1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/traps.c
4 *
5 * Copyright (C) 1995-2009 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/personality.h>
13 #include <linux/kallsyms.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kdebug.h>
19 #include <linux/module.h>
20 #include <linux/kexec.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30
31 #include <asm/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/cpufeature.h>
34 #include <asm/daifflags.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/exception.h>
38 #include <asm/extable.h>
39 #include <asm/insn.h>
40 #include <asm/kprobes.h>
41 #include <asm/traps.h>
42 #include <asm/smp.h>
43 #include <asm/stack_pointer.h>
44 #include <asm/stacktrace.h>
45 #include <asm/exception.h>
46 #include <asm/system_misc.h>
47 #include <asm/sysreg.h>
48
49 static const char *handler[]= {
50 "Synchronous Abort",
51 "IRQ",
52 "FIQ",
53 "Error"
54 };
55
56 int show_unhandled_signals = 0;
57
dump_kernel_instr(const char * lvl,struct pt_regs * regs)58 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
59 {
60 unsigned long addr = instruction_pointer(regs);
61 char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
62 int i;
63
64 if (user_mode(regs))
65 return;
66
67 for (i = -4; i < 1; i++) {
68 unsigned int val, bad;
69
70 bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
71
72 if (!bad)
73 p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
74 else {
75 p += sprintf(p, "bad PC value");
76 break;
77 }
78 }
79
80 printk("%sCode: %s\n", lvl, str);
81 }
82
83 #ifdef CONFIG_PREEMPT
84 #define S_PREEMPT " PREEMPT"
85 #elif defined(CONFIG_PREEMPT_RT)
86 #define S_PREEMPT " PREEMPT_RT"
87 #else
88 #define S_PREEMPT ""
89 #endif
90
91 #define S_SMP " SMP"
92
__die(const char * str,int err,struct pt_regs * regs)93 static int __die(const char *str, int err, struct pt_regs *regs)
94 {
95 static int die_counter;
96 int ret;
97
98 pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
99 str, err, ++die_counter);
100
101 /* trap and error numbers are mostly meaningless on ARM */
102 ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
103 if (ret == NOTIFY_STOP)
104 return ret;
105
106 print_modules();
107 show_regs(regs);
108
109 dump_kernel_instr(KERN_EMERG, regs);
110
111 return ret;
112 }
113
114 static DEFINE_RAW_SPINLOCK(die_lock);
115
116 /*
117 * This function is protected against re-entrancy.
118 */
die(const char * str,struct pt_regs * regs,int err)119 void die(const char *str, struct pt_regs *regs, int err)
120 {
121 int ret;
122 unsigned long flags;
123
124 raw_spin_lock_irqsave(&die_lock, flags);
125
126 oops_enter();
127
128 console_verbose();
129 bust_spinlocks(1);
130 ret = __die(str, err, regs);
131
132 if (regs && kexec_should_crash(current))
133 crash_kexec(regs);
134
135 bust_spinlocks(0);
136 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
137 oops_exit();
138
139 if (in_interrupt())
140 panic("%s: Fatal exception in interrupt", str);
141 if (panic_on_oops)
142 panic("%s: Fatal exception", str);
143
144 raw_spin_unlock_irqrestore(&die_lock, flags);
145
146 if (ret != NOTIFY_STOP)
147 do_exit(SIGSEGV);
148 }
149
arm64_show_signal(int signo,const char * str)150 static void arm64_show_signal(int signo, const char *str)
151 {
152 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
153 DEFAULT_RATELIMIT_BURST);
154 struct task_struct *tsk = current;
155 unsigned int esr = tsk->thread.fault_code;
156 struct pt_regs *regs = task_pt_regs(tsk);
157
158 /* Leave if the signal won't be shown */
159 if (!show_unhandled_signals ||
160 !unhandled_signal(tsk, signo) ||
161 !__ratelimit(&rs))
162 return;
163
164 pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
165 if (esr)
166 pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
167
168 pr_cont("%s", str);
169 print_vma_addr(KERN_CONT " in ", regs->pc);
170 pr_cont("\n");
171 __show_regs(regs);
172 }
173
arm64_force_sig_fault(int signo,int code,void __user * addr,const char * str)174 void arm64_force_sig_fault(int signo, int code, void __user *addr,
175 const char *str)
176 {
177 arm64_show_signal(signo, str);
178 if (signo == SIGKILL)
179 force_sig(SIGKILL);
180 else
181 force_sig_fault(signo, code, addr);
182 }
183
arm64_force_sig_mceerr(int code,void __user * addr,short lsb,const char * str)184 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb,
185 const char *str)
186 {
187 arm64_show_signal(SIGBUS, str);
188 force_sig_mceerr(code, addr, lsb);
189 }
190
arm64_force_sig_ptrace_errno_trap(int errno,void __user * addr,const char * str)191 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr,
192 const char *str)
193 {
194 arm64_show_signal(SIGTRAP, str);
195 force_sig_ptrace_errno_trap(errno, addr);
196 }
197
arm64_notify_die(const char * str,struct pt_regs * regs,int signo,int sicode,void __user * addr,int err)198 void arm64_notify_die(const char *str, struct pt_regs *regs,
199 int signo, int sicode, void __user *addr,
200 int err)
201 {
202 if (user_mode(regs)) {
203 WARN_ON(regs != current_pt_regs());
204 current->thread.fault_address = 0;
205 current->thread.fault_code = err;
206
207 arm64_force_sig_fault(signo, sicode, addr, str);
208 } else {
209 die(str, regs, err);
210 }
211 }
212
213 #ifdef CONFIG_COMPAT
214 #define PSTATE_IT_1_0_SHIFT 25
215 #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT)
216 #define PSTATE_IT_7_2_SHIFT 10
217 #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT)
218
compat_get_it_state(struct pt_regs * regs)219 static u32 compat_get_it_state(struct pt_regs *regs)
220 {
221 u32 it, pstate = regs->pstate;
222
223 it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
224 it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
225
226 return it;
227 }
228
compat_set_it_state(struct pt_regs * regs,u32 it)229 static void compat_set_it_state(struct pt_regs *regs, u32 it)
230 {
231 u32 pstate_it;
232
233 pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
234 pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
235
236 regs->pstate &= ~PSR_AA32_IT_MASK;
237 regs->pstate |= pstate_it;
238 }
239
advance_itstate(struct pt_regs * regs)240 static void advance_itstate(struct pt_regs *regs)
241 {
242 u32 it;
243
244 /* ARM mode */
245 if (!(regs->pstate & PSR_AA32_T_BIT) ||
246 !(regs->pstate & PSR_AA32_IT_MASK))
247 return;
248
249 it = compat_get_it_state(regs);
250
251 /*
252 * If this is the last instruction of the block, wipe the IT
253 * state. Otherwise advance it.
254 */
255 if (!(it & 7))
256 it = 0;
257 else
258 it = (it & 0xe0) | ((it << 1) & 0x1f);
259
260 compat_set_it_state(regs, it);
261 }
262 #else
advance_itstate(struct pt_regs * regs)263 static void advance_itstate(struct pt_regs *regs)
264 {
265 }
266 #endif
267
arm64_skip_faulting_instruction(struct pt_regs * regs,unsigned long size)268 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
269 {
270 regs->pc += size;
271
272 /*
273 * If we were single stepping, we want to get the step exception after
274 * we return from the trap.
275 */
276 if (user_mode(regs))
277 user_fastforward_single_step(current);
278
279 if (compat_user_mode(regs))
280 advance_itstate(regs);
281 else
282 regs->pstate &= ~PSR_BTYPE_MASK;
283 }
284
285 static LIST_HEAD(undef_hook);
286 static DEFINE_RAW_SPINLOCK(undef_lock);
287
register_undef_hook(struct undef_hook * hook)288 void register_undef_hook(struct undef_hook *hook)
289 {
290 unsigned long flags;
291
292 raw_spin_lock_irqsave(&undef_lock, flags);
293 list_add(&hook->node, &undef_hook);
294 raw_spin_unlock_irqrestore(&undef_lock, flags);
295 }
296
unregister_undef_hook(struct undef_hook * hook)297 void unregister_undef_hook(struct undef_hook *hook)
298 {
299 unsigned long flags;
300
301 raw_spin_lock_irqsave(&undef_lock, flags);
302 list_del(&hook->node);
303 raw_spin_unlock_irqrestore(&undef_lock, flags);
304 }
305
call_undef_hook(struct pt_regs * regs)306 static int call_undef_hook(struct pt_regs *regs)
307 {
308 struct undef_hook *hook;
309 unsigned long flags;
310 u32 instr;
311 int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
312 void __user *pc = (void __user *)instruction_pointer(regs);
313
314 if (!user_mode(regs)) {
315 __le32 instr_le;
316 if (get_kernel_nofault(instr_le, (__force __le32 *)pc))
317 goto exit;
318 instr = le32_to_cpu(instr_le);
319 } else if (compat_thumb_mode(regs)) {
320 /* 16-bit Thumb instruction */
321 __le16 instr_le;
322 if (get_user(instr_le, (__le16 __user *)pc))
323 goto exit;
324 instr = le16_to_cpu(instr_le);
325 if (aarch32_insn_is_wide(instr)) {
326 u32 instr2;
327
328 if (get_user(instr_le, (__le16 __user *)(pc + 2)))
329 goto exit;
330 instr2 = le16_to_cpu(instr_le);
331 instr = (instr << 16) | instr2;
332 }
333 } else {
334 /* 32-bit ARM instruction */
335 __le32 instr_le;
336 if (get_user(instr_le, (__le32 __user *)pc))
337 goto exit;
338 instr = le32_to_cpu(instr_le);
339 }
340
341 raw_spin_lock_irqsave(&undef_lock, flags);
342 list_for_each_entry(hook, &undef_hook, node)
343 if ((instr & hook->instr_mask) == hook->instr_val &&
344 (regs->pstate & hook->pstate_mask) == hook->pstate_val)
345 fn = hook->fn;
346
347 raw_spin_unlock_irqrestore(&undef_lock, flags);
348 exit:
349 return fn ? fn(regs, instr) : 1;
350 }
351
force_signal_inject(int signal,int code,unsigned long address,unsigned int err)352 void force_signal_inject(int signal, int code, unsigned long address, unsigned int err)
353 {
354 const char *desc;
355 struct pt_regs *regs = current_pt_regs();
356
357 if (WARN_ON(!user_mode(regs)))
358 return;
359
360 switch (signal) {
361 case SIGILL:
362 desc = "undefined instruction";
363 break;
364 case SIGSEGV:
365 desc = "illegal memory access";
366 break;
367 default:
368 desc = "unknown or unrecoverable error";
369 break;
370 }
371
372 /* Force signals we don't understand to SIGKILL */
373 if (WARN_ON(signal != SIGKILL &&
374 siginfo_layout(signal, code) != SIL_FAULT)) {
375 signal = SIGKILL;
376 }
377
378 arm64_notify_die(desc, regs, signal, code, (void __user *)address, err);
379 }
380
381 /*
382 * Set up process info to signal segmentation fault - called on access error.
383 */
arm64_notify_segfault(unsigned long addr)384 void arm64_notify_segfault(unsigned long addr)
385 {
386 int code;
387
388 mmap_read_lock(current->mm);
389 if (find_vma(current->mm, addr) == NULL)
390 code = SEGV_MAPERR;
391 else
392 code = SEGV_ACCERR;
393 mmap_read_unlock(current->mm);
394
395 force_signal_inject(SIGSEGV, code, addr, 0);
396 }
397
do_undefinstr(struct pt_regs * regs)398 void do_undefinstr(struct pt_regs *regs)
399 {
400 /* check for AArch32 breakpoint instructions */
401 if (!aarch32_break_handler(regs))
402 return;
403
404 if (call_undef_hook(regs) == 0)
405 return;
406
407 BUG_ON(!user_mode(regs));
408 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
409 }
410 NOKPROBE_SYMBOL(do_undefinstr);
411
do_bti(struct pt_regs * regs)412 void do_bti(struct pt_regs *regs)
413 {
414 BUG_ON(!user_mode(regs));
415 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
416 }
417 NOKPROBE_SYMBOL(do_bti);
418
do_ptrauth_fault(struct pt_regs * regs,unsigned int esr)419 void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr)
420 {
421 /*
422 * Unexpected FPAC exception or pointer authentication failure in
423 * the kernel: kill the task before it does any more harm.
424 */
425 BUG_ON(!user_mode(regs));
426 force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
427 }
428 NOKPROBE_SYMBOL(do_ptrauth_fault);
429
430 #define __user_cache_maint(insn, address, res) \
431 if (address >= user_addr_max()) { \
432 res = -EFAULT; \
433 } else { \
434 uaccess_ttbr0_enable(); \
435 asm volatile ( \
436 "1: " insn ", %1\n" \
437 " mov %w0, #0\n" \
438 "2:\n" \
439 " .pushsection .fixup,\"ax\"\n" \
440 " .align 2\n" \
441 "3: mov %w0, %w2\n" \
442 " b 2b\n" \
443 " .popsection\n" \
444 _ASM_EXTABLE(1b, 3b) \
445 : "=r" (res) \
446 : "r" (address), "i" (-EFAULT)); \
447 uaccess_ttbr0_disable(); \
448 }
449
user_cache_maint_handler(unsigned int esr,struct pt_regs * regs)450 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
451 {
452 unsigned long address;
453 int rt = ESR_ELx_SYS64_ISS_RT(esr);
454 int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
455 int ret = 0;
456
457 address = untagged_addr(pt_regs_read_reg(regs, rt));
458
459 switch (crm) {
460 case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
461 __user_cache_maint("dc civac", address, ret);
462 break;
463 case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
464 __user_cache_maint("dc civac", address, ret);
465 break;
466 case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */
467 __user_cache_maint("sys 3, c7, c13, 1", address, ret);
468 break;
469 case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
470 __user_cache_maint("sys 3, c7, c12, 1", address, ret);
471 break;
472 case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
473 __user_cache_maint("dc civac", address, ret);
474 break;
475 case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
476 __user_cache_maint("ic ivau", address, ret);
477 break;
478 default:
479 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
480 return;
481 }
482
483 if (ret)
484 arm64_notify_segfault(address);
485 else
486 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
487 }
488
ctr_read_handler(unsigned int esr,struct pt_regs * regs)489 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
490 {
491 int rt = ESR_ELx_SYS64_ISS_RT(esr);
492 unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
493
494 if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
495 /* Hide DIC so that we can trap the unnecessary maintenance...*/
496 val &= ~BIT(CTR_DIC_SHIFT);
497
498 /* ... and fake IminLine to reduce the number of traps. */
499 val &= ~CTR_IMINLINE_MASK;
500 val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
501 }
502
503 pt_regs_write_reg(regs, rt, val);
504
505 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
506 }
507
cntvct_read_handler(unsigned int esr,struct pt_regs * regs)508 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
509 {
510 int rt = ESR_ELx_SYS64_ISS_RT(esr);
511
512 pt_regs_write_reg(regs, rt, arch_timer_read_counter());
513 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
514 }
515
cntfrq_read_handler(unsigned int esr,struct pt_regs * regs)516 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
517 {
518 int rt = ESR_ELx_SYS64_ISS_RT(esr);
519
520 pt_regs_write_reg(regs, rt, arch_timer_get_rate());
521 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
522 }
523
mrs_handler(unsigned int esr,struct pt_regs * regs)524 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
525 {
526 u32 sysreg, rt;
527
528 rt = ESR_ELx_SYS64_ISS_RT(esr);
529 sysreg = esr_sys64_to_sysreg(esr);
530
531 if (do_emulate_mrs(regs, sysreg, rt) != 0)
532 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
533 }
534
wfi_handler(unsigned int esr,struct pt_regs * regs)535 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
536 {
537 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
538 }
539
540 struct sys64_hook {
541 unsigned int esr_mask;
542 unsigned int esr_val;
543 void (*handler)(unsigned int esr, struct pt_regs *regs);
544 };
545
546 static const struct sys64_hook sys64_hooks[] = {
547 {
548 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
549 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
550 .handler = user_cache_maint_handler,
551 },
552 {
553 /* Trap read access to CTR_EL0 */
554 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
555 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
556 .handler = ctr_read_handler,
557 },
558 {
559 /* Trap read access to CNTVCT_EL0 */
560 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
561 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
562 .handler = cntvct_read_handler,
563 },
564 {
565 /* Trap read access to CNTFRQ_EL0 */
566 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
567 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
568 .handler = cntfrq_read_handler,
569 },
570 {
571 /* Trap read access to CPUID registers */
572 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
573 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
574 .handler = mrs_handler,
575 },
576 {
577 /* Trap WFI instructions executed in userspace */
578 .esr_mask = ESR_ELx_WFx_MASK,
579 .esr_val = ESR_ELx_WFx_WFI_VAL,
580 .handler = wfi_handler,
581 },
582 {},
583 };
584
585 #ifdef CONFIG_COMPAT
cp15_cond_valid(unsigned int esr,struct pt_regs * regs)586 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
587 {
588 int cond;
589
590 /* Only a T32 instruction can trap without CV being set */
591 if (!(esr & ESR_ELx_CV)) {
592 u32 it;
593
594 it = compat_get_it_state(regs);
595 if (!it)
596 return true;
597
598 cond = it >> 4;
599 } else {
600 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
601 }
602
603 return aarch32_opcode_cond_checks[cond](regs->pstate);
604 }
605
compat_cntfrq_read_handler(unsigned int esr,struct pt_regs * regs)606 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
607 {
608 int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
609
610 pt_regs_write_reg(regs, reg, arch_timer_get_rate());
611 arm64_skip_faulting_instruction(regs, 4);
612 }
613
614 static const struct sys64_hook cp15_32_hooks[] = {
615 {
616 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
617 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
618 .handler = compat_cntfrq_read_handler,
619 },
620 {},
621 };
622
compat_cntvct_read_handler(unsigned int esr,struct pt_regs * regs)623 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
624 {
625 int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
626 int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
627 u64 val = arch_timer_read_counter();
628
629 pt_regs_write_reg(regs, rt, lower_32_bits(val));
630 pt_regs_write_reg(regs, rt2, upper_32_bits(val));
631 arm64_skip_faulting_instruction(regs, 4);
632 }
633
634 static const struct sys64_hook cp15_64_hooks[] = {
635 {
636 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
637 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
638 .handler = compat_cntvct_read_handler,
639 },
640 {},
641 };
642
do_cp15instr(unsigned int esr,struct pt_regs * regs)643 void do_cp15instr(unsigned int esr, struct pt_regs *regs)
644 {
645 const struct sys64_hook *hook, *hook_base;
646
647 if (!cp15_cond_valid(esr, regs)) {
648 /*
649 * There is no T16 variant of a CP access, so we
650 * always advance PC by 4 bytes.
651 */
652 arm64_skip_faulting_instruction(regs, 4);
653 return;
654 }
655
656 switch (ESR_ELx_EC(esr)) {
657 case ESR_ELx_EC_CP15_32:
658 hook_base = cp15_32_hooks;
659 break;
660 case ESR_ELx_EC_CP15_64:
661 hook_base = cp15_64_hooks;
662 break;
663 default:
664 do_undefinstr(regs);
665 return;
666 }
667
668 for (hook = hook_base; hook->handler; hook++)
669 if ((hook->esr_mask & esr) == hook->esr_val) {
670 hook->handler(esr, regs);
671 return;
672 }
673
674 /*
675 * New cp15 instructions may previously have been undefined at
676 * EL0. Fall back to our usual undefined instruction handler
677 * so that we handle these consistently.
678 */
679 do_undefinstr(regs);
680 }
681 NOKPROBE_SYMBOL(do_cp15instr);
682 #endif
683
do_sysinstr(unsigned int esr,struct pt_regs * regs)684 void do_sysinstr(unsigned int esr, struct pt_regs *regs)
685 {
686 const struct sys64_hook *hook;
687
688 for (hook = sys64_hooks; hook->handler; hook++)
689 if ((hook->esr_mask & esr) == hook->esr_val) {
690 hook->handler(esr, regs);
691 return;
692 }
693
694 /*
695 * New SYS instructions may previously have been undefined at EL0. Fall
696 * back to our usual undefined instruction handler so that we handle
697 * these consistently.
698 */
699 do_undefinstr(regs);
700 }
701 NOKPROBE_SYMBOL(do_sysinstr);
702
703 static const char *esr_class_str[] = {
704 [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
705 [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
706 [ESR_ELx_EC_WFx] = "WFI/WFE",
707 [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
708 [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
709 [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
710 [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
711 [ESR_ELx_EC_FP_ASIMD] = "ASIMD",
712 [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
713 [ESR_ELx_EC_PAC] = "PAC",
714 [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
715 [ESR_ELx_EC_BTI] = "BTI",
716 [ESR_ELx_EC_ILL] = "PSTATE.IL",
717 [ESR_ELx_EC_SVC32] = "SVC (AArch32)",
718 [ESR_ELx_EC_HVC32] = "HVC (AArch32)",
719 [ESR_ELx_EC_SMC32] = "SMC (AArch32)",
720 [ESR_ELx_EC_SVC64] = "SVC (AArch64)",
721 [ESR_ELx_EC_HVC64] = "HVC (AArch64)",
722 [ESR_ELx_EC_SMC64] = "SMC (AArch64)",
723 [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
724 [ESR_ELx_EC_SVE] = "SVE",
725 [ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB",
726 [ESR_ELx_EC_FPAC] = "FPAC",
727 [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
728 [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
729 [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
730 [ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
731 [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
732 [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
733 [ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
734 [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
735 [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
736 [ESR_ELx_EC_SERROR] = "SError",
737 [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
738 [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
739 [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
740 [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
741 [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
742 [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
743 [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
744 [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
745 [ESR_ELx_EC_BRK64] = "BRK (AArch64)",
746 };
747
esr_get_class_string(u32 esr)748 const char *esr_get_class_string(u32 esr)
749 {
750 return esr_class_str[ESR_ELx_EC(esr)];
751 }
752
753 /*
754 * bad_mode handles the impossible case in the exception vector. This is always
755 * fatal.
756 */
bad_mode(struct pt_regs * regs,int reason,unsigned int esr)757 asmlinkage void notrace bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
758 {
759 arm64_enter_nmi(regs);
760
761 console_verbose();
762
763 pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
764 handler[reason], smp_processor_id(), esr,
765 esr_get_class_string(esr));
766
767 __show_regs(regs);
768 local_daif_mask();
769 panic("bad mode");
770 }
771
772 /*
773 * bad_el0_sync handles unexpected, but potentially recoverable synchronous
774 * exceptions taken from EL0. Unlike bad_mode, this returns.
775 */
bad_el0_sync(struct pt_regs * regs,int reason,unsigned int esr)776 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
777 {
778 void __user *pc = (void __user *)instruction_pointer(regs);
779
780 current->thread.fault_address = 0;
781 current->thread.fault_code = esr;
782
783 arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
784 "Bad EL0 synchronous exception");
785 }
786
787 #ifdef CONFIG_VMAP_STACK
788
789 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
790 __aligned(16);
791
handle_bad_stack(struct pt_regs * regs)792 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
793 {
794 unsigned long tsk_stk = (unsigned long)current->stack;
795 unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
796 unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
797 unsigned int esr = read_sysreg(esr_el1);
798 unsigned long far = read_sysreg(far_el1);
799
800 arm64_enter_nmi(regs);
801
802 console_verbose();
803 pr_emerg("Insufficient stack space to handle exception!");
804
805 pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
806 pr_emerg("FAR: 0x%016lx\n", far);
807
808 pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
809 tsk_stk, tsk_stk + THREAD_SIZE);
810 pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
811 irq_stk, irq_stk + IRQ_STACK_SIZE);
812 pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
813 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
814
815 __show_regs(regs);
816
817 /*
818 * We use nmi_panic to limit the potential for recusive overflows, and
819 * to get a better stack trace.
820 */
821 nmi_panic(NULL, "kernel stack overflow");
822 cpu_park_loop();
823 }
824 #endif
825
arm64_serror_panic(struct pt_regs * regs,u32 esr)826 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
827 {
828 console_verbose();
829
830 pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
831 smp_processor_id(), esr, esr_get_class_string(esr));
832 if (regs)
833 __show_regs(regs);
834
835 nmi_panic(regs, "Asynchronous SError Interrupt");
836
837 cpu_park_loop();
838 unreachable();
839 }
840
arm64_is_fatal_ras_serror(struct pt_regs * regs,unsigned int esr)841 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
842 {
843 u32 aet = arm64_ras_serror_get_severity(esr);
844
845 switch (aet) {
846 case ESR_ELx_AET_CE: /* corrected error */
847 case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
848 /*
849 * The CPU can make progress. We may take UEO again as
850 * a more severe error.
851 */
852 return false;
853
854 case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
855 case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
856 /*
857 * The CPU can't make progress. The exception may have
858 * been imprecise.
859 *
860 * Neoverse-N1 #1349291 means a non-KVM SError reported as
861 * Unrecoverable should be treated as Uncontainable. We
862 * call arm64_serror_panic() in both cases.
863 */
864 return true;
865
866 case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
867 default:
868 /* Error has been silently propagated */
869 arm64_serror_panic(regs, esr);
870 }
871 }
872
do_serror(struct pt_regs * regs,unsigned int esr)873 asmlinkage void noinstr do_serror(struct pt_regs *regs, unsigned int esr)
874 {
875 arm64_enter_nmi(regs);
876
877 /* non-RAS errors are not containable */
878 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
879 arm64_serror_panic(regs, esr);
880
881 arm64_exit_nmi(regs);
882 }
883
884 /* GENERIC_BUG traps */
885
is_valid_bugaddr(unsigned long addr)886 int is_valid_bugaddr(unsigned long addr)
887 {
888 /*
889 * bug_handler() only called for BRK #BUG_BRK_IMM.
890 * So the answer is trivial -- any spurious instances with no
891 * bug table entry will be rejected by report_bug() and passed
892 * back to the debug-monitors code and handled as a fatal
893 * unexpected debug exception.
894 */
895 return 1;
896 }
897
bug_handler(struct pt_regs * regs,unsigned int esr)898 static int bug_handler(struct pt_regs *regs, unsigned int esr)
899 {
900 switch (report_bug(regs->pc, regs)) {
901 case BUG_TRAP_TYPE_BUG:
902 die("Oops - BUG", regs, 0);
903 break;
904
905 case BUG_TRAP_TYPE_WARN:
906 break;
907
908 default:
909 /* unknown/unrecognised bug trap type */
910 return DBG_HOOK_ERROR;
911 }
912
913 /* If thread survives, skip over the BUG instruction and continue: */
914 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
915 return DBG_HOOK_HANDLED;
916 }
917
918 static struct break_hook bug_break_hook = {
919 .fn = bug_handler,
920 .imm = BUG_BRK_IMM,
921 };
922
reserved_fault_handler(struct pt_regs * regs,unsigned int esr)923 static int reserved_fault_handler(struct pt_regs *regs, unsigned int esr)
924 {
925 pr_err("%s generated an invalid instruction at %pS!\n",
926 in_bpf_jit(regs) ? "BPF JIT" : "Kernel text patching",
927 (void *)instruction_pointer(regs));
928
929 /* We cannot handle this */
930 return DBG_HOOK_ERROR;
931 }
932
933 static struct break_hook fault_break_hook = {
934 .fn = reserved_fault_handler,
935 .imm = FAULT_BRK_IMM,
936 };
937
938 #ifdef CONFIG_KASAN_SW_TAGS
939
940 #define KASAN_ESR_RECOVER 0x20
941 #define KASAN_ESR_WRITE 0x10
942 #define KASAN_ESR_SIZE_MASK 0x0f
943 #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
944
kasan_handler(struct pt_regs * regs,unsigned int esr)945 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
946 {
947 bool recover = esr & KASAN_ESR_RECOVER;
948 bool write = esr & KASAN_ESR_WRITE;
949 size_t size = KASAN_ESR_SIZE(esr);
950 u64 addr = regs->regs[0];
951 u64 pc = regs->pc;
952
953 kasan_report(addr, size, write, pc);
954
955 /*
956 * The instrumentation allows to control whether we can proceed after
957 * a crash was detected. This is done by passing the -recover flag to
958 * the compiler. Disabling recovery allows to generate more compact
959 * code.
960 *
961 * Unfortunately disabling recovery doesn't work for the kernel right
962 * now. KASAN reporting is disabled in some contexts (for example when
963 * the allocator accesses slab object metadata; this is controlled by
964 * current->kasan_depth). All these accesses are detected by the tool,
965 * even though the reports for them are not printed.
966 *
967 * This is something that might be fixed at some point in the future.
968 */
969 if (!recover)
970 die("Oops - KASAN", regs, 0);
971
972 /* If thread survives, skip over the brk instruction and continue: */
973 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
974 return DBG_HOOK_HANDLED;
975 }
976
977 static struct break_hook kasan_break_hook = {
978 .fn = kasan_handler,
979 .imm = KASAN_BRK_IMM,
980 .mask = KASAN_BRK_MASK,
981 };
982 #endif
983
984 /*
985 * Initial handler for AArch64 BRK exceptions
986 * This handler only used until debug_traps_init().
987 */
early_brk64(unsigned long addr,unsigned int esr,struct pt_regs * regs)988 int __init early_brk64(unsigned long addr, unsigned int esr,
989 struct pt_regs *regs)
990 {
991 #ifdef CONFIG_KASAN_SW_TAGS
992 unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
993
994 if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
995 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
996 #endif
997 return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
998 }
999
trap_init(void)1000 void __init trap_init(void)
1001 {
1002 register_kernel_break_hook(&bug_break_hook);
1003 register_kernel_break_hook(&fault_break_hook);
1004 #ifdef CONFIG_KASAN_SW_TAGS
1005 register_kernel_break_hook(&kasan_break_hook);
1006 #endif
1007 debug_traps_init();
1008 }
1009