1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright (C) 2009, 2010 ARM Limited
5 *
6 * Author: Will Deacon <will.deacon@arm.com>
7 */
8
9 /*
10 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
11 * using the CPU's debug registers.
12 */
13 #define pr_fmt(fmt) "hw-breakpoint: " fmt
14
15 #include <linux/errno.h>
16 #include <linux/hardirq.h>
17 #include <linux/perf_event.h>
18 #include <linux/hw_breakpoint.h>
19 #include <linux/smp.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/coresight.h>
22
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/current.h>
26 #include <asm/hw_breakpoint.h>
27 #include <asm/traps.h>
28
29 /* Breakpoint currently in use for each BRP. */
30 static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
31
32 /* Watchpoint currently in use for each WRP. */
33 static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
34
35 /* Number of BRP/WRP registers on this CPU. */
36 static int core_num_brps __ro_after_init;
37 static int core_num_wrps __ro_after_init;
38
39 /* Debug architecture version. */
40 static u8 debug_arch __ro_after_init;
41
42 /* Does debug architecture support OS Save and Restore? */
43 static bool has_ossr __ro_after_init;
44
45 /* Maximum supported watchpoint length. */
46 static u8 max_watchpoint_len __ro_after_init;
47
48 #define READ_WB_REG_CASE(OP2, M, VAL) \
49 case ((OP2 << 4) + M): \
50 ARM_DBG_READ(c0, c ## M, OP2, VAL); \
51 break
52
53 #define WRITE_WB_REG_CASE(OP2, M, VAL) \
54 case ((OP2 << 4) + M): \
55 ARM_DBG_WRITE(c0, c ## M, OP2, VAL); \
56 break
57
58 #define GEN_READ_WB_REG_CASES(OP2, VAL) \
59 READ_WB_REG_CASE(OP2, 0, VAL); \
60 READ_WB_REG_CASE(OP2, 1, VAL); \
61 READ_WB_REG_CASE(OP2, 2, VAL); \
62 READ_WB_REG_CASE(OP2, 3, VAL); \
63 READ_WB_REG_CASE(OP2, 4, VAL); \
64 READ_WB_REG_CASE(OP2, 5, VAL); \
65 READ_WB_REG_CASE(OP2, 6, VAL); \
66 READ_WB_REG_CASE(OP2, 7, VAL); \
67 READ_WB_REG_CASE(OP2, 8, VAL); \
68 READ_WB_REG_CASE(OP2, 9, VAL); \
69 READ_WB_REG_CASE(OP2, 10, VAL); \
70 READ_WB_REG_CASE(OP2, 11, VAL); \
71 READ_WB_REG_CASE(OP2, 12, VAL); \
72 READ_WB_REG_CASE(OP2, 13, VAL); \
73 READ_WB_REG_CASE(OP2, 14, VAL); \
74 READ_WB_REG_CASE(OP2, 15, VAL)
75
76 #define GEN_WRITE_WB_REG_CASES(OP2, VAL) \
77 WRITE_WB_REG_CASE(OP2, 0, VAL); \
78 WRITE_WB_REG_CASE(OP2, 1, VAL); \
79 WRITE_WB_REG_CASE(OP2, 2, VAL); \
80 WRITE_WB_REG_CASE(OP2, 3, VAL); \
81 WRITE_WB_REG_CASE(OP2, 4, VAL); \
82 WRITE_WB_REG_CASE(OP2, 5, VAL); \
83 WRITE_WB_REG_CASE(OP2, 6, VAL); \
84 WRITE_WB_REG_CASE(OP2, 7, VAL); \
85 WRITE_WB_REG_CASE(OP2, 8, VAL); \
86 WRITE_WB_REG_CASE(OP2, 9, VAL); \
87 WRITE_WB_REG_CASE(OP2, 10, VAL); \
88 WRITE_WB_REG_CASE(OP2, 11, VAL); \
89 WRITE_WB_REG_CASE(OP2, 12, VAL); \
90 WRITE_WB_REG_CASE(OP2, 13, VAL); \
91 WRITE_WB_REG_CASE(OP2, 14, VAL); \
92 WRITE_WB_REG_CASE(OP2, 15, VAL)
93
read_wb_reg(int n)94 static u32 read_wb_reg(int n)
95 {
96 u32 val = 0;
97
98 switch (n) {
99 GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
100 GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
101 GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
102 GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
103 default:
104 pr_warn("attempt to read from unknown breakpoint register %d\n",
105 n);
106 }
107
108 return val;
109 }
110
write_wb_reg(int n,u32 val)111 static void write_wb_reg(int n, u32 val)
112 {
113 switch (n) {
114 GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
115 GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
116 GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
117 GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
118 default:
119 pr_warn("attempt to write to unknown breakpoint register %d\n",
120 n);
121 }
122 isb();
123 }
124
125 /* Determine debug architecture. */
get_debug_arch(void)126 static u8 get_debug_arch(void)
127 {
128 u32 didr;
129
130 /* Do we implement the extended CPUID interface? */
131 if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
132 pr_warn_once("CPUID feature registers not supported. "
133 "Assuming v6 debug is present.\n");
134 return ARM_DEBUG_ARCH_V6;
135 }
136
137 ARM_DBG_READ(c0, c0, 0, didr);
138 return (didr >> 16) & 0xf;
139 }
140
arch_get_debug_arch(void)141 u8 arch_get_debug_arch(void)
142 {
143 return debug_arch;
144 }
145
debug_arch_supported(void)146 static int debug_arch_supported(void)
147 {
148 u8 arch = get_debug_arch();
149
150 /* We don't support the memory-mapped interface. */
151 return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
152 arch >= ARM_DEBUG_ARCH_V7_1;
153 }
154
155 /* Can we determine the watchpoint access type from the fsr? */
debug_exception_updates_fsr(void)156 static int debug_exception_updates_fsr(void)
157 {
158 return get_debug_arch() >= ARM_DEBUG_ARCH_V8;
159 }
160
161 /* Determine number of WRP registers available. */
get_num_wrp_resources(void)162 static int get_num_wrp_resources(void)
163 {
164 u32 didr;
165 ARM_DBG_READ(c0, c0, 0, didr);
166 return ((didr >> 28) & 0xf) + 1;
167 }
168
169 /* Determine number of BRP registers available. */
get_num_brp_resources(void)170 static int get_num_brp_resources(void)
171 {
172 u32 didr;
173 ARM_DBG_READ(c0, c0, 0, didr);
174 return ((didr >> 24) & 0xf) + 1;
175 }
176
177 /* Does this core support mismatch breakpoints? */
core_has_mismatch_brps(void)178 static int core_has_mismatch_brps(void)
179 {
180 return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
181 get_num_brp_resources() > 1);
182 }
183
184 /* Determine number of usable WRPs available. */
get_num_wrps(void)185 static int get_num_wrps(void)
186 {
187 /*
188 * On debug architectures prior to 7.1, when a watchpoint fires, the
189 * only way to work out which watchpoint it was is by disassembling
190 * the faulting instruction and working out the address of the memory
191 * access.
192 *
193 * Furthermore, we can only do this if the watchpoint was precise
194 * since imprecise watchpoints prevent us from calculating register
195 * based addresses.
196 *
197 * Providing we have more than 1 breakpoint register, we only report
198 * a single watchpoint register for the time being. This way, we always
199 * know which watchpoint fired. In the future we can either add a
200 * disassembler and address generation emulator, or we can insert a
201 * check to see if the DFAR is set on watchpoint exception entry
202 * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
203 * that it is set on some implementations].
204 */
205 if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
206 return 1;
207
208 return get_num_wrp_resources();
209 }
210
211 /* Determine number of usable BRPs available. */
get_num_brps(void)212 static int get_num_brps(void)
213 {
214 int brps = get_num_brp_resources();
215 return core_has_mismatch_brps() ? brps - 1 : brps;
216 }
217
218 /*
219 * In order to access the breakpoint/watchpoint control registers,
220 * we must be running in debug monitor mode. Unfortunately, we can
221 * be put into halting debug mode at any time by an external debugger
222 * but there is nothing we can do to prevent that.
223 */
monitor_mode_enabled(void)224 static int monitor_mode_enabled(void)
225 {
226 u32 dscr;
227 ARM_DBG_READ(c0, c1, 0, dscr);
228 return !!(dscr & ARM_DSCR_MDBGEN);
229 }
230
enable_monitor_mode(void)231 static int enable_monitor_mode(void)
232 {
233 u32 dscr;
234 ARM_DBG_READ(c0, c1, 0, dscr);
235
236 /* If monitor mode is already enabled, just return. */
237 if (dscr & ARM_DSCR_MDBGEN)
238 goto out;
239
240 /* Write to the corresponding DSCR. */
241 switch (get_debug_arch()) {
242 case ARM_DEBUG_ARCH_V6:
243 case ARM_DEBUG_ARCH_V6_1:
244 ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
245 break;
246 case ARM_DEBUG_ARCH_V7_ECP14:
247 case ARM_DEBUG_ARCH_V7_1:
248 case ARM_DEBUG_ARCH_V8:
249 ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
250 isb();
251 break;
252 default:
253 return -ENODEV;
254 }
255
256 /* Check that the write made it through. */
257 ARM_DBG_READ(c0, c1, 0, dscr);
258 if (!(dscr & ARM_DSCR_MDBGEN)) {
259 pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
260 smp_processor_id());
261 return -EPERM;
262 }
263
264 out:
265 return 0;
266 }
267
hw_breakpoint_slots(int type)268 int hw_breakpoint_slots(int type)
269 {
270 if (!debug_arch_supported())
271 return 0;
272
273 /*
274 * We can be called early, so don't rely on
275 * our static variables being initialised.
276 */
277 switch (type) {
278 case TYPE_INST:
279 return get_num_brps();
280 case TYPE_DATA:
281 return get_num_wrps();
282 default:
283 pr_warn("unknown slot type: %d\n", type);
284 return 0;
285 }
286 }
287
288 /*
289 * Check if 8-bit byte-address select is available.
290 * This clobbers WRP 0.
291 */
get_max_wp_len(void)292 static u8 get_max_wp_len(void)
293 {
294 u32 ctrl_reg;
295 struct arch_hw_breakpoint_ctrl ctrl;
296 u8 size = 4;
297
298 if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
299 goto out;
300
301 memset(&ctrl, 0, sizeof(ctrl));
302 ctrl.len = ARM_BREAKPOINT_LEN_8;
303 ctrl_reg = encode_ctrl_reg(ctrl);
304
305 write_wb_reg(ARM_BASE_WVR, 0);
306 write_wb_reg(ARM_BASE_WCR, ctrl_reg);
307 if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
308 size = 8;
309
310 out:
311 return size;
312 }
313
arch_get_max_wp_len(void)314 u8 arch_get_max_wp_len(void)
315 {
316 return max_watchpoint_len;
317 }
318
319 /*
320 * Install a perf counter breakpoint.
321 */
arch_install_hw_breakpoint(struct perf_event * bp)322 int arch_install_hw_breakpoint(struct perf_event *bp)
323 {
324 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
325 struct perf_event **slot, **slots;
326 int i, max_slots, ctrl_base, val_base;
327 u32 addr, ctrl;
328
329 addr = info->address;
330 ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
331
332 if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
333 /* Breakpoint */
334 ctrl_base = ARM_BASE_BCR;
335 val_base = ARM_BASE_BVR;
336 slots = this_cpu_ptr(bp_on_reg);
337 max_slots = core_num_brps;
338 } else {
339 /* Watchpoint */
340 ctrl_base = ARM_BASE_WCR;
341 val_base = ARM_BASE_WVR;
342 slots = this_cpu_ptr(wp_on_reg);
343 max_slots = core_num_wrps;
344 }
345
346 for (i = 0; i < max_slots; ++i) {
347 slot = &slots[i];
348
349 if (!*slot) {
350 *slot = bp;
351 break;
352 }
353 }
354
355 if (i == max_slots) {
356 pr_warn("Can't find any breakpoint slot\n");
357 return -EBUSY;
358 }
359
360 /* Override the breakpoint data with the step data. */
361 if (info->step_ctrl.enabled) {
362 addr = info->trigger & ~0x3;
363 ctrl = encode_ctrl_reg(info->step_ctrl);
364 if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
365 i = 0;
366 ctrl_base = ARM_BASE_BCR + core_num_brps;
367 val_base = ARM_BASE_BVR + core_num_brps;
368 }
369 }
370
371 /* Setup the address register. */
372 write_wb_reg(val_base + i, addr);
373
374 /* Setup the control register. */
375 write_wb_reg(ctrl_base + i, ctrl);
376 return 0;
377 }
378
arch_uninstall_hw_breakpoint(struct perf_event * bp)379 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
380 {
381 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
382 struct perf_event **slot, **slots;
383 int i, max_slots, base;
384
385 if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
386 /* Breakpoint */
387 base = ARM_BASE_BCR;
388 slots = this_cpu_ptr(bp_on_reg);
389 max_slots = core_num_brps;
390 } else {
391 /* Watchpoint */
392 base = ARM_BASE_WCR;
393 slots = this_cpu_ptr(wp_on_reg);
394 max_slots = core_num_wrps;
395 }
396
397 /* Remove the breakpoint. */
398 for (i = 0; i < max_slots; ++i) {
399 slot = &slots[i];
400
401 if (*slot == bp) {
402 *slot = NULL;
403 break;
404 }
405 }
406
407 if (i == max_slots) {
408 pr_warn("Can't find any breakpoint slot\n");
409 return;
410 }
411
412 /* Ensure that we disable the mismatch breakpoint. */
413 if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
414 info->step_ctrl.enabled) {
415 i = 0;
416 base = ARM_BASE_BCR + core_num_brps;
417 }
418
419 /* Reset the control register. */
420 write_wb_reg(base + i, 0);
421 }
422
get_hbp_len(u8 hbp_len)423 static int get_hbp_len(u8 hbp_len)
424 {
425 unsigned int len_in_bytes = 0;
426
427 switch (hbp_len) {
428 case ARM_BREAKPOINT_LEN_1:
429 len_in_bytes = 1;
430 break;
431 case ARM_BREAKPOINT_LEN_2:
432 len_in_bytes = 2;
433 break;
434 case ARM_BREAKPOINT_LEN_4:
435 len_in_bytes = 4;
436 break;
437 case ARM_BREAKPOINT_LEN_8:
438 len_in_bytes = 8;
439 break;
440 }
441
442 return len_in_bytes;
443 }
444
445 /*
446 * Check whether bp virtual address is in kernel space.
447 */
arch_check_bp_in_kernelspace(struct arch_hw_breakpoint * hw)448 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
449 {
450 unsigned int len;
451 unsigned long va;
452
453 va = hw->address;
454 len = get_hbp_len(hw->ctrl.len);
455
456 return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
457 }
458
459 /*
460 * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
461 * Hopefully this will disappear when ptrace can bypass the conversion
462 * to generic breakpoint descriptions.
463 */
arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,int * gen_len,int * gen_type)464 int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
465 int *gen_len, int *gen_type)
466 {
467 /* Type */
468 switch (ctrl.type) {
469 case ARM_BREAKPOINT_EXECUTE:
470 *gen_type = HW_BREAKPOINT_X;
471 break;
472 case ARM_BREAKPOINT_LOAD:
473 *gen_type = HW_BREAKPOINT_R;
474 break;
475 case ARM_BREAKPOINT_STORE:
476 *gen_type = HW_BREAKPOINT_W;
477 break;
478 case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
479 *gen_type = HW_BREAKPOINT_RW;
480 break;
481 default:
482 return -EINVAL;
483 }
484
485 /* Len */
486 switch (ctrl.len) {
487 case ARM_BREAKPOINT_LEN_1:
488 *gen_len = HW_BREAKPOINT_LEN_1;
489 break;
490 case ARM_BREAKPOINT_LEN_2:
491 *gen_len = HW_BREAKPOINT_LEN_2;
492 break;
493 case ARM_BREAKPOINT_LEN_4:
494 *gen_len = HW_BREAKPOINT_LEN_4;
495 break;
496 case ARM_BREAKPOINT_LEN_8:
497 *gen_len = HW_BREAKPOINT_LEN_8;
498 break;
499 default:
500 return -EINVAL;
501 }
502
503 return 0;
504 }
505
506 /*
507 * Construct an arch_hw_breakpoint from a perf_event.
508 */
arch_build_bp_info(struct perf_event * bp,const struct perf_event_attr * attr,struct arch_hw_breakpoint * hw)509 static int arch_build_bp_info(struct perf_event *bp,
510 const struct perf_event_attr *attr,
511 struct arch_hw_breakpoint *hw)
512 {
513 /* Type */
514 switch (attr->bp_type) {
515 case HW_BREAKPOINT_X:
516 hw->ctrl.type = ARM_BREAKPOINT_EXECUTE;
517 break;
518 case HW_BREAKPOINT_R:
519 hw->ctrl.type = ARM_BREAKPOINT_LOAD;
520 break;
521 case HW_BREAKPOINT_W:
522 hw->ctrl.type = ARM_BREAKPOINT_STORE;
523 break;
524 case HW_BREAKPOINT_RW:
525 hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
526 break;
527 default:
528 return -EINVAL;
529 }
530
531 /* Len */
532 switch (attr->bp_len) {
533 case HW_BREAKPOINT_LEN_1:
534 hw->ctrl.len = ARM_BREAKPOINT_LEN_1;
535 break;
536 case HW_BREAKPOINT_LEN_2:
537 hw->ctrl.len = ARM_BREAKPOINT_LEN_2;
538 break;
539 case HW_BREAKPOINT_LEN_4:
540 hw->ctrl.len = ARM_BREAKPOINT_LEN_4;
541 break;
542 case HW_BREAKPOINT_LEN_8:
543 hw->ctrl.len = ARM_BREAKPOINT_LEN_8;
544 if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE)
545 && max_watchpoint_len >= 8)
546 break;
547 /* Else, fall through */
548 default:
549 return -EINVAL;
550 }
551
552 /*
553 * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
554 * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
555 * by the hardware and must be aligned to the appropriate number of
556 * bytes.
557 */
558 if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
559 hw->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
560 hw->ctrl.len != ARM_BREAKPOINT_LEN_4)
561 return -EINVAL;
562
563 /* Address */
564 hw->address = attr->bp_addr;
565
566 /* Privilege */
567 hw->ctrl.privilege = ARM_BREAKPOINT_USER;
568 if (arch_check_bp_in_kernelspace(hw))
569 hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
570
571 /* Enabled? */
572 hw->ctrl.enabled = !attr->disabled;
573
574 /* Mismatch */
575 hw->ctrl.mismatch = 0;
576
577 return 0;
578 }
579
580 /*
581 * Validate the arch-specific HW Breakpoint register settings.
582 */
hw_breakpoint_arch_parse(struct perf_event * bp,const struct perf_event_attr * attr,struct arch_hw_breakpoint * hw)583 int hw_breakpoint_arch_parse(struct perf_event *bp,
584 const struct perf_event_attr *attr,
585 struct arch_hw_breakpoint *hw)
586 {
587 int ret = 0;
588 u32 offset, alignment_mask = 0x3;
589
590 /* Ensure that we are in monitor debug mode. */
591 if (!monitor_mode_enabled())
592 return -ENODEV;
593
594 /* Build the arch_hw_breakpoint. */
595 ret = arch_build_bp_info(bp, attr, hw);
596 if (ret)
597 goto out;
598
599 /* Check address alignment. */
600 if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8)
601 alignment_mask = 0x7;
602 offset = hw->address & alignment_mask;
603 switch (offset) {
604 case 0:
605 /* Aligned */
606 break;
607 case 1:
608 case 2:
609 /* Allow halfword watchpoints and breakpoints. */
610 if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2)
611 break;
612 /* Else, fall through */
613 case 3:
614 /* Allow single byte watchpoint. */
615 if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1)
616 break;
617 /* Else, fall through */
618 default:
619 ret = -EINVAL;
620 goto out;
621 }
622
623 hw->address &= ~alignment_mask;
624 hw->ctrl.len <<= offset;
625
626 if (is_default_overflow_handler(bp)) {
627 /*
628 * Mismatch breakpoints are required for single-stepping
629 * breakpoints.
630 */
631 if (!core_has_mismatch_brps())
632 return -EINVAL;
633
634 /* We don't allow mismatch breakpoints in kernel space. */
635 if (arch_check_bp_in_kernelspace(hw))
636 return -EPERM;
637
638 /*
639 * Per-cpu breakpoints are not supported by our stepping
640 * mechanism.
641 */
642 if (!bp->hw.target)
643 return -EINVAL;
644
645 /*
646 * We only support specific access types if the fsr
647 * reports them.
648 */
649 if (!debug_exception_updates_fsr() &&
650 (hw->ctrl.type == ARM_BREAKPOINT_LOAD ||
651 hw->ctrl.type == ARM_BREAKPOINT_STORE))
652 return -EINVAL;
653 }
654
655 out:
656 return ret;
657 }
658
659 /*
660 * Enable/disable single-stepping over the breakpoint bp at address addr.
661 */
enable_single_step(struct perf_event * bp,u32 addr)662 static void enable_single_step(struct perf_event *bp, u32 addr)
663 {
664 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
665
666 arch_uninstall_hw_breakpoint(bp);
667 info->step_ctrl.mismatch = 1;
668 info->step_ctrl.len = ARM_BREAKPOINT_LEN_4;
669 info->step_ctrl.type = ARM_BREAKPOINT_EXECUTE;
670 info->step_ctrl.privilege = info->ctrl.privilege;
671 info->step_ctrl.enabled = 1;
672 info->trigger = addr;
673 arch_install_hw_breakpoint(bp);
674 }
675
disable_single_step(struct perf_event * bp)676 static void disable_single_step(struct perf_event *bp)
677 {
678 arch_uninstall_hw_breakpoint(bp);
679 counter_arch_bp(bp)->step_ctrl.enabled = 0;
680 arch_install_hw_breakpoint(bp);
681 }
682
watchpoint_handler(unsigned long addr,unsigned int fsr,struct pt_regs * regs)683 static void watchpoint_handler(unsigned long addr, unsigned int fsr,
684 struct pt_regs *regs)
685 {
686 int i, access;
687 u32 val, ctrl_reg, alignment_mask;
688 struct perf_event *wp, **slots;
689 struct arch_hw_breakpoint *info;
690 struct arch_hw_breakpoint_ctrl ctrl;
691
692 slots = this_cpu_ptr(wp_on_reg);
693
694 for (i = 0; i < core_num_wrps; ++i) {
695 rcu_read_lock();
696
697 wp = slots[i];
698
699 if (wp == NULL)
700 goto unlock;
701
702 info = counter_arch_bp(wp);
703 /*
704 * The DFAR is an unknown value on debug architectures prior
705 * to 7.1. Since we only allow a single watchpoint on these
706 * older CPUs, we can set the trigger to the lowest possible
707 * faulting address.
708 */
709 if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
710 BUG_ON(i > 0);
711 info->trigger = wp->attr.bp_addr;
712 } else {
713 if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
714 alignment_mask = 0x7;
715 else
716 alignment_mask = 0x3;
717
718 /* Check if the watchpoint value matches. */
719 val = read_wb_reg(ARM_BASE_WVR + i);
720 if (val != (addr & ~alignment_mask))
721 goto unlock;
722
723 /* Possible match, check the byte address select. */
724 ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
725 decode_ctrl_reg(ctrl_reg, &ctrl);
726 if (!((1 << (addr & alignment_mask)) & ctrl.len))
727 goto unlock;
728
729 /* Check that the access type matches. */
730 if (debug_exception_updates_fsr()) {
731 access = (fsr & ARM_FSR_ACCESS_MASK) ?
732 HW_BREAKPOINT_W : HW_BREAKPOINT_R;
733 if (!(access & hw_breakpoint_type(wp)))
734 goto unlock;
735 }
736
737 /* We have a winner. */
738 info->trigger = addr;
739 }
740
741 pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
742 perf_bp_event(wp, regs);
743
744 /*
745 * If no overflow handler is present, insert a temporary
746 * mismatch breakpoint so we can single-step over the
747 * watchpoint trigger.
748 */
749 if (is_default_overflow_handler(wp))
750 enable_single_step(wp, instruction_pointer(regs));
751
752 unlock:
753 rcu_read_unlock();
754 }
755 }
756
watchpoint_single_step_handler(unsigned long pc)757 static void watchpoint_single_step_handler(unsigned long pc)
758 {
759 int i;
760 struct perf_event *wp, **slots;
761 struct arch_hw_breakpoint *info;
762
763 slots = this_cpu_ptr(wp_on_reg);
764
765 for (i = 0; i < core_num_wrps; ++i) {
766 rcu_read_lock();
767
768 wp = slots[i];
769
770 if (wp == NULL)
771 goto unlock;
772
773 info = counter_arch_bp(wp);
774 if (!info->step_ctrl.enabled)
775 goto unlock;
776
777 /*
778 * Restore the original watchpoint if we've completed the
779 * single-step.
780 */
781 if (info->trigger != pc)
782 disable_single_step(wp);
783
784 unlock:
785 rcu_read_unlock();
786 }
787 }
788
breakpoint_handler(unsigned long unknown,struct pt_regs * regs)789 static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
790 {
791 int i;
792 u32 ctrl_reg, val, addr;
793 struct perf_event *bp, **slots;
794 struct arch_hw_breakpoint *info;
795 struct arch_hw_breakpoint_ctrl ctrl;
796
797 slots = this_cpu_ptr(bp_on_reg);
798
799 /* The exception entry code places the amended lr in the PC. */
800 addr = regs->ARM_pc;
801
802 /* Check the currently installed breakpoints first. */
803 for (i = 0; i < core_num_brps; ++i) {
804 rcu_read_lock();
805
806 bp = slots[i];
807
808 if (bp == NULL)
809 goto unlock;
810
811 info = counter_arch_bp(bp);
812
813 /* Check if the breakpoint value matches. */
814 val = read_wb_reg(ARM_BASE_BVR + i);
815 if (val != (addr & ~0x3))
816 goto mismatch;
817
818 /* Possible match, check the byte address select to confirm. */
819 ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
820 decode_ctrl_reg(ctrl_reg, &ctrl);
821 if ((1 << (addr & 0x3)) & ctrl.len) {
822 info->trigger = addr;
823 pr_debug("breakpoint fired: address = 0x%x\n", addr);
824 perf_bp_event(bp, regs);
825 if (!bp->overflow_handler)
826 enable_single_step(bp, addr);
827 goto unlock;
828 }
829
830 mismatch:
831 /* If we're stepping a breakpoint, it can now be restored. */
832 if (info->step_ctrl.enabled)
833 disable_single_step(bp);
834 unlock:
835 rcu_read_unlock();
836 }
837
838 /* Handle any pending watchpoint single-step breakpoints. */
839 watchpoint_single_step_handler(addr);
840 }
841
842 /*
843 * Called from either the Data Abort Handler [watchpoint] or the
844 * Prefetch Abort Handler [breakpoint] with interrupts disabled.
845 */
hw_breakpoint_pending(unsigned long addr,unsigned int fsr,struct pt_regs * regs)846 static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
847 struct pt_regs *regs)
848 {
849 int ret = 0;
850 u32 dscr;
851
852 preempt_disable();
853
854 if (interrupts_enabled(regs))
855 local_irq_enable();
856
857 /* We only handle watchpoints and hardware breakpoints. */
858 ARM_DBG_READ(c0, c1, 0, dscr);
859
860 /* Perform perf callbacks. */
861 switch (ARM_DSCR_MOE(dscr)) {
862 case ARM_ENTRY_BREAKPOINT:
863 breakpoint_handler(addr, regs);
864 break;
865 case ARM_ENTRY_ASYNC_WATCHPOINT:
866 WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
867 /* Fall through */
868 case ARM_ENTRY_SYNC_WATCHPOINT:
869 watchpoint_handler(addr, fsr, regs);
870 break;
871 default:
872 ret = 1; /* Unhandled fault. */
873 }
874
875 preempt_enable();
876
877 return ret;
878 }
879
880 /*
881 * One-time initialisation.
882 */
883 static cpumask_t debug_err_mask;
884
debug_reg_trap(struct pt_regs * regs,unsigned int instr)885 static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
886 {
887 int cpu = smp_processor_id();
888
889 pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
890 instr, cpu);
891
892 /* Set the error flag for this CPU and skip the faulting instruction. */
893 cpumask_set_cpu(cpu, &debug_err_mask);
894 instruction_pointer(regs) += 4;
895 return 0;
896 }
897
898 static struct undef_hook debug_reg_hook = {
899 .instr_mask = 0x0fe80f10,
900 .instr_val = 0x0e000e10,
901 .fn = debug_reg_trap,
902 };
903
904 /* Does this core support OS Save and Restore? */
core_has_os_save_restore(void)905 static bool core_has_os_save_restore(void)
906 {
907 u32 oslsr;
908
909 switch (get_debug_arch()) {
910 case ARM_DEBUG_ARCH_V7_1:
911 return true;
912 case ARM_DEBUG_ARCH_V7_ECP14:
913 ARM_DBG_READ(c1, c1, 4, oslsr);
914 if (oslsr & ARM_OSLSR_OSLM0)
915 return true;
916 /* Else, fall through */
917 default:
918 return false;
919 }
920 }
921
reset_ctrl_regs(unsigned int cpu)922 static void reset_ctrl_regs(unsigned int cpu)
923 {
924 int i, raw_num_brps, err = 0;
925 u32 val;
926
927 /*
928 * v7 debug contains save and restore registers so that debug state
929 * can be maintained across low-power modes without leaving the debug
930 * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
931 * the debug registers out of reset, so we must unlock the OS Lock
932 * Access Register to avoid taking undefined instruction exceptions
933 * later on.
934 */
935 switch (debug_arch) {
936 case ARM_DEBUG_ARCH_V6:
937 case ARM_DEBUG_ARCH_V6_1:
938 /* ARMv6 cores clear the registers out of reset. */
939 goto out_mdbgen;
940 case ARM_DEBUG_ARCH_V7_ECP14:
941 /*
942 * Ensure sticky power-down is clear (i.e. debug logic is
943 * powered up).
944 */
945 ARM_DBG_READ(c1, c5, 4, val);
946 if ((val & 0x1) == 0)
947 err = -EPERM;
948
949 if (!has_ossr)
950 goto clear_vcr;
951 break;
952 case ARM_DEBUG_ARCH_V7_1:
953 /*
954 * Ensure the OS double lock is clear.
955 */
956 ARM_DBG_READ(c1, c3, 4, val);
957 if ((val & 0x1) == 1)
958 err = -EPERM;
959 break;
960 }
961
962 if (err) {
963 pr_warn_once("CPU %d debug is powered down!\n", cpu);
964 cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
965 return;
966 }
967
968 /*
969 * Unconditionally clear the OS lock by writing a value
970 * other than CS_LAR_KEY to the access register.
971 */
972 ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK);
973 isb();
974
975 /*
976 * Clear any configured vector-catch events before
977 * enabling monitor mode.
978 */
979 clear_vcr:
980 ARM_DBG_WRITE(c0, c7, 0, 0);
981 isb();
982
983 if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
984 pr_warn_once("CPU %d failed to disable vector catch\n", cpu);
985 return;
986 }
987
988 /*
989 * The control/value register pairs are UNKNOWN out of reset so
990 * clear them to avoid spurious debug events.
991 */
992 raw_num_brps = get_num_brp_resources();
993 for (i = 0; i < raw_num_brps; ++i) {
994 write_wb_reg(ARM_BASE_BCR + i, 0UL);
995 write_wb_reg(ARM_BASE_BVR + i, 0UL);
996 }
997
998 for (i = 0; i < core_num_wrps; ++i) {
999 write_wb_reg(ARM_BASE_WCR + i, 0UL);
1000 write_wb_reg(ARM_BASE_WVR + i, 0UL);
1001 }
1002
1003 if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1004 pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu);
1005 return;
1006 }
1007
1008 /*
1009 * Have a crack at enabling monitor mode. We don't actually need
1010 * it yet, but reporting an error early is useful if it fails.
1011 */
1012 out_mdbgen:
1013 if (enable_monitor_mode())
1014 cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1015 }
1016
dbg_reset_online(unsigned int cpu)1017 static int dbg_reset_online(unsigned int cpu)
1018 {
1019 local_irq_disable();
1020 reset_ctrl_regs(cpu);
1021 local_irq_enable();
1022 return 0;
1023 }
1024
1025 #ifdef CONFIG_CPU_PM
dbg_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * v)1026 static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action,
1027 void *v)
1028 {
1029 if (action == CPU_PM_EXIT)
1030 reset_ctrl_regs(smp_processor_id());
1031
1032 return NOTIFY_OK;
1033 }
1034
1035 static struct notifier_block dbg_cpu_pm_nb = {
1036 .notifier_call = dbg_cpu_pm_notify,
1037 };
1038
pm_init(void)1039 static void __init pm_init(void)
1040 {
1041 cpu_pm_register_notifier(&dbg_cpu_pm_nb);
1042 }
1043 #else
pm_init(void)1044 static inline void pm_init(void)
1045 {
1046 }
1047 #endif
1048
arch_hw_breakpoint_init(void)1049 static int __init arch_hw_breakpoint_init(void)
1050 {
1051 int ret;
1052
1053 debug_arch = get_debug_arch();
1054
1055 if (!debug_arch_supported()) {
1056 pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
1057 return 0;
1058 }
1059
1060 /*
1061 * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD
1062 * whenever a WFI is issued, even if the core is not powered down, in
1063 * violation of the architecture. When DBGPRSR.SPD is set, accesses to
1064 * breakpoint and watchpoint registers are treated as undefined, so
1065 * this results in boot time and runtime failures when these are
1066 * accessed and we unexpectedly take a trap.
1067 *
1068 * It's not clear if/how this can be worked around, so we blacklist
1069 * Scorpion CPUs to avoid these issues.
1070 */
1071 if (read_cpuid_part() == ARM_CPU_PART_SCORPION) {
1072 pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n");
1073 return 0;
1074 }
1075
1076 has_ossr = core_has_os_save_restore();
1077
1078 /* Determine how many BRPs/WRPs are available. */
1079 core_num_brps = get_num_brps();
1080 core_num_wrps = get_num_wrps();
1081
1082 /*
1083 * We need to tread carefully here because DBGSWENABLE may be
1084 * driven low on this core and there isn't an architected way to
1085 * determine that.
1086 */
1087 cpus_read_lock();
1088 register_undef_hook(&debug_reg_hook);
1089
1090 /*
1091 * Register CPU notifier which resets the breakpoint resources. We
1092 * assume that a halting debugger will leave the world in a nice state
1093 * for us.
1094 */
1095 ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
1096 "arm/hw_breakpoint:online",
1097 dbg_reset_online, NULL);
1098 unregister_undef_hook(&debug_reg_hook);
1099 if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) {
1100 core_num_brps = 0;
1101 core_num_wrps = 0;
1102 if (ret > 0)
1103 cpuhp_remove_state_nocalls_cpuslocked(ret);
1104 cpus_read_unlock();
1105 return 0;
1106 }
1107
1108 pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
1109 core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
1110 "", core_num_wrps);
1111
1112 /* Work out the maximum supported watchpoint length. */
1113 max_watchpoint_len = get_max_wp_len();
1114 pr_info("maximum watchpoint size is %u bytes.\n",
1115 max_watchpoint_len);
1116
1117 /* Register debug fault handler. */
1118 hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1119 TRAP_HWBKPT, "watchpoint debug exception");
1120 hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1121 TRAP_HWBKPT, "breakpoint debug exception");
1122 cpus_read_unlock();
1123
1124 /* Register PM notifiers. */
1125 pm_init();
1126 return 0;
1127 }
1128 arch_initcall(arch_hw_breakpoint_init);
1129
hw_breakpoint_pmu_read(struct perf_event * bp)1130 void hw_breakpoint_pmu_read(struct perf_event *bp)
1131 {
1132 }
1133
1134 /*
1135 * Dummy function to register with die_notifier.
1136 */
hw_breakpoint_exceptions_notify(struct notifier_block * unused,unsigned long val,void * data)1137 int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1138 unsigned long val, void *data)
1139 {
1140 return NOTIFY_DONE;
1141 }
1142