1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5 * ARM performance counter support.
6 *
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 *
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32 void (*enable_pmuirq)(unsigned int irq);
33 void (*disable_pmuirq)(unsigned int irq);
34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
armpmu_free_pmuirq(unsigned int irq,int cpu,void __percpu * devid)37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43 .enable_pmuirq = enable_irq,
44 .disable_pmuirq = disable_irq_nosync,
45 .free_pmuirq = armpmu_free_pmuirq
46 };
47
armpmu_free_pmunmi(unsigned int irq,int cpu,void __percpu * devid)48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54 .enable_pmuirq = enable_nmi,
55 .disable_pmuirq = disable_nmi_nosync,
56 .free_pmuirq = armpmu_free_pmunmi
57 };
58
armpmu_enable_percpu_pmuirq(unsigned int irq)59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
armpmu_free_percpu_pmuirq(unsigned int irq,int cpu,void __percpu * devid)64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 void __percpu *devid)
66 {
67 if (armpmu_count_irq_users(irq) == 1)
68 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 .disable_pmuirq = disable_percpu_irq,
74 .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
armpmu_enable_percpu_pmunmi(unsigned int irq)77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 if (!prepare_percpu_nmi(irq))
80 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
armpmu_disable_percpu_pmunmi(unsigned int irq)83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 disable_percpu_nmi(irq);
86 teardown_percpu_nmi(irq);
87 }
88
armpmu_free_percpu_pmunmi(unsigned int irq,int cpu,void __percpu * devid)89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 void __percpu *devid)
91 {
92 if (armpmu_count_irq_users(irq) == 1)
93 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
arm_pmu_event_max_period(struct perf_event * event)108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 if (event->hw.flags & ARMPMU_EVT_64BIT)
111 return GENMASK_ULL(63, 0);
112 else if (event->hw.flags & ARMPMU_EVT_47BIT)
113 return GENMASK_ULL(46, 0);
114 else
115 return GENMASK_ULL(31, 0);
116 }
117
118 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)119 armpmu_map_cache_event(const unsigned (*cache_map)
120 [PERF_COUNT_HW_CACHE_MAX]
121 [PERF_COUNT_HW_CACHE_OP_MAX]
122 [PERF_COUNT_HW_CACHE_RESULT_MAX],
123 u64 config)
124 {
125 unsigned int cache_type, cache_op, cache_result, ret;
126
127 cache_type = (config >> 0) & 0xff;
128 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
129 return -EINVAL;
130
131 cache_op = (config >> 8) & 0xff;
132 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
133 return -EINVAL;
134
135 cache_result = (config >> 16) & 0xff;
136 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137 return -EINVAL;
138
139 if (!cache_map)
140 return -ENOENT;
141
142 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
143
144 if (ret == CACHE_OP_UNSUPPORTED)
145 return -ENOENT;
146
147 return ret;
148 }
149
150 static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)151 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
152 {
153 int mapping;
154
155 if (config >= PERF_COUNT_HW_MAX)
156 return -EINVAL;
157
158 if (!event_map)
159 return -ENOENT;
160
161 mapping = (*event_map)[config];
162 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
163 }
164
165 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)166 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
167 {
168 return (int)(config & raw_event_mask);
169 }
170
171 int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)172 armpmu_map_event(struct perf_event *event,
173 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
174 const unsigned (*cache_map)
175 [PERF_COUNT_HW_CACHE_MAX]
176 [PERF_COUNT_HW_CACHE_OP_MAX]
177 [PERF_COUNT_HW_CACHE_RESULT_MAX],
178 u32 raw_event_mask)
179 {
180 u64 config = event->attr.config;
181 int type = event->attr.type;
182
183 if (type == event->pmu->type)
184 return armpmu_map_raw_event(raw_event_mask, config);
185
186 switch (type) {
187 case PERF_TYPE_HARDWARE:
188 return armpmu_map_hw_event(event_map, config);
189 case PERF_TYPE_HW_CACHE:
190 return armpmu_map_cache_event(cache_map, config);
191 case PERF_TYPE_RAW:
192 return armpmu_map_raw_event(raw_event_mask, config);
193 }
194
195 return -ENOENT;
196 }
197
armpmu_event_set_period(struct perf_event * event)198 int armpmu_event_set_period(struct perf_event *event)
199 {
200 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
201 struct hw_perf_event *hwc = &event->hw;
202 s64 left = local64_read(&hwc->period_left);
203 s64 period = hwc->sample_period;
204 u64 max_period;
205 int ret = 0;
206
207 max_period = arm_pmu_event_max_period(event);
208 if (unlikely(left <= -period)) {
209 left = period;
210 local64_set(&hwc->period_left, left);
211 hwc->last_period = period;
212 ret = 1;
213 }
214
215 if (unlikely(left <= 0)) {
216 left += period;
217 local64_set(&hwc->period_left, left);
218 hwc->last_period = period;
219 ret = 1;
220 }
221
222 /*
223 * Limit the maximum period to prevent the counter value
224 * from overtaking the one we are about to program. In
225 * effect we are reducing max_period to account for
226 * interrupt latency (and we are being very conservative).
227 */
228 if (left > (max_period >> 1))
229 left = (max_period >> 1);
230
231 local64_set(&hwc->prev_count, (u64)-left);
232
233 armpmu->write_counter(event, (u64)(-left) & max_period);
234
235 perf_event_update_userpage(event);
236
237 return ret;
238 }
239
armpmu_event_update(struct perf_event * event)240 u64 armpmu_event_update(struct perf_event *event)
241 {
242 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
243 struct hw_perf_event *hwc = &event->hw;
244 u64 delta, prev_raw_count, new_raw_count;
245 u64 max_period = arm_pmu_event_max_period(event);
246
247 again:
248 prev_raw_count = local64_read(&hwc->prev_count);
249 new_raw_count = armpmu->read_counter(event);
250
251 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
252 new_raw_count) != prev_raw_count)
253 goto again;
254
255 delta = (new_raw_count - prev_raw_count) & max_period;
256
257 local64_add(delta, &event->count);
258 local64_sub(delta, &hwc->period_left);
259
260 return new_raw_count;
261 }
262
263 static void
armpmu_read(struct perf_event * event)264 armpmu_read(struct perf_event *event)
265 {
266 armpmu_event_update(event);
267 }
268
269 static void
armpmu_stop(struct perf_event * event,int flags)270 armpmu_stop(struct perf_event *event, int flags)
271 {
272 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
273 struct hw_perf_event *hwc = &event->hw;
274
275 /*
276 * ARM pmu always has to update the counter, so ignore
277 * PERF_EF_UPDATE, see comments in armpmu_start().
278 */
279 if (!(hwc->state & PERF_HES_STOPPED)) {
280 armpmu->disable(event);
281 armpmu_event_update(event);
282 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
283 }
284 }
285
armpmu_start(struct perf_event * event,int flags)286 static void armpmu_start(struct perf_event *event, int flags)
287 {
288 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
289 struct hw_perf_event *hwc = &event->hw;
290
291 /*
292 * ARM pmu always has to reprogram the period, so ignore
293 * PERF_EF_RELOAD, see the comment below.
294 */
295 if (flags & PERF_EF_RELOAD)
296 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
297
298 hwc->state = 0;
299 /*
300 * Set the period again. Some counters can't be stopped, so when we
301 * were stopped we simply disabled the IRQ source and the counter
302 * may have been left counting. If we don't do this step then we may
303 * get an interrupt too soon or *way* too late if the overflow has
304 * happened since disabling.
305 */
306 armpmu_event_set_period(event);
307 armpmu->enable(event);
308 }
309
310 static void
armpmu_del(struct perf_event * event,int flags)311 armpmu_del(struct perf_event *event, int flags)
312 {
313 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
314 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
315 struct hw_perf_event *hwc = &event->hw;
316 int idx = hwc->idx;
317
318 armpmu_stop(event, PERF_EF_UPDATE);
319 hw_events->events[idx] = NULL;
320 armpmu->clear_event_idx(hw_events, event);
321 perf_event_update_userpage(event);
322 /* Clear the allocated counter */
323 hwc->idx = -1;
324 }
325
326 static int
armpmu_add(struct perf_event * event,int flags)327 armpmu_add(struct perf_event *event, int flags)
328 {
329 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
330 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
331 struct hw_perf_event *hwc = &event->hw;
332 int idx;
333
334 /* An event following a process won't be stopped earlier */
335 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
336 return -ENOENT;
337
338 /* If we don't have a space for the counter then finish early. */
339 idx = armpmu->get_event_idx(hw_events, event);
340 if (idx < 0)
341 return idx;
342
343 /*
344 * If there is an event in the counter we are going to use then make
345 * sure it is disabled.
346 */
347 event->hw.idx = idx;
348 armpmu->disable(event);
349 hw_events->events[idx] = event;
350
351 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
352 if (flags & PERF_EF_START)
353 armpmu_start(event, PERF_EF_RELOAD);
354
355 /* Propagate our changes to the userspace mapping. */
356 perf_event_update_userpage(event);
357
358 return 0;
359 }
360
361 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
363 struct perf_event *event)
364 {
365 struct arm_pmu *armpmu;
366
367 if (is_software_event(event))
368 return 1;
369
370 /*
371 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
372 * core perf code won't check that the pmu->ctx == leader->ctx
373 * until after pmu->event_init(event).
374 */
375 if (event->pmu != pmu)
376 return 0;
377
378 if (event->state < PERF_EVENT_STATE_OFF)
379 return 1;
380
381 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
382 return 1;
383
384 armpmu = to_arm_pmu(event->pmu);
385 return armpmu->get_event_idx(hw_events, event) >= 0;
386 }
387
388 static int
validate_group(struct perf_event * event)389 validate_group(struct perf_event *event)
390 {
391 struct perf_event *sibling, *leader = event->group_leader;
392 struct pmu_hw_events fake_pmu;
393
394 /*
395 * Initialise the fake PMU. We only need to populate the
396 * used_mask for the purposes of validation.
397 */
398 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
399
400 if (!validate_event(event->pmu, &fake_pmu, leader))
401 return -EINVAL;
402
403 if (event == leader)
404 return 0;
405
406 for_each_sibling_event(sibling, leader) {
407 if (!validate_event(event->pmu, &fake_pmu, sibling))
408 return -EINVAL;
409 }
410
411 if (!validate_event(event->pmu, &fake_pmu, event))
412 return -EINVAL;
413
414 return 0;
415 }
416
armpmu_dispatch_irq(int irq,void * dev)417 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
418 {
419 struct arm_pmu *armpmu;
420 int ret;
421 u64 start_clock, finish_clock;
422
423 /*
424 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
425 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
426 * do any necessary shifting, we just need to perform the first
427 * dereference.
428 */
429 armpmu = *(void **)dev;
430 if (WARN_ON_ONCE(!armpmu))
431 return IRQ_NONE;
432
433 start_clock = sched_clock();
434 ret = armpmu->handle_irq(armpmu);
435 finish_clock = sched_clock();
436
437 perf_sample_event_took(finish_clock - start_clock);
438 return ret;
439 }
440
441 static int
__hw_perf_event_init(struct perf_event * event)442 __hw_perf_event_init(struct perf_event *event)
443 {
444 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445 struct hw_perf_event *hwc = &event->hw;
446 int mapping;
447
448 hwc->flags = 0;
449 mapping = armpmu->map_event(event);
450
451 if (mapping < 0) {
452 pr_debug("event %x:%llx not supported\n", event->attr.type,
453 event->attr.config);
454 return mapping;
455 }
456
457 /*
458 * We don't assign an index until we actually place the event onto
459 * hardware. Use -1 to signify that we haven't decided where to put it
460 * yet. For SMP systems, each core has it's own PMU so we can't do any
461 * clever allocation or constraints checking at this point.
462 */
463 hwc->idx = -1;
464 hwc->config_base = 0;
465 hwc->config = 0;
466 hwc->event_base = 0;
467
468 /*
469 * Check whether we need to exclude the counter from certain modes.
470 */
471 if (armpmu->set_event_filter &&
472 armpmu->set_event_filter(hwc, &event->attr)) {
473 pr_debug("ARM performance counters do not support "
474 "mode exclusion\n");
475 return -EOPNOTSUPP;
476 }
477
478 /*
479 * Store the event encoding into the config_base field.
480 */
481 hwc->config_base |= (unsigned long)mapping;
482
483 if (!is_sampling_event(event)) {
484 /*
485 * For non-sampling runs, limit the sample_period to half
486 * of the counter width. That way, the new counter value
487 * is far less likely to overtake the previous one unless
488 * you have some serious IRQ latency issues.
489 */
490 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
491 hwc->last_period = hwc->sample_period;
492 local64_set(&hwc->period_left, hwc->sample_period);
493 }
494
495 return validate_group(event);
496 }
497
armpmu_event_init(struct perf_event * event)498 static int armpmu_event_init(struct perf_event *event)
499 {
500 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
501
502 /*
503 * Reject CPU-affine events for CPUs that are of a different class to
504 * that which this PMU handles. Process-following events (where
505 * event->cpu == -1) can be migrated between CPUs, and thus we have to
506 * reject them later (in armpmu_add) if they're scheduled on a
507 * different class of CPU.
508 */
509 if (event->cpu != -1 &&
510 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
511 return -ENOENT;
512
513 /* does not support taken branch sampling */
514 if (has_branch_stack(event))
515 return -EOPNOTSUPP;
516
517 if (armpmu->map_event(event) == -ENOENT)
518 return -ENOENT;
519
520 return __hw_perf_event_init(event);
521 }
522
armpmu_enable(struct pmu * pmu)523 static void armpmu_enable(struct pmu *pmu)
524 {
525 struct arm_pmu *armpmu = to_arm_pmu(pmu);
526 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
527 bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
528
529 /* For task-bound events we may be called on other CPUs */
530 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
531 return;
532
533 if (enabled)
534 armpmu->start(armpmu);
535 }
536
armpmu_disable(struct pmu * pmu)537 static void armpmu_disable(struct pmu *pmu)
538 {
539 struct arm_pmu *armpmu = to_arm_pmu(pmu);
540
541 /* For task-bound events we may be called on other CPUs */
542 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
543 return;
544
545 armpmu->stop(armpmu);
546 }
547
548 /*
549 * In heterogeneous systems, events are specific to a particular
550 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
551 * the same microarchitecture.
552 */
armpmu_filter_match(struct perf_event * event)553 static int armpmu_filter_match(struct perf_event *event)
554 {
555 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
556 unsigned int cpu = smp_processor_id();
557 int ret;
558
559 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
560 if (ret && armpmu->filter_match)
561 return armpmu->filter_match(event);
562
563 return ret;
564 }
565
cpus_show(struct device * dev,struct device_attribute * attr,char * buf)566 static ssize_t cpus_show(struct device *dev,
567 struct device_attribute *attr, char *buf)
568 {
569 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
570 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
571 }
572
573 static DEVICE_ATTR_RO(cpus);
574
575 static struct attribute *armpmu_common_attrs[] = {
576 &dev_attr_cpus.attr,
577 NULL,
578 };
579
580 static const struct attribute_group armpmu_common_attr_group = {
581 .attrs = armpmu_common_attrs,
582 };
583
armpmu_count_irq_users(const int irq)584 static int armpmu_count_irq_users(const int irq)
585 {
586 int cpu, count = 0;
587
588 for_each_possible_cpu(cpu) {
589 if (per_cpu(cpu_irq, cpu) == irq)
590 count++;
591 }
592
593 return count;
594 }
595
armpmu_find_irq_ops(int irq)596 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
597 {
598 const struct pmu_irq_ops *ops = NULL;
599 int cpu;
600
601 for_each_possible_cpu(cpu) {
602 if (per_cpu(cpu_irq, cpu) != irq)
603 continue;
604
605 ops = per_cpu(cpu_irq_ops, cpu);
606 if (ops)
607 break;
608 }
609
610 return ops;
611 }
612
armpmu_free_irq(int irq,int cpu)613 void armpmu_free_irq(int irq, int cpu)
614 {
615 if (per_cpu(cpu_irq, cpu) == 0)
616 return;
617 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
618 return;
619
620 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
621
622 per_cpu(cpu_irq, cpu) = 0;
623 per_cpu(cpu_irq_ops, cpu) = NULL;
624 }
625
armpmu_request_irq(int irq,int cpu)626 int armpmu_request_irq(int irq, int cpu)
627 {
628 int err = 0;
629 const irq_handler_t handler = armpmu_dispatch_irq;
630 const struct pmu_irq_ops *irq_ops;
631
632 if (!irq)
633 return 0;
634
635 if (!irq_is_percpu_devid(irq)) {
636 unsigned long irq_flags;
637
638 err = irq_force_affinity(irq, cpumask_of(cpu));
639
640 if (err && num_possible_cpus() > 1) {
641 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
642 irq, cpu);
643 goto err_out;
644 }
645
646 irq_flags = IRQF_PERCPU |
647 IRQF_NOBALANCING | IRQF_NO_AUTOEN |
648 IRQF_NO_THREAD;
649
650 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
651 per_cpu_ptr(&cpu_armpmu, cpu));
652
653 /* If cannot get an NMI, get a normal interrupt */
654 if (err) {
655 err = request_irq(irq, handler, irq_flags, "arm-pmu",
656 per_cpu_ptr(&cpu_armpmu, cpu));
657 irq_ops = &pmuirq_ops;
658 } else {
659 has_nmi = true;
660 irq_ops = &pmunmi_ops;
661 }
662 } else if (armpmu_count_irq_users(irq) == 0) {
663 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
664
665 /* If cannot get an NMI, get a normal interrupt */
666 if (err) {
667 err = request_percpu_irq(irq, handler, "arm-pmu",
668 &cpu_armpmu);
669 irq_ops = &percpu_pmuirq_ops;
670 } else {
671 has_nmi = true;
672 irq_ops = &percpu_pmunmi_ops;
673 }
674 } else {
675 /* Per cpudevid irq was already requested by another CPU */
676 irq_ops = armpmu_find_irq_ops(irq);
677
678 if (WARN_ON(!irq_ops))
679 err = -EINVAL;
680 }
681
682 if (err)
683 goto err_out;
684
685 per_cpu(cpu_irq, cpu) = irq;
686 per_cpu(cpu_irq_ops, cpu) = irq_ops;
687 return 0;
688
689 err_out:
690 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
691 return err;
692 }
693
armpmu_get_cpu_irq(struct arm_pmu * pmu,int cpu)694 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
695 {
696 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
697 return per_cpu(hw_events->irq, cpu);
698 }
699
700 /*
701 * PMU hardware loses all context when a CPU goes offline.
702 * When a CPU is hotplugged back in, since some hardware registers are
703 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
704 * junk values out of them.
705 */
arm_perf_starting_cpu(unsigned int cpu,struct hlist_node * node)706 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
707 {
708 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
709 int irq;
710
711 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
712 return 0;
713 if (pmu->reset)
714 pmu->reset(pmu);
715
716 per_cpu(cpu_armpmu, cpu) = pmu;
717
718 irq = armpmu_get_cpu_irq(pmu, cpu);
719 if (irq)
720 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
721
722 return 0;
723 }
724
arm_perf_teardown_cpu(unsigned int cpu,struct hlist_node * node)725 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
726 {
727 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
728 int irq;
729
730 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
731 return 0;
732
733 irq = armpmu_get_cpu_irq(pmu, cpu);
734 if (irq)
735 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
736
737 per_cpu(cpu_armpmu, cpu) = NULL;
738
739 return 0;
740 }
741
742 #ifdef CONFIG_CPU_PM
cpu_pm_pmu_setup(struct arm_pmu * armpmu,unsigned long cmd)743 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
744 {
745 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
746 struct perf_event *event;
747 int idx;
748
749 for (idx = 0; idx < armpmu->num_events; idx++) {
750 event = hw_events->events[idx];
751 if (!event)
752 continue;
753
754 switch (cmd) {
755 case CPU_PM_ENTER:
756 /*
757 * Stop and update the counter
758 */
759 armpmu_stop(event, PERF_EF_UPDATE);
760 break;
761 case CPU_PM_EXIT:
762 case CPU_PM_ENTER_FAILED:
763 /*
764 * Restore and enable the counter.
765 * armpmu_start() indirectly calls
766 *
767 * perf_event_update_userpage()
768 *
769 * that requires RCU read locking to be functional,
770 * wrap the call within RCU_NONIDLE to make the
771 * RCU subsystem aware this cpu is not idle from
772 * an RCU perspective for the armpmu_start() call
773 * duration.
774 */
775 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
776 break;
777 default:
778 break;
779 }
780 }
781 }
782
cpu_pm_pmu_notify(struct notifier_block * b,unsigned long cmd,void * v)783 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
784 void *v)
785 {
786 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
787 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
788 bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
789
790 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
791 return NOTIFY_DONE;
792
793 /*
794 * Always reset the PMU registers on power-up even if
795 * there are no events running.
796 */
797 if (cmd == CPU_PM_EXIT && armpmu->reset)
798 armpmu->reset(armpmu);
799
800 if (!enabled)
801 return NOTIFY_OK;
802
803 switch (cmd) {
804 case CPU_PM_ENTER:
805 armpmu->stop(armpmu);
806 cpu_pm_pmu_setup(armpmu, cmd);
807 break;
808 case CPU_PM_EXIT:
809 case CPU_PM_ENTER_FAILED:
810 cpu_pm_pmu_setup(armpmu, cmd);
811 armpmu->start(armpmu);
812 break;
813 default:
814 return NOTIFY_DONE;
815 }
816
817 return NOTIFY_OK;
818 }
819
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)820 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
821 {
822 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
823 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
824 }
825
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)826 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
827 {
828 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
829 }
830 #else
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)831 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)832 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
833 #endif
834
cpu_pmu_init(struct arm_pmu * cpu_pmu)835 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
836 {
837 int err;
838
839 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
840 &cpu_pmu->node);
841 if (err)
842 goto out;
843
844 err = cpu_pm_pmu_register(cpu_pmu);
845 if (err)
846 goto out_unregister;
847
848 return 0;
849
850 out_unregister:
851 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
852 &cpu_pmu->node);
853 out:
854 return err;
855 }
856
cpu_pmu_destroy(struct arm_pmu * cpu_pmu)857 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
858 {
859 cpu_pm_pmu_unregister(cpu_pmu);
860 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
861 &cpu_pmu->node);
862 }
863
__armpmu_alloc(gfp_t flags)864 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
865 {
866 struct arm_pmu *pmu;
867 int cpu;
868
869 pmu = kzalloc(sizeof(*pmu), flags);
870 if (!pmu)
871 goto out;
872
873 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
874 if (!pmu->hw_events) {
875 pr_info("failed to allocate per-cpu PMU data.\n");
876 goto out_free_pmu;
877 }
878
879 pmu->pmu = (struct pmu) {
880 .pmu_enable = armpmu_enable,
881 .pmu_disable = armpmu_disable,
882 .event_init = armpmu_event_init,
883 .add = armpmu_add,
884 .del = armpmu_del,
885 .start = armpmu_start,
886 .stop = armpmu_stop,
887 .read = armpmu_read,
888 .filter_match = armpmu_filter_match,
889 .attr_groups = pmu->attr_groups,
890 /*
891 * This is a CPU PMU potentially in a heterogeneous
892 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
893 * and we have taken ctx sharing into account (e.g. with our
894 * pmu::filter_match callback and pmu::event_init group
895 * validation).
896 */
897 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS,
898 };
899
900 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
901 &armpmu_common_attr_group;
902
903 for_each_possible_cpu(cpu) {
904 struct pmu_hw_events *events;
905
906 events = per_cpu_ptr(pmu->hw_events, cpu);
907 raw_spin_lock_init(&events->pmu_lock);
908 events->percpu_pmu = pmu;
909 }
910
911 return pmu;
912
913 out_free_pmu:
914 kfree(pmu);
915 out:
916 return NULL;
917 }
918
armpmu_alloc(void)919 struct arm_pmu *armpmu_alloc(void)
920 {
921 return __armpmu_alloc(GFP_KERNEL);
922 }
923
armpmu_alloc_atomic(void)924 struct arm_pmu *armpmu_alloc_atomic(void)
925 {
926 return __armpmu_alloc(GFP_ATOMIC);
927 }
928
929
armpmu_free(struct arm_pmu * pmu)930 void armpmu_free(struct arm_pmu *pmu)
931 {
932 free_percpu(pmu->hw_events);
933 kfree(pmu);
934 }
935
armpmu_register(struct arm_pmu * pmu)936 int armpmu_register(struct arm_pmu *pmu)
937 {
938 int ret;
939
940 ret = cpu_pmu_init(pmu);
941 if (ret)
942 return ret;
943
944 if (!pmu->set_event_filter)
945 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
946
947 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
948 if (ret)
949 goto out_destroy;
950
951 pr_info("enabled with %s PMU driver, %d counters available%s\n",
952 pmu->name, pmu->num_events,
953 has_nmi ? ", using NMIs" : "");
954
955 kvm_host_pmu_init(pmu);
956
957 return 0;
958
959 out_destroy:
960 cpu_pmu_destroy(pmu);
961 return ret;
962 }
963
arm_pmu_hp_init(void)964 static int arm_pmu_hp_init(void)
965 {
966 int ret;
967
968 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
969 "perf/arm/pmu:starting",
970 arm_perf_starting_cpu,
971 arm_perf_teardown_cpu);
972 if (ret)
973 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
974 ret);
975 return ret;
976 }
977 subsys_initcall(arm_pmu_hp_init);
978