1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10 #include <stdarg.h>
11
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/sched/task.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/kernel.h>
20 #include <linux/lockdep.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/sysctl.h>
24 #include <linux/unistd.h>
25 #include <linux/user.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/cpu.h>
31 #include <linux/elfcore.h>
32 #include <linux/pm.h>
33 #include <linux/tick.h>
34 #include <linux/utsname.h>
35 #include <linux/uaccess.h>
36 #include <linux/random.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/personality.h>
39 #include <linux/notifier.h>
40 #include <trace/events/power.h>
41 #include <linux/percpu.h>
42 #include <linux/thread_info.h>
43 #include <linux/prctl.h>
44
45 #include <asm/alternative.h>
46 #include <asm/arch_gicv3.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
50 #include <asm/exec.h>
51 #include <asm/fpsimd.h>
52 #include <asm/mmu_context.h>
53 #include <asm/processor.h>
54 #include <asm/pointer_auth.h>
55 #include <asm/stacktrace.h>
56
57 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
58 #include <linux/stackprotector.h>
59 unsigned long __stack_chk_guard __read_mostly;
60 EXPORT_SYMBOL(__stack_chk_guard);
61 #endif
62
63 /*
64 * Function pointers to optional machine specific functions
65 */
66 void (*pm_power_off)(void);
67 EXPORT_SYMBOL_GPL(pm_power_off);
68
69 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
70
__cpu_do_idle(void)71 static void __cpu_do_idle(void)
72 {
73 dsb(sy);
74 wfi();
75 }
76
__cpu_do_idle_irqprio(void)77 static void __cpu_do_idle_irqprio(void)
78 {
79 unsigned long pmr;
80 unsigned long daif_bits;
81
82 daif_bits = read_sysreg(daif);
83 write_sysreg(daif_bits | PSR_I_BIT, daif);
84
85 /*
86 * Unmask PMR before going idle to make sure interrupts can
87 * be raised.
88 */
89 pmr = gic_read_pmr();
90 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
91
92 __cpu_do_idle();
93
94 gic_write_pmr(pmr);
95 write_sysreg(daif_bits, daif);
96 }
97
98 /*
99 * cpu_do_idle()
100 *
101 * Idle the processor (wait for interrupt).
102 *
103 * If the CPU supports priority masking we must do additional work to
104 * ensure that interrupts are not masked at the PMR (because the core will
105 * not wake up if we block the wake up signal in the interrupt controller).
106 */
cpu_do_idle(void)107 void cpu_do_idle(void)
108 {
109 if (system_uses_irq_prio_masking())
110 __cpu_do_idle_irqprio();
111 else
112 __cpu_do_idle();
113 }
114
115 /*
116 * This is our default idle handler.
117 */
arch_cpu_idle(void)118 void arch_cpu_idle(void)
119 {
120 /*
121 * This should do all the clock switching and wait for interrupt
122 * tricks
123 */
124 trace_cpu_idle_rcuidle(1, smp_processor_id());
125 cpu_do_idle();
126 local_irq_enable();
127 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
128 }
129
130 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)131 void arch_cpu_idle_dead(void)
132 {
133 cpu_die();
134 }
135 #endif
136
137 /*
138 * Called by kexec, immediately prior to machine_kexec().
139 *
140 * This must completely disable all secondary CPUs; simply causing those CPUs
141 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
142 * kexec'd kernel to use any and all RAM as it sees fit, without having to
143 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
144 * functionality embodied in disable_nonboot_cpus() to achieve this.
145 */
machine_shutdown(void)146 void machine_shutdown(void)
147 {
148 disable_nonboot_cpus();
149 }
150
151 /*
152 * Halting simply requires that the secondary CPUs stop performing any
153 * activity (executing tasks, handling interrupts). smp_send_stop()
154 * achieves this.
155 */
machine_halt(void)156 void machine_halt(void)
157 {
158 local_irq_disable();
159 smp_send_stop();
160 while (1);
161 }
162
163 /*
164 * Power-off simply requires that the secondary CPUs stop performing any
165 * activity (executing tasks, handling interrupts). smp_send_stop()
166 * achieves this. When the system power is turned off, it will take all CPUs
167 * with it.
168 */
machine_power_off(void)169 void machine_power_off(void)
170 {
171 local_irq_disable();
172 smp_send_stop();
173 if (pm_power_off)
174 pm_power_off();
175 }
176
177 /*
178 * Restart requires that the secondary CPUs stop performing any activity
179 * while the primary CPU resets the system. Systems with multiple CPUs must
180 * provide a HW restart implementation, to ensure that all CPUs reset at once.
181 * This is required so that any code running after reset on the primary CPU
182 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
183 * executing pre-reset code, and using RAM that the primary CPU's code wishes
184 * to use. Implementing such co-ordination would be essentially impossible.
185 */
machine_restart(char * cmd)186 void machine_restart(char *cmd)
187 {
188 /* Disable interrupts first */
189 local_irq_disable();
190 smp_send_stop();
191
192 /*
193 * UpdateCapsule() depends on the system being reset via
194 * ResetSystem().
195 */
196 if (efi_enabled(EFI_RUNTIME_SERVICES))
197 efi_reboot(reboot_mode, NULL);
198
199 /* Now call the architecture specific reboot code. */
200 if (arm_pm_restart)
201 arm_pm_restart(reboot_mode, cmd);
202 else
203 do_kernel_restart(cmd);
204
205 /*
206 * Whoops - the architecture was unable to reboot.
207 */
208 printk("Reboot failed -- System halted\n");
209 while (1);
210 }
211
print_pstate(struct pt_regs * regs)212 static void print_pstate(struct pt_regs *regs)
213 {
214 u64 pstate = regs->pstate;
215
216 if (compat_user_mode(regs)) {
217 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
218 pstate,
219 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
220 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
221 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
222 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
223 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
224 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
225 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
226 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
227 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
228 pstate & PSR_AA32_F_BIT ? 'F' : 'f');
229 } else {
230 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
231 pstate,
232 pstate & PSR_N_BIT ? 'N' : 'n',
233 pstate & PSR_Z_BIT ? 'Z' : 'z',
234 pstate & PSR_C_BIT ? 'C' : 'c',
235 pstate & PSR_V_BIT ? 'V' : 'v',
236 pstate & PSR_D_BIT ? 'D' : 'd',
237 pstate & PSR_A_BIT ? 'A' : 'a',
238 pstate & PSR_I_BIT ? 'I' : 'i',
239 pstate & PSR_F_BIT ? 'F' : 'f',
240 pstate & PSR_PAN_BIT ? '+' : '-',
241 pstate & PSR_UAO_BIT ? '+' : '-');
242 }
243 }
244
__show_regs(struct pt_regs * regs)245 void __show_regs(struct pt_regs *regs)
246 {
247 int i, top_reg;
248 u64 lr, sp;
249
250 if (compat_user_mode(regs)) {
251 lr = regs->compat_lr;
252 sp = regs->compat_sp;
253 top_reg = 12;
254 } else {
255 lr = regs->regs[30];
256 sp = regs->sp;
257 top_reg = 29;
258 }
259
260 show_regs_print_info(KERN_DEFAULT);
261 print_pstate(regs);
262
263 if (!user_mode(regs)) {
264 printk("pc : %pS\n", (void *)regs->pc);
265 printk("lr : %pS\n", (void *)lr);
266 } else {
267 printk("pc : %016llx\n", regs->pc);
268 printk("lr : %016llx\n", lr);
269 }
270
271 printk("sp : %016llx\n", sp);
272
273 if (system_uses_irq_prio_masking())
274 printk("pmr_save: %08llx\n", regs->pmr_save);
275
276 i = top_reg;
277
278 while (i >= 0) {
279 printk("x%-2d: %016llx ", i, regs->regs[i]);
280 i--;
281
282 if (i % 2 == 0) {
283 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
284 i--;
285 }
286
287 pr_cont("\n");
288 }
289 }
290
show_regs(struct pt_regs * regs)291 void show_regs(struct pt_regs * regs)
292 {
293 __show_regs(regs);
294 dump_backtrace(regs, NULL);
295 }
296
tls_thread_flush(void)297 static void tls_thread_flush(void)
298 {
299 write_sysreg(0, tpidr_el0);
300
301 if (is_compat_task()) {
302 current->thread.uw.tp_value = 0;
303
304 /*
305 * We need to ensure ordering between the shadow state and the
306 * hardware state, so that we don't corrupt the hardware state
307 * with a stale shadow state during context switch.
308 */
309 barrier();
310 write_sysreg(0, tpidrro_el0);
311 }
312 }
313
flush_tagged_addr_state(void)314 static void flush_tagged_addr_state(void)
315 {
316 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
317 clear_thread_flag(TIF_TAGGED_ADDR);
318 }
319
flush_thread(void)320 void flush_thread(void)
321 {
322 fpsimd_flush_thread();
323 tls_thread_flush();
324 flush_ptrace_hw_breakpoint(current);
325 flush_tagged_addr_state();
326 }
327
release_thread(struct task_struct * dead_task)328 void release_thread(struct task_struct *dead_task)
329 {
330 }
331
arch_release_task_struct(struct task_struct * tsk)332 void arch_release_task_struct(struct task_struct *tsk)
333 {
334 fpsimd_release_task(tsk);
335 }
336
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)337 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
338 {
339 if (current->mm)
340 fpsimd_preserve_current_state();
341 *dst = *src;
342
343 /* We rely on the above assignment to initialize dst's thread_flags: */
344 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
345
346 /*
347 * Detach src's sve_state (if any) from dst so that it does not
348 * get erroneously used or freed prematurely. dst's sve_state
349 * will be allocated on demand later on if dst uses SVE.
350 * For consistency, also clear TIF_SVE here: this could be done
351 * later in copy_process(), but to avoid tripping up future
352 * maintainers it is best not to leave TIF_SVE and sve_state in
353 * an inconsistent state, even temporarily.
354 */
355 dst->thread.sve_state = NULL;
356 clear_tsk_thread_flag(dst, TIF_SVE);
357
358 return 0;
359 }
360
361 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
362
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p)363 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
364 unsigned long stk_sz, struct task_struct *p)
365 {
366 struct pt_regs *childregs = task_pt_regs(p);
367
368 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
369
370 /*
371 * In case p was allocated the same task_struct pointer as some
372 * other recently-exited task, make sure p is disassociated from
373 * any cpu that may have run that now-exited task recently.
374 * Otherwise we could erroneously skip reloading the FPSIMD
375 * registers for p.
376 */
377 fpsimd_flush_task_state(p);
378
379 if (likely(!(p->flags & PF_KTHREAD))) {
380 *childregs = *current_pt_regs();
381 childregs->regs[0] = 0;
382
383 /*
384 * Read the current TLS pointer from tpidr_el0 as it may be
385 * out-of-sync with the saved value.
386 */
387 *task_user_tls(p) = read_sysreg(tpidr_el0);
388
389 if (stack_start) {
390 if (is_compat_thread(task_thread_info(p)))
391 childregs->compat_sp = stack_start;
392 else
393 childregs->sp = stack_start;
394 }
395
396 /*
397 * If a TLS pointer was passed to clone (4th argument), use it
398 * for the new thread.
399 */
400 if (clone_flags & CLONE_SETTLS)
401 p->thread.uw.tp_value = childregs->regs[3];
402 } else {
403 memset(childregs, 0, sizeof(struct pt_regs));
404 childregs->pstate = PSR_MODE_EL1h;
405 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
406 cpus_have_const_cap(ARM64_HAS_UAO))
407 childregs->pstate |= PSR_UAO_BIT;
408
409 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
410 set_ssbs_bit(childregs);
411
412 if (system_uses_irq_prio_masking())
413 childregs->pmr_save = GIC_PRIO_IRQON;
414
415 p->thread.cpu_context.x19 = stack_start;
416 p->thread.cpu_context.x20 = stk_sz;
417 }
418 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
419 p->thread.cpu_context.sp = (unsigned long)childregs;
420
421 ptrace_hw_copy_thread(p);
422
423 return 0;
424 }
425
tls_preserve_current_state(void)426 void tls_preserve_current_state(void)
427 {
428 *task_user_tls(current) = read_sysreg(tpidr_el0);
429 }
430
tls_thread_switch(struct task_struct * next)431 static void tls_thread_switch(struct task_struct *next)
432 {
433 tls_preserve_current_state();
434
435 if (is_compat_thread(task_thread_info(next)))
436 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
437 else if (!arm64_kernel_unmapped_at_el0())
438 write_sysreg(0, tpidrro_el0);
439
440 write_sysreg(*task_user_tls(next), tpidr_el0);
441 }
442
443 /* Restore the UAO state depending on next's addr_limit */
uao_thread_switch(struct task_struct * next)444 void uao_thread_switch(struct task_struct *next)
445 {
446 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
447 if (task_thread_info(next)->addr_limit == KERNEL_DS)
448 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
449 else
450 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
451 }
452 }
453
454 /*
455 * Force SSBS state on context-switch, since it may be lost after migrating
456 * from a CPU which treats the bit as RES0 in a heterogeneous system.
457 */
ssbs_thread_switch(struct task_struct * next)458 static void ssbs_thread_switch(struct task_struct *next)
459 {
460 struct pt_regs *regs = task_pt_regs(next);
461
462 /*
463 * Nothing to do for kernel threads, but 'regs' may be junk
464 * (e.g. idle task) so check the flags and bail early.
465 */
466 if (unlikely(next->flags & PF_KTHREAD))
467 return;
468
469 /* If the mitigation is enabled, then we leave SSBS clear. */
470 if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
471 test_tsk_thread_flag(next, TIF_SSBD))
472 return;
473
474 if (compat_user_mode(regs))
475 set_compat_ssbs_bit(regs);
476 else if (user_mode(regs))
477 set_ssbs_bit(regs);
478 }
479
480 /*
481 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
482 * shadow copy so that we can restore this upon entry from userspace.
483 *
484 * This is *only* for exception entry from EL0, and is not valid until we
485 * __switch_to() a user task.
486 */
487 DEFINE_PER_CPU(struct task_struct *, __entry_task);
488
entry_task_switch(struct task_struct * next)489 static void entry_task_switch(struct task_struct *next)
490 {
491 __this_cpu_write(__entry_task, next);
492 }
493
494 /*
495 * Thread switching.
496 */
__switch_to(struct task_struct * prev,struct task_struct * next)497 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
498 struct task_struct *next)
499 {
500 struct task_struct *last;
501
502 fpsimd_thread_switch(next);
503 tls_thread_switch(next);
504 hw_breakpoint_thread_switch(next);
505 contextidr_thread_switch(next);
506 entry_task_switch(next);
507 uao_thread_switch(next);
508 ptrauth_thread_switch(next);
509 ssbs_thread_switch(next);
510
511 /*
512 * Complete any pending TLB or cache maintenance on this CPU in case
513 * the thread migrates to a different CPU.
514 * This full barrier is also required by the membarrier system
515 * call.
516 */
517 dsb(ish);
518
519 /* the actual thread switch */
520 last = cpu_switch_to(prev, next);
521
522 return last;
523 }
524
get_wchan(struct task_struct * p)525 unsigned long get_wchan(struct task_struct *p)
526 {
527 struct stackframe frame;
528 unsigned long stack_page, ret = 0;
529 int count = 0;
530 if (!p || p == current || p->state == TASK_RUNNING)
531 return 0;
532
533 stack_page = (unsigned long)try_get_task_stack(p);
534 if (!stack_page)
535 return 0;
536
537 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
538
539 do {
540 if (unwind_frame(p, &frame))
541 goto out;
542 if (!in_sched_functions(frame.pc)) {
543 ret = frame.pc;
544 goto out;
545 }
546 } while (count ++ < 16);
547
548 out:
549 put_task_stack(p);
550 return ret;
551 }
552
arch_align_stack(unsigned long sp)553 unsigned long arch_align_stack(unsigned long sp)
554 {
555 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
556 sp -= get_random_int() & ~PAGE_MASK;
557 return sp & ~0xf;
558 }
559
560 /*
561 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
562 */
arch_setup_new_exec(void)563 void arch_setup_new_exec(void)
564 {
565 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
566
567 ptrauth_thread_init_user(current);
568 }
569
570 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
571 /*
572 * Control the relaxed ABI allowing tagged user addresses into the kernel.
573 */
574 static unsigned int tagged_addr_disabled;
575
set_tagged_addr_ctrl(unsigned long arg)576 long set_tagged_addr_ctrl(unsigned long arg)
577 {
578 if (is_compat_task())
579 return -EINVAL;
580 if (arg & ~PR_TAGGED_ADDR_ENABLE)
581 return -EINVAL;
582
583 /*
584 * Do not allow the enabling of the tagged address ABI if globally
585 * disabled via sysctl abi.tagged_addr_disabled.
586 */
587 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
588 return -EINVAL;
589
590 update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
591
592 return 0;
593 }
594
get_tagged_addr_ctrl(void)595 long get_tagged_addr_ctrl(void)
596 {
597 if (is_compat_task())
598 return -EINVAL;
599
600 if (test_thread_flag(TIF_TAGGED_ADDR))
601 return PR_TAGGED_ADDR_ENABLE;
602
603 return 0;
604 }
605
606 /*
607 * Global sysctl to disable the tagged user addresses support. This control
608 * only prevents the tagged address ABI enabling via prctl() and does not
609 * disable it for tasks that already opted in to the relaxed ABI.
610 */
611 static int zero;
612 static int one = 1;
613
614 static struct ctl_table tagged_addr_sysctl_table[] = {
615 {
616 .procname = "tagged_addr_disabled",
617 .mode = 0644,
618 .data = &tagged_addr_disabled,
619 .maxlen = sizeof(int),
620 .proc_handler = proc_dointvec_minmax,
621 .extra1 = &zero,
622 .extra2 = &one,
623 },
624 { }
625 };
626
tagged_addr_init(void)627 static int __init tagged_addr_init(void)
628 {
629 if (!register_sysctl("abi", tagged_addr_sysctl_table))
630 return -EINVAL;
631 return 0;
632 }
633
634 core_initcall(tagged_addr_init);
635 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
636
arm64_preempt_schedule_irq(void)637 asmlinkage void __sched arm64_preempt_schedule_irq(void)
638 {
639 lockdep_assert_irqs_disabled();
640
641 /*
642 * Preempting a task from an IRQ means we leave copies of PSTATE
643 * on the stack. cpufeature's enable calls may modify PSTATE, but
644 * resuming one of these preempted tasks would undo those changes.
645 *
646 * Only allow a task to be preempted once cpufeatures have been
647 * enabled.
648 */
649 if (static_branch_likely(&arm64_const_caps_ready))
650 preempt_schedule_irq();
651 }
652