1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* linux/net/ipv4/arp.c
3  *
4  * Copyright (C) 1994 by Florian  La Roche
5  *
6  * This module implements the Address Resolution Protocol ARP (RFC 826),
7  * which is used to convert IP addresses (or in the future maybe other
8  * high-level addresses) into a low-level hardware address (like an Ethernet
9  * address).
10  *
11  * Fixes:
12  *		Alan Cox	:	Removed the Ethernet assumptions in
13  *					Florian's code
14  *		Alan Cox	:	Fixed some small errors in the ARP
15  *					logic
16  *		Alan Cox	:	Allow >4K in /proc
17  *		Alan Cox	:	Make ARP add its own protocol entry
18  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
19  *		Stephen Henson	:	Add AX25 support to arp_get_info()
20  *		Alan Cox	:	Drop data when a device is downed.
21  *		Alan Cox	:	Use init_timer().
22  *		Alan Cox	:	Double lock fixes.
23  *		Martin Seine	:	Move the arphdr structure
24  *					to if_arp.h for compatibility.
25  *					with BSD based programs.
26  *		Andrew Tridgell :       Added ARP netmask code and
27  *					re-arranged proxy handling.
28  *		Alan Cox	:	Changed to use notifiers.
29  *		Niibe Yutaka	:	Reply for this device or proxies only.
30  *		Alan Cox	:	Don't proxy across hardware types!
31  *		Jonathan Naylor :	Added support for NET/ROM.
32  *		Mike Shaver     :       RFC1122 checks.
33  *		Jonathan Naylor :	Only lookup the hardware address for
34  *					the correct hardware type.
35  *		Germano Caronni	:	Assorted subtle races.
36  *		Craig Schlenter :	Don't modify permanent entry
37  *					during arp_rcv.
38  *		Russ Nelson	:	Tidied up a few bits.
39  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
40  *					eg intelligent arp probing and
41  *					generation
42  *					of host down events.
43  *		Alan Cox	:	Missing unlock in device events.
44  *		Eckes		:	ARP ioctl control errors.
45  *		Alexey Kuznetsov:	Arp free fix.
46  *		Manuel Rodriguez:	Gratuitous ARP.
47  *              Jonathan Layes  :       Added arpd support through kerneld
48  *                                      message queue (960314)
49  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
50  *		Mike McLagan    :	Routing by source
51  *		Stuart Cheshire	:	Metricom and grat arp fixes
52  *					*** FOR 2.1 clean this up ***
53  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
54  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
55  *					folded into the mainstream FDDI code.
56  *					Ack spit, Linus how did you allow that
57  *					one in...
58  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
59  *					clean up the APFDDI & gen. FDDI bits.
60  *		Alexey Kuznetsov:	new arp state machine;
61  *					now it is in net/core/neighbour.c.
62  *		Krzysztof Halasa:	Added Frame Relay ARP support.
63  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
64  *		Shmulik Hen:		Split arp_send to arp_create and
65  *					arp_xmit so intermediate drivers like
66  *					bonding can change the skb before
67  *					sending (e.g. insert 8021q tag).
68  *		Harald Welte	:	convert to make use of jenkins hash
69  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
70  */
71 
72 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 
74 #include <linux/module.h>
75 #include <linux/types.h>
76 #include <linux/string.h>
77 #include <linux/kernel.h>
78 #include <linux/capability.h>
79 #include <linux/socket.h>
80 #include <linux/sockios.h>
81 #include <linux/errno.h>
82 #include <linux/in.h>
83 #include <linux/mm.h>
84 #include <linux/inet.h>
85 #include <linux/inetdevice.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/fddidevice.h>
89 #include <linux/if_arp.h>
90 #include <linux/skbuff.h>
91 #include <linux/proc_fs.h>
92 #include <linux/seq_file.h>
93 #include <linux/stat.h>
94 #include <linux/init.h>
95 #include <linux/net.h>
96 #include <linux/rcupdate.h>
97 #include <linux/slab.h>
98 #ifdef CONFIG_SYSCTL
99 #include <linux/sysctl.h>
100 #endif
101 
102 #include <net/net_namespace.h>
103 #include <net/ip.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/protocol.h>
107 #include <net/tcp.h>
108 #include <net/sock.h>
109 #include <net/arp.h>
110 #include <net/ax25.h>
111 #include <net/netrom.h>
112 #include <net/dst_metadata.h>
113 #include <net/ip_tunnels.h>
114 
115 #include <linux/uaccess.h>
116 
117 #include <linux/netfilter_arp.h>
118 
119 /*
120  *	Interface to generic neighbour cache.
121  */
122 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124 static int arp_constructor(struct neighbour *neigh);
125 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 static void parp_redo(struct sk_buff *skb);
128 static int arp_is_multicast(const void *pkey);
129 
130 static const struct neigh_ops arp_generic_ops = {
131 	.family =		AF_INET,
132 	.solicit =		arp_solicit,
133 	.error_report =		arp_error_report,
134 	.output =		neigh_resolve_output,
135 	.connected_output =	neigh_connected_output,
136 };
137 
138 static const struct neigh_ops arp_hh_ops = {
139 	.family =		AF_INET,
140 	.solicit =		arp_solicit,
141 	.error_report =		arp_error_report,
142 	.output =		neigh_resolve_output,
143 	.connected_output =	neigh_resolve_output,
144 };
145 
146 static const struct neigh_ops arp_direct_ops = {
147 	.family =		AF_INET,
148 	.output =		neigh_direct_output,
149 	.connected_output =	neigh_direct_output,
150 };
151 
152 struct neigh_table arp_tbl = {
153 	.family		= AF_INET,
154 	.key_len	= 4,
155 	.protocol	= cpu_to_be16(ETH_P_IP),
156 	.hash		= arp_hash,
157 	.key_eq		= arp_key_eq,
158 	.constructor	= arp_constructor,
159 	.proxy_redo	= parp_redo,
160 	.is_multicast	= arp_is_multicast,
161 	.id		= "arp_cache",
162 	.parms		= {
163 		.tbl			= &arp_tbl,
164 		.reachable_time		= 30 * HZ,
165 		.data	= {
166 			[NEIGH_VAR_MCAST_PROBES] = 3,
167 			[NEIGH_VAR_UCAST_PROBES] = 3,
168 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
172 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
173 			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
174 			[NEIGH_VAR_PROXY_QLEN] = 64,
175 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
176 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
177 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
178 		},
179 	},
180 	.gc_interval	= 30 * HZ,
181 	.gc_thresh1	= 128,
182 	.gc_thresh2	= 512,
183 	.gc_thresh3	= 1024,
184 };
185 EXPORT_SYMBOL(arp_tbl);
186 
arp_mc_map(__be32 addr,u8 * haddr,struct net_device * dev,int dir)187 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
188 {
189 	switch (dev->type) {
190 	case ARPHRD_ETHER:
191 	case ARPHRD_FDDI:
192 	case ARPHRD_IEEE802:
193 		ip_eth_mc_map(addr, haddr);
194 		return 0;
195 	case ARPHRD_INFINIBAND:
196 		ip_ib_mc_map(addr, dev->broadcast, haddr);
197 		return 0;
198 	case ARPHRD_IPGRE:
199 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
200 		return 0;
201 	default:
202 		if (dir) {
203 			memcpy(haddr, dev->broadcast, dev->addr_len);
204 			return 0;
205 		}
206 	}
207 	return -EINVAL;
208 }
209 
210 
arp_hash(const void * pkey,const struct net_device * dev,__u32 * hash_rnd)211 static u32 arp_hash(const void *pkey,
212 		    const struct net_device *dev,
213 		    __u32 *hash_rnd)
214 {
215 	return arp_hashfn(pkey, dev, hash_rnd);
216 }
217 
arp_key_eq(const struct neighbour * neigh,const void * pkey)218 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
219 {
220 	return neigh_key_eq32(neigh, pkey);
221 }
222 
arp_constructor(struct neighbour * neigh)223 static int arp_constructor(struct neighbour *neigh)
224 {
225 	__be32 addr;
226 	struct net_device *dev = neigh->dev;
227 	struct in_device *in_dev;
228 	struct neigh_parms *parms;
229 	u32 inaddr_any = INADDR_ANY;
230 
231 	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
232 		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
233 
234 	addr = *(__be32 *)neigh->primary_key;
235 	rcu_read_lock();
236 	in_dev = __in_dev_get_rcu(dev);
237 	if (!in_dev) {
238 		rcu_read_unlock();
239 		return -EINVAL;
240 	}
241 
242 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
243 
244 	parms = in_dev->arp_parms;
245 	__neigh_parms_put(neigh->parms);
246 	neigh->parms = neigh_parms_clone(parms);
247 	rcu_read_unlock();
248 
249 	if (!dev->header_ops) {
250 		neigh->nud_state = NUD_NOARP;
251 		neigh->ops = &arp_direct_ops;
252 		neigh->output = neigh_direct_output;
253 	} else {
254 		/* Good devices (checked by reading texts, but only Ethernet is
255 		   tested)
256 
257 		   ARPHRD_ETHER: (ethernet, apfddi)
258 		   ARPHRD_FDDI: (fddi)
259 		   ARPHRD_IEEE802: (tr)
260 		   ARPHRD_METRICOM: (strip)
261 		   ARPHRD_ARCNET:
262 		   etc. etc. etc.
263 
264 		   ARPHRD_IPDDP will also work, if author repairs it.
265 		   I did not it, because this driver does not work even
266 		   in old paradigm.
267 		 */
268 
269 		if (neigh->type == RTN_MULTICAST) {
270 			neigh->nud_state = NUD_NOARP;
271 			arp_mc_map(addr, neigh->ha, dev, 1);
272 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
273 			neigh->nud_state = NUD_NOARP;
274 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
275 		} else if (neigh->type == RTN_BROADCAST ||
276 			   (dev->flags & IFF_POINTOPOINT)) {
277 			neigh->nud_state = NUD_NOARP;
278 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
279 		}
280 
281 		if (dev->header_ops->cache)
282 			neigh->ops = &arp_hh_ops;
283 		else
284 			neigh->ops = &arp_generic_ops;
285 
286 		if (neigh->nud_state & NUD_VALID)
287 			neigh->output = neigh->ops->connected_output;
288 		else
289 			neigh->output = neigh->ops->output;
290 	}
291 	return 0;
292 }
293 
arp_error_report(struct neighbour * neigh,struct sk_buff * skb)294 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
295 {
296 	dst_link_failure(skb);
297 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
298 }
299 
300 /* Create and send an arp packet. */
arp_send_dst(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw,struct dst_entry * dst)301 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
302 			 struct net_device *dev, __be32 src_ip,
303 			 const unsigned char *dest_hw,
304 			 const unsigned char *src_hw,
305 			 const unsigned char *target_hw,
306 			 struct dst_entry *dst)
307 {
308 	struct sk_buff *skb;
309 
310 	/* arp on this interface. */
311 	if (dev->flags & IFF_NOARP)
312 		return;
313 
314 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
315 			 dest_hw, src_hw, target_hw);
316 	if (!skb)
317 		return;
318 
319 	skb_dst_set(skb, dst_clone(dst));
320 	arp_xmit(skb);
321 }
322 
arp_send(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw)323 void arp_send(int type, int ptype, __be32 dest_ip,
324 	      struct net_device *dev, __be32 src_ip,
325 	      const unsigned char *dest_hw, const unsigned char *src_hw,
326 	      const unsigned char *target_hw)
327 {
328 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
329 		     target_hw, NULL);
330 }
331 EXPORT_SYMBOL(arp_send);
332 
arp_solicit(struct neighbour * neigh,struct sk_buff * skb)333 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
334 {
335 	__be32 saddr = 0;
336 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
337 	struct net_device *dev = neigh->dev;
338 	__be32 target = *(__be32 *)neigh->primary_key;
339 	int probes = atomic_read(&neigh->probes);
340 	struct in_device *in_dev;
341 	struct dst_entry *dst = NULL;
342 
343 	rcu_read_lock();
344 	in_dev = __in_dev_get_rcu(dev);
345 	if (!in_dev) {
346 		rcu_read_unlock();
347 		return;
348 	}
349 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
350 	default:
351 	case 0:		/* By default announce any local IP */
352 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
353 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
354 			saddr = ip_hdr(skb)->saddr;
355 		break;
356 	case 1:		/* Restrict announcements of saddr in same subnet */
357 		if (!skb)
358 			break;
359 		saddr = ip_hdr(skb)->saddr;
360 		if (inet_addr_type_dev_table(dev_net(dev), dev,
361 					     saddr) == RTN_LOCAL) {
362 			/* saddr should be known to target */
363 			if (inet_addr_onlink(in_dev, target, saddr))
364 				break;
365 		}
366 		saddr = 0;
367 		break;
368 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
369 		break;
370 	}
371 	rcu_read_unlock();
372 
373 	if (!saddr)
374 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
375 
376 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
377 	if (probes < 0) {
378 		if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
379 			pr_debug("trying to ucast probe in NUD_INVALID\n");
380 		neigh_ha_snapshot(dst_ha, neigh, dev);
381 		dst_hw = dst_ha;
382 	} else {
383 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
384 		if (probes < 0) {
385 			neigh_app_ns(neigh);
386 			return;
387 		}
388 	}
389 
390 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
391 		dst = skb_dst(skb);
392 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
393 		     dst_hw, dev->dev_addr, NULL, dst);
394 }
395 
arp_ignore(struct in_device * in_dev,__be32 sip,__be32 tip)396 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
397 {
398 	struct net *net = dev_net(in_dev->dev);
399 	int scope;
400 
401 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
402 	case 0:	/* Reply, the tip is already validated */
403 		return 0;
404 	case 1:	/* Reply only if tip is configured on the incoming interface */
405 		sip = 0;
406 		scope = RT_SCOPE_HOST;
407 		break;
408 	case 2:	/*
409 		 * Reply only if tip is configured on the incoming interface
410 		 * and is in same subnet as sip
411 		 */
412 		scope = RT_SCOPE_HOST;
413 		break;
414 	case 3:	/* Do not reply for scope host addresses */
415 		sip = 0;
416 		scope = RT_SCOPE_LINK;
417 		in_dev = NULL;
418 		break;
419 	case 4:	/* Reserved */
420 	case 5:
421 	case 6:
422 	case 7:
423 		return 0;
424 	case 8:	/* Do not reply */
425 		return 1;
426 	default:
427 		return 0;
428 	}
429 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
430 }
431 
arp_accept(struct in_device * in_dev,__be32 sip)432 static int arp_accept(struct in_device *in_dev, __be32 sip)
433 {
434 	struct net *net = dev_net(in_dev->dev);
435 	int scope = RT_SCOPE_LINK;
436 
437 	switch (IN_DEV_ARP_ACCEPT(in_dev)) {
438 	case 0: /* Don't create new entries from garp */
439 		return 0;
440 	case 1: /* Create new entries from garp */
441 		return 1;
442 	case 2: /* Create a neighbor in the arp table only if sip
443 		 * is in the same subnet as an address configured
444 		 * on the interface that received the garp message
445 		 */
446 		return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
447 	default:
448 		return 0;
449 	}
450 }
451 
arp_filter(__be32 sip,__be32 tip,struct net_device * dev)452 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
453 {
454 	struct rtable *rt;
455 	int flag = 0;
456 	/*unsigned long now; */
457 	struct net *net = dev_net(dev);
458 
459 	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
460 	if (IS_ERR(rt))
461 		return 1;
462 	if (rt->dst.dev != dev) {
463 		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
464 		flag = 1;
465 	}
466 	ip_rt_put(rt);
467 	return flag;
468 }
469 
470 /*
471  * Check if we can use proxy ARP for this path
472  */
arp_fwd_proxy(struct in_device * in_dev,struct net_device * dev,struct rtable * rt)473 static inline int arp_fwd_proxy(struct in_device *in_dev,
474 				struct net_device *dev,	struct rtable *rt)
475 {
476 	struct in_device *out_dev;
477 	int imi, omi = -1;
478 
479 	if (rt->dst.dev == dev)
480 		return 0;
481 
482 	if (!IN_DEV_PROXY_ARP(in_dev))
483 		return 0;
484 	imi = IN_DEV_MEDIUM_ID(in_dev);
485 	if (imi == 0)
486 		return 1;
487 	if (imi == -1)
488 		return 0;
489 
490 	/* place to check for proxy_arp for routes */
491 
492 	out_dev = __in_dev_get_rcu(rt->dst.dev);
493 	if (out_dev)
494 		omi = IN_DEV_MEDIUM_ID(out_dev);
495 
496 	return omi != imi && omi != -1;
497 }
498 
499 /*
500  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
501  *
502  * RFC3069 supports proxy arp replies back to the same interface.  This
503  * is done to support (ethernet) switch features, like RFC 3069, where
504  * the individual ports are not allowed to communicate with each
505  * other, BUT they are allowed to talk to the upstream router.  As
506  * described in RFC 3069, it is possible to allow these hosts to
507  * communicate through the upstream router, by proxy_arp'ing.
508  *
509  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
510  *
511  *  This technology is known by different names:
512  *    In RFC 3069 it is called VLAN Aggregation.
513  *    Cisco and Allied Telesyn call it Private VLAN.
514  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
515  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
516  *
517  */
arp_fwd_pvlan(struct in_device * in_dev,struct net_device * dev,struct rtable * rt,__be32 sip,__be32 tip)518 static inline int arp_fwd_pvlan(struct in_device *in_dev,
519 				struct net_device *dev,	struct rtable *rt,
520 				__be32 sip, __be32 tip)
521 {
522 	/* Private VLAN is only concerned about the same ethernet segment */
523 	if (rt->dst.dev != dev)
524 		return 0;
525 
526 	/* Don't reply on self probes (often done by windowz boxes)*/
527 	if (sip == tip)
528 		return 0;
529 
530 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
531 		return 1;
532 	else
533 		return 0;
534 }
535 
536 /*
537  *	Interface to link layer: send routine and receive handler.
538  */
539 
540 /*
541  *	Create an arp packet. If dest_hw is not set, we create a broadcast
542  *	message.
543  */
arp_create(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw)544 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
545 			   struct net_device *dev, __be32 src_ip,
546 			   const unsigned char *dest_hw,
547 			   const unsigned char *src_hw,
548 			   const unsigned char *target_hw)
549 {
550 	struct sk_buff *skb;
551 	struct arphdr *arp;
552 	unsigned char *arp_ptr;
553 	int hlen = LL_RESERVED_SPACE(dev);
554 	int tlen = dev->needed_tailroom;
555 
556 	/*
557 	 *	Allocate a buffer
558 	 */
559 
560 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
561 	if (!skb)
562 		return NULL;
563 
564 	skb_reserve(skb, hlen);
565 	skb_reset_network_header(skb);
566 	arp = skb_put(skb, arp_hdr_len(dev));
567 	skb->dev = dev;
568 	skb->protocol = htons(ETH_P_ARP);
569 	if (!src_hw)
570 		src_hw = dev->dev_addr;
571 	if (!dest_hw)
572 		dest_hw = dev->broadcast;
573 
574 	/*
575 	 *	Fill the device header for the ARP frame
576 	 */
577 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
578 		goto out;
579 
580 	/*
581 	 * Fill out the arp protocol part.
582 	 *
583 	 * The arp hardware type should match the device type, except for FDDI,
584 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
585 	 */
586 	/*
587 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
588 	 *	DIX code for the protocol. Make these device structure fields.
589 	 */
590 	switch (dev->type) {
591 	default:
592 		arp->ar_hrd = htons(dev->type);
593 		arp->ar_pro = htons(ETH_P_IP);
594 		break;
595 
596 #if IS_ENABLED(CONFIG_AX25)
597 	case ARPHRD_AX25:
598 		arp->ar_hrd = htons(ARPHRD_AX25);
599 		arp->ar_pro = htons(AX25_P_IP);
600 		break;
601 
602 #if IS_ENABLED(CONFIG_NETROM)
603 	case ARPHRD_NETROM:
604 		arp->ar_hrd = htons(ARPHRD_NETROM);
605 		arp->ar_pro = htons(AX25_P_IP);
606 		break;
607 #endif
608 #endif
609 
610 #if IS_ENABLED(CONFIG_FDDI)
611 	case ARPHRD_FDDI:
612 		arp->ar_hrd = htons(ARPHRD_ETHER);
613 		arp->ar_pro = htons(ETH_P_IP);
614 		break;
615 #endif
616 	}
617 
618 	arp->ar_hln = dev->addr_len;
619 	arp->ar_pln = 4;
620 	arp->ar_op = htons(type);
621 
622 	arp_ptr = (unsigned char *)(arp + 1);
623 
624 	memcpy(arp_ptr, src_hw, dev->addr_len);
625 	arp_ptr += dev->addr_len;
626 	memcpy(arp_ptr, &src_ip, 4);
627 	arp_ptr += 4;
628 
629 	switch (dev->type) {
630 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
631 	case ARPHRD_IEEE1394:
632 		break;
633 #endif
634 	default:
635 		if (target_hw)
636 			memcpy(arp_ptr, target_hw, dev->addr_len);
637 		else
638 			memset(arp_ptr, 0, dev->addr_len);
639 		arp_ptr += dev->addr_len;
640 	}
641 	memcpy(arp_ptr, &dest_ip, 4);
642 
643 	return skb;
644 
645 out:
646 	kfree_skb(skb);
647 	return NULL;
648 }
649 EXPORT_SYMBOL(arp_create);
650 
arp_xmit_finish(struct net * net,struct sock * sk,struct sk_buff * skb)651 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
652 {
653 	return dev_queue_xmit(skb);
654 }
655 
656 /*
657  *	Send an arp packet.
658  */
arp_xmit(struct sk_buff * skb)659 void arp_xmit(struct sk_buff *skb)
660 {
661 	/* Send it off, maybe filter it using firewalling first.  */
662 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
663 		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
664 		arp_xmit_finish);
665 }
666 EXPORT_SYMBOL(arp_xmit);
667 
arp_is_garp(struct net * net,struct net_device * dev,int * addr_type,__be16 ar_op,__be32 sip,__be32 tip,unsigned char * sha,unsigned char * tha)668 static bool arp_is_garp(struct net *net, struct net_device *dev,
669 			int *addr_type, __be16 ar_op,
670 			__be32 sip, __be32 tip,
671 			unsigned char *sha, unsigned char *tha)
672 {
673 	bool is_garp = tip == sip;
674 
675 	/* Gratuitous ARP _replies_ also require target hwaddr to be
676 	 * the same as source.
677 	 */
678 	if (is_garp && ar_op == htons(ARPOP_REPLY))
679 		is_garp =
680 			/* IPv4 over IEEE 1394 doesn't provide target
681 			 * hardware address field in its ARP payload.
682 			 */
683 			tha &&
684 			!memcmp(tha, sha, dev->addr_len);
685 
686 	if (is_garp) {
687 		*addr_type = inet_addr_type_dev_table(net, dev, sip);
688 		if (*addr_type != RTN_UNICAST)
689 			is_garp = false;
690 	}
691 	return is_garp;
692 }
693 
694 /*
695  *	Process an arp request.
696  */
697 
arp_process(struct net * net,struct sock * sk,struct sk_buff * skb)698 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
699 {
700 	struct net_device *dev = skb->dev;
701 	struct in_device *in_dev = __in_dev_get_rcu(dev);
702 	struct arphdr *arp;
703 	unsigned char *arp_ptr;
704 	struct rtable *rt;
705 	unsigned char *sha;
706 	unsigned char *tha = NULL;
707 	__be32 sip, tip;
708 	u16 dev_type = dev->type;
709 	int addr_type;
710 	struct neighbour *n;
711 	struct dst_entry *reply_dst = NULL;
712 	bool is_garp = false;
713 
714 	/* arp_rcv below verifies the ARP header and verifies the device
715 	 * is ARP'able.
716 	 */
717 
718 	if (!in_dev)
719 		goto out_free_skb;
720 
721 	arp = arp_hdr(skb);
722 
723 	switch (dev_type) {
724 	default:
725 		if (arp->ar_pro != htons(ETH_P_IP) ||
726 		    htons(dev_type) != arp->ar_hrd)
727 			goto out_free_skb;
728 		break;
729 	case ARPHRD_ETHER:
730 	case ARPHRD_FDDI:
731 	case ARPHRD_IEEE802:
732 		/*
733 		 * ETHERNET, and Fibre Channel (which are IEEE 802
734 		 * devices, according to RFC 2625) devices will accept ARP
735 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
736 		 * This is the case also of FDDI, where the RFC 1390 says that
737 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
738 		 * however, to be more robust, we'll accept both 1 (Ethernet)
739 		 * or 6 (IEEE 802.2)
740 		 */
741 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
742 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
743 		    arp->ar_pro != htons(ETH_P_IP))
744 			goto out_free_skb;
745 		break;
746 	case ARPHRD_AX25:
747 		if (arp->ar_pro != htons(AX25_P_IP) ||
748 		    arp->ar_hrd != htons(ARPHRD_AX25))
749 			goto out_free_skb;
750 		break;
751 	case ARPHRD_NETROM:
752 		if (arp->ar_pro != htons(AX25_P_IP) ||
753 		    arp->ar_hrd != htons(ARPHRD_NETROM))
754 			goto out_free_skb;
755 		break;
756 	}
757 
758 	/* Understand only these message types */
759 
760 	if (arp->ar_op != htons(ARPOP_REPLY) &&
761 	    arp->ar_op != htons(ARPOP_REQUEST))
762 		goto out_free_skb;
763 
764 /*
765  *	Extract fields
766  */
767 	arp_ptr = (unsigned char *)(arp + 1);
768 	sha	= arp_ptr;
769 	arp_ptr += dev->addr_len;
770 	memcpy(&sip, arp_ptr, 4);
771 	arp_ptr += 4;
772 	switch (dev_type) {
773 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
774 	case ARPHRD_IEEE1394:
775 		break;
776 #endif
777 	default:
778 		tha = arp_ptr;
779 		arp_ptr += dev->addr_len;
780 	}
781 	memcpy(&tip, arp_ptr, 4);
782 /*
783  *	Check for bad requests for 127.x.x.x and requests for multicast
784  *	addresses.  If this is one such, delete it.
785  */
786 	if (ipv4_is_multicast(tip) ||
787 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
788 		goto out_free_skb;
789 
790  /*
791   *	For some 802.11 wireless deployments (and possibly other networks),
792   *	there will be an ARP proxy and gratuitous ARP frames are attacks
793   *	and thus should not be accepted.
794   */
795 	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
796 		goto out_free_skb;
797 
798 /*
799  *     Special case: We must set Frame Relay source Q.922 address
800  */
801 	if (dev_type == ARPHRD_DLCI)
802 		sha = dev->broadcast;
803 
804 /*
805  *  Process entry.  The idea here is we want to send a reply if it is a
806  *  request for us or if it is a request for someone else that we hold
807  *  a proxy for.  We want to add an entry to our cache if it is a reply
808  *  to us or if it is a request for our address.
809  *  (The assumption for this last is that if someone is requesting our
810  *  address, they are probably intending to talk to us, so it saves time
811  *  if we cache their address.  Their address is also probably not in
812  *  our cache, since ours is not in their cache.)
813  *
814  *  Putting this another way, we only care about replies if they are to
815  *  us, in which case we add them to the cache.  For requests, we care
816  *  about those for us and those for our proxies.  We reply to both,
817  *  and in the case of requests for us we add the requester to the arp
818  *  cache.
819  */
820 
821 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
822 		reply_dst = (struct dst_entry *)
823 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
824 						    GFP_ATOMIC);
825 
826 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
827 	if (sip == 0) {
828 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
829 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
830 		    !arp_ignore(in_dev, sip, tip))
831 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
832 				     sha, dev->dev_addr, sha, reply_dst);
833 		goto out_consume_skb;
834 	}
835 
836 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
837 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
838 
839 		rt = skb_rtable(skb);
840 		addr_type = rt->rt_type;
841 
842 		if (addr_type == RTN_LOCAL) {
843 			int dont_send;
844 
845 			dont_send = arp_ignore(in_dev, sip, tip);
846 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
847 				dont_send = arp_filter(sip, tip, dev);
848 			if (!dont_send) {
849 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
850 				if (n) {
851 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
852 						     sip, dev, tip, sha,
853 						     dev->dev_addr, sha,
854 						     reply_dst);
855 					neigh_release(n);
856 				}
857 			}
858 			goto out_consume_skb;
859 		} else if (IN_DEV_FORWARD(in_dev)) {
860 			if (addr_type == RTN_UNICAST  &&
861 			    (arp_fwd_proxy(in_dev, dev, rt) ||
862 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
863 			     (rt->dst.dev != dev &&
864 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
865 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
866 				if (n)
867 					neigh_release(n);
868 
869 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
870 				    skb->pkt_type == PACKET_HOST ||
871 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
872 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
873 						     sip, dev, tip, sha,
874 						     dev->dev_addr, sha,
875 						     reply_dst);
876 				} else {
877 					pneigh_enqueue(&arp_tbl,
878 						       in_dev->arp_parms, skb);
879 					goto out_free_dst;
880 				}
881 				goto out_consume_skb;
882 			}
883 		}
884 	}
885 
886 	/* Update our ARP tables */
887 
888 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
889 
890 	addr_type = -1;
891 	if (n || arp_accept(in_dev, sip)) {
892 		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
893 				      sip, tip, sha, tha);
894 	}
895 
896 	if (arp_accept(in_dev, sip)) {
897 		/* Unsolicited ARP is not accepted by default.
898 		   It is possible, that this option should be enabled for some
899 		   devices (strip is candidate)
900 		 */
901 		if (!n &&
902 		    (is_garp ||
903 		     (arp->ar_op == htons(ARPOP_REPLY) &&
904 		      (addr_type == RTN_UNICAST ||
905 		       (addr_type < 0 &&
906 			/* postpone calculation to as late as possible */
907 			inet_addr_type_dev_table(net, dev, sip) ==
908 				RTN_UNICAST)))))
909 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
910 	}
911 
912 	if (n) {
913 		int state = NUD_REACHABLE;
914 		int override;
915 
916 		/* If several different ARP replies follows back-to-back,
917 		   use the FIRST one. It is possible, if several proxy
918 		   agents are active. Taking the first reply prevents
919 		   arp trashing and chooses the fastest router.
920 		 */
921 		override = time_after(jiffies,
922 				      n->updated +
923 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
924 			   is_garp;
925 
926 		/* Broadcast replies and request packets
927 		   do not assert neighbour reachability.
928 		 */
929 		if (arp->ar_op != htons(ARPOP_REPLY) ||
930 		    skb->pkt_type != PACKET_HOST)
931 			state = NUD_STALE;
932 		neigh_update(n, sha, state,
933 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
934 		neigh_release(n);
935 	}
936 
937 out_consume_skb:
938 	consume_skb(skb);
939 
940 out_free_dst:
941 	dst_release(reply_dst);
942 	return NET_RX_SUCCESS;
943 
944 out_free_skb:
945 	kfree_skb(skb);
946 	return NET_RX_DROP;
947 }
948 
parp_redo(struct sk_buff * skb)949 static void parp_redo(struct sk_buff *skb)
950 {
951 	arp_process(dev_net(skb->dev), NULL, skb);
952 }
953 
arp_is_multicast(const void * pkey)954 static int arp_is_multicast(const void *pkey)
955 {
956 	return ipv4_is_multicast(*((__be32 *)pkey));
957 }
958 
959 /*
960  *	Receive an arp request from the device layer.
961  */
962 
arp_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)963 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
964 		   struct packet_type *pt, struct net_device *orig_dev)
965 {
966 	const struct arphdr *arp;
967 
968 	/* do not tweak dropwatch on an ARP we will ignore */
969 	if (dev->flags & IFF_NOARP ||
970 	    skb->pkt_type == PACKET_OTHERHOST ||
971 	    skb->pkt_type == PACKET_LOOPBACK)
972 		goto consumeskb;
973 
974 	skb = skb_share_check(skb, GFP_ATOMIC);
975 	if (!skb)
976 		goto out_of_mem;
977 
978 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
979 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
980 		goto freeskb;
981 
982 	arp = arp_hdr(skb);
983 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
984 		goto freeskb;
985 
986 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
987 
988 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
989 		       dev_net(dev), NULL, skb, dev, NULL,
990 		       arp_process);
991 
992 consumeskb:
993 	consume_skb(skb);
994 	return NET_RX_SUCCESS;
995 freeskb:
996 	kfree_skb(skb);
997 out_of_mem:
998 	return NET_RX_DROP;
999 }
1000 
1001 /*
1002  *	User level interface (ioctl)
1003  */
1004 
1005 /*
1006  *	Set (create) an ARP cache entry.
1007  */
1008 
arp_req_set_proxy(struct net * net,struct net_device * dev,int on)1009 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1010 {
1011 	if (!dev) {
1012 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1013 		return 0;
1014 	}
1015 	if (__in_dev_get_rtnl(dev)) {
1016 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1017 		return 0;
1018 	}
1019 	return -ENXIO;
1020 }
1021 
arp_req_set_public(struct net * net,struct arpreq * r,struct net_device * dev)1022 static int arp_req_set_public(struct net *net, struct arpreq *r,
1023 		struct net_device *dev)
1024 {
1025 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1027 
1028 	if (mask && mask != htonl(0xFFFFFFFF))
1029 		return -EINVAL;
1030 	if (!dev && (r->arp_flags & ATF_COM)) {
1031 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1032 				      r->arp_ha.sa_data);
1033 		if (!dev)
1034 			return -ENODEV;
1035 	}
1036 	if (mask) {
1037 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1038 			return -ENOBUFS;
1039 		return 0;
1040 	}
1041 
1042 	return arp_req_set_proxy(net, dev, 1);
1043 }
1044 
arp_req_set(struct net * net,struct arpreq * r,struct net_device * dev)1045 static int arp_req_set(struct net *net, struct arpreq *r,
1046 		       struct net_device *dev)
1047 {
1048 	__be32 ip;
1049 	struct neighbour *neigh;
1050 	int err;
1051 
1052 	if (r->arp_flags & ATF_PUBL)
1053 		return arp_req_set_public(net, r, dev);
1054 
1055 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1056 	if (r->arp_flags & ATF_PERM)
1057 		r->arp_flags |= ATF_COM;
1058 	if (!dev) {
1059 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1060 
1061 		if (IS_ERR(rt))
1062 			return PTR_ERR(rt);
1063 		dev = rt->dst.dev;
1064 		ip_rt_put(rt);
1065 		if (!dev)
1066 			return -EINVAL;
1067 	}
1068 	switch (dev->type) {
1069 #if IS_ENABLED(CONFIG_FDDI)
1070 	case ARPHRD_FDDI:
1071 		/*
1072 		 * According to RFC 1390, FDDI devices should accept ARP
1073 		 * hardware types of 1 (Ethernet).  However, to be more
1074 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1075 		 * or 6 (IEEE 802.2).
1076 		 */
1077 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1078 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1079 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1080 			return -EINVAL;
1081 		break;
1082 #endif
1083 	default:
1084 		if (r->arp_ha.sa_family != dev->type)
1085 			return -EINVAL;
1086 		break;
1087 	}
1088 
1089 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1090 	err = PTR_ERR(neigh);
1091 	if (!IS_ERR(neigh)) {
1092 		unsigned int state = NUD_STALE;
1093 		if (r->arp_flags & ATF_PERM)
1094 			state = NUD_PERMANENT;
1095 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1096 				   r->arp_ha.sa_data : NULL, state,
1097 				   NEIGH_UPDATE_F_OVERRIDE |
1098 				   NEIGH_UPDATE_F_ADMIN, 0);
1099 		neigh_release(neigh);
1100 	}
1101 	return err;
1102 }
1103 
arp_state_to_flags(struct neighbour * neigh)1104 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1105 {
1106 	if (neigh->nud_state&NUD_PERMANENT)
1107 		return ATF_PERM | ATF_COM;
1108 	else if (neigh->nud_state&NUD_VALID)
1109 		return ATF_COM;
1110 	else
1111 		return 0;
1112 }
1113 
1114 /*
1115  *	Get an ARP cache entry.
1116  */
1117 
arp_req_get(struct arpreq * r,struct net_device * dev)1118 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1119 {
1120 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1121 	struct neighbour *neigh;
1122 	int err = -ENXIO;
1123 
1124 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125 	if (neigh) {
1126 		if (!(READ_ONCE(neigh->nud_state) & NUD_NOARP)) {
1127 			read_lock_bh(&neigh->lock);
1128 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1129 			r->arp_flags = arp_state_to_flags(neigh);
1130 			read_unlock_bh(&neigh->lock);
1131 			r->arp_ha.sa_family = dev->type;
1132 			strscpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1133 			err = 0;
1134 		}
1135 		neigh_release(neigh);
1136 	}
1137 	return err;
1138 }
1139 
arp_invalidate(struct net_device * dev,__be32 ip,bool force)1140 int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1141 {
1142 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1143 	int err = -ENXIO;
1144 	struct neigh_table *tbl = &arp_tbl;
1145 
1146 	if (neigh) {
1147 		if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1148 			neigh_release(neigh);
1149 			return 0;
1150 		}
1151 
1152 		if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1153 			err = neigh_update(neigh, NULL, NUD_FAILED,
1154 					   NEIGH_UPDATE_F_OVERRIDE|
1155 					   NEIGH_UPDATE_F_ADMIN, 0);
1156 		write_lock_bh(&tbl->lock);
1157 		neigh_release(neigh);
1158 		neigh_remove_one(neigh, tbl);
1159 		write_unlock_bh(&tbl->lock);
1160 	}
1161 
1162 	return err;
1163 }
1164 
arp_req_delete_public(struct net * net,struct arpreq * r,struct net_device * dev)1165 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1166 		struct net_device *dev)
1167 {
1168 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1169 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1170 
1171 	if (mask == htonl(0xFFFFFFFF))
1172 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1173 
1174 	if (mask)
1175 		return -EINVAL;
1176 
1177 	return arp_req_set_proxy(net, dev, 0);
1178 }
1179 
arp_req_delete(struct net * net,struct arpreq * r,struct net_device * dev)1180 static int arp_req_delete(struct net *net, struct arpreq *r,
1181 			  struct net_device *dev)
1182 {
1183 	__be32 ip;
1184 
1185 	if (r->arp_flags & ATF_PUBL)
1186 		return arp_req_delete_public(net, r, dev);
1187 
1188 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1189 	if (!dev) {
1190 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1191 		if (IS_ERR(rt))
1192 			return PTR_ERR(rt);
1193 		dev = rt->dst.dev;
1194 		ip_rt_put(rt);
1195 		if (!dev)
1196 			return -EINVAL;
1197 	}
1198 	return arp_invalidate(dev, ip, true);
1199 }
1200 
1201 /*
1202  *	Handle an ARP layer I/O control request.
1203  */
1204 
arp_ioctl(struct net * net,unsigned int cmd,void __user * arg)1205 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1206 {
1207 	int err;
1208 	struct arpreq r;
1209 	struct net_device *dev = NULL;
1210 
1211 	switch (cmd) {
1212 	case SIOCDARP:
1213 	case SIOCSARP:
1214 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1215 			return -EPERM;
1216 		fallthrough;
1217 	case SIOCGARP:
1218 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1219 		if (err)
1220 			return -EFAULT;
1221 		break;
1222 	default:
1223 		return -EINVAL;
1224 	}
1225 
1226 	if (r.arp_pa.sa_family != AF_INET)
1227 		return -EPFNOSUPPORT;
1228 
1229 	if (!(r.arp_flags & ATF_PUBL) &&
1230 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1231 		return -EINVAL;
1232 	if (!(r.arp_flags & ATF_NETMASK))
1233 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1234 							   htonl(0xFFFFFFFFUL);
1235 	rtnl_lock();
1236 	if (r.arp_dev[0]) {
1237 		err = -ENODEV;
1238 		dev = __dev_get_by_name(net, r.arp_dev);
1239 		if (!dev)
1240 			goto out;
1241 
1242 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1243 		if (!r.arp_ha.sa_family)
1244 			r.arp_ha.sa_family = dev->type;
1245 		err = -EINVAL;
1246 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1247 			goto out;
1248 	} else if (cmd == SIOCGARP) {
1249 		err = -ENODEV;
1250 		goto out;
1251 	}
1252 
1253 	switch (cmd) {
1254 	case SIOCDARP:
1255 		err = arp_req_delete(net, &r, dev);
1256 		break;
1257 	case SIOCSARP:
1258 		err = arp_req_set(net, &r, dev);
1259 		break;
1260 	case SIOCGARP:
1261 		err = arp_req_get(&r, dev);
1262 		break;
1263 	}
1264 out:
1265 	rtnl_unlock();
1266 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1267 		err = -EFAULT;
1268 	return err;
1269 }
1270 
arp_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)1271 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1272 			    void *ptr)
1273 {
1274 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1275 	struct netdev_notifier_change_info *change_info;
1276 	struct in_device *in_dev;
1277 	bool evict_nocarrier;
1278 
1279 	switch (event) {
1280 	case NETDEV_CHANGEADDR:
1281 		neigh_changeaddr(&arp_tbl, dev);
1282 		rt_cache_flush(dev_net(dev));
1283 		break;
1284 	case NETDEV_CHANGE:
1285 		change_info = ptr;
1286 		if (change_info->flags_changed & IFF_NOARP)
1287 			neigh_changeaddr(&arp_tbl, dev);
1288 
1289 		in_dev = __in_dev_get_rtnl(dev);
1290 		if (!in_dev)
1291 			evict_nocarrier = true;
1292 		else
1293 			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1294 
1295 		if (evict_nocarrier && !netif_carrier_ok(dev))
1296 			neigh_carrier_down(&arp_tbl, dev);
1297 		break;
1298 	default:
1299 		break;
1300 	}
1301 
1302 	return NOTIFY_DONE;
1303 }
1304 
1305 static struct notifier_block arp_netdev_notifier = {
1306 	.notifier_call = arp_netdev_event,
1307 };
1308 
1309 /* Note, that it is not on notifier chain.
1310    It is necessary, that this routine was called after route cache will be
1311    flushed.
1312  */
arp_ifdown(struct net_device * dev)1313 void arp_ifdown(struct net_device *dev)
1314 {
1315 	neigh_ifdown(&arp_tbl, dev);
1316 }
1317 
1318 
1319 /*
1320  *	Called once on startup.
1321  */
1322 
1323 static struct packet_type arp_packet_type __read_mostly = {
1324 	.type =	cpu_to_be16(ETH_P_ARP),
1325 	.func =	arp_rcv,
1326 };
1327 
1328 #ifdef CONFIG_PROC_FS
1329 #if IS_ENABLED(CONFIG_AX25)
1330 
1331 /*
1332  *	ax25 -> ASCII conversion
1333  */
ax2asc2(ax25_address * a,char * buf)1334 static void ax2asc2(ax25_address *a, char *buf)
1335 {
1336 	char c, *s;
1337 	int n;
1338 
1339 	for (n = 0, s = buf; n < 6; n++) {
1340 		c = (a->ax25_call[n] >> 1) & 0x7F;
1341 
1342 		if (c != ' ')
1343 			*s++ = c;
1344 	}
1345 
1346 	*s++ = '-';
1347 	n = (a->ax25_call[6] >> 1) & 0x0F;
1348 	if (n > 9) {
1349 		*s++ = '1';
1350 		n -= 10;
1351 	}
1352 
1353 	*s++ = n + '0';
1354 	*s++ = '\0';
1355 
1356 	if (*buf == '\0' || *buf == '-') {
1357 		buf[0] = '*';
1358 		buf[1] = '\0';
1359 	}
1360 }
1361 #endif /* CONFIG_AX25 */
1362 
1363 #define HBUFFERLEN 30
1364 
arp_format_neigh_entry(struct seq_file * seq,struct neighbour * n)1365 static void arp_format_neigh_entry(struct seq_file *seq,
1366 				   struct neighbour *n)
1367 {
1368 	char hbuffer[HBUFFERLEN];
1369 	int k, j;
1370 	char tbuf[16];
1371 	struct net_device *dev = n->dev;
1372 	int hatype = dev->type;
1373 
1374 	read_lock(&n->lock);
1375 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1376 #if IS_ENABLED(CONFIG_AX25)
1377 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1378 		ax2asc2((ax25_address *)n->ha, hbuffer);
1379 	else {
1380 #endif
1381 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1382 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1383 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1384 		hbuffer[k++] = ':';
1385 	}
1386 	if (k != 0)
1387 		--k;
1388 	hbuffer[k] = 0;
1389 #if IS_ENABLED(CONFIG_AX25)
1390 	}
1391 #endif
1392 	sprintf(tbuf, "%pI4", n->primary_key);
1393 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1394 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1395 	read_unlock(&n->lock);
1396 }
1397 
arp_format_pneigh_entry(struct seq_file * seq,struct pneigh_entry * n)1398 static void arp_format_pneigh_entry(struct seq_file *seq,
1399 				    struct pneigh_entry *n)
1400 {
1401 	struct net_device *dev = n->dev;
1402 	int hatype = dev ? dev->type : 0;
1403 	char tbuf[16];
1404 
1405 	sprintf(tbuf, "%pI4", n->key);
1406 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1407 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1408 		   dev ? dev->name : "*");
1409 }
1410 
arp_seq_show(struct seq_file * seq,void * v)1411 static int arp_seq_show(struct seq_file *seq, void *v)
1412 {
1413 	if (v == SEQ_START_TOKEN) {
1414 		seq_puts(seq, "IP address       HW type     Flags       "
1415 			      "HW address            Mask     Device\n");
1416 	} else {
1417 		struct neigh_seq_state *state = seq->private;
1418 
1419 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1420 			arp_format_pneigh_entry(seq, v);
1421 		else
1422 			arp_format_neigh_entry(seq, v);
1423 	}
1424 
1425 	return 0;
1426 }
1427 
arp_seq_start(struct seq_file * seq,loff_t * pos)1428 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1429 {
1430 	/* Don't want to confuse "arp -a" w/ magic entries,
1431 	 * so we tell the generic iterator to skip NUD_NOARP.
1432 	 */
1433 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1434 }
1435 
1436 static const struct seq_operations arp_seq_ops = {
1437 	.start	= arp_seq_start,
1438 	.next	= neigh_seq_next,
1439 	.stop	= neigh_seq_stop,
1440 	.show	= arp_seq_show,
1441 };
1442 #endif /* CONFIG_PROC_FS */
1443 
arp_net_init(struct net * net)1444 static int __net_init arp_net_init(struct net *net)
1445 {
1446 	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1447 			sizeof(struct neigh_seq_state)))
1448 		return -ENOMEM;
1449 	return 0;
1450 }
1451 
arp_net_exit(struct net * net)1452 static void __net_exit arp_net_exit(struct net *net)
1453 {
1454 	remove_proc_entry("arp", net->proc_net);
1455 }
1456 
1457 static struct pernet_operations arp_net_ops = {
1458 	.init = arp_net_init,
1459 	.exit = arp_net_exit,
1460 };
1461 
arp_init(void)1462 void __init arp_init(void)
1463 {
1464 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1465 
1466 	dev_add_pack(&arp_packet_type);
1467 	register_pernet_subsys(&arp_net_ops);
1468 #ifdef CONFIG_SYSCTL
1469 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1470 #endif
1471 	register_netdevice_notifier(&arp_netdev_notifier);
1472 }
1473