1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include "../regd.h"
20 #include "ar9002_phy.h"
21 #include "ar5008_initvals.h"
22 
23 /* All code below is for AR5008, AR9001, AR9002 */
24 
25 #define AR5008_OFDM_RATES		8
26 #define AR5008_HT_SS_RATES		8
27 #define AR5008_HT_DS_RATES		8
28 
29 #define AR5008_HT20_SHIFT		16
30 #define AR5008_HT40_SHIFT		24
31 
32 #define AR5008_11NA_OFDM_SHIFT		0
33 #define AR5008_11NA_HT_SS_SHIFT		8
34 #define AR5008_11NA_HT_DS_SHIFT		16
35 
36 #define AR5008_11NG_OFDM_SHIFT		4
37 #define AR5008_11NG_HT_SS_SHIFT		12
38 #define AR5008_11NG_HT_DS_SHIFT		20
39 
40 /*
41  * register values to turn OFDM weak signal detection OFF
42  */
43 static const int m1ThreshLow_off = 127;
44 static const int m2ThreshLow_off = 127;
45 static const int m1Thresh_off = 127;
46 static const int m2Thresh_off = 127;
47 static const int m2CountThr_off =  31;
48 static const int m2CountThrLow_off =  63;
49 static const int m1ThreshLowExt_off = 127;
50 static const int m2ThreshLowExt_off = 127;
51 static const int m1ThreshExt_off = 127;
52 static const int m2ThreshExt_off = 127;
53 
54 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
55 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
56 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
57 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
58 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
59 
ar5008_write_bank6(struct ath_hw * ah,unsigned int * writecnt)60 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
61 {
62 	struct ar5416IniArray *array = &ah->iniBank6;
63 	u32 *data = ah->analogBank6Data;
64 	int r;
65 
66 	ENABLE_REGWRITE_BUFFER(ah);
67 
68 	for (r = 0; r < array->ia_rows; r++) {
69 		REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
70 		DO_DELAY(*writecnt);
71 	}
72 
73 	REGWRITE_BUFFER_FLUSH(ah);
74 }
75 
76 /**
77  * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
78  * @rfbuf:
79  * @reg32:
80  * @numBits:
81  * @firstBit:
82  * @column:
83  *
84  * Performs analog "swizzling" of parameters into their location.
85  * Used on external AR2133/AR5133 radios.
86  */
ar5008_hw_phy_modify_rx_buffer(u32 * rfBuf,u32 reg32,u32 numBits,u32 firstBit,u32 column)87 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
88 					   u32 numBits, u32 firstBit,
89 					   u32 column)
90 {
91 	u32 tmp32, mask, arrayEntry, lastBit;
92 	int32_t bitPosition, bitsLeft;
93 
94 	tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
95 	arrayEntry = (firstBit - 1) / 8;
96 	bitPosition = (firstBit - 1) % 8;
97 	bitsLeft = numBits;
98 	while (bitsLeft > 0) {
99 		lastBit = (bitPosition + bitsLeft > 8) ?
100 		    8 : bitPosition + bitsLeft;
101 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
102 		    (column * 8);
103 		rfBuf[arrayEntry] &= ~mask;
104 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
105 				      (column * 8)) & mask;
106 		bitsLeft -= 8 - bitPosition;
107 		tmp32 = tmp32 >> (8 - bitPosition);
108 		bitPosition = 0;
109 		arrayEntry++;
110 	}
111 }
112 
113 /*
114  * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
115  * rf_pwd_icsyndiv.
116  *
117  * Theoretical Rules:
118  *   if 2 GHz band
119  *      if forceBiasAuto
120  *         if synth_freq < 2412
121  *            bias = 0
122  *         else if 2412 <= synth_freq <= 2422
123  *            bias = 1
124  *         else // synth_freq > 2422
125  *            bias = 2
126  *      else if forceBias > 0
127  *         bias = forceBias & 7
128  *      else
129  *         no change, use value from ini file
130  *   else
131  *      no change, invalid band
132  *
133  *  1st Mod:
134  *    2422 also uses value of 2
135  *    <approved>
136  *
137  *  2nd Mod:
138  *    Less than 2412 uses value of 0, 2412 and above uses value of 2
139  */
ar5008_hw_force_bias(struct ath_hw * ah,u16 synth_freq)140 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
141 {
142 	struct ath_common *common = ath9k_hw_common(ah);
143 	u32 tmp_reg;
144 	int reg_writes = 0;
145 	u32 new_bias = 0;
146 
147 	if (!AR_SREV_5416(ah) || synth_freq >= 3000)
148 		return;
149 
150 	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
151 
152 	if (synth_freq < 2412)
153 		new_bias = 0;
154 	else if (synth_freq < 2422)
155 		new_bias = 1;
156 	else
157 		new_bias = 2;
158 
159 	/* pre-reverse this field */
160 	tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
161 
162 	ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
163 		new_bias, synth_freq);
164 
165 	/* swizzle rf_pwd_icsyndiv */
166 	ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
167 
168 	/* write Bank 6 with new params */
169 	ar5008_write_bank6(ah, &reg_writes);
170 }
171 
172 /**
173  * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
174  * @ah: atheros hardware structure
175  * @chan:
176  *
177  * For the external AR2133/AR5133 radios, takes the MHz channel value and set
178  * the channel value. Assumes writes enabled to analog bus and bank6 register
179  * cache in ah->analogBank6Data.
180  */
ar5008_hw_set_channel(struct ath_hw * ah,struct ath9k_channel * chan)181 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
182 {
183 	struct ath_common *common = ath9k_hw_common(ah);
184 	u32 channelSel = 0;
185 	u32 bModeSynth = 0;
186 	u32 aModeRefSel = 0;
187 	u32 reg32 = 0;
188 	u16 freq;
189 	struct chan_centers centers;
190 
191 	ath9k_hw_get_channel_centers(ah, chan, &centers);
192 	freq = centers.synth_center;
193 
194 	if (freq < 4800) {
195 		u32 txctl;
196 
197 		if (((freq - 2192) % 5) == 0) {
198 			channelSel = ((freq - 672) * 2 - 3040) / 10;
199 			bModeSynth = 0;
200 		} else if (((freq - 2224) % 5) == 0) {
201 			channelSel = ((freq - 704) * 2 - 3040) / 10;
202 			bModeSynth = 1;
203 		} else {
204 			ath_err(common, "Invalid channel %u MHz\n", freq);
205 			return -EINVAL;
206 		}
207 
208 		channelSel = (channelSel << 2) & 0xff;
209 		channelSel = ath9k_hw_reverse_bits(channelSel, 8);
210 
211 		txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
212 		if (freq == 2484) {
213 
214 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
215 				  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
216 		} else {
217 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
218 				  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
219 		}
220 
221 	} else if ((freq % 20) == 0 && freq >= 5120) {
222 		channelSel =
223 		    ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
224 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
225 	} else if ((freq % 10) == 0) {
226 		channelSel =
227 		    ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
228 		if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
229 			aModeRefSel = ath9k_hw_reverse_bits(2, 2);
230 		else
231 			aModeRefSel = ath9k_hw_reverse_bits(1, 2);
232 	} else if ((freq % 5) == 0) {
233 		channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
234 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
235 	} else {
236 		ath_err(common, "Invalid channel %u MHz\n", freq);
237 		return -EINVAL;
238 	}
239 
240 	ar5008_hw_force_bias(ah, freq);
241 
242 	reg32 =
243 	    (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
244 	    (1 << 5) | 0x1;
245 
246 	REG_WRITE(ah, AR_PHY(0x37), reg32);
247 
248 	ah->curchan = chan;
249 
250 	return 0;
251 }
252 
ar5008_hw_cmn_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan,int bin)253 void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah,
254 			  struct ath9k_channel *chan, int bin)
255 {
256 	int cur_bin;
257 	int upper, lower, cur_vit_mask;
258 	int i;
259 	int8_t mask_m[123] = {0};
260 	int8_t mask_p[123] = {0};
261 	int8_t mask_amt;
262 	int tmp_mask;
263 	static const int pilot_mask_reg[4] = {
264 		AR_PHY_TIMING7, AR_PHY_TIMING8,
265 		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
266 	};
267 	static const int chan_mask_reg[4] = {
268 		AR_PHY_TIMING9, AR_PHY_TIMING10,
269 		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
270 	};
271 	static const int inc[4] = { 0, 100, 0, 0 };
272 
273 	cur_bin = -6000;
274 	upper = bin + 100;
275 	lower = bin - 100;
276 
277 	for (i = 0; i < 4; i++) {
278 		int pilot_mask = 0;
279 		int chan_mask = 0;
280 		int bp = 0;
281 
282 		for (bp = 0; bp < 30; bp++) {
283 			if ((cur_bin > lower) && (cur_bin < upper)) {
284 				pilot_mask = pilot_mask | 0x1 << bp;
285 				chan_mask = chan_mask | 0x1 << bp;
286 			}
287 			cur_bin += 100;
288 		}
289 		cur_bin += inc[i];
290 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
291 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
292 	}
293 
294 	cur_vit_mask = 6100;
295 	upper = bin + 120;
296 	lower = bin - 120;
297 
298 	for (i = 0; i < ARRAY_SIZE(mask_m); i++) {
299 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
300 			/* workaround for gcc bug #37014 */
301 			volatile int tmp_v = abs(cur_vit_mask - bin);
302 
303 			if (tmp_v < 75)
304 				mask_amt = 1;
305 			else
306 				mask_amt = 0;
307 			if (cur_vit_mask < 0)
308 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
309 			else
310 				mask_p[cur_vit_mask / 100] = mask_amt;
311 		}
312 		cur_vit_mask -= 100;
313 	}
314 
315 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
316 		| (mask_m[48] << 26) | (mask_m[49] << 24)
317 		| (mask_m[50] << 22) | (mask_m[51] << 20)
318 		| (mask_m[52] << 18) | (mask_m[53] << 16)
319 		| (mask_m[54] << 14) | (mask_m[55] << 12)
320 		| (mask_m[56] << 10) | (mask_m[57] << 8)
321 		| (mask_m[58] << 6) | (mask_m[59] << 4)
322 		| (mask_m[60] << 2) | (mask_m[61] << 0);
323 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
324 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
325 
326 	tmp_mask = (mask_m[31] << 28)
327 		| (mask_m[32] << 26) | (mask_m[33] << 24)
328 		| (mask_m[34] << 22) | (mask_m[35] << 20)
329 		| (mask_m[36] << 18) | (mask_m[37] << 16)
330 		| (mask_m[48] << 14) | (mask_m[39] << 12)
331 		| (mask_m[40] << 10) | (mask_m[41] << 8)
332 		| (mask_m[42] << 6) | (mask_m[43] << 4)
333 		| (mask_m[44] << 2) | (mask_m[45] << 0);
334 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
335 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
336 
337 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
338 		| (mask_m[18] << 26) | (mask_m[18] << 24)
339 		| (mask_m[20] << 22) | (mask_m[20] << 20)
340 		| (mask_m[22] << 18) | (mask_m[22] << 16)
341 		| (mask_m[24] << 14) | (mask_m[24] << 12)
342 		| (mask_m[25] << 10) | (mask_m[26] << 8)
343 		| (mask_m[27] << 6) | (mask_m[28] << 4)
344 		| (mask_m[29] << 2) | (mask_m[30] << 0);
345 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
346 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
347 
348 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
349 		| (mask_m[2] << 26) | (mask_m[3] << 24)
350 		| (mask_m[4] << 22) | (mask_m[5] << 20)
351 		| (mask_m[6] << 18) | (mask_m[7] << 16)
352 		| (mask_m[8] << 14) | (mask_m[9] << 12)
353 		| (mask_m[10] << 10) | (mask_m[11] << 8)
354 		| (mask_m[12] << 6) | (mask_m[13] << 4)
355 		| (mask_m[14] << 2) | (mask_m[15] << 0);
356 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
357 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
358 
359 	tmp_mask = (mask_p[15] << 28)
360 		| (mask_p[14] << 26) | (mask_p[13] << 24)
361 		| (mask_p[12] << 22) | (mask_p[11] << 20)
362 		| (mask_p[10] << 18) | (mask_p[9] << 16)
363 		| (mask_p[8] << 14) | (mask_p[7] << 12)
364 		| (mask_p[6] << 10) | (mask_p[5] << 8)
365 		| (mask_p[4] << 6) | (mask_p[3] << 4)
366 		| (mask_p[2] << 2) | (mask_p[1] << 0);
367 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
368 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
369 
370 	tmp_mask = (mask_p[30] << 28)
371 		| (mask_p[29] << 26) | (mask_p[28] << 24)
372 		| (mask_p[27] << 22) | (mask_p[26] << 20)
373 		| (mask_p[25] << 18) | (mask_p[24] << 16)
374 		| (mask_p[23] << 14) | (mask_p[22] << 12)
375 		| (mask_p[21] << 10) | (mask_p[20] << 8)
376 		| (mask_p[19] << 6) | (mask_p[18] << 4)
377 		| (mask_p[17] << 2) | (mask_p[16] << 0);
378 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
379 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
380 
381 	tmp_mask = (mask_p[45] << 28)
382 		| (mask_p[44] << 26) | (mask_p[43] << 24)
383 		| (mask_p[42] << 22) | (mask_p[41] << 20)
384 		| (mask_p[40] << 18) | (mask_p[39] << 16)
385 		| (mask_p[38] << 14) | (mask_p[37] << 12)
386 		| (mask_p[36] << 10) | (mask_p[35] << 8)
387 		| (mask_p[34] << 6) | (mask_p[33] << 4)
388 		| (mask_p[32] << 2) | (mask_p[31] << 0);
389 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
390 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
391 
392 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
393 		| (mask_p[59] << 26) | (mask_p[58] << 24)
394 		| (mask_p[57] << 22) | (mask_p[56] << 20)
395 		| (mask_p[55] << 18) | (mask_p[54] << 16)
396 		| (mask_p[53] << 14) | (mask_p[52] << 12)
397 		| (mask_p[51] << 10) | (mask_p[50] << 8)
398 		| (mask_p[49] << 6) | (mask_p[48] << 4)
399 		| (mask_p[47] << 2) | (mask_p[46] << 0);
400 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
401 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
402 }
403 
404 /**
405  * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
406  * @ah: atheros hardware structure
407  * @chan:
408  *
409  * For non single-chip solutions. Converts to baseband spur frequency given the
410  * input channel frequency and compute register settings below.
411  */
ar5008_hw_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan)412 static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
413 				    struct ath9k_channel *chan)
414 {
415 	int bb_spur = AR_NO_SPUR;
416 	int bin;
417 	int spur_freq_sd;
418 	int spur_delta_phase;
419 	int denominator;
420 	int tmp, new;
421 	int i;
422 
423 	int cur_bb_spur;
424 	bool is2GHz = IS_CHAN_2GHZ(chan);
425 
426 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
427 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
428 		if (AR_NO_SPUR == cur_bb_spur)
429 			break;
430 		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
431 		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
432 			bb_spur = cur_bb_spur;
433 			break;
434 		}
435 	}
436 
437 	if (AR_NO_SPUR == bb_spur)
438 		return;
439 
440 	bin = bb_spur * 32;
441 
442 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
443 	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
444 		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
445 		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
446 		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
447 
448 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
449 
450 	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
451 	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
452 	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
453 	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
454 	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
455 	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
456 
457 	spur_delta_phase = ((bb_spur * 524288) / 100) &
458 		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
459 
460 	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
461 	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
462 
463 	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
464 	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
465 	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
466 	REG_WRITE(ah, AR_PHY_TIMING11, new);
467 
468 	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
469 }
470 
471 /**
472  * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
473  * @ah: atheros hardware structure
474  *
475  * Only required for older devices with external AR2133/AR5133 radios.
476  */
ar5008_hw_rf_alloc_ext_banks(struct ath_hw * ah)477 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
478 {
479 	int size = ah->iniBank6.ia_rows * sizeof(u32);
480 
481 	if (AR_SREV_9280_20_OR_LATER(ah))
482 	    return 0;
483 
484 	ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
485 	if (!ah->analogBank6Data)
486 		return -ENOMEM;
487 
488 	return 0;
489 }
490 
491 
492 /* *
493  * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
494  * @ah: atheros hardware structure
495  * @chan:
496  * @modesIndex:
497  *
498  * Used for the external AR2133/AR5133 radios.
499  *
500  * Reads the EEPROM header info from the device structure and programs
501  * all rf registers. This routine requires access to the analog
502  * rf device. This is not required for single-chip devices.
503  */
ar5008_hw_set_rf_regs(struct ath_hw * ah,struct ath9k_channel * chan,u16 modesIndex)504 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
505 				  struct ath9k_channel *chan,
506 				  u16 modesIndex)
507 {
508 	u32 eepMinorRev;
509 	u32 ob5GHz = 0, db5GHz = 0;
510 	u32 ob2GHz = 0, db2GHz = 0;
511 	int regWrites = 0;
512 	int i;
513 
514 	/*
515 	 * Software does not need to program bank data
516 	 * for single chip devices, that is AR9280 or anything
517 	 * after that.
518 	 */
519 	if (AR_SREV_9280_20_OR_LATER(ah))
520 		return true;
521 
522 	/* Setup rf parameters */
523 	eepMinorRev = ah->eep_ops->get_eeprom_rev(ah);
524 
525 	for (i = 0; i < ah->iniBank6.ia_rows; i++)
526 		ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
527 
528 	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
529 	if (eepMinorRev >= 2) {
530 		if (IS_CHAN_2GHZ(chan)) {
531 			ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
532 			db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
533 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
534 						       ob2GHz, 3, 197, 0);
535 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
536 						       db2GHz, 3, 194, 0);
537 		} else {
538 			ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
539 			db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
540 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
541 						       ob5GHz, 3, 203, 0);
542 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
543 						       db5GHz, 3, 200, 0);
544 		}
545 	}
546 
547 	/* Write Analog registers */
548 	REG_WRITE_ARRAY(&bank0, 1, regWrites);
549 	REG_WRITE_ARRAY(&bank1, 1, regWrites);
550 	REG_WRITE_ARRAY(&bank2, 1, regWrites);
551 	REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
552 	ar5008_write_bank6(ah, &regWrites);
553 	REG_WRITE_ARRAY(&bank7, 1, regWrites);
554 
555 	return true;
556 }
557 
ar5008_hw_init_bb(struct ath_hw * ah,struct ath9k_channel * chan)558 static void ar5008_hw_init_bb(struct ath_hw *ah,
559 			      struct ath9k_channel *chan)
560 {
561 	u32 synthDelay;
562 
563 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
564 
565 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
566 
567 	ath9k_hw_synth_delay(ah, chan, synthDelay);
568 }
569 
ar5008_hw_init_chain_masks(struct ath_hw * ah)570 static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
571 {
572 	int rx_chainmask, tx_chainmask;
573 
574 	rx_chainmask = ah->rxchainmask;
575 	tx_chainmask = ah->txchainmask;
576 
577 
578 	switch (rx_chainmask) {
579 	case 0x5:
580 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
581 			    AR_PHY_SWAP_ALT_CHAIN);
582 		/* fall through */
583 	case 0x3:
584 		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
585 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
586 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
587 			break;
588 		}
589 		/* fall through */
590 	case 0x1:
591 	case 0x2:
592 	case 0x7:
593 		ENABLE_REGWRITE_BUFFER(ah);
594 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
595 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
596 		break;
597 	default:
598 		ENABLE_REGWRITE_BUFFER(ah);
599 		break;
600 	}
601 
602 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
603 
604 	REGWRITE_BUFFER_FLUSH(ah);
605 
606 	if (tx_chainmask == 0x5) {
607 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
608 			    AR_PHY_SWAP_ALT_CHAIN);
609 	}
610 	if (AR_SREV_9100(ah))
611 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
612 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
613 }
614 
ar5008_hw_override_ini(struct ath_hw * ah,struct ath9k_channel * chan)615 static void ar5008_hw_override_ini(struct ath_hw *ah,
616 				   struct ath9k_channel *chan)
617 {
618 	u32 val;
619 
620 	/*
621 	 * Set the RX_ABORT and RX_DIS and clear if off only after
622 	 * RXE is set for MAC. This prevents frames with corrupted
623 	 * descriptor status.
624 	 */
625 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
626 
627 	if (AR_SREV_9280_20_OR_LATER(ah)) {
628 		/*
629 		 * For AR9280 and above, there is a new feature that allows
630 		 * Multicast search based on both MAC Address and Key ID.
631 		 * By default, this feature is enabled. But since the driver
632 		 * is not using this feature, we switch it off; otherwise
633 		 * multicast search based on MAC addr only will fail.
634 		 */
635 		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
636 			(~AR_ADHOC_MCAST_KEYID_ENABLE);
637 
638 		if (!AR_SREV_9271(ah))
639 			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
640 
641 		if (AR_SREV_9287_11_OR_LATER(ah))
642 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
643 
644 		val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
645 
646 		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
647 	}
648 
649 	if (AR_SREV_9280_20_OR_LATER(ah))
650 		return;
651 	/*
652 	 * Disable BB clock gating
653 	 * Necessary to avoid issues on AR5416 2.0
654 	 */
655 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
656 
657 	/*
658 	 * Disable RIFS search on some chips to avoid baseband
659 	 * hang issues.
660 	 */
661 	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
662 		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
663 		val &= ~AR_PHY_RIFS_INIT_DELAY;
664 		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
665 	}
666 }
667 
ar5008_hw_set_channel_regs(struct ath_hw * ah,struct ath9k_channel * chan)668 static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
669 				       struct ath9k_channel *chan)
670 {
671 	u32 phymode;
672 	u32 enableDacFifo = 0;
673 
674 	if (AR_SREV_9285_12_OR_LATER(ah))
675 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
676 					 AR_PHY_FC_ENABLE_DAC_FIFO);
677 
678 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
679 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
680 
681 	if (IS_CHAN_HT40(chan)) {
682 		phymode |= AR_PHY_FC_DYN2040_EN;
683 
684 		if (IS_CHAN_HT40PLUS(chan))
685 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
686 
687 	}
688 	ENABLE_REGWRITE_BUFFER(ah);
689 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
690 
691 	/* This function do only REG_WRITE, so
692 	 * we can include it to REGWRITE_BUFFER. */
693 	ath9k_hw_set11nmac2040(ah, chan);
694 
695 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
696 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
697 
698 	REGWRITE_BUFFER_FLUSH(ah);
699 }
700 
701 
ar5008_hw_process_ini(struct ath_hw * ah,struct ath9k_channel * chan)702 static int ar5008_hw_process_ini(struct ath_hw *ah,
703 				 struct ath9k_channel *chan)
704 {
705 	struct ath_common *common = ath9k_hw_common(ah);
706 	int i, regWrites = 0;
707 	u32 modesIndex, freqIndex;
708 
709 	if (IS_CHAN_5GHZ(chan)) {
710 		freqIndex = 1;
711 		modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
712 	} else {
713 		freqIndex = 2;
714 		modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
715 	}
716 
717 	/*
718 	 * Set correct baseband to analog shift setting to
719 	 * access analog chips.
720 	 */
721 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
722 
723 	/* Write ADDAC shifts */
724 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
725 	if (ah->eep_ops->set_addac)
726 		ah->eep_ops->set_addac(ah, chan);
727 
728 	REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
729 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
730 
731 	ENABLE_REGWRITE_BUFFER(ah);
732 
733 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
734 		u32 reg = INI_RA(&ah->iniModes, i, 0);
735 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
736 
737 		if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
738 			val &= ~AR_AN_TOP2_PWDCLKIND;
739 
740 		REG_WRITE(ah, reg, val);
741 
742 		if (reg >= 0x7800 && reg < 0x78a0
743 		    && ah->config.analog_shiftreg
744 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
745 			udelay(100);
746 		}
747 
748 		DO_DELAY(regWrites);
749 	}
750 
751 	REGWRITE_BUFFER_FLUSH(ah);
752 
753 	if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
754 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
755 
756 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
757 	    AR_SREV_9287_11_OR_LATER(ah))
758 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
759 
760 	if (AR_SREV_9271_10(ah)) {
761 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
762 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
763 	}
764 
765 	ENABLE_REGWRITE_BUFFER(ah);
766 
767 	/* Write common array parameters */
768 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
769 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
770 		u32 val = INI_RA(&ah->iniCommon, i, 1);
771 
772 		REG_WRITE(ah, reg, val);
773 
774 		if (reg >= 0x7800 && reg < 0x78a0
775 		    && ah->config.analog_shiftreg
776 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
777 			udelay(100);
778 		}
779 
780 		DO_DELAY(regWrites);
781 	}
782 
783 	REGWRITE_BUFFER_FLUSH(ah);
784 
785 	REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
786 
787 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
788 		REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
789 				regWrites);
790 
791 	ar5008_hw_override_ini(ah, chan);
792 	ar5008_hw_set_channel_regs(ah, chan);
793 	ar5008_hw_init_chain_masks(ah);
794 	ath9k_olc_init(ah);
795 	ath9k_hw_apply_txpower(ah, chan, false);
796 
797 	/* Write analog registers */
798 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
799 		ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
800 		return -EIO;
801 	}
802 
803 	return 0;
804 }
805 
ar5008_hw_set_rfmode(struct ath_hw * ah,struct ath9k_channel * chan)806 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
807 {
808 	u32 rfMode = 0;
809 
810 	if (chan == NULL)
811 		return;
812 
813 	if (IS_CHAN_2GHZ(chan))
814 		rfMode |= AR_PHY_MODE_DYNAMIC;
815 	else
816 		rfMode |= AR_PHY_MODE_OFDM;
817 
818 	if (!AR_SREV_9280_20_OR_LATER(ah))
819 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
820 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
821 
822 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
823 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
824 
825 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
826 }
827 
ar5008_hw_mark_phy_inactive(struct ath_hw * ah)828 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
829 {
830 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
831 }
832 
ar5008_hw_set_delta_slope(struct ath_hw * ah,struct ath9k_channel * chan)833 static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
834 				      struct ath9k_channel *chan)
835 {
836 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
837 	u32 clockMhzScaled = 0x64000000;
838 	struct chan_centers centers;
839 
840 	if (IS_CHAN_HALF_RATE(chan))
841 		clockMhzScaled = clockMhzScaled >> 1;
842 	else if (IS_CHAN_QUARTER_RATE(chan))
843 		clockMhzScaled = clockMhzScaled >> 2;
844 
845 	ath9k_hw_get_channel_centers(ah, chan, &centers);
846 	coef_scaled = clockMhzScaled / centers.synth_center;
847 
848 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
849 				      &ds_coef_exp);
850 
851 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
852 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
853 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
854 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
855 
856 	coef_scaled = (9 * coef_scaled) / 10;
857 
858 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
859 				      &ds_coef_exp);
860 
861 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
862 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
863 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
864 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
865 }
866 
ar5008_hw_rfbus_req(struct ath_hw * ah)867 static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
868 {
869 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
870 	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
871 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
872 }
873 
ar5008_hw_rfbus_done(struct ath_hw * ah)874 static void ar5008_hw_rfbus_done(struct ath_hw *ah)
875 {
876 	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
877 
878 	ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
879 
880 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
881 }
882 
ar5008_restore_chainmask(struct ath_hw * ah)883 static void ar5008_restore_chainmask(struct ath_hw *ah)
884 {
885 	int rx_chainmask = ah->rxchainmask;
886 
887 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
888 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
889 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
890 	}
891 }
892 
ar9160_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)893 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
894 					 struct ath9k_channel *chan)
895 {
896 	u32 pll;
897 
898 	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
899 
900 	if (chan && IS_CHAN_HALF_RATE(chan))
901 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
902 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
903 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
904 
905 	if (chan && IS_CHAN_5GHZ(chan))
906 		pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
907 	else
908 		pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
909 
910 	return pll;
911 }
912 
ar5008_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)913 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
914 					 struct ath9k_channel *chan)
915 {
916 	u32 pll;
917 
918 	pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
919 
920 	if (chan && IS_CHAN_HALF_RATE(chan))
921 		pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
922 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
923 		pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
924 
925 	if (chan && IS_CHAN_5GHZ(chan))
926 		pll |= SM(0xa, AR_RTC_PLL_DIV);
927 	else
928 		pll |= SM(0xb, AR_RTC_PLL_DIV);
929 
930 	return pll;
931 }
932 
ar5008_hw_ani_control_new(struct ath_hw * ah,enum ath9k_ani_cmd cmd,int param)933 static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
934 				      enum ath9k_ani_cmd cmd,
935 				      int param)
936 {
937 	struct ath_common *common = ath9k_hw_common(ah);
938 	struct ath9k_channel *chan = ah->curchan;
939 	struct ar5416AniState *aniState = &ah->ani;
940 	s32 value;
941 
942 	switch (cmd & ah->ani_function) {
943 	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
944 		/*
945 		 * on == 1 means ofdm weak signal detection is ON
946 		 * on == 1 is the default, for less noise immunity
947 		 *
948 		 * on == 0 means ofdm weak signal detection is OFF
949 		 * on == 0 means more noise imm
950 		 */
951 		u32 on = param ? 1 : 0;
952 		/*
953 		 * make register setting for default
954 		 * (weak sig detect ON) come from INI file
955 		 */
956 		int m1ThreshLow = on ?
957 			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
958 		int m2ThreshLow = on ?
959 			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
960 		int m1Thresh = on ?
961 			aniState->iniDef.m1Thresh : m1Thresh_off;
962 		int m2Thresh = on ?
963 			aniState->iniDef.m2Thresh : m2Thresh_off;
964 		int m2CountThr = on ?
965 			aniState->iniDef.m2CountThr : m2CountThr_off;
966 		int m2CountThrLow = on ?
967 			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
968 		int m1ThreshLowExt = on ?
969 			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
970 		int m2ThreshLowExt = on ?
971 			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
972 		int m1ThreshExt = on ?
973 			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
974 		int m2ThreshExt = on ?
975 			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
976 
977 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
978 			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
979 			      m1ThreshLow);
980 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
981 			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
982 			      m2ThreshLow);
983 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
984 			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
985 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
986 			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
987 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
988 			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
989 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
990 			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
991 			      m2CountThrLow);
992 
993 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
994 			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
995 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
996 			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
997 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
998 			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
999 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1000 			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1001 
1002 		if (on)
1003 			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1004 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1005 		else
1006 			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1007 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1008 
1009 		if (on != aniState->ofdmWeakSigDetect) {
1010 			ath_dbg(common, ANI,
1011 				"** ch %d: ofdm weak signal: %s=>%s\n",
1012 				chan->channel,
1013 				aniState->ofdmWeakSigDetect ?
1014 				"on" : "off",
1015 				on ? "on" : "off");
1016 			if (on)
1017 				ah->stats.ast_ani_ofdmon++;
1018 			else
1019 				ah->stats.ast_ani_ofdmoff++;
1020 			aniState->ofdmWeakSigDetect = on;
1021 		}
1022 		break;
1023 	}
1024 	case ATH9K_ANI_FIRSTEP_LEVEL:{
1025 		u32 level = param;
1026 
1027 		value = level * 2;
1028 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1029 			      AR_PHY_FIND_SIG_FIRSTEP, value);
1030 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1031 			      AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1032 
1033 		if (level != aniState->firstepLevel) {
1034 			ath_dbg(common, ANI,
1035 				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1036 				chan->channel,
1037 				aniState->firstepLevel,
1038 				level,
1039 				ATH9K_ANI_FIRSTEP_LVL,
1040 				value,
1041 				aniState->iniDef.firstep);
1042 			ath_dbg(common, ANI,
1043 				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1044 				chan->channel,
1045 				aniState->firstepLevel,
1046 				level,
1047 				ATH9K_ANI_FIRSTEP_LVL,
1048 				value,
1049 				aniState->iniDef.firstepLow);
1050 			if (level > aniState->firstepLevel)
1051 				ah->stats.ast_ani_stepup++;
1052 			else if (level < aniState->firstepLevel)
1053 				ah->stats.ast_ani_stepdown++;
1054 			aniState->firstepLevel = level;
1055 		}
1056 		break;
1057 	}
1058 	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1059 		u32 level = param;
1060 
1061 		value = (level + 1) * 2;
1062 		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1063 			      AR_PHY_TIMING5_CYCPWR_THR1, value);
1064 
1065 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1066 				  AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1067 
1068 		if (level != aniState->spurImmunityLevel) {
1069 			ath_dbg(common, ANI,
1070 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1071 				chan->channel,
1072 				aniState->spurImmunityLevel,
1073 				level,
1074 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1075 				value,
1076 				aniState->iniDef.cycpwrThr1);
1077 			ath_dbg(common, ANI,
1078 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1079 				chan->channel,
1080 				aniState->spurImmunityLevel,
1081 				level,
1082 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1083 				value,
1084 				aniState->iniDef.cycpwrThr1Ext);
1085 			if (level > aniState->spurImmunityLevel)
1086 				ah->stats.ast_ani_spurup++;
1087 			else if (level < aniState->spurImmunityLevel)
1088 				ah->stats.ast_ani_spurdown++;
1089 			aniState->spurImmunityLevel = level;
1090 		}
1091 		break;
1092 	}
1093 	case ATH9K_ANI_MRC_CCK:
1094 		/*
1095 		 * You should not see this as AR5008, AR9001, AR9002
1096 		 * does not have hardware support for MRC CCK.
1097 		 */
1098 		WARN_ON(1);
1099 		break;
1100 	default:
1101 		ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1102 		return false;
1103 	}
1104 
1105 	ath_dbg(common, ANI,
1106 		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1107 		aniState->spurImmunityLevel,
1108 		aniState->ofdmWeakSigDetect ? "on" : "off",
1109 		aniState->firstepLevel,
1110 		aniState->mrcCCK ? "on" : "off",
1111 		aniState->listenTime,
1112 		aniState->ofdmPhyErrCount,
1113 		aniState->cckPhyErrCount);
1114 	return true;
1115 }
1116 
ar5008_hw_do_getnf(struct ath_hw * ah,int16_t nfarray[NUM_NF_READINGS])1117 static void ar5008_hw_do_getnf(struct ath_hw *ah,
1118 			      int16_t nfarray[NUM_NF_READINGS])
1119 {
1120 	int16_t nf;
1121 
1122 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1123 	nfarray[0] = sign_extend32(nf, 8);
1124 
1125 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1126 	nfarray[1] = sign_extend32(nf, 8);
1127 
1128 	nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1129 	nfarray[2] = sign_extend32(nf, 8);
1130 
1131 	if (!IS_CHAN_HT40(ah->curchan))
1132 		return;
1133 
1134 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1135 	nfarray[3] = sign_extend32(nf, 8);
1136 
1137 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1138 	nfarray[4] = sign_extend32(nf, 8);
1139 
1140 	nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1141 	nfarray[5] = sign_extend32(nf, 8);
1142 }
1143 
1144 /*
1145  * Initialize the ANI register values with default (ini) values.
1146  * This routine is called during a (full) hardware reset after
1147  * all the registers are initialised from the INI.
1148  */
ar5008_hw_ani_cache_ini_regs(struct ath_hw * ah)1149 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1150 {
1151 	struct ath_common *common = ath9k_hw_common(ah);
1152 	struct ath9k_channel *chan = ah->curchan;
1153 	struct ar5416AniState *aniState = &ah->ani;
1154 	struct ath9k_ani_default *iniDef;
1155 	u32 val;
1156 
1157 	iniDef = &aniState->iniDef;
1158 
1159 	ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1160 		ah->hw_version.macVersion,
1161 		ah->hw_version.macRev,
1162 		ah->opmode,
1163 		chan->channel);
1164 
1165 	val = REG_READ(ah, AR_PHY_SFCORR);
1166 	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1167 	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1168 	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1169 
1170 	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1171 	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1172 	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1173 	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1174 
1175 	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1176 	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1177 	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1178 	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1179 	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1180 	iniDef->firstep = REG_READ_FIELD(ah,
1181 					 AR_PHY_FIND_SIG,
1182 					 AR_PHY_FIND_SIG_FIRSTEP);
1183 	iniDef->firstepLow = REG_READ_FIELD(ah,
1184 					    AR_PHY_FIND_SIG_LOW,
1185 					    AR_PHY_FIND_SIG_FIRSTEP_LOW);
1186 	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1187 					    AR_PHY_TIMING5,
1188 					    AR_PHY_TIMING5_CYCPWR_THR1);
1189 	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1190 					       AR_PHY_EXT_CCA,
1191 					       AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1192 
1193 	/* these levels just got reset to defaults by the INI */
1194 	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1195 	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1196 	aniState->ofdmWeakSigDetect = true;
1197 	aniState->mrcCCK = false; /* not available on pre AR9003 */
1198 }
1199 
ar5008_hw_set_nf_limits(struct ath_hw * ah)1200 static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1201 {
1202 	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1203 	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1204 	ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1205 	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1206 	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1207 	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1208 }
1209 
ar5008_hw_set_radar_params(struct ath_hw * ah,struct ath_hw_radar_conf * conf)1210 static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1211 				       struct ath_hw_radar_conf *conf)
1212 {
1213 	u32 radar_0 = 0, radar_1;
1214 
1215 	if (!conf) {
1216 		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1217 		return;
1218 	}
1219 
1220 	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1221 	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1222 	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1223 	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1224 	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1225 	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1226 
1227 	radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1228 	radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1229 		     AR_PHY_RADAR_1_RELPWR_THRESH);
1230 	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1231 	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1232 	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1233 	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1234 	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1235 
1236 	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1237 	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1238 	if (conf->ext_channel)
1239 		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1240 	else
1241 		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1242 }
1243 
ar5008_hw_set_radar_conf(struct ath_hw * ah)1244 static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1245 {
1246 	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1247 
1248 	conf->fir_power = -33;
1249 	conf->radar_rssi = 20;
1250 	conf->pulse_height = 10;
1251 	conf->pulse_rssi = 15;
1252 	conf->pulse_inband = 15;
1253 	conf->pulse_maxlen = 255;
1254 	conf->pulse_inband_step = 12;
1255 	conf->radar_inband = 8;
1256 }
1257 
ar5008_hw_init_txpower_cck(struct ath_hw * ah,int16_t * rate_array)1258 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1259 {
1260 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x))
1261 	ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]);
1262 	ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l],
1263 					rate_array[rate2s]));
1264 	ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l],
1265 					rate_array[rate5_5s]));
1266 	ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l],
1267 					rate_array[rate11s]));
1268 #undef CCK_DELTA
1269 }
1270 
ar5008_hw_init_txpower_ofdm(struct ath_hw * ah,int16_t * rate_array,int offset)1271 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1272 					int offset)
1273 {
1274 	int i, idx = 0;
1275 
1276 	for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1277 		ah->tx_power[i] = rate_array[idx];
1278 		idx++;
1279 	}
1280 }
1281 
ar5008_hw_init_txpower_ht(struct ath_hw * ah,int16_t * rate_array,int ss_offset,int ds_offset,bool is_40,int ht40_delta)1282 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1283 				      int ss_offset, int ds_offset,
1284 				      bool is_40, int ht40_delta)
1285 {
1286 	int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1287 
1288 	for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1289 		ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1290 		mcs_idx++;
1291 	}
1292 	memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1293 	       AR5008_HT_SS_RATES);
1294 }
1295 
ar5008_hw_init_rate_txpower(struct ath_hw * ah,int16_t * rate_array,struct ath9k_channel * chan,int ht40_delta)1296 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1297 				 struct ath9k_channel *chan, int ht40_delta)
1298 {
1299 	if (IS_CHAN_5GHZ(chan)) {
1300 		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1301 					    AR5008_11NA_OFDM_SHIFT);
1302 		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1303 			ar5008_hw_init_txpower_ht(ah, rate_array,
1304 						  AR5008_11NA_HT_SS_SHIFT,
1305 						  AR5008_11NA_HT_DS_SHIFT,
1306 						  IS_CHAN_HT40(chan),
1307 						  ht40_delta);
1308 		}
1309 	} else {
1310 		ar5008_hw_init_txpower_cck(ah, rate_array);
1311 		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1312 					    AR5008_11NG_OFDM_SHIFT);
1313 		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1314 			ar5008_hw_init_txpower_ht(ah, rate_array,
1315 						  AR5008_11NG_HT_SS_SHIFT,
1316 						  AR5008_11NG_HT_DS_SHIFT,
1317 						  IS_CHAN_HT40(chan),
1318 						  ht40_delta);
1319 		}
1320 	}
1321 }
1322 
ar5008_hw_attach_phy_ops(struct ath_hw * ah)1323 int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1324 {
1325 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1326 	static const u32 ar5416_cca_regs[6] = {
1327 		AR_PHY_CCA,
1328 		AR_PHY_CH1_CCA,
1329 		AR_PHY_CH2_CCA,
1330 		AR_PHY_EXT_CCA,
1331 		AR_PHY_CH1_EXT_CCA,
1332 		AR_PHY_CH2_EXT_CCA
1333 	};
1334 	int ret;
1335 
1336 	ret = ar5008_hw_rf_alloc_ext_banks(ah);
1337 	if (ret)
1338 	    return ret;
1339 
1340 	priv_ops->rf_set_freq = ar5008_hw_set_channel;
1341 	priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1342 
1343 	priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1344 	priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1345 	priv_ops->init_bb = ar5008_hw_init_bb;
1346 	priv_ops->process_ini = ar5008_hw_process_ini;
1347 	priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1348 	priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1349 	priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1350 	priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1351 	priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1352 	priv_ops->restore_chainmask = ar5008_restore_chainmask;
1353 	priv_ops->do_getnf = ar5008_hw_do_getnf;
1354 	priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1355 
1356 	priv_ops->ani_control = ar5008_hw_ani_control_new;
1357 	priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1358 
1359 	if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1360 		priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1361 	else
1362 		priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1363 
1364 	ar5008_hw_set_nf_limits(ah);
1365 	ar5008_hw_set_radar_conf(ah);
1366 	memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1367 	return 0;
1368 }
1369