1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include "../regd.h"
20 #include "ar9002_phy.h"
21 #include "ar5008_initvals.h"
22
23 /* All code below is for AR5008, AR9001, AR9002 */
24
25 #define AR5008_OFDM_RATES 8
26 #define AR5008_HT_SS_RATES 8
27 #define AR5008_HT_DS_RATES 8
28
29 #define AR5008_HT20_SHIFT 16
30 #define AR5008_HT40_SHIFT 24
31
32 #define AR5008_11NA_OFDM_SHIFT 0
33 #define AR5008_11NA_HT_SS_SHIFT 8
34 #define AR5008_11NA_HT_DS_SHIFT 16
35
36 #define AR5008_11NG_OFDM_SHIFT 4
37 #define AR5008_11NG_HT_SS_SHIFT 12
38 #define AR5008_11NG_HT_DS_SHIFT 20
39
40 /*
41 * register values to turn OFDM weak signal detection OFF
42 */
43 static const int m1ThreshLow_off = 127;
44 static const int m2ThreshLow_off = 127;
45 static const int m1Thresh_off = 127;
46 static const int m2Thresh_off = 127;
47 static const int m2CountThr_off = 31;
48 static const int m2CountThrLow_off = 63;
49 static const int m1ThreshLowExt_off = 127;
50 static const int m2ThreshLowExt_off = 127;
51 static const int m1ThreshExt_off = 127;
52 static const int m2ThreshExt_off = 127;
53
54 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
55 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
56 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
57 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
58 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
59
ar5008_write_bank6(struct ath_hw * ah,unsigned int * writecnt)60 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
61 {
62 struct ar5416IniArray *array = &ah->iniBank6;
63 u32 *data = ah->analogBank6Data;
64 int r;
65
66 ENABLE_REGWRITE_BUFFER(ah);
67
68 for (r = 0; r < array->ia_rows; r++) {
69 REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
70 DO_DELAY(*writecnt);
71 }
72
73 REGWRITE_BUFFER_FLUSH(ah);
74 }
75
76 /**
77 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
78 * @rfbuf:
79 * @reg32:
80 * @numBits:
81 * @firstBit:
82 * @column:
83 *
84 * Performs analog "swizzling" of parameters into their location.
85 * Used on external AR2133/AR5133 radios.
86 */
ar5008_hw_phy_modify_rx_buffer(u32 * rfBuf,u32 reg32,u32 numBits,u32 firstBit,u32 column)87 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
88 u32 numBits, u32 firstBit,
89 u32 column)
90 {
91 u32 tmp32, mask, arrayEntry, lastBit;
92 int32_t bitPosition, bitsLeft;
93
94 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
95 arrayEntry = (firstBit - 1) / 8;
96 bitPosition = (firstBit - 1) % 8;
97 bitsLeft = numBits;
98 while (bitsLeft > 0) {
99 lastBit = (bitPosition + bitsLeft > 8) ?
100 8 : bitPosition + bitsLeft;
101 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
102 (column * 8);
103 rfBuf[arrayEntry] &= ~mask;
104 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
105 (column * 8)) & mask;
106 bitsLeft -= 8 - bitPosition;
107 tmp32 = tmp32 >> (8 - bitPosition);
108 bitPosition = 0;
109 arrayEntry++;
110 }
111 }
112
113 /*
114 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
115 * rf_pwd_icsyndiv.
116 *
117 * Theoretical Rules:
118 * if 2 GHz band
119 * if forceBiasAuto
120 * if synth_freq < 2412
121 * bias = 0
122 * else if 2412 <= synth_freq <= 2422
123 * bias = 1
124 * else // synth_freq > 2422
125 * bias = 2
126 * else if forceBias > 0
127 * bias = forceBias & 7
128 * else
129 * no change, use value from ini file
130 * else
131 * no change, invalid band
132 *
133 * 1st Mod:
134 * 2422 also uses value of 2
135 * <approved>
136 *
137 * 2nd Mod:
138 * Less than 2412 uses value of 0, 2412 and above uses value of 2
139 */
ar5008_hw_force_bias(struct ath_hw * ah,u16 synth_freq)140 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
141 {
142 struct ath_common *common = ath9k_hw_common(ah);
143 u32 tmp_reg;
144 int reg_writes = 0;
145 u32 new_bias = 0;
146
147 if (!AR_SREV_5416(ah) || synth_freq >= 3000)
148 return;
149
150 BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
151
152 if (synth_freq < 2412)
153 new_bias = 0;
154 else if (synth_freq < 2422)
155 new_bias = 1;
156 else
157 new_bias = 2;
158
159 /* pre-reverse this field */
160 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
161
162 ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
163 new_bias, synth_freq);
164
165 /* swizzle rf_pwd_icsyndiv */
166 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
167
168 /* write Bank 6 with new params */
169 ar5008_write_bank6(ah, ®_writes);
170 }
171
172 /**
173 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
174 * @ah: atheros hardware structure
175 * @chan:
176 *
177 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
178 * the channel value. Assumes writes enabled to analog bus and bank6 register
179 * cache in ah->analogBank6Data.
180 */
ar5008_hw_set_channel(struct ath_hw * ah,struct ath9k_channel * chan)181 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
182 {
183 struct ath_common *common = ath9k_hw_common(ah);
184 u32 channelSel = 0;
185 u32 bModeSynth = 0;
186 u32 aModeRefSel = 0;
187 u32 reg32 = 0;
188 u16 freq;
189 struct chan_centers centers;
190
191 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
192 freq = centers.synth_center;
193
194 if (freq < 4800) {
195 u32 txctl;
196
197 if (((freq - 2192) % 5) == 0) {
198 channelSel = ((freq - 672) * 2 - 3040) / 10;
199 bModeSynth = 0;
200 } else if (((freq - 2224) % 5) == 0) {
201 channelSel = ((freq - 704) * 2 - 3040) / 10;
202 bModeSynth = 1;
203 } else {
204 ath_err(common, "Invalid channel %u MHz\n", freq);
205 return -EINVAL;
206 }
207
208 channelSel = (channelSel << 2) & 0xff;
209 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
210
211 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
212 if (freq == 2484) {
213
214 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
215 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
216 } else {
217 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
218 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
219 }
220
221 } else if ((freq % 20) == 0 && freq >= 5120) {
222 channelSel =
223 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
224 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
225 } else if ((freq % 10) == 0) {
226 channelSel =
227 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
228 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
229 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
230 else
231 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
232 } else if ((freq % 5) == 0) {
233 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
234 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
235 } else {
236 ath_err(common, "Invalid channel %u MHz\n", freq);
237 return -EINVAL;
238 }
239
240 ar5008_hw_force_bias(ah, freq);
241
242 reg32 =
243 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
244 (1 << 5) | 0x1;
245
246 REG_WRITE(ah, AR_PHY(0x37), reg32);
247
248 ah->curchan = chan;
249
250 return 0;
251 }
252
ar5008_hw_cmn_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan,int bin)253 void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah,
254 struct ath9k_channel *chan, int bin)
255 {
256 int cur_bin;
257 int upper, lower, cur_vit_mask;
258 int i;
259 int8_t mask_m[123] = {0};
260 int8_t mask_p[123] = {0};
261 int8_t mask_amt;
262 int tmp_mask;
263 static const int pilot_mask_reg[4] = {
264 AR_PHY_TIMING7, AR_PHY_TIMING8,
265 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
266 };
267 static const int chan_mask_reg[4] = {
268 AR_PHY_TIMING9, AR_PHY_TIMING10,
269 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
270 };
271 static const int inc[4] = { 0, 100, 0, 0 };
272
273 cur_bin = -6000;
274 upper = bin + 100;
275 lower = bin - 100;
276
277 for (i = 0; i < 4; i++) {
278 int pilot_mask = 0;
279 int chan_mask = 0;
280 int bp = 0;
281
282 for (bp = 0; bp < 30; bp++) {
283 if ((cur_bin > lower) && (cur_bin < upper)) {
284 pilot_mask = pilot_mask | 0x1 << bp;
285 chan_mask = chan_mask | 0x1 << bp;
286 }
287 cur_bin += 100;
288 }
289 cur_bin += inc[i];
290 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
291 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
292 }
293
294 cur_vit_mask = 6100;
295 upper = bin + 120;
296 lower = bin - 120;
297
298 for (i = 0; i < ARRAY_SIZE(mask_m); i++) {
299 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
300 /* workaround for gcc bug #37014 */
301 volatile int tmp_v = abs(cur_vit_mask - bin);
302
303 if (tmp_v < 75)
304 mask_amt = 1;
305 else
306 mask_amt = 0;
307 if (cur_vit_mask < 0)
308 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
309 else
310 mask_p[cur_vit_mask / 100] = mask_amt;
311 }
312 cur_vit_mask -= 100;
313 }
314
315 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
316 | (mask_m[48] << 26) | (mask_m[49] << 24)
317 | (mask_m[50] << 22) | (mask_m[51] << 20)
318 | (mask_m[52] << 18) | (mask_m[53] << 16)
319 | (mask_m[54] << 14) | (mask_m[55] << 12)
320 | (mask_m[56] << 10) | (mask_m[57] << 8)
321 | (mask_m[58] << 6) | (mask_m[59] << 4)
322 | (mask_m[60] << 2) | (mask_m[61] << 0);
323 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
324 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
325
326 tmp_mask = (mask_m[31] << 28)
327 | (mask_m[32] << 26) | (mask_m[33] << 24)
328 | (mask_m[34] << 22) | (mask_m[35] << 20)
329 | (mask_m[36] << 18) | (mask_m[37] << 16)
330 | (mask_m[48] << 14) | (mask_m[39] << 12)
331 | (mask_m[40] << 10) | (mask_m[41] << 8)
332 | (mask_m[42] << 6) | (mask_m[43] << 4)
333 | (mask_m[44] << 2) | (mask_m[45] << 0);
334 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
335 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
336
337 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
338 | (mask_m[18] << 26) | (mask_m[18] << 24)
339 | (mask_m[20] << 22) | (mask_m[20] << 20)
340 | (mask_m[22] << 18) | (mask_m[22] << 16)
341 | (mask_m[24] << 14) | (mask_m[24] << 12)
342 | (mask_m[25] << 10) | (mask_m[26] << 8)
343 | (mask_m[27] << 6) | (mask_m[28] << 4)
344 | (mask_m[29] << 2) | (mask_m[30] << 0);
345 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
346 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
347
348 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
349 | (mask_m[2] << 26) | (mask_m[3] << 24)
350 | (mask_m[4] << 22) | (mask_m[5] << 20)
351 | (mask_m[6] << 18) | (mask_m[7] << 16)
352 | (mask_m[8] << 14) | (mask_m[9] << 12)
353 | (mask_m[10] << 10) | (mask_m[11] << 8)
354 | (mask_m[12] << 6) | (mask_m[13] << 4)
355 | (mask_m[14] << 2) | (mask_m[15] << 0);
356 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
357 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
358
359 tmp_mask = (mask_p[15] << 28)
360 | (mask_p[14] << 26) | (mask_p[13] << 24)
361 | (mask_p[12] << 22) | (mask_p[11] << 20)
362 | (mask_p[10] << 18) | (mask_p[9] << 16)
363 | (mask_p[8] << 14) | (mask_p[7] << 12)
364 | (mask_p[6] << 10) | (mask_p[5] << 8)
365 | (mask_p[4] << 6) | (mask_p[3] << 4)
366 | (mask_p[2] << 2) | (mask_p[1] << 0);
367 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
368 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
369
370 tmp_mask = (mask_p[30] << 28)
371 | (mask_p[29] << 26) | (mask_p[28] << 24)
372 | (mask_p[27] << 22) | (mask_p[26] << 20)
373 | (mask_p[25] << 18) | (mask_p[24] << 16)
374 | (mask_p[23] << 14) | (mask_p[22] << 12)
375 | (mask_p[21] << 10) | (mask_p[20] << 8)
376 | (mask_p[19] << 6) | (mask_p[18] << 4)
377 | (mask_p[17] << 2) | (mask_p[16] << 0);
378 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
379 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
380
381 tmp_mask = (mask_p[45] << 28)
382 | (mask_p[44] << 26) | (mask_p[43] << 24)
383 | (mask_p[42] << 22) | (mask_p[41] << 20)
384 | (mask_p[40] << 18) | (mask_p[39] << 16)
385 | (mask_p[38] << 14) | (mask_p[37] << 12)
386 | (mask_p[36] << 10) | (mask_p[35] << 8)
387 | (mask_p[34] << 6) | (mask_p[33] << 4)
388 | (mask_p[32] << 2) | (mask_p[31] << 0);
389 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
390 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
391
392 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
393 | (mask_p[59] << 26) | (mask_p[58] << 24)
394 | (mask_p[57] << 22) | (mask_p[56] << 20)
395 | (mask_p[55] << 18) | (mask_p[54] << 16)
396 | (mask_p[53] << 14) | (mask_p[52] << 12)
397 | (mask_p[51] << 10) | (mask_p[50] << 8)
398 | (mask_p[49] << 6) | (mask_p[48] << 4)
399 | (mask_p[47] << 2) | (mask_p[46] << 0);
400 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
401 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
402 }
403
404 /**
405 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
406 * @ah: atheros hardware structure
407 * @chan:
408 *
409 * For non single-chip solutions. Converts to baseband spur frequency given the
410 * input channel frequency and compute register settings below.
411 */
ar5008_hw_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan)412 static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
413 struct ath9k_channel *chan)
414 {
415 int bb_spur = AR_NO_SPUR;
416 int bin;
417 int spur_freq_sd;
418 int spur_delta_phase;
419 int denominator;
420 int tmp, new;
421 int i;
422
423 int cur_bb_spur;
424 bool is2GHz = IS_CHAN_2GHZ(chan);
425
426 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
427 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
428 if (AR_NO_SPUR == cur_bb_spur)
429 break;
430 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
431 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
432 bb_spur = cur_bb_spur;
433 break;
434 }
435 }
436
437 if (AR_NO_SPUR == bb_spur)
438 return;
439
440 bin = bb_spur * 32;
441
442 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
443 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
444 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
445 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
446 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
447
448 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
449
450 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
451 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
452 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
453 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
454 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
455 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
456
457 spur_delta_phase = ((bb_spur * 524288) / 100) &
458 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
459
460 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
461 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
462
463 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
464 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
465 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
466 REG_WRITE(ah, AR_PHY_TIMING11, new);
467
468 ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
469 }
470
471 /**
472 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
473 * @ah: atheros hardware structure
474 *
475 * Only required for older devices with external AR2133/AR5133 radios.
476 */
ar5008_hw_rf_alloc_ext_banks(struct ath_hw * ah)477 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
478 {
479 int size = ah->iniBank6.ia_rows * sizeof(u32);
480
481 if (AR_SREV_9280_20_OR_LATER(ah))
482 return 0;
483
484 ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
485 if (!ah->analogBank6Data)
486 return -ENOMEM;
487
488 return 0;
489 }
490
491
492 /* *
493 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
494 * @ah: atheros hardware structure
495 * @chan:
496 * @modesIndex:
497 *
498 * Used for the external AR2133/AR5133 radios.
499 *
500 * Reads the EEPROM header info from the device structure and programs
501 * all rf registers. This routine requires access to the analog
502 * rf device. This is not required for single-chip devices.
503 */
ar5008_hw_set_rf_regs(struct ath_hw * ah,struct ath9k_channel * chan,u16 modesIndex)504 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
505 struct ath9k_channel *chan,
506 u16 modesIndex)
507 {
508 u32 eepMinorRev;
509 u32 ob5GHz = 0, db5GHz = 0;
510 u32 ob2GHz = 0, db2GHz = 0;
511 int regWrites = 0;
512 int i;
513
514 /*
515 * Software does not need to program bank data
516 * for single chip devices, that is AR9280 or anything
517 * after that.
518 */
519 if (AR_SREV_9280_20_OR_LATER(ah))
520 return true;
521
522 /* Setup rf parameters */
523 eepMinorRev = ah->eep_ops->get_eeprom_rev(ah);
524
525 for (i = 0; i < ah->iniBank6.ia_rows; i++)
526 ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
527
528 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
529 if (eepMinorRev >= 2) {
530 if (IS_CHAN_2GHZ(chan)) {
531 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
532 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
533 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
534 ob2GHz, 3, 197, 0);
535 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
536 db2GHz, 3, 194, 0);
537 } else {
538 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
539 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
540 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
541 ob5GHz, 3, 203, 0);
542 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
543 db5GHz, 3, 200, 0);
544 }
545 }
546
547 /* Write Analog registers */
548 REG_WRITE_ARRAY(&bank0, 1, regWrites);
549 REG_WRITE_ARRAY(&bank1, 1, regWrites);
550 REG_WRITE_ARRAY(&bank2, 1, regWrites);
551 REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
552 ar5008_write_bank6(ah, ®Writes);
553 REG_WRITE_ARRAY(&bank7, 1, regWrites);
554
555 return true;
556 }
557
ar5008_hw_init_bb(struct ath_hw * ah,struct ath9k_channel * chan)558 static void ar5008_hw_init_bb(struct ath_hw *ah,
559 struct ath9k_channel *chan)
560 {
561 u32 synthDelay;
562
563 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
564
565 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
566
567 ath9k_hw_synth_delay(ah, chan, synthDelay);
568 }
569
ar5008_hw_init_chain_masks(struct ath_hw * ah)570 static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
571 {
572 int rx_chainmask, tx_chainmask;
573
574 rx_chainmask = ah->rxchainmask;
575 tx_chainmask = ah->txchainmask;
576
577
578 switch (rx_chainmask) {
579 case 0x5:
580 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
581 AR_PHY_SWAP_ALT_CHAIN);
582 /* fall through */
583 case 0x3:
584 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
585 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
586 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
587 break;
588 }
589 /* fall through */
590 case 0x1:
591 case 0x2:
592 case 0x7:
593 ENABLE_REGWRITE_BUFFER(ah);
594 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
595 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
596 break;
597 default:
598 ENABLE_REGWRITE_BUFFER(ah);
599 break;
600 }
601
602 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
603
604 REGWRITE_BUFFER_FLUSH(ah);
605
606 if (tx_chainmask == 0x5) {
607 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
608 AR_PHY_SWAP_ALT_CHAIN);
609 }
610 if (AR_SREV_9100(ah))
611 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
612 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
613 }
614
ar5008_hw_override_ini(struct ath_hw * ah,struct ath9k_channel * chan)615 static void ar5008_hw_override_ini(struct ath_hw *ah,
616 struct ath9k_channel *chan)
617 {
618 u32 val;
619
620 /*
621 * Set the RX_ABORT and RX_DIS and clear if off only after
622 * RXE is set for MAC. This prevents frames with corrupted
623 * descriptor status.
624 */
625 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
626
627 if (AR_SREV_9280_20_OR_LATER(ah)) {
628 /*
629 * For AR9280 and above, there is a new feature that allows
630 * Multicast search based on both MAC Address and Key ID.
631 * By default, this feature is enabled. But since the driver
632 * is not using this feature, we switch it off; otherwise
633 * multicast search based on MAC addr only will fail.
634 */
635 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
636 (~AR_ADHOC_MCAST_KEYID_ENABLE);
637
638 if (!AR_SREV_9271(ah))
639 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
640
641 if (AR_SREV_9287_11_OR_LATER(ah))
642 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
643
644 val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
645
646 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
647 }
648
649 if (AR_SREV_9280_20_OR_LATER(ah))
650 return;
651 /*
652 * Disable BB clock gating
653 * Necessary to avoid issues on AR5416 2.0
654 */
655 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
656
657 /*
658 * Disable RIFS search on some chips to avoid baseband
659 * hang issues.
660 */
661 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
662 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
663 val &= ~AR_PHY_RIFS_INIT_DELAY;
664 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
665 }
666 }
667
ar5008_hw_set_channel_regs(struct ath_hw * ah,struct ath9k_channel * chan)668 static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
669 struct ath9k_channel *chan)
670 {
671 u32 phymode;
672 u32 enableDacFifo = 0;
673
674 if (AR_SREV_9285_12_OR_LATER(ah))
675 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
676 AR_PHY_FC_ENABLE_DAC_FIFO);
677
678 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
679 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
680
681 if (IS_CHAN_HT40(chan)) {
682 phymode |= AR_PHY_FC_DYN2040_EN;
683
684 if (IS_CHAN_HT40PLUS(chan))
685 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
686
687 }
688 ENABLE_REGWRITE_BUFFER(ah);
689 REG_WRITE(ah, AR_PHY_TURBO, phymode);
690
691 /* This function do only REG_WRITE, so
692 * we can include it to REGWRITE_BUFFER. */
693 ath9k_hw_set11nmac2040(ah, chan);
694
695 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
696 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
697
698 REGWRITE_BUFFER_FLUSH(ah);
699 }
700
701
ar5008_hw_process_ini(struct ath_hw * ah,struct ath9k_channel * chan)702 static int ar5008_hw_process_ini(struct ath_hw *ah,
703 struct ath9k_channel *chan)
704 {
705 struct ath_common *common = ath9k_hw_common(ah);
706 int i, regWrites = 0;
707 u32 modesIndex, freqIndex;
708
709 if (IS_CHAN_5GHZ(chan)) {
710 freqIndex = 1;
711 modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
712 } else {
713 freqIndex = 2;
714 modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
715 }
716
717 /*
718 * Set correct baseband to analog shift setting to
719 * access analog chips.
720 */
721 REG_WRITE(ah, AR_PHY(0), 0x00000007);
722
723 /* Write ADDAC shifts */
724 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
725 if (ah->eep_ops->set_addac)
726 ah->eep_ops->set_addac(ah, chan);
727
728 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
729 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
730
731 ENABLE_REGWRITE_BUFFER(ah);
732
733 for (i = 0; i < ah->iniModes.ia_rows; i++) {
734 u32 reg = INI_RA(&ah->iniModes, i, 0);
735 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
736
737 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
738 val &= ~AR_AN_TOP2_PWDCLKIND;
739
740 REG_WRITE(ah, reg, val);
741
742 if (reg >= 0x7800 && reg < 0x78a0
743 && ah->config.analog_shiftreg
744 && (common->bus_ops->ath_bus_type != ATH_USB)) {
745 udelay(100);
746 }
747
748 DO_DELAY(regWrites);
749 }
750
751 REGWRITE_BUFFER_FLUSH(ah);
752
753 if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
754 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
755
756 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
757 AR_SREV_9287_11_OR_LATER(ah))
758 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
759
760 if (AR_SREV_9271_10(ah)) {
761 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
762 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
763 }
764
765 ENABLE_REGWRITE_BUFFER(ah);
766
767 /* Write common array parameters */
768 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
769 u32 reg = INI_RA(&ah->iniCommon, i, 0);
770 u32 val = INI_RA(&ah->iniCommon, i, 1);
771
772 REG_WRITE(ah, reg, val);
773
774 if (reg >= 0x7800 && reg < 0x78a0
775 && ah->config.analog_shiftreg
776 && (common->bus_ops->ath_bus_type != ATH_USB)) {
777 udelay(100);
778 }
779
780 DO_DELAY(regWrites);
781 }
782
783 REGWRITE_BUFFER_FLUSH(ah);
784
785 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
786
787 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
788 REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
789 regWrites);
790
791 ar5008_hw_override_ini(ah, chan);
792 ar5008_hw_set_channel_regs(ah, chan);
793 ar5008_hw_init_chain_masks(ah);
794 ath9k_olc_init(ah);
795 ath9k_hw_apply_txpower(ah, chan, false);
796
797 /* Write analog registers */
798 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
799 ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
800 return -EIO;
801 }
802
803 return 0;
804 }
805
ar5008_hw_set_rfmode(struct ath_hw * ah,struct ath9k_channel * chan)806 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
807 {
808 u32 rfMode = 0;
809
810 if (chan == NULL)
811 return;
812
813 if (IS_CHAN_2GHZ(chan))
814 rfMode |= AR_PHY_MODE_DYNAMIC;
815 else
816 rfMode |= AR_PHY_MODE_OFDM;
817
818 if (!AR_SREV_9280_20_OR_LATER(ah))
819 rfMode |= (IS_CHAN_5GHZ(chan)) ?
820 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
821
822 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
823 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
824
825 REG_WRITE(ah, AR_PHY_MODE, rfMode);
826 }
827
ar5008_hw_mark_phy_inactive(struct ath_hw * ah)828 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
829 {
830 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
831 }
832
ar5008_hw_set_delta_slope(struct ath_hw * ah,struct ath9k_channel * chan)833 static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
834 struct ath9k_channel *chan)
835 {
836 u32 coef_scaled, ds_coef_exp, ds_coef_man;
837 u32 clockMhzScaled = 0x64000000;
838 struct chan_centers centers;
839
840 if (IS_CHAN_HALF_RATE(chan))
841 clockMhzScaled = clockMhzScaled >> 1;
842 else if (IS_CHAN_QUARTER_RATE(chan))
843 clockMhzScaled = clockMhzScaled >> 2;
844
845 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
846 coef_scaled = clockMhzScaled / centers.synth_center;
847
848 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
849 &ds_coef_exp);
850
851 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
852 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
853 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
854 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
855
856 coef_scaled = (9 * coef_scaled) / 10;
857
858 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
859 &ds_coef_exp);
860
861 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
862 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
863 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
864 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
865 }
866
ar5008_hw_rfbus_req(struct ath_hw * ah)867 static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
868 {
869 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
870 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
871 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
872 }
873
ar5008_hw_rfbus_done(struct ath_hw * ah)874 static void ar5008_hw_rfbus_done(struct ath_hw *ah)
875 {
876 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
877
878 ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
879
880 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
881 }
882
ar5008_restore_chainmask(struct ath_hw * ah)883 static void ar5008_restore_chainmask(struct ath_hw *ah)
884 {
885 int rx_chainmask = ah->rxchainmask;
886
887 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
888 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
889 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
890 }
891 }
892
ar9160_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)893 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
894 struct ath9k_channel *chan)
895 {
896 u32 pll;
897
898 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
899
900 if (chan && IS_CHAN_HALF_RATE(chan))
901 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
902 else if (chan && IS_CHAN_QUARTER_RATE(chan))
903 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
904
905 if (chan && IS_CHAN_5GHZ(chan))
906 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
907 else
908 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
909
910 return pll;
911 }
912
ar5008_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)913 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
914 struct ath9k_channel *chan)
915 {
916 u32 pll;
917
918 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
919
920 if (chan && IS_CHAN_HALF_RATE(chan))
921 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
922 else if (chan && IS_CHAN_QUARTER_RATE(chan))
923 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
924
925 if (chan && IS_CHAN_5GHZ(chan))
926 pll |= SM(0xa, AR_RTC_PLL_DIV);
927 else
928 pll |= SM(0xb, AR_RTC_PLL_DIV);
929
930 return pll;
931 }
932
ar5008_hw_ani_control_new(struct ath_hw * ah,enum ath9k_ani_cmd cmd,int param)933 static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
934 enum ath9k_ani_cmd cmd,
935 int param)
936 {
937 struct ath_common *common = ath9k_hw_common(ah);
938 struct ath9k_channel *chan = ah->curchan;
939 struct ar5416AniState *aniState = &ah->ani;
940 s32 value;
941
942 switch (cmd & ah->ani_function) {
943 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
944 /*
945 * on == 1 means ofdm weak signal detection is ON
946 * on == 1 is the default, for less noise immunity
947 *
948 * on == 0 means ofdm weak signal detection is OFF
949 * on == 0 means more noise imm
950 */
951 u32 on = param ? 1 : 0;
952 /*
953 * make register setting for default
954 * (weak sig detect ON) come from INI file
955 */
956 int m1ThreshLow = on ?
957 aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
958 int m2ThreshLow = on ?
959 aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
960 int m1Thresh = on ?
961 aniState->iniDef.m1Thresh : m1Thresh_off;
962 int m2Thresh = on ?
963 aniState->iniDef.m2Thresh : m2Thresh_off;
964 int m2CountThr = on ?
965 aniState->iniDef.m2CountThr : m2CountThr_off;
966 int m2CountThrLow = on ?
967 aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
968 int m1ThreshLowExt = on ?
969 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
970 int m2ThreshLowExt = on ?
971 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
972 int m1ThreshExt = on ?
973 aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
974 int m2ThreshExt = on ?
975 aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
976
977 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
978 AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
979 m1ThreshLow);
980 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
981 AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
982 m2ThreshLow);
983 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
984 AR_PHY_SFCORR_M1_THRESH, m1Thresh);
985 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
986 AR_PHY_SFCORR_M2_THRESH, m2Thresh);
987 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
988 AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
989 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
990 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
991 m2CountThrLow);
992
993 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
994 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
995 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
996 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
997 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
998 AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
999 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1000 AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1001
1002 if (on)
1003 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1004 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1005 else
1006 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1007 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1008
1009 if (on != aniState->ofdmWeakSigDetect) {
1010 ath_dbg(common, ANI,
1011 "** ch %d: ofdm weak signal: %s=>%s\n",
1012 chan->channel,
1013 aniState->ofdmWeakSigDetect ?
1014 "on" : "off",
1015 on ? "on" : "off");
1016 if (on)
1017 ah->stats.ast_ani_ofdmon++;
1018 else
1019 ah->stats.ast_ani_ofdmoff++;
1020 aniState->ofdmWeakSigDetect = on;
1021 }
1022 break;
1023 }
1024 case ATH9K_ANI_FIRSTEP_LEVEL:{
1025 u32 level = param;
1026
1027 value = level * 2;
1028 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1029 AR_PHY_FIND_SIG_FIRSTEP, value);
1030 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1031 AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1032
1033 if (level != aniState->firstepLevel) {
1034 ath_dbg(common, ANI,
1035 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1036 chan->channel,
1037 aniState->firstepLevel,
1038 level,
1039 ATH9K_ANI_FIRSTEP_LVL,
1040 value,
1041 aniState->iniDef.firstep);
1042 ath_dbg(common, ANI,
1043 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1044 chan->channel,
1045 aniState->firstepLevel,
1046 level,
1047 ATH9K_ANI_FIRSTEP_LVL,
1048 value,
1049 aniState->iniDef.firstepLow);
1050 if (level > aniState->firstepLevel)
1051 ah->stats.ast_ani_stepup++;
1052 else if (level < aniState->firstepLevel)
1053 ah->stats.ast_ani_stepdown++;
1054 aniState->firstepLevel = level;
1055 }
1056 break;
1057 }
1058 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1059 u32 level = param;
1060
1061 value = (level + 1) * 2;
1062 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1063 AR_PHY_TIMING5_CYCPWR_THR1, value);
1064
1065 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1066 AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1067
1068 if (level != aniState->spurImmunityLevel) {
1069 ath_dbg(common, ANI,
1070 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1071 chan->channel,
1072 aniState->spurImmunityLevel,
1073 level,
1074 ATH9K_ANI_SPUR_IMMUNE_LVL,
1075 value,
1076 aniState->iniDef.cycpwrThr1);
1077 ath_dbg(common, ANI,
1078 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1079 chan->channel,
1080 aniState->spurImmunityLevel,
1081 level,
1082 ATH9K_ANI_SPUR_IMMUNE_LVL,
1083 value,
1084 aniState->iniDef.cycpwrThr1Ext);
1085 if (level > aniState->spurImmunityLevel)
1086 ah->stats.ast_ani_spurup++;
1087 else if (level < aniState->spurImmunityLevel)
1088 ah->stats.ast_ani_spurdown++;
1089 aniState->spurImmunityLevel = level;
1090 }
1091 break;
1092 }
1093 case ATH9K_ANI_MRC_CCK:
1094 /*
1095 * You should not see this as AR5008, AR9001, AR9002
1096 * does not have hardware support for MRC CCK.
1097 */
1098 WARN_ON(1);
1099 break;
1100 default:
1101 ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1102 return false;
1103 }
1104
1105 ath_dbg(common, ANI,
1106 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1107 aniState->spurImmunityLevel,
1108 aniState->ofdmWeakSigDetect ? "on" : "off",
1109 aniState->firstepLevel,
1110 aniState->mrcCCK ? "on" : "off",
1111 aniState->listenTime,
1112 aniState->ofdmPhyErrCount,
1113 aniState->cckPhyErrCount);
1114 return true;
1115 }
1116
ar5008_hw_do_getnf(struct ath_hw * ah,int16_t nfarray[NUM_NF_READINGS])1117 static void ar5008_hw_do_getnf(struct ath_hw *ah,
1118 int16_t nfarray[NUM_NF_READINGS])
1119 {
1120 int16_t nf;
1121
1122 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1123 nfarray[0] = sign_extend32(nf, 8);
1124
1125 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1126 nfarray[1] = sign_extend32(nf, 8);
1127
1128 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1129 nfarray[2] = sign_extend32(nf, 8);
1130
1131 if (!IS_CHAN_HT40(ah->curchan))
1132 return;
1133
1134 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1135 nfarray[3] = sign_extend32(nf, 8);
1136
1137 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1138 nfarray[4] = sign_extend32(nf, 8);
1139
1140 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1141 nfarray[5] = sign_extend32(nf, 8);
1142 }
1143
1144 /*
1145 * Initialize the ANI register values with default (ini) values.
1146 * This routine is called during a (full) hardware reset after
1147 * all the registers are initialised from the INI.
1148 */
ar5008_hw_ani_cache_ini_regs(struct ath_hw * ah)1149 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1150 {
1151 struct ath_common *common = ath9k_hw_common(ah);
1152 struct ath9k_channel *chan = ah->curchan;
1153 struct ar5416AniState *aniState = &ah->ani;
1154 struct ath9k_ani_default *iniDef;
1155 u32 val;
1156
1157 iniDef = &aniState->iniDef;
1158
1159 ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1160 ah->hw_version.macVersion,
1161 ah->hw_version.macRev,
1162 ah->opmode,
1163 chan->channel);
1164
1165 val = REG_READ(ah, AR_PHY_SFCORR);
1166 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1167 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1168 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1169
1170 val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1171 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1172 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1173 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1174
1175 val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1176 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1177 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1178 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1179 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1180 iniDef->firstep = REG_READ_FIELD(ah,
1181 AR_PHY_FIND_SIG,
1182 AR_PHY_FIND_SIG_FIRSTEP);
1183 iniDef->firstepLow = REG_READ_FIELD(ah,
1184 AR_PHY_FIND_SIG_LOW,
1185 AR_PHY_FIND_SIG_FIRSTEP_LOW);
1186 iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1187 AR_PHY_TIMING5,
1188 AR_PHY_TIMING5_CYCPWR_THR1);
1189 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1190 AR_PHY_EXT_CCA,
1191 AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1192
1193 /* these levels just got reset to defaults by the INI */
1194 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1195 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1196 aniState->ofdmWeakSigDetect = true;
1197 aniState->mrcCCK = false; /* not available on pre AR9003 */
1198 }
1199
ar5008_hw_set_nf_limits(struct ath_hw * ah)1200 static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1201 {
1202 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1203 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1204 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1205 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1206 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1207 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1208 }
1209
ar5008_hw_set_radar_params(struct ath_hw * ah,struct ath_hw_radar_conf * conf)1210 static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1211 struct ath_hw_radar_conf *conf)
1212 {
1213 u32 radar_0 = 0, radar_1;
1214
1215 if (!conf) {
1216 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1217 return;
1218 }
1219
1220 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1221 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1222 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1223 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1224 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1225 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1226
1227 radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1228 radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1229 AR_PHY_RADAR_1_RELPWR_THRESH);
1230 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1231 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1232 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1233 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1234 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1235
1236 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1237 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1238 if (conf->ext_channel)
1239 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1240 else
1241 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1242 }
1243
ar5008_hw_set_radar_conf(struct ath_hw * ah)1244 static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1245 {
1246 struct ath_hw_radar_conf *conf = &ah->radar_conf;
1247
1248 conf->fir_power = -33;
1249 conf->radar_rssi = 20;
1250 conf->pulse_height = 10;
1251 conf->pulse_rssi = 15;
1252 conf->pulse_inband = 15;
1253 conf->pulse_maxlen = 255;
1254 conf->pulse_inband_step = 12;
1255 conf->radar_inband = 8;
1256 }
1257
ar5008_hw_init_txpower_cck(struct ath_hw * ah,int16_t * rate_array)1258 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1259 {
1260 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x))
1261 ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]);
1262 ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l],
1263 rate_array[rate2s]));
1264 ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l],
1265 rate_array[rate5_5s]));
1266 ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l],
1267 rate_array[rate11s]));
1268 #undef CCK_DELTA
1269 }
1270
ar5008_hw_init_txpower_ofdm(struct ath_hw * ah,int16_t * rate_array,int offset)1271 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1272 int offset)
1273 {
1274 int i, idx = 0;
1275
1276 for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1277 ah->tx_power[i] = rate_array[idx];
1278 idx++;
1279 }
1280 }
1281
ar5008_hw_init_txpower_ht(struct ath_hw * ah,int16_t * rate_array,int ss_offset,int ds_offset,bool is_40,int ht40_delta)1282 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1283 int ss_offset, int ds_offset,
1284 bool is_40, int ht40_delta)
1285 {
1286 int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1287
1288 for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1289 ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1290 mcs_idx++;
1291 }
1292 memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1293 AR5008_HT_SS_RATES);
1294 }
1295
ar5008_hw_init_rate_txpower(struct ath_hw * ah,int16_t * rate_array,struct ath9k_channel * chan,int ht40_delta)1296 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1297 struct ath9k_channel *chan, int ht40_delta)
1298 {
1299 if (IS_CHAN_5GHZ(chan)) {
1300 ar5008_hw_init_txpower_ofdm(ah, rate_array,
1301 AR5008_11NA_OFDM_SHIFT);
1302 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1303 ar5008_hw_init_txpower_ht(ah, rate_array,
1304 AR5008_11NA_HT_SS_SHIFT,
1305 AR5008_11NA_HT_DS_SHIFT,
1306 IS_CHAN_HT40(chan),
1307 ht40_delta);
1308 }
1309 } else {
1310 ar5008_hw_init_txpower_cck(ah, rate_array);
1311 ar5008_hw_init_txpower_ofdm(ah, rate_array,
1312 AR5008_11NG_OFDM_SHIFT);
1313 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1314 ar5008_hw_init_txpower_ht(ah, rate_array,
1315 AR5008_11NG_HT_SS_SHIFT,
1316 AR5008_11NG_HT_DS_SHIFT,
1317 IS_CHAN_HT40(chan),
1318 ht40_delta);
1319 }
1320 }
1321 }
1322
ar5008_hw_attach_phy_ops(struct ath_hw * ah)1323 int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1324 {
1325 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1326 static const u32 ar5416_cca_regs[6] = {
1327 AR_PHY_CCA,
1328 AR_PHY_CH1_CCA,
1329 AR_PHY_CH2_CCA,
1330 AR_PHY_EXT_CCA,
1331 AR_PHY_CH1_EXT_CCA,
1332 AR_PHY_CH2_EXT_CCA
1333 };
1334 int ret;
1335
1336 ret = ar5008_hw_rf_alloc_ext_banks(ah);
1337 if (ret)
1338 return ret;
1339
1340 priv_ops->rf_set_freq = ar5008_hw_set_channel;
1341 priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1342
1343 priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1344 priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1345 priv_ops->init_bb = ar5008_hw_init_bb;
1346 priv_ops->process_ini = ar5008_hw_process_ini;
1347 priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1348 priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1349 priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1350 priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1351 priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1352 priv_ops->restore_chainmask = ar5008_restore_chainmask;
1353 priv_ops->do_getnf = ar5008_hw_do_getnf;
1354 priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1355
1356 priv_ops->ani_control = ar5008_hw_ani_control_new;
1357 priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1358
1359 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1360 priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1361 else
1362 priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1363
1364 ar5008_hw_set_nf_limits(ah);
1365 ar5008_hw_set_radar_conf(ah);
1366 memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1367 return 0;
1368 }
1369