1 /*
2  * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Driver for the ARC EMAC 10100 (hardware revision 5)
9  *
10  * Contributors:
11  *		Amit Bhor
12  *		Sameer Dhavale
13  *		Vineet Gupta
14  */
15 
16 #include <linux/crc32.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/of_platform.h>
26 
27 #include "emac.h"
28 
29 static void arc_emac_restart(struct net_device *ndev);
30 
31 /**
32  * arc_emac_tx_avail - Return the number of available slots in the tx ring.
33  * @priv: Pointer to ARC EMAC private data structure.
34  *
35  * returns: the number of slots available for transmission in tx the ring.
36  */
arc_emac_tx_avail(struct arc_emac_priv * priv)37 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
38 {
39 	return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
40 }
41 
42 /**
43  * arc_emac_adjust_link - Adjust the PHY link duplex.
44  * @ndev:	Pointer to the net_device structure.
45  *
46  * This function is called to change the duplex setting after auto negotiation
47  * is done by the PHY.
48  */
arc_emac_adjust_link(struct net_device * ndev)49 static void arc_emac_adjust_link(struct net_device *ndev)
50 {
51 	struct arc_emac_priv *priv = netdev_priv(ndev);
52 	struct phy_device *phy_dev = ndev->phydev;
53 	unsigned int reg, state_changed = 0;
54 
55 	if (priv->link != phy_dev->link) {
56 		priv->link = phy_dev->link;
57 		state_changed = 1;
58 	}
59 
60 	if (priv->speed != phy_dev->speed) {
61 		priv->speed = phy_dev->speed;
62 		state_changed = 1;
63 		if (priv->set_mac_speed)
64 			priv->set_mac_speed(priv, priv->speed);
65 	}
66 
67 	if (priv->duplex != phy_dev->duplex) {
68 		reg = arc_reg_get(priv, R_CTRL);
69 
70 		if (phy_dev->duplex == DUPLEX_FULL)
71 			reg |= ENFL_MASK;
72 		else
73 			reg &= ~ENFL_MASK;
74 
75 		arc_reg_set(priv, R_CTRL, reg);
76 		priv->duplex = phy_dev->duplex;
77 		state_changed = 1;
78 	}
79 
80 	if (state_changed)
81 		phy_print_status(phy_dev);
82 }
83 
84 /**
85  * arc_emac_get_drvinfo - Get EMAC driver information.
86  * @ndev:	Pointer to net_device structure.
87  * @info:	Pointer to ethtool_drvinfo structure.
88  *
89  * This implements ethtool command for getting the driver information.
90  * Issue "ethtool -i ethX" under linux prompt to execute this function.
91  */
arc_emac_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)92 static void arc_emac_get_drvinfo(struct net_device *ndev,
93 				 struct ethtool_drvinfo *info)
94 {
95 	struct arc_emac_priv *priv = netdev_priv(ndev);
96 
97 	strlcpy(info->driver, priv->drv_name, sizeof(info->driver));
98 	strlcpy(info->version, priv->drv_version, sizeof(info->version));
99 }
100 
101 static const struct ethtool_ops arc_emac_ethtool_ops = {
102 	.get_drvinfo	= arc_emac_get_drvinfo,
103 	.get_link	= ethtool_op_get_link,
104 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
105 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
106 };
107 
108 #define FIRST_OR_LAST_MASK	(FIRST_MASK | LAST_MASK)
109 
110 /**
111  * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
112  * @ndev:	Pointer to the network device.
113  */
arc_emac_tx_clean(struct net_device * ndev)114 static void arc_emac_tx_clean(struct net_device *ndev)
115 {
116 	struct arc_emac_priv *priv = netdev_priv(ndev);
117 	struct net_device_stats *stats = &ndev->stats;
118 	unsigned int i;
119 
120 	for (i = 0; i < TX_BD_NUM; i++) {
121 		unsigned int *txbd_dirty = &priv->txbd_dirty;
122 		struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
123 		struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
124 		struct sk_buff *skb = tx_buff->skb;
125 		unsigned int info = le32_to_cpu(txbd->info);
126 
127 		if ((info & FOR_EMAC) || !txbd->data || !skb)
128 			break;
129 
130 		if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
131 			stats->tx_errors++;
132 			stats->tx_dropped++;
133 
134 			if (info & DEFR)
135 				stats->tx_carrier_errors++;
136 
137 			if (info & LTCL)
138 				stats->collisions++;
139 
140 			if (info & UFLO)
141 				stats->tx_fifo_errors++;
142 		} else if (likely(info & FIRST_OR_LAST_MASK)) {
143 			stats->tx_packets++;
144 			stats->tx_bytes += skb->len;
145 		}
146 
147 		dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr),
148 				 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
149 
150 		/* return the sk_buff to system */
151 		dev_kfree_skb_irq(skb);
152 
153 		txbd->data = 0;
154 		txbd->info = 0;
155 		tx_buff->skb = NULL;
156 
157 		*txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
158 	}
159 
160 	/* Ensure that txbd_dirty is visible to tx() before checking
161 	 * for queue stopped.
162 	 */
163 	smp_mb();
164 
165 	if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
166 		netif_wake_queue(ndev);
167 }
168 
169 /**
170  * arc_emac_rx - processing of Rx packets.
171  * @ndev:	Pointer to the network device.
172  * @budget:	How many BDs to process on 1 call.
173  *
174  * returns:	Number of processed BDs
175  *
176  * Iterate through Rx BDs and deliver received packages to upper layer.
177  */
arc_emac_rx(struct net_device * ndev,int budget)178 static int arc_emac_rx(struct net_device *ndev, int budget)
179 {
180 	struct arc_emac_priv *priv = netdev_priv(ndev);
181 	unsigned int work_done;
182 
183 	for (work_done = 0; work_done < budget; work_done++) {
184 		unsigned int *last_rx_bd = &priv->last_rx_bd;
185 		struct net_device_stats *stats = &ndev->stats;
186 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
187 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
188 		unsigned int pktlen, info = le32_to_cpu(rxbd->info);
189 		struct sk_buff *skb;
190 		dma_addr_t addr;
191 
192 		if (unlikely((info & OWN_MASK) == FOR_EMAC))
193 			break;
194 
195 		/* Make a note that we saw a packet at this BD.
196 		 * So next time, driver starts from this + 1
197 		 */
198 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
199 
200 		if (unlikely((info & FIRST_OR_LAST_MASK) !=
201 			     FIRST_OR_LAST_MASK)) {
202 			/* We pre-allocate buffers of MTU size so incoming
203 			 * packets won't be split/chained.
204 			 */
205 			if (net_ratelimit())
206 				netdev_err(ndev, "incomplete packet received\n");
207 
208 			/* Return ownership to EMAC */
209 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
210 			stats->rx_errors++;
211 			stats->rx_length_errors++;
212 			continue;
213 		}
214 
215 		/* Prepare the BD for next cycle. netif_receive_skb()
216 		 * only if new skb was allocated and mapped to avoid holes
217 		 * in the RX fifo.
218 		 */
219 		skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE);
220 		if (unlikely(!skb)) {
221 			if (net_ratelimit())
222 				netdev_err(ndev, "cannot allocate skb\n");
223 			/* Return ownership to EMAC */
224 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
225 			stats->rx_errors++;
226 			stats->rx_dropped++;
227 			continue;
228 		}
229 
230 		addr = dma_map_single(&ndev->dev, (void *)skb->data,
231 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
232 		if (dma_mapping_error(&ndev->dev, addr)) {
233 			if (net_ratelimit())
234 				netdev_err(ndev, "cannot map dma buffer\n");
235 			dev_kfree_skb(skb);
236 			/* Return ownership to EMAC */
237 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
238 			stats->rx_errors++;
239 			stats->rx_dropped++;
240 			continue;
241 		}
242 
243 		/* unmap previosly mapped skb */
244 		dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr),
245 				 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
246 
247 		pktlen = info & LEN_MASK;
248 		stats->rx_packets++;
249 		stats->rx_bytes += pktlen;
250 		skb_put(rx_buff->skb, pktlen);
251 		rx_buff->skb->dev = ndev;
252 		rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev);
253 
254 		netif_receive_skb(rx_buff->skb);
255 
256 		rx_buff->skb = skb;
257 		dma_unmap_addr_set(rx_buff, addr, addr);
258 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
259 
260 		rxbd->data = cpu_to_le32(addr);
261 
262 		/* Make sure pointer to data buffer is set */
263 		wmb();
264 
265 		/* Return ownership to EMAC */
266 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
267 	}
268 
269 	return work_done;
270 }
271 
272 /**
273  * arc_emac_rx_miss_handle - handle R_MISS register
274  * @ndev:	Pointer to the net_device structure.
275  */
arc_emac_rx_miss_handle(struct net_device * ndev)276 static void arc_emac_rx_miss_handle(struct net_device *ndev)
277 {
278 	struct arc_emac_priv *priv = netdev_priv(ndev);
279 	struct net_device_stats *stats = &ndev->stats;
280 	unsigned int miss;
281 
282 	miss = arc_reg_get(priv, R_MISS);
283 	if (miss) {
284 		stats->rx_errors += miss;
285 		stats->rx_missed_errors += miss;
286 		priv->rx_missed_errors += miss;
287 	}
288 }
289 
290 /**
291  * arc_emac_rx_stall_check - check RX stall
292  * @ndev:	Pointer to the net_device structure.
293  * @budget:	How many BDs requested to process on 1 call.
294  * @work_done:	How many BDs processed
295  *
296  * Under certain conditions EMAC stop reception of incoming packets and
297  * continuously increment R_MISS register instead of saving data into
298  * provided buffer. This function detect that condition and restart
299  * EMAC.
300  */
arc_emac_rx_stall_check(struct net_device * ndev,int budget,unsigned int work_done)301 static void arc_emac_rx_stall_check(struct net_device *ndev,
302 				    int budget, unsigned int work_done)
303 {
304 	struct arc_emac_priv *priv = netdev_priv(ndev);
305 	struct arc_emac_bd *rxbd;
306 
307 	if (work_done)
308 		priv->rx_missed_errors = 0;
309 
310 	if (priv->rx_missed_errors && budget) {
311 		rxbd = &priv->rxbd[priv->last_rx_bd];
312 		if (le32_to_cpu(rxbd->info) & FOR_EMAC) {
313 			arc_emac_restart(ndev);
314 			priv->rx_missed_errors = 0;
315 		}
316 	}
317 }
318 
319 /**
320  * arc_emac_poll - NAPI poll handler.
321  * @napi:	Pointer to napi_struct structure.
322  * @budget:	How many BDs to process on 1 call.
323  *
324  * returns:	Number of processed BDs
325  */
arc_emac_poll(struct napi_struct * napi,int budget)326 static int arc_emac_poll(struct napi_struct *napi, int budget)
327 {
328 	struct net_device *ndev = napi->dev;
329 	struct arc_emac_priv *priv = netdev_priv(ndev);
330 	unsigned int work_done;
331 
332 	arc_emac_tx_clean(ndev);
333 	arc_emac_rx_miss_handle(ndev);
334 
335 	work_done = arc_emac_rx(ndev, budget);
336 	if (work_done < budget) {
337 		napi_complete_done(napi, work_done);
338 		arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
339 	}
340 
341 	arc_emac_rx_stall_check(ndev, budget, work_done);
342 
343 	return work_done;
344 }
345 
346 /**
347  * arc_emac_intr - Global interrupt handler for EMAC.
348  * @irq:		irq number.
349  * @dev_instance:	device instance.
350  *
351  * returns: IRQ_HANDLED for all cases.
352  *
353  * ARC EMAC has only 1 interrupt line, and depending on bits raised in
354  * STATUS register we may tell what is a reason for interrupt to fire.
355  */
arc_emac_intr(int irq,void * dev_instance)356 static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
357 {
358 	struct net_device *ndev = dev_instance;
359 	struct arc_emac_priv *priv = netdev_priv(ndev);
360 	struct net_device_stats *stats = &ndev->stats;
361 	unsigned int status;
362 
363 	status = arc_reg_get(priv, R_STATUS);
364 	status &= ~MDIO_MASK;
365 
366 	/* Reset all flags except "MDIO complete" */
367 	arc_reg_set(priv, R_STATUS, status);
368 
369 	if (status & (RXINT_MASK | TXINT_MASK)) {
370 		if (likely(napi_schedule_prep(&priv->napi))) {
371 			arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
372 			__napi_schedule(&priv->napi);
373 		}
374 	}
375 
376 	if (status & ERR_MASK) {
377 		/* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
378 		 * 8-bit error counter overrun.
379 		 */
380 
381 		if (status & MSER_MASK) {
382 			stats->rx_missed_errors += 0x100;
383 			stats->rx_errors += 0x100;
384 			priv->rx_missed_errors += 0x100;
385 			napi_schedule(&priv->napi);
386 		}
387 
388 		if (status & RXCR_MASK) {
389 			stats->rx_crc_errors += 0x100;
390 			stats->rx_errors += 0x100;
391 		}
392 
393 		if (status & RXFR_MASK) {
394 			stats->rx_frame_errors += 0x100;
395 			stats->rx_errors += 0x100;
396 		}
397 
398 		if (status & RXFL_MASK) {
399 			stats->rx_over_errors += 0x100;
400 			stats->rx_errors += 0x100;
401 		}
402 	}
403 
404 	return IRQ_HANDLED;
405 }
406 
407 #ifdef CONFIG_NET_POLL_CONTROLLER
arc_emac_poll_controller(struct net_device * dev)408 static void arc_emac_poll_controller(struct net_device *dev)
409 {
410 	disable_irq(dev->irq);
411 	arc_emac_intr(dev->irq, dev);
412 	enable_irq(dev->irq);
413 }
414 #endif
415 
416 /**
417  * arc_emac_open - Open the network device.
418  * @ndev:	Pointer to the network device.
419  *
420  * returns: 0, on success or non-zero error value on failure.
421  *
422  * This function sets the MAC address, requests and enables an IRQ
423  * for the EMAC device and starts the Tx queue.
424  * It also connects to the phy device.
425  */
arc_emac_open(struct net_device * ndev)426 static int arc_emac_open(struct net_device *ndev)
427 {
428 	struct arc_emac_priv *priv = netdev_priv(ndev);
429 	struct phy_device *phy_dev = ndev->phydev;
430 	int i;
431 
432 	phy_dev->autoneg = AUTONEG_ENABLE;
433 	phy_dev->speed = 0;
434 	phy_dev->duplex = 0;
435 	phy_dev->advertising &= phy_dev->supported;
436 
437 	priv->last_rx_bd = 0;
438 
439 	/* Allocate and set buffers for Rx BD's */
440 	for (i = 0; i < RX_BD_NUM; i++) {
441 		dma_addr_t addr;
442 		unsigned int *last_rx_bd = &priv->last_rx_bd;
443 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
444 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
445 
446 		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
447 							 EMAC_BUFFER_SIZE);
448 		if (unlikely(!rx_buff->skb))
449 			return -ENOMEM;
450 
451 		addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
452 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
453 		if (dma_mapping_error(&ndev->dev, addr)) {
454 			netdev_err(ndev, "cannot dma map\n");
455 			dev_kfree_skb(rx_buff->skb);
456 			return -ENOMEM;
457 		}
458 		dma_unmap_addr_set(rx_buff, addr, addr);
459 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
460 
461 		rxbd->data = cpu_to_le32(addr);
462 
463 		/* Make sure pointer to data buffer is set */
464 		wmb();
465 
466 		/* Return ownership to EMAC */
467 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
468 
469 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
470 	}
471 
472 	priv->txbd_curr = 0;
473 	priv->txbd_dirty = 0;
474 
475 	/* Clean Tx BD's */
476 	memset(priv->txbd, 0, TX_RING_SZ);
477 
478 	/* Initialize logical address filter */
479 	arc_reg_set(priv, R_LAFL, 0);
480 	arc_reg_set(priv, R_LAFH, 0);
481 
482 	/* Set BD ring pointers for device side */
483 	arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
484 	arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
485 
486 	/* Enable interrupts */
487 	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
488 
489 	/* Set CONTROL */
490 	arc_reg_set(priv, R_CTRL,
491 		    (RX_BD_NUM << 24) |	/* RX BD table length */
492 		    (TX_BD_NUM << 16) |	/* TX BD table length */
493 		    TXRN_MASK | RXRN_MASK);
494 
495 	napi_enable(&priv->napi);
496 
497 	/* Enable EMAC */
498 	arc_reg_or(priv, R_CTRL, EN_MASK);
499 
500 	phy_start(ndev->phydev);
501 
502 	netif_start_queue(ndev);
503 
504 	return 0;
505 }
506 
507 /**
508  * arc_emac_set_rx_mode - Change the receive filtering mode.
509  * @ndev:	Pointer to the network device.
510  *
511  * This function enables/disables promiscuous or all-multicast mode
512  * and updates the multicast filtering list of the network device.
513  */
arc_emac_set_rx_mode(struct net_device * ndev)514 static void arc_emac_set_rx_mode(struct net_device *ndev)
515 {
516 	struct arc_emac_priv *priv = netdev_priv(ndev);
517 
518 	if (ndev->flags & IFF_PROMISC) {
519 		arc_reg_or(priv, R_CTRL, PROM_MASK);
520 	} else {
521 		arc_reg_clr(priv, R_CTRL, PROM_MASK);
522 
523 		if (ndev->flags & IFF_ALLMULTI) {
524 			arc_reg_set(priv, R_LAFL, ~0);
525 			arc_reg_set(priv, R_LAFH, ~0);
526 		} else if (ndev->flags & IFF_MULTICAST) {
527 			struct netdev_hw_addr *ha;
528 			unsigned int filter[2] = { 0, 0 };
529 			int bit;
530 
531 			netdev_for_each_mc_addr(ha, ndev) {
532 				bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
533 				filter[bit >> 5] |= 1 << (bit & 31);
534 			}
535 
536 			arc_reg_set(priv, R_LAFL, filter[0]);
537 			arc_reg_set(priv, R_LAFH, filter[1]);
538 		} else {
539 			arc_reg_set(priv, R_LAFL, 0);
540 			arc_reg_set(priv, R_LAFH, 0);
541 		}
542 	}
543 }
544 
545 /**
546  * arc_free_tx_queue - free skb from tx queue
547  * @ndev:	Pointer to the network device.
548  *
549  * This function must be called while EMAC disable
550  */
arc_free_tx_queue(struct net_device * ndev)551 static void arc_free_tx_queue(struct net_device *ndev)
552 {
553 	struct arc_emac_priv *priv = netdev_priv(ndev);
554 	unsigned int i;
555 
556 	for (i = 0; i < TX_BD_NUM; i++) {
557 		struct arc_emac_bd *txbd = &priv->txbd[i];
558 		struct buffer_state *tx_buff = &priv->tx_buff[i];
559 
560 		if (tx_buff->skb) {
561 			dma_unmap_single(&ndev->dev,
562 					 dma_unmap_addr(tx_buff, addr),
563 					 dma_unmap_len(tx_buff, len),
564 					 DMA_TO_DEVICE);
565 
566 			/* return the sk_buff to system */
567 			dev_kfree_skb_irq(tx_buff->skb);
568 		}
569 
570 		txbd->info = 0;
571 		txbd->data = 0;
572 		tx_buff->skb = NULL;
573 	}
574 }
575 
576 /**
577  * arc_free_rx_queue - free skb from rx queue
578  * @ndev:	Pointer to the network device.
579  *
580  * This function must be called while EMAC disable
581  */
arc_free_rx_queue(struct net_device * ndev)582 static void arc_free_rx_queue(struct net_device *ndev)
583 {
584 	struct arc_emac_priv *priv = netdev_priv(ndev);
585 	unsigned int i;
586 
587 	for (i = 0; i < RX_BD_NUM; i++) {
588 		struct arc_emac_bd *rxbd = &priv->rxbd[i];
589 		struct buffer_state *rx_buff = &priv->rx_buff[i];
590 
591 		if (rx_buff->skb) {
592 			dma_unmap_single(&ndev->dev,
593 					 dma_unmap_addr(rx_buff, addr),
594 					 dma_unmap_len(rx_buff, len),
595 					 DMA_FROM_DEVICE);
596 
597 			/* return the sk_buff to system */
598 			dev_kfree_skb_irq(rx_buff->skb);
599 		}
600 
601 		rxbd->info = 0;
602 		rxbd->data = 0;
603 		rx_buff->skb = NULL;
604 	}
605 }
606 
607 /**
608  * arc_emac_stop - Close the network device.
609  * @ndev:	Pointer to the network device.
610  *
611  * This function stops the Tx queue, disables interrupts and frees the IRQ for
612  * the EMAC device.
613  * It also disconnects the PHY device associated with the EMAC device.
614  */
arc_emac_stop(struct net_device * ndev)615 static int arc_emac_stop(struct net_device *ndev)
616 {
617 	struct arc_emac_priv *priv = netdev_priv(ndev);
618 
619 	napi_disable(&priv->napi);
620 	netif_stop_queue(ndev);
621 
622 	phy_stop(ndev->phydev);
623 
624 	/* Disable interrupts */
625 	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
626 
627 	/* Disable EMAC */
628 	arc_reg_clr(priv, R_CTRL, EN_MASK);
629 
630 	/* Return the sk_buff to system */
631 	arc_free_tx_queue(ndev);
632 	arc_free_rx_queue(ndev);
633 
634 	return 0;
635 }
636 
637 /**
638  * arc_emac_stats - Get system network statistics.
639  * @ndev:	Pointer to net_device structure.
640  *
641  * Returns the address of the device statistics structure.
642  * Statistics are updated in interrupt handler.
643  */
arc_emac_stats(struct net_device * ndev)644 static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
645 {
646 	struct arc_emac_priv *priv = netdev_priv(ndev);
647 	struct net_device_stats *stats = &ndev->stats;
648 	unsigned long miss, rxerr;
649 	u8 rxcrc, rxfram, rxoflow;
650 
651 	rxerr = arc_reg_get(priv, R_RXERR);
652 	miss = arc_reg_get(priv, R_MISS);
653 
654 	rxcrc = rxerr;
655 	rxfram = rxerr >> 8;
656 	rxoflow = rxerr >> 16;
657 
658 	stats->rx_errors += miss;
659 	stats->rx_errors += rxcrc + rxfram + rxoflow;
660 
661 	stats->rx_over_errors += rxoflow;
662 	stats->rx_frame_errors += rxfram;
663 	stats->rx_crc_errors += rxcrc;
664 	stats->rx_missed_errors += miss;
665 
666 	return stats;
667 }
668 
669 /**
670  * arc_emac_tx - Starts the data transmission.
671  * @skb:	sk_buff pointer that contains data to be Transmitted.
672  * @ndev:	Pointer to net_device structure.
673  *
674  * returns: NETDEV_TX_OK, on success
675  *		NETDEV_TX_BUSY, if any of the descriptors are not free.
676  *
677  * This function is invoked from upper layers to initiate transmission.
678  */
arc_emac_tx(struct sk_buff * skb,struct net_device * ndev)679 static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
680 {
681 	struct arc_emac_priv *priv = netdev_priv(ndev);
682 	unsigned int len, *txbd_curr = &priv->txbd_curr;
683 	struct net_device_stats *stats = &ndev->stats;
684 	__le32 *info = &priv->txbd[*txbd_curr].info;
685 	dma_addr_t addr;
686 
687 	if (skb_padto(skb, ETH_ZLEN))
688 		return NETDEV_TX_OK;
689 
690 	len = max_t(unsigned int, ETH_ZLEN, skb->len);
691 
692 	if (unlikely(!arc_emac_tx_avail(priv))) {
693 		netif_stop_queue(ndev);
694 		netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
695 		return NETDEV_TX_BUSY;
696 	}
697 
698 	addr = dma_map_single(&ndev->dev, (void *)skb->data, len,
699 			      DMA_TO_DEVICE);
700 
701 	if (unlikely(dma_mapping_error(&ndev->dev, addr))) {
702 		stats->tx_dropped++;
703 		stats->tx_errors++;
704 		dev_kfree_skb_any(skb);
705 		return NETDEV_TX_OK;
706 	}
707 	dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
708 	dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
709 
710 	priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
711 
712 	/* Make sure pointer to data buffer is set */
713 	wmb();
714 
715 	skb_tx_timestamp(skb);
716 
717 	*info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
718 
719 	/* Make sure info word is set */
720 	wmb();
721 
722 	priv->tx_buff[*txbd_curr].skb = skb;
723 
724 	/* Increment index to point to the next BD */
725 	*txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
726 
727 	/* Ensure that tx_clean() sees the new txbd_curr before
728 	 * checking the queue status. This prevents an unneeded wake
729 	 * of the queue in tx_clean().
730 	 */
731 	smp_mb();
732 
733 	if (!arc_emac_tx_avail(priv)) {
734 		netif_stop_queue(ndev);
735 		/* Refresh tx_dirty */
736 		smp_mb();
737 		if (arc_emac_tx_avail(priv))
738 			netif_start_queue(ndev);
739 	}
740 
741 	arc_reg_set(priv, R_STATUS, TXPL_MASK);
742 
743 	return NETDEV_TX_OK;
744 }
745 
arc_emac_set_address_internal(struct net_device * ndev)746 static void arc_emac_set_address_internal(struct net_device *ndev)
747 {
748 	struct arc_emac_priv *priv = netdev_priv(ndev);
749 	unsigned int addr_low, addr_hi;
750 
751 	addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
752 	addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
753 
754 	arc_reg_set(priv, R_ADDRL, addr_low);
755 	arc_reg_set(priv, R_ADDRH, addr_hi);
756 }
757 
758 /**
759  * arc_emac_set_address - Set the MAC address for this device.
760  * @ndev:	Pointer to net_device structure.
761  * @p:		6 byte Address to be written as MAC address.
762  *
763  * This function copies the HW address from the sockaddr structure to the
764  * net_device structure and updates the address in HW.
765  *
766  * returns:	-EBUSY if the net device is busy or 0 if the address is set
767  *		successfully.
768  */
arc_emac_set_address(struct net_device * ndev,void * p)769 static int arc_emac_set_address(struct net_device *ndev, void *p)
770 {
771 	struct sockaddr *addr = p;
772 
773 	if (netif_running(ndev))
774 		return -EBUSY;
775 
776 	if (!is_valid_ether_addr(addr->sa_data))
777 		return -EADDRNOTAVAIL;
778 
779 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
780 
781 	arc_emac_set_address_internal(ndev);
782 
783 	return 0;
784 }
785 
arc_emac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)786 static int arc_emac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
787 {
788 	if (!netif_running(dev))
789 		return -EINVAL;
790 
791 	if (!dev->phydev)
792 		return -ENODEV;
793 
794 	return phy_mii_ioctl(dev->phydev, rq, cmd);
795 }
796 
797 
798 /**
799  * arc_emac_restart - Restart EMAC
800  * @ndev:	Pointer to net_device structure.
801  *
802  * This function do hardware reset of EMAC in order to restore
803  * network packets reception.
804  */
arc_emac_restart(struct net_device * ndev)805 static void arc_emac_restart(struct net_device *ndev)
806 {
807 	struct arc_emac_priv *priv = netdev_priv(ndev);
808 	struct net_device_stats *stats = &ndev->stats;
809 	int i;
810 
811 	if (net_ratelimit())
812 		netdev_warn(ndev, "restarting stalled EMAC\n");
813 
814 	netif_stop_queue(ndev);
815 
816 	/* Disable interrupts */
817 	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
818 
819 	/* Disable EMAC */
820 	arc_reg_clr(priv, R_CTRL, EN_MASK);
821 
822 	/* Return the sk_buff to system */
823 	arc_free_tx_queue(ndev);
824 
825 	/* Clean Tx BD's */
826 	priv->txbd_curr = 0;
827 	priv->txbd_dirty = 0;
828 	memset(priv->txbd, 0, TX_RING_SZ);
829 
830 	for (i = 0; i < RX_BD_NUM; i++) {
831 		struct arc_emac_bd *rxbd = &priv->rxbd[i];
832 		unsigned int info = le32_to_cpu(rxbd->info);
833 
834 		if (!(info & FOR_EMAC)) {
835 			stats->rx_errors++;
836 			stats->rx_dropped++;
837 		}
838 		/* Return ownership to EMAC */
839 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
840 	}
841 	priv->last_rx_bd = 0;
842 
843 	/* Make sure info is visible to EMAC before enable */
844 	wmb();
845 
846 	/* Enable interrupts */
847 	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
848 
849 	/* Enable EMAC */
850 	arc_reg_or(priv, R_CTRL, EN_MASK);
851 
852 	netif_start_queue(ndev);
853 }
854 
855 static const struct net_device_ops arc_emac_netdev_ops = {
856 	.ndo_open		= arc_emac_open,
857 	.ndo_stop		= arc_emac_stop,
858 	.ndo_start_xmit		= arc_emac_tx,
859 	.ndo_set_mac_address	= arc_emac_set_address,
860 	.ndo_get_stats		= arc_emac_stats,
861 	.ndo_set_rx_mode	= arc_emac_set_rx_mode,
862 	.ndo_do_ioctl		= arc_emac_ioctl,
863 #ifdef CONFIG_NET_POLL_CONTROLLER
864 	.ndo_poll_controller	= arc_emac_poll_controller,
865 #endif
866 };
867 
arc_emac_probe(struct net_device * ndev,int interface)868 int arc_emac_probe(struct net_device *ndev, int interface)
869 {
870 	struct device *dev = ndev->dev.parent;
871 	struct resource res_regs;
872 	struct device_node *phy_node;
873 	struct phy_device *phydev = NULL;
874 	struct arc_emac_priv *priv;
875 	const char *mac_addr;
876 	unsigned int id, clock_frequency, irq;
877 	int err;
878 
879 	/* Get PHY from device tree */
880 	phy_node = of_parse_phandle(dev->of_node, "phy", 0);
881 	if (!phy_node) {
882 		dev_err(dev, "failed to retrieve phy description from device tree\n");
883 		return -ENODEV;
884 	}
885 
886 	/* Get EMAC registers base address from device tree */
887 	err = of_address_to_resource(dev->of_node, 0, &res_regs);
888 	if (err) {
889 		dev_err(dev, "failed to retrieve registers base from device tree\n");
890 		err = -ENODEV;
891 		goto out_put_node;
892 	}
893 
894 	/* Get IRQ from device tree */
895 	irq = irq_of_parse_and_map(dev->of_node, 0);
896 	if (!irq) {
897 		dev_err(dev, "failed to retrieve <irq> value from device tree\n");
898 		err = -ENODEV;
899 		goto out_put_node;
900 	}
901 
902 	ndev->netdev_ops = &arc_emac_netdev_ops;
903 	ndev->ethtool_ops = &arc_emac_ethtool_ops;
904 	ndev->watchdog_timeo = TX_TIMEOUT;
905 
906 	priv = netdev_priv(ndev);
907 	priv->dev = dev;
908 
909 	priv->regs = devm_ioremap_resource(dev, &res_regs);
910 	if (IS_ERR(priv->regs)) {
911 		err = PTR_ERR(priv->regs);
912 		goto out_put_node;
913 	}
914 
915 	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
916 
917 	if (priv->clk) {
918 		err = clk_prepare_enable(priv->clk);
919 		if (err) {
920 			dev_err(dev, "failed to enable clock\n");
921 			goto out_put_node;
922 		}
923 
924 		clock_frequency = clk_get_rate(priv->clk);
925 	} else {
926 		/* Get CPU clock frequency from device tree */
927 		if (of_property_read_u32(dev->of_node, "clock-frequency",
928 					 &clock_frequency)) {
929 			dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
930 			err = -EINVAL;
931 			goto out_put_node;
932 		}
933 	}
934 
935 	id = arc_reg_get(priv, R_ID);
936 
937 	/* Check for EMAC revision 5 or 7, magic number */
938 	if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
939 		dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
940 		err = -ENODEV;
941 		goto out_clken;
942 	}
943 	dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
944 
945 	/* Set poll rate so that it polls every 1 ms */
946 	arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
947 
948 	ndev->irq = irq;
949 	dev_info(dev, "IRQ is %d\n", ndev->irq);
950 
951 	/* Register interrupt handler for device */
952 	err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
953 			       ndev->name, ndev);
954 	if (err) {
955 		dev_err(dev, "could not allocate IRQ\n");
956 		goto out_clken;
957 	}
958 
959 	/* Get MAC address from device tree */
960 	mac_addr = of_get_mac_address(dev->of_node);
961 
962 	if (mac_addr)
963 		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
964 	else
965 		eth_hw_addr_random(ndev);
966 
967 	arc_emac_set_address_internal(ndev);
968 	dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
969 
970 	/* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
971 	priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
972 					 &priv->rxbd_dma, GFP_KERNEL);
973 
974 	if (!priv->rxbd) {
975 		dev_err(dev, "failed to allocate data buffers\n");
976 		err = -ENOMEM;
977 		goto out_clken;
978 	}
979 
980 	priv->txbd = priv->rxbd + RX_BD_NUM;
981 
982 	priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
983 	dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
984 		(unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
985 
986 	err = arc_mdio_probe(priv);
987 	if (err) {
988 		dev_err(dev, "failed to probe MII bus\n");
989 		goto out_clken;
990 	}
991 
992 	phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
993 				interface);
994 	if (!phydev) {
995 		dev_err(dev, "of_phy_connect() failed\n");
996 		err = -ENODEV;
997 		goto out_mdio;
998 	}
999 
1000 	dev_info(dev, "connected to %s phy with id 0x%x\n",
1001 		 phydev->drv->name, phydev->phy_id);
1002 
1003 	netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT);
1004 
1005 	err = register_netdev(ndev);
1006 	if (err) {
1007 		dev_err(dev, "failed to register network device\n");
1008 		goto out_netif_api;
1009 	}
1010 
1011 	of_node_put(phy_node);
1012 	return 0;
1013 
1014 out_netif_api:
1015 	netif_napi_del(&priv->napi);
1016 	phy_disconnect(phydev);
1017 out_mdio:
1018 	arc_mdio_remove(priv);
1019 out_clken:
1020 	if (priv->clk)
1021 		clk_disable_unprepare(priv->clk);
1022 out_put_node:
1023 	of_node_put(phy_node);
1024 
1025 	return err;
1026 }
1027 EXPORT_SYMBOL_GPL(arc_emac_probe);
1028 
arc_emac_remove(struct net_device * ndev)1029 int arc_emac_remove(struct net_device *ndev)
1030 {
1031 	struct arc_emac_priv *priv = netdev_priv(ndev);
1032 
1033 	phy_disconnect(ndev->phydev);
1034 	arc_mdio_remove(priv);
1035 	unregister_netdev(ndev);
1036 	netif_napi_del(&priv->napi);
1037 
1038 	if (!IS_ERR(priv->clk))
1039 		clk_disable_unprepare(priv->clk);
1040 
1041 	return 0;
1042 }
1043 EXPORT_SYMBOL_GPL(arc_emac_remove);
1044 
1045 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
1046 MODULE_DESCRIPTION("ARC EMAC driver");
1047 MODULE_LICENSE("GPL");
1048