1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78
79 #include "libata.h"
80 #include "libata-transport.h"
81
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93 };
94
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100 };
101
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109
110 struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118 };
119
120 struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124 };
125
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179
ata_sstatus_online(u32 sstatus)180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 return (sstatus & 0xf) == 0x3;
183 }
184
185 /**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199 {
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242 }
243
244 /**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258 {
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295 }
296
297 /**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
ata_dev_phys_link(struct ata_device * dev)311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320 }
321
322 /**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
ata_force_cbl(struct ata_port * ap)335 void ata_force_cbl(struct ata_port *ap)
336 {
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352 }
353
354 /**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
ata_force_link_limits(struct ata_link * link)370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404 }
405
406 /**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
ata_force_xfermask(struct ata_device * dev)417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458 }
459
460 /**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
ata_force_horkage(struct ata_device * dev)471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501 }
502
503 /**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
atapi_cmd_type(u8 opcode)515 int atapi_cmd_type(u8 opcode)
516 {
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539 }
540
541 /**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584
585 /**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642 };
643
644 /**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683 }
684
685 /**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732 }
733
734 /**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag,int class)755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758 {
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862 }
863
864 /**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882 {
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887
888 /**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908
909 static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912 } ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917 };
918
919 /**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
ata_xfer_mask2mode(unsigned long xfer_mask)932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941 }
942
943 /**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
ata_xfer_mode2mask(u8 xfer_mode)955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964 }
965
966 /**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
ata_xfer_mode2shift(unsigned long xfer_mode)978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986 }
987
988 /**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
ata_mode_string(unsigned long xfer_mask)1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032 }
1033
sata_spd_string(unsigned int spd)1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045 }
1046
1047 /**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
ata_dev_classify(const struct ata_taskfile * tf)1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112 }
1113
1114 /**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131 {
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148 }
1149
1150 /**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166 {
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175 }
1176
ata_id_n_sectors(const u16 * id)1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192 }
1193
ata_tf_to_lba48(const struct ata_taskfile * tf)1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206 }
1207
ata_tf_to_lba(const struct ata_taskfile * tf)1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218 }
1219
1220 /**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269 }
1270
1271 /**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
ata_hpa_resize(struct ata_device * dev)1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
ata_dump_id(const u16 * id)1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463 }
1464
1465 /**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
ata_id_xfermask(const u16 * id)1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533
ata_qc_complete_internal(struct ata_queued_cmd * qc)1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539 }
1540
1541 /**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567 {
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int preempted_tag;
1574 u32 preempted_sactive;
1575 u64 preempted_qc_active;
1576 int preempted_nr_active_links;
1577 DECLARE_COMPLETION_ONSTACK(wait);
1578 unsigned long flags;
1579 unsigned int err_mask;
1580 int rc;
1581
1582 spin_lock_irqsave(ap->lock, flags);
1583
1584 /* no internal command while frozen */
1585 if (ap->pflags & ATA_PFLAG_FROZEN) {
1586 spin_unlock_irqrestore(ap->lock, flags);
1587 return AC_ERR_SYSTEM;
1588 }
1589
1590 /* initialize internal qc */
1591 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1592
1593 qc->tag = ATA_TAG_INTERNAL;
1594 qc->hw_tag = 0;
1595 qc->scsicmd = NULL;
1596 qc->ap = ap;
1597 qc->dev = dev;
1598 ata_qc_reinit(qc);
1599
1600 preempted_tag = link->active_tag;
1601 preempted_sactive = link->sactive;
1602 preempted_qc_active = ap->qc_active;
1603 preempted_nr_active_links = ap->nr_active_links;
1604 link->active_tag = ATA_TAG_POISON;
1605 link->sactive = 0;
1606 ap->qc_active = 0;
1607 ap->nr_active_links = 0;
1608
1609 /* prepare & issue qc */
1610 qc->tf = *tf;
1611 if (cdb)
1612 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1613
1614 /* some SATA bridges need us to indicate data xfer direction */
1615 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1616 dma_dir == DMA_FROM_DEVICE)
1617 qc->tf.feature |= ATAPI_DMADIR;
1618
1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
1622 unsigned int i, buflen = 0;
1623 struct scatterlist *sg;
1624
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
1627
1628 ata_sg_init(qc, sgl, n_elem);
1629 qc->nbytes = buflen;
1630 }
1631
1632 qc->private_data = &wait;
1633 qc->complete_fn = ata_qc_complete_internal;
1634
1635 ata_qc_issue(qc);
1636
1637 spin_unlock_irqrestore(ap->lock, flags);
1638
1639 if (!timeout) {
1640 if (ata_probe_timeout)
1641 timeout = ata_probe_timeout * 1000;
1642 else {
1643 timeout = ata_internal_cmd_timeout(dev, command);
1644 auto_timeout = 1;
1645 }
1646 }
1647
1648 if (ap->ops->error_handler)
1649 ata_eh_release(ap);
1650
1651 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1652
1653 if (ap->ops->error_handler)
1654 ata_eh_acquire(ap);
1655
1656 ata_sff_flush_pio_task(ap);
1657
1658 if (!rc) {
1659 spin_lock_irqsave(ap->lock, flags);
1660
1661 /* We're racing with irq here. If we lose, the
1662 * following test prevents us from completing the qc
1663 * twice. If we win, the port is frozen and will be
1664 * cleaned up by ->post_internal_cmd().
1665 */
1666 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1667 qc->err_mask |= AC_ERR_TIMEOUT;
1668
1669 if (ap->ops->error_handler)
1670 ata_port_freeze(ap);
1671 else
1672 ata_qc_complete(qc);
1673
1674 if (ata_msg_warn(ap))
1675 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1676 command);
1677 }
1678
1679 spin_unlock_irqrestore(ap->lock, flags);
1680 }
1681
1682 /* do post_internal_cmd */
1683 if (ap->ops->post_internal_cmd)
1684 ap->ops->post_internal_cmd(qc);
1685
1686 /* perform minimal error analysis */
1687 if (qc->flags & ATA_QCFLAG_FAILED) {
1688 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1689 qc->err_mask |= AC_ERR_DEV;
1690
1691 if (!qc->err_mask)
1692 qc->err_mask |= AC_ERR_OTHER;
1693
1694 if (qc->err_mask & ~AC_ERR_OTHER)
1695 qc->err_mask &= ~AC_ERR_OTHER;
1696 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1697 qc->result_tf.command |= ATA_SENSE;
1698 }
1699
1700 /* finish up */
1701 spin_lock_irqsave(ap->lock, flags);
1702
1703 *tf = qc->result_tf;
1704 err_mask = qc->err_mask;
1705
1706 ata_qc_free(qc);
1707 link->active_tag = preempted_tag;
1708 link->sactive = preempted_sactive;
1709 ap->qc_active = preempted_qc_active;
1710 ap->nr_active_links = preempted_nr_active_links;
1711
1712 spin_unlock_irqrestore(ap->lock, flags);
1713
1714 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1715 ata_internal_cmd_timed_out(dev, command);
1716
1717 return err_mask;
1718 }
1719
1720 /**
1721 * ata_exec_internal - execute libata internal command
1722 * @dev: Device to which the command is sent
1723 * @tf: Taskfile registers for the command and the result
1724 * @cdb: CDB for packet command
1725 * @dma_dir: Data transfer direction of the command
1726 * @buf: Data buffer of the command
1727 * @buflen: Length of data buffer
1728 * @timeout: Timeout in msecs (0 for default)
1729 *
1730 * Wrapper around ata_exec_internal_sg() which takes simple
1731 * buffer instead of sg list.
1732 *
1733 * LOCKING:
1734 * None. Should be called with kernel context, might sleep.
1735 *
1736 * RETURNS:
1737 * Zero on success, AC_ERR_* mask on failure
1738 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1739 unsigned ata_exec_internal(struct ata_device *dev,
1740 struct ata_taskfile *tf, const u8 *cdb,
1741 int dma_dir, void *buf, unsigned int buflen,
1742 unsigned long timeout)
1743 {
1744 struct scatterlist *psg = NULL, sg;
1745 unsigned int n_elem = 0;
1746
1747 if (dma_dir != DMA_NONE) {
1748 WARN_ON(!buf);
1749 sg_init_one(&sg, buf, buflen);
1750 psg = &sg;
1751 n_elem++;
1752 }
1753
1754 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1755 timeout);
1756 }
1757
1758 /**
1759 * ata_pio_need_iordy - check if iordy needed
1760 * @adev: ATA device
1761 *
1762 * Check if the current speed of the device requires IORDY. Used
1763 * by various controllers for chip configuration.
1764 */
ata_pio_need_iordy(const struct ata_device * adev)1765 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1766 {
1767 /* Don't set IORDY if we're preparing for reset. IORDY may
1768 * lead to controller lock up on certain controllers if the
1769 * port is not occupied. See bko#11703 for details.
1770 */
1771 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1772 return 0;
1773 /* Controller doesn't support IORDY. Probably a pointless
1774 * check as the caller should know this.
1775 */
1776 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1777 return 0;
1778 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1779 if (ata_id_is_cfa(adev->id)
1780 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1781 return 0;
1782 /* PIO3 and higher it is mandatory */
1783 if (adev->pio_mode > XFER_PIO_2)
1784 return 1;
1785 /* We turn it on when possible */
1786 if (ata_id_has_iordy(adev->id))
1787 return 1;
1788 return 0;
1789 }
1790
1791 /**
1792 * ata_pio_mask_no_iordy - Return the non IORDY mask
1793 * @adev: ATA device
1794 *
1795 * Compute the highest mode possible if we are not using iordy. Return
1796 * -1 if no iordy mode is available.
1797 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1798 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1799 {
1800 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1801 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1802 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1803 /* Is the speed faster than the drive allows non IORDY ? */
1804 if (pio) {
1805 /* This is cycle times not frequency - watch the logic! */
1806 if (pio > 240) /* PIO2 is 240nS per cycle */
1807 return 3 << ATA_SHIFT_PIO;
1808 return 7 << ATA_SHIFT_PIO;
1809 }
1810 }
1811 return 3 << ATA_SHIFT_PIO;
1812 }
1813
1814 /**
1815 * ata_do_dev_read_id - default ID read method
1816 * @dev: device
1817 * @tf: proposed taskfile
1818 * @id: data buffer
1819 *
1820 * Issue the identify taskfile and hand back the buffer containing
1821 * identify data. For some RAID controllers and for pre ATA devices
1822 * this function is wrapped or replaced by the driver
1823 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1824 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1825 struct ata_taskfile *tf, u16 *id)
1826 {
1827 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1828 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1829 }
1830
1831 /**
1832 * ata_dev_read_id - Read ID data from the specified device
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
1835 * @flags: ATA_READID_* flags
1836 * @id: buffer to read IDENTIFY data into
1837 *
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1842 *
1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1844 * now we abort if we hit that case.
1845 *
1846 * LOCKING:
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1851 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1852 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1853 unsigned int flags, u16 *id)
1854 {
1855 struct ata_port *ap = dev->link->ap;
1856 unsigned int class = *p_class;
1857 struct ata_taskfile tf;
1858 unsigned int err_mask = 0;
1859 const char *reason;
1860 bool is_semb = class == ATA_DEV_SEMB;
1861 int may_fallback = 1, tried_spinup = 0;
1862 int rc;
1863
1864 if (ata_msg_ctl(ap))
1865 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1866
1867 retry:
1868 ata_tf_init(dev, &tf);
1869
1870 switch (class) {
1871 case ATA_DEV_SEMB:
1872 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1873 /* fall through */
1874 case ATA_DEV_ATA:
1875 case ATA_DEV_ZAC:
1876 tf.command = ATA_CMD_ID_ATA;
1877 break;
1878 case ATA_DEV_ATAPI:
1879 tf.command = ATA_CMD_ID_ATAPI;
1880 break;
1881 default:
1882 rc = -ENODEV;
1883 reason = "unsupported class";
1884 goto err_out;
1885 }
1886
1887 tf.protocol = ATA_PROT_PIO;
1888
1889 /* Some devices choke if TF registers contain garbage. Make
1890 * sure those are properly initialized.
1891 */
1892 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1893
1894 /* Device presence detection is unreliable on some
1895 * controllers. Always poll IDENTIFY if available.
1896 */
1897 tf.flags |= ATA_TFLAG_POLLING;
1898
1899 if (ap->ops->read_id)
1900 err_mask = ap->ops->read_id(dev, &tf, id);
1901 else
1902 err_mask = ata_do_dev_read_id(dev, &tf, id);
1903
1904 if (err_mask) {
1905 if (err_mask & AC_ERR_NODEV_HINT) {
1906 ata_dev_dbg(dev, "NODEV after polling detection\n");
1907 return -ENOENT;
1908 }
1909
1910 if (is_semb) {
1911 ata_dev_info(dev,
1912 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1913 /* SEMB is not supported yet */
1914 *p_class = ATA_DEV_SEMB_UNSUP;
1915 return 0;
1916 }
1917
1918 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1919 /* Device or controller might have reported
1920 * the wrong device class. Give a shot at the
1921 * other IDENTIFY if the current one is
1922 * aborted by the device.
1923 */
1924 if (may_fallback) {
1925 may_fallback = 0;
1926
1927 if (class == ATA_DEV_ATA)
1928 class = ATA_DEV_ATAPI;
1929 else
1930 class = ATA_DEV_ATA;
1931 goto retry;
1932 }
1933
1934 /* Control reaches here iff the device aborted
1935 * both flavors of IDENTIFYs which happens
1936 * sometimes with phantom devices.
1937 */
1938 ata_dev_dbg(dev,
1939 "both IDENTIFYs aborted, assuming NODEV\n");
1940 return -ENOENT;
1941 }
1942
1943 rc = -EIO;
1944 reason = "I/O error";
1945 goto err_out;
1946 }
1947
1948 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1949 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1950 "class=%d may_fallback=%d tried_spinup=%d\n",
1951 class, may_fallback, tried_spinup);
1952 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1953 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1954 }
1955
1956 /* Falling back doesn't make sense if ID data was read
1957 * successfully at least once.
1958 */
1959 may_fallback = 0;
1960
1961 swap_buf_le16(id, ATA_ID_WORDS);
1962
1963 /* sanity check */
1964 rc = -EINVAL;
1965 reason = "device reports invalid type";
1966
1967 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1968 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1969 goto err_out;
1970 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1971 ata_id_is_ata(id)) {
1972 ata_dev_dbg(dev,
1973 "host indicates ignore ATA devices, ignored\n");
1974 return -ENOENT;
1975 }
1976 } else {
1977 if (ata_id_is_ata(id))
1978 goto err_out;
1979 }
1980
1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1982 tried_spinup = 1;
1983 /*
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1987 */
1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1989 if (err_mask && id[2] != 0x738c) {
1990 rc = -EIO;
1991 reason = "SPINUP failed";
1992 goto err_out;
1993 }
1994 /*
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1997 */
1998 if (id[2] == 0x37c8)
1999 goto retry;
2000 }
2001
2002 if ((flags & ATA_READID_POSTRESET) &&
2003 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2004 /*
2005 * The exact sequence expected by certain pre-ATA4 drives is:
2006 * SRST RESET
2007 * IDENTIFY (optional in early ATA)
2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2009 * anything else..
2010 * Some drives were very specific about that exact sequence.
2011 *
2012 * Note that ATA4 says lba is mandatory so the second check
2013 * should never trigger.
2014 */
2015 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2016 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2017 if (err_mask) {
2018 rc = -EIO;
2019 reason = "INIT_DEV_PARAMS failed";
2020 goto err_out;
2021 }
2022
2023 /* current CHS translation info (id[53-58]) might be
2024 * changed. reread the identify device info.
2025 */
2026 flags &= ~ATA_READID_POSTRESET;
2027 goto retry;
2028 }
2029 }
2030
2031 *p_class = class;
2032
2033 return 0;
2034
2035 err_out:
2036 if (ata_msg_warn(ap))
2037 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2038 reason, err_mask);
2039 return rc;
2040 }
2041
2042 /**
2043 * ata_read_log_page - read a specific log page
2044 * @dev: target device
2045 * @log: log to read
2046 * @page: page to read
2047 * @buf: buffer to store read page
2048 * @sectors: number of sectors to read
2049 *
2050 * Read log page using READ_LOG_EXT command.
2051 *
2052 * LOCKING:
2053 * Kernel thread context (may sleep).
2054 *
2055 * RETURNS:
2056 * 0 on success, AC_ERR_* mask otherwise.
2057 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2058 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2059 u8 page, void *buf, unsigned int sectors)
2060 {
2061 unsigned long ap_flags = dev->link->ap->flags;
2062 struct ata_taskfile tf;
2063 unsigned int err_mask;
2064 bool dma = false;
2065
2066 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2067
2068 /*
2069 * Return error without actually issuing the command on controllers
2070 * which e.g. lockup on a read log page.
2071 */
2072 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2073 return AC_ERR_DEV;
2074
2075 retry:
2076 ata_tf_init(dev, &tf);
2077 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2078 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2079 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2080 tf.protocol = ATA_PROT_DMA;
2081 dma = true;
2082 } else {
2083 tf.command = ATA_CMD_READ_LOG_EXT;
2084 tf.protocol = ATA_PROT_PIO;
2085 dma = false;
2086 }
2087 tf.lbal = log;
2088 tf.lbam = page;
2089 tf.nsect = sectors;
2090 tf.hob_nsect = sectors >> 8;
2091 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2092
2093 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2094 buf, sectors * ATA_SECT_SIZE, 0);
2095
2096 if (err_mask && dma) {
2097 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2098 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2099 goto retry;
2100 }
2101
2102 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2103 return err_mask;
2104 }
2105
ata_log_supported(struct ata_device * dev,u8 log)2106 static bool ata_log_supported(struct ata_device *dev, u8 log)
2107 {
2108 struct ata_port *ap = dev->link->ap;
2109
2110 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2111 return false;
2112 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2113 }
2114
ata_identify_page_supported(struct ata_device * dev,u8 page)2115 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2116 {
2117 struct ata_port *ap = dev->link->ap;
2118 unsigned int err, i;
2119
2120 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2121 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2122 return false;
2123 }
2124
2125 /*
2126 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2127 * supported.
2128 */
2129 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2130 1);
2131 if (err) {
2132 ata_dev_info(dev,
2133 "failed to get Device Identify Log Emask 0x%x\n",
2134 err);
2135 return false;
2136 }
2137
2138 for (i = 0; i < ap->sector_buf[8]; i++) {
2139 if (ap->sector_buf[9 + i] == page)
2140 return true;
2141 }
2142
2143 return false;
2144 }
2145
ata_do_link_spd_horkage(struct ata_device * dev)2146 static int ata_do_link_spd_horkage(struct ata_device *dev)
2147 {
2148 struct ata_link *plink = ata_dev_phys_link(dev);
2149 u32 target, target_limit;
2150
2151 if (!sata_scr_valid(plink))
2152 return 0;
2153
2154 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2155 target = 1;
2156 else
2157 return 0;
2158
2159 target_limit = (1 << target) - 1;
2160
2161 /* if already on stricter limit, no need to push further */
2162 if (plink->sata_spd_limit <= target_limit)
2163 return 0;
2164
2165 plink->sata_spd_limit = target_limit;
2166
2167 /* Request another EH round by returning -EAGAIN if link is
2168 * going faster than the target speed. Forward progress is
2169 * guaranteed by setting sata_spd_limit to target_limit above.
2170 */
2171 if (plink->sata_spd > target) {
2172 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2173 sata_spd_string(target));
2174 return -EAGAIN;
2175 }
2176 return 0;
2177 }
2178
ata_dev_knobble(struct ata_device * dev)2179 static inline u8 ata_dev_knobble(struct ata_device *dev)
2180 {
2181 struct ata_port *ap = dev->link->ap;
2182
2183 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2184 return 0;
2185
2186 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2187 }
2188
ata_dev_config_ncq_send_recv(struct ata_device * dev)2189 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2190 {
2191 struct ata_port *ap = dev->link->ap;
2192 unsigned int err_mask;
2193
2194 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2195 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2196 return;
2197 }
2198 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2199 0, ap->sector_buf, 1);
2200 if (err_mask) {
2201 ata_dev_dbg(dev,
2202 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2203 err_mask);
2204 } else {
2205 u8 *cmds = dev->ncq_send_recv_cmds;
2206
2207 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2208 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2209
2210 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2211 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2212 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2213 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2214 }
2215 }
2216 }
2217
ata_dev_config_ncq_non_data(struct ata_device * dev)2218 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2219 {
2220 struct ata_port *ap = dev->link->ap;
2221 unsigned int err_mask;
2222
2223 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2224 ata_dev_warn(dev,
2225 "NCQ Send/Recv Log not supported\n");
2226 return;
2227 }
2228 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2229 0, ap->sector_buf, 1);
2230 if (err_mask) {
2231 ata_dev_dbg(dev,
2232 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2233 err_mask);
2234 } else {
2235 u8 *cmds = dev->ncq_non_data_cmds;
2236
2237 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2238 }
2239 }
2240
ata_dev_config_ncq_prio(struct ata_device * dev)2241 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2242 {
2243 struct ata_port *ap = dev->link->ap;
2244 unsigned int err_mask;
2245
2246 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2247 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2248 return;
2249 }
2250
2251 err_mask = ata_read_log_page(dev,
2252 ATA_LOG_IDENTIFY_DEVICE,
2253 ATA_LOG_SATA_SETTINGS,
2254 ap->sector_buf,
2255 1);
2256 if (err_mask) {
2257 ata_dev_dbg(dev,
2258 "failed to get Identify Device data, Emask 0x%x\n",
2259 err_mask);
2260 return;
2261 }
2262
2263 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2264 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2265 } else {
2266 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2267 ata_dev_dbg(dev, "SATA page does not support priority\n");
2268 }
2269
2270 }
2271
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2272 static int ata_dev_config_ncq(struct ata_device *dev,
2273 char *desc, size_t desc_sz)
2274 {
2275 struct ata_port *ap = dev->link->ap;
2276 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2277 unsigned int err_mask;
2278 char *aa_desc = "";
2279
2280 if (!ata_id_has_ncq(dev->id)) {
2281 desc[0] = '\0';
2282 return 0;
2283 }
2284 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2285 snprintf(desc, desc_sz, "NCQ (not used)");
2286 return 0;
2287 }
2288 if (ap->flags & ATA_FLAG_NCQ) {
2289 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2290 dev->flags |= ATA_DFLAG_NCQ;
2291 }
2292
2293 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2294 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2295 ata_id_has_fpdma_aa(dev->id)) {
2296 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2297 SATA_FPDMA_AA);
2298 if (err_mask) {
2299 ata_dev_err(dev,
2300 "failed to enable AA (error_mask=0x%x)\n",
2301 err_mask);
2302 if (err_mask != AC_ERR_DEV) {
2303 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2304 return -EIO;
2305 }
2306 } else
2307 aa_desc = ", AA";
2308 }
2309
2310 if (hdepth >= ddepth)
2311 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2312 else
2313 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2314 ddepth, aa_desc);
2315
2316 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2317 if (ata_id_has_ncq_send_and_recv(dev->id))
2318 ata_dev_config_ncq_send_recv(dev);
2319 if (ata_id_has_ncq_non_data(dev->id))
2320 ata_dev_config_ncq_non_data(dev);
2321 if (ata_id_has_ncq_prio(dev->id))
2322 ata_dev_config_ncq_prio(dev);
2323 }
2324
2325 return 0;
2326 }
2327
ata_dev_config_sense_reporting(struct ata_device * dev)2328 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2329 {
2330 unsigned int err_mask;
2331
2332 if (!ata_id_has_sense_reporting(dev->id))
2333 return;
2334
2335 if (ata_id_sense_reporting_enabled(dev->id))
2336 return;
2337
2338 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2339 if (err_mask) {
2340 ata_dev_dbg(dev,
2341 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2342 err_mask);
2343 }
2344 }
2345
ata_dev_config_zac(struct ata_device * dev)2346 static void ata_dev_config_zac(struct ata_device *dev)
2347 {
2348 struct ata_port *ap = dev->link->ap;
2349 unsigned int err_mask;
2350 u8 *identify_buf = ap->sector_buf;
2351
2352 dev->zac_zones_optimal_open = U32_MAX;
2353 dev->zac_zones_optimal_nonseq = U32_MAX;
2354 dev->zac_zones_max_open = U32_MAX;
2355
2356 /*
2357 * Always set the 'ZAC' flag for Host-managed devices.
2358 */
2359 if (dev->class == ATA_DEV_ZAC)
2360 dev->flags |= ATA_DFLAG_ZAC;
2361 else if (ata_id_zoned_cap(dev->id) == 0x01)
2362 /*
2363 * Check for host-aware devices.
2364 */
2365 dev->flags |= ATA_DFLAG_ZAC;
2366
2367 if (!(dev->flags & ATA_DFLAG_ZAC))
2368 return;
2369
2370 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2371 ata_dev_warn(dev,
2372 "ATA Zoned Information Log not supported\n");
2373 return;
2374 }
2375
2376 /*
2377 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2378 */
2379 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2380 ATA_LOG_ZONED_INFORMATION,
2381 identify_buf, 1);
2382 if (!err_mask) {
2383 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2384
2385 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2386 if ((zoned_cap >> 63))
2387 dev->zac_zoned_cap = (zoned_cap & 1);
2388 opt_open = get_unaligned_le64(&identify_buf[24]);
2389 if ((opt_open >> 63))
2390 dev->zac_zones_optimal_open = (u32)opt_open;
2391 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2392 if ((opt_nonseq >> 63))
2393 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2394 max_open = get_unaligned_le64(&identify_buf[40]);
2395 if ((max_open >> 63))
2396 dev->zac_zones_max_open = (u32)max_open;
2397 }
2398 }
2399
ata_dev_config_trusted(struct ata_device * dev)2400 static void ata_dev_config_trusted(struct ata_device *dev)
2401 {
2402 struct ata_port *ap = dev->link->ap;
2403 u64 trusted_cap;
2404 unsigned int err;
2405
2406 if (!ata_id_has_trusted(dev->id))
2407 return;
2408
2409 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2410 ata_dev_warn(dev,
2411 "Security Log not supported\n");
2412 return;
2413 }
2414
2415 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2416 ap->sector_buf, 1);
2417 if (err) {
2418 ata_dev_dbg(dev,
2419 "failed to read Security Log, Emask 0x%x\n", err);
2420 return;
2421 }
2422
2423 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2424 if (!(trusted_cap & (1ULL << 63))) {
2425 ata_dev_dbg(dev,
2426 "Trusted Computing capability qword not valid!\n");
2427 return;
2428 }
2429
2430 if (trusted_cap & (1 << 0))
2431 dev->flags |= ATA_DFLAG_TRUSTED;
2432 }
2433
2434 /**
2435 * ata_dev_configure - Configure the specified ATA/ATAPI device
2436 * @dev: Target device to configure
2437 *
2438 * Configure @dev according to @dev->id. Generic and low-level
2439 * driver specific fixups are also applied.
2440 *
2441 * LOCKING:
2442 * Kernel thread context (may sleep)
2443 *
2444 * RETURNS:
2445 * 0 on success, -errno otherwise
2446 */
ata_dev_configure(struct ata_device * dev)2447 int ata_dev_configure(struct ata_device *dev)
2448 {
2449 struct ata_port *ap = dev->link->ap;
2450 struct ata_eh_context *ehc = &dev->link->eh_context;
2451 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2452 const u16 *id = dev->id;
2453 unsigned long xfer_mask;
2454 unsigned int err_mask;
2455 char revbuf[7]; /* XYZ-99\0 */
2456 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2457 char modelbuf[ATA_ID_PROD_LEN+1];
2458 int rc;
2459
2460 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2461 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2462 return 0;
2463 }
2464
2465 if (ata_msg_probe(ap))
2466 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2467
2468 /* set horkage */
2469 dev->horkage |= ata_dev_blacklisted(dev);
2470 ata_force_horkage(dev);
2471
2472 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2473 ata_dev_info(dev, "unsupported device, disabling\n");
2474 ata_dev_disable(dev);
2475 return 0;
2476 }
2477
2478 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2479 dev->class == ATA_DEV_ATAPI) {
2480 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2481 atapi_enabled ? "not supported with this driver"
2482 : "disabled");
2483 ata_dev_disable(dev);
2484 return 0;
2485 }
2486
2487 rc = ata_do_link_spd_horkage(dev);
2488 if (rc)
2489 return rc;
2490
2491 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2492 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2493 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2494 dev->horkage |= ATA_HORKAGE_NOLPM;
2495
2496 if (ap->flags & ATA_FLAG_NO_LPM)
2497 dev->horkage |= ATA_HORKAGE_NOLPM;
2498
2499 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2500 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2501 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2502 }
2503
2504 /* let ACPI work its magic */
2505 rc = ata_acpi_on_devcfg(dev);
2506 if (rc)
2507 return rc;
2508
2509 /* massage HPA, do it early as it might change IDENTIFY data */
2510 rc = ata_hpa_resize(dev);
2511 if (rc)
2512 return rc;
2513
2514 /* print device capabilities */
2515 if (ata_msg_probe(ap))
2516 ata_dev_dbg(dev,
2517 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2518 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2519 __func__,
2520 id[49], id[82], id[83], id[84],
2521 id[85], id[86], id[87], id[88]);
2522
2523 /* initialize to-be-configured parameters */
2524 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2525 dev->max_sectors = 0;
2526 dev->cdb_len = 0;
2527 dev->n_sectors = 0;
2528 dev->cylinders = 0;
2529 dev->heads = 0;
2530 dev->sectors = 0;
2531 dev->multi_count = 0;
2532
2533 /*
2534 * common ATA, ATAPI feature tests
2535 */
2536
2537 /* find max transfer mode; for printk only */
2538 xfer_mask = ata_id_xfermask(id);
2539
2540 if (ata_msg_probe(ap))
2541 ata_dump_id(id);
2542
2543 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2544 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2545 sizeof(fwrevbuf));
2546
2547 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2548 sizeof(modelbuf));
2549
2550 /* ATA-specific feature tests */
2551 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2552 if (ata_id_is_cfa(id)) {
2553 /* CPRM may make this media unusable */
2554 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2555 ata_dev_warn(dev,
2556 "supports DRM functions and may not be fully accessible\n");
2557 snprintf(revbuf, 7, "CFA");
2558 } else {
2559 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2560 /* Warn the user if the device has TPM extensions */
2561 if (ata_id_has_tpm(id))
2562 ata_dev_warn(dev,
2563 "supports DRM functions and may not be fully accessible\n");
2564 }
2565
2566 dev->n_sectors = ata_id_n_sectors(id);
2567
2568 /* get current R/W Multiple count setting */
2569 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2570 unsigned int max = dev->id[47] & 0xff;
2571 unsigned int cnt = dev->id[59] & 0xff;
2572 /* only recognize/allow powers of two here */
2573 if (is_power_of_2(max) && is_power_of_2(cnt))
2574 if (cnt <= max)
2575 dev->multi_count = cnt;
2576 }
2577
2578 if (ata_id_has_lba(id)) {
2579 const char *lba_desc;
2580 char ncq_desc[24];
2581
2582 lba_desc = "LBA";
2583 dev->flags |= ATA_DFLAG_LBA;
2584 if (ata_id_has_lba48(id)) {
2585 dev->flags |= ATA_DFLAG_LBA48;
2586 lba_desc = "LBA48";
2587
2588 if (dev->n_sectors >= (1UL << 28) &&
2589 ata_id_has_flush_ext(id))
2590 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2591 }
2592
2593 /* config NCQ */
2594 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2595 if (rc)
2596 return rc;
2597
2598 /* print device info to dmesg */
2599 if (ata_msg_drv(ap) && print_info) {
2600 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2601 revbuf, modelbuf, fwrevbuf,
2602 ata_mode_string(xfer_mask));
2603 ata_dev_info(dev,
2604 "%llu sectors, multi %u: %s %s\n",
2605 (unsigned long long)dev->n_sectors,
2606 dev->multi_count, lba_desc, ncq_desc);
2607 }
2608 } else {
2609 /* CHS */
2610
2611 /* Default translation */
2612 dev->cylinders = id[1];
2613 dev->heads = id[3];
2614 dev->sectors = id[6];
2615
2616 if (ata_id_current_chs_valid(id)) {
2617 /* Current CHS translation is valid. */
2618 dev->cylinders = id[54];
2619 dev->heads = id[55];
2620 dev->sectors = id[56];
2621 }
2622
2623 /* print device info to dmesg */
2624 if (ata_msg_drv(ap) && print_info) {
2625 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2626 revbuf, modelbuf, fwrevbuf,
2627 ata_mode_string(xfer_mask));
2628 ata_dev_info(dev,
2629 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2630 (unsigned long long)dev->n_sectors,
2631 dev->multi_count, dev->cylinders,
2632 dev->heads, dev->sectors);
2633 }
2634 }
2635
2636 /* Check and mark DevSlp capability. Get DevSlp timing variables
2637 * from SATA Settings page of Identify Device Data Log.
2638 */
2639 if (ata_id_has_devslp(dev->id)) {
2640 u8 *sata_setting = ap->sector_buf;
2641 int i, j;
2642
2643 dev->flags |= ATA_DFLAG_DEVSLP;
2644 err_mask = ata_read_log_page(dev,
2645 ATA_LOG_IDENTIFY_DEVICE,
2646 ATA_LOG_SATA_SETTINGS,
2647 sata_setting,
2648 1);
2649 if (err_mask)
2650 ata_dev_dbg(dev,
2651 "failed to get Identify Device Data, Emask 0x%x\n",
2652 err_mask);
2653 else
2654 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2655 j = ATA_LOG_DEVSLP_OFFSET + i;
2656 dev->devslp_timing[i] = sata_setting[j];
2657 }
2658 }
2659 ata_dev_config_sense_reporting(dev);
2660 ata_dev_config_zac(dev);
2661 ata_dev_config_trusted(dev);
2662 dev->cdb_len = 32;
2663 }
2664
2665 /* ATAPI-specific feature tests */
2666 else if (dev->class == ATA_DEV_ATAPI) {
2667 const char *cdb_intr_string = "";
2668 const char *atapi_an_string = "";
2669 const char *dma_dir_string = "";
2670 u32 sntf;
2671
2672 rc = atapi_cdb_len(id);
2673 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2674 if (ata_msg_warn(ap))
2675 ata_dev_warn(dev, "unsupported CDB len\n");
2676 rc = -EINVAL;
2677 goto err_out_nosup;
2678 }
2679 dev->cdb_len = (unsigned int) rc;
2680
2681 /* Enable ATAPI AN if both the host and device have
2682 * the support. If PMP is attached, SNTF is required
2683 * to enable ATAPI AN to discern between PHY status
2684 * changed notifications and ATAPI ANs.
2685 */
2686 if (atapi_an &&
2687 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2688 (!sata_pmp_attached(ap) ||
2689 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2690 /* issue SET feature command to turn this on */
2691 err_mask = ata_dev_set_feature(dev,
2692 SETFEATURES_SATA_ENABLE, SATA_AN);
2693 if (err_mask)
2694 ata_dev_err(dev,
2695 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2696 err_mask);
2697 else {
2698 dev->flags |= ATA_DFLAG_AN;
2699 atapi_an_string = ", ATAPI AN";
2700 }
2701 }
2702
2703 if (ata_id_cdb_intr(dev->id)) {
2704 dev->flags |= ATA_DFLAG_CDB_INTR;
2705 cdb_intr_string = ", CDB intr";
2706 }
2707
2708 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2709 dev->flags |= ATA_DFLAG_DMADIR;
2710 dma_dir_string = ", DMADIR";
2711 }
2712
2713 if (ata_id_has_da(dev->id)) {
2714 dev->flags |= ATA_DFLAG_DA;
2715 zpodd_init(dev);
2716 }
2717
2718 /* print device info to dmesg */
2719 if (ata_msg_drv(ap) && print_info)
2720 ata_dev_info(dev,
2721 "ATAPI: %s, %s, max %s%s%s%s\n",
2722 modelbuf, fwrevbuf,
2723 ata_mode_string(xfer_mask),
2724 cdb_intr_string, atapi_an_string,
2725 dma_dir_string);
2726 }
2727
2728 /* determine max_sectors */
2729 dev->max_sectors = ATA_MAX_SECTORS;
2730 if (dev->flags & ATA_DFLAG_LBA48)
2731 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2732
2733 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2734 200 sectors */
2735 if (ata_dev_knobble(dev)) {
2736 if (ata_msg_drv(ap) && print_info)
2737 ata_dev_info(dev, "applying bridge limits\n");
2738 dev->udma_mask &= ATA_UDMA5;
2739 dev->max_sectors = ATA_MAX_SECTORS;
2740 }
2741
2742 if ((dev->class == ATA_DEV_ATAPI) &&
2743 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2744 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2745 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2746 }
2747
2748 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2749 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2750 dev->max_sectors);
2751
2752 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2753 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2754 dev->max_sectors);
2755
2756 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2757 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2758
2759 if (ap->ops->dev_config)
2760 ap->ops->dev_config(dev);
2761
2762 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2763 /* Let the user know. We don't want to disallow opens for
2764 rescue purposes, or in case the vendor is just a blithering
2765 idiot. Do this after the dev_config call as some controllers
2766 with buggy firmware may want to avoid reporting false device
2767 bugs */
2768
2769 if (print_info) {
2770 ata_dev_warn(dev,
2771 "Drive reports diagnostics failure. This may indicate a drive\n");
2772 ata_dev_warn(dev,
2773 "fault or invalid emulation. Contact drive vendor for information.\n");
2774 }
2775 }
2776
2777 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2778 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2779 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2780 }
2781
2782 return 0;
2783
2784 err_out_nosup:
2785 if (ata_msg_probe(ap))
2786 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2787 return rc;
2788 }
2789
2790 /**
2791 * ata_cable_40wire - return 40 wire cable type
2792 * @ap: port
2793 *
2794 * Helper method for drivers which want to hardwire 40 wire cable
2795 * detection.
2796 */
2797
ata_cable_40wire(struct ata_port * ap)2798 int ata_cable_40wire(struct ata_port *ap)
2799 {
2800 return ATA_CBL_PATA40;
2801 }
2802
2803 /**
2804 * ata_cable_80wire - return 80 wire cable type
2805 * @ap: port
2806 *
2807 * Helper method for drivers which want to hardwire 80 wire cable
2808 * detection.
2809 */
2810
ata_cable_80wire(struct ata_port * ap)2811 int ata_cable_80wire(struct ata_port *ap)
2812 {
2813 return ATA_CBL_PATA80;
2814 }
2815
2816 /**
2817 * ata_cable_unknown - return unknown PATA cable.
2818 * @ap: port
2819 *
2820 * Helper method for drivers which have no PATA cable detection.
2821 */
2822
ata_cable_unknown(struct ata_port * ap)2823 int ata_cable_unknown(struct ata_port *ap)
2824 {
2825 return ATA_CBL_PATA_UNK;
2826 }
2827
2828 /**
2829 * ata_cable_ignore - return ignored PATA cable.
2830 * @ap: port
2831 *
2832 * Helper method for drivers which don't use cable type to limit
2833 * transfer mode.
2834 */
ata_cable_ignore(struct ata_port * ap)2835 int ata_cable_ignore(struct ata_port *ap)
2836 {
2837 return ATA_CBL_PATA_IGN;
2838 }
2839
2840 /**
2841 * ata_cable_sata - return SATA cable type
2842 * @ap: port
2843 *
2844 * Helper method for drivers which have SATA cables
2845 */
2846
ata_cable_sata(struct ata_port * ap)2847 int ata_cable_sata(struct ata_port *ap)
2848 {
2849 return ATA_CBL_SATA;
2850 }
2851
2852 /**
2853 * ata_bus_probe - Reset and probe ATA bus
2854 * @ap: Bus to probe
2855 *
2856 * Master ATA bus probing function. Initiates a hardware-dependent
2857 * bus reset, then attempts to identify any devices found on
2858 * the bus.
2859 *
2860 * LOCKING:
2861 * PCI/etc. bus probe sem.
2862 *
2863 * RETURNS:
2864 * Zero on success, negative errno otherwise.
2865 */
2866
ata_bus_probe(struct ata_port * ap)2867 int ata_bus_probe(struct ata_port *ap)
2868 {
2869 unsigned int classes[ATA_MAX_DEVICES];
2870 int tries[ATA_MAX_DEVICES];
2871 int rc;
2872 struct ata_device *dev;
2873
2874 ata_for_each_dev(dev, &ap->link, ALL)
2875 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2876
2877 retry:
2878 ata_for_each_dev(dev, &ap->link, ALL) {
2879 /* If we issue an SRST then an ATA drive (not ATAPI)
2880 * may change configuration and be in PIO0 timing. If
2881 * we do a hard reset (or are coming from power on)
2882 * this is true for ATA or ATAPI. Until we've set a
2883 * suitable controller mode we should not touch the
2884 * bus as we may be talking too fast.
2885 */
2886 dev->pio_mode = XFER_PIO_0;
2887 dev->dma_mode = 0xff;
2888
2889 /* If the controller has a pio mode setup function
2890 * then use it to set the chipset to rights. Don't
2891 * touch the DMA setup as that will be dealt with when
2892 * configuring devices.
2893 */
2894 if (ap->ops->set_piomode)
2895 ap->ops->set_piomode(ap, dev);
2896 }
2897
2898 /* reset and determine device classes */
2899 ap->ops->phy_reset(ap);
2900
2901 ata_for_each_dev(dev, &ap->link, ALL) {
2902 if (dev->class != ATA_DEV_UNKNOWN)
2903 classes[dev->devno] = dev->class;
2904 else
2905 classes[dev->devno] = ATA_DEV_NONE;
2906
2907 dev->class = ATA_DEV_UNKNOWN;
2908 }
2909
2910 /* read IDENTIFY page and configure devices. We have to do the identify
2911 specific sequence bass-ackwards so that PDIAG- is released by
2912 the slave device */
2913
2914 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2915 if (tries[dev->devno])
2916 dev->class = classes[dev->devno];
2917
2918 if (!ata_dev_enabled(dev))
2919 continue;
2920
2921 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2922 dev->id);
2923 if (rc)
2924 goto fail;
2925 }
2926
2927 /* Now ask for the cable type as PDIAG- should have been released */
2928 if (ap->ops->cable_detect)
2929 ap->cbl = ap->ops->cable_detect(ap);
2930
2931 /* We may have SATA bridge glue hiding here irrespective of
2932 * the reported cable types and sensed types. When SATA
2933 * drives indicate we have a bridge, we don't know which end
2934 * of the link the bridge is which is a problem.
2935 */
2936 ata_for_each_dev(dev, &ap->link, ENABLED)
2937 if (ata_id_is_sata(dev->id))
2938 ap->cbl = ATA_CBL_SATA;
2939
2940 /* After the identify sequence we can now set up the devices. We do
2941 this in the normal order so that the user doesn't get confused */
2942
2943 ata_for_each_dev(dev, &ap->link, ENABLED) {
2944 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2945 rc = ata_dev_configure(dev);
2946 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2947 if (rc)
2948 goto fail;
2949 }
2950
2951 /* configure transfer mode */
2952 rc = ata_set_mode(&ap->link, &dev);
2953 if (rc)
2954 goto fail;
2955
2956 ata_for_each_dev(dev, &ap->link, ENABLED)
2957 return 0;
2958
2959 return -ENODEV;
2960
2961 fail:
2962 tries[dev->devno]--;
2963
2964 switch (rc) {
2965 case -EINVAL:
2966 /* eeek, something went very wrong, give up */
2967 tries[dev->devno] = 0;
2968 break;
2969
2970 case -ENODEV:
2971 /* give it just one more chance */
2972 tries[dev->devno] = min(tries[dev->devno], 1);
2973 /* fall through */
2974 case -EIO:
2975 if (tries[dev->devno] == 1) {
2976 /* This is the last chance, better to slow
2977 * down than lose it.
2978 */
2979 sata_down_spd_limit(&ap->link, 0);
2980 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2981 }
2982 }
2983
2984 if (!tries[dev->devno])
2985 ata_dev_disable(dev);
2986
2987 goto retry;
2988 }
2989
2990 /**
2991 * sata_print_link_status - Print SATA link status
2992 * @link: SATA link to printk link status about
2993 *
2994 * This function prints link speed and status of a SATA link.
2995 *
2996 * LOCKING:
2997 * None.
2998 */
sata_print_link_status(struct ata_link * link)2999 static void sata_print_link_status(struct ata_link *link)
3000 {
3001 u32 sstatus, scontrol, tmp;
3002
3003 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3004 return;
3005 sata_scr_read(link, SCR_CONTROL, &scontrol);
3006
3007 if (ata_phys_link_online(link)) {
3008 tmp = (sstatus >> 4) & 0xf;
3009 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3010 sata_spd_string(tmp), sstatus, scontrol);
3011 } else {
3012 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3013 sstatus, scontrol);
3014 }
3015 }
3016
3017 /**
3018 * ata_dev_pair - return other device on cable
3019 * @adev: device
3020 *
3021 * Obtain the other device on the same cable, or if none is
3022 * present NULL is returned
3023 */
3024
ata_dev_pair(struct ata_device * adev)3025 struct ata_device *ata_dev_pair(struct ata_device *adev)
3026 {
3027 struct ata_link *link = adev->link;
3028 struct ata_device *pair = &link->device[1 - adev->devno];
3029 if (!ata_dev_enabled(pair))
3030 return NULL;
3031 return pair;
3032 }
3033
3034 /**
3035 * sata_down_spd_limit - adjust SATA spd limit downward
3036 * @link: Link to adjust SATA spd limit for
3037 * @spd_limit: Additional limit
3038 *
3039 * Adjust SATA spd limit of @link downward. Note that this
3040 * function only adjusts the limit. The change must be applied
3041 * using sata_set_spd().
3042 *
3043 * If @spd_limit is non-zero, the speed is limited to equal to or
3044 * lower than @spd_limit if such speed is supported. If
3045 * @spd_limit is slower than any supported speed, only the lowest
3046 * supported speed is allowed.
3047 *
3048 * LOCKING:
3049 * Inherited from caller.
3050 *
3051 * RETURNS:
3052 * 0 on success, negative errno on failure
3053 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3054 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3055 {
3056 u32 sstatus, spd, mask;
3057 int rc, bit;
3058
3059 if (!sata_scr_valid(link))
3060 return -EOPNOTSUPP;
3061
3062 /* If SCR can be read, use it to determine the current SPD.
3063 * If not, use cached value in link->sata_spd.
3064 */
3065 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3066 if (rc == 0 && ata_sstatus_online(sstatus))
3067 spd = (sstatus >> 4) & 0xf;
3068 else
3069 spd = link->sata_spd;
3070
3071 mask = link->sata_spd_limit;
3072 if (mask <= 1)
3073 return -EINVAL;
3074
3075 /* unconditionally mask off the highest bit */
3076 bit = fls(mask) - 1;
3077 mask &= ~(1 << bit);
3078
3079 /*
3080 * Mask off all speeds higher than or equal to the current one. At
3081 * this point, if current SPD is not available and we previously
3082 * recorded the link speed from SStatus, the driver has already
3083 * masked off the highest bit so mask should already be 1 or 0.
3084 * Otherwise, we should not force 1.5Gbps on a link where we have
3085 * not previously recorded speed from SStatus. Just return in this
3086 * case.
3087 */
3088 if (spd > 1)
3089 mask &= (1 << (spd - 1)) - 1;
3090 else
3091 return -EINVAL;
3092
3093 /* were we already at the bottom? */
3094 if (!mask)
3095 return -EINVAL;
3096
3097 if (spd_limit) {
3098 if (mask & ((1 << spd_limit) - 1))
3099 mask &= (1 << spd_limit) - 1;
3100 else {
3101 bit = ffs(mask) - 1;
3102 mask = 1 << bit;
3103 }
3104 }
3105
3106 link->sata_spd_limit = mask;
3107
3108 ata_link_warn(link, "limiting SATA link speed to %s\n",
3109 sata_spd_string(fls(mask)));
3110
3111 return 0;
3112 }
3113
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)3114 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3115 {
3116 struct ata_link *host_link = &link->ap->link;
3117 u32 limit, target, spd;
3118
3119 limit = link->sata_spd_limit;
3120
3121 /* Don't configure downstream link faster than upstream link.
3122 * It doesn't speed up anything and some PMPs choke on such
3123 * configuration.
3124 */
3125 if (!ata_is_host_link(link) && host_link->sata_spd)
3126 limit &= (1 << host_link->sata_spd) - 1;
3127
3128 if (limit == UINT_MAX)
3129 target = 0;
3130 else
3131 target = fls(limit);
3132
3133 spd = (*scontrol >> 4) & 0xf;
3134 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3135
3136 return spd != target;
3137 }
3138
3139 /**
3140 * sata_set_spd_needed - is SATA spd configuration needed
3141 * @link: Link in question
3142 *
3143 * Test whether the spd limit in SControl matches
3144 * @link->sata_spd_limit. This function is used to determine
3145 * whether hardreset is necessary to apply SATA spd
3146 * configuration.
3147 *
3148 * LOCKING:
3149 * Inherited from caller.
3150 *
3151 * RETURNS:
3152 * 1 if SATA spd configuration is needed, 0 otherwise.
3153 */
sata_set_spd_needed(struct ata_link * link)3154 static int sata_set_spd_needed(struct ata_link *link)
3155 {
3156 u32 scontrol;
3157
3158 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3159 return 1;
3160
3161 return __sata_set_spd_needed(link, &scontrol);
3162 }
3163
3164 /**
3165 * sata_set_spd - set SATA spd according to spd limit
3166 * @link: Link to set SATA spd for
3167 *
3168 * Set SATA spd of @link according to sata_spd_limit.
3169 *
3170 * LOCKING:
3171 * Inherited from caller.
3172 *
3173 * RETURNS:
3174 * 0 if spd doesn't need to be changed, 1 if spd has been
3175 * changed. Negative errno if SCR registers are inaccessible.
3176 */
sata_set_spd(struct ata_link * link)3177 int sata_set_spd(struct ata_link *link)
3178 {
3179 u32 scontrol;
3180 int rc;
3181
3182 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3183 return rc;
3184
3185 if (!__sata_set_spd_needed(link, &scontrol))
3186 return 0;
3187
3188 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3189 return rc;
3190
3191 return 1;
3192 }
3193
3194 /*
3195 * This mode timing computation functionality is ported over from
3196 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3197 */
3198 /*
3199 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3200 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3201 * for UDMA6, which is currently supported only by Maxtor drives.
3202 *
3203 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3204 */
3205
3206 static const struct ata_timing ata_timing[] = {
3207 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3208 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3209 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3210 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3211 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3212 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3213 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3214 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3215
3216 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3217 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3218 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3219
3220 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3221 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3222 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3223 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3224 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3225
3226 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3227 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3228 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3229 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3230 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3231 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3232 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3233 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3234
3235 { 0xFF }
3236 };
3237
3238 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3239 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3240
ata_timing_quantize(const struct ata_timing * t,struct ata_timing * q,int T,int UT)3241 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3242 {
3243 q->setup = EZ(t->setup, T);
3244 q->act8b = EZ(t->act8b, T);
3245 q->rec8b = EZ(t->rec8b, T);
3246 q->cyc8b = EZ(t->cyc8b, T);
3247 q->active = EZ(t->active, T);
3248 q->recover = EZ(t->recover, T);
3249 q->dmack_hold = EZ(t->dmack_hold, T);
3250 q->cycle = EZ(t->cycle, T);
3251 q->udma = EZ(t->udma, UT);
3252 }
3253
ata_timing_merge(const struct ata_timing * a,const struct ata_timing * b,struct ata_timing * m,unsigned int what)3254 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3255 struct ata_timing *m, unsigned int what)
3256 {
3257 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3258 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3259 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3260 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3261 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3262 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3263 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3264 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3265 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3266 }
3267
ata_timing_find_mode(u8 xfer_mode)3268 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3269 {
3270 const struct ata_timing *t = ata_timing;
3271
3272 while (xfer_mode > t->mode)
3273 t++;
3274
3275 if (xfer_mode == t->mode)
3276 return t;
3277
3278 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3279 __func__, xfer_mode);
3280
3281 return NULL;
3282 }
3283
ata_timing_compute(struct ata_device * adev,unsigned short speed,struct ata_timing * t,int T,int UT)3284 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3285 struct ata_timing *t, int T, int UT)
3286 {
3287 const u16 *id = adev->id;
3288 const struct ata_timing *s;
3289 struct ata_timing p;
3290
3291 /*
3292 * Find the mode.
3293 */
3294
3295 if (!(s = ata_timing_find_mode(speed)))
3296 return -EINVAL;
3297
3298 memcpy(t, s, sizeof(*s));
3299
3300 /*
3301 * If the drive is an EIDE drive, it can tell us it needs extended
3302 * PIO/MW_DMA cycle timing.
3303 */
3304
3305 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3306 memset(&p, 0, sizeof(p));
3307
3308 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3309 if (speed <= XFER_PIO_2)
3310 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3311 else if ((speed <= XFER_PIO_4) ||
3312 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3313 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3314 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3315 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3316
3317 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3318 }
3319
3320 /*
3321 * Convert the timing to bus clock counts.
3322 */
3323
3324 ata_timing_quantize(t, t, T, UT);
3325
3326 /*
3327 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3328 * S.M.A.R.T * and some other commands. We have to ensure that the
3329 * DMA cycle timing is slower/equal than the fastest PIO timing.
3330 */
3331
3332 if (speed > XFER_PIO_6) {
3333 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3334 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3335 }
3336
3337 /*
3338 * Lengthen active & recovery time so that cycle time is correct.
3339 */
3340
3341 if (t->act8b + t->rec8b < t->cyc8b) {
3342 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3343 t->rec8b = t->cyc8b - t->act8b;
3344 }
3345
3346 if (t->active + t->recover < t->cycle) {
3347 t->active += (t->cycle - (t->active + t->recover)) / 2;
3348 t->recover = t->cycle - t->active;
3349 }
3350
3351 /* In a few cases quantisation may produce enough errors to
3352 leave t->cycle too low for the sum of active and recovery
3353 if so we must correct this */
3354 if (t->active + t->recover > t->cycle)
3355 t->cycle = t->active + t->recover;
3356
3357 return 0;
3358 }
3359
3360 /**
3361 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3362 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3363 * @cycle: cycle duration in ns
3364 *
3365 * Return matching xfer mode for @cycle. The returned mode is of
3366 * the transfer type specified by @xfer_shift. If @cycle is too
3367 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3368 * than the fastest known mode, the fasted mode is returned.
3369 *
3370 * LOCKING:
3371 * None.
3372 *
3373 * RETURNS:
3374 * Matching xfer_mode, 0xff if no match found.
3375 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3376 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3377 {
3378 u8 base_mode = 0xff, last_mode = 0xff;
3379 const struct ata_xfer_ent *ent;
3380 const struct ata_timing *t;
3381
3382 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3383 if (ent->shift == xfer_shift)
3384 base_mode = ent->base;
3385
3386 for (t = ata_timing_find_mode(base_mode);
3387 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3388 unsigned short this_cycle;
3389
3390 switch (xfer_shift) {
3391 case ATA_SHIFT_PIO:
3392 case ATA_SHIFT_MWDMA:
3393 this_cycle = t->cycle;
3394 break;
3395 case ATA_SHIFT_UDMA:
3396 this_cycle = t->udma;
3397 break;
3398 default:
3399 return 0xff;
3400 }
3401
3402 if (cycle > this_cycle)
3403 break;
3404
3405 last_mode = t->mode;
3406 }
3407
3408 return last_mode;
3409 }
3410
3411 /**
3412 * ata_down_xfermask_limit - adjust dev xfer masks downward
3413 * @dev: Device to adjust xfer masks
3414 * @sel: ATA_DNXFER_* selector
3415 *
3416 * Adjust xfer masks of @dev downward. Note that this function
3417 * does not apply the change. Invoking ata_set_mode() afterwards
3418 * will apply the limit.
3419 *
3420 * LOCKING:
3421 * Inherited from caller.
3422 *
3423 * RETURNS:
3424 * 0 on success, negative errno on failure
3425 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3426 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3427 {
3428 char buf[32];
3429 unsigned long orig_mask, xfer_mask;
3430 unsigned long pio_mask, mwdma_mask, udma_mask;
3431 int quiet, highbit;
3432
3433 quiet = !!(sel & ATA_DNXFER_QUIET);
3434 sel &= ~ATA_DNXFER_QUIET;
3435
3436 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3437 dev->mwdma_mask,
3438 dev->udma_mask);
3439 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3440
3441 switch (sel) {
3442 case ATA_DNXFER_PIO:
3443 highbit = fls(pio_mask) - 1;
3444 pio_mask &= ~(1 << highbit);
3445 break;
3446
3447 case ATA_DNXFER_DMA:
3448 if (udma_mask) {
3449 highbit = fls(udma_mask) - 1;
3450 udma_mask &= ~(1 << highbit);
3451 if (!udma_mask)
3452 return -ENOENT;
3453 } else if (mwdma_mask) {
3454 highbit = fls(mwdma_mask) - 1;
3455 mwdma_mask &= ~(1 << highbit);
3456 if (!mwdma_mask)
3457 return -ENOENT;
3458 }
3459 break;
3460
3461 case ATA_DNXFER_40C:
3462 udma_mask &= ATA_UDMA_MASK_40C;
3463 break;
3464
3465 case ATA_DNXFER_FORCE_PIO0:
3466 pio_mask &= 1;
3467 /* fall through */
3468 case ATA_DNXFER_FORCE_PIO:
3469 mwdma_mask = 0;
3470 udma_mask = 0;
3471 break;
3472
3473 default:
3474 BUG();
3475 }
3476
3477 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3478
3479 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3480 return -ENOENT;
3481
3482 if (!quiet) {
3483 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3484 snprintf(buf, sizeof(buf), "%s:%s",
3485 ata_mode_string(xfer_mask),
3486 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3487 else
3488 snprintf(buf, sizeof(buf), "%s",
3489 ata_mode_string(xfer_mask));
3490
3491 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3492 }
3493
3494 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3495 &dev->udma_mask);
3496
3497 return 0;
3498 }
3499
ata_dev_set_mode(struct ata_device * dev)3500 static int ata_dev_set_mode(struct ata_device *dev)
3501 {
3502 struct ata_port *ap = dev->link->ap;
3503 struct ata_eh_context *ehc = &dev->link->eh_context;
3504 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3505 const char *dev_err_whine = "";
3506 int ign_dev_err = 0;
3507 unsigned int err_mask = 0;
3508 int rc;
3509
3510 dev->flags &= ~ATA_DFLAG_PIO;
3511 if (dev->xfer_shift == ATA_SHIFT_PIO)
3512 dev->flags |= ATA_DFLAG_PIO;
3513
3514 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3515 dev_err_whine = " (SET_XFERMODE skipped)";
3516 else {
3517 if (nosetxfer)
3518 ata_dev_warn(dev,
3519 "NOSETXFER but PATA detected - can't "
3520 "skip SETXFER, might malfunction\n");
3521 err_mask = ata_dev_set_xfermode(dev);
3522 }
3523
3524 if (err_mask & ~AC_ERR_DEV)
3525 goto fail;
3526
3527 /* revalidate */
3528 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3529 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3530 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3531 if (rc)
3532 return rc;
3533
3534 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3535 /* Old CFA may refuse this command, which is just fine */
3536 if (ata_id_is_cfa(dev->id))
3537 ign_dev_err = 1;
3538 /* Catch several broken garbage emulations plus some pre
3539 ATA devices */
3540 if (ata_id_major_version(dev->id) == 0 &&
3541 dev->pio_mode <= XFER_PIO_2)
3542 ign_dev_err = 1;
3543 /* Some very old devices and some bad newer ones fail
3544 any kind of SET_XFERMODE request but support PIO0-2
3545 timings and no IORDY */
3546 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3547 ign_dev_err = 1;
3548 }
3549 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3550 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3551 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3552 dev->dma_mode == XFER_MW_DMA_0 &&
3553 (dev->id[63] >> 8) & 1)
3554 ign_dev_err = 1;
3555
3556 /* if the device is actually configured correctly, ignore dev err */
3557 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3558 ign_dev_err = 1;
3559
3560 if (err_mask & AC_ERR_DEV) {
3561 if (!ign_dev_err)
3562 goto fail;
3563 else
3564 dev_err_whine = " (device error ignored)";
3565 }
3566
3567 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3568 dev->xfer_shift, (int)dev->xfer_mode);
3569
3570 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3571 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3572 ata_dev_info(dev, "configured for %s%s\n",
3573 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3574 dev_err_whine);
3575
3576 return 0;
3577
3578 fail:
3579 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3580 return -EIO;
3581 }
3582
3583 /**
3584 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3585 * @link: link on which timings will be programmed
3586 * @r_failed_dev: out parameter for failed device
3587 *
3588 * Standard implementation of the function used to tune and set
3589 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3590 * ata_dev_set_mode() fails, pointer to the failing device is
3591 * returned in @r_failed_dev.
3592 *
3593 * LOCKING:
3594 * PCI/etc. bus probe sem.
3595 *
3596 * RETURNS:
3597 * 0 on success, negative errno otherwise
3598 */
3599
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3600 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3601 {
3602 struct ata_port *ap = link->ap;
3603 struct ata_device *dev;
3604 int rc = 0, used_dma = 0, found = 0;
3605
3606 /* step 1: calculate xfer_mask */
3607 ata_for_each_dev(dev, link, ENABLED) {
3608 unsigned long pio_mask, dma_mask;
3609 unsigned int mode_mask;
3610
3611 mode_mask = ATA_DMA_MASK_ATA;
3612 if (dev->class == ATA_DEV_ATAPI)
3613 mode_mask = ATA_DMA_MASK_ATAPI;
3614 else if (ata_id_is_cfa(dev->id))
3615 mode_mask = ATA_DMA_MASK_CFA;
3616
3617 ata_dev_xfermask(dev);
3618 ata_force_xfermask(dev);
3619
3620 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3621
3622 if (libata_dma_mask & mode_mask)
3623 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3624 dev->udma_mask);
3625 else
3626 dma_mask = 0;
3627
3628 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3629 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3630
3631 found = 1;
3632 if (ata_dma_enabled(dev))
3633 used_dma = 1;
3634 }
3635 if (!found)
3636 goto out;
3637
3638 /* step 2: always set host PIO timings */
3639 ata_for_each_dev(dev, link, ENABLED) {
3640 if (dev->pio_mode == 0xff) {
3641 ata_dev_warn(dev, "no PIO support\n");
3642 rc = -EINVAL;
3643 goto out;
3644 }
3645
3646 dev->xfer_mode = dev->pio_mode;
3647 dev->xfer_shift = ATA_SHIFT_PIO;
3648 if (ap->ops->set_piomode)
3649 ap->ops->set_piomode(ap, dev);
3650 }
3651
3652 /* step 3: set host DMA timings */
3653 ata_for_each_dev(dev, link, ENABLED) {
3654 if (!ata_dma_enabled(dev))
3655 continue;
3656
3657 dev->xfer_mode = dev->dma_mode;
3658 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3659 if (ap->ops->set_dmamode)
3660 ap->ops->set_dmamode(ap, dev);
3661 }
3662
3663 /* step 4: update devices' xfer mode */
3664 ata_for_each_dev(dev, link, ENABLED) {
3665 rc = ata_dev_set_mode(dev);
3666 if (rc)
3667 goto out;
3668 }
3669
3670 /* Record simplex status. If we selected DMA then the other
3671 * host channels are not permitted to do so.
3672 */
3673 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3674 ap->host->simplex_claimed = ap;
3675
3676 out:
3677 if (rc)
3678 *r_failed_dev = dev;
3679 return rc;
3680 }
3681
3682 /**
3683 * ata_wait_ready - wait for link to become ready
3684 * @link: link to be waited on
3685 * @deadline: deadline jiffies for the operation
3686 * @check_ready: callback to check link readiness
3687 *
3688 * Wait for @link to become ready. @check_ready should return
3689 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3690 * link doesn't seem to be occupied, other errno for other error
3691 * conditions.
3692 *
3693 * Transient -ENODEV conditions are allowed for
3694 * ATA_TMOUT_FF_WAIT.
3695 *
3696 * LOCKING:
3697 * EH context.
3698 *
3699 * RETURNS:
3700 * 0 if @link is ready before @deadline; otherwise, -errno.
3701 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3702 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3703 int (*check_ready)(struct ata_link *link))
3704 {
3705 unsigned long start = jiffies;
3706 unsigned long nodev_deadline;
3707 int warned = 0;
3708
3709 /* choose which 0xff timeout to use, read comment in libata.h */
3710 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3711 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3712 else
3713 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3714
3715 /* Slave readiness can't be tested separately from master. On
3716 * M/S emulation configuration, this function should be called
3717 * only on the master and it will handle both master and slave.
3718 */
3719 WARN_ON(link == link->ap->slave_link);
3720
3721 if (time_after(nodev_deadline, deadline))
3722 nodev_deadline = deadline;
3723
3724 while (1) {
3725 unsigned long now = jiffies;
3726 int ready, tmp;
3727
3728 ready = tmp = check_ready(link);
3729 if (ready > 0)
3730 return 0;
3731
3732 /*
3733 * -ENODEV could be transient. Ignore -ENODEV if link
3734 * is online. Also, some SATA devices take a long
3735 * time to clear 0xff after reset. Wait for
3736 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3737 * offline.
3738 *
3739 * Note that some PATA controllers (pata_ali) explode
3740 * if status register is read more than once when
3741 * there's no device attached.
3742 */
3743 if (ready == -ENODEV) {
3744 if (ata_link_online(link))
3745 ready = 0;
3746 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3747 !ata_link_offline(link) &&
3748 time_before(now, nodev_deadline))
3749 ready = 0;
3750 }
3751
3752 if (ready)
3753 return ready;
3754 if (time_after(now, deadline))
3755 return -EBUSY;
3756
3757 if (!warned && time_after(now, start + 5 * HZ) &&
3758 (deadline - now > 3 * HZ)) {
3759 ata_link_warn(link,
3760 "link is slow to respond, please be patient "
3761 "(ready=%d)\n", tmp);
3762 warned = 1;
3763 }
3764
3765 ata_msleep(link->ap, 50);
3766 }
3767 }
3768
3769 /**
3770 * ata_wait_after_reset - wait for link to become ready after reset
3771 * @link: link to be waited on
3772 * @deadline: deadline jiffies for the operation
3773 * @check_ready: callback to check link readiness
3774 *
3775 * Wait for @link to become ready after reset.
3776 *
3777 * LOCKING:
3778 * EH context.
3779 *
3780 * RETURNS:
3781 * 0 if @link is ready before @deadline; otherwise, -errno.
3782 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3783 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3784 int (*check_ready)(struct ata_link *link))
3785 {
3786 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3787
3788 return ata_wait_ready(link, deadline, check_ready);
3789 }
3790
3791 /**
3792 * sata_link_debounce - debounce SATA phy status
3793 * @link: ATA link to debounce SATA phy status for
3794 * @params: timing parameters { interval, duration, timeout } in msec
3795 * @deadline: deadline jiffies for the operation
3796 *
3797 * Make sure SStatus of @link reaches stable state, determined by
3798 * holding the same value where DET is not 1 for @duration polled
3799 * every @interval, before @timeout. Timeout constraints the
3800 * beginning of the stable state. Because DET gets stuck at 1 on
3801 * some controllers after hot unplugging, this functions waits
3802 * until timeout then returns 0 if DET is stable at 1.
3803 *
3804 * @timeout is further limited by @deadline. The sooner of the
3805 * two is used.
3806 *
3807 * LOCKING:
3808 * Kernel thread context (may sleep)
3809 *
3810 * RETURNS:
3811 * 0 on success, -errno on failure.
3812 */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)3813 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3814 unsigned long deadline)
3815 {
3816 unsigned long interval = params[0];
3817 unsigned long duration = params[1];
3818 unsigned long last_jiffies, t;
3819 u32 last, cur;
3820 int rc;
3821
3822 t = ata_deadline(jiffies, params[2]);
3823 if (time_before(t, deadline))
3824 deadline = t;
3825
3826 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3827 return rc;
3828 cur &= 0xf;
3829
3830 last = cur;
3831 last_jiffies = jiffies;
3832
3833 while (1) {
3834 ata_msleep(link->ap, interval);
3835 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3836 return rc;
3837 cur &= 0xf;
3838
3839 /* DET stable? */
3840 if (cur == last) {
3841 if (cur == 1 && time_before(jiffies, deadline))
3842 continue;
3843 if (time_after(jiffies,
3844 ata_deadline(last_jiffies, duration)))
3845 return 0;
3846 continue;
3847 }
3848
3849 /* unstable, start over */
3850 last = cur;
3851 last_jiffies = jiffies;
3852
3853 /* Check deadline. If debouncing failed, return
3854 * -EPIPE to tell upper layer to lower link speed.
3855 */
3856 if (time_after(jiffies, deadline))
3857 return -EPIPE;
3858 }
3859 }
3860
3861 /**
3862 * sata_link_resume - resume SATA link
3863 * @link: ATA link to resume SATA
3864 * @params: timing parameters { interval, duration, timeout } in msec
3865 * @deadline: deadline jiffies for the operation
3866 *
3867 * Resume SATA phy @link and debounce it.
3868 *
3869 * LOCKING:
3870 * Kernel thread context (may sleep)
3871 *
3872 * RETURNS:
3873 * 0 on success, -errno on failure.
3874 */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)3875 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3876 unsigned long deadline)
3877 {
3878 int tries = ATA_LINK_RESUME_TRIES;
3879 u32 scontrol, serror;
3880 int rc;
3881
3882 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3883 return rc;
3884
3885 /*
3886 * Writes to SControl sometimes get ignored under certain
3887 * controllers (ata_piix SIDPR). Make sure DET actually is
3888 * cleared.
3889 */
3890 do {
3891 scontrol = (scontrol & 0x0f0) | 0x300;
3892 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3893 return rc;
3894 /*
3895 * Some PHYs react badly if SStatus is pounded
3896 * immediately after resuming. Delay 200ms before
3897 * debouncing.
3898 */
3899 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3900 ata_msleep(link->ap, 200);
3901
3902 /* is SControl restored correctly? */
3903 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3904 return rc;
3905 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3906
3907 if ((scontrol & 0xf0f) != 0x300) {
3908 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3909 scontrol);
3910 return 0;
3911 }
3912
3913 if (tries < ATA_LINK_RESUME_TRIES)
3914 ata_link_warn(link, "link resume succeeded after %d retries\n",
3915 ATA_LINK_RESUME_TRIES - tries);
3916
3917 if ((rc = sata_link_debounce(link, params, deadline)))
3918 return rc;
3919
3920 /* clear SError, some PHYs require this even for SRST to work */
3921 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3922 rc = sata_scr_write(link, SCR_ERROR, serror);
3923
3924 return rc != -EINVAL ? rc : 0;
3925 }
3926
3927 /**
3928 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3929 * @link: ATA link to manipulate SControl for
3930 * @policy: LPM policy to configure
3931 * @spm_wakeup: initiate LPM transition to active state
3932 *
3933 * Manipulate the IPM field of the SControl register of @link
3934 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3935 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3936 * the link. This function also clears PHYRDY_CHG before
3937 * returning.
3938 *
3939 * LOCKING:
3940 * EH context.
3941 *
3942 * RETURNS:
3943 * 0 on success, -errno otherwise.
3944 */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)3945 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3946 bool spm_wakeup)
3947 {
3948 struct ata_eh_context *ehc = &link->eh_context;
3949 bool woken_up = false;
3950 u32 scontrol;
3951 int rc;
3952
3953 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3954 if (rc)
3955 return rc;
3956
3957 switch (policy) {
3958 case ATA_LPM_MAX_POWER:
3959 /* disable all LPM transitions */
3960 scontrol |= (0x7 << 8);
3961 /* initiate transition to active state */
3962 if (spm_wakeup) {
3963 scontrol |= (0x4 << 12);
3964 woken_up = true;
3965 }
3966 break;
3967 case ATA_LPM_MED_POWER:
3968 /* allow LPM to PARTIAL */
3969 scontrol &= ~(0x1 << 8);
3970 scontrol |= (0x6 << 8);
3971 break;
3972 case ATA_LPM_MED_POWER_WITH_DIPM:
3973 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3974 case ATA_LPM_MIN_POWER:
3975 if (ata_link_nr_enabled(link) > 0)
3976 /* no restrictions on LPM transitions */
3977 scontrol &= ~(0x7 << 8);
3978 else {
3979 /* empty port, power off */
3980 scontrol &= ~0xf;
3981 scontrol |= (0x1 << 2);
3982 }
3983 break;
3984 default:
3985 WARN_ON(1);
3986 }
3987
3988 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3989 if (rc)
3990 return rc;
3991
3992 /* give the link time to transit out of LPM state */
3993 if (woken_up)
3994 msleep(10);
3995
3996 /* clear PHYRDY_CHG from SError */
3997 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3998 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3999 }
4000
4001 /**
4002 * ata_std_prereset - prepare for reset
4003 * @link: ATA link to be reset
4004 * @deadline: deadline jiffies for the operation
4005 *
4006 * @link is about to be reset. Initialize it. Failure from
4007 * prereset makes libata abort whole reset sequence and give up
4008 * that port, so prereset should be best-effort. It does its
4009 * best to prepare for reset sequence but if things go wrong, it
4010 * should just whine, not fail.
4011 *
4012 * LOCKING:
4013 * Kernel thread context (may sleep)
4014 *
4015 * RETURNS:
4016 * 0 on success, -errno otherwise.
4017 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)4018 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4019 {
4020 struct ata_port *ap = link->ap;
4021 struct ata_eh_context *ehc = &link->eh_context;
4022 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4023 int rc;
4024
4025 /* if we're about to do hardreset, nothing more to do */
4026 if (ehc->i.action & ATA_EH_HARDRESET)
4027 return 0;
4028
4029 /* if SATA, resume link */
4030 if (ap->flags & ATA_FLAG_SATA) {
4031 rc = sata_link_resume(link, timing, deadline);
4032 /* whine about phy resume failure but proceed */
4033 if (rc && rc != -EOPNOTSUPP)
4034 ata_link_warn(link,
4035 "failed to resume link for reset (errno=%d)\n",
4036 rc);
4037 }
4038
4039 /* no point in trying softreset on offline link */
4040 if (ata_phys_link_offline(link))
4041 ehc->i.action &= ~ATA_EH_SOFTRESET;
4042
4043 return 0;
4044 }
4045
4046 /**
4047 * sata_link_hardreset - reset link via SATA phy reset
4048 * @link: link to reset
4049 * @timing: timing parameters { interval, duration, timeout } in msec
4050 * @deadline: deadline jiffies for the operation
4051 * @online: optional out parameter indicating link onlineness
4052 * @check_ready: optional callback to check link readiness
4053 *
4054 * SATA phy-reset @link using DET bits of SControl register.
4055 * After hardreset, link readiness is waited upon using
4056 * ata_wait_ready() if @check_ready is specified. LLDs are
4057 * allowed to not specify @check_ready and wait itself after this
4058 * function returns. Device classification is LLD's
4059 * responsibility.
4060 *
4061 * *@online is set to one iff reset succeeded and @link is online
4062 * after reset.
4063 *
4064 * LOCKING:
4065 * Kernel thread context (may sleep)
4066 *
4067 * RETURNS:
4068 * 0 on success, -errno otherwise.
4069 */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))4070 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4071 unsigned long deadline,
4072 bool *online, int (*check_ready)(struct ata_link *))
4073 {
4074 u32 scontrol;
4075 int rc;
4076
4077 DPRINTK("ENTER\n");
4078
4079 if (online)
4080 *online = false;
4081
4082 if (sata_set_spd_needed(link)) {
4083 /* SATA spec says nothing about how to reconfigure
4084 * spd. To be on the safe side, turn off phy during
4085 * reconfiguration. This works for at least ICH7 AHCI
4086 * and Sil3124.
4087 */
4088 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4089 goto out;
4090
4091 scontrol = (scontrol & 0x0f0) | 0x304;
4092
4093 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4094 goto out;
4095
4096 sata_set_spd(link);
4097 }
4098
4099 /* issue phy wake/reset */
4100 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4101 goto out;
4102
4103 scontrol = (scontrol & 0x0f0) | 0x301;
4104
4105 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4106 goto out;
4107
4108 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4109 * 10.4.2 says at least 1 ms.
4110 */
4111 ata_msleep(link->ap, 1);
4112
4113 /* bring link back */
4114 rc = sata_link_resume(link, timing, deadline);
4115 if (rc)
4116 goto out;
4117 /* if link is offline nothing more to do */
4118 if (ata_phys_link_offline(link))
4119 goto out;
4120
4121 /* Link is online. From this point, -ENODEV too is an error. */
4122 if (online)
4123 *online = true;
4124
4125 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4126 /* If PMP is supported, we have to do follow-up SRST.
4127 * Some PMPs don't send D2H Reg FIS after hardreset if
4128 * the first port is empty. Wait only for
4129 * ATA_TMOUT_PMP_SRST_WAIT.
4130 */
4131 if (check_ready) {
4132 unsigned long pmp_deadline;
4133
4134 pmp_deadline = ata_deadline(jiffies,
4135 ATA_TMOUT_PMP_SRST_WAIT);
4136 if (time_after(pmp_deadline, deadline))
4137 pmp_deadline = deadline;
4138 ata_wait_ready(link, pmp_deadline, check_ready);
4139 }
4140 rc = -EAGAIN;
4141 goto out;
4142 }
4143
4144 rc = 0;
4145 if (check_ready)
4146 rc = ata_wait_ready(link, deadline, check_ready);
4147 out:
4148 if (rc && rc != -EAGAIN) {
4149 /* online is set iff link is online && reset succeeded */
4150 if (online)
4151 *online = false;
4152 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4153 }
4154 DPRINTK("EXIT, rc=%d\n", rc);
4155 return rc;
4156 }
4157
4158 /**
4159 * sata_std_hardreset - COMRESET w/o waiting or classification
4160 * @link: link to reset
4161 * @class: resulting class of attached device
4162 * @deadline: deadline jiffies for the operation
4163 *
4164 * Standard SATA COMRESET w/o waiting or classification.
4165 *
4166 * LOCKING:
4167 * Kernel thread context (may sleep)
4168 *
4169 * RETURNS:
4170 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4171 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)4172 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4173 unsigned long deadline)
4174 {
4175 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4176 bool online;
4177 int rc;
4178
4179 /* do hardreset */
4180 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4181 return online ? -EAGAIN : rc;
4182 }
4183
4184 /**
4185 * ata_std_postreset - standard postreset callback
4186 * @link: the target ata_link
4187 * @classes: classes of attached devices
4188 *
4189 * This function is invoked after a successful reset. Note that
4190 * the device might have been reset more than once using
4191 * different reset methods before postreset is invoked.
4192 *
4193 * LOCKING:
4194 * Kernel thread context (may sleep)
4195 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)4196 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4197 {
4198 u32 serror;
4199
4200 DPRINTK("ENTER\n");
4201
4202 /* reset complete, clear SError */
4203 if (!sata_scr_read(link, SCR_ERROR, &serror))
4204 sata_scr_write(link, SCR_ERROR, serror);
4205
4206 /* print link status */
4207 sata_print_link_status(link);
4208
4209 DPRINTK("EXIT\n");
4210 }
4211
4212 /**
4213 * ata_dev_same_device - Determine whether new ID matches configured device
4214 * @dev: device to compare against
4215 * @new_class: class of the new device
4216 * @new_id: IDENTIFY page of the new device
4217 *
4218 * Compare @new_class and @new_id against @dev and determine
4219 * whether @dev is the device indicated by @new_class and
4220 * @new_id.
4221 *
4222 * LOCKING:
4223 * None.
4224 *
4225 * RETURNS:
4226 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4227 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)4228 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4229 const u16 *new_id)
4230 {
4231 const u16 *old_id = dev->id;
4232 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4233 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4234
4235 if (dev->class != new_class) {
4236 ata_dev_info(dev, "class mismatch %d != %d\n",
4237 dev->class, new_class);
4238 return 0;
4239 }
4240
4241 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4242 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4243 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4244 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4245
4246 if (strcmp(model[0], model[1])) {
4247 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4248 model[0], model[1]);
4249 return 0;
4250 }
4251
4252 if (strcmp(serial[0], serial[1])) {
4253 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4254 serial[0], serial[1]);
4255 return 0;
4256 }
4257
4258 return 1;
4259 }
4260
4261 /**
4262 * ata_dev_reread_id - Re-read IDENTIFY data
4263 * @dev: target ATA device
4264 * @readid_flags: read ID flags
4265 *
4266 * Re-read IDENTIFY page and make sure @dev is still attached to
4267 * the port.
4268 *
4269 * LOCKING:
4270 * Kernel thread context (may sleep)
4271 *
4272 * RETURNS:
4273 * 0 on success, negative errno otherwise
4274 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)4275 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4276 {
4277 unsigned int class = dev->class;
4278 u16 *id = (void *)dev->link->ap->sector_buf;
4279 int rc;
4280
4281 /* read ID data */
4282 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4283 if (rc)
4284 return rc;
4285
4286 /* is the device still there? */
4287 if (!ata_dev_same_device(dev, class, id))
4288 return -ENODEV;
4289
4290 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4291 return 0;
4292 }
4293
4294 /**
4295 * ata_dev_revalidate - Revalidate ATA device
4296 * @dev: device to revalidate
4297 * @new_class: new class code
4298 * @readid_flags: read ID flags
4299 *
4300 * Re-read IDENTIFY page, make sure @dev is still attached to the
4301 * port and reconfigure it according to the new IDENTIFY page.
4302 *
4303 * LOCKING:
4304 * Kernel thread context (may sleep)
4305 *
4306 * RETURNS:
4307 * 0 on success, negative errno otherwise
4308 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)4309 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4310 unsigned int readid_flags)
4311 {
4312 u64 n_sectors = dev->n_sectors;
4313 u64 n_native_sectors = dev->n_native_sectors;
4314 int rc;
4315
4316 if (!ata_dev_enabled(dev))
4317 return -ENODEV;
4318
4319 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4320 if (ata_class_enabled(new_class) &&
4321 new_class != ATA_DEV_ATA &&
4322 new_class != ATA_DEV_ATAPI &&
4323 new_class != ATA_DEV_ZAC &&
4324 new_class != ATA_DEV_SEMB) {
4325 ata_dev_info(dev, "class mismatch %u != %u\n",
4326 dev->class, new_class);
4327 rc = -ENODEV;
4328 goto fail;
4329 }
4330
4331 /* re-read ID */
4332 rc = ata_dev_reread_id(dev, readid_flags);
4333 if (rc)
4334 goto fail;
4335
4336 /* configure device according to the new ID */
4337 rc = ata_dev_configure(dev);
4338 if (rc)
4339 goto fail;
4340
4341 /* verify n_sectors hasn't changed */
4342 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4343 dev->n_sectors == n_sectors)
4344 return 0;
4345
4346 /* n_sectors has changed */
4347 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4348 (unsigned long long)n_sectors,
4349 (unsigned long long)dev->n_sectors);
4350
4351 /*
4352 * Something could have caused HPA to be unlocked
4353 * involuntarily. If n_native_sectors hasn't changed and the
4354 * new size matches it, keep the device.
4355 */
4356 if (dev->n_native_sectors == n_native_sectors &&
4357 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4358 ata_dev_warn(dev,
4359 "new n_sectors matches native, probably "
4360 "late HPA unlock, n_sectors updated\n");
4361 /* use the larger n_sectors */
4362 return 0;
4363 }
4364
4365 /*
4366 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4367 * unlocking HPA in those cases.
4368 *
4369 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4370 */
4371 if (dev->n_native_sectors == n_native_sectors &&
4372 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4373 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4374 ata_dev_warn(dev,
4375 "old n_sectors matches native, probably "
4376 "late HPA lock, will try to unlock HPA\n");
4377 /* try unlocking HPA */
4378 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4379 rc = -EIO;
4380 } else
4381 rc = -ENODEV;
4382
4383 /* restore original n_[native_]sectors and fail */
4384 dev->n_native_sectors = n_native_sectors;
4385 dev->n_sectors = n_sectors;
4386 fail:
4387 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4388 return rc;
4389 }
4390
4391 struct ata_blacklist_entry {
4392 const char *model_num;
4393 const char *model_rev;
4394 unsigned long horkage;
4395 };
4396
4397 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4398 /* Devices with DMA related problems under Linux */
4399 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4400 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4401 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4402 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4403 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4404 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4405 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4406 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4407 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4408 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4409 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4410 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4411 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4412 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4413 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4414 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4415 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4416 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4417 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4418 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4419 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4420 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4421 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4422 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4423 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4424 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4425 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4426 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4427 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4428 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4429 /* Odd clown on sil3726/4726 PMPs */
4430 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4431
4432 /* Weird ATAPI devices */
4433 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4434 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4435 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4436 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4437
4438 /*
4439 * Causes silent data corruption with higher max sects.
4440 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4441 */
4442 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4443
4444 /*
4445 * These devices time out with higher max sects.
4446 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4447 */
4448 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4449 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4450
4451 /* Devices we expect to fail diagnostics */
4452
4453 /* Devices where NCQ should be avoided */
4454 /* NCQ is slow */
4455 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4456 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4457 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4458 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4459 /* NCQ is broken */
4460 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4461 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4462 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4463 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4464 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4465
4466 /* Seagate NCQ + FLUSH CACHE firmware bug */
4467 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4468 ATA_HORKAGE_FIRMWARE_WARN },
4469
4470 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4471 ATA_HORKAGE_FIRMWARE_WARN },
4472
4473 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4474 ATA_HORKAGE_FIRMWARE_WARN },
4475
4476 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4477 ATA_HORKAGE_FIRMWARE_WARN },
4478
4479 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4480 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4481 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4482 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4483
4484 /* Blacklist entries taken from Silicon Image 3124/3132
4485 Windows driver .inf file - also several Linux problem reports */
4486 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4487 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4488 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4489
4490 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4491 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4492
4493 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4494 SD7SN6S256G and SD8SN8U256G */
4495 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4496
4497 /* devices which puke on READ_NATIVE_MAX */
4498 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4499 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4500 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4501 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4502
4503 /* this one allows HPA unlocking but fails IOs on the area */
4504 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4505
4506 /* Devices which report 1 sector over size HPA */
4507 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4508 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4509 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4510
4511 /* Devices which get the IVB wrong */
4512 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4513 /* Maybe we should just blacklist TSSTcorp... */
4514 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4515
4516 /* Devices that do not need bridging limits applied */
4517 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4518 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4519
4520 /* Devices which aren't very happy with higher link speeds */
4521 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4522 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4523
4524 /*
4525 * Devices which choke on SETXFER. Applies only if both the
4526 * device and controller are SATA.
4527 */
4528 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4529 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4530 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4531 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4532 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4533
4534 /* Crucial BX100 SSD 500GB has broken LPM support */
4535 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4536
4537 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4538 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4539 ATA_HORKAGE_ZERO_AFTER_TRIM |
4540 ATA_HORKAGE_NOLPM, },
4541 /* 512GB MX100 with newer firmware has only LPM issues */
4542 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4543 ATA_HORKAGE_NOLPM, },
4544
4545 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4546 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4547 ATA_HORKAGE_ZERO_AFTER_TRIM |
4548 ATA_HORKAGE_NOLPM, },
4549 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4550 ATA_HORKAGE_ZERO_AFTER_TRIM |
4551 ATA_HORKAGE_NOLPM, },
4552
4553 /* These specific Samsung models/firmware-revs do not handle LPM well */
4554 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4555 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4556
4557 /* devices that don't properly handle queued TRIM commands */
4558 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4559 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4560 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4561 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4562 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4563 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4564 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4565 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4566 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4567 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4568 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4569 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4570 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4571 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4572 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4573 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4574 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4575 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4576
4577 /* devices that don't properly handle TRIM commands */
4578 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4579
4580 /*
4581 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4582 * (Return Zero After Trim) flags in the ATA Command Set are
4583 * unreliable in the sense that they only define what happens if
4584 * the device successfully executed the DSM TRIM command. TRIM
4585 * is only advisory, however, and the device is free to silently
4586 * ignore all or parts of the request.
4587 *
4588 * Whitelist drives that are known to reliably return zeroes
4589 * after TRIM.
4590 */
4591
4592 /*
4593 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4594 * that model before whitelisting all other intel SSDs.
4595 */
4596 { "INTEL*SSDSC2MH*", NULL, 0, },
4597
4598 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4599 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4600 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4601 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4602 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4603 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4604 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4605
4606 /*
4607 * Some WD SATA-I drives spin up and down erratically when the link
4608 * is put into the slumber mode. We don't have full list of the
4609 * affected devices. Disable LPM if the device matches one of the
4610 * known prefixes and is SATA-1. As a side effect LPM partial is
4611 * lost too.
4612 *
4613 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4614 */
4615 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4616 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4617 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4618 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4619 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4620 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4621 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4622
4623 /* End Marker */
4624 { }
4625 };
4626
ata_dev_blacklisted(const struct ata_device * dev)4627 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4628 {
4629 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4630 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4631 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4632
4633 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4634 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4635
4636 while (ad->model_num) {
4637 if (glob_match(ad->model_num, model_num)) {
4638 if (ad->model_rev == NULL)
4639 return ad->horkage;
4640 if (glob_match(ad->model_rev, model_rev))
4641 return ad->horkage;
4642 }
4643 ad++;
4644 }
4645 return 0;
4646 }
4647
ata_dma_blacklisted(const struct ata_device * dev)4648 static int ata_dma_blacklisted(const struct ata_device *dev)
4649 {
4650 /* We don't support polling DMA.
4651 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4652 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4653 */
4654 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4655 (dev->flags & ATA_DFLAG_CDB_INTR))
4656 return 1;
4657 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4658 }
4659
4660 /**
4661 * ata_is_40wire - check drive side detection
4662 * @dev: device
4663 *
4664 * Perform drive side detection decoding, allowing for device vendors
4665 * who can't follow the documentation.
4666 */
4667
ata_is_40wire(struct ata_device * dev)4668 static int ata_is_40wire(struct ata_device *dev)
4669 {
4670 if (dev->horkage & ATA_HORKAGE_IVB)
4671 return ata_drive_40wire_relaxed(dev->id);
4672 return ata_drive_40wire(dev->id);
4673 }
4674
4675 /**
4676 * cable_is_40wire - 40/80/SATA decider
4677 * @ap: port to consider
4678 *
4679 * This function encapsulates the policy for speed management
4680 * in one place. At the moment we don't cache the result but
4681 * there is a good case for setting ap->cbl to the result when
4682 * we are called with unknown cables (and figuring out if it
4683 * impacts hotplug at all).
4684 *
4685 * Return 1 if the cable appears to be 40 wire.
4686 */
4687
cable_is_40wire(struct ata_port * ap)4688 static int cable_is_40wire(struct ata_port *ap)
4689 {
4690 struct ata_link *link;
4691 struct ata_device *dev;
4692
4693 /* If the controller thinks we are 40 wire, we are. */
4694 if (ap->cbl == ATA_CBL_PATA40)
4695 return 1;
4696
4697 /* If the controller thinks we are 80 wire, we are. */
4698 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4699 return 0;
4700
4701 /* If the system is known to be 40 wire short cable (eg
4702 * laptop), then we allow 80 wire modes even if the drive
4703 * isn't sure.
4704 */
4705 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4706 return 0;
4707
4708 /* If the controller doesn't know, we scan.
4709 *
4710 * Note: We look for all 40 wire detects at this point. Any
4711 * 80 wire detect is taken to be 80 wire cable because
4712 * - in many setups only the one drive (slave if present) will
4713 * give a valid detect
4714 * - if you have a non detect capable drive you don't want it
4715 * to colour the choice
4716 */
4717 ata_for_each_link(link, ap, EDGE) {
4718 ata_for_each_dev(dev, link, ENABLED) {
4719 if (!ata_is_40wire(dev))
4720 return 0;
4721 }
4722 }
4723 return 1;
4724 }
4725
4726 /**
4727 * ata_dev_xfermask - Compute supported xfermask of the given device
4728 * @dev: Device to compute xfermask for
4729 *
4730 * Compute supported xfermask of @dev and store it in
4731 * dev->*_mask. This function is responsible for applying all
4732 * known limits including host controller limits, device
4733 * blacklist, etc...
4734 *
4735 * LOCKING:
4736 * None.
4737 */
ata_dev_xfermask(struct ata_device * dev)4738 static void ata_dev_xfermask(struct ata_device *dev)
4739 {
4740 struct ata_link *link = dev->link;
4741 struct ata_port *ap = link->ap;
4742 struct ata_host *host = ap->host;
4743 unsigned long xfer_mask;
4744
4745 /* controller modes available */
4746 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4747 ap->mwdma_mask, ap->udma_mask);
4748
4749 /* drive modes available */
4750 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4751 dev->mwdma_mask, dev->udma_mask);
4752 xfer_mask &= ata_id_xfermask(dev->id);
4753
4754 /*
4755 * CFA Advanced TrueIDE timings are not allowed on a shared
4756 * cable
4757 */
4758 if (ata_dev_pair(dev)) {
4759 /* No PIO5 or PIO6 */
4760 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4761 /* No MWDMA3 or MWDMA 4 */
4762 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4763 }
4764
4765 if (ata_dma_blacklisted(dev)) {
4766 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4767 ata_dev_warn(dev,
4768 "device is on DMA blacklist, disabling DMA\n");
4769 }
4770
4771 if ((host->flags & ATA_HOST_SIMPLEX) &&
4772 host->simplex_claimed && host->simplex_claimed != ap) {
4773 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4774 ata_dev_warn(dev,
4775 "simplex DMA is claimed by other device, disabling DMA\n");
4776 }
4777
4778 if (ap->flags & ATA_FLAG_NO_IORDY)
4779 xfer_mask &= ata_pio_mask_no_iordy(dev);
4780
4781 if (ap->ops->mode_filter)
4782 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4783
4784 /* Apply cable rule here. Don't apply it early because when
4785 * we handle hot plug the cable type can itself change.
4786 * Check this last so that we know if the transfer rate was
4787 * solely limited by the cable.
4788 * Unknown or 80 wire cables reported host side are checked
4789 * drive side as well. Cases where we know a 40wire cable
4790 * is used safely for 80 are not checked here.
4791 */
4792 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4793 /* UDMA/44 or higher would be available */
4794 if (cable_is_40wire(ap)) {
4795 ata_dev_warn(dev,
4796 "limited to UDMA/33 due to 40-wire cable\n");
4797 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4798 }
4799
4800 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4801 &dev->mwdma_mask, &dev->udma_mask);
4802 }
4803
4804 /**
4805 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4806 * @dev: Device to which command will be sent
4807 *
4808 * Issue SET FEATURES - XFER MODE command to device @dev
4809 * on port @ap.
4810 *
4811 * LOCKING:
4812 * PCI/etc. bus probe sem.
4813 *
4814 * RETURNS:
4815 * 0 on success, AC_ERR_* mask otherwise.
4816 */
4817
ata_dev_set_xfermode(struct ata_device * dev)4818 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4819 {
4820 struct ata_taskfile tf;
4821 unsigned int err_mask;
4822
4823 /* set up set-features taskfile */
4824 DPRINTK("set features - xfer mode\n");
4825
4826 /* Some controllers and ATAPI devices show flaky interrupt
4827 * behavior after setting xfer mode. Use polling instead.
4828 */
4829 ata_tf_init(dev, &tf);
4830 tf.command = ATA_CMD_SET_FEATURES;
4831 tf.feature = SETFEATURES_XFER;
4832 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4833 tf.protocol = ATA_PROT_NODATA;
4834 /* If we are using IORDY we must send the mode setting command */
4835 if (ata_pio_need_iordy(dev))
4836 tf.nsect = dev->xfer_mode;
4837 /* If the device has IORDY and the controller does not - turn it off */
4838 else if (ata_id_has_iordy(dev->id))
4839 tf.nsect = 0x01;
4840 else /* In the ancient relic department - skip all of this */
4841 return 0;
4842
4843 /* On some disks, this command causes spin-up, so we need longer timeout */
4844 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4845
4846 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4847 return err_mask;
4848 }
4849
4850 /**
4851 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4852 * @dev: Device to which command will be sent
4853 * @enable: Whether to enable or disable the feature
4854 * @feature: The sector count represents the feature to set
4855 *
4856 * Issue SET FEATURES - SATA FEATURES command to device @dev
4857 * on port @ap with sector count
4858 *
4859 * LOCKING:
4860 * PCI/etc. bus probe sem.
4861 *
4862 * RETURNS:
4863 * 0 on success, AC_ERR_* mask otherwise.
4864 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4865 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4866 {
4867 struct ata_taskfile tf;
4868 unsigned int err_mask;
4869 unsigned long timeout = 0;
4870
4871 /* set up set-features taskfile */
4872 DPRINTK("set features - SATA features\n");
4873
4874 ata_tf_init(dev, &tf);
4875 tf.command = ATA_CMD_SET_FEATURES;
4876 tf.feature = enable;
4877 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4878 tf.protocol = ATA_PROT_NODATA;
4879 tf.nsect = feature;
4880
4881 if (enable == SETFEATURES_SPINUP)
4882 timeout = ata_probe_timeout ?
4883 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4884 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4885
4886 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4887 return err_mask;
4888 }
4889 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4890
4891 /**
4892 * ata_dev_init_params - Issue INIT DEV PARAMS command
4893 * @dev: Device to which command will be sent
4894 * @heads: Number of heads (taskfile parameter)
4895 * @sectors: Number of sectors (taskfile parameter)
4896 *
4897 * LOCKING:
4898 * Kernel thread context (may sleep)
4899 *
4900 * RETURNS:
4901 * 0 on success, AC_ERR_* mask otherwise.
4902 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4903 static unsigned int ata_dev_init_params(struct ata_device *dev,
4904 u16 heads, u16 sectors)
4905 {
4906 struct ata_taskfile tf;
4907 unsigned int err_mask;
4908
4909 /* Number of sectors per track 1-255. Number of heads 1-16 */
4910 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4911 return AC_ERR_INVALID;
4912
4913 /* set up init dev params taskfile */
4914 DPRINTK("init dev params \n");
4915
4916 ata_tf_init(dev, &tf);
4917 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4918 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4919 tf.protocol = ATA_PROT_NODATA;
4920 tf.nsect = sectors;
4921 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4922
4923 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4924 /* A clean abort indicates an original or just out of spec drive
4925 and we should continue as we issue the setup based on the
4926 drive reported working geometry */
4927 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4928 err_mask = 0;
4929
4930 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4931 return err_mask;
4932 }
4933
4934 /**
4935 * atapi_check_dma - Check whether ATAPI DMA can be supported
4936 * @qc: Metadata associated with taskfile to check
4937 *
4938 * Allow low-level driver to filter ATA PACKET commands, returning
4939 * a status indicating whether or not it is OK to use DMA for the
4940 * supplied PACKET command.
4941 *
4942 * LOCKING:
4943 * spin_lock_irqsave(host lock)
4944 *
4945 * RETURNS: 0 when ATAPI DMA can be used
4946 * nonzero otherwise
4947 */
atapi_check_dma(struct ata_queued_cmd * qc)4948 int atapi_check_dma(struct ata_queued_cmd *qc)
4949 {
4950 struct ata_port *ap = qc->ap;
4951
4952 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4953 * few ATAPI devices choke on such DMA requests.
4954 */
4955 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4956 unlikely(qc->nbytes & 15))
4957 return 1;
4958
4959 if (ap->ops->check_atapi_dma)
4960 return ap->ops->check_atapi_dma(qc);
4961
4962 return 0;
4963 }
4964
4965 /**
4966 * ata_std_qc_defer - Check whether a qc needs to be deferred
4967 * @qc: ATA command in question
4968 *
4969 * Non-NCQ commands cannot run with any other command, NCQ or
4970 * not. As upper layer only knows the queue depth, we are
4971 * responsible for maintaining exclusion. This function checks
4972 * whether a new command @qc can be issued.
4973 *
4974 * LOCKING:
4975 * spin_lock_irqsave(host lock)
4976 *
4977 * RETURNS:
4978 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4979 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4980 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4981 {
4982 struct ata_link *link = qc->dev->link;
4983
4984 if (ata_is_ncq(qc->tf.protocol)) {
4985 if (!ata_tag_valid(link->active_tag))
4986 return 0;
4987 } else {
4988 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4989 return 0;
4990 }
4991
4992 return ATA_DEFER_LINK;
4993 }
4994
ata_noop_qc_prep(struct ata_queued_cmd * qc)4995 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4996
4997 /**
4998 * ata_sg_init - Associate command with scatter-gather table.
4999 * @qc: Command to be associated
5000 * @sg: Scatter-gather table.
5001 * @n_elem: Number of elements in s/g table.
5002 *
5003 * Initialize the data-related elements of queued_cmd @qc
5004 * to point to a scatter-gather table @sg, containing @n_elem
5005 * elements.
5006 *
5007 * LOCKING:
5008 * spin_lock_irqsave(host lock)
5009 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)5010 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5011 unsigned int n_elem)
5012 {
5013 qc->sg = sg;
5014 qc->n_elem = n_elem;
5015 qc->cursg = qc->sg;
5016 }
5017
5018 #ifdef CONFIG_HAS_DMA
5019
5020 /**
5021 * ata_sg_clean - Unmap DMA memory associated with command
5022 * @qc: Command containing DMA memory to be released
5023 *
5024 * Unmap all mapped DMA memory associated with this command.
5025 *
5026 * LOCKING:
5027 * spin_lock_irqsave(host lock)
5028 */
ata_sg_clean(struct ata_queued_cmd * qc)5029 static void ata_sg_clean(struct ata_queued_cmd *qc)
5030 {
5031 struct ata_port *ap = qc->ap;
5032 struct scatterlist *sg = qc->sg;
5033 int dir = qc->dma_dir;
5034
5035 WARN_ON_ONCE(sg == NULL);
5036
5037 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5038
5039 if (qc->n_elem)
5040 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5041
5042 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5043 qc->sg = NULL;
5044 }
5045
5046 /**
5047 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5048 * @qc: Command with scatter-gather table to be mapped.
5049 *
5050 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5051 *
5052 * LOCKING:
5053 * spin_lock_irqsave(host lock)
5054 *
5055 * RETURNS:
5056 * Zero on success, negative on error.
5057 *
5058 */
ata_sg_setup(struct ata_queued_cmd * qc)5059 static int ata_sg_setup(struct ata_queued_cmd *qc)
5060 {
5061 struct ata_port *ap = qc->ap;
5062 unsigned int n_elem;
5063
5064 VPRINTK("ENTER, ata%u\n", ap->print_id);
5065
5066 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5067 if (n_elem < 1)
5068 return -1;
5069
5070 VPRINTK("%d sg elements mapped\n", n_elem);
5071 qc->orig_n_elem = qc->n_elem;
5072 qc->n_elem = n_elem;
5073 qc->flags |= ATA_QCFLAG_DMAMAP;
5074
5075 return 0;
5076 }
5077
5078 #else /* !CONFIG_HAS_DMA */
5079
ata_sg_clean(struct ata_queued_cmd * qc)5080 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)5081 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5082
5083 #endif /* !CONFIG_HAS_DMA */
5084
5085 /**
5086 * swap_buf_le16 - swap halves of 16-bit words in place
5087 * @buf: Buffer to swap
5088 * @buf_words: Number of 16-bit words in buffer.
5089 *
5090 * Swap halves of 16-bit words if needed to convert from
5091 * little-endian byte order to native cpu byte order, or
5092 * vice-versa.
5093 *
5094 * LOCKING:
5095 * Inherited from caller.
5096 */
swap_buf_le16(u16 * buf,unsigned int buf_words)5097 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5098 {
5099 #ifdef __BIG_ENDIAN
5100 unsigned int i;
5101
5102 for (i = 0; i < buf_words; i++)
5103 buf[i] = le16_to_cpu(buf[i]);
5104 #endif /* __BIG_ENDIAN */
5105 }
5106
5107 /**
5108 * ata_qc_new_init - Request an available ATA command, and initialize it
5109 * @dev: Device from whom we request an available command structure
5110 * @tag: tag
5111 *
5112 * LOCKING:
5113 * None.
5114 */
5115
ata_qc_new_init(struct ata_device * dev,int tag)5116 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5117 {
5118 struct ata_port *ap = dev->link->ap;
5119 struct ata_queued_cmd *qc;
5120
5121 /* no command while frozen */
5122 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5123 return NULL;
5124
5125 /* libsas case */
5126 if (ap->flags & ATA_FLAG_SAS_HOST) {
5127 tag = ata_sas_allocate_tag(ap);
5128 if (tag < 0)
5129 return NULL;
5130 }
5131
5132 qc = __ata_qc_from_tag(ap, tag);
5133 qc->tag = qc->hw_tag = tag;
5134 qc->scsicmd = NULL;
5135 qc->ap = ap;
5136 qc->dev = dev;
5137
5138 ata_qc_reinit(qc);
5139
5140 return qc;
5141 }
5142
5143 /**
5144 * ata_qc_free - free unused ata_queued_cmd
5145 * @qc: Command to complete
5146 *
5147 * Designed to free unused ata_queued_cmd object
5148 * in case something prevents using it.
5149 *
5150 * LOCKING:
5151 * spin_lock_irqsave(host lock)
5152 */
ata_qc_free(struct ata_queued_cmd * qc)5153 void ata_qc_free(struct ata_queued_cmd *qc)
5154 {
5155 struct ata_port *ap;
5156 unsigned int tag;
5157
5158 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5159 ap = qc->ap;
5160
5161 qc->flags = 0;
5162 tag = qc->tag;
5163 if (ata_tag_valid(tag)) {
5164 qc->tag = ATA_TAG_POISON;
5165 if (ap->flags & ATA_FLAG_SAS_HOST)
5166 ata_sas_free_tag(tag, ap);
5167 }
5168 }
5169
__ata_qc_complete(struct ata_queued_cmd * qc)5170 void __ata_qc_complete(struct ata_queued_cmd *qc)
5171 {
5172 struct ata_port *ap;
5173 struct ata_link *link;
5174
5175 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5176 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5177 ap = qc->ap;
5178 link = qc->dev->link;
5179
5180 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5181 ata_sg_clean(qc);
5182
5183 /* command should be marked inactive atomically with qc completion */
5184 if (ata_is_ncq(qc->tf.protocol)) {
5185 link->sactive &= ~(1 << qc->hw_tag);
5186 if (!link->sactive)
5187 ap->nr_active_links--;
5188 } else {
5189 link->active_tag = ATA_TAG_POISON;
5190 ap->nr_active_links--;
5191 }
5192
5193 /* clear exclusive status */
5194 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5195 ap->excl_link == link))
5196 ap->excl_link = NULL;
5197
5198 /* atapi: mark qc as inactive to prevent the interrupt handler
5199 * from completing the command twice later, before the error handler
5200 * is called. (when rc != 0 and atapi request sense is needed)
5201 */
5202 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5203 ap->qc_active &= ~(1ULL << qc->tag);
5204
5205 /* call completion callback */
5206 qc->complete_fn(qc);
5207 }
5208
fill_result_tf(struct ata_queued_cmd * qc)5209 static void fill_result_tf(struct ata_queued_cmd *qc)
5210 {
5211 struct ata_port *ap = qc->ap;
5212
5213 qc->result_tf.flags = qc->tf.flags;
5214 ap->ops->qc_fill_rtf(qc);
5215 }
5216
ata_verify_xfer(struct ata_queued_cmd * qc)5217 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5218 {
5219 struct ata_device *dev = qc->dev;
5220
5221 if (!ata_is_data(qc->tf.protocol))
5222 return;
5223
5224 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5225 return;
5226
5227 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5228 }
5229
5230 /**
5231 * ata_qc_complete - Complete an active ATA command
5232 * @qc: Command to complete
5233 *
5234 * Indicate to the mid and upper layers that an ATA command has
5235 * completed, with either an ok or not-ok status.
5236 *
5237 * Refrain from calling this function multiple times when
5238 * successfully completing multiple NCQ commands.
5239 * ata_qc_complete_multiple() should be used instead, which will
5240 * properly update IRQ expect state.
5241 *
5242 * LOCKING:
5243 * spin_lock_irqsave(host lock)
5244 */
ata_qc_complete(struct ata_queued_cmd * qc)5245 void ata_qc_complete(struct ata_queued_cmd *qc)
5246 {
5247 struct ata_port *ap = qc->ap;
5248
5249 /* Trigger the LED (if available) */
5250 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5251
5252 /* XXX: New EH and old EH use different mechanisms to
5253 * synchronize EH with regular execution path.
5254 *
5255 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5256 * Normal execution path is responsible for not accessing a
5257 * failed qc. libata core enforces the rule by returning NULL
5258 * from ata_qc_from_tag() for failed qcs.
5259 *
5260 * Old EH depends on ata_qc_complete() nullifying completion
5261 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5262 * not synchronize with interrupt handler. Only PIO task is
5263 * taken care of.
5264 */
5265 if (ap->ops->error_handler) {
5266 struct ata_device *dev = qc->dev;
5267 struct ata_eh_info *ehi = &dev->link->eh_info;
5268
5269 if (unlikely(qc->err_mask))
5270 qc->flags |= ATA_QCFLAG_FAILED;
5271
5272 /*
5273 * Finish internal commands without any further processing
5274 * and always with the result TF filled.
5275 */
5276 if (unlikely(ata_tag_internal(qc->tag))) {
5277 fill_result_tf(qc);
5278 trace_ata_qc_complete_internal(qc);
5279 __ata_qc_complete(qc);
5280 return;
5281 }
5282
5283 /*
5284 * Non-internal qc has failed. Fill the result TF and
5285 * summon EH.
5286 */
5287 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5288 fill_result_tf(qc);
5289 trace_ata_qc_complete_failed(qc);
5290 ata_qc_schedule_eh(qc);
5291 return;
5292 }
5293
5294 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5295
5296 /* read result TF if requested */
5297 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5298 fill_result_tf(qc);
5299
5300 trace_ata_qc_complete_done(qc);
5301 /* Some commands need post-processing after successful
5302 * completion.
5303 */
5304 switch (qc->tf.command) {
5305 case ATA_CMD_SET_FEATURES:
5306 if (qc->tf.feature != SETFEATURES_WC_ON &&
5307 qc->tf.feature != SETFEATURES_WC_OFF &&
5308 qc->tf.feature != SETFEATURES_RA_ON &&
5309 qc->tf.feature != SETFEATURES_RA_OFF)
5310 break;
5311 /* fall through */
5312 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5313 case ATA_CMD_SET_MULTI: /* multi_count changed */
5314 /* revalidate device */
5315 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5316 ata_port_schedule_eh(ap);
5317 break;
5318
5319 case ATA_CMD_SLEEP:
5320 dev->flags |= ATA_DFLAG_SLEEPING;
5321 break;
5322 }
5323
5324 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5325 ata_verify_xfer(qc);
5326
5327 __ata_qc_complete(qc);
5328 } else {
5329 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5330 return;
5331
5332 /* read result TF if failed or requested */
5333 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5334 fill_result_tf(qc);
5335
5336 __ata_qc_complete(qc);
5337 }
5338 }
5339
5340 /**
5341 * ata_qc_complete_multiple - Complete multiple qcs successfully
5342 * @ap: port in question
5343 * @qc_active: new qc_active mask
5344 *
5345 * Complete in-flight commands. This functions is meant to be
5346 * called from low-level driver's interrupt routine to complete
5347 * requests normally. ap->qc_active and @qc_active is compared
5348 * and commands are completed accordingly.
5349 *
5350 * Always use this function when completing multiple NCQ commands
5351 * from IRQ handlers instead of calling ata_qc_complete()
5352 * multiple times to keep IRQ expect status properly in sync.
5353 *
5354 * LOCKING:
5355 * spin_lock_irqsave(host lock)
5356 *
5357 * RETURNS:
5358 * Number of completed commands on success, -errno otherwise.
5359 */
ata_qc_complete_multiple(struct ata_port * ap,u64 qc_active)5360 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
5361 {
5362 u64 done_mask, ap_qc_active = ap->qc_active;
5363 int nr_done = 0;
5364
5365 /*
5366 * If the internal tag is set on ap->qc_active, then we care about
5367 * bit0 on the passed in qc_active mask. Move that bit up to match
5368 * the internal tag.
5369 */
5370 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5371 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
5372 qc_active ^= qc_active & 0x01;
5373 }
5374
5375 done_mask = ap_qc_active ^ qc_active;
5376
5377 if (unlikely(done_mask & qc_active)) {
5378 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
5379 ap->qc_active, qc_active);
5380 return -EINVAL;
5381 }
5382
5383 while (done_mask) {
5384 struct ata_queued_cmd *qc;
5385 unsigned int tag = __ffs64(done_mask);
5386
5387 qc = ata_qc_from_tag(ap, tag);
5388 if (qc) {
5389 ata_qc_complete(qc);
5390 nr_done++;
5391 }
5392 done_mask &= ~(1ULL << tag);
5393 }
5394
5395 return nr_done;
5396 }
5397
5398 /**
5399 * ata_qc_issue - issue taskfile to device
5400 * @qc: command to issue to device
5401 *
5402 * Prepare an ATA command to submission to device.
5403 * This includes mapping the data into a DMA-able
5404 * area, filling in the S/G table, and finally
5405 * writing the taskfile to hardware, starting the command.
5406 *
5407 * LOCKING:
5408 * spin_lock_irqsave(host lock)
5409 */
ata_qc_issue(struct ata_queued_cmd * qc)5410 void ata_qc_issue(struct ata_queued_cmd *qc)
5411 {
5412 struct ata_port *ap = qc->ap;
5413 struct ata_link *link = qc->dev->link;
5414 u8 prot = qc->tf.protocol;
5415
5416 /* Make sure only one non-NCQ command is outstanding. The
5417 * check is skipped for old EH because it reuses active qc to
5418 * request ATAPI sense.
5419 */
5420 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5421
5422 if (ata_is_ncq(prot)) {
5423 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5424
5425 if (!link->sactive)
5426 ap->nr_active_links++;
5427 link->sactive |= 1 << qc->hw_tag;
5428 } else {
5429 WARN_ON_ONCE(link->sactive);
5430
5431 ap->nr_active_links++;
5432 link->active_tag = qc->tag;
5433 }
5434
5435 qc->flags |= ATA_QCFLAG_ACTIVE;
5436 ap->qc_active |= 1ULL << qc->tag;
5437
5438 /*
5439 * We guarantee to LLDs that they will have at least one
5440 * non-zero sg if the command is a data command.
5441 */
5442 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5443 goto sys_err;
5444
5445 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5446 (ap->flags & ATA_FLAG_PIO_DMA)))
5447 if (ata_sg_setup(qc))
5448 goto sys_err;
5449
5450 /* if device is sleeping, schedule reset and abort the link */
5451 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5452 link->eh_info.action |= ATA_EH_RESET;
5453 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5454 ata_link_abort(link);
5455 return;
5456 }
5457
5458 ap->ops->qc_prep(qc);
5459 trace_ata_qc_issue(qc);
5460 qc->err_mask |= ap->ops->qc_issue(qc);
5461 if (unlikely(qc->err_mask))
5462 goto err;
5463 return;
5464
5465 sys_err:
5466 qc->err_mask |= AC_ERR_SYSTEM;
5467 err:
5468 ata_qc_complete(qc);
5469 }
5470
5471 /**
5472 * sata_scr_valid - test whether SCRs are accessible
5473 * @link: ATA link to test SCR accessibility for
5474 *
5475 * Test whether SCRs are accessible for @link.
5476 *
5477 * LOCKING:
5478 * None.
5479 *
5480 * RETURNS:
5481 * 1 if SCRs are accessible, 0 otherwise.
5482 */
sata_scr_valid(struct ata_link * link)5483 int sata_scr_valid(struct ata_link *link)
5484 {
5485 struct ata_port *ap = link->ap;
5486
5487 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5488 }
5489
5490 /**
5491 * sata_scr_read - read SCR register of the specified port
5492 * @link: ATA link to read SCR for
5493 * @reg: SCR to read
5494 * @val: Place to store read value
5495 *
5496 * Read SCR register @reg of @link into *@val. This function is
5497 * guaranteed to succeed if @link is ap->link, the cable type of
5498 * the port is SATA and the port implements ->scr_read.
5499 *
5500 * LOCKING:
5501 * None if @link is ap->link. Kernel thread context otherwise.
5502 *
5503 * RETURNS:
5504 * 0 on success, negative errno on failure.
5505 */
sata_scr_read(struct ata_link * link,int reg,u32 * val)5506 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5507 {
5508 if (ata_is_host_link(link)) {
5509 if (sata_scr_valid(link))
5510 return link->ap->ops->scr_read(link, reg, val);
5511 return -EOPNOTSUPP;
5512 }
5513
5514 return sata_pmp_scr_read(link, reg, val);
5515 }
5516
5517 /**
5518 * sata_scr_write - write SCR register of the specified port
5519 * @link: ATA link to write SCR for
5520 * @reg: SCR to write
5521 * @val: value to write
5522 *
5523 * Write @val to SCR register @reg of @link. This function is
5524 * guaranteed to succeed if @link is ap->link, the cable type of
5525 * the port is SATA and the port implements ->scr_read.
5526 *
5527 * LOCKING:
5528 * None if @link is ap->link. Kernel thread context otherwise.
5529 *
5530 * RETURNS:
5531 * 0 on success, negative errno on failure.
5532 */
sata_scr_write(struct ata_link * link,int reg,u32 val)5533 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5534 {
5535 if (ata_is_host_link(link)) {
5536 if (sata_scr_valid(link))
5537 return link->ap->ops->scr_write(link, reg, val);
5538 return -EOPNOTSUPP;
5539 }
5540
5541 return sata_pmp_scr_write(link, reg, val);
5542 }
5543
5544 /**
5545 * sata_scr_write_flush - write SCR register of the specified port and flush
5546 * @link: ATA link to write SCR for
5547 * @reg: SCR to write
5548 * @val: value to write
5549 *
5550 * This function is identical to sata_scr_write() except that this
5551 * function performs flush after writing to the register.
5552 *
5553 * LOCKING:
5554 * None if @link is ap->link. Kernel thread context otherwise.
5555 *
5556 * RETURNS:
5557 * 0 on success, negative errno on failure.
5558 */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)5559 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5560 {
5561 if (ata_is_host_link(link)) {
5562 int rc;
5563
5564 if (sata_scr_valid(link)) {
5565 rc = link->ap->ops->scr_write(link, reg, val);
5566 if (rc == 0)
5567 rc = link->ap->ops->scr_read(link, reg, &val);
5568 return rc;
5569 }
5570 return -EOPNOTSUPP;
5571 }
5572
5573 return sata_pmp_scr_write(link, reg, val);
5574 }
5575
5576 /**
5577 * ata_phys_link_online - test whether the given link is online
5578 * @link: ATA link to test
5579 *
5580 * Test whether @link is online. Note that this function returns
5581 * 0 if online status of @link cannot be obtained, so
5582 * ata_link_online(link) != !ata_link_offline(link).
5583 *
5584 * LOCKING:
5585 * None.
5586 *
5587 * RETURNS:
5588 * True if the port online status is available and online.
5589 */
ata_phys_link_online(struct ata_link * link)5590 bool ata_phys_link_online(struct ata_link *link)
5591 {
5592 u32 sstatus;
5593
5594 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5595 ata_sstatus_online(sstatus))
5596 return true;
5597 return false;
5598 }
5599
5600 /**
5601 * ata_phys_link_offline - test whether the given link is offline
5602 * @link: ATA link to test
5603 *
5604 * Test whether @link is offline. Note that this function
5605 * returns 0 if offline status of @link cannot be obtained, so
5606 * ata_link_online(link) != !ata_link_offline(link).
5607 *
5608 * LOCKING:
5609 * None.
5610 *
5611 * RETURNS:
5612 * True if the port offline status is available and offline.
5613 */
ata_phys_link_offline(struct ata_link * link)5614 bool ata_phys_link_offline(struct ata_link *link)
5615 {
5616 u32 sstatus;
5617
5618 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5619 !ata_sstatus_online(sstatus))
5620 return true;
5621 return false;
5622 }
5623
5624 /**
5625 * ata_link_online - test whether the given link is online
5626 * @link: ATA link to test
5627 *
5628 * Test whether @link is online. This is identical to
5629 * ata_phys_link_online() when there's no slave link. When
5630 * there's a slave link, this function should only be called on
5631 * the master link and will return true if any of M/S links is
5632 * online.
5633 *
5634 * LOCKING:
5635 * None.
5636 *
5637 * RETURNS:
5638 * True if the port online status is available and online.
5639 */
ata_link_online(struct ata_link * link)5640 bool ata_link_online(struct ata_link *link)
5641 {
5642 struct ata_link *slave = link->ap->slave_link;
5643
5644 WARN_ON(link == slave); /* shouldn't be called on slave link */
5645
5646 return ata_phys_link_online(link) ||
5647 (slave && ata_phys_link_online(slave));
5648 }
5649
5650 /**
5651 * ata_link_offline - test whether the given link is offline
5652 * @link: ATA link to test
5653 *
5654 * Test whether @link is offline. This is identical to
5655 * ata_phys_link_offline() when there's no slave link. When
5656 * there's a slave link, this function should only be called on
5657 * the master link and will return true if both M/S links are
5658 * offline.
5659 *
5660 * LOCKING:
5661 * None.
5662 *
5663 * RETURNS:
5664 * True if the port offline status is available and offline.
5665 */
ata_link_offline(struct ata_link * link)5666 bool ata_link_offline(struct ata_link *link)
5667 {
5668 struct ata_link *slave = link->ap->slave_link;
5669
5670 WARN_ON(link == slave); /* shouldn't be called on slave link */
5671
5672 return ata_phys_link_offline(link) &&
5673 (!slave || ata_phys_link_offline(slave));
5674 }
5675
5676 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5677 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5678 unsigned int action, unsigned int ehi_flags,
5679 bool async)
5680 {
5681 struct ata_link *link;
5682 unsigned long flags;
5683
5684 /* Previous resume operation might still be in
5685 * progress. Wait for PM_PENDING to clear.
5686 */
5687 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5688 ata_port_wait_eh(ap);
5689 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5690 }
5691
5692 /* request PM ops to EH */
5693 spin_lock_irqsave(ap->lock, flags);
5694
5695 ap->pm_mesg = mesg;
5696 ap->pflags |= ATA_PFLAG_PM_PENDING;
5697 ata_for_each_link(link, ap, HOST_FIRST) {
5698 link->eh_info.action |= action;
5699 link->eh_info.flags |= ehi_flags;
5700 }
5701
5702 ata_port_schedule_eh(ap);
5703
5704 spin_unlock_irqrestore(ap->lock, flags);
5705
5706 if (!async) {
5707 ata_port_wait_eh(ap);
5708 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5709 }
5710 }
5711
5712 /*
5713 * On some hardware, device fails to respond after spun down for suspend. As
5714 * the device won't be used before being resumed, we don't need to touch the
5715 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5716 *
5717 * http://thread.gmane.org/gmane.linux.ide/46764
5718 */
5719 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5720 | ATA_EHI_NO_AUTOPSY
5721 | ATA_EHI_NO_RECOVERY;
5722
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5723 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5724 {
5725 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5726 }
5727
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5728 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5729 {
5730 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5731 }
5732
ata_port_pm_suspend(struct device * dev)5733 static int ata_port_pm_suspend(struct device *dev)
5734 {
5735 struct ata_port *ap = to_ata_port(dev);
5736
5737 if (pm_runtime_suspended(dev))
5738 return 0;
5739
5740 ata_port_suspend(ap, PMSG_SUSPEND);
5741 return 0;
5742 }
5743
ata_port_pm_freeze(struct device * dev)5744 static int ata_port_pm_freeze(struct device *dev)
5745 {
5746 struct ata_port *ap = to_ata_port(dev);
5747
5748 if (pm_runtime_suspended(dev))
5749 return 0;
5750
5751 ata_port_suspend(ap, PMSG_FREEZE);
5752 return 0;
5753 }
5754
ata_port_pm_poweroff(struct device * dev)5755 static int ata_port_pm_poweroff(struct device *dev)
5756 {
5757 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5758 return 0;
5759 }
5760
5761 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5762 | ATA_EHI_QUIET;
5763
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5764 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5765 {
5766 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5767 }
5768
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5769 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5770 {
5771 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5772 }
5773
ata_port_pm_resume(struct device * dev)5774 static int ata_port_pm_resume(struct device *dev)
5775 {
5776 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5777 pm_runtime_disable(dev);
5778 pm_runtime_set_active(dev);
5779 pm_runtime_enable(dev);
5780 return 0;
5781 }
5782
5783 /*
5784 * For ODDs, the upper layer will poll for media change every few seconds,
5785 * which will make it enter and leave suspend state every few seconds. And
5786 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5787 * is very little and the ODD may malfunction after constantly being reset.
5788 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5789 * ODD is attached to the port.
5790 */
ata_port_runtime_idle(struct device * dev)5791 static int ata_port_runtime_idle(struct device *dev)
5792 {
5793 struct ata_port *ap = to_ata_port(dev);
5794 struct ata_link *link;
5795 struct ata_device *adev;
5796
5797 ata_for_each_link(link, ap, HOST_FIRST) {
5798 ata_for_each_dev(adev, link, ENABLED)
5799 if (adev->class == ATA_DEV_ATAPI &&
5800 !zpodd_dev_enabled(adev))
5801 return -EBUSY;
5802 }
5803
5804 return 0;
5805 }
5806
ata_port_runtime_suspend(struct device * dev)5807 static int ata_port_runtime_suspend(struct device *dev)
5808 {
5809 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5810 return 0;
5811 }
5812
ata_port_runtime_resume(struct device * dev)5813 static int ata_port_runtime_resume(struct device *dev)
5814 {
5815 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5816 return 0;
5817 }
5818
5819 static const struct dev_pm_ops ata_port_pm_ops = {
5820 .suspend = ata_port_pm_suspend,
5821 .resume = ata_port_pm_resume,
5822 .freeze = ata_port_pm_freeze,
5823 .thaw = ata_port_pm_resume,
5824 .poweroff = ata_port_pm_poweroff,
5825 .restore = ata_port_pm_resume,
5826
5827 .runtime_suspend = ata_port_runtime_suspend,
5828 .runtime_resume = ata_port_runtime_resume,
5829 .runtime_idle = ata_port_runtime_idle,
5830 };
5831
5832 /* sas ports don't participate in pm runtime management of ata_ports,
5833 * and need to resume ata devices at the domain level, not the per-port
5834 * level. sas suspend/resume is async to allow parallel port recovery
5835 * since sas has multiple ata_port instances per Scsi_Host.
5836 */
ata_sas_port_suspend(struct ata_port * ap)5837 void ata_sas_port_suspend(struct ata_port *ap)
5838 {
5839 ata_port_suspend_async(ap, PMSG_SUSPEND);
5840 }
5841 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5842
ata_sas_port_resume(struct ata_port * ap)5843 void ata_sas_port_resume(struct ata_port *ap)
5844 {
5845 ata_port_resume_async(ap, PMSG_RESUME);
5846 }
5847 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5848
5849 /**
5850 * ata_host_suspend - suspend host
5851 * @host: host to suspend
5852 * @mesg: PM message
5853 *
5854 * Suspend @host. Actual operation is performed by port suspend.
5855 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5856 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5857 {
5858 host->dev->power.power_state = mesg;
5859 return 0;
5860 }
5861
5862 /**
5863 * ata_host_resume - resume host
5864 * @host: host to resume
5865 *
5866 * Resume @host. Actual operation is performed by port resume.
5867 */
ata_host_resume(struct ata_host * host)5868 void ata_host_resume(struct ata_host *host)
5869 {
5870 host->dev->power.power_state = PMSG_ON;
5871 }
5872 #endif
5873
5874 const struct device_type ata_port_type = {
5875 .name = "ata_port",
5876 #ifdef CONFIG_PM
5877 .pm = &ata_port_pm_ops,
5878 #endif
5879 };
5880
5881 /**
5882 * ata_dev_init - Initialize an ata_device structure
5883 * @dev: Device structure to initialize
5884 *
5885 * Initialize @dev in preparation for probing.
5886 *
5887 * LOCKING:
5888 * Inherited from caller.
5889 */
ata_dev_init(struct ata_device * dev)5890 void ata_dev_init(struct ata_device *dev)
5891 {
5892 struct ata_link *link = ata_dev_phys_link(dev);
5893 struct ata_port *ap = link->ap;
5894 unsigned long flags;
5895
5896 /* SATA spd limit is bound to the attached device, reset together */
5897 link->sata_spd_limit = link->hw_sata_spd_limit;
5898 link->sata_spd = 0;
5899
5900 /* High bits of dev->flags are used to record warm plug
5901 * requests which occur asynchronously. Synchronize using
5902 * host lock.
5903 */
5904 spin_lock_irqsave(ap->lock, flags);
5905 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5906 dev->horkage = 0;
5907 spin_unlock_irqrestore(ap->lock, flags);
5908
5909 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5910 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5911 dev->pio_mask = UINT_MAX;
5912 dev->mwdma_mask = UINT_MAX;
5913 dev->udma_mask = UINT_MAX;
5914 }
5915
5916 /**
5917 * ata_link_init - Initialize an ata_link structure
5918 * @ap: ATA port link is attached to
5919 * @link: Link structure to initialize
5920 * @pmp: Port multiplier port number
5921 *
5922 * Initialize @link.
5923 *
5924 * LOCKING:
5925 * Kernel thread context (may sleep)
5926 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5927 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5928 {
5929 int i;
5930
5931 /* clear everything except for devices */
5932 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5933 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5934
5935 link->ap = ap;
5936 link->pmp = pmp;
5937 link->active_tag = ATA_TAG_POISON;
5938 link->hw_sata_spd_limit = UINT_MAX;
5939
5940 /* can't use iterator, ap isn't initialized yet */
5941 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5942 struct ata_device *dev = &link->device[i];
5943
5944 dev->link = link;
5945 dev->devno = dev - link->device;
5946 #ifdef CONFIG_ATA_ACPI
5947 dev->gtf_filter = ata_acpi_gtf_filter;
5948 #endif
5949 ata_dev_init(dev);
5950 }
5951 }
5952
5953 /**
5954 * sata_link_init_spd - Initialize link->sata_spd_limit
5955 * @link: Link to configure sata_spd_limit for
5956 *
5957 * Initialize @link->[hw_]sata_spd_limit to the currently
5958 * configured value.
5959 *
5960 * LOCKING:
5961 * Kernel thread context (may sleep).
5962 *
5963 * RETURNS:
5964 * 0 on success, -errno on failure.
5965 */
sata_link_init_spd(struct ata_link * link)5966 int sata_link_init_spd(struct ata_link *link)
5967 {
5968 u8 spd;
5969 int rc;
5970
5971 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5972 if (rc)
5973 return rc;
5974
5975 spd = (link->saved_scontrol >> 4) & 0xf;
5976 if (spd)
5977 link->hw_sata_spd_limit &= (1 << spd) - 1;
5978
5979 ata_force_link_limits(link);
5980
5981 link->sata_spd_limit = link->hw_sata_spd_limit;
5982
5983 return 0;
5984 }
5985
5986 /**
5987 * ata_port_alloc - allocate and initialize basic ATA port resources
5988 * @host: ATA host this allocated port belongs to
5989 *
5990 * Allocate and initialize basic ATA port resources.
5991 *
5992 * RETURNS:
5993 * Allocate ATA port on success, NULL on failure.
5994 *
5995 * LOCKING:
5996 * Inherited from calling layer (may sleep).
5997 */
ata_port_alloc(struct ata_host * host)5998 struct ata_port *ata_port_alloc(struct ata_host *host)
5999 {
6000 struct ata_port *ap;
6001
6002 DPRINTK("ENTER\n");
6003
6004 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6005 if (!ap)
6006 return NULL;
6007
6008 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
6009 ap->lock = &host->lock;
6010 ap->print_id = -1;
6011 ap->local_port_no = -1;
6012 ap->host = host;
6013 ap->dev = host->dev;
6014
6015 #if defined(ATA_VERBOSE_DEBUG)
6016 /* turn on all debugging levels */
6017 ap->msg_enable = 0x00FF;
6018 #elif defined(ATA_DEBUG)
6019 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6020 #else
6021 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6022 #endif
6023
6024 mutex_init(&ap->scsi_scan_mutex);
6025 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6026 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6027 INIT_LIST_HEAD(&ap->eh_done_q);
6028 init_waitqueue_head(&ap->eh_wait_q);
6029 init_completion(&ap->park_req_pending);
6030 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6031 TIMER_DEFERRABLE);
6032
6033 ap->cbl = ATA_CBL_NONE;
6034
6035 ata_link_init(ap, &ap->link, 0);
6036
6037 #ifdef ATA_IRQ_TRAP
6038 ap->stats.unhandled_irq = 1;
6039 ap->stats.idle_irq = 1;
6040 #endif
6041 ata_sff_port_init(ap);
6042
6043 return ap;
6044 }
6045
ata_devres_release(struct device * gendev,void * res)6046 static void ata_devres_release(struct device *gendev, void *res)
6047 {
6048 struct ata_host *host = dev_get_drvdata(gendev);
6049 int i;
6050
6051 for (i = 0; i < host->n_ports; i++) {
6052 struct ata_port *ap = host->ports[i];
6053
6054 if (!ap)
6055 continue;
6056
6057 if (ap->scsi_host)
6058 scsi_host_put(ap->scsi_host);
6059
6060 }
6061
6062 dev_set_drvdata(gendev, NULL);
6063 ata_host_put(host);
6064 }
6065
ata_host_release(struct kref * kref)6066 static void ata_host_release(struct kref *kref)
6067 {
6068 struct ata_host *host = container_of(kref, struct ata_host, kref);
6069 int i;
6070
6071 for (i = 0; i < host->n_ports; i++) {
6072 struct ata_port *ap = host->ports[i];
6073
6074 kfree(ap->pmp_link);
6075 kfree(ap->slave_link);
6076 kfree(ap);
6077 host->ports[i] = NULL;
6078 }
6079 kfree(host);
6080 }
6081
ata_host_get(struct ata_host * host)6082 void ata_host_get(struct ata_host *host)
6083 {
6084 kref_get(&host->kref);
6085 }
6086
ata_host_put(struct ata_host * host)6087 void ata_host_put(struct ata_host *host)
6088 {
6089 kref_put(&host->kref, ata_host_release);
6090 }
6091
6092 /**
6093 * ata_host_alloc - allocate and init basic ATA host resources
6094 * @dev: generic device this host is associated with
6095 * @max_ports: maximum number of ATA ports associated with this host
6096 *
6097 * Allocate and initialize basic ATA host resources. LLD calls
6098 * this function to allocate a host, initializes it fully and
6099 * attaches it using ata_host_register().
6100 *
6101 * @max_ports ports are allocated and host->n_ports is
6102 * initialized to @max_ports. The caller is allowed to decrease
6103 * host->n_ports before calling ata_host_register(). The unused
6104 * ports will be automatically freed on registration.
6105 *
6106 * RETURNS:
6107 * Allocate ATA host on success, NULL on failure.
6108 *
6109 * LOCKING:
6110 * Inherited from calling layer (may sleep).
6111 */
ata_host_alloc(struct device * dev,int max_ports)6112 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6113 {
6114 struct ata_host *host;
6115 size_t sz;
6116 int i;
6117 void *dr;
6118
6119 DPRINTK("ENTER\n");
6120
6121 /* alloc a container for our list of ATA ports (buses) */
6122 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6123 host = kzalloc(sz, GFP_KERNEL);
6124 if (!host)
6125 return NULL;
6126
6127 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6128 goto err_free;
6129
6130 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6131 if (!dr)
6132 goto err_out;
6133
6134 devres_add(dev, dr);
6135 dev_set_drvdata(dev, host);
6136
6137 spin_lock_init(&host->lock);
6138 mutex_init(&host->eh_mutex);
6139 host->dev = dev;
6140 host->n_ports = max_ports;
6141 kref_init(&host->kref);
6142
6143 /* allocate ports bound to this host */
6144 for (i = 0; i < max_ports; i++) {
6145 struct ata_port *ap;
6146
6147 ap = ata_port_alloc(host);
6148 if (!ap)
6149 goto err_out;
6150
6151 ap->port_no = i;
6152 host->ports[i] = ap;
6153 }
6154
6155 devres_remove_group(dev, NULL);
6156 return host;
6157
6158 err_out:
6159 devres_release_group(dev, NULL);
6160 err_free:
6161 kfree(host);
6162 return NULL;
6163 }
6164
6165 /**
6166 * ata_host_alloc_pinfo - alloc host and init with port_info array
6167 * @dev: generic device this host is associated with
6168 * @ppi: array of ATA port_info to initialize host with
6169 * @n_ports: number of ATA ports attached to this host
6170 *
6171 * Allocate ATA host and initialize with info from @ppi. If NULL
6172 * terminated, @ppi may contain fewer entries than @n_ports. The
6173 * last entry will be used for the remaining ports.
6174 *
6175 * RETURNS:
6176 * Allocate ATA host on success, NULL on failure.
6177 *
6178 * LOCKING:
6179 * Inherited from calling layer (may sleep).
6180 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)6181 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6182 const struct ata_port_info * const * ppi,
6183 int n_ports)
6184 {
6185 const struct ata_port_info *pi;
6186 struct ata_host *host;
6187 int i, j;
6188
6189 host = ata_host_alloc(dev, n_ports);
6190 if (!host)
6191 return NULL;
6192
6193 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6194 struct ata_port *ap = host->ports[i];
6195
6196 if (ppi[j])
6197 pi = ppi[j++];
6198
6199 ap->pio_mask = pi->pio_mask;
6200 ap->mwdma_mask = pi->mwdma_mask;
6201 ap->udma_mask = pi->udma_mask;
6202 ap->flags |= pi->flags;
6203 ap->link.flags |= pi->link_flags;
6204 ap->ops = pi->port_ops;
6205
6206 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6207 host->ops = pi->port_ops;
6208 }
6209
6210 return host;
6211 }
6212
6213 /**
6214 * ata_slave_link_init - initialize slave link
6215 * @ap: port to initialize slave link for
6216 *
6217 * Create and initialize slave link for @ap. This enables slave
6218 * link handling on the port.
6219 *
6220 * In libata, a port contains links and a link contains devices.
6221 * There is single host link but if a PMP is attached to it,
6222 * there can be multiple fan-out links. On SATA, there's usually
6223 * a single device connected to a link but PATA and SATA
6224 * controllers emulating TF based interface can have two - master
6225 * and slave.
6226 *
6227 * However, there are a few controllers which don't fit into this
6228 * abstraction too well - SATA controllers which emulate TF
6229 * interface with both master and slave devices but also have
6230 * separate SCR register sets for each device. These controllers
6231 * need separate links for physical link handling
6232 * (e.g. onlineness, link speed) but should be treated like a
6233 * traditional M/S controller for everything else (e.g. command
6234 * issue, softreset).
6235 *
6236 * slave_link is libata's way of handling this class of
6237 * controllers without impacting core layer too much. For
6238 * anything other than physical link handling, the default host
6239 * link is used for both master and slave. For physical link
6240 * handling, separate @ap->slave_link is used. All dirty details
6241 * are implemented inside libata core layer. From LLD's POV, the
6242 * only difference is that prereset, hardreset and postreset are
6243 * called once more for the slave link, so the reset sequence
6244 * looks like the following.
6245 *
6246 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6247 * softreset(M) -> postreset(M) -> postreset(S)
6248 *
6249 * Note that softreset is called only for the master. Softreset
6250 * resets both M/S by definition, so SRST on master should handle
6251 * both (the standard method will work just fine).
6252 *
6253 * LOCKING:
6254 * Should be called before host is registered.
6255 *
6256 * RETURNS:
6257 * 0 on success, -errno on failure.
6258 */
ata_slave_link_init(struct ata_port * ap)6259 int ata_slave_link_init(struct ata_port *ap)
6260 {
6261 struct ata_link *link;
6262
6263 WARN_ON(ap->slave_link);
6264 WARN_ON(ap->flags & ATA_FLAG_PMP);
6265
6266 link = kzalloc(sizeof(*link), GFP_KERNEL);
6267 if (!link)
6268 return -ENOMEM;
6269
6270 ata_link_init(ap, link, 1);
6271 ap->slave_link = link;
6272 return 0;
6273 }
6274
ata_host_stop(struct device * gendev,void * res)6275 static void ata_host_stop(struct device *gendev, void *res)
6276 {
6277 struct ata_host *host = dev_get_drvdata(gendev);
6278 int i;
6279
6280 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6281
6282 for (i = 0; i < host->n_ports; i++) {
6283 struct ata_port *ap = host->ports[i];
6284
6285 if (ap->ops->port_stop)
6286 ap->ops->port_stop(ap);
6287 }
6288
6289 if (host->ops->host_stop)
6290 host->ops->host_stop(host);
6291 }
6292
6293 /**
6294 * ata_finalize_port_ops - finalize ata_port_operations
6295 * @ops: ata_port_operations to finalize
6296 *
6297 * An ata_port_operations can inherit from another ops and that
6298 * ops can again inherit from another. This can go on as many
6299 * times as necessary as long as there is no loop in the
6300 * inheritance chain.
6301 *
6302 * Ops tables are finalized when the host is started. NULL or
6303 * unspecified entries are inherited from the closet ancestor
6304 * which has the method and the entry is populated with it.
6305 * After finalization, the ops table directly points to all the
6306 * methods and ->inherits is no longer necessary and cleared.
6307 *
6308 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6309 *
6310 * LOCKING:
6311 * None.
6312 */
ata_finalize_port_ops(struct ata_port_operations * ops)6313 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6314 {
6315 static DEFINE_SPINLOCK(lock);
6316 const struct ata_port_operations *cur;
6317 void **begin = (void **)ops;
6318 void **end = (void **)&ops->inherits;
6319 void **pp;
6320
6321 if (!ops || !ops->inherits)
6322 return;
6323
6324 spin_lock(&lock);
6325
6326 for (cur = ops->inherits; cur; cur = cur->inherits) {
6327 void **inherit = (void **)cur;
6328
6329 for (pp = begin; pp < end; pp++, inherit++)
6330 if (!*pp)
6331 *pp = *inherit;
6332 }
6333
6334 for (pp = begin; pp < end; pp++)
6335 if (IS_ERR(*pp))
6336 *pp = NULL;
6337
6338 ops->inherits = NULL;
6339
6340 spin_unlock(&lock);
6341 }
6342
6343 /**
6344 * ata_host_start - start and freeze ports of an ATA host
6345 * @host: ATA host to start ports for
6346 *
6347 * Start and then freeze ports of @host. Started status is
6348 * recorded in host->flags, so this function can be called
6349 * multiple times. Ports are guaranteed to get started only
6350 * once. If host->ops isn't initialized yet, its set to the
6351 * first non-dummy port ops.
6352 *
6353 * LOCKING:
6354 * Inherited from calling layer (may sleep).
6355 *
6356 * RETURNS:
6357 * 0 if all ports are started successfully, -errno otherwise.
6358 */
ata_host_start(struct ata_host * host)6359 int ata_host_start(struct ata_host *host)
6360 {
6361 int have_stop = 0;
6362 void *start_dr = NULL;
6363 int i, rc;
6364
6365 if (host->flags & ATA_HOST_STARTED)
6366 return 0;
6367
6368 ata_finalize_port_ops(host->ops);
6369
6370 for (i = 0; i < host->n_ports; i++) {
6371 struct ata_port *ap = host->ports[i];
6372
6373 ata_finalize_port_ops(ap->ops);
6374
6375 if (!host->ops && !ata_port_is_dummy(ap))
6376 host->ops = ap->ops;
6377
6378 if (ap->ops->port_stop)
6379 have_stop = 1;
6380 }
6381
6382 if (host->ops->host_stop)
6383 have_stop = 1;
6384
6385 if (have_stop) {
6386 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6387 if (!start_dr)
6388 return -ENOMEM;
6389 }
6390
6391 for (i = 0; i < host->n_ports; i++) {
6392 struct ata_port *ap = host->ports[i];
6393
6394 if (ap->ops->port_start) {
6395 rc = ap->ops->port_start(ap);
6396 if (rc) {
6397 if (rc != -ENODEV)
6398 dev_err(host->dev,
6399 "failed to start port %d (errno=%d)\n",
6400 i, rc);
6401 goto err_out;
6402 }
6403 }
6404 ata_eh_freeze_port(ap);
6405 }
6406
6407 if (start_dr)
6408 devres_add(host->dev, start_dr);
6409 host->flags |= ATA_HOST_STARTED;
6410 return 0;
6411
6412 err_out:
6413 while (--i >= 0) {
6414 struct ata_port *ap = host->ports[i];
6415
6416 if (ap->ops->port_stop)
6417 ap->ops->port_stop(ap);
6418 }
6419 devres_free(start_dr);
6420 return rc;
6421 }
6422
6423 /**
6424 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6425 * @host: host to initialize
6426 * @dev: device host is attached to
6427 * @ops: port_ops
6428 *
6429 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)6430 void ata_host_init(struct ata_host *host, struct device *dev,
6431 struct ata_port_operations *ops)
6432 {
6433 spin_lock_init(&host->lock);
6434 mutex_init(&host->eh_mutex);
6435 host->n_tags = ATA_MAX_QUEUE;
6436 host->dev = dev;
6437 host->ops = ops;
6438 kref_init(&host->kref);
6439 }
6440
__ata_port_probe(struct ata_port * ap)6441 void __ata_port_probe(struct ata_port *ap)
6442 {
6443 struct ata_eh_info *ehi = &ap->link.eh_info;
6444 unsigned long flags;
6445
6446 /* kick EH for boot probing */
6447 spin_lock_irqsave(ap->lock, flags);
6448
6449 ehi->probe_mask |= ATA_ALL_DEVICES;
6450 ehi->action |= ATA_EH_RESET;
6451 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6452
6453 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6454 ap->pflags |= ATA_PFLAG_LOADING;
6455 ata_port_schedule_eh(ap);
6456
6457 spin_unlock_irqrestore(ap->lock, flags);
6458 }
6459
ata_port_probe(struct ata_port * ap)6460 int ata_port_probe(struct ata_port *ap)
6461 {
6462 int rc = 0;
6463
6464 if (ap->ops->error_handler) {
6465 __ata_port_probe(ap);
6466 ata_port_wait_eh(ap);
6467 } else {
6468 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6469 rc = ata_bus_probe(ap);
6470 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6471 }
6472 return rc;
6473 }
6474
6475
async_port_probe(void * data,async_cookie_t cookie)6476 static void async_port_probe(void *data, async_cookie_t cookie)
6477 {
6478 struct ata_port *ap = data;
6479
6480 /*
6481 * If we're not allowed to scan this host in parallel,
6482 * we need to wait until all previous scans have completed
6483 * before going further.
6484 * Jeff Garzik says this is only within a controller, so we
6485 * don't need to wait for port 0, only for later ports.
6486 */
6487 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6488 async_synchronize_cookie(cookie);
6489
6490 (void)ata_port_probe(ap);
6491
6492 /* in order to keep device order, we need to synchronize at this point */
6493 async_synchronize_cookie(cookie);
6494
6495 ata_scsi_scan_host(ap, 1);
6496 }
6497
6498 /**
6499 * ata_host_register - register initialized ATA host
6500 * @host: ATA host to register
6501 * @sht: template for SCSI host
6502 *
6503 * Register initialized ATA host. @host is allocated using
6504 * ata_host_alloc() and fully initialized by LLD. This function
6505 * starts ports, registers @host with ATA and SCSI layers and
6506 * probe registered devices.
6507 *
6508 * LOCKING:
6509 * Inherited from calling layer (may sleep).
6510 *
6511 * RETURNS:
6512 * 0 on success, -errno otherwise.
6513 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)6514 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6515 {
6516 int i, rc;
6517
6518 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6519
6520 /* host must have been started */
6521 if (!(host->flags & ATA_HOST_STARTED)) {
6522 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6523 WARN_ON(1);
6524 return -EINVAL;
6525 }
6526
6527 /* Blow away unused ports. This happens when LLD can't
6528 * determine the exact number of ports to allocate at
6529 * allocation time.
6530 */
6531 for (i = host->n_ports; host->ports[i]; i++)
6532 kfree(host->ports[i]);
6533
6534 /* give ports names and add SCSI hosts */
6535 for (i = 0; i < host->n_ports; i++) {
6536 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6537 host->ports[i]->local_port_no = i + 1;
6538 }
6539
6540 /* Create associated sysfs transport objects */
6541 for (i = 0; i < host->n_ports; i++) {
6542 rc = ata_tport_add(host->dev,host->ports[i]);
6543 if (rc) {
6544 goto err_tadd;
6545 }
6546 }
6547
6548 rc = ata_scsi_add_hosts(host, sht);
6549 if (rc)
6550 goto err_tadd;
6551
6552 /* set cable, sata_spd_limit and report */
6553 for (i = 0; i < host->n_ports; i++) {
6554 struct ata_port *ap = host->ports[i];
6555 unsigned long xfer_mask;
6556
6557 /* set SATA cable type if still unset */
6558 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6559 ap->cbl = ATA_CBL_SATA;
6560
6561 /* init sata_spd_limit to the current value */
6562 sata_link_init_spd(&ap->link);
6563 if (ap->slave_link)
6564 sata_link_init_spd(ap->slave_link);
6565
6566 /* print per-port info to dmesg */
6567 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6568 ap->udma_mask);
6569
6570 if (!ata_port_is_dummy(ap)) {
6571 ata_port_info(ap, "%cATA max %s %s\n",
6572 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6573 ata_mode_string(xfer_mask),
6574 ap->link.eh_info.desc);
6575 ata_ehi_clear_desc(&ap->link.eh_info);
6576 } else
6577 ata_port_info(ap, "DUMMY\n");
6578 }
6579
6580 /* perform each probe asynchronously */
6581 for (i = 0; i < host->n_ports; i++) {
6582 struct ata_port *ap = host->ports[i];
6583 async_schedule(async_port_probe, ap);
6584 }
6585
6586 return 0;
6587
6588 err_tadd:
6589 while (--i >= 0) {
6590 ata_tport_delete(host->ports[i]);
6591 }
6592 return rc;
6593
6594 }
6595
6596 /**
6597 * ata_host_activate - start host, request IRQ and register it
6598 * @host: target ATA host
6599 * @irq: IRQ to request
6600 * @irq_handler: irq_handler used when requesting IRQ
6601 * @irq_flags: irq_flags used when requesting IRQ
6602 * @sht: scsi_host_template to use when registering the host
6603 *
6604 * After allocating an ATA host and initializing it, most libata
6605 * LLDs perform three steps to activate the host - start host,
6606 * request IRQ and register it. This helper takes necessary
6607 * arguments and performs the three steps in one go.
6608 *
6609 * An invalid IRQ skips the IRQ registration and expects the host to
6610 * have set polling mode on the port. In this case, @irq_handler
6611 * should be NULL.
6612 *
6613 * LOCKING:
6614 * Inherited from calling layer (may sleep).
6615 *
6616 * RETURNS:
6617 * 0 on success, -errno otherwise.
6618 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)6619 int ata_host_activate(struct ata_host *host, int irq,
6620 irq_handler_t irq_handler, unsigned long irq_flags,
6621 struct scsi_host_template *sht)
6622 {
6623 int i, rc;
6624 char *irq_desc;
6625
6626 rc = ata_host_start(host);
6627 if (rc)
6628 return rc;
6629
6630 /* Special case for polling mode */
6631 if (!irq) {
6632 WARN_ON(irq_handler);
6633 return ata_host_register(host, sht);
6634 }
6635
6636 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6637 dev_driver_string(host->dev),
6638 dev_name(host->dev));
6639 if (!irq_desc)
6640 return -ENOMEM;
6641
6642 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6643 irq_desc, host);
6644 if (rc)
6645 return rc;
6646
6647 for (i = 0; i < host->n_ports; i++)
6648 ata_port_desc(host->ports[i], "irq %d", irq);
6649
6650 rc = ata_host_register(host, sht);
6651 /* if failed, just free the IRQ and leave ports alone */
6652 if (rc)
6653 devm_free_irq(host->dev, irq, host);
6654
6655 return rc;
6656 }
6657
6658 /**
6659 * ata_port_detach - Detach ATA port in preparation of device removal
6660 * @ap: ATA port to be detached
6661 *
6662 * Detach all ATA devices and the associated SCSI devices of @ap;
6663 * then, remove the associated SCSI host. @ap is guaranteed to
6664 * be quiescent on return from this function.
6665 *
6666 * LOCKING:
6667 * Kernel thread context (may sleep).
6668 */
ata_port_detach(struct ata_port * ap)6669 static void ata_port_detach(struct ata_port *ap)
6670 {
6671 unsigned long flags;
6672 struct ata_link *link;
6673 struct ata_device *dev;
6674
6675 if (!ap->ops->error_handler)
6676 goto skip_eh;
6677
6678 /* tell EH we're leaving & flush EH */
6679 spin_lock_irqsave(ap->lock, flags);
6680 ap->pflags |= ATA_PFLAG_UNLOADING;
6681 ata_port_schedule_eh(ap);
6682 spin_unlock_irqrestore(ap->lock, flags);
6683
6684 /* wait till EH commits suicide */
6685 ata_port_wait_eh(ap);
6686
6687 /* it better be dead now */
6688 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6689
6690 cancel_delayed_work_sync(&ap->hotplug_task);
6691
6692 skip_eh:
6693 /* clean up zpodd on port removal */
6694 ata_for_each_link(link, ap, HOST_FIRST) {
6695 ata_for_each_dev(dev, link, ALL) {
6696 if (zpodd_dev_enabled(dev))
6697 zpodd_exit(dev);
6698 }
6699 }
6700 if (ap->pmp_link) {
6701 int i;
6702 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6703 ata_tlink_delete(&ap->pmp_link[i]);
6704 }
6705 /* remove the associated SCSI host */
6706 scsi_remove_host(ap->scsi_host);
6707 ata_tport_delete(ap);
6708 }
6709
6710 /**
6711 * ata_host_detach - Detach all ports of an ATA host
6712 * @host: Host to detach
6713 *
6714 * Detach all ports of @host.
6715 *
6716 * LOCKING:
6717 * Kernel thread context (may sleep).
6718 */
ata_host_detach(struct ata_host * host)6719 void ata_host_detach(struct ata_host *host)
6720 {
6721 int i;
6722
6723 for (i = 0; i < host->n_ports; i++)
6724 ata_port_detach(host->ports[i]);
6725
6726 /* the host is dead now, dissociate ACPI */
6727 ata_acpi_dissociate(host);
6728 }
6729
6730 #ifdef CONFIG_PCI
6731
6732 /**
6733 * ata_pci_remove_one - PCI layer callback for device removal
6734 * @pdev: PCI device that was removed
6735 *
6736 * PCI layer indicates to libata via this hook that hot-unplug or
6737 * module unload event has occurred. Detach all ports. Resource
6738 * release is handled via devres.
6739 *
6740 * LOCKING:
6741 * Inherited from PCI layer (may sleep).
6742 */
ata_pci_remove_one(struct pci_dev * pdev)6743 void ata_pci_remove_one(struct pci_dev *pdev)
6744 {
6745 struct ata_host *host = pci_get_drvdata(pdev);
6746
6747 ata_host_detach(host);
6748 }
6749
6750 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6751 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6752 {
6753 unsigned long tmp = 0;
6754
6755 switch (bits->width) {
6756 case 1: {
6757 u8 tmp8 = 0;
6758 pci_read_config_byte(pdev, bits->reg, &tmp8);
6759 tmp = tmp8;
6760 break;
6761 }
6762 case 2: {
6763 u16 tmp16 = 0;
6764 pci_read_config_word(pdev, bits->reg, &tmp16);
6765 tmp = tmp16;
6766 break;
6767 }
6768 case 4: {
6769 u32 tmp32 = 0;
6770 pci_read_config_dword(pdev, bits->reg, &tmp32);
6771 tmp = tmp32;
6772 break;
6773 }
6774
6775 default:
6776 return -EINVAL;
6777 }
6778
6779 tmp &= bits->mask;
6780
6781 return (tmp == bits->val) ? 1 : 0;
6782 }
6783
6784 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6785 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6786 {
6787 pci_save_state(pdev);
6788 pci_disable_device(pdev);
6789
6790 if (mesg.event & PM_EVENT_SLEEP)
6791 pci_set_power_state(pdev, PCI_D3hot);
6792 }
6793
ata_pci_device_do_resume(struct pci_dev * pdev)6794 int ata_pci_device_do_resume(struct pci_dev *pdev)
6795 {
6796 int rc;
6797
6798 pci_set_power_state(pdev, PCI_D0);
6799 pci_restore_state(pdev);
6800
6801 rc = pcim_enable_device(pdev);
6802 if (rc) {
6803 dev_err(&pdev->dev,
6804 "failed to enable device after resume (%d)\n", rc);
6805 return rc;
6806 }
6807
6808 pci_set_master(pdev);
6809 return 0;
6810 }
6811
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6812 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6813 {
6814 struct ata_host *host = pci_get_drvdata(pdev);
6815 int rc = 0;
6816
6817 rc = ata_host_suspend(host, mesg);
6818 if (rc)
6819 return rc;
6820
6821 ata_pci_device_do_suspend(pdev, mesg);
6822
6823 return 0;
6824 }
6825
ata_pci_device_resume(struct pci_dev * pdev)6826 int ata_pci_device_resume(struct pci_dev *pdev)
6827 {
6828 struct ata_host *host = pci_get_drvdata(pdev);
6829 int rc;
6830
6831 rc = ata_pci_device_do_resume(pdev);
6832 if (rc == 0)
6833 ata_host_resume(host);
6834 return rc;
6835 }
6836 #endif /* CONFIG_PM */
6837
6838 #endif /* CONFIG_PCI */
6839
6840 /**
6841 * ata_platform_remove_one - Platform layer callback for device removal
6842 * @pdev: Platform device that was removed
6843 *
6844 * Platform layer indicates to libata via this hook that hot-unplug or
6845 * module unload event has occurred. Detach all ports. Resource
6846 * release is handled via devres.
6847 *
6848 * LOCKING:
6849 * Inherited from platform layer (may sleep).
6850 */
ata_platform_remove_one(struct platform_device * pdev)6851 int ata_platform_remove_one(struct platform_device *pdev)
6852 {
6853 struct ata_host *host = platform_get_drvdata(pdev);
6854
6855 ata_host_detach(host);
6856
6857 return 0;
6858 }
6859
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6860 static int __init ata_parse_force_one(char **cur,
6861 struct ata_force_ent *force_ent,
6862 const char **reason)
6863 {
6864 static const struct ata_force_param force_tbl[] __initconst = {
6865 { "40c", .cbl = ATA_CBL_PATA40 },
6866 { "80c", .cbl = ATA_CBL_PATA80 },
6867 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6868 { "unk", .cbl = ATA_CBL_PATA_UNK },
6869 { "ign", .cbl = ATA_CBL_PATA_IGN },
6870 { "sata", .cbl = ATA_CBL_SATA },
6871 { "1.5Gbps", .spd_limit = 1 },
6872 { "3.0Gbps", .spd_limit = 2 },
6873 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6874 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6875 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6876 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6877 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6878 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6879 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6880 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6881 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6882 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6883 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6884 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6885 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6886 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6887 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6888 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6889 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6890 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6891 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6892 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6893 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6894 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6895 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6896 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6897 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6898 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6899 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6900 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6901 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6902 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6903 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6904 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6905 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6906 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6907 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6908 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6909 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6910 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6911 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6912 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6913 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6914 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6915 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6916 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6917 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6918 };
6919 char *start = *cur, *p = *cur;
6920 char *id, *val, *endp;
6921 const struct ata_force_param *match_fp = NULL;
6922 int nr_matches = 0, i;
6923
6924 /* find where this param ends and update *cur */
6925 while (*p != '\0' && *p != ',')
6926 p++;
6927
6928 if (*p == '\0')
6929 *cur = p;
6930 else
6931 *cur = p + 1;
6932
6933 *p = '\0';
6934
6935 /* parse */
6936 p = strchr(start, ':');
6937 if (!p) {
6938 val = strstrip(start);
6939 goto parse_val;
6940 }
6941 *p = '\0';
6942
6943 id = strstrip(start);
6944 val = strstrip(p + 1);
6945
6946 /* parse id */
6947 p = strchr(id, '.');
6948 if (p) {
6949 *p++ = '\0';
6950 force_ent->device = simple_strtoul(p, &endp, 10);
6951 if (p == endp || *endp != '\0') {
6952 *reason = "invalid device";
6953 return -EINVAL;
6954 }
6955 }
6956
6957 force_ent->port = simple_strtoul(id, &endp, 10);
6958 if (id == endp || *endp != '\0') {
6959 *reason = "invalid port/link";
6960 return -EINVAL;
6961 }
6962
6963 parse_val:
6964 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6965 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6966 const struct ata_force_param *fp = &force_tbl[i];
6967
6968 if (strncasecmp(val, fp->name, strlen(val)))
6969 continue;
6970
6971 nr_matches++;
6972 match_fp = fp;
6973
6974 if (strcasecmp(val, fp->name) == 0) {
6975 nr_matches = 1;
6976 break;
6977 }
6978 }
6979
6980 if (!nr_matches) {
6981 *reason = "unknown value";
6982 return -EINVAL;
6983 }
6984 if (nr_matches > 1) {
6985 *reason = "ambiguous value";
6986 return -EINVAL;
6987 }
6988
6989 force_ent->param = *match_fp;
6990
6991 return 0;
6992 }
6993
ata_parse_force_param(void)6994 static void __init ata_parse_force_param(void)
6995 {
6996 int idx = 0, size = 1;
6997 int last_port = -1, last_device = -1;
6998 char *p, *cur, *next;
6999
7000 /* calculate maximum number of params and allocate force_tbl */
7001 for (p = ata_force_param_buf; *p; p++)
7002 if (*p == ',')
7003 size++;
7004
7005 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
7006 if (!ata_force_tbl) {
7007 printk(KERN_WARNING "ata: failed to extend force table, "
7008 "libata.force ignored\n");
7009 return;
7010 }
7011
7012 /* parse and populate the table */
7013 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7014 const char *reason = "";
7015 struct ata_force_ent te = { .port = -1, .device = -1 };
7016
7017 next = cur;
7018 if (ata_parse_force_one(&next, &te, &reason)) {
7019 printk(KERN_WARNING "ata: failed to parse force "
7020 "parameter \"%s\" (%s)\n",
7021 cur, reason);
7022 continue;
7023 }
7024
7025 if (te.port == -1) {
7026 te.port = last_port;
7027 te.device = last_device;
7028 }
7029
7030 ata_force_tbl[idx++] = te;
7031
7032 last_port = te.port;
7033 last_device = te.device;
7034 }
7035
7036 ata_force_tbl_size = idx;
7037 }
7038
ata_init(void)7039 static int __init ata_init(void)
7040 {
7041 int rc;
7042
7043 ata_parse_force_param();
7044
7045 rc = ata_sff_init();
7046 if (rc) {
7047 kfree(ata_force_tbl);
7048 return rc;
7049 }
7050
7051 libata_transport_init();
7052 ata_scsi_transport_template = ata_attach_transport();
7053 if (!ata_scsi_transport_template) {
7054 ata_sff_exit();
7055 rc = -ENOMEM;
7056 goto err_out;
7057 }
7058
7059 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7060 return 0;
7061
7062 err_out:
7063 return rc;
7064 }
7065
ata_exit(void)7066 static void __exit ata_exit(void)
7067 {
7068 ata_release_transport(ata_scsi_transport_template);
7069 libata_transport_exit();
7070 ata_sff_exit();
7071 kfree(ata_force_tbl);
7072 }
7073
7074 subsys_initcall(ata_init);
7075 module_exit(ata_exit);
7076
7077 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7078
ata_ratelimit(void)7079 int ata_ratelimit(void)
7080 {
7081 return __ratelimit(&ratelimit);
7082 }
7083
7084 /**
7085 * ata_msleep - ATA EH owner aware msleep
7086 * @ap: ATA port to attribute the sleep to
7087 * @msecs: duration to sleep in milliseconds
7088 *
7089 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7090 * ownership is released before going to sleep and reacquired
7091 * after the sleep is complete. IOW, other ports sharing the
7092 * @ap->host will be allowed to own the EH while this task is
7093 * sleeping.
7094 *
7095 * LOCKING:
7096 * Might sleep.
7097 */
ata_msleep(struct ata_port * ap,unsigned int msecs)7098 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7099 {
7100 bool owns_eh = ap && ap->host->eh_owner == current;
7101
7102 if (owns_eh)
7103 ata_eh_release(ap);
7104
7105 if (msecs < 20) {
7106 unsigned long usecs = msecs * USEC_PER_MSEC;
7107 usleep_range(usecs, usecs + 50);
7108 } else {
7109 msleep(msecs);
7110 }
7111
7112 if (owns_eh)
7113 ata_eh_acquire(ap);
7114 }
7115
7116 /**
7117 * ata_wait_register - wait until register value changes
7118 * @ap: ATA port to wait register for, can be NULL
7119 * @reg: IO-mapped register
7120 * @mask: Mask to apply to read register value
7121 * @val: Wait condition
7122 * @interval: polling interval in milliseconds
7123 * @timeout: timeout in milliseconds
7124 *
7125 * Waiting for some bits of register to change is a common
7126 * operation for ATA controllers. This function reads 32bit LE
7127 * IO-mapped register @reg and tests for the following condition.
7128 *
7129 * (*@reg & mask) != val
7130 *
7131 * If the condition is met, it returns; otherwise, the process is
7132 * repeated after @interval_msec until timeout.
7133 *
7134 * LOCKING:
7135 * Kernel thread context (may sleep)
7136 *
7137 * RETURNS:
7138 * The final register value.
7139 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)7140 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7141 unsigned long interval, unsigned long timeout)
7142 {
7143 unsigned long deadline;
7144 u32 tmp;
7145
7146 tmp = ioread32(reg);
7147
7148 /* Calculate timeout _after_ the first read to make sure
7149 * preceding writes reach the controller before starting to
7150 * eat away the timeout.
7151 */
7152 deadline = ata_deadline(jiffies, timeout);
7153
7154 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7155 ata_msleep(ap, interval);
7156 tmp = ioread32(reg);
7157 }
7158
7159 return tmp;
7160 }
7161
7162 /**
7163 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7164 * @link: Link receiving the event
7165 *
7166 * Test whether the received PHY event has to be ignored or not.
7167 *
7168 * LOCKING:
7169 * None:
7170 *
7171 * RETURNS:
7172 * True if the event has to be ignored.
7173 */
sata_lpm_ignore_phy_events(struct ata_link * link)7174 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7175 {
7176 unsigned long lpm_timeout = link->last_lpm_change +
7177 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7178
7179 /* if LPM is enabled, PHYRDY doesn't mean anything */
7180 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7181 return true;
7182
7183 /* ignore the first PHY event after the LPM policy changed
7184 * as it is might be spurious
7185 */
7186 if ((link->flags & ATA_LFLAG_CHANGED) &&
7187 time_before(jiffies, lpm_timeout))
7188 return true;
7189
7190 return false;
7191 }
7192 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7193
7194 /*
7195 * Dummy port_ops
7196 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)7197 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7198 {
7199 return AC_ERR_SYSTEM;
7200 }
7201
ata_dummy_error_handler(struct ata_port * ap)7202 static void ata_dummy_error_handler(struct ata_port *ap)
7203 {
7204 /* truly dummy */
7205 }
7206
7207 struct ata_port_operations ata_dummy_port_ops = {
7208 .qc_prep = ata_noop_qc_prep,
7209 .qc_issue = ata_dummy_qc_issue,
7210 .error_handler = ata_dummy_error_handler,
7211 .sched_eh = ata_std_sched_eh,
7212 .end_eh = ata_std_end_eh,
7213 };
7214
7215 const struct ata_port_info ata_dummy_port_info = {
7216 .port_ops = &ata_dummy_port_ops,
7217 };
7218
7219 /*
7220 * Utility print functions
7221 */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)7222 void ata_port_printk(const struct ata_port *ap, const char *level,
7223 const char *fmt, ...)
7224 {
7225 struct va_format vaf;
7226 va_list args;
7227
7228 va_start(args, fmt);
7229
7230 vaf.fmt = fmt;
7231 vaf.va = &args;
7232
7233 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7234
7235 va_end(args);
7236 }
7237 EXPORT_SYMBOL(ata_port_printk);
7238
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)7239 void ata_link_printk(const struct ata_link *link, const char *level,
7240 const char *fmt, ...)
7241 {
7242 struct va_format vaf;
7243 va_list args;
7244
7245 va_start(args, fmt);
7246
7247 vaf.fmt = fmt;
7248 vaf.va = &args;
7249
7250 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7251 printk("%sata%u.%02u: %pV",
7252 level, link->ap->print_id, link->pmp, &vaf);
7253 else
7254 printk("%sata%u: %pV",
7255 level, link->ap->print_id, &vaf);
7256
7257 va_end(args);
7258 }
7259 EXPORT_SYMBOL(ata_link_printk);
7260
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)7261 void ata_dev_printk(const struct ata_device *dev, const char *level,
7262 const char *fmt, ...)
7263 {
7264 struct va_format vaf;
7265 va_list args;
7266
7267 va_start(args, fmt);
7268
7269 vaf.fmt = fmt;
7270 vaf.va = &args;
7271
7272 printk("%sata%u.%02u: %pV",
7273 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7274 &vaf);
7275
7276 va_end(args);
7277 }
7278 EXPORT_SYMBOL(ata_dev_printk);
7279
ata_print_version(const struct device * dev,const char * version)7280 void ata_print_version(const struct device *dev, const char *version)
7281 {
7282 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7283 }
7284 EXPORT_SYMBOL(ata_print_version);
7285
7286 /*
7287 * libata is essentially a library of internal helper functions for
7288 * low-level ATA host controller drivers. As such, the API/ABI is
7289 * likely to change as new drivers are added and updated.
7290 * Do not depend on ABI/API stability.
7291 */
7292 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7293 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7294 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7295 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7296 EXPORT_SYMBOL_GPL(sata_port_ops);
7297 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7298 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7299 EXPORT_SYMBOL_GPL(ata_link_next);
7300 EXPORT_SYMBOL_GPL(ata_dev_next);
7301 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7302 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7303 EXPORT_SYMBOL_GPL(ata_host_init);
7304 EXPORT_SYMBOL_GPL(ata_host_alloc);
7305 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7306 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7307 EXPORT_SYMBOL_GPL(ata_host_start);
7308 EXPORT_SYMBOL_GPL(ata_host_register);
7309 EXPORT_SYMBOL_GPL(ata_host_activate);
7310 EXPORT_SYMBOL_GPL(ata_host_detach);
7311 EXPORT_SYMBOL_GPL(ata_sg_init);
7312 EXPORT_SYMBOL_GPL(ata_qc_complete);
7313 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7314 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7315 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7316 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7317 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7318 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7319 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7320 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7321 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7322 EXPORT_SYMBOL_GPL(ata_mode_string);
7323 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7324 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7325 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7326 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7327 EXPORT_SYMBOL_GPL(ata_dev_disable);
7328 EXPORT_SYMBOL_GPL(sata_set_spd);
7329 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7330 EXPORT_SYMBOL_GPL(sata_link_debounce);
7331 EXPORT_SYMBOL_GPL(sata_link_resume);
7332 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7333 EXPORT_SYMBOL_GPL(ata_std_prereset);
7334 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7335 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7336 EXPORT_SYMBOL_GPL(ata_std_postreset);
7337 EXPORT_SYMBOL_GPL(ata_dev_classify);
7338 EXPORT_SYMBOL_GPL(ata_dev_pair);
7339 EXPORT_SYMBOL_GPL(ata_ratelimit);
7340 EXPORT_SYMBOL_GPL(ata_msleep);
7341 EXPORT_SYMBOL_GPL(ata_wait_register);
7342 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7343 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7344 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7345 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7346 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7347 EXPORT_SYMBOL_GPL(sata_scr_valid);
7348 EXPORT_SYMBOL_GPL(sata_scr_read);
7349 EXPORT_SYMBOL_GPL(sata_scr_write);
7350 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7351 EXPORT_SYMBOL_GPL(ata_link_online);
7352 EXPORT_SYMBOL_GPL(ata_link_offline);
7353 #ifdef CONFIG_PM
7354 EXPORT_SYMBOL_GPL(ata_host_suspend);
7355 EXPORT_SYMBOL_GPL(ata_host_resume);
7356 #endif /* CONFIG_PM */
7357 EXPORT_SYMBOL_GPL(ata_id_string);
7358 EXPORT_SYMBOL_GPL(ata_id_c_string);
7359 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7360 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7361
7362 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7363 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7364 EXPORT_SYMBOL_GPL(ata_timing_compute);
7365 EXPORT_SYMBOL_GPL(ata_timing_merge);
7366 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7367
7368 #ifdef CONFIG_PCI
7369 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7370 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7371 #ifdef CONFIG_PM
7372 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7373 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7374 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7375 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7376 #endif /* CONFIG_PM */
7377 #endif /* CONFIG_PCI */
7378
7379 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7380
7381 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7382 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7383 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7384 EXPORT_SYMBOL_GPL(ata_port_desc);
7385 #ifdef CONFIG_PCI
7386 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7387 #endif /* CONFIG_PCI */
7388 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7389 EXPORT_SYMBOL_GPL(ata_link_abort);
7390 EXPORT_SYMBOL_GPL(ata_port_abort);
7391 EXPORT_SYMBOL_GPL(ata_port_freeze);
7392 EXPORT_SYMBOL_GPL(sata_async_notification);
7393 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7394 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7395 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7396 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7397 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7398 EXPORT_SYMBOL_GPL(ata_do_eh);
7399 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7400
7401 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7402 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7403 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7404 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7405 EXPORT_SYMBOL_GPL(ata_cable_sata);
7406 EXPORT_SYMBOL_GPL(ata_host_get);
7407 EXPORT_SYMBOL_GPL(ata_host_put);
7408