support IORDY. Probably a pointless
1705 * check as the caller should know this.
1706 */
1707 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1708 return 0;
1709 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1710 if (ata_id_is_cfa(adev->id)
1711 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1712 return 0;
1713 /* PIO3 and higher it is mandatory */
1714 if (adev->pio_mode > XFER_PIO_2)
1715 return 1;
1716 /* We turn it on when possible */
1717 if (ata_id_has_iordy(adev->id))
1718 return 1;
1719 return 0;
1720 }
1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1722
1723 /**
1724 * ata_pio_mask_no_iordy - Return the non IORDY mask
1725 * @adev: ATA device
1726 *
1727 * Compute the highest mode possible if we are not using iordy. Return
1728 * -1 if no iordy mode is available.
1729 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1731 {
1732 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1733 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1734 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1735 /* Is the speed faster than the drive allows non IORDY ? */
1736 if (pio) {
1737 /* This is cycle times not frequency - watch the logic! */
1738 if (pio > 240) /* PIO2 is 240nS per cycle */
1739 return 3 << ATA_SHIFT_PIO;
1740 return 7 << ATA_SHIFT_PIO;
1741 }
1742 }
1743 return 3 << ATA_SHIFT_PIO;
1744 }
1745
1746 /**
1747 * ata_do_dev_read_id - default ID read method
1748 * @dev: device
1749 * @tf: proposed taskfile
1750 * @id: data buffer
1751 *
1752 * Issue the identify taskfile and hand back the buffer containing
1753 * identify data. For some RAID controllers and for pre ATA devices
1754 * this function is wrapped or replaced by the driver
1755 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1756 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1757 struct ata_taskfile *tf, u16 *id)
1758 {
1759 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1760 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1761 }
1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1763
1764 /**
1765 * ata_dev_read_id - Read ID data from the specified device
1766 * @dev: target device
1767 * @p_class: pointer to class of the target device (may be changed)
1768 * @flags: ATA_READID_* flags
1769 * @id: buffer to read IDENTIFY data into
1770 *
1771 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1772 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1773 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1774 * for pre-ATA4 drives.
1775 *
1776 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1777 * now we abort if we hit that case.
1778 *
1779 * LOCKING:
1780 * Kernel thread context (may sleep)
1781 *
1782 * RETURNS:
1783 * 0 on success, -errno otherwise.
1784 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1786 unsigned int flags, u16 *id)
1787 {
1788 struct ata_port *ap = dev->link->ap;
1789 unsigned int class = *p_class;
1790 struct ata_taskfile tf;
1791 unsigned int err_mask = 0;
1792 const char *reason;
1793 bool is_semb = class == ATA_DEV_SEMB;
1794 int may_fallback = 1, tried_spinup = 0;
1795 int rc;
1796
1797 if (ata_msg_ctl(ap))
1798 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1799
1800 retry:
1801 ata_tf_init(dev, &tf);
1802
1803 switch (class) {
1804 case ATA_DEV_SEMB:
1805 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1806 fallthrough;
1807 case ATA_DEV_ATA:
1808 case ATA_DEV_ZAC:
1809 tf.command = ATA_CMD_ID_ATA;
1810 break;
1811 case ATA_DEV_ATAPI:
1812 tf.command = ATA_CMD_ID_ATAPI;
1813 break;
1814 default:
1815 rc = -ENODEV;
1816 reason = "unsupported class";
1817 goto err_out;
1818 }
1819
1820 tf.protocol = ATA_PROT_PIO;
1821
1822 /* Some devices choke if TF registers contain garbage. Make
1823 * sure those are properly initialized.
1824 */
1825 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1826
1827 /* Device presence detection is unreliable on some
1828 * controllers. Always poll IDENTIFY if available.
1829 */
1830 tf.flags |= ATA_TFLAG_POLLING;
1831
1832 if (ap->ops->read_id)
1833 err_mask = ap->ops->read_id(dev, &tf, id);
1834 else
1835 err_mask = ata_do_dev_read_id(dev, &tf, id);
1836
1837 if (err_mask) {
1838 if (err_mask & AC_ERR_NODEV_HINT) {
1839 ata_dev_dbg(dev, "NODEV after polling detection\n");
1840 return -ENOENT;
1841 }
1842
1843 if (is_semb) {
1844 ata_dev_info(dev,
1845 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1846 /* SEMB is not supported yet */
1847 *p_class = ATA_DEV_SEMB_UNSUP;
1848 return 0;
1849 }
1850
1851 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1852 /* Device or controller might have reported
1853 * the wrong device class. Give a shot at the
1854 * other IDENTIFY if the current one is
1855 * aborted by the device.
1856 */
1857 if (may_fallback) {
1858 may_fallback = 0;
1859
1860 if (class == ATA_DEV_ATA)
1861 class = ATA_DEV_ATAPI;
1862 else
1863 class = ATA_DEV_ATA;
1864 goto retry;
1865 }
1866
1867 /* Control reaches here iff the device aborted
1868 * both flavors of IDENTIFYs which happens
1869 * sometimes with phantom devices.
1870 */
1871 ata_dev_dbg(dev,
1872 "both IDENTIFYs aborted, assuming NODEV\n");
1873 return -ENOENT;
1874 }
1875
1876 rc = -EIO;
1877 reason = "I/O error";
1878 goto err_out;
1879 }
1880
1881 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1882 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1883 "class=%d may_fallback=%d tried_spinup=%d\n",
1884 class, may_fallback, tried_spinup);
1885 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1886 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1887 }
1888
1889 /* Falling back doesn't make sense if ID data was read
1890 * successfully at least once.
1891 */
1892 may_fallback = 0;
1893
1894 swap_buf_le16(id, ATA_ID_WORDS);
1895
1896 /* sanity check */
1897 rc = -EINVAL;
1898 reason = "device reports invalid type";
1899
1900 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1901 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1902 goto err_out;
1903 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1904 ata_id_is_ata(id)) {
1905 ata_dev_dbg(dev,
1906 "host indicates ignore ATA devices, ignored\n");
1907 return -ENOENT;
1908 }
1909 } else {
1910 if (ata_id_is_ata(id))
1911 goto err_out;
1912 }
1913
1914 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1915 tried_spinup = 1;
1916 /*
1917 * Drive powered-up in standby mode, and requires a specific
1918 * SET_FEATURES spin-up subcommand before it will accept
1919 * anything other than the original IDENTIFY command.
1920 */
1921 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1922 if (err_mask && id[2] != 0x738c) {
1923 rc = -EIO;
1924 reason = "SPINUP failed";
1925 goto err_out;
1926 }
1927 /*
1928 * If the drive initially returned incomplete IDENTIFY info,
1929 * we now must reissue the IDENTIFY command.
1930 */
1931 if (id[2] == 0x37c8)
1932 goto retry;
1933 }
1934
1935 if ((flags & ATA_READID_POSTRESET) &&
1936 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1937 /*
1938 * The exact sequence expected by certain pre-ATA4 drives is:
1939 * SRST RESET
1940 * IDENTIFY (optional in early ATA)
1941 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1942 * anything else..
1943 * Some drives were very specific about that exact sequence.
1944 *
1945 * Note that ATA4 says lba is mandatory so the second check
1946 * should never trigger.
1947 */
1948 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1949 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1950 if (err_mask) {
1951 rc = -EIO;
1952 reason = "INIT_DEV_PARAMS failed";
1953 goto err_out;
1954 }
1955
1956 /* current CHS translation info (id[53-58]) might be
1957 * changed. reread the identify device info.
1958 */
1959 flags &= ~ATA_READID_POSTRESET;
1960 goto retry;
1961 }
1962 }
1963
1964 *p_class = class;
1965
1966 return 0;
1967
1968 err_out:
1969 if (ata_msg_warn(ap))
1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 reason, err_mask);
1972 return rc;
1973 }
1974
1975 /**
1976 * ata_read_log_page - read a specific log page
1977 * @dev: target device
1978 * @log: log to read
1979 * @page: page to read
1980 * @buf: buffer to store read page
1981 * @sectors: number of sectors to read
1982 *
1983 * Read log page using READ_LOG_EXT command.
1984 *
1985 * LOCKING:
1986 * Kernel thread context (may sleep).
1987 *
1988 * RETURNS:
1989 * 0 on success, AC_ERR_* mask otherwise.
1990 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992 u8 page, void *buf, unsigned int sectors)
1993 {
1994 unsigned long ap_flags = dev->link->ap->flags;
1995 struct ata_taskfile tf;
1996 unsigned int err_mask;
1997 bool dma = false;
1998
1999 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2000
2001 /*
2002 * Return error without actually issuing the command on controllers
2003 * which e.g. lockup on a read log page.
2004 */
2005 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006 return AC_ERR_DEV;
2007
2008 retry:
2009 ata_tf_init(dev, &tf);
2010 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2011 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013 tf.protocol = ATA_PROT_DMA;
2014 dma = true;
2015 } else {
2016 tf.command = ATA_CMD_READ_LOG_EXT;
2017 tf.protocol = ATA_PROT_PIO;
2018 dma = false;
2019 }
2020 tf.lbal = log;
2021 tf.lbam = page;
2022 tf.nsect = sectors;
2023 tf.hob_nsect = sectors >> 8;
2024 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025
2026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027 buf, sectors * ATA_SECT_SIZE, 0);
2028
2029 if (err_mask) {
2030 if (dma) {
2031 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032 goto retry;
2033 }
2034 ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n",
2035 (unsigned int)page, err_mask);
2036 }
2037
2038 return err_mask;
2039 }
2040
ata_log_supported(struct ata_device * dev,u8 log)2041 static bool ata_log_supported(struct ata_device *dev, u8 log)
2042 {
2043 struct ata_port *ap = dev->link->ap;
2044
2045 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2046 return false;
2047 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2048 }
2049
ata_identify_page_supported(struct ata_device * dev,u8 page)2050 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2051 {
2052 struct ata_port *ap = dev->link->ap;
2053 unsigned int err, i;
2054
2055 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2056 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2057 return false;
2058 }
2059
2060 /*
2061 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2062 * supported.
2063 */
2064 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2065 1);
2066 if (err)
2067 return false;
2068
2069 for (i = 0; i < ap->sector_buf[8]; i++) {
2070 if (ap->sector_buf[9 + i] == page)
2071 return true;
2072 }
2073
2074 return false;
2075 }
2076
ata_do_link_spd_horkage(struct ata_device * dev)2077 static int ata_do_link_spd_horkage(struct ata_device *dev)
2078 {
2079 struct ata_link *plink = ata_dev_phys_link(dev);
2080 u32 target, target_limit;
2081
2082 if (!sata_scr_valid(plink))
2083 return 0;
2084
2085 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2086 target = 1;
2087 else
2088 return 0;
2089
2090 target_limit = (1 << target) - 1;
2091
2092 /* if already on stricter limit, no need to push further */
2093 if (plink->sata_spd_limit <= target_limit)
2094 return 0;
2095
2096 plink->sata_spd_limit = target_limit;
2097
2098 /* Request another EH round by returning -EAGAIN if link is
2099 * going faster than the target speed. Forward progress is
2100 * guaranteed by setting sata_spd_limit to target_limit above.
2101 */
2102 if (plink->sata_spd > target) {
2103 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2104 sata_spd_string(target));
2105 return -EAGAIN;
2106 }
2107 return 0;
2108 }
2109
ata_dev_knobble(struct ata_device * dev)2110 static inline u8 ata_dev_knobble(struct ata_device *dev)
2111 {
2112 struct ata_port *ap = dev->link->ap;
2113
2114 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2115 return 0;
2116
2117 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2118 }
2119
ata_dev_config_ncq_send_recv(struct ata_device * dev)2120 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2121 {
2122 struct ata_port *ap = dev->link->ap;
2123 unsigned int err_mask;
2124
2125 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2126 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2127 return;
2128 }
2129 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2130 0, ap->sector_buf, 1);
2131 if (!err_mask) {
2132 u8 *cmds = dev->ncq_send_recv_cmds;
2133
2134 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2135 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2136
2137 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2138 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2139 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2140 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2141 }
2142 }
2143 }
2144
ata_dev_config_ncq_non_data(struct ata_device * dev)2145 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2146 {
2147 struct ata_port *ap = dev->link->ap;
2148 unsigned int err_mask;
2149
2150 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2151 ata_dev_warn(dev,
2152 "NCQ Send/Recv Log not supported\n");
2153 return;
2154 }
2155 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2156 0, ap->sector_buf, 1);
2157 if (!err_mask) {
2158 u8 *cmds = dev->ncq_non_data_cmds;
2159
2160 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2161 }
2162 }
2163
ata_dev_config_ncq_prio(struct ata_device * dev)2164 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2165 {
2166 struct ata_port *ap = dev->link->ap;
2167 unsigned int err_mask;
2168
2169 err_mask = ata_read_log_page(dev,
2170 ATA_LOG_IDENTIFY_DEVICE,
2171 ATA_LOG_SATA_SETTINGS,
2172 ap->sector_buf,
2173 1);
2174 if (err_mask)
2175 goto not_supported;
2176
2177 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2178 goto not_supported;
2179
2180 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2181
2182 return;
2183
2184 not_supported:
2185 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2186 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2187 }
2188
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2189 static bool ata_dev_check_adapter(struct ata_device *dev,
2190 unsigned short vendor_id)
2191 {
2192 struct pci_dev *pcidev = NULL;
2193 struct device *parent_dev = NULL;
2194
2195 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2196 parent_dev = parent_dev->parent) {
2197 if (dev_is_pci(parent_dev)) {
2198 pcidev = to_pci_dev(parent_dev);
2199 if (pcidev->vendor == vendor_id)
2200 return true;
2201 break;
2202 }
2203 }
2204
2205 return false;
2206 }
2207
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2208 static int ata_dev_config_ncq(struct ata_device *dev,
2209 char *desc, size_t desc_sz)
2210 {
2211 struct ata_port *ap = dev->link->ap;
2212 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2213 unsigned int err_mask;
2214 char *aa_desc = "";
2215
2216 if (!ata_id_has_ncq(dev->id)) {
2217 desc[0] = '\0';
2218 return 0;
2219 }
2220 if (!IS_ENABLED(CONFIG_SATA_HOST))
2221 return 0;
2222 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2223 snprintf(desc, desc_sz, "NCQ (not used)");
2224 return 0;
2225 }
2226
2227 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2228 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2229 snprintf(desc, desc_sz, "NCQ (not used)");
2230 return 0;
2231 }
2232
2233 if (ap->flags & ATA_FLAG_NCQ) {
2234 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2235 dev->flags |= ATA_DFLAG_NCQ;
2236 }
2237
2238 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2239 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2240 ata_id_has_fpdma_aa(dev->id)) {
2241 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2242 SATA_FPDMA_AA);
2243 if (err_mask) {
2244 ata_dev_err(dev,
2245 "failed to enable AA (error_mask=0x%x)\n",
2246 err_mask);
2247 if (err_mask != AC_ERR_DEV) {
2248 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2249 return -EIO;
2250 }
2251 } else
2252 aa_desc = ", AA";
2253 }
2254
2255 if (hdepth >= ddepth)
2256 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2257 else
2258 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2259 ddepth, aa_desc);
2260
2261 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2262 if (ata_id_has_ncq_send_and_recv(dev->id))
2263 ata_dev_config_ncq_send_recv(dev);
2264 if (ata_id_has_ncq_non_data(dev->id))
2265 ata_dev_config_ncq_non_data(dev);
2266 if (ata_id_has_ncq_prio(dev->id))
2267 ata_dev_config_ncq_prio(dev);
2268 }
2269
2270 return 0;
2271 }
2272
ata_dev_config_sense_reporting(struct ata_device * dev)2273 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2274 {
2275 unsigned int err_mask;
2276
2277 if (!ata_id_has_sense_reporting(dev->id))
2278 return;
2279
2280 if (ata_id_sense_reporting_enabled(dev->id))
2281 return;
2282
2283 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2284 if (err_mask) {
2285 ata_dev_dbg(dev,
2286 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2287 err_mask);
2288 }
2289 }
2290
ata_dev_config_zac(struct ata_device * dev)2291 static void ata_dev_config_zac(struct ata_device *dev)
2292 {
2293 struct ata_port *ap = dev->link->ap;
2294 unsigned int err_mask;
2295 u8 *identify_buf = ap->sector_buf;
2296
2297 dev->zac_zones_optimal_open = U32_MAX;
2298 dev->zac_zones_optimal_nonseq = U32_MAX;
2299 dev->zac_zones_max_open = U32_MAX;
2300
2301 /*
2302 * Always set the 'ZAC' flag for Host-managed devices.
2303 */
2304 if (dev->class == ATA_DEV_ZAC)
2305 dev->flags |= ATA_DFLAG_ZAC;
2306 else if (ata_id_zoned_cap(dev->id) == 0x01)
2307 /*
2308 * Check for host-aware devices.
2309 */
2310 dev->flags |= ATA_DFLAG_ZAC;
2311
2312 if (!(dev->flags & ATA_DFLAG_ZAC))
2313 return;
2314
2315 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2316 ata_dev_warn(dev,
2317 "ATA Zoned Information Log not supported\n");
2318 return;
2319 }
2320
2321 /*
2322 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2323 */
2324 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2325 ATA_LOG_ZONED_INFORMATION,
2326 identify_buf, 1);
2327 if (!err_mask) {
2328 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2329
2330 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2331 if ((zoned_cap >> 63))
2332 dev->zac_zoned_cap = (zoned_cap & 1);
2333 opt_open = get_unaligned_le64(&identify_buf[24]);
2334 if ((opt_open >> 63))
2335 dev->zac_zones_optimal_open = (u32)opt_open;
2336 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2337 if ((opt_nonseq >> 63))
2338 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2339 max_open = get_unaligned_le64(&identify_buf[40]);
2340 if ((max_open >> 63))
2341 dev->zac_zones_max_open = (u32)max_open;
2342 }
2343 }
2344
ata_dev_config_trusted(struct ata_device * dev)2345 static void ata_dev_config_trusted(struct ata_device *dev)
2346 {
2347 struct ata_port *ap = dev->link->ap;
2348 u64 trusted_cap;
2349 unsigned int err;
2350
2351 if (!ata_id_has_trusted(dev->id))
2352 return;
2353
2354 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2355 ata_dev_warn(dev,
2356 "Security Log not supported\n");
2357 return;
2358 }
2359
2360 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2361 ap->sector_buf, 1);
2362 if (err)
2363 return;
2364
2365 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2366 if (!(trusted_cap & (1ULL << 63))) {
2367 ata_dev_dbg(dev,
2368 "Trusted Computing capability qword not valid!\n");
2369 return;
2370 }
2371
2372 if (trusted_cap & (1 << 0))
2373 dev->flags |= ATA_DFLAG_TRUSTED;
2374 }
2375
ata_dev_config_lba(struct ata_device * dev)2376 static int ata_dev_config_lba(struct ata_device *dev)
2377 {
2378 struct ata_port *ap = dev->link->ap;
2379 const u16 *id = dev->id;
2380 const char *lba_desc;
2381 char ncq_desc[24];
2382 int ret;
2383
2384 dev->flags |= ATA_DFLAG_LBA;
2385
2386 if (ata_id_has_lba48(id)) {
2387 lba_desc = "LBA48";
2388 dev->flags |= ATA_DFLAG_LBA48;
2389 if (dev->n_sectors >= (1UL << 28) &&
2390 ata_id_has_flush_ext(id))
2391 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2392 } else {
2393 lba_desc = "LBA";
2394 }
2395
2396 /* config NCQ */
2397 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2398
2399 /* print device info to dmesg */
2400 if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2401 ata_dev_info(dev,
2402 "%llu sectors, multi %u: %s %s\n",
2403 (unsigned long long)dev->n_sectors,
2404 dev->multi_count, lba_desc, ncq_desc);
2405
2406 return ret;
2407 }
2408
ata_dev_config_chs(struct ata_device * dev)2409 static void ata_dev_config_chs(struct ata_device *dev)
2410 {
2411 struct ata_port *ap = dev->link->ap;
2412 const u16 *id = dev->id;
2413
2414 if (ata_id_current_chs_valid(id)) {
2415 /* Current CHS translation is valid. */
2416 dev->cylinders = id[54];
2417 dev->heads = id[55];
2418 dev->sectors = id[56];
2419 } else {
2420 /* Default translation */
2421 dev->cylinders = id[1];
2422 dev->heads = id[3];
2423 dev->sectors = id[6];
2424 }
2425
2426 /* print device info to dmesg */
2427 if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2428 ata_dev_info(dev,
2429 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2430 (unsigned long long)dev->n_sectors,
2431 dev->multi_count, dev->cylinders,
2432 dev->heads, dev->sectors);
2433 }
2434
ata_dev_config_devslp(struct ata_device * dev)2435 static void ata_dev_config_devslp(struct ata_device *dev)
2436 {
2437 u8 *sata_setting = dev->link->ap->sector_buf;
2438 unsigned int err_mask;
2439 int i, j;
2440
2441 /*
2442 * Check device sleep capability. Get DevSlp timing variables
2443 * from SATA Settings page of Identify Device Data Log.
2444 */
2445 if (!ata_id_has_devslp(dev->id))
2446 return;
2447
2448 err_mask = ata_read_log_page(dev,
2449 ATA_LOG_IDENTIFY_DEVICE,
2450 ATA_LOG_SATA_SETTINGS,
2451 sata_setting, 1);
2452 if (err_mask)
2453 return;
2454
2455 dev->flags |= ATA_DFLAG_DEVSLP;
2456 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2457 j = ATA_LOG_DEVSLP_OFFSET + i;
2458 dev->devslp_timing[i] = sata_setting[j];
2459 }
2460 }
2461
ata_dev_print_features(struct ata_device * dev)2462 static void ata_dev_print_features(struct ata_device *dev)
2463 {
2464 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2465 return;
2466
2467 ata_dev_info(dev,
2468 "Features:%s%s%s%s%s\n",
2469 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2470 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2471 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2472 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2473 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "");
2474 }
2475
2476 /**
2477 * ata_dev_configure - Configure the specified ATA/ATAPI device
2478 * @dev: Target device to configure
2479 *
2480 * Configure @dev according to @dev->id. Generic and low-level
2481 * driver specific fixups are also applied.
2482 *
2483 * LOCKING:
2484 * Kernel thread context (may sleep)
2485 *
2486 * RETURNS:
2487 * 0 on success, -errno otherwise
2488 */
ata_dev_configure(struct ata_device * dev)2489 int ata_dev_configure(struct ata_device *dev)
2490 {
2491 struct ata_port *ap = dev->link->ap;
2492 bool print_info = ata_dev_print_info(dev);
2493 const u16 *id = dev->id;
2494 unsigned long xfer_mask;
2495 unsigned int err_mask;
2496 char revbuf[7]; /* XYZ-99\0 */
2497 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2498 char modelbuf[ATA_ID_PROD_LEN+1];
2499 int rc;
2500
2501 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2502 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2503 return 0;
2504 }
2505
2506 if (ata_msg_probe(ap))
2507 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2508
2509 /* set horkage */
2510 dev->horkage |= ata_dev_blacklisted(dev);
2511 ata_force_horkage(dev);
2512
2513 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2514 ata_dev_info(dev, "unsupported device, disabling\n");
2515 ata_dev_disable(dev);
2516 return 0;
2517 }
2518
2519 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2520 dev->class == ATA_DEV_ATAPI) {
2521 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2522 atapi_enabled ? "not supported with this driver"
2523 : "disabled");
2524 ata_dev_disable(dev);
2525 return 0;
2526 }
2527
2528 rc = ata_do_link_spd_horkage(dev);
2529 if (rc)
2530 return rc;
2531
2532 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2533 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2534 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2535 dev->horkage |= ATA_HORKAGE_NOLPM;
2536
2537 if (ap->flags & ATA_FLAG_NO_LPM)
2538 dev->horkage |= ATA_HORKAGE_NOLPM;
2539
2540 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2541 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2542 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2543 }
2544
2545 /* let ACPI work its magic */
2546 rc = ata_acpi_on_devcfg(dev);
2547 if (rc)
2548 return rc;
2549
2550 /* massage HPA, do it early as it might change IDENTIFY data */
2551 rc = ata_hpa_resize(dev);
2552 if (rc)
2553 return rc;
2554
2555 /* print device capabilities */
2556 if (ata_msg_probe(ap))
2557 ata_dev_dbg(dev,
2558 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2559 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2560 __func__,
2561 id[49], id[82], id[83], id[84],
2562 id[85], id[86], id[87], id[88]);
2563
2564 /* initialize to-be-configured parameters */
2565 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2566 dev->max_sectors = 0;
2567 dev->cdb_len = 0;
2568 dev->n_sectors = 0;
2569 dev->cylinders = 0;
2570 dev->heads = 0;
2571 dev->sectors = 0;
2572 dev->multi_count = 0;
2573
2574 /*
2575 * common ATA, ATAPI feature tests
2576 */
2577
2578 /* find max transfer mode; for printk only */
2579 xfer_mask = ata_id_xfermask(id);
2580
2581 if (ata_msg_probe(ap))
2582 ata_dump_id(id);
2583
2584 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2585 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2586 sizeof(fwrevbuf));
2587
2588 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2589 sizeof(modelbuf));
2590
2591 /* ATA-specific feature tests */
2592 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2593 if (ata_id_is_cfa(id)) {
2594 /* CPRM may make this media unusable */
2595 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2596 ata_dev_warn(dev,
2597 "supports DRM functions and may not be fully accessible\n");
2598 snprintf(revbuf, 7, "CFA");
2599 } else {
2600 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2601 /* Warn the user if the device has TPM extensions */
2602 if (ata_id_has_tpm(id))
2603 ata_dev_warn(dev,
2604 "supports DRM functions and may not be fully accessible\n");
2605 }
2606
2607 dev->n_sectors = ata_id_n_sectors(id);
2608
2609 /* get current R/W Multiple count setting */
2610 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2611 unsigned int max = dev->id[47] & 0xff;
2612 unsigned int cnt = dev->id[59] & 0xff;
2613 /* only recognize/allow powers of two here */
2614 if (is_power_of_2(max) && is_power_of_2(cnt))
2615 if (cnt <= max)
2616 dev->multi_count = cnt;
2617 }
2618
2619 /* print device info to dmesg */
2620 if (ata_msg_drv(ap) && print_info)
2621 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2622 revbuf, modelbuf, fwrevbuf,
2623 ata_mode_string(xfer_mask));
2624
2625 if (ata_id_has_lba(id)) {
2626 rc = ata_dev_config_lba(dev);
2627 if (rc)
2628 return rc;
2629 } else {
2630 ata_dev_config_chs(dev);
2631 }
2632
2633 ata_dev_config_devslp(dev);
2634 ata_dev_config_sense_reporting(dev);
2635 ata_dev_config_zac(dev);
2636 ata_dev_config_trusted(dev);
2637 dev->cdb_len = 32;
2638
2639 if (ata_msg_drv(ap) && print_info)
2640 ata_dev_print_features(dev);
2641 }
2642
2643 /* ATAPI-specific feature tests */
2644 else if (dev->class == ATA_DEV_ATAPI) {
2645 const char *cdb_intr_string = "";
2646 const char *atapi_an_string = "";
2647 const char *dma_dir_string = "";
2648 u32 sntf;
2649
2650 rc = atapi_cdb_len(id);
2651 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2652 if (ata_msg_warn(ap))
2653 ata_dev_warn(dev, "unsupported CDB len\n");
2654 rc = -EINVAL;
2655 goto err_out_nosup;
2656 }
2657 dev->cdb_len = (unsigned int) rc;
2658
2659 /* Enable ATAPI AN if both the host and device have
2660 * the support. If PMP is attached, SNTF is required
2661 * to enable ATAPI AN to discern between PHY status
2662 * changed notifications and ATAPI ANs.
2663 */
2664 if (atapi_an &&
2665 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2666 (!sata_pmp_attached(ap) ||
2667 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2668 /* issue SET feature command to turn this on */
2669 err_mask = ata_dev_set_feature(dev,
2670 SETFEATURES_SATA_ENABLE, SATA_AN);
2671 if (err_mask)
2672 ata_dev_err(dev,
2673 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2674 err_mask);
2675 else {
2676 dev->flags |= ATA_DFLAG_AN;
2677 atapi_an_string = ", ATAPI AN";
2678 }
2679 }
2680
2681 if (ata_id_cdb_intr(dev->id)) {
2682 dev->flags |= ATA_DFLAG_CDB_INTR;
2683 cdb_intr_string = ", CDB intr";
2684 }
2685
2686 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2687 dev->flags |= ATA_DFLAG_DMADIR;
2688 dma_dir_string = ", DMADIR";
2689 }
2690
2691 if (ata_id_has_da(dev->id)) {
2692 dev->flags |= ATA_DFLAG_DA;
2693 zpodd_init(dev);
2694 }
2695
2696 /* print device info to dmesg */
2697 if (ata_msg_drv(ap) && print_info)
2698 ata_dev_info(dev,
2699 "ATAPI: %s, %s, max %s%s%s%s\n",
2700 modelbuf, fwrevbuf,
2701 ata_mode_string(xfer_mask),
2702 cdb_intr_string, atapi_an_string,
2703 dma_dir_string);
2704 }
2705
2706 /* determine max_sectors */
2707 dev->max_sectors = ATA_MAX_SECTORS;
2708 if (dev->flags & ATA_DFLAG_LBA48)
2709 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2710
2711 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2712 200 sectors */
2713 if (ata_dev_knobble(dev)) {
2714 if (ata_msg_drv(ap) && print_info)
2715 ata_dev_info(dev, "applying bridge limits\n");
2716 dev->udma_mask &= ATA_UDMA5;
2717 dev->max_sectors = ATA_MAX_SECTORS;
2718 }
2719
2720 if ((dev->class == ATA_DEV_ATAPI) &&
2721 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2722 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2723 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2724 }
2725
2726 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2727 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2728 dev->max_sectors);
2729
2730 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2731 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2732 dev->max_sectors);
2733
2734 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2735 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2736
2737 if (ap->ops->dev_config)
2738 ap->ops->dev_config(dev);
2739
2740 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2741 /* Let the user know. We don't want to disallow opens for
2742 rescue purposes, or in case the vendor is just a blithering
2743 idiot. Do this after the dev_config call as some controllers
2744 with buggy firmware may want to avoid reporting false device
2745 bugs */
2746
2747 if (print_info) {
2748 ata_dev_warn(dev,
2749 "Drive reports diagnostics failure. This may indicate a drive\n");
2750 ata_dev_warn(dev,
2751 "fault or invalid emulation. Contact drive vendor for information.\n");
2752 }
2753 }
2754
2755 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2756 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2757 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2758 }
2759
2760 return 0;
2761
2762 err_out_nosup:
2763 if (ata_msg_probe(ap))
2764 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2765 return rc;
2766 }
2767
2768 /**
2769 * ata_cable_40wire - return 40 wire cable type
2770 * @ap: port
2771 *
2772 * Helper method for drivers which want to hardwire 40 wire cable
2773 * detection.
2774 */
2775
ata_cable_40wire(struct ata_port * ap)2776 int ata_cable_40wire(struct ata_port *ap)
2777 {
2778 return ATA_CBL_PATA40;
2779 }
2780 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2781
2782 /**
2783 * ata_cable_80wire - return 80 wire cable type
2784 * @ap: port
2785 *
2786 * Helper method for drivers which want to hardwire 80 wire cable
2787 * detection.
2788 */
2789
ata_cable_80wire(struct ata_port * ap)2790 int ata_cable_80wire(struct ata_port *ap)
2791 {
2792 return ATA_CBL_PATA80;
2793 }
2794 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2795
2796 /**
2797 * ata_cable_unknown - return unknown PATA cable.
2798 * @ap: port
2799 *
2800 * Helper method for drivers which have no PATA cable detection.
2801 */
2802
ata_cable_unknown(struct ata_port * ap)2803 int ata_cable_unknown(struct ata_port *ap)
2804 {
2805 return ATA_CBL_PATA_UNK;
2806 }
2807 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2808
2809 /**
2810 * ata_cable_ignore - return ignored PATA cable.
2811 * @ap: port
2812 *
2813 * Helper method for drivers which don't use cable type to limit
2814 * transfer mode.
2815 */
ata_cable_ignore(struct ata_port * ap)2816 int ata_cable_ignore(struct ata_port *ap)
2817 {
2818 return ATA_CBL_PATA_IGN;
2819 }
2820 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2821
2822 /**
2823 * ata_cable_sata - return SATA cable type
2824 * @ap: port
2825 *
2826 * Helper method for drivers which have SATA cables
2827 */
2828
ata_cable_sata(struct ata_port * ap)2829 int ata_cable_sata(struct ata_port *ap)
2830 {
2831 return ATA_CBL_SATA;
2832 }
2833 EXPORT_SYMBOL_GPL(ata_cable_sata);
2834
2835 /**
2836 * ata_bus_probe - Reset and probe ATA bus
2837 * @ap: Bus to probe
2838 *
2839 * Master ATA bus probing function. Initiates a hardware-dependent
2840 * bus reset, then attempts to identify any devices found on
2841 * the bus.
2842 *
2843 * LOCKING:
2844 * PCI/etc. bus probe sem.
2845 *
2846 * RETURNS:
2847 * Zero on success, negative errno otherwise.
2848 */
2849
ata_bus_probe(struct ata_port * ap)2850 int ata_bus_probe(struct ata_port *ap)
2851 {
2852 unsigned int classes[ATA_MAX_DEVICES];
2853 int tries[ATA_MAX_DEVICES];
2854 int rc;
2855 struct ata_device *dev;
2856
2857 ata_for_each_dev(dev, &ap->link, ALL)
2858 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2859
2860 retry:
2861 ata_for_each_dev(dev, &ap->link, ALL) {
2862 /* If we issue an SRST then an ATA drive (not ATAPI)
2863 * may change configuration and be in PIO0 timing. If
2864 * we do a hard reset (or are coming from power on)
2865 * this is true for ATA or ATAPI. Until we've set a
2866 * suitable controller mode we should not touch the
2867 * bus as we may be talking too fast.
2868 */
2869 dev->pio_mode = XFER_PIO_0;
2870 dev->dma_mode = 0xff;
2871
2872 /* If the controller has a pio mode setup function
2873 * then use it to set the chipset to rights. Don't
2874 * touch the DMA setup as that will be dealt with when
2875 * configuring devices.
2876 */
2877 if (ap->ops->set_piomode)
2878 ap->ops->set_piomode(ap, dev);
2879 }
2880
2881 /* reset and determine device classes */
2882 ap->ops->phy_reset(ap);
2883
2884 ata_for_each_dev(dev, &ap->link, ALL) {
2885 if (dev->class != ATA_DEV_UNKNOWN)
2886 classes[dev->devno] = dev->class;
2887 else
2888 classes[dev->devno] = ATA_DEV_NONE;
2889
2890 dev->class = ATA_DEV_UNKNOWN;
2891 }
2892
2893 /* read IDENTIFY page and configure devices. We have to do the identify
2894 specific sequence bass-ackwards so that PDIAG- is released by
2895 the slave device */
2896
2897 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2898 if (tries[dev->devno])
2899 dev->class = classes[dev->devno];
2900
2901 if (!ata_dev_enabled(dev))
2902 continue;
2903
2904 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2905 dev->id);
2906 if (rc)
2907 goto fail;
2908 }
2909
2910 /* Now ask for the cable type as PDIAG- should have been released */
2911 if (ap->ops->cable_detect)
2912 ap->cbl = ap->ops->cable_detect(ap);
2913
2914 /* We may have SATA bridge glue hiding here irrespective of
2915 * the reported cable types and sensed types. When SATA
2916 * drives indicate we have a bridge, we don't know which end
2917 * of the link the bridge is which is a problem.
2918 */
2919 ata_for_each_dev(dev, &ap->link, ENABLED)
2920 if (ata_id_is_sata(dev->id))
2921 ap->cbl = ATA_CBL_SATA;
2922
2923 /* After the identify sequence we can now set up the devices. We do
2924 this in the normal order so that the user doesn't get confused */
2925
2926 ata_for_each_dev(dev, &ap->link, ENABLED) {
2927 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2928 rc = ata_dev_configure(dev);
2929 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2930 if (rc)
2931 goto fail;
2932 }
2933
2934 /* configure transfer mode */
2935 rc = ata_set_mode(&ap->link, &dev);
2936 if (rc)
2937 goto fail;
2938
2939 ata_for_each_dev(dev, &ap->link, ENABLED)
2940 return 0;
2941
2942 return -ENODEV;
2943
2944 fail:
2945 tries[dev->devno]--;
2946
2947 switch (rc) {
2948 case -EINVAL:
2949 /* eeek, something went very wrong, give up */
2950 tries[dev->devno] = 0;
2951 break;
2952
2953 case -ENODEV:
2954 /* give it just one more chance */
2955 tries[dev->devno] = min(tries[dev->devno], 1);
2956 fallthrough;
2957 case -EIO:
2958 if (tries[dev->devno] == 1) {
2959 /* This is the last chance, better to slow
2960 * down than lose it.
2961 */
2962 sata_down_spd_limit(&ap->link, 0);
2963 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2964 }
2965 }
2966
2967 if (!tries[dev->devno])
2968 ata_dev_disable(dev);
2969
2970 goto retry;
2971 }
2972
2973 /**
2974 * sata_print_link_status - Print SATA link status
2975 * @link: SATA link to printk link status about
2976 *
2977 * This function prints link speed and status of a SATA link.
2978 *
2979 * LOCKING:
2980 * None.
2981 */
sata_print_link_status(struct ata_link * link)2982 static void sata_print_link_status(struct ata_link *link)
2983 {
2984 u32 sstatus, scontrol, tmp;
2985
2986 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2987 return;
2988 sata_scr_read(link, SCR_CONTROL, &scontrol);
2989
2990 if (ata_phys_link_online(link)) {
2991 tmp = (sstatus >> 4) & 0xf;
2992 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2993 sata_spd_string(tmp), sstatus, scontrol);
2994 } else {
2995 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2996 sstatus, scontrol);
2997 }
2998 }
2999
3000 /**
3001 * ata_dev_pair - return other device on cable
3002 * @adev: device
3003 *
3004 * Obtain the other device on the same cable, or if none is
3005 * present NULL is returned
3006 */
3007
ata_dev_pair(struct ata_device * adev)3008 struct ata_device *ata_dev_pair(struct ata_device *adev)
3009 {
3010 struct ata_link *link = adev->link;
3011 struct ata_device *pair = &link->device[1 - adev->devno];
3012 if (!ata_dev_enabled(pair))
3013 return NULL;
3014 return pair;
3015 }
3016 EXPORT_SYMBOL_GPL(ata_dev_pair);
3017
3018 /**
3019 * sata_down_spd_limit - adjust SATA spd limit downward
3020 * @link: Link to adjust SATA spd limit for
3021 * @spd_limit: Additional limit
3022 *
3023 * Adjust SATA spd limit of @link downward. Note that this
3024 * function only adjusts the limit. The change must be applied
3025 * using sata_set_spd().
3026 *
3027 * If @spd_limit is non-zero, the speed is limited to equal to or
3028 * lower than @spd_limit if such speed is supported. If
3029 * @spd_limit is slower than any supported speed, only the lowest
3030 * supported speed is allowed.
3031 *
3032 * LOCKING:
3033 * Inherited from caller.
3034 *
3035 * RETURNS:
3036 * 0 on success, negative errno on failure
3037 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3038 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039 {
3040 u32 sstatus, spd, mask;
3041 int rc, bit;
3042
3043 if (!sata_scr_valid(link))
3044 return -EOPNOTSUPP;
3045
3046 /* If SCR can be read, use it to determine the current SPD.
3047 * If not, use cached value in link->sata_spd.
3048 */
3049 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050 if (rc == 0 && ata_sstatus_online(sstatus))
3051 spd = (sstatus >> 4) & 0xf;
3052 else
3053 spd = link->sata_spd;
3054
3055 mask = link->sata_spd_limit;
3056 if (mask <= 1)
3057 return -EINVAL;
3058
3059 /* unconditionally mask off the highest bit */
3060 bit = fls(mask) - 1;
3061 mask &= ~(1 << bit);
3062
3063 /*
3064 * Mask off all speeds higher than or equal to the current one. At
3065 * this point, if current SPD is not available and we previously
3066 * recorded the link speed from SStatus, the driver has already
3067 * masked off the highest bit so mask should already be 1 or 0.
3068 * Otherwise, we should not force 1.5Gbps on a link where we have
3069 * not previously recorded speed from SStatus. Just return in this
3070 * case.
3071 */
3072 if (spd > 1)
3073 mask &= (1 << (spd - 1)) - 1;
3074 else
3075 return -EINVAL;
3076
3077 /* were we already at the bottom? */
3078 if (!mask)
3079 return -EINVAL;
3080
3081 if (spd_limit) {
3082 if (mask & ((1 << spd_limit) - 1))
3083 mask &= (1 << spd_limit) - 1;
3084 else {
3085 bit = ffs(mask) - 1;
3086 mask = 1 << bit;
3087 }
3088 }
3089
3090 link->sata_spd_limit = mask;
3091
3092 ata_link_warn(link, "limiting SATA link speed to %s\n",
3093 sata_spd_string(fls(mask)));
3094
3095 return 0;
3096 }
3097
3098 #ifdef CONFIG_ATA_ACPI
3099 /**
3100 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3101 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3102 * @cycle: cycle duration in ns
3103 *
3104 * Return matching xfer mode for @cycle. The returned mode is of
3105 * the transfer type specified by @xfer_shift. If @cycle is too
3106 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3107 * than the fastest known mode, the fasted mode is returned.
3108 *
3109 * LOCKING:
3110 * None.
3111 *
3112 * RETURNS:
3113 * Matching xfer_mode, 0xff if no match found.
3114 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3115 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3116 {
3117 u8 base_mode = 0xff, last_mode = 0xff;
3118 const struct ata_xfer_ent *ent;
3119 const struct ata_timing *t;
3120
3121 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3122 if (ent->shift == xfer_shift)
3123 base_mode = ent->base;
3124
3125 for (t = ata_timing_find_mode(base_mode);
3126 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3127 unsigned short this_cycle;
3128
3129 switch (xfer_shift) {
3130 case ATA_SHIFT_PIO:
3131 case ATA_SHIFT_MWDMA:
3132 this_cycle = t->cycle;
3133 break;
3134 case ATA_SHIFT_UDMA:
3135 this_cycle = t->udma;
3136 break;
3137 default:
3138 return 0xff;
3139 }
3140
3141 if (cycle > this_cycle)
3142 break;
3143
3144 last_mode = t->mode;
3145 }
3146
3147 return last_mode;
3148 }
3149 #endif
3150
3151 /**
3152 * ata_down_xfermask_limit - adjust dev xfer masks downward
3153 * @dev: Device to adjust xfer masks
3154 * @sel: ATA_DNXFER_* selector
3155 *
3156 * Adjust xfer masks of @dev downward. Note that this function
3157 * does not apply the change. Invoking ata_set_mode() afterwards
3158 * will apply the limit.
3159 *
3160 * LOCKING:
3161 * Inherited from caller.
3162 *
3163 * RETURNS:
3164 * 0 on success, negative errno on failure
3165 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3166 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3167 {
3168 char buf[32];
3169 unsigned long orig_mask, xfer_mask;
3170 unsigned long pio_mask, mwdma_mask, udma_mask;
3171 int quiet, highbit;
3172
3173 quiet = !!(sel & ATA_DNXFER_QUIET);
3174 sel &= ~ATA_DNXFER_QUIET;
3175
3176 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3177 dev->mwdma_mask,
3178 dev->udma_mask);
3179 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3180
3181 switch (sel) {
3182 case ATA_DNXFER_PIO:
3183 highbit = fls(pio_mask) - 1;
3184 pio_mask &= ~(1 << highbit);
3185 break;
3186
3187 case ATA_DNXFER_DMA:
3188 if (udma_mask) {
3189 highbit = fls(udma_mask) - 1;
3190 udma_mask &= ~(1 << highbit);
3191 if (!udma_mask)
3192 return -ENOENT;
3193 } else if (mwdma_mask) {
3194 highbit = fls(mwdma_mask) - 1;
3195 mwdma_mask &= ~(1 << highbit);
3196 if (!mwdma_mask)
3197 return -ENOENT;
3198 }
3199 break;
3200
3201 case ATA_DNXFER_40C:
3202 udma_mask &= ATA_UDMA_MASK_40C;
3203 break;
3204
3205 case ATA_DNXFER_FORCE_PIO0:
3206 pio_mask &= 1;
3207 fallthrough;
3208 case ATA_DNXFER_FORCE_PIO:
3209 mwdma_mask = 0;
3210 udma_mask = 0;
3211 break;
3212
3213 default:
3214 BUG();
3215 }
3216
3217 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3218
3219 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3220 return -ENOENT;
3221
3222 if (!quiet) {
3223 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3224 snprintf(buf, sizeof(buf), "%s:%s",
3225 ata_mode_string(xfer_mask),
3226 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3227 else
3228 snprintf(buf, sizeof(buf), "%s",
3229 ata_mode_string(xfer_mask));
3230
3231 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3232 }
3233
3234 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3235 &dev->udma_mask);
3236
3237 return 0;
3238 }
3239
ata_dev_set_mode(struct ata_device * dev)3240 static int ata_dev_set_mode(struct ata_device *dev)
3241 {
3242 struct ata_port *ap = dev->link->ap;
3243 struct ata_eh_context *ehc = &dev->link->eh_context;
3244 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3245 const char *dev_err_whine = "";
3246 int ign_dev_err = 0;
3247 unsigned int err_mask = 0;
3248 int rc;
3249
3250 dev->flags &= ~ATA_DFLAG_PIO;
3251 if (dev->xfer_shift == ATA_SHIFT_PIO)
3252 dev->flags |= ATA_DFLAG_PIO;
3253
3254 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3255 dev_err_whine = " (SET_XFERMODE skipped)";
3256 else {
3257 if (nosetxfer)
3258 ata_dev_warn(dev,
3259 "NOSETXFER but PATA detected - can't "
3260 "skip SETXFER, might malfunction\n");
3261 err_mask = ata_dev_set_xfermode(dev);
3262 }
3263
3264 if (err_mask & ~AC_ERR_DEV)
3265 goto fail;
3266
3267 /* revalidate */
3268 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3269 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3270 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3271 if (rc)
3272 return rc;
3273
3274 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3275 /* Old CFA may refuse this command, which is just fine */
3276 if (ata_id_is_cfa(dev->id))
3277 ign_dev_err = 1;
3278 /* Catch several broken garbage emulations plus some pre
3279 ATA devices */
3280 if (ata_id_major_version(dev->id) == 0 &&
3281 dev->pio_mode <= XFER_PIO_2)
3282 ign_dev_err = 1;
3283 /* Some very old devices and some bad newer ones fail
3284 any kind of SET_XFERMODE request but support PIO0-2
3285 timings and no IORDY */
3286 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3287 ign_dev_err = 1;
3288 }
3289 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3290 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3291 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3292 dev->dma_mode == XFER_MW_DMA_0 &&
3293 (dev->id[63] >> 8) & 1)
3294 ign_dev_err = 1;
3295
3296 /* if the device is actually configured correctly, ignore dev err */
3297 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3298 ign_dev_err = 1;
3299
3300 if (err_mask & AC_ERR_DEV) {
3301 if (!ign_dev_err)
3302 goto fail;
3303 else
3304 dev_err_whine = " (device error ignored)";
3305 }
3306
3307 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3308 dev->xfer_shift, (int)dev->xfer_mode);
3309
3310 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3311 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3312 ata_dev_info(dev, "configured for %s%s\n",
3313 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3314 dev_err_whine);
3315
3316 return 0;
3317
3318 fail:
3319 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3320 return -EIO;
3321 }
3322
3323 /**
3324 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3325 * @link: link on which timings will be programmed
3326 * @r_failed_dev: out parameter for failed device
3327 *
3328 * Standard implementation of the function used to tune and set
3329 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3330 * ata_dev_set_mode() fails, pointer to the failing device is
3331 * returned in @r_failed_dev.
3332 *
3333 * LOCKING:
3334 * PCI/etc. bus probe sem.
3335 *
3336 * RETURNS:
3337 * 0 on success, negative errno otherwise
3338 */
3339
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3340 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3341 {
3342 struct ata_port *ap = link->ap;
3343 struct ata_device *dev;
3344 int rc = 0, used_dma = 0, found = 0;
3345
3346 /* step 1: calculate xfer_mask */
3347 ata_for_each_dev(dev, link, ENABLED) {
3348 unsigned long pio_mask, dma_mask;
3349 unsigned int mode_mask;
3350
3351 mode_mask = ATA_DMA_MASK_ATA;
3352 if (dev->class == ATA_DEV_ATAPI)
3353 mode_mask = ATA_DMA_MASK_ATAPI;
3354 else if (ata_id_is_cfa(dev->id))
3355 mode_mask = ATA_DMA_MASK_CFA;
3356
3357 ata_dev_xfermask(dev);
3358 ata_force_xfermask(dev);
3359
3360 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3361
3362 if (libata_dma_mask & mode_mask)
3363 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3364 dev->udma_mask);
3365 else
3366 dma_mask = 0;
3367
3368 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3369 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3370
3371 found = 1;
3372 if (ata_dma_enabled(dev))
3373 used_dma = 1;
3374 }
3375 if (!found)
3376 goto out;
3377
3378 /* step 2: always set host PIO timings */
3379 ata_for_each_dev(dev, link, ENABLED) {
3380 if (dev->pio_mode == 0xff) {
3381 ata_dev_warn(dev, "no PIO support\n");
3382 rc = -EINVAL;
3383 goto out;
3384 }
3385
3386 dev->xfer_mode = dev->pio_mode;
3387 dev->xfer_shift = ATA_SHIFT_PIO;
3388 if (ap->ops->set_piomode)
3389 ap->ops->set_piomode(ap, dev);
3390 }
3391
3392 /* step 3: set host DMA timings */
3393 ata_for_each_dev(dev, link, ENABLED) {
3394 if (!ata_dma_enabled(dev))
3395 continue;
3396
3397 dev->xfer_mode = dev->dma_mode;
3398 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3399 if (ap->ops->set_dmamode)
3400 ap->ops->set_dmamode(ap, dev);
3401 }
3402
3403 /* step 4: update devices' xfer mode */
3404 ata_for_each_dev(dev, link, ENABLED) {
3405 rc = ata_dev_set_mode(dev);
3406 if (rc)
3407 goto out;
3408 }
3409
3410 /* Record simplex status. If we selected DMA then the other
3411 * host channels are not permitted to do so.
3412 */
3413 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3414 ap->host->simplex_claimed = ap;
3415
3416 out:
3417 if (rc)
3418 *r_failed_dev = dev;
3419 return rc;
3420 }
3421 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3422
3423 /**
3424 * ata_wait_ready - wait for link to become ready
3425 * @link: link to be waited on
3426 * @deadline: deadline jiffies for the operation
3427 * @check_ready: callback to check link readiness
3428 *
3429 * Wait for @link to become ready. @check_ready should return
3430 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3431 * link doesn't seem to be occupied, other errno for other error
3432 * conditions.
3433 *
3434 * Transient -ENODEV conditions are allowed for
3435 * ATA_TMOUT_FF_WAIT.
3436 *
3437 * LOCKING:
3438 * EH context.
3439 *
3440 * RETURNS:
3441 * 0 if @link is ready before @deadline; otherwise, -errno.
3442 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3443 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3444 int (*check_ready)(struct ata_link *link))
3445 {
3446 unsigned long start = jiffies;
3447 unsigned long nodev_deadline;
3448 int warned = 0;
3449
3450 /* choose which 0xff timeout to use, read comment in libata.h */
3451 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3452 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3453 else
3454 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3455
3456 /* Slave readiness can't be tested separately from master. On
3457 * M/S emulation configuration, this function should be called
3458 * only on the master and it will handle both master and slave.
3459 */
3460 WARN_ON(link == link->ap->slave_link);
3461
3462 if (time_after(nodev_deadline, deadline))
3463 nodev_deadline = deadline;
3464
3465 while (1) {
3466 unsigned long now = jiffies;
3467 int ready, tmp;
3468
3469 ready = tmp = check_ready(link);
3470 if (ready > 0)
3471 return 0;
3472
3473 /*
3474 * -ENODEV could be transient. Ignore -ENODEV if link
3475 * is online. Also, some SATA devices take a long
3476 * time to clear 0xff after reset. Wait for
3477 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3478 * offline.
3479 *
3480 * Note that some PATA controllers (pata_ali) explode
3481 * if status register is read more than once when
3482 * there's no device attached.
3483 */
3484 if (ready == -ENODEV) {
3485 if (ata_link_online(link))
3486 ready = 0;
3487 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3488 !ata_link_offline(link) &&
3489 time_before(now, nodev_deadline))
3490 ready = 0;
3491 }
3492
3493 if (ready)
3494 return ready;
3495 if (time_after(now, deadline))
3496 return -EBUSY;
3497
3498 if (!warned && time_after(now, start + 5 * HZ) &&
3499 (deadline - now > 3 * HZ)) {
3500 ata_link_warn(link,
3501 "link is slow to respond, please be patient "
3502 "(ready=%d)\n", tmp);
3503 warned = 1;
3504 }
3505
3506 ata_msleep(link->ap, 50);
3507 }
3508 }
3509
3510 /**
3511 * ata_wait_after_reset - wait for link to become ready after reset
3512 * @link: link to be waited on
3513 * @deadline: deadline jiffies for the operation
3514 * @check_ready: callback to check link readiness
3515 *
3516 * Wait for @link to become ready after reset.
3517 *
3518 * LOCKING:
3519 * EH context.
3520 *
3521 * RETURNS:
3522 * 0 if @link is ready before @deadline; otherwise, -errno.
3523 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3524 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3525 int (*check_ready)(struct ata_link *link))
3526 {
3527 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3528
3529 return ata_wait_ready(link, deadline, check_ready);
3530 }
3531 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3532
3533 /**
3534 * ata_std_prereset - prepare for reset
3535 * @link: ATA link to be reset
3536 * @deadline: deadline jiffies for the operation
3537 *
3538 * @link is about to be reset. Initialize it. Failure from
3539 * prereset makes libata abort whole reset sequence and give up
3540 * that port, so prereset should be best-effort. It does its
3541 * best to prepare for reset sequence but if things go wrong, it
3542 * should just whine, not fail.
3543 *
3544 * LOCKING:
3545 * Kernel thread context (may sleep)
3546 *
3547 * RETURNS:
3548 * 0 on success, -errno otherwise.
3549 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3550 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3551 {
3552 struct ata_port *ap = link->ap;
3553 struct ata_eh_context *ehc = &link->eh_context;
3554 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3555 int rc;
3556
3557 /* if we're about to do hardreset, nothing more to do */
3558 if (ehc->i.action & ATA_EH_HARDRESET)
3559 return 0;
3560
3561 /* if SATA, resume link */
3562 if (ap->flags & ATA_FLAG_SATA) {
3563 rc = sata_link_resume(link, timing, deadline);
3564 /* whine about phy resume failure but proceed */
3565 if (rc && rc != -EOPNOTSUPP)
3566 ata_link_warn(link,
3567 "failed to resume link for reset (errno=%d)\n",
3568 rc);
3569 }
3570
3571 /* no point in trying softreset on offline link */
3572 if (ata_phys_link_offline(link))
3573 ehc->i.action &= ~ATA_EH_SOFTRESET;
3574
3575 return 0;
3576 }
3577 EXPORT_SYMBOL_GPL(ata_std_prereset);
3578
3579 /**
3580 * sata_std_hardreset - COMRESET w/o waiting or classification
3581 * @link: link to reset
3582 * @class: resulting class of attached device
3583 * @deadline: deadline jiffies for the operation
3584 *
3585 * Standard SATA COMRESET w/o waiting or classification.
3586 *
3587 * LOCKING:
3588 * Kernel thread context (may sleep)
3589 *
3590 * RETURNS:
3591 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3592 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3593 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3594 unsigned long deadline)
3595 {
3596 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3597 bool online;
3598 int rc;
3599
3600 /* do hardreset */
3601 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3602 return online ? -EAGAIN : rc;
3603 }
3604 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3605
3606 /**
3607 * ata_std_postreset - standard postreset callback
3608 * @link: the target ata_link
3609 * @classes: classes of attached devices
3610 *
3611 * This function is invoked after a successful reset. Note that
3612 * the device might have been reset more than once using
3613 * different reset methods before postreset is invoked.
3614 *
3615 * LOCKING:
3616 * Kernel thread context (may sleep)
3617 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3618 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3619 {
3620 u32 serror;
3621
3622 DPRINTK("ENTER\n");
3623
3624 /* reset complete, clear SError */
3625 if (!sata_scr_read(link, SCR_ERROR, &serror))
3626 sata_scr_write(link, SCR_ERROR, serror);
3627
3628 /* print link status */
3629 sata_print_link_status(link);
3630
3631 DPRINTK("EXIT\n");
3632 }
3633 EXPORT_SYMBOL_GPL(ata_std_postreset);
3634
3635 /**
3636 * ata_dev_same_device - Determine whether new ID matches configured device
3637 * @dev: device to compare against
3638 * @new_class: class of the new device
3639 * @new_id: IDENTIFY page of the new device
3640 *
3641 * Compare @new_class and @new_id against @dev and determine
3642 * whether @dev is the device indicated by @new_class and
3643 * @new_id.
3644 *
3645 * LOCKING:
3646 * None.
3647 *
3648 * RETURNS:
3649 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3650 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3651 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3652 const u16 *new_id)
3653 {
3654 const u16 *old_id = dev->id;
3655 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3656 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3657
3658 if (dev->class != new_class) {
3659 ata_dev_info(dev, "class mismatch %d != %d\n",
3660 dev->class, new_class);
3661 return 0;
3662 }
3663
3664 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3665 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3666 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3667 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3668
3669 if (strcmp(model[0], model[1])) {
3670 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3671 model[0], model[1]);
3672 return 0;
3673 }
3674
3675 if (strcmp(serial[0], serial[1])) {
3676 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3677 serial[0], serial[1]);
3678 return 0;
3679 }
3680
3681 return 1;
3682 }
3683
3684 /**
3685 * ata_dev_reread_id - Re-read IDENTIFY data
3686 * @dev: target ATA device
3687 * @readid_flags: read ID flags
3688 *
3689 * Re-read IDENTIFY page and make sure @dev is still attached to
3690 * the port.
3691 *
3692 * LOCKING:
3693 * Kernel thread context (may sleep)
3694 *
3695 * RETURNS:
3696 * 0 on success, negative errno otherwise
3697 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3698 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3699 {
3700 unsigned int class = dev->class;
3701 u16 *id = (void *)dev->link->ap->sector_buf;
3702 int rc;
3703
3704 /* read ID data */
3705 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3706 if (rc)
3707 return rc;
3708
3709 /* is the device still there? */
3710 if (!ata_dev_same_device(dev, class, id))
3711 return -ENODEV;
3712
3713 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3714 return 0;
3715 }
3716
3717 /**
3718 * ata_dev_revalidate - Revalidate ATA device
3719 * @dev: device to revalidate
3720 * @new_class: new class code
3721 * @readid_flags: read ID flags
3722 *
3723 * Re-read IDENTIFY page, make sure @dev is still attached to the
3724 * port and reconfigure it according to the new IDENTIFY page.
3725 *
3726 * LOCKING:
3727 * Kernel thread context (may sleep)
3728 *
3729 * RETURNS:
3730 * 0 on success, negative errno otherwise
3731 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3732 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3733 unsigned int readid_flags)
3734 {
3735 u64 n_sectors = dev->n_sectors;
3736 u64 n_native_sectors = dev->n_native_sectors;
3737 int rc;
3738
3739 if (!ata_dev_enabled(dev))
3740 return -ENODEV;
3741
3742 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3743 if (ata_class_enabled(new_class) &&
3744 new_class != ATA_DEV_ATA &&
3745 new_class != ATA_DEV_ATAPI &&
3746 new_class != ATA_DEV_ZAC &&
3747 new_class != ATA_DEV_SEMB) {
3748 ata_dev_info(dev, "class mismatch %u != %u\n",
3749 dev->class, new_class);
3750 rc = -ENODEV;
3751 goto fail;
3752 }
3753
3754 /* re-read ID */
3755 rc = ata_dev_reread_id(dev, readid_flags);
3756 if (rc)
3757 goto fail;
3758
3759 /* configure device according to the new ID */
3760 rc = ata_dev_configure(dev);
3761 if (rc)
3762 goto fail;
3763
3764 /* verify n_sectors hasn't changed */
3765 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3766 dev->n_sectors == n_sectors)
3767 return 0;
3768
3769 /* n_sectors has changed */
3770 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3771 (unsigned long long)n_sectors,
3772 (unsigned long long)dev->n_sectors);
3773
3774 /*
3775 * Something could have caused HPA to be unlocked
3776 * involuntarily. If n_native_sectors hasn't changed and the
3777 * new size matches it, keep the device.
3778 */
3779 if (dev->n_native_sectors == n_native_sectors &&
3780 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3781 ata_dev_warn(dev,
3782 "new n_sectors matches native, probably "
3783 "late HPA unlock, n_sectors updated\n");
3784 /* use the larger n_sectors */
3785 return 0;
3786 }
3787
3788 /*
3789 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3790 * unlocking HPA in those cases.
3791 *
3792 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3793 */
3794 if (dev->n_native_sectors == n_native_sectors &&
3795 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3796 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3797 ata_dev_warn(dev,
3798 "old n_sectors matches native, probably "
3799 "late HPA lock, will try to unlock HPA\n");
3800 /* try unlocking HPA */
3801 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3802 rc = -EIO;
3803 } else
3804 rc = -ENODEV;
3805
3806 /* restore original n_[native_]sectors and fail */
3807 dev->n_native_sectors = n_native_sectors;
3808 dev->n_sectors = n_sectors;
3809 fail:
3810 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3811 return rc;
3812 }
3813
3814 struct ata_blacklist_entry {
3815 const char *model_num;
3816 const char *model_rev;
3817 unsigned long horkage;
3818 };
3819
3820 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3821 /* Devices with DMA related problems under Linux */
3822 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3823 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3824 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3825 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3826 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3827 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3828 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3829 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3830 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3831 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3832 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3833 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3834 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3835 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3836 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3837 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3838 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3839 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3840 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3841 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3842 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3843 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3844 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3845 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3846 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3847 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3848 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3849 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3850 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3851 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3852 /* Odd clown on sil3726/4726 PMPs */
3853 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3854
3855 /* Weird ATAPI devices */
3856 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3857 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3858 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3859 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3860
3861 /*
3862 * Causes silent data corruption with higher max sects.
3863 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3864 */
3865 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3866
3867 /*
3868 * These devices time out with higher max sects.
3869 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3870 */
3871 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3872 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3873
3874 /* Devices we expect to fail diagnostics */
3875
3876 /* Devices where NCQ should be avoided */
3877 /* NCQ is slow */
3878 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3879 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3880 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3881 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3882 /* NCQ is broken */
3883 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3884 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3885 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3886 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3887 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
3888
3889 /* Seagate NCQ + FLUSH CACHE firmware bug */
3890 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3891 ATA_HORKAGE_FIRMWARE_WARN },
3892
3893 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3894 ATA_HORKAGE_FIRMWARE_WARN },
3895
3896 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3897 ATA_HORKAGE_FIRMWARE_WARN },
3898
3899 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3900 ATA_HORKAGE_FIRMWARE_WARN },
3901
3902 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3903 the ST disks also have LPM issues */
3904 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
3905 ATA_HORKAGE_NOLPM, },
3906 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
3907
3908 /* Blacklist entries taken from Silicon Image 3124/3132
3909 Windows driver .inf file - also several Linux problem reports */
3910 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3911 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3912 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3913
3914 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3915 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
3916
3917 /* Sandisk SD7/8/9s lock up hard on large trims */
3918 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, },
3919
3920 /* devices which puke on READ_NATIVE_MAX */
3921 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3922 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3923 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3924 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3925
3926 /* this one allows HPA unlocking but fails IOs on the area */
3927 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
3928
3929 /* Devices which report 1 sector over size HPA */
3930 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3931 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3932 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3933
3934 /* Devices which get the IVB wrong */
3935 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3936 /* Maybe we should just blacklist TSSTcorp... */
3937 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
3938
3939 /* Devices that do not need bridging limits applied */
3940 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
3941 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
3942
3943 /* Devices which aren't very happy with higher link speeds */
3944 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
3945 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
3946
3947 /*
3948 * Devices which choke on SETXFER. Applies only if both the
3949 * device and controller are SATA.
3950 */
3951 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3952 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
3953 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
3954 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
3955 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
3956
3957 /* Crucial BX100 SSD 500GB has broken LPM support */
3958 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
3959
3960 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3961 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3962 ATA_HORKAGE_ZERO_AFTER_TRIM |
3963 ATA_HORKAGE_NOLPM, },
3964 /* 512GB MX100 with newer firmware has only LPM issues */
3965 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
3966 ATA_HORKAGE_NOLPM, },
3967
3968 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3969 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3970 ATA_HORKAGE_ZERO_AFTER_TRIM |
3971 ATA_HORKAGE_NOLPM, },
3972 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3973 ATA_HORKAGE_ZERO_AFTER_TRIM |
3974 ATA_HORKAGE_NOLPM, },
3975
3976 /* These specific Samsung models/firmware-revs do not handle LPM well */
3977 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3978 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3979 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
3980 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3981
3982 /* devices that don't properly handle queued TRIM commands */
3983 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3984 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3985 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3986 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3987 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3988 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3989 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3990 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3991 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3992 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3993 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3994 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3995 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3996 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3997 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3998 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3999 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4000 ATA_HORKAGE_ZERO_AFTER_TRIM |
4001 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4002 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4003 ATA_HORKAGE_ZERO_AFTER_TRIM |
4004 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4005 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4006 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4007
4008 /* devices that don't properly handle TRIM commands */
4009 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4010
4011 /*
4012 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4013 * (Return Zero After Trim) flags in the ATA Command Set are
4014 * unreliable in the sense that they only define what happens if
4015 * the device successfully executed the DSM TRIM command. TRIM
4016 * is only advisory, however, and the device is free to silently
4017 * ignore all or parts of the request.
4018 *
4019 * Whitelist drives that are known to reliably return zeroes
4020 * after TRIM.
4021 */
4022
4023 /*
4024 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4025 * that model before whitelisting all other intel SSDs.
4026 */
4027 { "INTEL*SSDSC2MH*", NULL, 0, },
4028
4029 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4030 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4031 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4032 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4033 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4034 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4035 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4036 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4037
4038 /*
4039 * Some WD SATA-I drives spin up and down erratically when the link
4040 * is put into the slumber mode. We don't have full list of the
4041 * affected devices. Disable LPM if the device matches one of the
4042 * known prefixes and is SATA-1. As a side effect LPM partial is
4043 * lost too.
4044 *
4045 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4046 */
4047 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4048 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4049 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4050 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4051 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4052 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4053 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4054
4055 /* End Marker */
4056 { }
4057 };
4058
ata_dev_blacklisted(const struct ata_device * dev)4059 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4060 {
4061 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4062 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4063 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4064
4065 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4066 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4067
4068 while (ad->model_num) {
4069 if (glob_match(ad->model_num, model_num)) {
4070 if (ad->model_rev == NULL)
4071 return ad->horkage;
4072 if (glob_match(ad->model_rev, model_rev))
4073 return ad->horkage;
4074 }
4075 ad++;
4076 }
4077 return 0;
4078 }
4079
ata_dma_blacklisted(const struct ata_device * dev)4080 static int ata_dma_blacklisted(const struct ata_device *dev)
4081 {
4082 /* We don't support polling DMA.
4083 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4084 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4085 */
4086 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4087 (dev->flags & ATA_DFLAG_CDB_INTR))
4088 return 1;
4089 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4090 }
4091
4092 /**
4093 * ata_is_40wire - check drive side detection
4094 * @dev: device
4095 *
4096 * Perform drive side detection decoding, allowing for device vendors
4097 * who can't follow the documentation.
4098 */
4099
ata_is_40wire(struct ata_device * dev)4100 static int ata_is_40wire(struct ata_device *dev)
4101 {
4102 if (dev->horkage & ATA_HORKAGE_IVB)
4103 return ata_drive_40wire_relaxed(dev->id);
4104 return ata_drive_40wire(dev->id);
4105 }
4106
4107 /**
4108 * cable_is_40wire - 40/80/SATA decider
4109 * @ap: port to consider
4110 *
4111 * This function encapsulates the policy for speed management
4112 * in one place. At the moment we don't cache the result but
4113 * there is a good case for setting ap->cbl to the result when
4114 * we are called with unknown cables (and figuring out if it
4115 * impacts hotplug at all).
4116 *
4117 * Return 1 if the cable appears to be 40 wire.
4118 */
4119
cable_is_40wire(struct ata_port * ap)4120 static int cable_is_40wire(struct ata_port *ap)
4121 {
4122 struct ata_link *link;
4123 struct ata_device *dev;
4124
4125 /* If the controller thinks we are 40 wire, we are. */
4126 if (ap->cbl == ATA_CBL_PATA40)
4127 return 1;
4128
4129 /* If the controller thinks we are 80 wire, we are. */
4130 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4131 return 0;
4132
4133 /* If the system is known to be 40 wire short cable (eg
4134 * laptop), then we allow 80 wire modes even if the drive
4135 * isn't sure.
4136 */
4137 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4138 return 0;
4139
4140 /* If the controller doesn't know, we scan.
4141 *
4142 * Note: We look for all 40 wire detects at this point. Any
4143 * 80 wire detect is taken to be 80 wire cable because
4144 * - in many setups only the one drive (slave if present) will
4145 * give a valid detect
4146 * - if you have a non detect capable drive you don't want it
4147 * to colour the choice
4148 */
4149 ata_for_each_link(link, ap, EDGE) {
4150 ata_for_each_dev(dev, link, ENABLED) {
4151 if (!ata_is_40wire(dev))
4152 return 0;
4153 }
4154 }
4155 return 1;
4156 }
4157
4158 /**
4159 * ata_dev_xfermask - Compute supported xfermask of the given device
4160 * @dev: Device to compute xfermask for
4161 *
4162 * Compute supported xfermask of @dev and store it in
4163 * dev->*_mask. This function is responsible for applying all
4164 * known limits including host controller limits, device
4165 * blacklist, etc...
4166 *
4167 * LOCKING:
4168 * None.
4169 */
ata_dev_xfermask(struct ata_device * dev)4170 static void ata_dev_xfermask(struct ata_device *dev)
4171 {
4172 struct ata_link *link = dev->link;
4173 struct ata_port *ap = link->ap;
4174 struct ata_host *host = ap->host;
4175 unsigned long xfer_mask;
4176
4177 /* controller modes available */
4178 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4179 ap->mwdma_mask, ap->udma_mask);
4180
4181 /* drive modes available */
4182 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4183 dev->mwdma_mask, dev->udma_mask);
4184 xfer_mask &= ata_id_xfermask(dev->id);
4185
4186 /*
4187 * CFA Advanced TrueIDE timings are not allowed on a shared
4188 * cable
4189 */
4190 if (ata_dev_pair(dev)) {
4191 /* No PIO5 or PIO6 */
4192 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4193 /* No MWDMA3 or MWDMA 4 */
4194 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4195 }
4196
4197 if (ata_dma_blacklisted(dev)) {
4198 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4199 ata_dev_warn(dev,
4200 "device is on DMA blacklist, disabling DMA\n");
4201 }
4202
4203 if ((host->flags & ATA_HOST_SIMPLEX) &&
4204 host->simplex_claimed && host->simplex_claimed != ap) {
4205 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4206 ata_dev_warn(dev,
4207 "simplex DMA is claimed by other device, disabling DMA\n");
4208 }
4209
4210 if (ap->flags & ATA_FLAG_NO_IORDY)
4211 xfer_mask &= ata_pio_mask_no_iordy(dev);
4212
4213 if (ap->ops->mode_filter)
4214 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4215
4216 /* Apply cable rule here. Don't apply it early because when
4217 * we handle hot plug the cable type can itself change.
4218 * Check this last so that we know if the transfer rate was
4219 * solely limited by the cable.
4220 * Unknown or 80 wire cables reported host side are checked
4221 * drive side as well. Cases where we know a 40wire cable
4222 * is used safely for 80 are not checked here.
4223 */
4224 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4225 /* UDMA/44 or higher would be available */
4226 if (cable_is_40wire(ap)) {
4227 ata_dev_warn(dev,
4228 "limited to UDMA/33 due to 40-wire cable\n");
4229 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4230 }
4231
4232 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4233 &dev->mwdma_mask, &dev->udma_mask);
4234 }
4235
4236 /**
4237 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4238 * @dev: Device to which command will be sent
4239 *
4240 * Issue SET FEATURES - XFER MODE command to device @dev
4241 * on port @ap.
4242 *
4243 * LOCKING:
4244 * PCI/etc. bus probe sem.
4245 *
4246 * RETURNS:
4247 * 0 on success, AC_ERR_* mask otherwise.
4248 */
4249
ata_dev_set_xfermode(struct ata_device * dev)4250 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4251 {
4252 struct ata_taskfile tf;
4253 unsigned int err_mask;
4254
4255 /* set up set-features taskfile */
4256 DPRINTK("set features - xfer mode\n");
4257
4258 /* Some controllers and ATAPI devices show flaky interrupt
4259 * behavior after setting xfer mode. Use polling instead.
4260 */
4261 ata_tf_init(dev, &tf);
4262 tf.command = ATA_CMD_SET_FEATURES;
4263 tf.feature = SETFEATURES_XFER;
4264 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4265 tf.protocol = ATA_PROT_NODATA;
4266 /* If we are using IORDY we must send the mode setting command */
4267 if (ata_pio_need_iordy(dev))
4268 tf.nsect = dev->xfer_mode;
4269 /* If the device has IORDY and the controller does not - turn it off */
4270 else if (ata_id_has_iordy(dev->id))
4271 tf.nsect = 0x01;
4272 else /* In the ancient relic department - skip all of this */
4273 return 0;
4274
4275 /* On some disks, this command causes spin-up, so we need longer timeout */
4276 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4277
4278 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4279 return err_mask;
4280 }
4281
4282 /**
4283 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4284 * @dev: Device to which command will be sent
4285 * @enable: Whether to enable or disable the feature
4286 * @feature: The sector count represents the feature to set
4287 *
4288 * Issue SET FEATURES - SATA FEATURES command to device @dev
4289 * on port @ap with sector count
4290 *
4291 * LOCKING:
4292 * PCI/etc. bus probe sem.
4293 *
4294 * RETURNS:
4295 * 0 on success, AC_ERR_* mask otherwise.
4296 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4297 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4298 {
4299 struct ata_taskfile tf;
4300 unsigned int err_mask;
4301 unsigned long timeout = 0;
4302
4303 /* set up set-features taskfile */
4304 DPRINTK("set features - SATA features\n");
4305
4306 ata_tf_init(dev, &tf);
4307 tf.command = ATA_CMD_SET_FEATURES;
4308 tf.feature = enable;
4309 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4310 tf.protocol = ATA_PROT_NODATA;
4311 tf.nsect = feature;
4312
4313 if (enable == SETFEATURES_SPINUP)
4314 timeout = ata_probe_timeout ?
4315 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4316 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4317
4318 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4319 return err_mask;
4320 }
4321 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4322
4323 /**
4324 * ata_dev_init_params - Issue INIT DEV PARAMS command
4325 * @dev: Device to which command will be sent
4326 * @heads: Number of heads (taskfile parameter)
4327 * @sectors: Number of sectors (taskfile parameter)
4328 *
4329 * LOCKING:
4330 * Kernel thread context (may sleep)
4331 *
4332 * RETURNS:
4333 * 0 on success, AC_ERR_* mask otherwise.
4334 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4335 static unsigned int ata_dev_init_params(struct ata_device *dev,
4336 u16 heads, u16 sectors)
4337 {
4338 struct ata_taskfile tf;
4339 unsigned int err_mask;
4340
4341 /* Number of sectors per track 1-255. Number of heads 1-16 */
4342 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4343 return AC_ERR_INVALID;
4344
4345 /* set up init dev params taskfile */
4346 DPRINTK("init dev params \n");
4347
4348 ata_tf_init(dev, &tf);
4349 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4350 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4351 tf.protocol = ATA_PROT_NODATA;
4352 tf.nsect = sectors;
4353 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4354
4355 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4356 /* A clean abort indicates an original or just out of spec drive
4357 and we should continue as we issue the setup based on the
4358 drive reported working geometry */
4359 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4360 err_mask = 0;
4361
4362 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4363 return err_mask;
4364 }
4365
4366 /**
4367 * atapi_check_dma - Check whether ATAPI DMA can be supported
4368 * @qc: Metadata associated with taskfile to check
4369 *
4370 * Allow low-level driver to filter ATA PACKET commands, returning
4371 * a status indicating whether or not it is OK to use DMA for the
4372 * supplied PACKET command.
4373 *
4374 * LOCKING:
4375 * spin_lock_irqsave(host lock)
4376 *
4377 * RETURNS: 0 when ATAPI DMA can be used
4378 * nonzero otherwise
4379 */
atapi_check_dma(struct ata_queued_cmd * qc)4380 int atapi_check_dma(struct ata_queued_cmd *qc)
4381 {
4382 struct ata_port *ap = qc->ap;
4383
4384 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4385 * few ATAPI devices choke on such DMA requests.
4386 */
4387 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4388 unlikely(qc->nbytes & 15))
4389 return 1;
4390
4391 if (ap->ops->check_atapi_dma)
4392 return ap->ops->check_atapi_dma(qc);
4393
4394 return 0;
4395 }
4396
4397 /**
4398 * ata_std_qc_defer - Check whether a qc needs to be deferred
4399 * @qc: ATA command in question
4400 *
4401 * Non-NCQ commands cannot run with any other command, NCQ or
4402 * not. As upper layer only knows the queue depth, we are
4403 * responsible for maintaining exclusion. This function checks
4404 * whether a new command @qc can be issued.
4405 *
4406 * LOCKING:
4407 * spin_lock_irqsave(host lock)
4408 *
4409 * RETURNS:
4410 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4411 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4412 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4413 {
4414 struct ata_link *link = qc->dev->link;
4415
4416 if (ata_is_ncq(qc->tf.protocol)) {
4417 if (!ata_tag_valid(link->active_tag))
4418 return 0;
4419 } else {
4420 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4421 return 0;
4422 }
4423
4424 return ATA_DEFER_LINK;
4425 }
4426 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4427
ata_noop_qc_prep(struct ata_queued_cmd * qc)4428 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4429 {
4430 return AC_ERR_OK;
4431 }
4432 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4433
4434 /**
4435 * ata_sg_init - Associate command with scatter-gather table.
4436 * @qc: Command to be associated
4437 * @sg: Scatter-gather table.
4438 * @n_elem: Number of elements in s/g table.
4439 *
4440 * Initialize the data-related elements of queued_cmd @qc
4441 * to point to a scatter-gather table @sg, containing @n_elem
4442 * elements.
4443 *
4444 * LOCKING:
4445 * spin_lock_irqsave(host lock)
4446 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4447 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4448 unsigned int n_elem)
4449 {
4450 qc->sg = sg;
4451 qc->n_elem = n_elem;
4452 qc->cursg = qc->sg;
4453 }
4454
4455 #ifdef CONFIG_HAS_DMA
4456
4457 /**
4458 * ata_sg_clean - Unmap DMA memory associated with command
4459 * @qc: Command containing DMA memory to be released
4460 *
4461 * Unmap all mapped DMA memory associated with this command.
4462 *
4463 * LOCKING:
4464 * spin_lock_irqsave(host lock)
4465 */
ata_sg_clean(struct ata_queued_cmd * qc)4466 static void ata_sg_clean(struct ata_queued_cmd *qc)
4467 {
4468 struct ata_port *ap = qc->ap;
4469 struct scatterlist *sg = qc->sg;
4470 int dir = qc->dma_dir;
4471
4472 WARN_ON_ONCE(sg == NULL);
4473
4474 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4475
4476 if (qc->n_elem)
4477 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4478
4479 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4480 qc->sg = NULL;
4481 }
4482
4483 /**
4484 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4485 * @qc: Command with scatter-gather table to be mapped.
4486 *
4487 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4488 *
4489 * LOCKING:
4490 * spin_lock_irqsave(host lock)
4491 *
4492 * RETURNS:
4493 * Zero on success, negative on error.
4494 *
4495 */
ata_sg_setup(struct ata_queued_cmd * qc)4496 static int ata_sg_setup(struct ata_queued_cmd *qc)
4497 {
4498 struct ata_port *ap = qc->ap;
4499 unsigned int n_elem;
4500
4501 VPRINTK("ENTER, ata%u\n", ap->print_id);
4502
4503 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4504 if (n_elem < 1)
4505 return -1;
4506
4507 VPRINTK("%d sg elements mapped\n", n_elem);
4508 qc->orig_n_elem = qc->n_elem;
4509 qc->n_elem = n_elem;
4510 qc->flags |= ATA_QCFLAG_DMAMAP;
4511
4512 return 0;
4513 }
4514
4515 #else /* !CONFIG_HAS_DMA */
4516
ata_sg_clean(struct ata_queued_cmd * qc)4517 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4518 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4519
4520 #endif /* !CONFIG_HAS_DMA */
4521
4522 /**
4523 * swap_buf_le16 - swap halves of 16-bit words in place
4524 * @buf: Buffer to swap
4525 * @buf_words: Number of 16-bit words in buffer.
4526 *
4527 * Swap halves of 16-bit words if needed to convert from
4528 * little-endian byte order to native cpu byte order, or
4529 * vice-versa.
4530 *
4531 * LOCKING:
4532 * Inherited from caller.
4533 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4534 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4535 {
4536 #ifdef __BIG_ENDIAN
4537 unsigned int i;
4538
4539 for (i = 0; i < buf_words; i++)
4540 buf[i] = le16_to_cpu(buf[i]);
4541 #endif /* __BIG_ENDIAN */
4542 }
4543
4544 /**
4545 * ata_qc_new_init - Request an available ATA command, and initialize it
4546 * @dev: Device from whom we request an available command structure
4547 * @tag: tag
4548 *
4549 * LOCKING:
4550 * None.
4551 */
4552
ata_qc_new_init(struct ata_device * dev,int tag)4553 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4554 {
4555 struct ata_port *ap = dev->link->ap;
4556 struct ata_queued_cmd *qc;
4557
4558 /* no command while frozen */
4559 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4560 return NULL;
4561
4562 /* libsas case */
4563 if (ap->flags & ATA_FLAG_SAS_HOST) {
4564 tag = ata_sas_allocate_tag(ap);
4565 if (tag < 0)
4566 return NULL;
4567 }
4568
4569 qc = __ata_qc_from_tag(ap, tag);
4570 qc->tag = qc->hw_tag = tag;
4571 qc->scsicmd = NULL;
4572 qc->ap = ap;
4573 qc->dev = dev;
4574
4575 ata_qc_reinit(qc);
4576
4577 return qc;
4578 }
4579
4580 /**
4581 * ata_qc_free - free unused ata_queued_cmd
4582 * @qc: Command to complete
4583 *
4584 * Designed to free unused ata_queued_cmd object
4585 * in case something prevents using it.
4586 *
4587 * LOCKING:
4588 * spin_lock_irqsave(host lock)
4589 */
ata_qc_free(struct ata_queued_cmd * qc)4590 void ata_qc_free(struct ata_queued_cmd *qc)
4591 {
4592 struct ata_port *ap;
4593 unsigned int tag;
4594
4595 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4596 ap = qc->ap;
4597
4598 qc->flags = 0;
4599 tag = qc->tag;
4600 if (ata_tag_valid(tag)) {
4601 qc->tag = ATA_TAG_POISON;
4602 if (ap->flags & ATA_FLAG_SAS_HOST)
4603 ata_sas_free_tag(tag, ap);
4604 }
4605 }
4606
__ata_qc_complete(struct ata_queued_cmd * qc)4607 void __ata_qc_complete(struct ata_queued_cmd *qc)
4608 {
4609 struct ata_port *ap;
4610 struct ata_link *link;
4611
4612 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4613 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4614 ap = qc->ap;
4615 link = qc->dev->link;
4616
4617 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4618 ata_sg_clean(qc);
4619
4620 /* command should be marked inactive atomically with qc completion */
4621 if (ata_is_ncq(qc->tf.protocol)) {
4622 link->sactive &= ~(1 << qc->hw_tag);
4623 if (!link->sactive)
4624 ap->nr_active_links--;
4625 } else {
4626 link->active_tag = ATA_TAG_POISON;
4627 ap->nr_active_links--;
4628 }
4629
4630 /* clear exclusive status */
4631 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4632 ap->excl_link == link))
4633 ap->excl_link = NULL;
4634
4635 /* atapi: mark qc as inactive to prevent the interrupt handler
4636 * from completing the command twice later, before the error handler
4637 * is called. (when rc != 0 and atapi request sense is needed)
4638 */
4639 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4640 ap->qc_active &= ~(1ULL << qc->tag);
4641
4642 /* call completion callback */
4643 qc->complete_fn(qc);
4644 }
4645
fill_result_tf(struct ata_queued_cmd * qc)4646 static void fill_result_tf(struct ata_queued_cmd *qc)
4647 {
4648 struct ata_port *ap = qc->ap;
4649
4650 qc->result_tf.flags = qc->tf.flags;
4651 ap->ops->qc_fill_rtf(qc);
4652 }
4653
ata_verify_xfer(struct ata_queued_cmd * qc)4654 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4655 {
4656 struct ata_device *dev = qc->dev;
4657
4658 if (!ata_is_data(qc->tf.protocol))
4659 return;
4660
4661 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4662 return;
4663
4664 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4665 }
4666
4667 /**
4668 * ata_qc_complete - Complete an active ATA command
4669 * @qc: Command to complete
4670 *
4671 * Indicate to the mid and upper layers that an ATA command has
4672 * completed, with either an ok or not-ok status.
4673 *
4674 * Refrain from calling this function multiple times when
4675 * successfully completing multiple NCQ commands.
4676 * ata_qc_complete_multiple() should be used instead, which will
4677 * properly update IRQ expect state.
4678 *
4679 * LOCKING:
4680 * spin_lock_irqsave(host lock)
4681 */
ata_qc_complete(struct ata_queued_cmd * qc)4682 void ata_qc_complete(struct ata_queued_cmd *qc)
4683 {
4684 struct ata_port *ap = qc->ap;
4685
4686 /* Trigger the LED (if available) */
4687 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4688
4689 /* XXX: New EH and old EH use different mechanisms to
4690 * synchronize EH with regular execution path.
4691 *
4692 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4693 * Normal execution path is responsible for not accessing a
4694 * failed qc. libata core enforces the rule by returning NULL
4695 * from ata_qc_from_tag() for failed qcs.
4696 *
4697 * Old EH depends on ata_qc_complete() nullifying completion
4698 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4699 * not synchronize with interrupt handler. Only PIO task is
4700 * taken care of.
4701 */
4702 if (ap->ops->error_handler) {
4703 struct ata_device *dev = qc->dev;
4704 struct ata_eh_info *ehi = &dev->link->eh_info;
4705
4706 if (unlikely(qc->err_mask))
4707 qc->flags |= ATA_QCFLAG_FAILED;
4708
4709 /*
4710 * Finish internal commands without any further processing
4711 * and always with the result TF filled.
4712 */
4713 if (unlikely(ata_tag_internal(qc->tag))) {
4714 fill_result_tf(qc);
4715 trace_ata_qc_complete_internal(qc);
4716 __ata_qc_complete(qc);
4717 return;
4718 }
4719
4720 /*
4721 * Non-internal qc has failed. Fill the result TF and
4722 * summon EH.
4723 */
4724 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4725 fill_result_tf(qc);
4726 trace_ata_qc_complete_failed(qc);
4727 ata_qc_schedule_eh(qc);
4728 return;
4729 }
4730
4731 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4732
4733 /* read result TF if requested */
4734 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4735 fill_result_tf(qc);
4736
4737 trace_ata_qc_complete_done(qc);
4738 /* Some commands need post-processing after successful
4739 * completion.
4740 */
4741 switch (qc->tf.command) {
4742 case ATA_CMD_SET_FEATURES:
4743 if (qc->tf.feature != SETFEATURES_WC_ON &&
4744 qc->tf.feature != SETFEATURES_WC_OFF &&
4745 qc->tf.feature != SETFEATURES_RA_ON &&
4746 qc->tf.feature != SETFEATURES_RA_OFF)
4747 break;
4748 fallthrough;
4749 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4750 case ATA_CMD_SET_MULTI: /* multi_count changed */
4751 /* revalidate device */
4752 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4753 ata_port_schedule_eh(ap);
4754 break;
4755
4756 case ATA_CMD_SLEEP:
4757 dev->flags |= ATA_DFLAG_SLEEPING;
4758 break;
4759 }
4760
4761 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4762 ata_verify_xfer(qc);
4763
4764 __ata_qc_complete(qc);
4765 } else {
4766 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4767 return;
4768
4769 /* read result TF if failed or requested */
4770 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4771 fill_result_tf(qc);
4772
4773 __ata_qc_complete(qc);
4774 }
4775 }
4776 EXPORT_SYMBOL_GPL(ata_qc_complete);
4777
4778 /**
4779 * ata_qc_get_active - get bitmask of active qcs
4780 * @ap: port in question
4781 *
4782 * LOCKING:
4783 * spin_lock_irqsave(host lock)
4784 *
4785 * RETURNS:
4786 * Bitmask of active qcs
4787 */
ata_qc_get_active(struct ata_port * ap)4788 u64 ata_qc_get_active(struct ata_port *ap)
4789 {
4790 u64 qc_active = ap->qc_active;
4791
4792 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4793 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4794 qc_active |= (1 << 0);
4795 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4796 }
4797
4798 return qc_active;
4799 }
4800 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4801
4802 /**
4803 * ata_qc_issue - issue taskfile to device
4804 * @qc: command to issue to device
4805 *
4806 * Prepare an ATA command to submission to device.
4807 * This includes mapping the data into a DMA-able
4808 * area, filling in the S/G table, and finally
4809 * writing the taskfile to hardware, starting the command.
4810 *
4811 * LOCKING:
4812 * spin_lock_irqsave(host lock)
4813 */
ata_qc_issue(struct ata_queued_cmd * qc)4814 void ata_qc_issue(struct ata_queued_cmd *qc)
4815 {
4816 struct ata_port *ap = qc->ap;
4817 struct ata_link *link = qc->dev->link;
4818 u8 prot = qc->tf.protocol;
4819
4820 /* Make sure only one non-NCQ command is outstanding. The
4821 * check is skipped for old EH because it reuses active qc to
4822 * request ATAPI sense.
4823 */
4824 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4825
4826 if (ata_is_ncq(prot)) {
4827 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4828
4829 if (!link->sactive)
4830 ap->nr_active_links++;
4831 link->sactive |= 1 << qc->hw_tag;
4832 } else {
4833 WARN_ON_ONCE(link->sactive);
4834
4835 ap->nr_active_links++;
4836 link->active_tag = qc->tag;
4837 }
4838
4839 qc->flags |= ATA_QCFLAG_ACTIVE;
4840 ap->qc_active |= 1ULL << qc->tag;
4841
4842 /*
4843 * We guarantee to LLDs that they will have at least one
4844 * non-zero sg if the command is a data command.
4845 */
4846 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4847 goto sys_err;
4848
4849 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4850 (ap->flags & ATA_FLAG_PIO_DMA)))
4851 if (ata_sg_setup(qc))
4852 goto sys_err;
4853
4854 /* if device is sleeping, schedule reset and abort the link */
4855 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4856 link->eh_info.action |= ATA_EH_RESET;
4857 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4858 ata_link_abort(link);
4859 return;
4860 }
4861
4862 qc->err_mask |= ap->ops->qc_prep(qc);
4863 if (unlikely(qc->err_mask))
4864 goto err;
4865 trace_ata_qc_issue(qc);
4866 qc->err_mask |= ap->ops->qc_issue(qc);
4867 if (unlikely(qc->err_mask))
4868 goto err;
4869 return;
4870
4871 sys_err:
4872 qc->err_mask |= AC_ERR_SYSTEM;
4873 err:
4874 ata_qc_complete(qc);
4875 }
4876
4877 /**
4878 * ata_phys_link_online - test whether the given link is online
4879 * @link: ATA link to test
4880 *
4881 * Test whether @link is online. Note that this function returns
4882 * 0 if online status of @link cannot be obtained, so
4883 * ata_link_online(link) != !ata_link_offline(link).
4884 *
4885 * LOCKING:
4886 * None.
4887 *
4888 * RETURNS:
4889 * True if the port online status is available and online.
4890 */
ata_phys_link_online(struct ata_link * link)4891 bool ata_phys_link_online(struct ata_link *link)
4892 {
4893 u32 sstatus;
4894
4895 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4896 ata_sstatus_online(sstatus))
4897 return true;
4898 return false;
4899 }
4900
4901 /**
4902 * ata_phys_link_offline - test whether the given link is offline
4903 * @link: ATA link to test
4904 *
4905 * Test whether @link is offline. Note that this function
4906 * returns 0 if offline status of @link cannot be obtained, so
4907 * ata_link_online(link) != !ata_link_offline(link).
4908 *
4909 * LOCKING:
4910 * None.
4911 *
4912 * RETURNS:
4913 * True if the port offline status is available and offline.
4914 */
ata_phys_link_offline(struct ata_link * link)4915 bool ata_phys_link_offline(struct ata_link *link)
4916 {
4917 u32 sstatus;
4918
4919 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4920 !ata_sstatus_online(sstatus))
4921 return true;
4922 return false;
4923 }
4924
4925 /**
4926 * ata_link_online - test whether the given link is online
4927 * @link: ATA link to test
4928 *
4929 * Test whether @link is online. This is identical to
4930 * ata_phys_link_online() when there's no slave link. When
4931 * there's a slave link, this function should only be called on
4932 * the master link and will return true if any of M/S links is
4933 * online.
4934 *
4935 * LOCKING:
4936 * None.
4937 *
4938 * RETURNS:
4939 * True if the port online status is available and online.
4940 */
ata_link_online(struct ata_link * link)4941 bool ata_link_online(struct ata_link *link)
4942 {
4943 struct ata_link *slave = link->ap->slave_link;
4944
4945 WARN_ON(link == slave); /* shouldn't be called on slave link */
4946
4947 return ata_phys_link_online(link) ||
4948 (slave && ata_phys_link_online(slave));
4949 }
4950 EXPORT_SYMBOL_GPL(ata_link_online);
4951
4952 /**
4953 * ata_link_offline - test whether the given link is offline
4954 * @link: ATA link to test
4955 *
4956 * Test whether @link is offline. This is identical to
4957 * ata_phys_link_offline() when there's no slave link. When
4958 * there's a slave link, this function should only be called on
4959 * the master link and will return true if both M/S links are
4960 * offline.
4961 *
4962 * LOCKING:
4963 * None.
4964 *
4965 * RETURNS:
4966 * True if the port offline status is available and offline.
4967 */
ata_link_offline(struct ata_link * link)4968 bool ata_link_offline(struct ata_link *link)
4969 {
4970 struct ata_link *slave = link->ap->slave_link;
4971
4972 WARN_ON(link == slave); /* shouldn't be called on slave link */
4973
4974 return ata_phys_link_offline(link) &&
4975 (!slave || ata_phys_link_offline(slave));
4976 }
4977 EXPORT_SYMBOL_GPL(ata_link_offline);
4978
4979 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)4980 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4981 unsigned int action, unsigned int ehi_flags,
4982 bool async)
4983 {
4984 struct ata_link *link;
4985 unsigned long flags;
4986
4987 /* Previous resume operation might still be in
4988 * progress. Wait for PM_PENDING to clear.
4989 */
4990 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4991 ata_port_wait_eh(ap);
4992 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4993 }
4994
4995 /* request PM ops to EH */
4996 spin_lock_irqsave(ap->lock, flags);
4997
4998 ap->pm_mesg = mesg;
4999 ap->pflags |= ATA_PFLAG_PM_PENDING;
5000 ata_for_each_link(link, ap, HOST_FIRST) {
5001 link->eh_info.action |= action;
5002 link->eh_info.flags |= ehi_flags;
5003 }
5004
5005 ata_port_schedule_eh(ap);
5006
5007 spin_unlock_irqrestore(ap->lock, flags);
5008
5009 if (!async) {
5010 ata_port_wait_eh(ap);
5011 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5012 }
5013 }
5014
5015 /*
5016 * On some hardware, device fails to respond after spun down for suspend. As
5017 * the device won't be used before being resumed, we don't need to touch the
5018 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5019 *
5020 * http://thread.gmane.org/gmane.linux.ide/46764
5021 */
5022 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5023 | ATA_EHI_NO_AUTOPSY
5024 | ATA_EHI_NO_RECOVERY;
5025
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5026 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5027 {
5028 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5029 }
5030
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5031 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5032 {
5033 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5034 }
5035
ata_port_pm_suspend(struct device * dev)5036 static int ata_port_pm_suspend(struct device *dev)
5037 {
5038 struct ata_port *ap = to_ata_port(dev);
5039
5040 if (pm_runtime_suspended(dev))
5041 return 0;
5042
5043 ata_port_suspend(ap, PMSG_SUSPEND);
5044 return 0;
5045 }
5046
ata_port_pm_freeze(struct device * dev)5047 static int ata_port_pm_freeze(struct device *dev)
5048 {
5049 struct ata_port *ap = to_ata_port(dev);
5050
5051 if (pm_runtime_suspended(dev))
5052 return 0;
5053
5054 ata_port_suspend(ap, PMSG_FREEZE);
5055 return 0;
5056 }
5057
ata_port_pm_poweroff(struct device * dev)5058 static int ata_port_pm_poweroff(struct device *dev)
5059 {
5060 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5061 return 0;
5062 }
5063
5064 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5065 | ATA_EHI_QUIET;
5066
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5067 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5068 {
5069 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5070 }
5071
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5072 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5073 {
5074 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5075 }
5076
ata_port_pm_resume(struct device * dev)5077 static int ata_port_pm_resume(struct device *dev)
5078 {
5079 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5080 pm_runtime_disable(dev);
5081 pm_runtime_set_active(dev);
5082 pm_runtime_enable(dev);
5083 return 0;
5084 }
5085
5086 /*
5087 * For ODDs, the upper layer will poll for media change every few seconds,
5088 * which will make it enter and leave suspend state every few seconds. And
5089 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5090 * is very little and the ODD may malfunction after constantly being reset.
5091 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5092 * ODD is attached to the port.
5093 */
ata_port_runtime_idle(struct device * dev)5094 static int ata_port_runtime_idle(struct device *dev)
5095 {
5096 struct ata_port *ap = to_ata_port(dev);
5097 struct ata_link *link;
5098 struct ata_device *adev;
5099
5100 ata_for_each_link(link, ap, HOST_FIRST) {
5101 ata_for_each_dev(adev, link, ENABLED)
5102 if (adev->class == ATA_DEV_ATAPI &&
5103 !zpodd_dev_enabled(adev))
5104 return -EBUSY;
5105 }
5106
5107 return 0;
5108 }
5109
ata_port_runtime_suspend(struct device * dev)5110 static int ata_port_runtime_suspend(struct device *dev)
5111 {
5112 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5113 return 0;
5114 }
5115
ata_port_runtime_resume(struct device * dev)5116 static int ata_port_runtime_resume(struct device *dev)
5117 {
5118 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5119 return 0;
5120 }
5121
5122 static const struct dev_pm_ops ata_port_pm_ops = {
5123 .suspend = ata_port_pm_suspend,
5124 .resume = ata_port_pm_resume,
5125 .freeze = ata_port_pm_freeze,
5126 .thaw = ata_port_pm_resume,
5127 .poweroff = ata_port_pm_poweroff,
5128 .restore = ata_port_pm_resume,
5129
5130 .runtime_suspend = ata_port_runtime_suspend,
5131 .runtime_resume = ata_port_runtime_resume,
5132 .runtime_idle = ata_port_runtime_idle,
5133 };
5134
5135 /* sas ports don't participate in pm runtime management of ata_ports,
5136 * and need to resume ata devices at the domain level, not the per-port
5137 * level. sas suspend/resume is async to allow parallel port recovery
5138 * since sas has multiple ata_port instances per Scsi_Host.
5139 */
ata_sas_port_suspend(struct ata_port * ap)5140 void ata_sas_port_suspend(struct ata_port *ap)
5141 {
5142 ata_port_suspend_async(ap, PMSG_SUSPEND);
5143 }
5144 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5145
ata_sas_port_resume(struct ata_port * ap)5146 void ata_sas_port_resume(struct ata_port *ap)
5147 {
5148 ata_port_resume_async(ap, PMSG_RESUME);
5149 }
5150 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5151
5152 /**
5153 * ata_host_suspend - suspend host
5154 * @host: host to suspend
5155 * @mesg: PM message
5156 *
5157 * Suspend @host. Actual operation is performed by port suspend.
5158 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5159 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5160 {
5161 host->dev->power.power_state = mesg;
5162 return 0;
5163 }
5164 EXPORT_SYMBOL_GPL(ata_host_suspend);
5165
5166 /**
5167 * ata_host_resume - resume host
5168 * @host: host to resume
5169 *
5170 * Resume @host. Actual operation is performed by port resume.
5171 */
ata_host_resume(struct ata_host * host)5172 void ata_host_resume(struct ata_host *host)
5173 {
5174 host->dev->power.power_state = PMSG_ON;
5175 }
5176 EXPORT_SYMBOL_GPL(ata_host_resume);
5177 #endif
5178
5179 const struct device_type ata_port_type = {
5180 .name = "ata_port",
5181 #ifdef CONFIG_PM
5182 .pm = &ata_port_pm_ops,
5183 #endif
5184 };
5185
5186 /**
5187 * ata_dev_init - Initialize an ata_device structure
5188 * @dev: Device structure to initialize
5189 *
5190 * Initialize @dev in preparation for probing.
5191 *
5192 * LOCKING:
5193 * Inherited from caller.
5194 */
ata_dev_init(struct ata_device * dev)5195 void ata_dev_init(struct ata_device *dev)
5196 {
5197 struct ata_link *link = ata_dev_phys_link(dev);
5198 struct ata_port *ap = link->ap;
5199 unsigned long flags;
5200
5201 /* SATA spd limit is bound to the attached device, reset together */
5202 link->sata_spd_limit = link->hw_sata_spd_limit;
5203 link->sata_spd = 0;
5204
5205 /* High bits of dev->flags are used to record warm plug
5206 * requests which occur asynchronously. Synchronize using
5207 * host lock.
5208 */
5209 spin_lock_irqsave(ap->lock, flags);
5210 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5211 dev->horkage = 0;
5212 spin_unlock_irqrestore(ap->lock, flags);
5213
5214 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5215 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5216 dev->pio_mask = UINT_MAX;
5217 dev->mwdma_mask = UINT_MAX;
5218 dev->udma_mask = UINT_MAX;
5219 }
5220
5221 /**
5222 * ata_link_init - Initialize an ata_link structure
5223 * @ap: ATA port link is attached to
5224 * @link: Link structure to initialize
5225 * @pmp: Port multiplier port number
5226 *
5227 * Initialize @link.
5228 *
5229 * LOCKING:
5230 * Kernel thread context (may sleep)
5231 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5232 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5233 {
5234 int i;
5235
5236 /* clear everything except for devices */
5237 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5238 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5239
5240 link->ap = ap;
5241 link->pmp = pmp;
5242 link->active_tag = ATA_TAG_POISON;
5243 link->hw_sata_spd_limit = UINT_MAX;
5244
5245 /* can't use iterator, ap isn't initialized yet */
5246 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5247 struct ata_device *dev = &link->device[i];
5248
5249 dev->link = link;
5250 dev->devno = dev - link->device;
5251 #ifdef CONFIG_ATA_ACPI
5252 dev->gtf_filter = ata_acpi_gtf_filter;
5253 #endif
5254 ata_dev_init(dev);
5255 }
5256 }
5257
5258 /**
5259 * sata_link_init_spd - Initialize link->sata_spd_limit
5260 * @link: Link to configure sata_spd_limit for
5261 *
5262 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5263 * configured value.
5264 *
5265 * LOCKING:
5266 * Kernel thread context (may sleep).
5267 *
5268 * RETURNS:
5269 * 0 on success, -errno on failure.
5270 */
sata_link_init_spd(struct ata_link * link)5271 int sata_link_init_spd(struct ata_link *link)
5272 {
5273 u8 spd;
5274 int rc;
5275
5276 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5277 if (rc)
5278 return rc;
5279
5280 spd = (link->saved_scontrol >> 4) & 0xf;
5281 if (spd)
5282 link->hw_sata_spd_limit &= (1 << spd) - 1;
5283
5284 ata_force_link_limits(link);
5285
5286 link->sata_spd_limit = link->hw_sata_spd_limit;
5287
5288 return 0;
5289 }
5290
5291 /**
5292 * ata_port_alloc - allocate and initialize basic ATA port resources
5293 * @host: ATA host this allocated port belongs to
5294 *
5295 * Allocate and initialize basic ATA port resources.
5296 *
5297 * RETURNS:
5298 * Allocate ATA port on success, NULL on failure.
5299 *
5300 * LOCKING:
5301 * Inherited from calling layer (may sleep).
5302 */
ata_port_alloc(struct ata_host * host)5303 struct ata_port *ata_port_alloc(struct ata_host *host)
5304 {
5305 struct ata_port *ap;
5306
5307 DPRINTK("ENTER\n");
5308
5309 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5310 if (!ap)
5311 return NULL;
5312
5313 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5314 ap->lock = &host->lock;
5315 ap->print_id = -1;
5316 ap->local_port_no = -1;
5317 ap->host = host;
5318 ap->dev = host->dev;
5319
5320 #if defined(ATA_VERBOSE_DEBUG)
5321 /* turn on all debugging levels */
5322 ap->msg_enable = 0x00FF;
5323 #elif defined(ATA_DEBUG)
5324 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5325 #else
5326 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5327 #endif
5328
5329 mutex_init(&ap->scsi_scan_mutex);
5330 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5331 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5332 INIT_LIST_HEAD(&ap->eh_done_q);
5333 init_waitqueue_head(&ap->eh_wait_q);
5334 init_completion(&ap->park_req_pending);
5335 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5336 TIMER_DEFERRABLE);
5337
5338 ap->cbl = ATA_CBL_NONE;
5339
5340 ata_link_init(ap, &ap->link, 0);
5341
5342 #ifdef ATA_IRQ_TRAP
5343 ap->stats.unhandled_irq = 1;
5344 ap->stats.idle_irq = 1;
5345 #endif
5346 ata_sff_port_init(ap);
5347
5348 return ap;
5349 }
5350
ata_devres_release(struct device * gendev,void * res)5351 static void ata_devres_release(struct device *gendev, void *res)
5352 {
5353 struct ata_host *host = dev_get_drvdata(gendev);
5354 int i;
5355
5356 for (i = 0; i < host->n_ports; i++) {
5357 struct ata_port *ap = host->ports[i];
5358
5359 if (!ap)
5360 continue;
5361
5362 if (ap->scsi_host)
5363 scsi_host_put(ap->scsi_host);
5364
5365 }
5366
5367 dev_set_drvdata(gendev, NULL);
5368 ata_host_put(host);
5369 }
5370
ata_host_release(struct kref * kref)5371 static void ata_host_release(struct kref *kref)
5372 {
5373 struct ata_host *host = container_of(kref, struct ata_host, kref);
5374 int i;
5375
5376 for (i = 0; i < host->n_ports; i++) {
5377 struct ata_port *ap = host->ports[i];
5378
5379 kfree(ap->pmp_link);
5380 kfree(ap->slave_link);
5381 kfree(ap);
5382 host->ports[i] = NULL;
5383 }
5384 kfree(host);
5385 }
5386
ata_host_get(struct ata_host * host)5387 void ata_host_get(struct ata_host *host)
5388 {
5389 kref_get(&host->kref);
5390 }
5391
ata_host_put(struct ata_host * host)5392 void ata_host_put(struct ata_host *host)
5393 {
5394 kref_put(&host->kref, ata_host_release);
5395 }
5396 EXPORT_SYMBOL_GPL(ata_host_put);
5397
5398 /**
5399 * ata_host_alloc - allocate and init basic ATA host resources
5400 * @dev: generic device this host is associated with
5401 * @max_ports: maximum number of ATA ports associated with this host
5402 *
5403 * Allocate and initialize basic ATA host resources. LLD calls
5404 * this function to allocate a host, initializes it fully and
5405 * attaches it using ata_host_register().
5406 *
5407 * @max_ports ports are allocated and host->n_ports is
5408 * initialized to @max_ports. The caller is allowed to decrease
5409 * host->n_ports before calling ata_host_register(). The unused
5410 * ports will be automatically freed on registration.
5411 *
5412 * RETURNS:
5413 * Allocate ATA host on success, NULL on failure.
5414 *
5415 * LOCKING:
5416 * Inherited from calling layer (may sleep).
5417 */
ata_host_alloc(struct device * dev,int max_ports)5418 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5419 {
5420 struct ata_host *host;
5421 size_t sz;
5422 int i;
5423 void *dr;
5424
5425 DPRINTK("ENTER\n");
5426
5427 /* alloc a container for our list of ATA ports (buses) */
5428 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5429 host = kzalloc(sz, GFP_KERNEL);
5430 if (!host)
5431 return NULL;
5432
5433 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5434 goto err_free;
5435
5436 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5437 if (!dr)
5438 goto err_out;
5439
5440 devres_add(dev, dr);
5441 dev_set_drvdata(dev, host);
5442
5443 spin_lock_init(&host->lock);
5444 mutex_init(&host->eh_mutex);
5445 host->dev = dev;
5446 host->n_ports = max_ports;
5447 kref_init(&host->kref);
5448
5449 /* allocate ports bound to this host */
5450 for (i = 0; i < max_ports; i++) {
5451 struct ata_port *ap;
5452
5453 ap = ata_port_alloc(host);
5454 if (!ap)
5455 goto err_out;
5456
5457 ap->port_no = i;
5458 host->ports[i] = ap;
5459 }
5460
5461 devres_remove_group(dev, NULL);
5462 return host;
5463
5464 err_out:
5465 devres_release_group(dev, NULL);
5466 err_free:
5467 kfree(host);
5468 return NULL;
5469 }
5470 EXPORT_SYMBOL_GPL(ata_host_alloc);
5471
5472 /**
5473 * ata_host_alloc_pinfo - alloc host and init with port_info array
5474 * @dev: generic device this host is associated with
5475 * @ppi: array of ATA port_info to initialize host with
5476 * @n_ports: number of ATA ports attached to this host
5477 *
5478 * Allocate ATA host and initialize with info from @ppi. If NULL
5479 * terminated, @ppi may contain fewer entries than @n_ports. The
5480 * last entry will be used for the remaining ports.
5481 *
5482 * RETURNS:
5483 * Allocate ATA host on success, NULL on failure.
5484 *
5485 * LOCKING:
5486 * Inherited from calling layer (may sleep).
5487 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5488 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5489 const struct ata_port_info * const * ppi,
5490 int n_ports)
5491 {
5492 const struct ata_port_info *pi;
5493 struct ata_host *host;
5494 int i, j;
5495
5496 host = ata_host_alloc(dev, n_ports);
5497 if (!host)
5498 return NULL;
5499
5500 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5501 struct ata_port *ap = host->ports[i];
5502
5503 if (ppi[j])
5504 pi = ppi[j++];
5505
5506 ap->pio_mask = pi->pio_mask;
5507 ap->mwdma_mask = pi->mwdma_mask;
5508 ap->udma_mask = pi->udma_mask;
5509 ap->flags |= pi->flags;
5510 ap->link.flags |= pi->link_flags;
5511 ap->ops = pi->port_ops;
5512
5513 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5514 host->ops = pi->port_ops;
5515 }
5516
5517 return host;
5518 }
5519 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5520
ata_host_stop(struct device * gendev,void * res)5521 static void ata_host_stop(struct device *gendev, void *res)
5522 {
5523 struct ata_host *host = dev_get_drvdata(gendev);
5524 int i;
5525
5526 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5527
5528 for (i = 0; i < host->n_ports; i++) {
5529 struct ata_port *ap = host->ports[i];
5530
5531 if (ap->ops->port_stop)
5532 ap->ops->port_stop(ap);
5533 }
5534
5535 if (host->ops->host_stop)
5536 host->ops->host_stop(host);
5537 }
5538
5539 /**
5540 * ata_finalize_port_ops - finalize ata_port_operations
5541 * @ops: ata_port_operations to finalize
5542 *
5543 * An ata_port_operations can inherit from another ops and that
5544 * ops can again inherit from another. This can go on as many
5545 * times as necessary as long as there is no loop in the
5546 * inheritance chain.
5547 *
5548 * Ops tables are finalized when the host is started. NULL or
5549 * unspecified entries are inherited from the closet ancestor
5550 * which has the method and the entry is populated with it.
5551 * After finalization, the ops table directly points to all the
5552 * methods and ->inherits is no longer necessary and cleared.
5553 *
5554 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5555 *
5556 * LOCKING:
5557 * None.
5558 */
ata_finalize_port_ops(struct ata_port_operations * ops)5559 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5560 {
5561 static DEFINE_SPINLOCK(lock);
5562 const struct ata_port_operations *cur;
5563 void **begin = (void **)ops;
5564 void **end = (void **)&ops->inherits;
5565 void **pp;
5566
5567 if (!ops || !ops->inherits)
5568 return;
5569
5570 spin_lock(&lock);
5571
5572 for (cur = ops->inherits; cur; cur = cur->inherits) {
5573 void **inherit = (void **)cur;
5574
5575 for (pp = begin; pp < end; pp++, inherit++)
5576 if (!*pp)
5577 *pp = *inherit;
5578 }
5579
5580 for (pp = begin; pp < end; pp++)
5581 if (IS_ERR(*pp))
5582 *pp = NULL;
5583
5584 ops->inherits = NULL;
5585
5586 spin_unlock(&lock);
5587 }
5588
5589 /**
5590 * ata_host_start - start and freeze ports of an ATA host
5591 * @host: ATA host to start ports for
5592 *
5593 * Start and then freeze ports of @host. Started status is
5594 * recorded in host->flags, so this function can be called
5595 * multiple times. Ports are guaranteed to get started only
5596 * once. If host->ops isn't initialized yet, its set to the
5597 * first non-dummy port ops.
5598 *
5599 * LOCKING:
5600 * Inherited from calling layer (may sleep).
5601 *
5602 * RETURNS:
5603 * 0 if all ports are started successfully, -errno otherwise.
5604 */
ata_host_start(struct ata_host * host)5605 int ata_host_start(struct ata_host *host)
5606 {
5607 int have_stop = 0;
5608 void *start_dr = NULL;
5609 int i, rc;
5610
5611 if (host->flags & ATA_HOST_STARTED)
5612 return 0;
5613
5614 ata_finalize_port_ops(host->ops);
5615
5616 for (i = 0; i < host->n_ports; i++) {
5617 struct ata_port *ap = host->ports[i];
5618
5619 ata_finalize_port_ops(ap->ops);
5620
5621 if (!host->ops && !ata_port_is_dummy(ap))
5622 host->ops = ap->ops;
5623
5624 if (ap->ops->port_stop)
5625 have_stop = 1;
5626 }
5627
5628 if (host->ops && host->ops->host_stop)
5629 have_stop = 1;
5630
5631 if (have_stop) {
5632 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5633 if (!start_dr)
5634 return -ENOMEM;
5635 }
5636
5637 for (i = 0; i < host->n_ports; i++) {
5638 struct ata_port *ap = host->ports[i];
5639
5640 if (ap->ops->port_start) {
5641 rc = ap->ops->port_start(ap);
5642 if (rc) {
5643 if (rc != -ENODEV)
5644 dev_err(host->dev,
5645 "failed to start port %d (errno=%d)\n",
5646 i, rc);
5647 goto err_out;
5648 }
5649 }
5650 ata_eh_freeze_port(ap);
5651 }
5652
5653 if (start_dr)
5654 devres_add(host->dev, start_dr);
5655 host->flags |= ATA_HOST_STARTED;
5656 return 0;
5657
5658 err_out:
5659 while (--i >= 0) {
5660 struct ata_port *ap = host->ports[i];
5661
5662 if (ap->ops->port_stop)
5663 ap->ops->port_stop(ap);
5664 }
5665 devres_free(start_dr);
5666 return rc;
5667 }
5668 EXPORT_SYMBOL_GPL(ata_host_start);
5669
5670 /**
5671 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5672 * @host: host to initialize
5673 * @dev: device host is attached to
5674 * @ops: port_ops
5675 *
5676 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5677 void ata_host_init(struct ata_host *host, struct device *dev,
5678 struct ata_port_operations *ops)
5679 {
5680 spin_lock_init(&host->lock);
5681 mutex_init(&host->eh_mutex);
5682 host->n_tags = ATA_MAX_QUEUE;
5683 host->dev = dev;
5684 host->ops = ops;
5685 kref_init(&host->kref);
5686 }
5687 EXPORT_SYMBOL_GPL(ata_host_init);
5688
__ata_port_probe(struct ata_port * ap)5689 void __ata_port_probe(struct ata_port *ap)
5690 {
5691 struct ata_eh_info *ehi = &ap->link.eh_info;
5692 unsigned long flags;
5693
5694 /* kick EH for boot probing */
5695 spin_lock_irqsave(ap->lock, flags);
5696
5697 ehi->probe_mask |= ATA_ALL_DEVICES;
5698 ehi->action |= ATA_EH_RESET;
5699 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5700
5701 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5702 ap->pflags |= ATA_PFLAG_LOADING;
5703 ata_port_schedule_eh(ap);
5704
5705 spin_unlock_irqrestore(ap->lock, flags);
5706 }
5707
ata_port_probe(struct ata_port * ap)5708 int ata_port_probe(struct ata_port *ap)
5709 {
5710 int rc = 0;
5711
5712 if (ap->ops->error_handler) {
5713 __ata_port_probe(ap);
5714 ata_port_wait_eh(ap);
5715 } else {
5716 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5717 rc = ata_bus_probe(ap);
5718 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5719 }
5720 return rc;
5721 }
5722
5723
async_port_probe(void * data,async_cookie_t cookie)5724 static void async_port_probe(void *data, async_cookie_t cookie)
5725 {
5726 struct ata_port *ap = data;
5727
5728 /*
5729 * If we're not allowed to scan this host in parallel,
5730 * we need to wait until all previous scans have completed
5731 * before going further.
5732 * Jeff Garzik says this is only within a controller, so we
5733 * don't need to wait for port 0, only for later ports.
5734 */
5735 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5736 async_synchronize_cookie(cookie);
5737
5738 (void)ata_port_probe(ap);
5739
5740 /* in order to keep device order, we need to synchronize at this point */
5741 async_synchronize_cookie(cookie);
5742
5743 ata_scsi_scan_host(ap, 1);
5744 }
5745
5746 /**
5747 * ata_host_register - register initialized ATA host
5748 * @host: ATA host to register
5749 * @sht: template for SCSI host
5750 *
5751 * Register initialized ATA host. @host is allocated using
5752 * ata_host_alloc() and fully initialized by LLD. This function
5753 * starts ports, registers @host with ATA and SCSI layers and
5754 * probe registered devices.
5755 *
5756 * LOCKING:
5757 * Inherited from calling layer (may sleep).
5758 *
5759 * RETURNS:
5760 * 0 on success, -errno otherwise.
5761 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)5762 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5763 {
5764 int i, rc;
5765
5766 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5767
5768 /* host must have been started */
5769 if (!(host->flags & ATA_HOST_STARTED)) {
5770 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5771 WARN_ON(1);
5772 return -EINVAL;
5773 }
5774
5775 /* Blow away unused ports. This happens when LLD can't
5776 * determine the exact number of ports to allocate at
5777 * allocation time.
5778 */
5779 for (i = host->n_ports; host->ports[i]; i++)
5780 kfree(host->ports[i]);
5781
5782 /* give ports names and add SCSI hosts */
5783 for (i = 0; i < host->n_ports; i++) {
5784 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5785 host->ports[i]->local_port_no = i + 1;
5786 }
5787
5788 /* Create associated sysfs transport objects */
5789 for (i = 0; i < host->n_ports; i++) {
5790 rc = ata_tport_add(host->dev,host->ports[i]);
5791 if (rc) {
5792 goto err_tadd;
5793 }
5794 }
5795
5796 rc = ata_scsi_add_hosts(host, sht);
5797 if (rc)
5798 goto err_tadd;
5799
5800 /* set cable, sata_spd_limit and report */
5801 for (i = 0; i < host->n_ports; i++) {
5802 struct ata_port *ap = host->ports[i];
5803 unsigned long xfer_mask;
5804
5805 /* set SATA cable type if still unset */
5806 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5807 ap->cbl = ATA_CBL_SATA;
5808
5809 /* init sata_spd_limit to the current value */
5810 sata_link_init_spd(&ap->link);
5811 if (ap->slave_link)
5812 sata_link_init_spd(ap->slave_link);
5813
5814 /* print per-port info to dmesg */
5815 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5816 ap->udma_mask);
5817
5818 if (!ata_port_is_dummy(ap)) {
5819 ata_port_info(ap, "%cATA max %s %s\n",
5820 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5821 ata_mode_string(xfer_mask),
5822 ap->link.eh_info.desc);
5823 ata_ehi_clear_desc(&ap->link.eh_info);
5824 } else
5825 ata_port_info(ap, "DUMMY\n");
5826 }
5827
5828 /* perform each probe asynchronously */
5829 for (i = 0; i < host->n_ports; i++) {
5830 struct ata_port *ap = host->ports[i];
5831 ap->cookie = async_schedule(async_port_probe, ap);
5832 }
5833
5834 return 0;
5835
5836 err_tadd:
5837 while (--i >= 0) {
5838 ata_tport_delete(host->ports[i]);
5839 }
5840 return rc;
5841
5842 }
5843 EXPORT_SYMBOL_GPL(ata_host_register);
5844
5845 /**
5846 * ata_host_activate - start host, request IRQ and register it
5847 * @host: target ATA host
5848 * @irq: IRQ to request
5849 * @irq_handler: irq_handler used when requesting IRQ
5850 * @irq_flags: irq_flags used when requesting IRQ
5851 * @sht: scsi_host_template to use when registering the host
5852 *
5853 * After allocating an ATA host and initializing it, most libata
5854 * LLDs perform three steps to activate the host - start host,
5855 * request IRQ and register it. This helper takes necessary
5856 * arguments and performs the three steps in one go.
5857 *
5858 * An invalid IRQ skips the IRQ registration and expects the host to
5859 * have set polling mode on the port. In this case, @irq_handler
5860 * should be NULL.
5861 *
5862 * LOCKING:
5863 * Inherited from calling layer (may sleep).
5864 *
5865 * RETURNS:
5866 * 0 on success, -errno otherwise.
5867 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)5868 int ata_host_activate(struct ata_host *host, int irq,
5869 irq_handler_t irq_handler, unsigned long irq_flags,
5870 struct scsi_host_template *sht)
5871 {
5872 int i, rc;
5873 char *irq_desc;
5874
5875 rc = ata_host_start(host);
5876 if (rc)
5877 return rc;
5878
5879 /* Special case for polling mode */
5880 if (!irq) {
5881 WARN_ON(irq_handler);
5882 return ata_host_register(host, sht);
5883 }
5884
5885 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5886 dev_driver_string(host->dev),
5887 dev_name(host->dev));
5888 if (!irq_desc)
5889 return -ENOMEM;
5890
5891 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5892 irq_desc, host);
5893 if (rc)
5894 return rc;
5895
5896 for (i = 0; i < host->n_ports; i++)
5897 ata_port_desc(host->ports[i], "irq %d", irq);
5898
5899 rc = ata_host_register(host, sht);
5900 /* if failed, just free the IRQ and leave ports alone */
5901 if (rc)
5902 devm_free_irq(host->dev, irq, host);
5903
5904 return rc;
5905 }
5906 EXPORT_SYMBOL_GPL(ata_host_activate);
5907
5908 /**
5909 * ata_port_detach - Detach ATA port in preparation of device removal
5910 * @ap: ATA port to be detached
5911 *
5912 * Detach all ATA devices and the associated SCSI devices of @ap;
5913 * then, remove the associated SCSI host. @ap is guaranteed to
5914 * be quiescent on return from this function.
5915 *
5916 * LOCKING:
5917 * Kernel thread context (may sleep).
5918 */
ata_port_detach(struct ata_port * ap)5919 static void ata_port_detach(struct ata_port *ap)
5920 {
5921 unsigned long flags;
5922 struct ata_link *link;
5923 struct ata_device *dev;
5924
5925 if (!ap->ops->error_handler)
5926 goto skip_eh;
5927
5928 /* tell EH we're leaving & flush EH */
5929 spin_lock_irqsave(ap->lock, flags);
5930 ap->pflags |= ATA_PFLAG_UNLOADING;
5931 ata_port_schedule_eh(ap);
5932 spin_unlock_irqrestore(ap->lock, flags);
5933
5934 /* wait till EH commits suicide */
5935 ata_port_wait_eh(ap);
5936
5937 /* it better be dead now */
5938 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5939
5940 cancel_delayed_work_sync(&ap->hotplug_task);
5941
5942 skip_eh:
5943 /* clean up zpodd on port removal */
5944 ata_for_each_link(link, ap, HOST_FIRST) {
5945 ata_for_each_dev(dev, link, ALL) {
5946 if (zpodd_dev_enabled(dev))
5947 zpodd_exit(dev);
5948 }
5949 }
5950 if (ap->pmp_link) {
5951 int i;
5952 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5953 ata_tlink_delete(&ap->pmp_link[i]);
5954 }
5955 /* remove the associated SCSI host */
5956 scsi_remove_host(ap->scsi_host);
5957 ata_tport_delete(ap);
5958 }
5959
5960 /**
5961 * ata_host_detach - Detach all ports of an ATA host
5962 * @host: Host to detach
5963 *
5964 * Detach all ports of @host.
5965 *
5966 * LOCKING:
5967 * Kernel thread context (may sleep).
5968 */
ata_host_detach(struct ata_host * host)5969 void ata_host_detach(struct ata_host *host)
5970 {
5971 int i;
5972
5973 for (i = 0; i < host->n_ports; i++) {
5974 /* Ensure ata_port probe has completed */
5975 async_synchronize_cookie(host->ports[i]->cookie + 1);
5976 ata_port_detach(host->ports[i]);
5977 }
5978
5979 /* the host is dead now, dissociate ACPI */
5980 ata_acpi_dissociate(host);
5981 }
5982 EXPORT_SYMBOL_GPL(ata_host_detach);
5983
5984 #ifdef CONFIG_PCI
5985
5986 /**
5987 * ata_pci_remove_one - PCI layer callback for device removal
5988 * @pdev: PCI device that was removed
5989 *
5990 * PCI layer indicates to libata via this hook that hot-unplug or
5991 * module unload event has occurred. Detach all ports. Resource
5992 * release is handled via devres.
5993 *
5994 * LOCKING:
5995 * Inherited from PCI layer (may sleep).
5996 */
ata_pci_remove_one(struct pci_dev * pdev)5997 void ata_pci_remove_one(struct pci_dev *pdev)
5998 {
5999 struct ata_host *host = pci_get_drvdata(pdev);
6000
6001 ata_host_detach(host);
6002 }
6003 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6004
ata_pci_shutdown_one(struct pci_dev * pdev)6005 void ata_pci_shutdown_one(struct pci_dev *pdev)
6006 {
6007 struct ata_host *host = pci_get_drvdata(pdev);
6008 int i;
6009
6010 for (i = 0; i < host->n_ports; i++) {
6011 struct ata_port *ap = host->ports[i];
6012
6013 ap->pflags |= ATA_PFLAG_FROZEN;
6014
6015 /* Disable port interrupts */
6016 if (ap->ops->freeze)
6017 ap->ops->freeze(ap);
6018
6019 /* Stop the port DMA engines */
6020 if (ap->ops->port_stop)
6021 ap->ops->port_stop(ap);
6022 }
6023 }
6024 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6025
6026 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6027 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6028 {
6029 unsigned long tmp = 0;
6030
6031 switch (bits->width) {
6032 case 1: {
6033 u8 tmp8 = 0;
6034 pci_read_config_byte(pdev, bits->reg, &tmp8);
6035 tmp = tmp8;
6036 break;
6037 }
6038 case 2: {
6039 u16 tmp16 = 0;
6040 pci_read_config_word(pdev, bits->reg, &tmp16);
6041 tmp = tmp16;
6042 break;
6043 }
6044 case 4: {
6045 u32 tmp32 = 0;
6046 pci_read_config_dword(pdev, bits->reg, &tmp32);
6047 tmp = tmp32;
6048 break;
6049 }
6050
6051 default:
6052 return -EINVAL;
6053 }
6054
6055 tmp &= bits->mask;
6056
6057 return (tmp == bits->val) ? 1 : 0;
6058 }
6059 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6060
6061 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6062 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6063 {
6064 pci_save_state(pdev);
6065 pci_disable_device(pdev);
6066
6067 if (mesg.event & PM_EVENT_SLEEP)
6068 pci_set_power_state(pdev, PCI_D3hot);
6069 }
6070 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6071
ata_pci_device_do_resume(struct pci_dev * pdev)6072 int ata_pci_device_do_resume(struct pci_dev *pdev)
6073 {
6074 int rc;
6075
6076 pci_set_power_state(pdev, PCI_D0);
6077 pci_restore_state(pdev);
6078
6079 rc = pcim_enable_device(pdev);
6080 if (rc) {
6081 dev_err(&pdev->dev,
6082 "failed to enable device after resume (%d)\n", rc);
6083 return rc;
6084 }
6085
6086 pci_set_master(pdev);
6087 return 0;
6088 }
6089 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6090
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6091 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6092 {
6093 struct ata_host *host = pci_get_drvdata(pdev);
6094 int rc = 0;
6095
6096 rc = ata_host_suspend(host, mesg);
6097 if (rc)
6098 return rc;
6099
6100 ata_pci_device_do_suspend(pdev, mesg);
6101
6102 return 0;
6103 }
6104 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6105
ata_pci_device_resume(struct pci_dev * pdev)6106 int ata_pci_device_resume(struct pci_dev *pdev)
6107 {
6108 struct ata_host *host = pci_get_drvdata(pdev);
6109 int rc;
6110
6111 rc = ata_pci_device_do_resume(pdev);
6112 if (rc == 0)
6113 ata_host_resume(host);
6114 return rc;
6115 }
6116 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6117 #endif /* CONFIG_PM */
6118 #endif /* CONFIG_PCI */
6119
6120 /**
6121 * ata_platform_remove_one - Platform layer callback for device removal
6122 * @pdev: Platform device that was removed
6123 *
6124 * Platform layer indicates to libata via this hook that hot-unplug or
6125 * module unload event has occurred. Detach all ports. Resource
6126 * release is handled via devres.
6127 *
6128 * LOCKING:
6129 * Inherited from platform layer (may sleep).
6130 */
ata_platform_remove_one(struct platform_device * pdev)6131 int ata_platform_remove_one(struct platform_device *pdev)
6132 {
6133 struct ata_host *host = platform_get_drvdata(pdev);
6134
6135 ata_host_detach(host);
6136
6137 return 0;
6138 }
6139 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6140
6141 #ifdef CONFIG_ATA_FORCE
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6142 static int __init ata_parse_force_one(char **cur,
6143 struct ata_force_ent *force_ent,
6144 const char **reason)
6145 {
6146 static const struct ata_force_param force_tbl[] __initconst = {
6147 { "40c", .cbl = ATA_CBL_PATA40 },
6148 { "80c", .cbl = ATA_CBL_PATA80 },
6149 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6150 { "unk", .cbl = ATA_CBL_PATA_UNK },
6151 { "ign", .cbl = ATA_CBL_PATA_IGN },
6152 { "sata", .cbl = ATA_CBL_SATA },
6153 { "1.5Gbps", .spd_limit = 1 },
6154 { "3.0Gbps", .spd_limit = 2 },
6155 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6156 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6157 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6158 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6159 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI },
6160 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI },
6161 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6162 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6163 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6164 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6165 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6166 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6167 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6168 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6169 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6170 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6171 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6172 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6173 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6174 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6175 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6176 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6177 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6178 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6179 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6180 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6181 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6182 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6183 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6184 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6185 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6186 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6187 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6188 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6189 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6190 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6191 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6192 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6193 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6194 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6195 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6196 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6197 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6198 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6199 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6200 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6201 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6202 };
6203 char *start = *cur, *p = *cur;
6204 char *id, *val, *endp;
6205 const struct ata_force_param *match_fp = NULL;
6206 int nr_matches = 0, i;
6207
6208 /* find where this param ends and update *cur */
6209 while (*p != '\0' && *p != ',')
6210 p++;
6211
6212 if (*p == '\0')
6213 *cur = p;
6214 else
6215 *cur = p + 1;
6216
6217 *p = '\0';
6218
6219 /* parse */
6220 p = strchr(start, ':');
6221 if (!p) {
6222 val = strstrip(start);
6223 goto parse_val;
6224 }
6225 *p = '\0';
6226
6227 id = strstrip(start);
6228 val = strstrip(p + 1);
6229
6230 /* parse id */
6231 p = strchr(id, '.');
6232 if (p) {
6233 *p++ = '\0';
6234 force_ent->device = simple_strtoul(p, &endp, 10);
6235 if (p == endp || *endp != '\0') {
6236 *reason = "invalid device";
6237 return -EINVAL;
6238 }
6239 }
6240
6241 force_ent->port = simple_strtoul(id, &endp, 10);
6242 if (id == endp || *endp != '\0') {
6243 *reason = "invalid port/link";
6244 return -EINVAL;
6245 }
6246
6247 parse_val:
6248 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6249 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6250 const struct ata_force_param *fp = &force_tbl[i];
6251
6252 if (strncasecmp(val, fp->name, strlen(val)))
6253 continue;
6254
6255 nr_matches++;
6256 match_fp = fp;
6257
6258 if (strcasecmp(val, fp->name) == 0) {
6259 nr_matches = 1;
6260 break;
6261 }
6262 }
6263
6264 if (!nr_matches) {
6265 *reason = "unknown value";
6266 return -EINVAL;
6267 }
6268 if (nr_matches > 1) {
6269 *reason = "ambiguous value";
6270 return -EINVAL;
6271 }
6272
6273 force_ent->param = *match_fp;
6274
6275 return 0;
6276 }
6277
ata_parse_force_param(void)6278 static void __init ata_parse_force_param(void)
6279 {
6280 int idx = 0, size = 1;
6281 int last_port = -1, last_device = -1;
6282 char *p, *cur, *next;
6283
6284 /* calculate maximum number of params and allocate force_tbl */
6285 for (p = ata_force_param_buf; *p; p++)
6286 if (*p == ',')
6287 size++;
6288
6289 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6290 if (!ata_force_tbl) {
6291 printk(KERN_WARNING "ata: failed to extend force table, "
6292 "libata.force ignored\n");
6293 return;
6294 }
6295
6296 /* parse and populate the table */
6297 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6298 const char *reason = "";
6299 struct ata_force_ent te = { .port = -1, .device = -1 };
6300
6301 next = cur;
6302 if (ata_parse_force_one(&next, &te, &reason)) {
6303 printk(KERN_WARNING "ata: failed to parse force "
6304 "parameter \"%s\" (%s)\n",
6305 cur, reason);
6306 continue;
6307 }
6308
6309 if (te.port == -1) {
6310 te.port = last_port;
6311 te.device = last_device;
6312 }
6313
6314 ata_force_tbl[idx++] = te;
6315
6316 last_port = te.port;
6317 last_device = te.device;
6318 }
6319
6320 ata_force_tbl_size = idx;
6321 }
6322
ata_free_force_param(void)6323 static void ata_free_force_param(void)
6324 {
6325 kfree(ata_force_tbl);
6326 }
6327 #else
ata_parse_force_param(void)6328 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6329 static inline void ata_free_force_param(void) { }
6330 #endif
6331
ata_init(void)6332 static int __init ata_init(void)
6333 {
6334 int rc;
6335
6336 ata_parse_force_param();
6337
6338 rc = ata_sff_init();
6339 if (rc) {
6340 ata_free_force_param();
6341 return rc;
6342 }
6343
6344 libata_transport_init();
6345 ata_scsi_transport_template = ata_attach_transport();
6346 if (!ata_scsi_transport_template) {
6347 ata_sff_exit();
6348 rc = -ENOMEM;
6349 goto err_out;
6350 }
6351
6352 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6353 return 0;
6354
6355 err_out:
6356 return rc;
6357 }
6358
ata_exit(void)6359 static void __exit ata_exit(void)
6360 {
6361 ata_release_transport(ata_scsi_transport_template);
6362 libata_transport_exit();
6363 ata_sff_exit();
6364 ata_free_force_param();
6365 }
6366
6367 subsys_initcall(ata_init);
6368 module_exit(ata_exit);
6369
6370 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6371
ata_ratelimit(void)6372 int ata_ratelimit(void)
6373 {
6374 return __ratelimit(&ratelimit);
6375 }
6376 EXPORT_SYMBOL_GPL(ata_ratelimit);
6377
6378 /**
6379 * ata_msleep - ATA EH owner aware msleep
6380 * @ap: ATA port to attribute the sleep to
6381 * @msecs: duration to sleep in milliseconds
6382 *
6383 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6384 * ownership is released before going to sleep and reacquired
6385 * after the sleep is complete. IOW, other ports sharing the
6386 * @ap->host will be allowed to own the EH while this task is
6387 * sleeping.
6388 *
6389 * LOCKING:
6390 * Might sleep.
6391 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6392 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6393 {
6394 bool owns_eh = ap && ap->host->eh_owner == current;
6395
6396 if (owns_eh)
6397 ata_eh_release(ap);
6398
6399 if (msecs < 20) {
6400 unsigned long usecs = msecs * USEC_PER_MSEC;
6401 usleep_range(usecs, usecs + 50);
6402 } else {
6403 msleep(msecs);
6404 }
6405
6406 if (owns_eh)
6407 ata_eh_acquire(ap);
6408 }
6409 EXPORT_SYMBOL_GPL(ata_msleep);
6410
6411 /**
6412 * ata_wait_register - wait until register value changes
6413 * @ap: ATA port to wait register for, can be NULL
6414 * @reg: IO-mapped register
6415 * @mask: Mask to apply to read register value
6416 * @val: Wait condition
6417 * @interval: polling interval in milliseconds
6418 * @timeout: timeout in milliseconds
6419 *
6420 * Waiting for some bits of register to change is a common
6421 * operation for ATA controllers. This function reads 32bit LE
6422 * IO-mapped register @reg and tests for the following condition.
6423 *
6424 * (*@reg & mask) != val
6425 *
6426 * If the condition is met, it returns; otherwise, the process is
6427 * repeated after @interval_msec until timeout.
6428 *
6429 * LOCKING:
6430 * Kernel thread context (may sleep)
6431 *
6432 * RETURNS:
6433 * The final register value.
6434 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6435 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6436 unsigned long interval, unsigned long timeout)
6437 {
6438 unsigned long deadline;
6439 u32 tmp;
6440
6441 tmp = ioread32(reg);
6442
6443 /* Calculate timeout _after_ the first read to make sure
6444 * preceding writes reach the controller before starting to
6445 * eat away the timeout.
6446 */
6447 deadline = ata_deadline(jiffies, timeout);
6448
6449 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6450 ata_msleep(ap, interval);
6451 tmp = ioread32(reg);
6452 }
6453
6454 return tmp;
6455 }
6456 EXPORT_SYMBOL_GPL(ata_wait_register);
6457
6458 /*
6459 * Dummy port_ops
6460 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6461 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6462 {
6463 return AC_ERR_SYSTEM;
6464 }
6465
ata_dummy_error_handler(struct ata_port * ap)6466 static void ata_dummy_error_handler(struct ata_port *ap)
6467 {
6468 /* truly dummy */
6469 }
6470
6471 struct ata_port_operations ata_dummy_port_ops = {
6472 .qc_prep = ata_noop_qc_prep,
6473 .qc_issue = ata_dummy_qc_issue,
6474 .error_handler = ata_dummy_error_handler,
6475 .sched_eh = ata_std_sched_eh,
6476 .end_eh = ata_std_end_eh,
6477 };
6478 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6479
6480 const struct ata_port_info ata_dummy_port_info = {
6481 .port_ops = &ata_dummy_port_ops,
6482 };
6483 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6484
6485 /*
6486 * Utility print functions
6487 */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)6488 void ata_port_printk(const struct ata_port *ap, const char *level,
6489 const char *fmt, ...)
6490 {
6491 struct va_format vaf;
6492 va_list args;
6493
6494 va_start(args, fmt);
6495
6496 vaf.fmt = fmt;
6497 vaf.va = &args;
6498
6499 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6500
6501 va_end(args);
6502 }
6503 EXPORT_SYMBOL(ata_port_printk);
6504
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)6505 void ata_link_printk(const struct ata_link *link, const char *level,
6506 const char *fmt, ...)
6507 {
6508 struct va_format vaf;
6509 va_list args;
6510
6511 va_start(args, fmt);
6512
6513 vaf.fmt = fmt;
6514 vaf.va = &args;
6515
6516 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6517 printk("%sata%u.%02u: %pV",
6518 level, link->ap->print_id, link->pmp, &vaf);
6519 else
6520 printk("%sata%u: %pV",
6521 level, link->ap->print_id, &vaf);
6522
6523 va_end(args);
6524 }
6525 EXPORT_SYMBOL(ata_link_printk);
6526
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)6527 void ata_dev_printk(const struct ata_device *dev, const char *level,
6528 const char *fmt, ...)
6529 {
6530 struct va_format vaf;
6531 va_list args;
6532
6533 va_start(args, fmt);
6534
6535 vaf.fmt = fmt;
6536 vaf.va = &args;
6537
6538 printk("%sata%u.%02u: %pV",
6539 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6540 &vaf);
6541
6542 va_end(args);
6543 }
6544 EXPORT_SYMBOL(ata_dev_printk);
6545
ata_print_version(const struct device * dev,const char * version)6546 void ata_print_version(const struct device *dev, const char *version)
6547 {
6548 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6549 }
6550 EXPORT_SYMBOL(ata_print_version);
6551