1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/traps.c
4 *
5 * Copyright (C) 1995-2009 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/personality.h>
13 #include <linux/kallsyms.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kdebug.h>
19 #include <linux/module.h>
20 #include <linux/kexec.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30
31 #include <asm/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/cpufeature.h>
34 #include <asm/daifflags.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/insn.h>
38 #include <asm/traps.h>
39 #include <asm/smp.h>
40 #include <asm/stack_pointer.h>
41 #include <asm/stacktrace.h>
42 #include <asm/exception.h>
43 #include <asm/system_misc.h>
44 #include <asm/sysreg.h>
45
46 static const char *handler[]= {
47 "Synchronous Abort",
48 "IRQ",
49 "FIQ",
50 "Error"
51 };
52
53 int show_unhandled_signals = 0;
54
dump_backtrace_entry(unsigned long where)55 static void dump_backtrace_entry(unsigned long where)
56 {
57 printk(" %pS\n", (void *)where);
58 }
59
dump_kernel_instr(const char * lvl,struct pt_regs * regs)60 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
61 {
62 unsigned long addr = instruction_pointer(regs);
63 char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
64 int i;
65
66 if (user_mode(regs))
67 return;
68
69 for (i = -4; i < 1; i++) {
70 unsigned int val, bad;
71
72 bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
73
74 if (!bad)
75 p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
76 else {
77 p += sprintf(p, "bad PC value");
78 break;
79 }
80 }
81
82 printk("%sCode: %s\n", lvl, str);
83 }
84
dump_backtrace(struct pt_regs * regs,struct task_struct * tsk)85 void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
86 {
87 struct stackframe frame;
88 int skip = 0;
89
90 pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
91
92 if (regs) {
93 if (user_mode(regs))
94 return;
95 skip = 1;
96 }
97
98 if (!tsk)
99 tsk = current;
100
101 if (!try_get_task_stack(tsk))
102 return;
103
104 if (tsk == current) {
105 start_backtrace(&frame,
106 (unsigned long)__builtin_frame_address(0),
107 (unsigned long)dump_backtrace);
108 } else {
109 /*
110 * task blocked in __switch_to
111 */
112 start_backtrace(&frame,
113 thread_saved_fp(tsk),
114 thread_saved_pc(tsk));
115 }
116
117 printk("Call trace:\n");
118 do {
119 /* skip until specified stack frame */
120 if (!skip) {
121 dump_backtrace_entry(frame.pc);
122 } else if (frame.fp == regs->regs[29]) {
123 skip = 0;
124 /*
125 * Mostly, this is the case where this function is
126 * called in panic/abort. As exception handler's
127 * stack frame does not contain the corresponding pc
128 * at which an exception has taken place, use regs->pc
129 * instead.
130 */
131 dump_backtrace_entry(regs->pc);
132 }
133 } while (!unwind_frame(tsk, &frame));
134
135 put_task_stack(tsk);
136 }
137
show_stack(struct task_struct * tsk,unsigned long * sp)138 void show_stack(struct task_struct *tsk, unsigned long *sp)
139 {
140 dump_backtrace(NULL, tsk);
141 barrier();
142 }
143
144 #ifdef CONFIG_PREEMPT
145 #define S_PREEMPT " PREEMPT"
146 #else
147 #define S_PREEMPT ""
148 #endif
149 #define S_SMP " SMP"
150
__die(const char * str,int err,struct pt_regs * regs)151 static int __die(const char *str, int err, struct pt_regs *regs)
152 {
153 static int die_counter;
154 int ret;
155
156 pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
157 str, err, ++die_counter);
158
159 /* trap and error numbers are mostly meaningless on ARM */
160 ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
161 if (ret == NOTIFY_STOP)
162 return ret;
163
164 print_modules();
165 show_regs(regs);
166
167 dump_kernel_instr(KERN_EMERG, regs);
168
169 return ret;
170 }
171
172 static DEFINE_RAW_SPINLOCK(die_lock);
173
174 /*
175 * This function is protected against re-entrancy.
176 */
die(const char * str,struct pt_regs * regs,int err)177 void die(const char *str, struct pt_regs *regs, int err)
178 {
179 int ret;
180 unsigned long flags;
181
182 raw_spin_lock_irqsave(&die_lock, flags);
183
184 oops_enter();
185
186 console_verbose();
187 bust_spinlocks(1);
188 ret = __die(str, err, regs);
189
190 if (regs && kexec_should_crash(current))
191 crash_kexec(regs);
192
193 bust_spinlocks(0);
194 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
195 oops_exit();
196
197 if (in_interrupt())
198 panic("Fatal exception in interrupt");
199 if (panic_on_oops)
200 panic("Fatal exception");
201
202 raw_spin_unlock_irqrestore(&die_lock, flags);
203
204 if (ret != NOTIFY_STOP)
205 do_exit(SIGSEGV);
206 }
207
arm64_show_signal(int signo,const char * str)208 static void arm64_show_signal(int signo, const char *str)
209 {
210 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
211 DEFAULT_RATELIMIT_BURST);
212 struct task_struct *tsk = current;
213 unsigned int esr = tsk->thread.fault_code;
214 struct pt_regs *regs = task_pt_regs(tsk);
215
216 /* Leave if the signal won't be shown */
217 if (!show_unhandled_signals ||
218 !unhandled_signal(tsk, signo) ||
219 !__ratelimit(&rs))
220 return;
221
222 pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
223 if (esr)
224 pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
225
226 pr_cont("%s", str);
227 print_vma_addr(KERN_CONT " in ", regs->pc);
228 pr_cont("\n");
229 __show_regs(regs);
230 }
231
arm64_force_sig_fault(int signo,int code,void __user * addr,const char * str)232 void arm64_force_sig_fault(int signo, int code, void __user *addr,
233 const char *str)
234 {
235 arm64_show_signal(signo, str);
236 if (signo == SIGKILL)
237 force_sig(SIGKILL);
238 else
239 force_sig_fault(signo, code, addr);
240 }
241
arm64_force_sig_mceerr(int code,void __user * addr,short lsb,const char * str)242 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb,
243 const char *str)
244 {
245 arm64_show_signal(SIGBUS, str);
246 force_sig_mceerr(code, addr, lsb);
247 }
248
arm64_force_sig_ptrace_errno_trap(int errno,void __user * addr,const char * str)249 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr,
250 const char *str)
251 {
252 arm64_show_signal(SIGTRAP, str);
253 force_sig_ptrace_errno_trap(errno, addr);
254 }
255
arm64_notify_die(const char * str,struct pt_regs * regs,int signo,int sicode,void __user * addr,int err)256 void arm64_notify_die(const char *str, struct pt_regs *regs,
257 int signo, int sicode, void __user *addr,
258 int err)
259 {
260 if (user_mode(regs)) {
261 WARN_ON(regs != current_pt_regs());
262 current->thread.fault_address = 0;
263 current->thread.fault_code = err;
264
265 arm64_force_sig_fault(signo, sicode, addr, str);
266 } else {
267 die(str, regs, err);
268 }
269 }
270
arm64_skip_faulting_instruction(struct pt_regs * regs,unsigned long size)271 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
272 {
273 regs->pc += size;
274
275 /*
276 * If we were single stepping, we want to get the step exception after
277 * we return from the trap.
278 */
279 if (user_mode(regs))
280 user_fastforward_single_step(current);
281 }
282
283 static LIST_HEAD(undef_hook);
284 static DEFINE_RAW_SPINLOCK(undef_lock);
285
register_undef_hook(struct undef_hook * hook)286 void register_undef_hook(struct undef_hook *hook)
287 {
288 unsigned long flags;
289
290 raw_spin_lock_irqsave(&undef_lock, flags);
291 list_add(&hook->node, &undef_hook);
292 raw_spin_unlock_irqrestore(&undef_lock, flags);
293 }
294
unregister_undef_hook(struct undef_hook * hook)295 void unregister_undef_hook(struct undef_hook *hook)
296 {
297 unsigned long flags;
298
299 raw_spin_lock_irqsave(&undef_lock, flags);
300 list_del(&hook->node);
301 raw_spin_unlock_irqrestore(&undef_lock, flags);
302 }
303
call_undef_hook(struct pt_regs * regs)304 static int call_undef_hook(struct pt_regs *regs)
305 {
306 struct undef_hook *hook;
307 unsigned long flags;
308 u32 instr;
309 int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
310 void __user *pc = (void __user *)instruction_pointer(regs);
311
312 if (!user_mode(regs)) {
313 __le32 instr_le;
314 if (probe_kernel_address((__force __le32 *)pc, instr_le))
315 goto exit;
316 instr = le32_to_cpu(instr_le);
317 } else if (compat_thumb_mode(regs)) {
318 /* 16-bit Thumb instruction */
319 __le16 instr_le;
320 if (get_user(instr_le, (__le16 __user *)pc))
321 goto exit;
322 instr = le16_to_cpu(instr_le);
323 if (aarch32_insn_is_wide(instr)) {
324 u32 instr2;
325
326 if (get_user(instr_le, (__le16 __user *)(pc + 2)))
327 goto exit;
328 instr2 = le16_to_cpu(instr_le);
329 instr = (instr << 16) | instr2;
330 }
331 } else {
332 /* 32-bit ARM instruction */
333 __le32 instr_le;
334 if (get_user(instr_le, (__le32 __user *)pc))
335 goto exit;
336 instr = le32_to_cpu(instr_le);
337 }
338
339 raw_spin_lock_irqsave(&undef_lock, flags);
340 list_for_each_entry(hook, &undef_hook, node)
341 if ((instr & hook->instr_mask) == hook->instr_val &&
342 (regs->pstate & hook->pstate_mask) == hook->pstate_val)
343 fn = hook->fn;
344
345 raw_spin_unlock_irqrestore(&undef_lock, flags);
346 exit:
347 return fn ? fn(regs, instr) : 1;
348 }
349
force_signal_inject(int signal,int code,unsigned long address)350 void force_signal_inject(int signal, int code, unsigned long address)
351 {
352 const char *desc;
353 struct pt_regs *regs = current_pt_regs();
354
355 if (WARN_ON(!user_mode(regs)))
356 return;
357
358 switch (signal) {
359 case SIGILL:
360 desc = "undefined instruction";
361 break;
362 case SIGSEGV:
363 desc = "illegal memory access";
364 break;
365 default:
366 desc = "unknown or unrecoverable error";
367 break;
368 }
369
370 /* Force signals we don't understand to SIGKILL */
371 if (WARN_ON(signal != SIGKILL &&
372 siginfo_layout(signal, code) != SIL_FAULT)) {
373 signal = SIGKILL;
374 }
375
376 arm64_notify_die(desc, regs, signal, code, (void __user *)address, 0);
377 }
378
379 /*
380 * Set up process info to signal segmentation fault - called on access error.
381 */
arm64_notify_segfault(unsigned long addr)382 void arm64_notify_segfault(unsigned long addr)
383 {
384 int code;
385
386 down_read(¤t->mm->mmap_sem);
387 if (find_vma(current->mm, addr) == NULL)
388 code = SEGV_MAPERR;
389 else
390 code = SEGV_ACCERR;
391 up_read(¤t->mm->mmap_sem);
392
393 force_signal_inject(SIGSEGV, code, addr);
394 }
395
do_undefinstr(struct pt_regs * regs)396 asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
397 {
398 /* check for AArch32 breakpoint instructions */
399 if (!aarch32_break_handler(regs))
400 return;
401
402 if (call_undef_hook(regs) == 0)
403 return;
404
405 BUG_ON(!user_mode(regs));
406 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
407 }
408
409 #define __user_cache_maint(insn, address, res) \
410 if (address >= user_addr_max()) { \
411 res = -EFAULT; \
412 } else { \
413 uaccess_ttbr0_enable(); \
414 asm volatile ( \
415 "1: " insn ", %1\n" \
416 " mov %w0, #0\n" \
417 "2:\n" \
418 " .pushsection .fixup,\"ax\"\n" \
419 " .align 2\n" \
420 "3: mov %w0, %w2\n" \
421 " b 2b\n" \
422 " .popsection\n" \
423 _ASM_EXTABLE(1b, 3b) \
424 : "=r" (res) \
425 : "r" (address), "i" (-EFAULT)); \
426 uaccess_ttbr0_disable(); \
427 }
428
user_cache_maint_handler(unsigned int esr,struct pt_regs * regs)429 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
430 {
431 unsigned long address;
432 int rt = ESR_ELx_SYS64_ISS_RT(esr);
433 int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
434 int ret = 0;
435
436 address = untagged_addr(pt_regs_read_reg(regs, rt));
437
438 switch (crm) {
439 case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
440 __user_cache_maint("dc civac", address, ret);
441 break;
442 case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
443 __user_cache_maint("dc civac", address, ret);
444 break;
445 case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */
446 __user_cache_maint("sys 3, c7, c13, 1", address, ret);
447 break;
448 case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
449 __user_cache_maint("sys 3, c7, c12, 1", address, ret);
450 break;
451 case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
452 __user_cache_maint("dc civac", address, ret);
453 break;
454 case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
455 __user_cache_maint("ic ivau", address, ret);
456 break;
457 default:
458 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
459 return;
460 }
461
462 if (ret)
463 arm64_notify_segfault(address);
464 else
465 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
466 }
467
ctr_read_handler(unsigned int esr,struct pt_regs * regs)468 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
469 {
470 int rt = ESR_ELx_SYS64_ISS_RT(esr);
471 unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
472
473 pt_regs_write_reg(regs, rt, val);
474
475 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
476 }
477
cntvct_read_handler(unsigned int esr,struct pt_regs * regs)478 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
479 {
480 int rt = ESR_ELx_SYS64_ISS_RT(esr);
481
482 pt_regs_write_reg(regs, rt, arch_timer_read_counter());
483 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
484 }
485
cntfrq_read_handler(unsigned int esr,struct pt_regs * regs)486 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
487 {
488 int rt = ESR_ELx_SYS64_ISS_RT(esr);
489
490 pt_regs_write_reg(regs, rt, arch_timer_get_rate());
491 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
492 }
493
mrs_handler(unsigned int esr,struct pt_regs * regs)494 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
495 {
496 u32 sysreg, rt;
497
498 rt = ESR_ELx_SYS64_ISS_RT(esr);
499 sysreg = esr_sys64_to_sysreg(esr);
500
501 if (do_emulate_mrs(regs, sysreg, rt) != 0)
502 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
503 }
504
wfi_handler(unsigned int esr,struct pt_regs * regs)505 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
506 {
507 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
508 }
509
510 struct sys64_hook {
511 unsigned int esr_mask;
512 unsigned int esr_val;
513 void (*handler)(unsigned int esr, struct pt_regs *regs);
514 };
515
516 static const struct sys64_hook sys64_hooks[] = {
517 {
518 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
519 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
520 .handler = user_cache_maint_handler,
521 },
522 {
523 /* Trap read access to CTR_EL0 */
524 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
525 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
526 .handler = ctr_read_handler,
527 },
528 {
529 /* Trap read access to CNTVCT_EL0 */
530 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
531 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
532 .handler = cntvct_read_handler,
533 },
534 {
535 /* Trap read access to CNTFRQ_EL0 */
536 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
537 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
538 .handler = cntfrq_read_handler,
539 },
540 {
541 /* Trap read access to CPUID registers */
542 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
543 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
544 .handler = mrs_handler,
545 },
546 {
547 /* Trap WFI instructions executed in userspace */
548 .esr_mask = ESR_ELx_WFx_MASK,
549 .esr_val = ESR_ELx_WFx_WFI_VAL,
550 .handler = wfi_handler,
551 },
552 {},
553 };
554
555
556 #ifdef CONFIG_COMPAT
557 #define PSTATE_IT_1_0_SHIFT 25
558 #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT)
559 #define PSTATE_IT_7_2_SHIFT 10
560 #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT)
561
compat_get_it_state(struct pt_regs * regs)562 static u32 compat_get_it_state(struct pt_regs *regs)
563 {
564 u32 it, pstate = regs->pstate;
565
566 it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
567 it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
568
569 return it;
570 }
571
compat_set_it_state(struct pt_regs * regs,u32 it)572 static void compat_set_it_state(struct pt_regs *regs, u32 it)
573 {
574 u32 pstate_it;
575
576 pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
577 pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
578
579 regs->pstate &= ~PSR_AA32_IT_MASK;
580 regs->pstate |= pstate_it;
581 }
582
cp15_cond_valid(unsigned int esr,struct pt_regs * regs)583 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
584 {
585 int cond;
586
587 /* Only a T32 instruction can trap without CV being set */
588 if (!(esr & ESR_ELx_CV)) {
589 u32 it;
590
591 it = compat_get_it_state(regs);
592 if (!it)
593 return true;
594
595 cond = it >> 4;
596 } else {
597 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
598 }
599
600 return aarch32_opcode_cond_checks[cond](regs->pstate);
601 }
602
advance_itstate(struct pt_regs * regs)603 static void advance_itstate(struct pt_regs *regs)
604 {
605 u32 it;
606
607 /* ARM mode */
608 if (!(regs->pstate & PSR_AA32_T_BIT) ||
609 !(regs->pstate & PSR_AA32_IT_MASK))
610 return;
611
612 it = compat_get_it_state(regs);
613
614 /*
615 * If this is the last instruction of the block, wipe the IT
616 * state. Otherwise advance it.
617 */
618 if (!(it & 7))
619 it = 0;
620 else
621 it = (it & 0xe0) | ((it << 1) & 0x1f);
622
623 compat_set_it_state(regs, it);
624 }
625
arm64_compat_skip_faulting_instruction(struct pt_regs * regs,unsigned int sz)626 static void arm64_compat_skip_faulting_instruction(struct pt_regs *regs,
627 unsigned int sz)
628 {
629 advance_itstate(regs);
630 arm64_skip_faulting_instruction(regs, sz);
631 }
632
compat_cntfrq_read_handler(unsigned int esr,struct pt_regs * regs)633 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
634 {
635 int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
636
637 pt_regs_write_reg(regs, reg, arch_timer_get_rate());
638 arm64_compat_skip_faulting_instruction(regs, 4);
639 }
640
641 static const struct sys64_hook cp15_32_hooks[] = {
642 {
643 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
644 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
645 .handler = compat_cntfrq_read_handler,
646 },
647 {},
648 };
649
compat_cntvct_read_handler(unsigned int esr,struct pt_regs * regs)650 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
651 {
652 int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
653 int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
654 u64 val = arch_timer_read_counter();
655
656 pt_regs_write_reg(regs, rt, lower_32_bits(val));
657 pt_regs_write_reg(regs, rt2, upper_32_bits(val));
658 arm64_compat_skip_faulting_instruction(regs, 4);
659 }
660
661 static const struct sys64_hook cp15_64_hooks[] = {
662 {
663 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
664 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
665 .handler = compat_cntvct_read_handler,
666 },
667 {},
668 };
669
do_cp15instr(unsigned int esr,struct pt_regs * regs)670 asmlinkage void __exception do_cp15instr(unsigned int esr, struct pt_regs *regs)
671 {
672 const struct sys64_hook *hook, *hook_base;
673
674 if (!cp15_cond_valid(esr, regs)) {
675 /*
676 * There is no T16 variant of a CP access, so we
677 * always advance PC by 4 bytes.
678 */
679 arm64_compat_skip_faulting_instruction(regs, 4);
680 return;
681 }
682
683 switch (ESR_ELx_EC(esr)) {
684 case ESR_ELx_EC_CP15_32:
685 hook_base = cp15_32_hooks;
686 break;
687 case ESR_ELx_EC_CP15_64:
688 hook_base = cp15_64_hooks;
689 break;
690 default:
691 do_undefinstr(regs);
692 return;
693 }
694
695 for (hook = hook_base; hook->handler; hook++)
696 if ((hook->esr_mask & esr) == hook->esr_val) {
697 hook->handler(esr, regs);
698 return;
699 }
700
701 /*
702 * New cp15 instructions may previously have been undefined at
703 * EL0. Fall back to our usual undefined instruction handler
704 * so that we handle these consistently.
705 */
706 do_undefinstr(regs);
707 }
708 #endif
709
do_sysinstr(unsigned int esr,struct pt_regs * regs)710 asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
711 {
712 const struct sys64_hook *hook;
713
714 for (hook = sys64_hooks; hook->handler; hook++)
715 if ((hook->esr_mask & esr) == hook->esr_val) {
716 hook->handler(esr, regs);
717 return;
718 }
719
720 /*
721 * New SYS instructions may previously have been undefined at EL0. Fall
722 * back to our usual undefined instruction handler so that we handle
723 * these consistently.
724 */
725 do_undefinstr(regs);
726 }
727
728 static const char *esr_class_str[] = {
729 [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
730 [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
731 [ESR_ELx_EC_WFx] = "WFI/WFE",
732 [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
733 [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
734 [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
735 [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
736 [ESR_ELx_EC_FP_ASIMD] = "ASIMD",
737 [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
738 [ESR_ELx_EC_PAC] = "PAC",
739 [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
740 [ESR_ELx_EC_ILL] = "PSTATE.IL",
741 [ESR_ELx_EC_SVC32] = "SVC (AArch32)",
742 [ESR_ELx_EC_HVC32] = "HVC (AArch32)",
743 [ESR_ELx_EC_SMC32] = "SMC (AArch32)",
744 [ESR_ELx_EC_SVC64] = "SVC (AArch64)",
745 [ESR_ELx_EC_HVC64] = "HVC (AArch64)",
746 [ESR_ELx_EC_SMC64] = "SMC (AArch64)",
747 [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
748 [ESR_ELx_EC_SVE] = "SVE",
749 [ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB",
750 [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
751 [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
752 [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
753 [ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
754 [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
755 [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
756 [ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
757 [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
758 [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
759 [ESR_ELx_EC_SERROR] = "SError",
760 [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
761 [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
762 [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
763 [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
764 [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
765 [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
766 [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
767 [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
768 [ESR_ELx_EC_BRK64] = "BRK (AArch64)",
769 };
770
esr_get_class_string(u32 esr)771 const char *esr_get_class_string(u32 esr)
772 {
773 return esr_class_str[ESR_ELx_EC(esr)];
774 }
775
776 /*
777 * bad_mode handles the impossible case in the exception vector. This is always
778 * fatal.
779 */
bad_mode(struct pt_regs * regs,int reason,unsigned int esr)780 asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
781 {
782 console_verbose();
783
784 pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
785 handler[reason], smp_processor_id(), esr,
786 esr_get_class_string(esr));
787
788 local_daif_mask();
789 panic("bad mode");
790 }
791
792 /*
793 * bad_el0_sync handles unexpected, but potentially recoverable synchronous
794 * exceptions taken from EL0. Unlike bad_mode, this returns.
795 */
bad_el0_sync(struct pt_regs * regs,int reason,unsigned int esr)796 asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
797 {
798 void __user *pc = (void __user *)instruction_pointer(regs);
799
800 current->thread.fault_address = 0;
801 current->thread.fault_code = esr;
802
803 arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
804 "Bad EL0 synchronous exception");
805 }
806
807 #ifdef CONFIG_VMAP_STACK
808
809 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
810 __aligned(16);
811
handle_bad_stack(struct pt_regs * regs)812 asmlinkage void handle_bad_stack(struct pt_regs *regs)
813 {
814 unsigned long tsk_stk = (unsigned long)current->stack;
815 unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
816 unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
817 unsigned int esr = read_sysreg(esr_el1);
818 unsigned long far = read_sysreg(far_el1);
819
820 console_verbose();
821 pr_emerg("Insufficient stack space to handle exception!");
822
823 pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
824 pr_emerg("FAR: 0x%016lx\n", far);
825
826 pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
827 tsk_stk, tsk_stk + THREAD_SIZE);
828 pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
829 irq_stk, irq_stk + THREAD_SIZE);
830 pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
831 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
832
833 __show_regs(regs);
834
835 /*
836 * We use nmi_panic to limit the potential for recusive overflows, and
837 * to get a better stack trace.
838 */
839 nmi_panic(NULL, "kernel stack overflow");
840 cpu_park_loop();
841 }
842 #endif
843
arm64_serror_panic(struct pt_regs * regs,u32 esr)844 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
845 {
846 console_verbose();
847
848 pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
849 smp_processor_id(), esr, esr_get_class_string(esr));
850 if (regs)
851 __show_regs(regs);
852
853 nmi_panic(regs, "Asynchronous SError Interrupt");
854
855 cpu_park_loop();
856 unreachable();
857 }
858
arm64_is_fatal_ras_serror(struct pt_regs * regs,unsigned int esr)859 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
860 {
861 u32 aet = arm64_ras_serror_get_severity(esr);
862
863 switch (aet) {
864 case ESR_ELx_AET_CE: /* corrected error */
865 case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
866 /*
867 * The CPU can make progress. We may take UEO again as
868 * a more severe error.
869 */
870 return false;
871
872 case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
873 case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
874 /*
875 * The CPU can't make progress. The exception may have
876 * been imprecise.
877 *
878 * Neoverse-N1 #1349291 means a non-KVM SError reported as
879 * Unrecoverable should be treated as Uncontainable. We
880 * call arm64_serror_panic() in both cases.
881 */
882 return true;
883
884 case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
885 default:
886 /* Error has been silently propagated */
887 arm64_serror_panic(regs, esr);
888 }
889 }
890
do_serror(struct pt_regs * regs,unsigned int esr)891 asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr)
892 {
893 const bool was_in_nmi = in_nmi();
894
895 if (!was_in_nmi)
896 nmi_enter();
897
898 /* non-RAS errors are not containable */
899 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
900 arm64_serror_panic(regs, esr);
901
902 if (!was_in_nmi)
903 nmi_exit();
904 }
905
enter_from_user_mode(void)906 asmlinkage void enter_from_user_mode(void)
907 {
908 CT_WARN_ON(ct_state() != CONTEXT_USER);
909 user_exit_irqoff();
910 }
911 NOKPROBE_SYMBOL(enter_from_user_mode);
912
__pte_error(const char * file,int line,unsigned long val)913 void __pte_error(const char *file, int line, unsigned long val)
914 {
915 pr_err("%s:%d: bad pte %016lx.\n", file, line, val);
916 }
917
__pmd_error(const char * file,int line,unsigned long val)918 void __pmd_error(const char *file, int line, unsigned long val)
919 {
920 pr_err("%s:%d: bad pmd %016lx.\n", file, line, val);
921 }
922
__pud_error(const char * file,int line,unsigned long val)923 void __pud_error(const char *file, int line, unsigned long val)
924 {
925 pr_err("%s:%d: bad pud %016lx.\n", file, line, val);
926 }
927
__pgd_error(const char * file,int line,unsigned long val)928 void __pgd_error(const char *file, int line, unsigned long val)
929 {
930 pr_err("%s:%d: bad pgd %016lx.\n", file, line, val);
931 }
932
933 /* GENERIC_BUG traps */
934
is_valid_bugaddr(unsigned long addr)935 int is_valid_bugaddr(unsigned long addr)
936 {
937 /*
938 * bug_handler() only called for BRK #BUG_BRK_IMM.
939 * So the answer is trivial -- any spurious instances with no
940 * bug table entry will be rejected by report_bug() and passed
941 * back to the debug-monitors code and handled as a fatal
942 * unexpected debug exception.
943 */
944 return 1;
945 }
946
bug_handler(struct pt_regs * regs,unsigned int esr)947 static int bug_handler(struct pt_regs *regs, unsigned int esr)
948 {
949 switch (report_bug(regs->pc, regs)) {
950 case BUG_TRAP_TYPE_BUG:
951 die("Oops - BUG", regs, 0);
952 break;
953
954 case BUG_TRAP_TYPE_WARN:
955 break;
956
957 default:
958 /* unknown/unrecognised bug trap type */
959 return DBG_HOOK_ERROR;
960 }
961
962 /* If thread survives, skip over the BUG instruction and continue: */
963 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
964 return DBG_HOOK_HANDLED;
965 }
966
967 static struct break_hook bug_break_hook = {
968 .fn = bug_handler,
969 .imm = BUG_BRK_IMM,
970 };
971
972 #ifdef CONFIG_KASAN_SW_TAGS
973
974 #define KASAN_ESR_RECOVER 0x20
975 #define KASAN_ESR_WRITE 0x10
976 #define KASAN_ESR_SIZE_MASK 0x0f
977 #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
978
kasan_handler(struct pt_regs * regs,unsigned int esr)979 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
980 {
981 bool recover = esr & KASAN_ESR_RECOVER;
982 bool write = esr & KASAN_ESR_WRITE;
983 size_t size = KASAN_ESR_SIZE(esr);
984 u64 addr = regs->regs[0];
985 u64 pc = regs->pc;
986
987 kasan_report(addr, size, write, pc);
988
989 /*
990 * The instrumentation allows to control whether we can proceed after
991 * a crash was detected. This is done by passing the -recover flag to
992 * the compiler. Disabling recovery allows to generate more compact
993 * code.
994 *
995 * Unfortunately disabling recovery doesn't work for the kernel right
996 * now. KASAN reporting is disabled in some contexts (for example when
997 * the allocator accesses slab object metadata; this is controlled by
998 * current->kasan_depth). All these accesses are detected by the tool,
999 * even though the reports for them are not printed.
1000 *
1001 * This is something that might be fixed at some point in the future.
1002 */
1003 if (!recover)
1004 die("Oops - KASAN", regs, 0);
1005
1006 /* If thread survives, skip over the brk instruction and continue: */
1007 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1008 return DBG_HOOK_HANDLED;
1009 }
1010
1011 static struct break_hook kasan_break_hook = {
1012 .fn = kasan_handler,
1013 .imm = KASAN_BRK_IMM,
1014 .mask = KASAN_BRK_MASK,
1015 };
1016 #endif
1017
1018 /*
1019 * Initial handler for AArch64 BRK exceptions
1020 * This handler only used until debug_traps_init().
1021 */
early_brk64(unsigned long addr,unsigned int esr,struct pt_regs * regs)1022 int __init early_brk64(unsigned long addr, unsigned int esr,
1023 struct pt_regs *regs)
1024 {
1025 #ifdef CONFIG_KASAN_SW_TAGS
1026 unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
1027
1028 if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1029 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1030 #endif
1031 return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1032 }
1033
1034 /* This registration must happen early, before debug_traps_init(). */
trap_init(void)1035 void __init trap_init(void)
1036 {
1037 register_kernel_break_hook(&bug_break_hook);
1038 #ifdef CONFIG_KASAN_SW_TAGS
1039 register_kernel_break_hook(&kasan_break_hook);
1040 #endif
1041 }
1042