1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41
42 #include "dma.h"
43 #include "mm.h"
44
45 struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 int coherent_flag;
53 };
54
55 struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61 };
62
63 #define NORMAL 0
64 #define COHERENT 1
65
66 struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70 };
71
72 struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
75 struct arm_dma_allocator *allocator;
76 };
77
78 static LIST_HEAD(arm_dma_bufs);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
arm_dma_buffer_find(void * virt)81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 {
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96 }
97
98 /*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
109 */
110 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 size_t, enum dma_data_direction);
112 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 size_t, enum dma_data_direction);
114
115 /**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
arm_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 unsigned long offset, size_t size, enum dma_data_direction dir,
131 unsigned long attrs)
132 {
133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 }
137
arm_coherent_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
140 unsigned long attrs)
141 {
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143 }
144
145 /**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
arm_dma_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 size_t size, enum dma_data_direction dir, unsigned long attrs)
161 {
162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
165 }
166
arm_dma_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)167 static void arm_dma_sync_single_for_cpu(struct device *dev,
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 {
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 __dma_page_dev_to_cpu(page, offset, size, dir);
173 }
174
arm_dma_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)175 static void arm_dma_sync_single_for_device(struct device *dev,
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177 {
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 __dma_page_cpu_to_dev(page, offset, size, dir);
181 }
182
arm_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)183 static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
184 {
185 return dma_addr == ARM_MAPPING_ERROR;
186 }
187
188 const struct dma_map_ops arm_dma_ops = {
189 .alloc = arm_dma_alloc,
190 .free = arm_dma_free,
191 .mmap = arm_dma_mmap,
192 .get_sgtable = arm_dma_get_sgtable,
193 .map_page = arm_dma_map_page,
194 .unmap_page = arm_dma_unmap_page,
195 .map_sg = arm_dma_map_sg,
196 .unmap_sg = arm_dma_unmap_sg,
197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
198 .sync_single_for_device = arm_dma_sync_single_for_device,
199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
200 .sync_sg_for_device = arm_dma_sync_sg_for_device,
201 .mapping_error = arm_dma_mapping_error,
202 .dma_supported = arm_dma_supported,
203 };
204 EXPORT_SYMBOL(arm_dma_ops);
205
206 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
208 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
209 dma_addr_t handle, unsigned long attrs);
210 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
211 void *cpu_addr, dma_addr_t dma_addr, size_t size,
212 unsigned long attrs);
213
214 const struct dma_map_ops arm_coherent_dma_ops = {
215 .alloc = arm_coherent_dma_alloc,
216 .free = arm_coherent_dma_free,
217 .mmap = arm_coherent_dma_mmap,
218 .get_sgtable = arm_dma_get_sgtable,
219 .map_page = arm_coherent_dma_map_page,
220 .map_sg = arm_dma_map_sg,
221 .mapping_error = arm_dma_mapping_error,
222 .dma_supported = arm_dma_supported,
223 };
224 EXPORT_SYMBOL(arm_coherent_dma_ops);
225
__dma_supported(struct device * dev,u64 mask,bool warn)226 static int __dma_supported(struct device *dev, u64 mask, bool warn)
227 {
228 unsigned long max_dma_pfn;
229
230 /*
231 * If the mask allows for more memory than we can address,
232 * and we actually have that much memory, then we must
233 * indicate that DMA to this device is not supported.
234 */
235 if (sizeof(mask) != sizeof(dma_addr_t) &&
236 mask > (dma_addr_t)~0 &&
237 dma_to_pfn(dev, ~0) < max_pfn - 1) {
238 if (warn) {
239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
240 mask);
241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
242 }
243 return 0;
244 }
245
246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
247
248 /*
249 * Translate the device's DMA mask to a PFN limit. This
250 * PFN number includes the page which we can DMA to.
251 */
252 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
253 if (warn)
254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
255 mask,
256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
257 max_dma_pfn + 1);
258 return 0;
259 }
260
261 return 1;
262 }
263
get_coherent_dma_mask(struct device * dev)264 static u64 get_coherent_dma_mask(struct device *dev)
265 {
266 u64 mask = (u64)DMA_BIT_MASK(32);
267
268 if (dev) {
269 mask = dev->coherent_dma_mask;
270
271 /*
272 * Sanity check the DMA mask - it must be non-zero, and
273 * must be able to be satisfied by a DMA allocation.
274 */
275 if (mask == 0) {
276 dev_warn(dev, "coherent DMA mask is unset\n");
277 return 0;
278 }
279
280 if (!__dma_supported(dev, mask, true))
281 return 0;
282 }
283
284 return mask;
285 }
286
__dma_clear_buffer(struct page * page,size_t size,int coherent_flag)287 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
288 {
289 /*
290 * Ensure that the allocated pages are zeroed, and that any data
291 * lurking in the kernel direct-mapped region is invalidated.
292 */
293 if (PageHighMem(page)) {
294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
295 phys_addr_t end = base + size;
296 while (size > 0) {
297 void *ptr = kmap_atomic(page);
298 memset(ptr, 0, PAGE_SIZE);
299 if (coherent_flag != COHERENT)
300 dmac_flush_range(ptr, ptr + PAGE_SIZE);
301 kunmap_atomic(ptr);
302 page++;
303 size -= PAGE_SIZE;
304 }
305 if (coherent_flag != COHERENT)
306 outer_flush_range(base, end);
307 } else {
308 void *ptr = page_address(page);
309 memset(ptr, 0, size);
310 if (coherent_flag != COHERENT) {
311 dmac_flush_range(ptr, ptr + size);
312 outer_flush_range(__pa(ptr), __pa(ptr) + size);
313 }
314 }
315 }
316
317 /*
318 * Allocate a DMA buffer for 'dev' of size 'size' using the
319 * specified gfp mask. Note that 'size' must be page aligned.
320 */
__dma_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,int coherent_flag)321 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
322 gfp_t gfp, int coherent_flag)
323 {
324 unsigned long order = get_order(size);
325 struct page *page, *p, *e;
326
327 page = alloc_pages(gfp, order);
328 if (!page)
329 return NULL;
330
331 /*
332 * Now split the huge page and free the excess pages
333 */
334 split_page(page, order);
335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
336 __free_page(p);
337
338 __dma_clear_buffer(page, size, coherent_flag);
339
340 return page;
341 }
342
343 /*
344 * Free a DMA buffer. 'size' must be page aligned.
345 */
__dma_free_buffer(struct page * page,size_t size)346 static void __dma_free_buffer(struct page *page, size_t size)
347 {
348 struct page *e = page + (size >> PAGE_SHIFT);
349
350 while (page < e) {
351 __free_page(page);
352 page++;
353 }
354 }
355
356 static void *__alloc_from_contiguous(struct device *dev, size_t size,
357 pgprot_t prot, struct page **ret_page,
358 const void *caller, bool want_vaddr,
359 int coherent_flag, gfp_t gfp);
360
361 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
362 pgprot_t prot, struct page **ret_page,
363 const void *caller, bool want_vaddr);
364
365 static void *
__dma_alloc_remap(struct page * page,size_t size,gfp_t gfp,pgprot_t prot,const void * caller)366 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
367 const void *caller)
368 {
369 /*
370 * DMA allocation can be mapped to user space, so lets
371 * set VM_USERMAP flags too.
372 */
373 return dma_common_contiguous_remap(page, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
375 prot, caller);
376 }
377
__dma_free_remap(void * cpu_addr,size_t size)378 static void __dma_free_remap(void *cpu_addr, size_t size)
379 {
380 dma_common_free_remap(cpu_addr, size,
381 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
382 }
383
384 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
385 static struct gen_pool *atomic_pool __ro_after_init;
386
387 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
388
early_coherent_pool(char * p)389 static int __init early_coherent_pool(char *p)
390 {
391 atomic_pool_size = memparse(p, &p);
392 return 0;
393 }
394 early_param("coherent_pool", early_coherent_pool);
395
396 /*
397 * Initialise the coherent pool for atomic allocations.
398 */
atomic_pool_init(void)399 static int __init atomic_pool_init(void)
400 {
401 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
402 gfp_t gfp = GFP_KERNEL | GFP_DMA;
403 struct page *page;
404 void *ptr;
405
406 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
407 if (!atomic_pool)
408 goto out;
409 /*
410 * The atomic pool is only used for non-coherent allocations
411 * so we must pass NORMAL for coherent_flag.
412 */
413 if (dev_get_cma_area(NULL))
414 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
415 &page, atomic_pool_init, true, NORMAL,
416 GFP_KERNEL);
417 else
418 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
419 &page, atomic_pool_init, true);
420 if (ptr) {
421 int ret;
422
423 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
424 page_to_phys(page),
425 atomic_pool_size, -1);
426 if (ret)
427 goto destroy_genpool;
428
429 gen_pool_set_algo(atomic_pool,
430 gen_pool_first_fit_order_align,
431 NULL);
432 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
433 atomic_pool_size / 1024);
434 return 0;
435 }
436
437 destroy_genpool:
438 gen_pool_destroy(atomic_pool);
439 atomic_pool = NULL;
440 out:
441 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
442 atomic_pool_size / 1024);
443 return -ENOMEM;
444 }
445 /*
446 * CMA is activated by core_initcall, so we must be called after it.
447 */
448 postcore_initcall(atomic_pool_init);
449
450 struct dma_contig_early_reserve {
451 phys_addr_t base;
452 unsigned long size;
453 };
454
455 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
456
457 static int dma_mmu_remap_num __initdata;
458
dma_contiguous_early_fixup(phys_addr_t base,unsigned long size)459 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
460 {
461 dma_mmu_remap[dma_mmu_remap_num].base = base;
462 dma_mmu_remap[dma_mmu_remap_num].size = size;
463 dma_mmu_remap_num++;
464 }
465
dma_contiguous_remap(void)466 void __init dma_contiguous_remap(void)
467 {
468 int i;
469 for (i = 0; i < dma_mmu_remap_num; i++) {
470 phys_addr_t start = dma_mmu_remap[i].base;
471 phys_addr_t end = start + dma_mmu_remap[i].size;
472 struct map_desc map;
473 unsigned long addr;
474
475 if (end > arm_lowmem_limit)
476 end = arm_lowmem_limit;
477 if (start >= end)
478 continue;
479
480 map.pfn = __phys_to_pfn(start);
481 map.virtual = __phys_to_virt(start);
482 map.length = end - start;
483 map.type = MT_MEMORY_DMA_READY;
484
485 /*
486 * Clear previous low-memory mapping to ensure that the
487 * TLB does not see any conflicting entries, then flush
488 * the TLB of the old entries before creating new mappings.
489 *
490 * This ensures that any speculatively loaded TLB entries
491 * (even though they may be rare) can not cause any problems,
492 * and ensures that this code is architecturally compliant.
493 */
494 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
495 addr += PMD_SIZE)
496 pmd_clear(pmd_off_k(addr));
497
498 flush_tlb_kernel_range(__phys_to_virt(start),
499 __phys_to_virt(end));
500
501 iotable_init(&map, 1);
502 }
503 }
504
__dma_update_pte(pte_t * pte,pgtable_t token,unsigned long addr,void * data)505 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
506 void *data)
507 {
508 struct page *page = virt_to_page(addr);
509 pgprot_t prot = *(pgprot_t *)data;
510
511 set_pte_ext(pte, mk_pte(page, prot), 0);
512 return 0;
513 }
514
__dma_remap(struct page * page,size_t size,pgprot_t prot)515 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
516 {
517 unsigned long start = (unsigned long) page_address(page);
518 unsigned end = start + size;
519
520 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
521 flush_tlb_kernel_range(start, end);
522 }
523
__alloc_remap_buffer(struct device * dev,size_t size,gfp_t gfp,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr)524 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
525 pgprot_t prot, struct page **ret_page,
526 const void *caller, bool want_vaddr)
527 {
528 struct page *page;
529 void *ptr = NULL;
530 /*
531 * __alloc_remap_buffer is only called when the device is
532 * non-coherent
533 */
534 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
535 if (!page)
536 return NULL;
537 if (!want_vaddr)
538 goto out;
539
540 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
541 if (!ptr) {
542 __dma_free_buffer(page, size);
543 return NULL;
544 }
545
546 out:
547 *ret_page = page;
548 return ptr;
549 }
550
__alloc_from_pool(size_t size,struct page ** ret_page)551 static void *__alloc_from_pool(size_t size, struct page **ret_page)
552 {
553 unsigned long val;
554 void *ptr = NULL;
555
556 if (!atomic_pool) {
557 WARN(1, "coherent pool not initialised!\n");
558 return NULL;
559 }
560
561 val = gen_pool_alloc(atomic_pool, size);
562 if (val) {
563 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
564
565 *ret_page = phys_to_page(phys);
566 ptr = (void *)val;
567 }
568
569 return ptr;
570 }
571
__in_atomic_pool(void * start,size_t size)572 static bool __in_atomic_pool(void *start, size_t size)
573 {
574 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
575 }
576
__free_from_pool(void * start,size_t size)577 static int __free_from_pool(void *start, size_t size)
578 {
579 if (!__in_atomic_pool(start, size))
580 return 0;
581
582 gen_pool_free(atomic_pool, (unsigned long)start, size);
583
584 return 1;
585 }
586
__alloc_from_contiguous(struct device * dev,size_t size,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr,int coherent_flag,gfp_t gfp)587 static void *__alloc_from_contiguous(struct device *dev, size_t size,
588 pgprot_t prot, struct page **ret_page,
589 const void *caller, bool want_vaddr,
590 int coherent_flag, gfp_t gfp)
591 {
592 unsigned long order = get_order(size);
593 size_t count = size >> PAGE_SHIFT;
594 struct page *page;
595 void *ptr = NULL;
596
597 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
598 if (!page)
599 return NULL;
600
601 __dma_clear_buffer(page, size, coherent_flag);
602
603 if (!want_vaddr)
604 goto out;
605
606 if (PageHighMem(page)) {
607 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
608 if (!ptr) {
609 dma_release_from_contiguous(dev, page, count);
610 return NULL;
611 }
612 } else {
613 __dma_remap(page, size, prot);
614 ptr = page_address(page);
615 }
616
617 out:
618 *ret_page = page;
619 return ptr;
620 }
621
__free_from_contiguous(struct device * dev,struct page * page,void * cpu_addr,size_t size,bool want_vaddr)622 static void __free_from_contiguous(struct device *dev, struct page *page,
623 void *cpu_addr, size_t size, bool want_vaddr)
624 {
625 if (want_vaddr) {
626 if (PageHighMem(page))
627 __dma_free_remap(cpu_addr, size);
628 else
629 __dma_remap(page, size, PAGE_KERNEL);
630 }
631 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
632 }
633
__get_dma_pgprot(unsigned long attrs,pgprot_t prot)634 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
635 {
636 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
637 pgprot_writecombine(prot) :
638 pgprot_dmacoherent(prot);
639 return prot;
640 }
641
__alloc_simple_buffer(struct device * dev,size_t size,gfp_t gfp,struct page ** ret_page)642 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
643 struct page **ret_page)
644 {
645 struct page *page;
646 /* __alloc_simple_buffer is only called when the device is coherent */
647 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
648 if (!page)
649 return NULL;
650
651 *ret_page = page;
652 return page_address(page);
653 }
654
simple_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)655 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
656 struct page **ret_page)
657 {
658 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
659 ret_page);
660 }
661
simple_allocator_free(struct arm_dma_free_args * args)662 static void simple_allocator_free(struct arm_dma_free_args *args)
663 {
664 __dma_free_buffer(args->page, args->size);
665 }
666
667 static struct arm_dma_allocator simple_allocator = {
668 .alloc = simple_allocator_alloc,
669 .free = simple_allocator_free,
670 };
671
cma_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)672 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
673 struct page **ret_page)
674 {
675 return __alloc_from_contiguous(args->dev, args->size, args->prot,
676 ret_page, args->caller,
677 args->want_vaddr, args->coherent_flag,
678 args->gfp);
679 }
680
cma_allocator_free(struct arm_dma_free_args * args)681 static void cma_allocator_free(struct arm_dma_free_args *args)
682 {
683 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
684 args->size, args->want_vaddr);
685 }
686
687 static struct arm_dma_allocator cma_allocator = {
688 .alloc = cma_allocator_alloc,
689 .free = cma_allocator_free,
690 };
691
pool_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)692 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
693 struct page **ret_page)
694 {
695 return __alloc_from_pool(args->size, ret_page);
696 }
697
pool_allocator_free(struct arm_dma_free_args * args)698 static void pool_allocator_free(struct arm_dma_free_args *args)
699 {
700 __free_from_pool(args->cpu_addr, args->size);
701 }
702
703 static struct arm_dma_allocator pool_allocator = {
704 .alloc = pool_allocator_alloc,
705 .free = pool_allocator_free,
706 };
707
remap_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)708 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
709 struct page **ret_page)
710 {
711 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
712 args->prot, ret_page, args->caller,
713 args->want_vaddr);
714 }
715
remap_allocator_free(struct arm_dma_free_args * args)716 static void remap_allocator_free(struct arm_dma_free_args *args)
717 {
718 if (args->want_vaddr)
719 __dma_free_remap(args->cpu_addr, args->size);
720
721 __dma_free_buffer(args->page, args->size);
722 }
723
724 static struct arm_dma_allocator remap_allocator = {
725 .alloc = remap_allocator_alloc,
726 .free = remap_allocator_free,
727 };
728
__dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,pgprot_t prot,bool is_coherent,unsigned long attrs,const void * caller)729 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
730 gfp_t gfp, pgprot_t prot, bool is_coherent,
731 unsigned long attrs, const void *caller)
732 {
733 u64 mask = get_coherent_dma_mask(dev);
734 struct page *page = NULL;
735 void *addr;
736 bool allowblock, cma;
737 struct arm_dma_buffer *buf;
738 struct arm_dma_alloc_args args = {
739 .dev = dev,
740 .size = PAGE_ALIGN(size),
741 .gfp = gfp,
742 .prot = prot,
743 .caller = caller,
744 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
745 .coherent_flag = is_coherent ? COHERENT : NORMAL,
746 };
747
748 #ifdef CONFIG_DMA_API_DEBUG
749 u64 limit = (mask + 1) & ~mask;
750 if (limit && size >= limit) {
751 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
752 size, mask);
753 return NULL;
754 }
755 #endif
756
757 if (!mask)
758 return NULL;
759
760 buf = kzalloc(sizeof(*buf),
761 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
762 if (!buf)
763 return NULL;
764
765 if (mask < 0xffffffffULL)
766 gfp |= GFP_DMA;
767
768 /*
769 * Following is a work-around (a.k.a. hack) to prevent pages
770 * with __GFP_COMP being passed to split_page() which cannot
771 * handle them. The real problem is that this flag probably
772 * should be 0 on ARM as it is not supported on this
773 * platform; see CONFIG_HUGETLBFS.
774 */
775 gfp &= ~(__GFP_COMP);
776 args.gfp = gfp;
777
778 *handle = ARM_MAPPING_ERROR;
779 allowblock = gfpflags_allow_blocking(gfp);
780 cma = allowblock ? dev_get_cma_area(dev) : false;
781
782 if (cma)
783 buf->allocator = &cma_allocator;
784 else if (is_coherent)
785 buf->allocator = &simple_allocator;
786 else if (allowblock)
787 buf->allocator = &remap_allocator;
788 else
789 buf->allocator = &pool_allocator;
790
791 addr = buf->allocator->alloc(&args, &page);
792
793 if (page) {
794 unsigned long flags;
795
796 *handle = pfn_to_dma(dev, page_to_pfn(page));
797 buf->virt = args.want_vaddr ? addr : page;
798
799 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
800 list_add(&buf->list, &arm_dma_bufs);
801 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
802 } else {
803 kfree(buf);
804 }
805
806 return args.want_vaddr ? addr : page;
807 }
808
809 /*
810 * Allocate DMA-coherent memory space and return both the kernel remapped
811 * virtual and bus address for that space.
812 */
arm_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)813 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
814 gfp_t gfp, unsigned long attrs)
815 {
816 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
817
818 return __dma_alloc(dev, size, handle, gfp, prot, false,
819 attrs, __builtin_return_address(0));
820 }
821
arm_coherent_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)822 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
823 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
824 {
825 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
826 attrs, __builtin_return_address(0));
827 }
828
__arm_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)829 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
830 void *cpu_addr, dma_addr_t dma_addr, size_t size,
831 unsigned long attrs)
832 {
833 int ret;
834 unsigned long nr_vma_pages = vma_pages(vma);
835 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
836 unsigned long pfn = dma_to_pfn(dev, dma_addr);
837 unsigned long off = vma->vm_pgoff;
838
839 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
840 return ret;
841
842 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
843 ret = remap_pfn_range(vma, vma->vm_start,
844 pfn + off,
845 vma->vm_end - vma->vm_start,
846 vma->vm_page_prot);
847 }
848
849 return ret;
850 }
851
852 /*
853 * Create userspace mapping for the DMA-coherent memory.
854 */
arm_coherent_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)855 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
856 void *cpu_addr, dma_addr_t dma_addr, size_t size,
857 unsigned long attrs)
858 {
859 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
860 }
861
arm_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)862 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
863 void *cpu_addr, dma_addr_t dma_addr, size_t size,
864 unsigned long attrs)
865 {
866 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
867 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
868 }
869
870 /*
871 * Free a buffer as defined by the above mapping.
872 */
__arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs,bool is_coherent)873 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
874 dma_addr_t handle, unsigned long attrs,
875 bool is_coherent)
876 {
877 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
878 struct arm_dma_buffer *buf;
879 struct arm_dma_free_args args = {
880 .dev = dev,
881 .size = PAGE_ALIGN(size),
882 .cpu_addr = cpu_addr,
883 .page = page,
884 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
885 };
886
887 buf = arm_dma_buffer_find(cpu_addr);
888 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
889 return;
890
891 buf->allocator->free(&args);
892 kfree(buf);
893 }
894
arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)895 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
896 dma_addr_t handle, unsigned long attrs)
897 {
898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
899 }
900
arm_coherent_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)901 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
902 dma_addr_t handle, unsigned long attrs)
903 {
904 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
905 }
906
907 /*
908 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
909 * that the intention is to allow exporting memory allocated via the
910 * coherent DMA APIs through the dma_buf API, which only accepts a
911 * scattertable. This presents a couple of problems:
912 * 1. Not all memory allocated via the coherent DMA APIs is backed by
913 * a struct page
914 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
915 * as we will try to flush the memory through a different alias to that
916 * actually being used (and the flushes are redundant.)
917 */
arm_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size,unsigned long attrs)918 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
919 void *cpu_addr, dma_addr_t handle, size_t size,
920 unsigned long attrs)
921 {
922 unsigned long pfn = dma_to_pfn(dev, handle);
923 struct page *page;
924 int ret;
925
926 /* If the PFN is not valid, we do not have a struct page */
927 if (!pfn_valid(pfn))
928 return -ENXIO;
929
930 page = pfn_to_page(pfn);
931
932 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
933 if (unlikely(ret))
934 return ret;
935
936 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
937 return 0;
938 }
939
dma_cache_maint_page(struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,void (* op)(const void *,size_t,int))940 static void dma_cache_maint_page(struct page *page, unsigned long offset,
941 size_t size, enum dma_data_direction dir,
942 void (*op)(const void *, size_t, int))
943 {
944 unsigned long pfn;
945 size_t left = size;
946
947 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
948 offset %= PAGE_SIZE;
949
950 /*
951 * A single sg entry may refer to multiple physically contiguous
952 * pages. But we still need to process highmem pages individually.
953 * If highmem is not configured then the bulk of this loop gets
954 * optimized out.
955 */
956 do {
957 size_t len = left;
958 void *vaddr;
959
960 page = pfn_to_page(pfn);
961
962 if (PageHighMem(page)) {
963 if (len + offset > PAGE_SIZE)
964 len = PAGE_SIZE - offset;
965
966 if (cache_is_vipt_nonaliasing()) {
967 vaddr = kmap_atomic(page);
968 op(vaddr + offset, len, dir);
969 kunmap_atomic(vaddr);
970 } else {
971 vaddr = kmap_high_get(page);
972 if (vaddr) {
973 op(vaddr + offset, len, dir);
974 kunmap_high(page);
975 }
976 }
977 } else {
978 vaddr = page_address(page) + offset;
979 op(vaddr, len, dir);
980 }
981 offset = 0;
982 pfn++;
983 left -= len;
984 } while (left);
985 }
986
987 /*
988 * Make an area consistent for devices.
989 * Note: Drivers should NOT use this function directly, as it will break
990 * platforms with CONFIG_DMABOUNCE.
991 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
992 */
__dma_page_cpu_to_dev(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)993 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
994 size_t size, enum dma_data_direction dir)
995 {
996 phys_addr_t paddr;
997
998 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
999
1000 paddr = page_to_phys(page) + off;
1001 if (dir == DMA_FROM_DEVICE) {
1002 outer_inv_range(paddr, paddr + size);
1003 } else {
1004 outer_clean_range(paddr, paddr + size);
1005 }
1006 /* FIXME: non-speculating: flush on bidirectional mappings? */
1007 }
1008
__dma_page_dev_to_cpu(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)1009 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1010 size_t size, enum dma_data_direction dir)
1011 {
1012 phys_addr_t paddr = page_to_phys(page) + off;
1013
1014 /* FIXME: non-speculating: not required */
1015 /* in any case, don't bother invalidating if DMA to device */
1016 if (dir != DMA_TO_DEVICE) {
1017 outer_inv_range(paddr, paddr + size);
1018
1019 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1020 }
1021
1022 /*
1023 * Mark the D-cache clean for these pages to avoid extra flushing.
1024 */
1025 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1026 unsigned long pfn;
1027 size_t left = size;
1028
1029 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1030 off %= PAGE_SIZE;
1031 if (off) {
1032 pfn++;
1033 left -= PAGE_SIZE - off;
1034 }
1035 while (left >= PAGE_SIZE) {
1036 page = pfn_to_page(pfn++);
1037 set_bit(PG_dcache_clean, &page->flags);
1038 left -= PAGE_SIZE;
1039 }
1040 }
1041 }
1042
1043 /**
1044 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046 * @sg: list of buffers
1047 * @nents: number of buffers to map
1048 * @dir: DMA transfer direction
1049 *
1050 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1051 * This is the scatter-gather version of the dma_map_single interface.
1052 * Here the scatter gather list elements are each tagged with the
1053 * appropriate dma address and length. They are obtained via
1054 * sg_dma_{address,length}.
1055 *
1056 * Device ownership issues as mentioned for dma_map_single are the same
1057 * here.
1058 */
arm_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1059 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1060 enum dma_data_direction dir, unsigned long attrs)
1061 {
1062 const struct dma_map_ops *ops = get_dma_ops(dev);
1063 struct scatterlist *s;
1064 int i, j;
1065
1066 for_each_sg(sg, s, nents, i) {
1067 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1068 s->dma_length = s->length;
1069 #endif
1070 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1071 s->length, dir, attrs);
1072 if (dma_mapping_error(dev, s->dma_address))
1073 goto bad_mapping;
1074 }
1075 return nents;
1076
1077 bad_mapping:
1078 for_each_sg(sg, s, i, j)
1079 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1080 return 0;
1081 }
1082
1083 /**
1084 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1085 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1086 * @sg: list of buffers
1087 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1088 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1089 *
1090 * Unmap a set of streaming mode DMA translations. Again, CPU access
1091 * rules concerning calls here are the same as for dma_unmap_single().
1092 */
arm_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1093 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1094 enum dma_data_direction dir, unsigned long attrs)
1095 {
1096 const struct dma_map_ops *ops = get_dma_ops(dev);
1097 struct scatterlist *s;
1098
1099 int i;
1100
1101 for_each_sg(sg, s, nents, i)
1102 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1103 }
1104
1105 /**
1106 * arm_dma_sync_sg_for_cpu
1107 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1108 * @sg: list of buffers
1109 * @nents: number of buffers to map (returned from dma_map_sg)
1110 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1111 */
arm_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1112 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1113 int nents, enum dma_data_direction dir)
1114 {
1115 const struct dma_map_ops *ops = get_dma_ops(dev);
1116 struct scatterlist *s;
1117 int i;
1118
1119 for_each_sg(sg, s, nents, i)
1120 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1121 dir);
1122 }
1123
1124 /**
1125 * arm_dma_sync_sg_for_device
1126 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1127 * @sg: list of buffers
1128 * @nents: number of buffers to map (returned from dma_map_sg)
1129 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1130 */
arm_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1131 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1132 int nents, enum dma_data_direction dir)
1133 {
1134 const struct dma_map_ops *ops = get_dma_ops(dev);
1135 struct scatterlist *s;
1136 int i;
1137
1138 for_each_sg(sg, s, nents, i)
1139 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1140 dir);
1141 }
1142
1143 /*
1144 * Return whether the given device DMA address mask can be supported
1145 * properly. For example, if your device can only drive the low 24-bits
1146 * during bus mastering, then you would pass 0x00ffffff as the mask
1147 * to this function.
1148 */
arm_dma_supported(struct device * dev,u64 mask)1149 int arm_dma_supported(struct device *dev, u64 mask)
1150 {
1151 return __dma_supported(dev, mask, false);
1152 }
1153
arm_get_dma_map_ops(bool coherent)1154 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1155 {
1156 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1157 }
1158
1159 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1160
__dma_info_to_prot(enum dma_data_direction dir,unsigned long attrs)1161 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1162 {
1163 int prot = 0;
1164
1165 if (attrs & DMA_ATTR_PRIVILEGED)
1166 prot |= IOMMU_PRIV;
1167
1168 switch (dir) {
1169 case DMA_BIDIRECTIONAL:
1170 return prot | IOMMU_READ | IOMMU_WRITE;
1171 case DMA_TO_DEVICE:
1172 return prot | IOMMU_READ;
1173 case DMA_FROM_DEVICE:
1174 return prot | IOMMU_WRITE;
1175 default:
1176 return prot;
1177 }
1178 }
1179
1180 /* IOMMU */
1181
1182 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1183
__alloc_iova(struct dma_iommu_mapping * mapping,size_t size)1184 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1185 size_t size)
1186 {
1187 unsigned int order = get_order(size);
1188 unsigned int align = 0;
1189 unsigned int count, start;
1190 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1191 unsigned long flags;
1192 dma_addr_t iova;
1193 int i;
1194
1195 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1196 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1197
1198 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1199 align = (1 << order) - 1;
1200
1201 spin_lock_irqsave(&mapping->lock, flags);
1202 for (i = 0; i < mapping->nr_bitmaps; i++) {
1203 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1204 mapping->bits, 0, count, align);
1205
1206 if (start > mapping->bits)
1207 continue;
1208
1209 bitmap_set(mapping->bitmaps[i], start, count);
1210 break;
1211 }
1212
1213 /*
1214 * No unused range found. Try to extend the existing mapping
1215 * and perform a second attempt to reserve an IO virtual
1216 * address range of size bytes.
1217 */
1218 if (i == mapping->nr_bitmaps) {
1219 if (extend_iommu_mapping(mapping)) {
1220 spin_unlock_irqrestore(&mapping->lock, flags);
1221 return ARM_MAPPING_ERROR;
1222 }
1223
1224 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1225 mapping->bits, 0, count, align);
1226
1227 if (start > mapping->bits) {
1228 spin_unlock_irqrestore(&mapping->lock, flags);
1229 return ARM_MAPPING_ERROR;
1230 }
1231
1232 bitmap_set(mapping->bitmaps[i], start, count);
1233 }
1234 spin_unlock_irqrestore(&mapping->lock, flags);
1235
1236 iova = mapping->base + (mapping_size * i);
1237 iova += start << PAGE_SHIFT;
1238
1239 return iova;
1240 }
1241
__free_iova(struct dma_iommu_mapping * mapping,dma_addr_t addr,size_t size)1242 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1243 dma_addr_t addr, size_t size)
1244 {
1245 unsigned int start, count;
1246 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1247 unsigned long flags;
1248 dma_addr_t bitmap_base;
1249 u32 bitmap_index;
1250
1251 if (!size)
1252 return;
1253
1254 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1255 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1256
1257 bitmap_base = mapping->base + mapping_size * bitmap_index;
1258
1259 start = (addr - bitmap_base) >> PAGE_SHIFT;
1260
1261 if (addr + size > bitmap_base + mapping_size) {
1262 /*
1263 * The address range to be freed reaches into the iova
1264 * range of the next bitmap. This should not happen as
1265 * we don't allow this in __alloc_iova (at the
1266 * moment).
1267 */
1268 BUG();
1269 } else
1270 count = size >> PAGE_SHIFT;
1271
1272 spin_lock_irqsave(&mapping->lock, flags);
1273 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1274 spin_unlock_irqrestore(&mapping->lock, flags);
1275 }
1276
1277 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1278 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1279
__iommu_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,unsigned long attrs,int coherent_flag)1280 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1281 gfp_t gfp, unsigned long attrs,
1282 int coherent_flag)
1283 {
1284 struct page **pages;
1285 int count = size >> PAGE_SHIFT;
1286 int array_size = count * sizeof(struct page *);
1287 int i = 0;
1288 int order_idx = 0;
1289
1290 if (array_size <= PAGE_SIZE)
1291 pages = kzalloc(array_size, GFP_KERNEL);
1292 else
1293 pages = vzalloc(array_size);
1294 if (!pages)
1295 return NULL;
1296
1297 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1298 {
1299 unsigned long order = get_order(size);
1300 struct page *page;
1301
1302 page = dma_alloc_from_contiguous(dev, count, order,
1303 gfp & __GFP_NOWARN);
1304 if (!page)
1305 goto error;
1306
1307 __dma_clear_buffer(page, size, coherent_flag);
1308
1309 for (i = 0; i < count; i++)
1310 pages[i] = page + i;
1311
1312 return pages;
1313 }
1314
1315 /* Go straight to 4K chunks if caller says it's OK. */
1316 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1317 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1318
1319 /*
1320 * IOMMU can map any pages, so himem can also be used here
1321 */
1322 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1323
1324 while (count) {
1325 int j, order;
1326
1327 order = iommu_order_array[order_idx];
1328
1329 /* Drop down when we get small */
1330 if (__fls(count) < order) {
1331 order_idx++;
1332 continue;
1333 }
1334
1335 if (order) {
1336 /* See if it's easy to allocate a high-order chunk */
1337 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1338
1339 /* Go down a notch at first sign of pressure */
1340 if (!pages[i]) {
1341 order_idx++;
1342 continue;
1343 }
1344 } else {
1345 pages[i] = alloc_pages(gfp, 0);
1346 if (!pages[i])
1347 goto error;
1348 }
1349
1350 if (order) {
1351 split_page(pages[i], order);
1352 j = 1 << order;
1353 while (--j)
1354 pages[i + j] = pages[i] + j;
1355 }
1356
1357 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1358 i += 1 << order;
1359 count -= 1 << order;
1360 }
1361
1362 return pages;
1363 error:
1364 while (i--)
1365 if (pages[i])
1366 __free_pages(pages[i], 0);
1367 kvfree(pages);
1368 return NULL;
1369 }
1370
__iommu_free_buffer(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)1371 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1372 size_t size, unsigned long attrs)
1373 {
1374 int count = size >> PAGE_SHIFT;
1375 int i;
1376
1377 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1378 dma_release_from_contiguous(dev, pages[0], count);
1379 } else {
1380 for (i = 0; i < count; i++)
1381 if (pages[i])
1382 __free_pages(pages[i], 0);
1383 }
1384
1385 kvfree(pages);
1386 return 0;
1387 }
1388
1389 /*
1390 * Create a CPU mapping for a specified pages
1391 */
1392 static void *
__iommu_alloc_remap(struct page ** pages,size_t size,gfp_t gfp,pgprot_t prot,const void * caller)1393 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1394 const void *caller)
1395 {
1396 return dma_common_pages_remap(pages, size,
1397 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1398 }
1399
1400 /*
1401 * Create a mapping in device IO address space for specified pages
1402 */
1403 static dma_addr_t
__iommu_create_mapping(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)1404 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1405 unsigned long attrs)
1406 {
1407 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1408 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1409 dma_addr_t dma_addr, iova;
1410 int i;
1411
1412 dma_addr = __alloc_iova(mapping, size);
1413 if (dma_addr == ARM_MAPPING_ERROR)
1414 return dma_addr;
1415
1416 iova = dma_addr;
1417 for (i = 0; i < count; ) {
1418 int ret;
1419
1420 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1421 phys_addr_t phys = page_to_phys(pages[i]);
1422 unsigned int len, j;
1423
1424 for (j = i + 1; j < count; j++, next_pfn++)
1425 if (page_to_pfn(pages[j]) != next_pfn)
1426 break;
1427
1428 len = (j - i) << PAGE_SHIFT;
1429 ret = iommu_map(mapping->domain, iova, phys, len,
1430 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1431 if (ret < 0)
1432 goto fail;
1433 iova += len;
1434 i = j;
1435 }
1436 return dma_addr;
1437 fail:
1438 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1439 __free_iova(mapping, dma_addr, size);
1440 return ARM_MAPPING_ERROR;
1441 }
1442
__iommu_remove_mapping(struct device * dev,dma_addr_t iova,size_t size)1443 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1444 {
1445 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1446
1447 /*
1448 * add optional in-page offset from iova to size and align
1449 * result to page size
1450 */
1451 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1452 iova &= PAGE_MASK;
1453
1454 iommu_unmap(mapping->domain, iova, size);
1455 __free_iova(mapping, iova, size);
1456 return 0;
1457 }
1458
__atomic_get_pages(void * addr)1459 static struct page **__atomic_get_pages(void *addr)
1460 {
1461 struct page *page;
1462 phys_addr_t phys;
1463
1464 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1465 page = phys_to_page(phys);
1466
1467 return (struct page **)page;
1468 }
1469
__iommu_get_pages(void * cpu_addr,unsigned long attrs)1470 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1471 {
1472 struct vm_struct *area;
1473
1474 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1475 return __atomic_get_pages(cpu_addr);
1476
1477 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1478 return cpu_addr;
1479
1480 area = find_vm_area(cpu_addr);
1481 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1482 return area->pages;
1483 return NULL;
1484 }
1485
__iommu_alloc_simple(struct device * dev,size_t size,gfp_t gfp,dma_addr_t * handle,int coherent_flag,unsigned long attrs)1486 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1487 dma_addr_t *handle, int coherent_flag,
1488 unsigned long attrs)
1489 {
1490 struct page *page;
1491 void *addr;
1492
1493 if (coherent_flag == COHERENT)
1494 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1495 else
1496 addr = __alloc_from_pool(size, &page);
1497 if (!addr)
1498 return NULL;
1499
1500 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1501 if (*handle == ARM_MAPPING_ERROR)
1502 goto err_mapping;
1503
1504 return addr;
1505
1506 err_mapping:
1507 __free_from_pool(addr, size);
1508 return NULL;
1509 }
1510
__iommu_free_atomic(struct device * dev,void * cpu_addr,dma_addr_t handle,size_t size,int coherent_flag)1511 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1512 dma_addr_t handle, size_t size, int coherent_flag)
1513 {
1514 __iommu_remove_mapping(dev, handle, size);
1515 if (coherent_flag == COHERENT)
1516 __dma_free_buffer(virt_to_page(cpu_addr), size);
1517 else
1518 __free_from_pool(cpu_addr, size);
1519 }
1520
__arm_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs,int coherent_flag)1521 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1522 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1523 int coherent_flag)
1524 {
1525 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1526 struct page **pages;
1527 void *addr = NULL;
1528
1529 *handle = ARM_MAPPING_ERROR;
1530 size = PAGE_ALIGN(size);
1531
1532 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1533 return __iommu_alloc_simple(dev, size, gfp, handle,
1534 coherent_flag, attrs);
1535
1536 /*
1537 * Following is a work-around (a.k.a. hack) to prevent pages
1538 * with __GFP_COMP being passed to split_page() which cannot
1539 * handle them. The real problem is that this flag probably
1540 * should be 0 on ARM as it is not supported on this
1541 * platform; see CONFIG_HUGETLBFS.
1542 */
1543 gfp &= ~(__GFP_COMP);
1544
1545 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1546 if (!pages)
1547 return NULL;
1548
1549 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1550 if (*handle == ARM_MAPPING_ERROR)
1551 goto err_buffer;
1552
1553 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1554 return pages;
1555
1556 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1557 __builtin_return_address(0));
1558 if (!addr)
1559 goto err_mapping;
1560
1561 return addr;
1562
1563 err_mapping:
1564 __iommu_remove_mapping(dev, *handle, size);
1565 err_buffer:
1566 __iommu_free_buffer(dev, pages, size, attrs);
1567 return NULL;
1568 }
1569
arm_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1570 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1571 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1572 {
1573 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1574 }
1575
arm_coherent_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1576 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1577 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1578 {
1579 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1580 }
1581
__arm_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1582 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1583 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1584 unsigned long attrs)
1585 {
1586 unsigned long uaddr = vma->vm_start;
1587 unsigned long usize = vma->vm_end - vma->vm_start;
1588 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1589 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1590 unsigned long off = vma->vm_pgoff;
1591
1592 if (!pages)
1593 return -ENXIO;
1594
1595 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1596 return -ENXIO;
1597
1598 pages += off;
1599
1600 do {
1601 int ret = vm_insert_page(vma, uaddr, *pages++);
1602 if (ret) {
1603 pr_err("Remapping memory failed: %d\n", ret);
1604 return ret;
1605 }
1606 uaddr += PAGE_SIZE;
1607 usize -= PAGE_SIZE;
1608 } while (usize > 0);
1609
1610 return 0;
1611 }
arm_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1612 static int arm_iommu_mmap_attrs(struct device *dev,
1613 struct vm_area_struct *vma, void *cpu_addr,
1614 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1615 {
1616 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1617
1618 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1619 }
1620
arm_coherent_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1621 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1622 struct vm_area_struct *vma, void *cpu_addr,
1623 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1624 {
1625 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1626 }
1627
1628 /*
1629 * free a page as defined by the above mapping.
1630 * Must not be called with IRQs disabled.
1631 */
__arm_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs,int coherent_flag)1632 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1633 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1634 {
1635 struct page **pages;
1636 size = PAGE_ALIGN(size);
1637
1638 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1639 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1640 return;
1641 }
1642
1643 pages = __iommu_get_pages(cpu_addr, attrs);
1644 if (!pages) {
1645 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1646 return;
1647 }
1648
1649 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1650 dma_common_free_remap(cpu_addr, size,
1651 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1652 }
1653
1654 __iommu_remove_mapping(dev, handle, size);
1655 __iommu_free_buffer(dev, pages, size, attrs);
1656 }
1657
arm_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1658 void arm_iommu_free_attrs(struct device *dev, size_t size,
1659 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1660 {
1661 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1662 }
1663
arm_coherent_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1664 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1665 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1666 {
1667 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1668 }
1669
arm_iommu_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1670 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1671 void *cpu_addr, dma_addr_t dma_addr,
1672 size_t size, unsigned long attrs)
1673 {
1674 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1675 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1676
1677 if (!pages)
1678 return -ENXIO;
1679
1680 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1681 GFP_KERNEL);
1682 }
1683
1684 /*
1685 * Map a part of the scatter-gather list into contiguous io address space
1686 */
__map_sg_chunk(struct device * dev,struct scatterlist * sg,size_t size,dma_addr_t * handle,enum dma_data_direction dir,unsigned long attrs,bool is_coherent)1687 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1688 size_t size, dma_addr_t *handle,
1689 enum dma_data_direction dir, unsigned long attrs,
1690 bool is_coherent)
1691 {
1692 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1693 dma_addr_t iova, iova_base;
1694 int ret = 0;
1695 unsigned int count;
1696 struct scatterlist *s;
1697 int prot;
1698
1699 size = PAGE_ALIGN(size);
1700 *handle = ARM_MAPPING_ERROR;
1701
1702 iova_base = iova = __alloc_iova(mapping, size);
1703 if (iova == ARM_MAPPING_ERROR)
1704 return -ENOMEM;
1705
1706 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1707 phys_addr_t phys = page_to_phys(sg_page(s));
1708 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1709
1710 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1711 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1712
1713 prot = __dma_info_to_prot(dir, attrs);
1714
1715 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1716 if (ret < 0)
1717 goto fail;
1718 count += len >> PAGE_SHIFT;
1719 iova += len;
1720 }
1721 *handle = iova_base;
1722
1723 return 0;
1724 fail:
1725 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1726 __free_iova(mapping, iova_base, size);
1727 return ret;
1728 }
1729
__iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs,bool is_coherent)1730 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1731 enum dma_data_direction dir, unsigned long attrs,
1732 bool is_coherent)
1733 {
1734 struct scatterlist *s = sg, *dma = sg, *start = sg;
1735 int i, count = 0;
1736 unsigned int offset = s->offset;
1737 unsigned int size = s->offset + s->length;
1738 unsigned int max = dma_get_max_seg_size(dev);
1739
1740 for (i = 1; i < nents; i++) {
1741 s = sg_next(s);
1742
1743 s->dma_address = ARM_MAPPING_ERROR;
1744 s->dma_length = 0;
1745
1746 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1747 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1748 dir, attrs, is_coherent) < 0)
1749 goto bad_mapping;
1750
1751 dma->dma_address += offset;
1752 dma->dma_length = size - offset;
1753
1754 size = offset = s->offset;
1755 start = s;
1756 dma = sg_next(dma);
1757 count += 1;
1758 }
1759 size += s->length;
1760 }
1761 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1762 is_coherent) < 0)
1763 goto bad_mapping;
1764
1765 dma->dma_address += offset;
1766 dma->dma_length = size - offset;
1767
1768 return count+1;
1769
1770 bad_mapping:
1771 for_each_sg(sg, s, count, i)
1772 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1773 return 0;
1774 }
1775
1776 /**
1777 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1778 * @dev: valid struct device pointer
1779 * @sg: list of buffers
1780 * @nents: number of buffers to map
1781 * @dir: DMA transfer direction
1782 *
1783 * Map a set of i/o coherent buffers described by scatterlist in streaming
1784 * mode for DMA. The scatter gather list elements are merged together (if
1785 * possible) and tagged with the appropriate dma address and length. They are
1786 * obtained via sg_dma_{address,length}.
1787 */
arm_coherent_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1788 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1789 int nents, enum dma_data_direction dir, unsigned long attrs)
1790 {
1791 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1792 }
1793
1794 /**
1795 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1796 * @dev: valid struct device pointer
1797 * @sg: list of buffers
1798 * @nents: number of buffers to map
1799 * @dir: DMA transfer direction
1800 *
1801 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1802 * The scatter gather list elements are merged together (if possible) and
1803 * tagged with the appropriate dma address and length. They are obtained via
1804 * sg_dma_{address,length}.
1805 */
arm_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1806 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1807 int nents, enum dma_data_direction dir, unsigned long attrs)
1808 {
1809 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1810 }
1811
__iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs,bool is_coherent)1812 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1813 int nents, enum dma_data_direction dir,
1814 unsigned long attrs, bool is_coherent)
1815 {
1816 struct scatterlist *s;
1817 int i;
1818
1819 for_each_sg(sg, s, nents, i) {
1820 if (sg_dma_len(s))
1821 __iommu_remove_mapping(dev, sg_dma_address(s),
1822 sg_dma_len(s));
1823 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1824 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1825 s->length, dir);
1826 }
1827 }
1828
1829 /**
1830 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1831 * @dev: valid struct device pointer
1832 * @sg: list of buffers
1833 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1834 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1835 *
1836 * Unmap a set of streaming mode DMA translations. Again, CPU access
1837 * rules concerning calls here are the same as for dma_unmap_single().
1838 */
arm_coherent_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1839 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1840 int nents, enum dma_data_direction dir,
1841 unsigned long attrs)
1842 {
1843 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1844 }
1845
1846 /**
1847 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1848 * @dev: valid struct device pointer
1849 * @sg: list of buffers
1850 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1851 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1852 *
1853 * Unmap a set of streaming mode DMA translations. Again, CPU access
1854 * rules concerning calls here are the same as for dma_unmap_single().
1855 */
arm_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1856 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1857 enum dma_data_direction dir,
1858 unsigned long attrs)
1859 {
1860 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1861 }
1862
1863 /**
1864 * arm_iommu_sync_sg_for_cpu
1865 * @dev: valid struct device pointer
1866 * @sg: list of buffers
1867 * @nents: number of buffers to map (returned from dma_map_sg)
1868 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1869 */
arm_iommu_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1870 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1871 int nents, enum dma_data_direction dir)
1872 {
1873 struct scatterlist *s;
1874 int i;
1875
1876 for_each_sg(sg, s, nents, i)
1877 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1878
1879 }
1880
1881 /**
1882 * arm_iommu_sync_sg_for_device
1883 * @dev: valid struct device pointer
1884 * @sg: list of buffers
1885 * @nents: number of buffers to map (returned from dma_map_sg)
1886 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1887 */
arm_iommu_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1888 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1889 int nents, enum dma_data_direction dir)
1890 {
1891 struct scatterlist *s;
1892 int i;
1893
1894 for_each_sg(sg, s, nents, i)
1895 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1896 }
1897
1898
1899 /**
1900 * arm_coherent_iommu_map_page
1901 * @dev: valid struct device pointer
1902 * @page: page that buffer resides in
1903 * @offset: offset into page for start of buffer
1904 * @size: size of buffer to map
1905 * @dir: DMA transfer direction
1906 *
1907 * Coherent IOMMU aware version of arm_dma_map_page()
1908 */
arm_coherent_iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1909 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1910 unsigned long offset, size_t size, enum dma_data_direction dir,
1911 unsigned long attrs)
1912 {
1913 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1914 dma_addr_t dma_addr;
1915 int ret, prot, len = PAGE_ALIGN(size + offset);
1916
1917 dma_addr = __alloc_iova(mapping, len);
1918 if (dma_addr == ARM_MAPPING_ERROR)
1919 return dma_addr;
1920
1921 prot = __dma_info_to_prot(dir, attrs);
1922
1923 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1924 if (ret < 0)
1925 goto fail;
1926
1927 return dma_addr + offset;
1928 fail:
1929 __free_iova(mapping, dma_addr, len);
1930 return ARM_MAPPING_ERROR;
1931 }
1932
1933 /**
1934 * arm_iommu_map_page
1935 * @dev: valid struct device pointer
1936 * @page: page that buffer resides in
1937 * @offset: offset into page for start of buffer
1938 * @size: size of buffer to map
1939 * @dir: DMA transfer direction
1940 *
1941 * IOMMU aware version of arm_dma_map_page()
1942 */
arm_iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1943 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1944 unsigned long offset, size_t size, enum dma_data_direction dir,
1945 unsigned long attrs)
1946 {
1947 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1948 __dma_page_cpu_to_dev(page, offset, size, dir);
1949
1950 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1951 }
1952
1953 /**
1954 * arm_coherent_iommu_unmap_page
1955 * @dev: valid struct device pointer
1956 * @handle: DMA address of buffer
1957 * @size: size of buffer (same as passed to dma_map_page)
1958 * @dir: DMA transfer direction (same as passed to dma_map_page)
1959 *
1960 * Coherent IOMMU aware version of arm_dma_unmap_page()
1961 */
arm_coherent_iommu_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1962 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1963 size_t size, enum dma_data_direction dir, unsigned long attrs)
1964 {
1965 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1966 dma_addr_t iova = handle & PAGE_MASK;
1967 int offset = handle & ~PAGE_MASK;
1968 int len = PAGE_ALIGN(size + offset);
1969
1970 if (!iova)
1971 return;
1972
1973 iommu_unmap(mapping->domain, iova, len);
1974 __free_iova(mapping, iova, len);
1975 }
1976
1977 /**
1978 * arm_iommu_unmap_page
1979 * @dev: valid struct device pointer
1980 * @handle: DMA address of buffer
1981 * @size: size of buffer (same as passed to dma_map_page)
1982 * @dir: DMA transfer direction (same as passed to dma_map_page)
1983 *
1984 * IOMMU aware version of arm_dma_unmap_page()
1985 */
arm_iommu_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1986 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1987 size_t size, enum dma_data_direction dir, unsigned long attrs)
1988 {
1989 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1990 dma_addr_t iova = handle & PAGE_MASK;
1991 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1992 int offset = handle & ~PAGE_MASK;
1993 int len = PAGE_ALIGN(size + offset);
1994
1995 if (!iova)
1996 return;
1997
1998 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1999 __dma_page_dev_to_cpu(page, offset, size, dir);
2000
2001 iommu_unmap(mapping->domain, iova, len);
2002 __free_iova(mapping, iova, len);
2003 }
2004
2005 /**
2006 * arm_iommu_map_resource - map a device resource for DMA
2007 * @dev: valid struct device pointer
2008 * @phys_addr: physical address of resource
2009 * @size: size of resource to map
2010 * @dir: DMA transfer direction
2011 */
arm_iommu_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)2012 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2013 phys_addr_t phys_addr, size_t size,
2014 enum dma_data_direction dir, unsigned long attrs)
2015 {
2016 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2017 dma_addr_t dma_addr;
2018 int ret, prot;
2019 phys_addr_t addr = phys_addr & PAGE_MASK;
2020 unsigned int offset = phys_addr & ~PAGE_MASK;
2021 size_t len = PAGE_ALIGN(size + offset);
2022
2023 dma_addr = __alloc_iova(mapping, len);
2024 if (dma_addr == ARM_MAPPING_ERROR)
2025 return dma_addr;
2026
2027 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2028
2029 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2030 if (ret < 0)
2031 goto fail;
2032
2033 return dma_addr + offset;
2034 fail:
2035 __free_iova(mapping, dma_addr, len);
2036 return ARM_MAPPING_ERROR;
2037 }
2038
2039 /**
2040 * arm_iommu_unmap_resource - unmap a device DMA resource
2041 * @dev: valid struct device pointer
2042 * @dma_handle: DMA address to resource
2043 * @size: size of resource to map
2044 * @dir: DMA transfer direction
2045 */
arm_iommu_unmap_resource(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)2046 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2047 size_t size, enum dma_data_direction dir,
2048 unsigned long attrs)
2049 {
2050 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2051 dma_addr_t iova = dma_handle & PAGE_MASK;
2052 unsigned int offset = dma_handle & ~PAGE_MASK;
2053 size_t len = PAGE_ALIGN(size + offset);
2054
2055 if (!iova)
2056 return;
2057
2058 iommu_unmap(mapping->domain, iova, len);
2059 __free_iova(mapping, iova, len);
2060 }
2061
arm_iommu_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)2062 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2063 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2064 {
2065 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2066 dma_addr_t iova = handle & PAGE_MASK;
2067 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2068 unsigned int offset = handle & ~PAGE_MASK;
2069
2070 if (!iova)
2071 return;
2072
2073 __dma_page_dev_to_cpu(page, offset, size, dir);
2074 }
2075
arm_iommu_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)2076 static void arm_iommu_sync_single_for_device(struct device *dev,
2077 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2078 {
2079 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2080 dma_addr_t iova = handle & PAGE_MASK;
2081 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2082 unsigned int offset = handle & ~PAGE_MASK;
2083
2084 if (!iova)
2085 return;
2086
2087 __dma_page_cpu_to_dev(page, offset, size, dir);
2088 }
2089
2090 const struct dma_map_ops iommu_ops = {
2091 .alloc = arm_iommu_alloc_attrs,
2092 .free = arm_iommu_free_attrs,
2093 .mmap = arm_iommu_mmap_attrs,
2094 .get_sgtable = arm_iommu_get_sgtable,
2095
2096 .map_page = arm_iommu_map_page,
2097 .unmap_page = arm_iommu_unmap_page,
2098 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2099 .sync_single_for_device = arm_iommu_sync_single_for_device,
2100
2101 .map_sg = arm_iommu_map_sg,
2102 .unmap_sg = arm_iommu_unmap_sg,
2103 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2104 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2105
2106 .map_resource = arm_iommu_map_resource,
2107 .unmap_resource = arm_iommu_unmap_resource,
2108
2109 .mapping_error = arm_dma_mapping_error,
2110 .dma_supported = arm_dma_supported,
2111 };
2112
2113 const struct dma_map_ops iommu_coherent_ops = {
2114 .alloc = arm_coherent_iommu_alloc_attrs,
2115 .free = arm_coherent_iommu_free_attrs,
2116 .mmap = arm_coherent_iommu_mmap_attrs,
2117 .get_sgtable = arm_iommu_get_sgtable,
2118
2119 .map_page = arm_coherent_iommu_map_page,
2120 .unmap_page = arm_coherent_iommu_unmap_page,
2121
2122 .map_sg = arm_coherent_iommu_map_sg,
2123 .unmap_sg = arm_coherent_iommu_unmap_sg,
2124
2125 .map_resource = arm_iommu_map_resource,
2126 .unmap_resource = arm_iommu_unmap_resource,
2127
2128 .mapping_error = arm_dma_mapping_error,
2129 .dma_supported = arm_dma_supported,
2130 };
2131
2132 /**
2133 * arm_iommu_create_mapping
2134 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2135 * @base: start address of the valid IO address space
2136 * @size: maximum size of the valid IO address space
2137 *
2138 * Creates a mapping structure which holds information about used/unused
2139 * IO address ranges, which is required to perform memory allocation and
2140 * mapping with IOMMU aware functions.
2141 *
2142 * The client device need to be attached to the mapping with
2143 * arm_iommu_attach_device function.
2144 */
2145 struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type * bus,dma_addr_t base,u64 size)2146 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2147 {
2148 unsigned int bits = size >> PAGE_SHIFT;
2149 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2150 struct dma_iommu_mapping *mapping;
2151 int extensions = 1;
2152 int err = -ENOMEM;
2153
2154 /* currently only 32-bit DMA address space is supported */
2155 if (size > DMA_BIT_MASK(32) + 1)
2156 return ERR_PTR(-ERANGE);
2157
2158 if (!bitmap_size)
2159 return ERR_PTR(-EINVAL);
2160
2161 if (bitmap_size > PAGE_SIZE) {
2162 extensions = bitmap_size / PAGE_SIZE;
2163 bitmap_size = PAGE_SIZE;
2164 }
2165
2166 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2167 if (!mapping)
2168 goto err;
2169
2170 mapping->bitmap_size = bitmap_size;
2171 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2172 GFP_KERNEL);
2173 if (!mapping->bitmaps)
2174 goto err2;
2175
2176 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2177 if (!mapping->bitmaps[0])
2178 goto err3;
2179
2180 mapping->nr_bitmaps = 1;
2181 mapping->extensions = extensions;
2182 mapping->base = base;
2183 mapping->bits = BITS_PER_BYTE * bitmap_size;
2184
2185 spin_lock_init(&mapping->lock);
2186
2187 mapping->domain = iommu_domain_alloc(bus);
2188 if (!mapping->domain)
2189 goto err4;
2190
2191 kref_init(&mapping->kref);
2192 return mapping;
2193 err4:
2194 kfree(mapping->bitmaps[0]);
2195 err3:
2196 kfree(mapping->bitmaps);
2197 err2:
2198 kfree(mapping);
2199 err:
2200 return ERR_PTR(err);
2201 }
2202 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2203
release_iommu_mapping(struct kref * kref)2204 static void release_iommu_mapping(struct kref *kref)
2205 {
2206 int i;
2207 struct dma_iommu_mapping *mapping =
2208 container_of(kref, struct dma_iommu_mapping, kref);
2209
2210 iommu_domain_free(mapping->domain);
2211 for (i = 0; i < mapping->nr_bitmaps; i++)
2212 kfree(mapping->bitmaps[i]);
2213 kfree(mapping->bitmaps);
2214 kfree(mapping);
2215 }
2216
extend_iommu_mapping(struct dma_iommu_mapping * mapping)2217 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2218 {
2219 int next_bitmap;
2220
2221 if (mapping->nr_bitmaps >= mapping->extensions)
2222 return -EINVAL;
2223
2224 next_bitmap = mapping->nr_bitmaps;
2225 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2226 GFP_ATOMIC);
2227 if (!mapping->bitmaps[next_bitmap])
2228 return -ENOMEM;
2229
2230 mapping->nr_bitmaps++;
2231
2232 return 0;
2233 }
2234
arm_iommu_release_mapping(struct dma_iommu_mapping * mapping)2235 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2236 {
2237 if (mapping)
2238 kref_put(&mapping->kref, release_iommu_mapping);
2239 }
2240 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2241
__arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)2242 static int __arm_iommu_attach_device(struct device *dev,
2243 struct dma_iommu_mapping *mapping)
2244 {
2245 int err;
2246
2247 err = iommu_attach_device(mapping->domain, dev);
2248 if (err)
2249 return err;
2250
2251 kref_get(&mapping->kref);
2252 to_dma_iommu_mapping(dev) = mapping;
2253
2254 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2255 return 0;
2256 }
2257
2258 /**
2259 * arm_iommu_attach_device
2260 * @dev: valid struct device pointer
2261 * @mapping: io address space mapping structure (returned from
2262 * arm_iommu_create_mapping)
2263 *
2264 * Attaches specified io address space mapping to the provided device.
2265 * This replaces the dma operations (dma_map_ops pointer) with the
2266 * IOMMU aware version.
2267 *
2268 * More than one client might be attached to the same io address space
2269 * mapping.
2270 */
arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)2271 int arm_iommu_attach_device(struct device *dev,
2272 struct dma_iommu_mapping *mapping)
2273 {
2274 int err;
2275
2276 err = __arm_iommu_attach_device(dev, mapping);
2277 if (err)
2278 return err;
2279
2280 set_dma_ops(dev, &iommu_ops);
2281 return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2284
2285 /**
2286 * arm_iommu_detach_device
2287 * @dev: valid struct device pointer
2288 *
2289 * Detaches the provided device from a previously attached map.
2290 * This voids the dma operations (dma_map_ops pointer)
2291 */
arm_iommu_detach_device(struct device * dev)2292 void arm_iommu_detach_device(struct device *dev)
2293 {
2294 struct dma_iommu_mapping *mapping;
2295
2296 mapping = to_dma_iommu_mapping(dev);
2297 if (!mapping) {
2298 dev_warn(dev, "Not attached\n");
2299 return;
2300 }
2301
2302 iommu_detach_device(mapping->domain, dev);
2303 kref_put(&mapping->kref, release_iommu_mapping);
2304 to_dma_iommu_mapping(dev) = NULL;
2305 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2306
2307 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2308 }
2309 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2310
arm_get_iommu_dma_map_ops(bool coherent)2311 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2312 {
2313 return coherent ? &iommu_coherent_ops : &iommu_ops;
2314 }
2315
arm_setup_iommu_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu)2316 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2317 const struct iommu_ops *iommu)
2318 {
2319 struct dma_iommu_mapping *mapping;
2320
2321 if (!iommu)
2322 return false;
2323
2324 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2325 if (IS_ERR(mapping)) {
2326 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2327 size, dev_name(dev));
2328 return false;
2329 }
2330
2331 if (__arm_iommu_attach_device(dev, mapping)) {
2332 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2333 dev_name(dev));
2334 arm_iommu_release_mapping(mapping);
2335 return false;
2336 }
2337
2338 return true;
2339 }
2340
arm_teardown_iommu_dma_ops(struct device * dev)2341 static void arm_teardown_iommu_dma_ops(struct device *dev)
2342 {
2343 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2344
2345 if (!mapping)
2346 return;
2347
2348 arm_iommu_detach_device(dev);
2349 arm_iommu_release_mapping(mapping);
2350 }
2351
2352 #else
2353
arm_setup_iommu_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu)2354 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2355 const struct iommu_ops *iommu)
2356 {
2357 return false;
2358 }
2359
arm_teardown_iommu_dma_ops(struct device * dev)2360 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2361
2362 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2363
2364 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2365
arch_setup_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu,bool coherent)2366 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2367 const struct iommu_ops *iommu, bool coherent)
2368 {
2369 const struct dma_map_ops *dma_ops;
2370
2371 dev->archdata.dma_coherent = coherent;
2372
2373 /*
2374 * Don't override the dma_ops if they have already been set. Ideally
2375 * this should be the only location where dma_ops are set, remove this
2376 * check when all other callers of set_dma_ops will have disappeared.
2377 */
2378 if (dev->dma_ops)
2379 return;
2380
2381 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2382 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2383 else
2384 dma_ops = arm_get_dma_map_ops(coherent);
2385
2386 set_dma_ops(dev, dma_ops);
2387
2388 #ifdef CONFIG_XEN
2389 if (xen_initial_domain()) {
2390 dev->archdata.dev_dma_ops = dev->dma_ops;
2391 dev->dma_ops = xen_dma_ops;
2392 }
2393 #endif
2394 dev->archdata.dma_ops_setup = true;
2395 }
2396
arch_teardown_dma_ops(struct device * dev)2397 void arch_teardown_dma_ops(struct device *dev)
2398 {
2399 if (!dev->archdata.dma_ops_setup)
2400 return;
2401
2402 arm_teardown_iommu_dma_ops(dev);
2403 }
2404