1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2023
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <asm/tpi.h>
31 #include <linux/atomic.h>
32 #include <asm/isc.h>
33 #include <linux/hrtimer.h>
34 #include <linux/ktime.h>
35 #include <asm/facility.h>
36 #include <linux/crypto.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/debugfs.h>
39 #include <linux/ctype.h>
40 #include <linux/module.h>
41
42 #include "ap_bus.h"
43 #include "ap_debug.h"
44
45 /*
46 * Module parameters; note though this file itself isn't modular.
47 */
48 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
49 static DEFINE_SPINLOCK(ap_domain_lock);
50 module_param_named(domain, ap_domain_index, int, 0440);
51 MODULE_PARM_DESC(domain, "domain index for ap devices");
52 EXPORT_SYMBOL(ap_domain_index);
53
54 static int ap_thread_flag;
55 module_param_named(poll_thread, ap_thread_flag, int, 0440);
56 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
57
58 static char *apm_str;
59 module_param_named(apmask, apm_str, charp, 0440);
60 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
61
62 static char *aqm_str;
63 module_param_named(aqmask, aqm_str, charp, 0440);
64 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
65
66 static int ap_useirq = 1;
67 module_param_named(useirq, ap_useirq, int, 0440);
68 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
69
70 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
71 EXPORT_SYMBOL(ap_max_msg_size);
72
73 static struct device *ap_root_device;
74
75 /* Hashtable of all queue devices on the AP bus */
76 DEFINE_HASHTABLE(ap_queues, 8);
77 /* lock used for the ap_queues hashtable */
78 DEFINE_SPINLOCK(ap_queues_lock);
79
80 /* Default permissions (ioctl, card and domain masking) */
81 struct ap_perms ap_perms;
82 EXPORT_SYMBOL(ap_perms);
83 DEFINE_MUTEX(ap_perms_mutex);
84 EXPORT_SYMBOL(ap_perms_mutex);
85
86 /* # of bus scans since init */
87 static atomic64_t ap_scan_bus_count;
88
89 /* # of bindings complete since init */
90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91
92 /* completion for initial APQN bindings complete */
93 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
94
95 static struct ap_config_info *ap_qci_info;
96 static struct ap_config_info *ap_qci_info_old;
97
98 /*
99 * AP bus related debug feature things.
100 */
101 debug_info_t *ap_dbf_info;
102
103 /*
104 * Workqueue timer for bus rescan.
105 */
106 static struct timer_list ap_config_timer;
107 static int ap_config_time = AP_CONFIG_TIME;
108 static void ap_scan_bus(struct work_struct *);
109 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
110
111 /*
112 * Tasklet & timer for AP request polling and interrupts
113 */
114 static void ap_tasklet_fn(unsigned long);
115 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
116 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
117 static struct task_struct *ap_poll_kthread;
118 static DEFINE_MUTEX(ap_poll_thread_mutex);
119 static DEFINE_SPINLOCK(ap_poll_timer_lock);
120 static struct hrtimer ap_poll_timer;
121 /*
122 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
123 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
124 */
125 static unsigned long poll_high_timeout = 250000UL;
126
127 /*
128 * Some state machine states only require a low frequency polling.
129 * We use 25 Hz frequency for these.
130 */
131 static unsigned long poll_low_timeout = 40000000UL;
132
133 /* Maximum domain id, if not given via qci */
134 static int ap_max_domain_id = 15;
135 /* Maximum adapter id, if not given via qci */
136 static int ap_max_adapter_id = 63;
137
138 static struct bus_type ap_bus_type;
139
140 /* Adapter interrupt definitions */
141 static void ap_interrupt_handler(struct airq_struct *airq,
142 struct tpi_info *tpi_info);
143
144 static bool ap_irq_flag;
145
146 static struct airq_struct ap_airq = {
147 .handler = ap_interrupt_handler,
148 .isc = AP_ISC,
149 };
150
151 /**
152 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
153 *
154 * Returns the address of the local-summary-indicator of the adapter
155 * interrupt handler for AP, or NULL if adapter interrupts are not
156 * available.
157 */
ap_airq_ptr(void)158 void *ap_airq_ptr(void)
159 {
160 if (ap_irq_flag)
161 return ap_airq.lsi_ptr;
162 return NULL;
163 }
164
165 /**
166 * ap_interrupts_available(): Test if AP interrupts are available.
167 *
168 * Returns 1 if AP interrupts are available.
169 */
ap_interrupts_available(void)170 static int ap_interrupts_available(void)
171 {
172 return test_facility(65);
173 }
174
175 /**
176 * ap_qci_available(): Test if AP configuration
177 * information can be queried via QCI subfunction.
178 *
179 * Returns 1 if subfunction PQAP(QCI) is available.
180 */
ap_qci_available(void)181 static int ap_qci_available(void)
182 {
183 return test_facility(12);
184 }
185
186 /**
187 * ap_apft_available(): Test if AP facilities test (APFT)
188 * facility is available.
189 *
190 * Returns 1 if APFT is available.
191 */
ap_apft_available(void)192 static int ap_apft_available(void)
193 {
194 return test_facility(15);
195 }
196
197 /*
198 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
199 *
200 * Returns 1 if the QACT subfunction is available.
201 */
ap_qact_available(void)202 static inline int ap_qact_available(void)
203 {
204 if (ap_qci_info)
205 return ap_qci_info->qact;
206 return 0;
207 }
208
209 /*
210 * ap_sb_available(): Test if the AP secure binding facility is available.
211 *
212 * Returns 1 if secure binding facility is available.
213 */
ap_sb_available(void)214 int ap_sb_available(void)
215 {
216 if (ap_qci_info)
217 return ap_qci_info->apsb;
218 return 0;
219 }
220
221 /*
222 * ap_is_se_guest(): Check for SE guest with AP pass-through support.
223 */
ap_is_se_guest(void)224 bool ap_is_se_guest(void)
225 {
226 return is_prot_virt_guest() && ap_sb_available();
227 }
228 EXPORT_SYMBOL(ap_is_se_guest);
229
230 /*
231 * ap_fetch_qci_info(): Fetch cryptographic config info
232 *
233 * Returns the ap configuration info fetched via PQAP(QCI).
234 * On success 0 is returned, on failure a negative errno
235 * is returned, e.g. if the PQAP(QCI) instruction is not
236 * available, the return value will be -EOPNOTSUPP.
237 */
ap_fetch_qci_info(struct ap_config_info * info)238 static inline int ap_fetch_qci_info(struct ap_config_info *info)
239 {
240 if (!ap_qci_available())
241 return -EOPNOTSUPP;
242 if (!info)
243 return -EINVAL;
244 return ap_qci(info);
245 }
246
247 /**
248 * ap_init_qci_info(): Allocate and query qci config info.
249 * Does also update the static variables ap_max_domain_id
250 * and ap_max_adapter_id if this info is available.
251 */
ap_init_qci_info(void)252 static void __init ap_init_qci_info(void)
253 {
254 if (!ap_qci_available()) {
255 AP_DBF_INFO("%s QCI not supported\n", __func__);
256 return;
257 }
258
259 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
260 if (!ap_qci_info)
261 return;
262 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
263 if (!ap_qci_info_old) {
264 kfree(ap_qci_info);
265 ap_qci_info = NULL;
266 return;
267 }
268 if (ap_fetch_qci_info(ap_qci_info) != 0) {
269 kfree(ap_qci_info);
270 kfree(ap_qci_info_old);
271 ap_qci_info = NULL;
272 ap_qci_info_old = NULL;
273 return;
274 }
275 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
276
277 if (ap_qci_info->apxa) {
278 if (ap_qci_info->na) {
279 ap_max_adapter_id = ap_qci_info->na;
280 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
281 __func__, ap_max_adapter_id);
282 }
283 if (ap_qci_info->nd) {
284 ap_max_domain_id = ap_qci_info->nd;
285 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
286 __func__, ap_max_domain_id);
287 }
288 }
289
290 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
291 }
292
293 /*
294 * ap_test_config(): helper function to extract the nrth bit
295 * within the unsigned int array field.
296 */
ap_test_config(unsigned int * field,unsigned int nr)297 static inline int ap_test_config(unsigned int *field, unsigned int nr)
298 {
299 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
300 }
301
302 /*
303 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
304 *
305 * Returns 0 if the card is not configured
306 * 1 if the card is configured or
307 * if the configuration information is not available
308 */
ap_test_config_card_id(unsigned int id)309 static inline int ap_test_config_card_id(unsigned int id)
310 {
311 if (id > ap_max_adapter_id)
312 return 0;
313 if (ap_qci_info)
314 return ap_test_config(ap_qci_info->apm, id);
315 return 1;
316 }
317
318 /*
319 * ap_test_config_usage_domain(): Test, whether an AP usage domain
320 * is configured.
321 *
322 * Returns 0 if the usage domain is not configured
323 * 1 if the usage domain is configured or
324 * if the configuration information is not available
325 */
ap_test_config_usage_domain(unsigned int domain)326 int ap_test_config_usage_domain(unsigned int domain)
327 {
328 if (domain > ap_max_domain_id)
329 return 0;
330 if (ap_qci_info)
331 return ap_test_config(ap_qci_info->aqm, domain);
332 return 1;
333 }
334 EXPORT_SYMBOL(ap_test_config_usage_domain);
335
336 /*
337 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
338 * is configured.
339 * @domain AP control domain ID
340 *
341 * Returns 1 if the control domain is configured
342 * 0 in all other cases
343 */
ap_test_config_ctrl_domain(unsigned int domain)344 int ap_test_config_ctrl_domain(unsigned int domain)
345 {
346 if (!ap_qci_info || domain > ap_max_domain_id)
347 return 0;
348 return ap_test_config(ap_qci_info->adm, domain);
349 }
350 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
351
352 /*
353 * ap_queue_info(): Check and get AP queue info.
354 * Returns: 1 if APQN exists and info is filled,
355 * 0 if APQN seems to exit but there is no info
356 * available (eg. caused by an asynch pending error)
357 * -1 invalid APQN, TAPQ error or AP queue status which
358 * indicates there is no APQN.
359 */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,int * q_ml,bool * q_decfg,bool * q_cstop)360 static int ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
361 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
362 {
363 struct ap_queue_status status;
364 struct ap_tapq_gr2 tapq_info;
365
366 tapq_info.value = 0;
367
368 /* make sure we don't run into a specifiation exception */
369 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
370 AP_QID_QUEUE(qid) > ap_max_domain_id)
371 return -1;
372
373 /* call TAPQ on this APQN */
374 status = ap_test_queue(qid, ap_apft_available(), &tapq_info);
375
376 /* handle pending async error with return 'no info available' */
377 if (status.async)
378 return 0;
379
380 switch (status.response_code) {
381 case AP_RESPONSE_NORMAL:
382 case AP_RESPONSE_RESET_IN_PROGRESS:
383 case AP_RESPONSE_DECONFIGURED:
384 case AP_RESPONSE_CHECKSTOPPED:
385 case AP_RESPONSE_BUSY:
386 /*
387 * According to the architecture in all these cases the
388 * info should be filled. All bits 0 is not possible as
389 * there is at least one of the mode bits set.
390 */
391 if (WARN_ON_ONCE(!tapq_info.value))
392 return 0;
393 *q_type = tapq_info.at;
394 *q_fac = tapq_info.fac;
395 *q_depth = tapq_info.qd;
396 *q_ml = tapq_info.ml;
397 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
398 *q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
399 return 1;
400 default:
401 /*
402 * A response code which indicates, there is no info available.
403 */
404 return -1;
405 }
406 }
407
ap_wait(enum ap_sm_wait wait)408 void ap_wait(enum ap_sm_wait wait)
409 {
410 ktime_t hr_time;
411
412 switch (wait) {
413 case AP_SM_WAIT_AGAIN:
414 case AP_SM_WAIT_INTERRUPT:
415 if (ap_irq_flag)
416 break;
417 if (ap_poll_kthread) {
418 wake_up(&ap_poll_wait);
419 break;
420 }
421 fallthrough;
422 case AP_SM_WAIT_LOW_TIMEOUT:
423 case AP_SM_WAIT_HIGH_TIMEOUT:
424 spin_lock_bh(&ap_poll_timer_lock);
425 if (!hrtimer_is_queued(&ap_poll_timer)) {
426 hr_time =
427 wait == AP_SM_WAIT_LOW_TIMEOUT ?
428 poll_low_timeout : poll_high_timeout;
429 hrtimer_forward_now(&ap_poll_timer, hr_time);
430 hrtimer_restart(&ap_poll_timer);
431 }
432 spin_unlock_bh(&ap_poll_timer_lock);
433 break;
434 case AP_SM_WAIT_NONE:
435 default:
436 break;
437 }
438 }
439
440 /**
441 * ap_request_timeout(): Handling of request timeouts
442 * @t: timer making this callback
443 *
444 * Handles request timeouts.
445 */
ap_request_timeout(struct timer_list * t)446 void ap_request_timeout(struct timer_list *t)
447 {
448 struct ap_queue *aq = from_timer(aq, t, timeout);
449
450 spin_lock_bh(&aq->lock);
451 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
452 spin_unlock_bh(&aq->lock);
453 }
454
455 /**
456 * ap_poll_timeout(): AP receive polling for finished AP requests.
457 * @unused: Unused pointer.
458 *
459 * Schedules the AP tasklet using a high resolution timer.
460 */
ap_poll_timeout(struct hrtimer * unused)461 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
462 {
463 tasklet_schedule(&ap_tasklet);
464 return HRTIMER_NORESTART;
465 }
466
467 /**
468 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
469 * @airq: pointer to adapter interrupt descriptor
470 * @tpi_info: ignored
471 */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)472 static void ap_interrupt_handler(struct airq_struct *airq,
473 struct tpi_info *tpi_info)
474 {
475 inc_irq_stat(IRQIO_APB);
476 tasklet_schedule(&ap_tasklet);
477 }
478
479 /**
480 * ap_tasklet_fn(): Tasklet to poll all AP devices.
481 * @dummy: Unused variable
482 *
483 * Poll all AP devices on the bus.
484 */
ap_tasklet_fn(unsigned long dummy)485 static void ap_tasklet_fn(unsigned long dummy)
486 {
487 int bkt;
488 struct ap_queue *aq;
489 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
490
491 /* Reset the indicator if interrupts are used. Thus new interrupts can
492 * be received. Doing it in the beginning of the tasklet is therefore
493 * important that no requests on any AP get lost.
494 */
495 if (ap_irq_flag)
496 xchg(ap_airq.lsi_ptr, 0);
497
498 spin_lock_bh(&ap_queues_lock);
499 hash_for_each(ap_queues, bkt, aq, hnode) {
500 spin_lock_bh(&aq->lock);
501 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
502 spin_unlock_bh(&aq->lock);
503 }
504 spin_unlock_bh(&ap_queues_lock);
505
506 ap_wait(wait);
507 }
508
ap_pending_requests(void)509 static int ap_pending_requests(void)
510 {
511 int bkt;
512 struct ap_queue *aq;
513
514 spin_lock_bh(&ap_queues_lock);
515 hash_for_each(ap_queues, bkt, aq, hnode) {
516 if (aq->queue_count == 0)
517 continue;
518 spin_unlock_bh(&ap_queues_lock);
519 return 1;
520 }
521 spin_unlock_bh(&ap_queues_lock);
522 return 0;
523 }
524
525 /**
526 * ap_poll_thread(): Thread that polls for finished requests.
527 * @data: Unused pointer
528 *
529 * AP bus poll thread. The purpose of this thread is to poll for
530 * finished requests in a loop if there is a "free" cpu - that is
531 * a cpu that doesn't have anything better to do. The polling stops
532 * as soon as there is another task or if all messages have been
533 * delivered.
534 */
ap_poll_thread(void * data)535 static int ap_poll_thread(void *data)
536 {
537 DECLARE_WAITQUEUE(wait, current);
538
539 set_user_nice(current, MAX_NICE);
540 set_freezable();
541 while (!kthread_should_stop()) {
542 add_wait_queue(&ap_poll_wait, &wait);
543 set_current_state(TASK_INTERRUPTIBLE);
544 if (!ap_pending_requests()) {
545 schedule();
546 try_to_freeze();
547 }
548 set_current_state(TASK_RUNNING);
549 remove_wait_queue(&ap_poll_wait, &wait);
550 if (need_resched()) {
551 schedule();
552 try_to_freeze();
553 continue;
554 }
555 ap_tasklet_fn(0);
556 }
557
558 return 0;
559 }
560
ap_poll_thread_start(void)561 static int ap_poll_thread_start(void)
562 {
563 int rc;
564
565 if (ap_irq_flag || ap_poll_kthread)
566 return 0;
567 mutex_lock(&ap_poll_thread_mutex);
568 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
569 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
570 if (rc)
571 ap_poll_kthread = NULL;
572 mutex_unlock(&ap_poll_thread_mutex);
573 return rc;
574 }
575
ap_poll_thread_stop(void)576 static void ap_poll_thread_stop(void)
577 {
578 if (!ap_poll_kthread)
579 return;
580 mutex_lock(&ap_poll_thread_mutex);
581 kthread_stop(ap_poll_kthread);
582 ap_poll_kthread = NULL;
583 mutex_unlock(&ap_poll_thread_mutex);
584 }
585
586 #define is_card_dev(x) ((x)->parent == ap_root_device)
587 #define is_queue_dev(x) ((x)->parent != ap_root_device)
588
589 /**
590 * ap_bus_match()
591 * @dev: Pointer to device
592 * @drv: Pointer to device_driver
593 *
594 * AP bus driver registration/unregistration.
595 */
ap_bus_match(struct device * dev,struct device_driver * drv)596 static int ap_bus_match(struct device *dev, struct device_driver *drv)
597 {
598 struct ap_driver *ap_drv = to_ap_drv(drv);
599 struct ap_device_id *id;
600
601 /*
602 * Compare device type of the device with the list of
603 * supported types of the device_driver.
604 */
605 for (id = ap_drv->ids; id->match_flags; id++) {
606 if (is_card_dev(dev) &&
607 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
608 id->dev_type == to_ap_dev(dev)->device_type)
609 return 1;
610 if (is_queue_dev(dev) &&
611 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
612 id->dev_type == to_ap_dev(dev)->device_type)
613 return 1;
614 }
615 return 0;
616 }
617
618 /**
619 * ap_uevent(): Uevent function for AP devices.
620 * @dev: Pointer to device
621 * @env: Pointer to kobj_uevent_env
622 *
623 * It sets up a single environment variable DEV_TYPE which contains the
624 * hardware device type.
625 */
ap_uevent(const struct device * dev,struct kobj_uevent_env * env)626 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
627 {
628 int rc = 0;
629 const struct ap_device *ap_dev = to_ap_dev(dev);
630
631 /* Uevents from ap bus core don't need extensions to the env */
632 if (dev == ap_root_device)
633 return 0;
634
635 if (is_card_dev(dev)) {
636 struct ap_card *ac = to_ap_card(&ap_dev->device);
637
638 /* Set up DEV_TYPE environment variable. */
639 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
640 if (rc)
641 return rc;
642 /* Add MODALIAS= */
643 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
644 if (rc)
645 return rc;
646
647 /* Add MODE=<accel|cca|ep11> */
648 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
649 rc = add_uevent_var(env, "MODE=accel");
650 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
651 rc = add_uevent_var(env, "MODE=cca");
652 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
653 rc = add_uevent_var(env, "MODE=ep11");
654 if (rc)
655 return rc;
656 } else {
657 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
658
659 /* Add MODE=<accel|cca|ep11> */
660 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
661 rc = add_uevent_var(env, "MODE=accel");
662 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
663 rc = add_uevent_var(env, "MODE=cca");
664 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
665 rc = add_uevent_var(env, "MODE=ep11");
666 if (rc)
667 return rc;
668 }
669
670 return 0;
671 }
672
ap_send_init_scan_done_uevent(void)673 static void ap_send_init_scan_done_uevent(void)
674 {
675 char *envp[] = { "INITSCAN=done", NULL };
676
677 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
678 }
679
ap_send_bindings_complete_uevent(void)680 static void ap_send_bindings_complete_uevent(void)
681 {
682 char buf[32];
683 char *envp[] = { "BINDINGS=complete", buf, NULL };
684
685 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
686 atomic64_inc_return(&ap_bindings_complete_count));
687 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
688 }
689
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)690 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
691 {
692 char buf[16];
693 char *envp[] = { buf, NULL };
694
695 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
696
697 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
698 }
699 EXPORT_SYMBOL(ap_send_config_uevent);
700
ap_send_online_uevent(struct ap_device * ap_dev,int online)701 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
702 {
703 char buf[16];
704 char *envp[] = { buf, NULL };
705
706 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
707
708 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
709 }
710 EXPORT_SYMBOL(ap_send_online_uevent);
711
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)712 static void ap_send_mask_changed_uevent(unsigned long *newapm,
713 unsigned long *newaqm)
714 {
715 char buf[100];
716 char *envp[] = { buf, NULL };
717
718 if (newapm)
719 snprintf(buf, sizeof(buf),
720 "APMASK=0x%016lx%016lx%016lx%016lx\n",
721 newapm[0], newapm[1], newapm[2], newapm[3]);
722 else
723 snprintf(buf, sizeof(buf),
724 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
725 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
726
727 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
728 }
729
730 /*
731 * calc # of bound APQNs
732 */
733
734 struct __ap_calc_ctrs {
735 unsigned int apqns;
736 unsigned int bound;
737 };
738
__ap_calc_helper(struct device * dev,void * arg)739 static int __ap_calc_helper(struct device *dev, void *arg)
740 {
741 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
742
743 if (is_queue_dev(dev)) {
744 pctrs->apqns++;
745 if (dev->driver)
746 pctrs->bound++;
747 }
748
749 return 0;
750 }
751
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)752 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
753 {
754 struct __ap_calc_ctrs ctrs;
755
756 memset(&ctrs, 0, sizeof(ctrs));
757 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
758
759 *apqns = ctrs.apqns;
760 *bound = ctrs.bound;
761 }
762
763 /*
764 * After initial ap bus scan do check if all existing APQNs are
765 * bound to device drivers.
766 */
ap_check_bindings_complete(void)767 static void ap_check_bindings_complete(void)
768 {
769 unsigned int apqns, bound;
770
771 if (atomic64_read(&ap_scan_bus_count) >= 1) {
772 ap_calc_bound_apqns(&apqns, &bound);
773 if (bound == apqns) {
774 if (!completion_done(&ap_init_apqn_bindings_complete)) {
775 complete_all(&ap_init_apqn_bindings_complete);
776 AP_DBF_INFO("%s complete\n", __func__);
777 }
778 ap_send_bindings_complete_uevent();
779 }
780 }
781 }
782
783 /*
784 * Interface to wait for the AP bus to have done one initial ap bus
785 * scan and all detected APQNs have been bound to device drivers.
786 * If these both conditions are not fulfilled, this function blocks
787 * on a condition with wait_for_completion_interruptible_timeout().
788 * If these both conditions are fulfilled (before the timeout hits)
789 * the return value is 0. If the timeout (in jiffies) hits instead
790 * -ETIME is returned. On failures negative return values are
791 * returned to the caller.
792 */
ap_wait_init_apqn_bindings_complete(unsigned long timeout)793 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
794 {
795 long l;
796
797 if (completion_done(&ap_init_apqn_bindings_complete))
798 return 0;
799
800 if (timeout)
801 l = wait_for_completion_interruptible_timeout(
802 &ap_init_apqn_bindings_complete, timeout);
803 else
804 l = wait_for_completion_interruptible(
805 &ap_init_apqn_bindings_complete);
806 if (l < 0)
807 return l == -ERESTARTSYS ? -EINTR : l;
808 else if (l == 0 && timeout)
809 return -ETIME;
810
811 return 0;
812 }
813 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
814
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)815 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
816 {
817 if (is_queue_dev(dev) &&
818 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
819 device_unregister(dev);
820 return 0;
821 }
822
__ap_revise_reserved(struct device * dev,void * dummy)823 static int __ap_revise_reserved(struct device *dev, void *dummy)
824 {
825 int rc, card, queue, devres, drvres;
826
827 if (is_queue_dev(dev)) {
828 card = AP_QID_CARD(to_ap_queue(dev)->qid);
829 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
830 mutex_lock(&ap_perms_mutex);
831 devres = test_bit_inv(card, ap_perms.apm) &&
832 test_bit_inv(queue, ap_perms.aqm);
833 mutex_unlock(&ap_perms_mutex);
834 drvres = to_ap_drv(dev->driver)->flags
835 & AP_DRIVER_FLAG_DEFAULT;
836 if (!!devres != !!drvres) {
837 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
838 __func__, card, queue);
839 rc = device_reprobe(dev);
840 if (rc)
841 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
842 __func__, card, queue);
843 }
844 }
845
846 return 0;
847 }
848
ap_bus_revise_bindings(void)849 static void ap_bus_revise_bindings(void)
850 {
851 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
852 }
853
854 /**
855 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
856 * default host driver or not.
857 * @card: the APID of the adapter card to check
858 * @queue: the APQI of the queue to check
859 *
860 * Note: the ap_perms_mutex must be locked by the caller of this function.
861 *
862 * Return: an int specifying whether the AP adapter is reserved for the host (1)
863 * or not (0).
864 */
ap_owned_by_def_drv(int card,int queue)865 int ap_owned_by_def_drv(int card, int queue)
866 {
867 int rc = 0;
868
869 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
870 return -EINVAL;
871
872 if (test_bit_inv(card, ap_perms.apm) &&
873 test_bit_inv(queue, ap_perms.aqm))
874 rc = 1;
875
876 return rc;
877 }
878 EXPORT_SYMBOL(ap_owned_by_def_drv);
879
880 /**
881 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
882 * a set is reserved for the host drivers
883 * or not.
884 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
885 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
886 *
887 * Note: the ap_perms_mutex must be locked by the caller of this function.
888 *
889 * Return: an int specifying whether each APQN is reserved for the host (1) or
890 * not (0)
891 */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)892 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
893 unsigned long *aqm)
894 {
895 int card, queue, rc = 0;
896
897 for (card = 0; !rc && card < AP_DEVICES; card++)
898 if (test_bit_inv(card, apm) &&
899 test_bit_inv(card, ap_perms.apm))
900 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
901 if (test_bit_inv(queue, aqm) &&
902 test_bit_inv(queue, ap_perms.aqm))
903 rc = 1;
904
905 return rc;
906 }
907 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
908
ap_device_probe(struct device * dev)909 static int ap_device_probe(struct device *dev)
910 {
911 struct ap_device *ap_dev = to_ap_dev(dev);
912 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
913 int card, queue, devres, drvres, rc = -ENODEV;
914
915 if (!get_device(dev))
916 return rc;
917
918 if (is_queue_dev(dev)) {
919 /*
920 * If the apqn is marked as reserved/used by ap bus and
921 * default drivers, only probe with drivers with the default
922 * flag set. If it is not marked, only probe with drivers
923 * with the default flag not set.
924 */
925 card = AP_QID_CARD(to_ap_queue(dev)->qid);
926 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
927 mutex_lock(&ap_perms_mutex);
928 devres = test_bit_inv(card, ap_perms.apm) &&
929 test_bit_inv(queue, ap_perms.aqm);
930 mutex_unlock(&ap_perms_mutex);
931 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
932 if (!!devres != !!drvres)
933 goto out;
934 }
935
936 /* Add queue/card to list of active queues/cards */
937 spin_lock_bh(&ap_queues_lock);
938 if (is_queue_dev(dev))
939 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
940 to_ap_queue(dev)->qid);
941 spin_unlock_bh(&ap_queues_lock);
942
943 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
944
945 if (rc) {
946 spin_lock_bh(&ap_queues_lock);
947 if (is_queue_dev(dev))
948 hash_del(&to_ap_queue(dev)->hnode);
949 spin_unlock_bh(&ap_queues_lock);
950 } else {
951 ap_check_bindings_complete();
952 }
953
954 out:
955 if (rc)
956 put_device(dev);
957 return rc;
958 }
959
ap_device_remove(struct device * dev)960 static void ap_device_remove(struct device *dev)
961 {
962 struct ap_device *ap_dev = to_ap_dev(dev);
963 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
964
965 /* prepare ap queue device removal */
966 if (is_queue_dev(dev))
967 ap_queue_prepare_remove(to_ap_queue(dev));
968
969 /* driver's chance to clean up gracefully */
970 if (ap_drv->remove)
971 ap_drv->remove(ap_dev);
972
973 /* now do the ap queue device remove */
974 if (is_queue_dev(dev))
975 ap_queue_remove(to_ap_queue(dev));
976
977 /* Remove queue/card from list of active queues/cards */
978 spin_lock_bh(&ap_queues_lock);
979 if (is_queue_dev(dev))
980 hash_del(&to_ap_queue(dev)->hnode);
981 spin_unlock_bh(&ap_queues_lock);
982
983 put_device(dev);
984 }
985
ap_get_qdev(ap_qid_t qid)986 struct ap_queue *ap_get_qdev(ap_qid_t qid)
987 {
988 int bkt;
989 struct ap_queue *aq;
990
991 spin_lock_bh(&ap_queues_lock);
992 hash_for_each(ap_queues, bkt, aq, hnode) {
993 if (aq->qid == qid) {
994 get_device(&aq->ap_dev.device);
995 spin_unlock_bh(&ap_queues_lock);
996 return aq;
997 }
998 }
999 spin_unlock_bh(&ap_queues_lock);
1000
1001 return NULL;
1002 }
1003 EXPORT_SYMBOL(ap_get_qdev);
1004
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)1005 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1006 char *name)
1007 {
1008 struct device_driver *drv = &ap_drv->driver;
1009
1010 drv->bus = &ap_bus_type;
1011 drv->owner = owner;
1012 drv->name = name;
1013 return driver_register(drv);
1014 }
1015 EXPORT_SYMBOL(ap_driver_register);
1016
ap_driver_unregister(struct ap_driver * ap_drv)1017 void ap_driver_unregister(struct ap_driver *ap_drv)
1018 {
1019 driver_unregister(&ap_drv->driver);
1020 }
1021 EXPORT_SYMBOL(ap_driver_unregister);
1022
ap_bus_force_rescan(void)1023 void ap_bus_force_rescan(void)
1024 {
1025 /* processing a asynchronous bus rescan */
1026 del_timer(&ap_config_timer);
1027 queue_work(system_long_wq, &ap_scan_work);
1028 flush_work(&ap_scan_work);
1029 }
1030 EXPORT_SYMBOL(ap_bus_force_rescan);
1031
1032 /*
1033 * A config change has happened, force an ap bus rescan.
1034 */
ap_bus_cfg_chg(void)1035 void ap_bus_cfg_chg(void)
1036 {
1037 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1038
1039 ap_bus_force_rescan();
1040 }
1041
1042 /*
1043 * hex2bitmap() - parse hex mask string and set bitmap.
1044 * Valid strings are "0x012345678" with at least one valid hex number.
1045 * Rest of the bitmap to the right is padded with 0. No spaces allowed
1046 * within the string, the leading 0x may be omitted.
1047 * Returns the bitmask with exactly the bits set as given by the hex
1048 * string (both in big endian order).
1049 */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)1050 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1051 {
1052 int i, n, b;
1053
1054 /* bits needs to be a multiple of 8 */
1055 if (bits & 0x07)
1056 return -EINVAL;
1057
1058 if (str[0] == '0' && str[1] == 'x')
1059 str++;
1060 if (*str == 'x')
1061 str++;
1062
1063 for (i = 0; isxdigit(*str) && i < bits; str++) {
1064 b = hex_to_bin(*str);
1065 for (n = 0; n < 4; n++)
1066 if (b & (0x08 >> n))
1067 set_bit_inv(i + n, bitmap);
1068 i += 4;
1069 }
1070
1071 if (*str == '\n')
1072 str++;
1073 if (*str)
1074 return -EINVAL;
1075 return 0;
1076 }
1077
1078 /*
1079 * modify_bitmap() - parse bitmask argument and modify an existing
1080 * bit mask accordingly. A concatenation (done with ',') of these
1081 * terms is recognized:
1082 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1083 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1084 * 0...bits-1; the leading + or - is required. Here are some examples:
1085 * +0-15,+32,-128,-0xFF
1086 * -0-255,+1-16,+0x128
1087 * +1,+2,+3,+4,-5,-7-10
1088 * Returns the new bitmap after all changes have been applied. Every
1089 * positive value in the string will set a bit and every negative value
1090 * in the string will clear a bit. As a bit may be touched more than once,
1091 * the last 'operation' wins:
1092 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1093 * cleared again. All other bits are unmodified.
1094 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1095 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1096 {
1097 int a, i, z;
1098 char *np, sign;
1099
1100 /* bits needs to be a multiple of 8 */
1101 if (bits & 0x07)
1102 return -EINVAL;
1103
1104 while (*str) {
1105 sign = *str++;
1106 if (sign != '+' && sign != '-')
1107 return -EINVAL;
1108 a = z = simple_strtoul(str, &np, 0);
1109 if (str == np || a >= bits)
1110 return -EINVAL;
1111 str = np;
1112 if (*str == '-') {
1113 z = simple_strtoul(++str, &np, 0);
1114 if (str == np || a > z || z >= bits)
1115 return -EINVAL;
1116 str = np;
1117 }
1118 for (i = a; i <= z; i++)
1119 if (sign == '+')
1120 set_bit_inv(i, bitmap);
1121 else
1122 clear_bit_inv(i, bitmap);
1123 while (*str == ',' || *str == '\n')
1124 str++;
1125 }
1126
1127 return 0;
1128 }
1129
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1130 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1131 unsigned long *newmap)
1132 {
1133 unsigned long size;
1134 int rc;
1135
1136 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1137 if (*str == '+' || *str == '-') {
1138 memcpy(newmap, bitmap, size);
1139 rc = modify_bitmap(str, newmap, bits);
1140 } else {
1141 memset(newmap, 0, size);
1142 rc = hex2bitmap(str, newmap, bits);
1143 }
1144 return rc;
1145 }
1146
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1147 int ap_parse_mask_str(const char *str,
1148 unsigned long *bitmap, int bits,
1149 struct mutex *lock)
1150 {
1151 unsigned long *newmap, size;
1152 int rc;
1153
1154 /* bits needs to be a multiple of 8 */
1155 if (bits & 0x07)
1156 return -EINVAL;
1157
1158 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1159 newmap = kmalloc(size, GFP_KERNEL);
1160 if (!newmap)
1161 return -ENOMEM;
1162 if (mutex_lock_interruptible(lock)) {
1163 kfree(newmap);
1164 return -ERESTARTSYS;
1165 }
1166 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1167 if (rc == 0)
1168 memcpy(bitmap, newmap, size);
1169 mutex_unlock(lock);
1170 kfree(newmap);
1171 return rc;
1172 }
1173 EXPORT_SYMBOL(ap_parse_mask_str);
1174
1175 /*
1176 * AP bus attributes.
1177 */
1178
ap_domain_show(const struct bus_type * bus,char * buf)1179 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1180 {
1181 return sysfs_emit(buf, "%d\n", ap_domain_index);
1182 }
1183
ap_domain_store(const struct bus_type * bus,const char * buf,size_t count)1184 static ssize_t ap_domain_store(const struct bus_type *bus,
1185 const char *buf, size_t count)
1186 {
1187 int domain;
1188
1189 if (sscanf(buf, "%i\n", &domain) != 1 ||
1190 domain < 0 || domain > ap_max_domain_id ||
1191 !test_bit_inv(domain, ap_perms.aqm))
1192 return -EINVAL;
1193
1194 spin_lock_bh(&ap_domain_lock);
1195 ap_domain_index = domain;
1196 spin_unlock_bh(&ap_domain_lock);
1197
1198 AP_DBF_INFO("%s stored new default domain=%d\n",
1199 __func__, domain);
1200
1201 return count;
1202 }
1203
1204 static BUS_ATTR_RW(ap_domain);
1205
ap_control_domain_mask_show(const struct bus_type * bus,char * buf)1206 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1207 {
1208 if (!ap_qci_info) /* QCI not supported */
1209 return sysfs_emit(buf, "not supported\n");
1210
1211 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1212 ap_qci_info->adm[0], ap_qci_info->adm[1],
1213 ap_qci_info->adm[2], ap_qci_info->adm[3],
1214 ap_qci_info->adm[4], ap_qci_info->adm[5],
1215 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1216 }
1217
1218 static BUS_ATTR_RO(ap_control_domain_mask);
1219
ap_usage_domain_mask_show(const struct bus_type * bus,char * buf)1220 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1221 {
1222 if (!ap_qci_info) /* QCI not supported */
1223 return sysfs_emit(buf, "not supported\n");
1224
1225 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1226 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1227 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1228 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1229 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1230 }
1231
1232 static BUS_ATTR_RO(ap_usage_domain_mask);
1233
ap_adapter_mask_show(const struct bus_type * bus,char * buf)1234 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1235 {
1236 if (!ap_qci_info) /* QCI not supported */
1237 return sysfs_emit(buf, "not supported\n");
1238
1239 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1240 ap_qci_info->apm[0], ap_qci_info->apm[1],
1241 ap_qci_info->apm[2], ap_qci_info->apm[3],
1242 ap_qci_info->apm[4], ap_qci_info->apm[5],
1243 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1244 }
1245
1246 static BUS_ATTR_RO(ap_adapter_mask);
1247
ap_interrupts_show(const struct bus_type * bus,char * buf)1248 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1249 {
1250 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1251 }
1252
1253 static BUS_ATTR_RO(ap_interrupts);
1254
config_time_show(const struct bus_type * bus,char * buf)1255 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1256 {
1257 return sysfs_emit(buf, "%d\n", ap_config_time);
1258 }
1259
config_time_store(const struct bus_type * bus,const char * buf,size_t count)1260 static ssize_t config_time_store(const struct bus_type *bus,
1261 const char *buf, size_t count)
1262 {
1263 int time;
1264
1265 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1266 return -EINVAL;
1267 ap_config_time = time;
1268 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1269 return count;
1270 }
1271
1272 static BUS_ATTR_RW(config_time);
1273
poll_thread_show(const struct bus_type * bus,char * buf)1274 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1275 {
1276 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1277 }
1278
poll_thread_store(const struct bus_type * bus,const char * buf,size_t count)1279 static ssize_t poll_thread_store(const struct bus_type *bus,
1280 const char *buf, size_t count)
1281 {
1282 bool value;
1283 int rc;
1284
1285 rc = kstrtobool(buf, &value);
1286 if (rc)
1287 return rc;
1288
1289 if (value) {
1290 rc = ap_poll_thread_start();
1291 if (rc)
1292 count = rc;
1293 } else {
1294 ap_poll_thread_stop();
1295 }
1296 return count;
1297 }
1298
1299 static BUS_ATTR_RW(poll_thread);
1300
poll_timeout_show(const struct bus_type * bus,char * buf)1301 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1302 {
1303 return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1304 }
1305
poll_timeout_store(const struct bus_type * bus,const char * buf,size_t count)1306 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1307 size_t count)
1308 {
1309 unsigned long value;
1310 ktime_t hr_time;
1311 int rc;
1312
1313 rc = kstrtoul(buf, 0, &value);
1314 if (rc)
1315 return rc;
1316
1317 /* 120 seconds = maximum poll interval */
1318 if (value > 120000000000UL)
1319 return -EINVAL;
1320 poll_high_timeout = value;
1321 hr_time = poll_high_timeout;
1322
1323 spin_lock_bh(&ap_poll_timer_lock);
1324 hrtimer_cancel(&ap_poll_timer);
1325 hrtimer_set_expires(&ap_poll_timer, hr_time);
1326 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1327 spin_unlock_bh(&ap_poll_timer_lock);
1328
1329 return count;
1330 }
1331
1332 static BUS_ATTR_RW(poll_timeout);
1333
ap_max_domain_id_show(const struct bus_type * bus,char * buf)1334 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1335 {
1336 return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1337 }
1338
1339 static BUS_ATTR_RO(ap_max_domain_id);
1340
ap_max_adapter_id_show(const struct bus_type * bus,char * buf)1341 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1342 {
1343 return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1344 }
1345
1346 static BUS_ATTR_RO(ap_max_adapter_id);
1347
apmask_show(const struct bus_type * bus,char * buf)1348 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1349 {
1350 int rc;
1351
1352 if (mutex_lock_interruptible(&ap_perms_mutex))
1353 return -ERESTARTSYS;
1354 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1355 ap_perms.apm[0], ap_perms.apm[1],
1356 ap_perms.apm[2], ap_perms.apm[3]);
1357 mutex_unlock(&ap_perms_mutex);
1358
1359 return rc;
1360 }
1361
__verify_card_reservations(struct device_driver * drv,void * data)1362 static int __verify_card_reservations(struct device_driver *drv, void *data)
1363 {
1364 int rc = 0;
1365 struct ap_driver *ap_drv = to_ap_drv(drv);
1366 unsigned long *newapm = (unsigned long *)data;
1367
1368 /*
1369 * increase the driver's module refcounter to be sure it is not
1370 * going away when we invoke the callback function.
1371 */
1372 if (!try_module_get(drv->owner))
1373 return 0;
1374
1375 if (ap_drv->in_use) {
1376 rc = ap_drv->in_use(newapm, ap_perms.aqm);
1377 if (rc)
1378 rc = -EBUSY;
1379 }
1380
1381 /* release the driver's module */
1382 module_put(drv->owner);
1383
1384 return rc;
1385 }
1386
apmask_commit(unsigned long * newapm)1387 static int apmask_commit(unsigned long *newapm)
1388 {
1389 int rc;
1390 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1391
1392 /*
1393 * Check if any bits in the apmask have been set which will
1394 * result in queues being removed from non-default drivers
1395 */
1396 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1397 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1398 __verify_card_reservations);
1399 if (rc)
1400 return rc;
1401 }
1402
1403 memcpy(ap_perms.apm, newapm, APMASKSIZE);
1404
1405 return 0;
1406 }
1407
apmask_store(const struct bus_type * bus,const char * buf,size_t count)1408 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1409 size_t count)
1410 {
1411 int rc, changes = 0;
1412 DECLARE_BITMAP(newapm, AP_DEVICES);
1413
1414 if (mutex_lock_interruptible(&ap_perms_mutex))
1415 return -ERESTARTSYS;
1416
1417 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1418 if (rc)
1419 goto done;
1420
1421 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1422 if (changes)
1423 rc = apmask_commit(newapm);
1424
1425 done:
1426 mutex_unlock(&ap_perms_mutex);
1427 if (rc)
1428 return rc;
1429
1430 if (changes) {
1431 ap_bus_revise_bindings();
1432 ap_send_mask_changed_uevent(newapm, NULL);
1433 }
1434
1435 return count;
1436 }
1437
1438 static BUS_ATTR_RW(apmask);
1439
aqmask_show(const struct bus_type * bus,char * buf)1440 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1441 {
1442 int rc;
1443
1444 if (mutex_lock_interruptible(&ap_perms_mutex))
1445 return -ERESTARTSYS;
1446 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1447 ap_perms.aqm[0], ap_perms.aqm[1],
1448 ap_perms.aqm[2], ap_perms.aqm[3]);
1449 mutex_unlock(&ap_perms_mutex);
1450
1451 return rc;
1452 }
1453
__verify_queue_reservations(struct device_driver * drv,void * data)1454 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1455 {
1456 int rc = 0;
1457 struct ap_driver *ap_drv = to_ap_drv(drv);
1458 unsigned long *newaqm = (unsigned long *)data;
1459
1460 /*
1461 * increase the driver's module refcounter to be sure it is not
1462 * going away when we invoke the callback function.
1463 */
1464 if (!try_module_get(drv->owner))
1465 return 0;
1466
1467 if (ap_drv->in_use) {
1468 rc = ap_drv->in_use(ap_perms.apm, newaqm);
1469 if (rc)
1470 rc = -EBUSY;
1471 }
1472
1473 /* release the driver's module */
1474 module_put(drv->owner);
1475
1476 return rc;
1477 }
1478
aqmask_commit(unsigned long * newaqm)1479 static int aqmask_commit(unsigned long *newaqm)
1480 {
1481 int rc;
1482 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1483
1484 /*
1485 * Check if any bits in the aqmask have been set which will
1486 * result in queues being removed from non-default drivers
1487 */
1488 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1489 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1490 __verify_queue_reservations);
1491 if (rc)
1492 return rc;
1493 }
1494
1495 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1496
1497 return 0;
1498 }
1499
aqmask_store(const struct bus_type * bus,const char * buf,size_t count)1500 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1501 size_t count)
1502 {
1503 int rc, changes = 0;
1504 DECLARE_BITMAP(newaqm, AP_DOMAINS);
1505
1506 if (mutex_lock_interruptible(&ap_perms_mutex))
1507 return -ERESTARTSYS;
1508
1509 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1510 if (rc)
1511 goto done;
1512
1513 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1514 if (changes)
1515 rc = aqmask_commit(newaqm);
1516
1517 done:
1518 mutex_unlock(&ap_perms_mutex);
1519 if (rc)
1520 return rc;
1521
1522 if (changes) {
1523 ap_bus_revise_bindings();
1524 ap_send_mask_changed_uevent(NULL, newaqm);
1525 }
1526
1527 return count;
1528 }
1529
1530 static BUS_ATTR_RW(aqmask);
1531
scans_show(const struct bus_type * bus,char * buf)1532 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1533 {
1534 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1535 }
1536
scans_store(const struct bus_type * bus,const char * buf,size_t count)1537 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1538 size_t count)
1539 {
1540 AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1541
1542 ap_bus_force_rescan();
1543
1544 return count;
1545 }
1546
1547 static BUS_ATTR_RW(scans);
1548
bindings_show(const struct bus_type * bus,char * buf)1549 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1550 {
1551 int rc;
1552 unsigned int apqns, n;
1553
1554 ap_calc_bound_apqns(&apqns, &n);
1555 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1556 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1557 else
1558 rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1559
1560 return rc;
1561 }
1562
1563 static BUS_ATTR_RO(bindings);
1564
features_show(const struct bus_type * bus,char * buf)1565 static ssize_t features_show(const struct bus_type *bus, char *buf)
1566 {
1567 int n = 0;
1568
1569 if (!ap_qci_info) /* QCI not supported */
1570 return sysfs_emit(buf, "-\n");
1571
1572 if (ap_qci_info->apsc)
1573 n += sysfs_emit_at(buf, n, "APSC ");
1574 if (ap_qci_info->apxa)
1575 n += sysfs_emit_at(buf, n, "APXA ");
1576 if (ap_qci_info->qact)
1577 n += sysfs_emit_at(buf, n, "QACT ");
1578 if (ap_qci_info->rc8a)
1579 n += sysfs_emit_at(buf, n, "RC8A ");
1580 if (ap_qci_info->apsb)
1581 n += sysfs_emit_at(buf, n, "APSB ");
1582
1583 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1584
1585 return n;
1586 }
1587
1588 static BUS_ATTR_RO(features);
1589
1590 static struct attribute *ap_bus_attrs[] = {
1591 &bus_attr_ap_domain.attr,
1592 &bus_attr_ap_control_domain_mask.attr,
1593 &bus_attr_ap_usage_domain_mask.attr,
1594 &bus_attr_ap_adapter_mask.attr,
1595 &bus_attr_config_time.attr,
1596 &bus_attr_poll_thread.attr,
1597 &bus_attr_ap_interrupts.attr,
1598 &bus_attr_poll_timeout.attr,
1599 &bus_attr_ap_max_domain_id.attr,
1600 &bus_attr_ap_max_adapter_id.attr,
1601 &bus_attr_apmask.attr,
1602 &bus_attr_aqmask.attr,
1603 &bus_attr_scans.attr,
1604 &bus_attr_bindings.attr,
1605 &bus_attr_features.attr,
1606 NULL,
1607 };
1608 ATTRIBUTE_GROUPS(ap_bus);
1609
1610 static struct bus_type ap_bus_type = {
1611 .name = "ap",
1612 .bus_groups = ap_bus_groups,
1613 .match = &ap_bus_match,
1614 .uevent = &ap_uevent,
1615 .probe = ap_device_probe,
1616 .remove = ap_device_remove,
1617 };
1618
1619 /**
1620 * ap_select_domain(): Select an AP domain if possible and we haven't
1621 * already done so before.
1622 */
ap_select_domain(void)1623 static void ap_select_domain(void)
1624 {
1625 struct ap_queue_status status;
1626 int card, dom;
1627
1628 /*
1629 * Choose the default domain. Either the one specified with
1630 * the "domain=" parameter or the first domain with at least
1631 * one valid APQN.
1632 */
1633 spin_lock_bh(&ap_domain_lock);
1634 if (ap_domain_index >= 0) {
1635 /* Domain has already been selected. */
1636 goto out;
1637 }
1638 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1639 if (!ap_test_config_usage_domain(dom) ||
1640 !test_bit_inv(dom, ap_perms.aqm))
1641 continue;
1642 for (card = 0; card <= ap_max_adapter_id; card++) {
1643 if (!ap_test_config_card_id(card) ||
1644 !test_bit_inv(card, ap_perms.apm))
1645 continue;
1646 status = ap_test_queue(AP_MKQID(card, dom),
1647 ap_apft_available(),
1648 NULL);
1649 if (status.response_code == AP_RESPONSE_NORMAL)
1650 break;
1651 }
1652 if (card <= ap_max_adapter_id)
1653 break;
1654 }
1655 if (dom <= ap_max_domain_id) {
1656 ap_domain_index = dom;
1657 AP_DBF_INFO("%s new default domain is %d\n",
1658 __func__, ap_domain_index);
1659 }
1660 out:
1661 spin_unlock_bh(&ap_domain_lock);
1662 }
1663
1664 /*
1665 * This function checks the type and returns either 0 for not
1666 * supported or the highest compatible type value (which may
1667 * include the input type value).
1668 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1669 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1670 {
1671 int comp_type = 0;
1672
1673 /* < CEX4 is not supported */
1674 if (rawtype < AP_DEVICE_TYPE_CEX4) {
1675 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1676 __func__, AP_QID_CARD(qid),
1677 AP_QID_QUEUE(qid), rawtype);
1678 return 0;
1679 }
1680 /* up to CEX8 known and fully supported */
1681 if (rawtype <= AP_DEVICE_TYPE_CEX8)
1682 return rawtype;
1683 /*
1684 * unknown new type > CEX8, check for compatibility
1685 * to the highest known and supported type which is
1686 * currently CEX8 with the help of the QACT function.
1687 */
1688 if (ap_qact_available()) {
1689 struct ap_queue_status status;
1690 union ap_qact_ap_info apinfo = {0};
1691
1692 apinfo.mode = (func >> 26) & 0x07;
1693 apinfo.cat = AP_DEVICE_TYPE_CEX8;
1694 status = ap_qact(qid, 0, &apinfo);
1695 if (status.response_code == AP_RESPONSE_NORMAL &&
1696 apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1697 apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1698 comp_type = apinfo.cat;
1699 }
1700 if (!comp_type)
1701 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1702 __func__, AP_QID_CARD(qid),
1703 AP_QID_QUEUE(qid), rawtype);
1704 else if (comp_type != rawtype)
1705 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1706 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1707 rawtype, comp_type);
1708 return comp_type;
1709 }
1710
1711 /*
1712 * Helper function to be used with bus_find_dev
1713 * matches for the card device with the given id
1714 */
__match_card_device_with_id(struct device * dev,const void * data)1715 static int __match_card_device_with_id(struct device *dev, const void *data)
1716 {
1717 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1718 }
1719
1720 /*
1721 * Helper function to be used with bus_find_dev
1722 * matches for the queue device with a given qid
1723 */
__match_queue_device_with_qid(struct device * dev,const void * data)1724 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1725 {
1726 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1727 }
1728
1729 /*
1730 * Helper function to be used with bus_find_dev
1731 * matches any queue device with given queue id
1732 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1733 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1734 {
1735 return is_queue_dev(dev) &&
1736 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1737 }
1738
1739 /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1740 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1741 {
1742 struct ap_driver *ap_drv = to_ap_drv(drv);
1743
1744 if (try_module_get(drv->owner)) {
1745 if (ap_drv->on_config_changed)
1746 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1747 module_put(drv->owner);
1748 }
1749
1750 return 0;
1751 }
1752
1753 /* Notify all drivers about an qci config change */
notify_config_changed(void)1754 static inline void notify_config_changed(void)
1755 {
1756 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1757 __drv_notify_config_changed);
1758 }
1759
1760 /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1761 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1762 {
1763 struct ap_driver *ap_drv = to_ap_drv(drv);
1764
1765 if (try_module_get(drv->owner)) {
1766 if (ap_drv->on_scan_complete)
1767 ap_drv->on_scan_complete(ap_qci_info,
1768 ap_qci_info_old);
1769 module_put(drv->owner);
1770 }
1771
1772 return 0;
1773 }
1774
1775 /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1776 static inline void notify_scan_complete(void)
1777 {
1778 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1779 __drv_notify_scan_complete);
1780 }
1781
1782 /*
1783 * Helper function for ap_scan_bus().
1784 * Remove card device and associated queue devices.
1785 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1786 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1787 {
1788 bus_for_each_dev(&ap_bus_type, NULL,
1789 (void *)(long)ac->id,
1790 __ap_queue_devices_with_id_unregister);
1791 device_unregister(&ac->ap_dev.device);
1792 }
1793
1794 /*
1795 * Helper function for ap_scan_bus().
1796 * Does the scan bus job for all the domains within
1797 * a valid adapter given by an ap_card ptr.
1798 */
ap_scan_domains(struct ap_card * ac)1799 static inline void ap_scan_domains(struct ap_card *ac)
1800 {
1801 int rc, dom, depth, type, ml;
1802 bool decfg, chkstop;
1803 struct ap_queue *aq;
1804 struct device *dev;
1805 unsigned int func;
1806 ap_qid_t qid;
1807
1808 /*
1809 * Go through the configuration for the domains and compare them
1810 * to the existing queue devices. Also take care of the config
1811 * and error state for the queue devices.
1812 */
1813
1814 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1815 qid = AP_MKQID(ac->id, dom);
1816 dev = bus_find_device(&ap_bus_type, NULL,
1817 (void *)(long)qid,
1818 __match_queue_device_with_qid);
1819 aq = dev ? to_ap_queue(dev) : NULL;
1820 if (!ap_test_config_usage_domain(dom)) {
1821 if (dev) {
1822 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1823 __func__, ac->id, dom);
1824 device_unregister(dev);
1825 }
1826 goto put_dev_and_continue;
1827 }
1828 /* domain is valid, get info from this APQN */
1829 rc = ap_queue_info(qid, &type, &func, &depth,
1830 &ml, &decfg, &chkstop);
1831 switch (rc) {
1832 case -1:
1833 if (dev) {
1834 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1835 __func__, ac->id, dom);
1836 device_unregister(dev);
1837 }
1838 fallthrough;
1839 case 0:
1840 goto put_dev_and_continue;
1841 default:
1842 break;
1843 }
1844 /* if no queue device exists, create a new one */
1845 if (!aq) {
1846 aq = ap_queue_create(qid, ac->ap_dev.device_type);
1847 if (!aq) {
1848 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1849 __func__, ac->id, dom);
1850 continue;
1851 }
1852 aq->card = ac;
1853 aq->config = !decfg;
1854 aq->chkstop = chkstop;
1855 dev = &aq->ap_dev.device;
1856 dev->bus = &ap_bus_type;
1857 dev->parent = &ac->ap_dev.device;
1858 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1859 /* register queue device */
1860 rc = device_register(dev);
1861 if (rc) {
1862 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1863 __func__, ac->id, dom);
1864 goto put_dev_and_continue;
1865 }
1866 /* get it and thus adjust reference counter */
1867 get_device(dev);
1868 if (decfg)
1869 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1870 __func__, ac->id, dom);
1871 else if (chkstop)
1872 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1873 __func__, ac->id, dom);
1874 else
1875 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1876 __func__, ac->id, dom);
1877 goto put_dev_and_continue;
1878 }
1879 /* handle state changes on already existing queue device */
1880 spin_lock_bh(&aq->lock);
1881 /* checkstop state */
1882 if (chkstop && !aq->chkstop) {
1883 /* checkstop on */
1884 aq->chkstop = true;
1885 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1886 aq->dev_state = AP_DEV_STATE_ERROR;
1887 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1888 }
1889 spin_unlock_bh(&aq->lock);
1890 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1891 __func__, ac->id, dom);
1892 /* 'receive' pending messages with -EAGAIN */
1893 ap_flush_queue(aq);
1894 goto put_dev_and_continue;
1895 } else if (!chkstop && aq->chkstop) {
1896 /* checkstop off */
1897 aq->chkstop = false;
1898 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1899 aq->dev_state = AP_DEV_STATE_OPERATING;
1900 aq->sm_state = AP_SM_STATE_RESET_START;
1901 }
1902 spin_unlock_bh(&aq->lock);
1903 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1904 __func__, ac->id, dom);
1905 goto put_dev_and_continue;
1906 }
1907 /* config state change */
1908 if (decfg && aq->config) {
1909 /* config off this queue device */
1910 aq->config = false;
1911 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1912 aq->dev_state = AP_DEV_STATE_ERROR;
1913 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1914 }
1915 spin_unlock_bh(&aq->lock);
1916 AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1917 __func__, ac->id, dom);
1918 ap_send_config_uevent(&aq->ap_dev, aq->config);
1919 /* 'receive' pending messages with -EAGAIN */
1920 ap_flush_queue(aq);
1921 goto put_dev_and_continue;
1922 } else if (!decfg && !aq->config) {
1923 /* config on this queue device */
1924 aq->config = true;
1925 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1926 aq->dev_state = AP_DEV_STATE_OPERATING;
1927 aq->sm_state = AP_SM_STATE_RESET_START;
1928 }
1929 spin_unlock_bh(&aq->lock);
1930 AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1931 __func__, ac->id, dom);
1932 ap_send_config_uevent(&aq->ap_dev, aq->config);
1933 goto put_dev_and_continue;
1934 }
1935 /* handle other error states */
1936 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1937 spin_unlock_bh(&aq->lock);
1938 /* 'receive' pending messages with -EAGAIN */
1939 ap_flush_queue(aq);
1940 /* re-init (with reset) the queue device */
1941 ap_queue_init_state(aq);
1942 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1943 __func__, ac->id, dom);
1944 goto put_dev_and_continue;
1945 }
1946 spin_unlock_bh(&aq->lock);
1947 put_dev_and_continue:
1948 put_device(dev);
1949 }
1950 }
1951
1952 /*
1953 * Helper function for ap_scan_bus().
1954 * Does the scan bus job for the given adapter id.
1955 */
ap_scan_adapter(int ap)1956 static inline void ap_scan_adapter(int ap)
1957 {
1958 int rc, dom, depth, type, comp_type, ml;
1959 bool decfg, chkstop;
1960 struct ap_card *ac;
1961 struct device *dev;
1962 unsigned int func;
1963 ap_qid_t qid;
1964
1965 /* Is there currently a card device for this adapter ? */
1966 dev = bus_find_device(&ap_bus_type, NULL,
1967 (void *)(long)ap,
1968 __match_card_device_with_id);
1969 ac = dev ? to_ap_card(dev) : NULL;
1970
1971 /* Adapter not in configuration ? */
1972 if (!ap_test_config_card_id(ap)) {
1973 if (ac) {
1974 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1975 __func__, ap);
1976 ap_scan_rm_card_dev_and_queue_devs(ac);
1977 put_device(dev);
1978 }
1979 return;
1980 }
1981
1982 /*
1983 * Adapter ap is valid in the current configuration. So do some checks:
1984 * If no card device exists, build one. If a card device exists, check
1985 * for type and functions changed. For all this we need to find a valid
1986 * APQN first.
1987 */
1988
1989 for (dom = 0; dom <= ap_max_domain_id; dom++)
1990 if (ap_test_config_usage_domain(dom)) {
1991 qid = AP_MKQID(ap, dom);
1992 if (ap_queue_info(qid, &type, &func, &depth,
1993 &ml, &decfg, &chkstop) > 0)
1994 break;
1995 }
1996 if (dom > ap_max_domain_id) {
1997 /* Could not find one valid APQN for this adapter */
1998 if (ac) {
1999 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2000 __func__, ap);
2001 ap_scan_rm_card_dev_and_queue_devs(ac);
2002 put_device(dev);
2003 } else {
2004 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
2005 __func__, ap);
2006 }
2007 return;
2008 }
2009 if (!type) {
2010 /* No apdater type info available, an unusable adapter */
2011 if (ac) {
2012 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2013 __func__, ap);
2014 ap_scan_rm_card_dev_and_queue_devs(ac);
2015 put_device(dev);
2016 } else {
2017 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
2018 __func__, ap);
2019 }
2020 return;
2021 }
2022 if (ac) {
2023 /* Check APQN against existing card device for changes */
2024 if (ac->raw_hwtype != type) {
2025 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2026 __func__, ap, type);
2027 ap_scan_rm_card_dev_and_queue_devs(ac);
2028 put_device(dev);
2029 ac = NULL;
2030 } else if ((ac->functions & TAPQ_CARD_FUNC_CMP_MASK) !=
2031 (func & TAPQ_CARD_FUNC_CMP_MASK)) {
2032 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2033 __func__, ap, func);
2034 ap_scan_rm_card_dev_and_queue_devs(ac);
2035 put_device(dev);
2036 ac = NULL;
2037 } else {
2038 /* handle checkstop state change */
2039 if (chkstop && !ac->chkstop) {
2040 /* checkstop on */
2041 ac->chkstop = true;
2042 AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2043 __func__, ap);
2044 } else if (!chkstop && ac->chkstop) {
2045 /* checkstop off */
2046 ac->chkstop = false;
2047 AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2048 __func__, ap);
2049 }
2050 /* handle config state change */
2051 if (decfg && ac->config) {
2052 ac->config = false;
2053 AP_DBF_INFO("%s(%d) card dev config off\n",
2054 __func__, ap);
2055 ap_send_config_uevent(&ac->ap_dev, ac->config);
2056 } else if (!decfg && !ac->config) {
2057 ac->config = true;
2058 AP_DBF_INFO("%s(%d) card dev config on\n",
2059 __func__, ap);
2060 ap_send_config_uevent(&ac->ap_dev, ac->config);
2061 }
2062 }
2063 }
2064
2065 if (!ac) {
2066 /* Build a new card device */
2067 comp_type = ap_get_compatible_type(qid, type, func);
2068 if (!comp_type) {
2069 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2070 __func__, ap, type);
2071 return;
2072 }
2073 ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2074 if (!ac) {
2075 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2076 __func__, ap);
2077 return;
2078 }
2079 ac->config = !decfg;
2080 ac->chkstop = chkstop;
2081 dev = &ac->ap_dev.device;
2082 dev->bus = &ap_bus_type;
2083 dev->parent = ap_root_device;
2084 dev_set_name(dev, "card%02x", ap);
2085 /* maybe enlarge ap_max_msg_size to support this card */
2086 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2087 atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2088 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2089 __func__, ap,
2090 atomic_read(&ap_max_msg_size));
2091 }
2092 /* Register the new card device with AP bus */
2093 rc = device_register(dev);
2094 if (rc) {
2095 AP_DBF_WARN("%s(%d) device_register() failed\n",
2096 __func__, ap);
2097 put_device(dev);
2098 return;
2099 }
2100 /* get it and thus adjust reference counter */
2101 get_device(dev);
2102 if (decfg)
2103 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2104 __func__, ap, type, func);
2105 else if (chkstop)
2106 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2107 __func__, ap, type, func);
2108 else
2109 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2110 __func__, ap, type, func);
2111 }
2112
2113 /* Verify the domains and the queue devices for this card */
2114 ap_scan_domains(ac);
2115
2116 /* release the card device */
2117 put_device(&ac->ap_dev.device);
2118 }
2119
2120 /**
2121 * ap_get_configuration - get the host AP configuration
2122 *
2123 * Stores the host AP configuration information returned from the previous call
2124 * to Query Configuration Information (QCI), then retrieves and stores the
2125 * current AP configuration returned from QCI.
2126 *
2127 * Return: true if the host AP configuration changed between calls to QCI;
2128 * otherwise, return false.
2129 */
ap_get_configuration(void)2130 static bool ap_get_configuration(void)
2131 {
2132 if (!ap_qci_info) /* QCI not supported */
2133 return false;
2134
2135 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2136 ap_fetch_qci_info(ap_qci_info);
2137
2138 return memcmp(ap_qci_info, ap_qci_info_old,
2139 sizeof(struct ap_config_info)) != 0;
2140 }
2141
2142 /**
2143 * ap_scan_bus(): Scan the AP bus for new devices
2144 * Runs periodically, workqueue timer (ap_config_time)
2145 * @unused: Unused pointer.
2146 */
ap_scan_bus(struct work_struct * unused)2147 static void ap_scan_bus(struct work_struct *unused)
2148 {
2149 int ap, config_changed = 0;
2150
2151 /* config change notify */
2152 config_changed = ap_get_configuration();
2153 if (config_changed)
2154 notify_config_changed();
2155 ap_select_domain();
2156
2157 AP_DBF_DBG("%s running\n", __func__);
2158
2159 /* loop over all possible adapters */
2160 for (ap = 0; ap <= ap_max_adapter_id; ap++)
2161 ap_scan_adapter(ap);
2162
2163 /* scan complete notify */
2164 if (config_changed)
2165 notify_scan_complete();
2166
2167 /* check if there is at least one queue available with default domain */
2168 if (ap_domain_index >= 0) {
2169 struct device *dev =
2170 bus_find_device(&ap_bus_type, NULL,
2171 (void *)(long)ap_domain_index,
2172 __match_queue_device_with_queue_id);
2173 if (dev)
2174 put_device(dev);
2175 else
2176 AP_DBF_INFO("%s no queue device with default domain %d available\n",
2177 __func__, ap_domain_index);
2178 }
2179
2180 if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2181 AP_DBF_DBG("%s init scan complete\n", __func__);
2182 ap_send_init_scan_done_uevent();
2183 ap_check_bindings_complete();
2184 }
2185
2186 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2187 }
2188
ap_config_timeout(struct timer_list * unused)2189 static void ap_config_timeout(struct timer_list *unused)
2190 {
2191 queue_work(system_long_wq, &ap_scan_work);
2192 }
2193
ap_debug_init(void)2194 static int __init ap_debug_init(void)
2195 {
2196 ap_dbf_info = debug_register("ap", 2, 1,
2197 DBF_MAX_SPRINTF_ARGS * sizeof(long));
2198 debug_register_view(ap_dbf_info, &debug_sprintf_view);
2199 debug_set_level(ap_dbf_info, DBF_ERR);
2200
2201 return 0;
2202 }
2203
ap_perms_init(void)2204 static void __init ap_perms_init(void)
2205 {
2206 /* all resources usable if no kernel parameter string given */
2207 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2208 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2209 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2210
2211 /* apm kernel parameter string */
2212 if (apm_str) {
2213 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2214 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2215 &ap_perms_mutex);
2216 }
2217
2218 /* aqm kernel parameter string */
2219 if (aqm_str) {
2220 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2221 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2222 &ap_perms_mutex);
2223 }
2224 }
2225
2226 /**
2227 * ap_module_init(): The module initialization code.
2228 *
2229 * Initializes the module.
2230 */
ap_module_init(void)2231 static int __init ap_module_init(void)
2232 {
2233 int rc;
2234
2235 rc = ap_debug_init();
2236 if (rc)
2237 return rc;
2238
2239 if (!ap_instructions_available()) {
2240 pr_warn("The hardware system does not support AP instructions\n");
2241 return -ENODEV;
2242 }
2243
2244 /* init ap_queue hashtable */
2245 hash_init(ap_queues);
2246
2247 /* set up the AP permissions (ioctls, ap and aq masks) */
2248 ap_perms_init();
2249
2250 /* Get AP configuration data if available */
2251 ap_init_qci_info();
2252
2253 /* check default domain setting */
2254 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2255 (ap_domain_index >= 0 &&
2256 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2257 pr_warn("%d is not a valid cryptographic domain\n",
2258 ap_domain_index);
2259 ap_domain_index = -1;
2260 }
2261
2262 /* enable interrupts if available */
2263 if (ap_interrupts_available() && ap_useirq) {
2264 rc = register_adapter_interrupt(&ap_airq);
2265 ap_irq_flag = (rc == 0);
2266 }
2267
2268 /* Create /sys/bus/ap. */
2269 rc = bus_register(&ap_bus_type);
2270 if (rc)
2271 goto out;
2272
2273 /* Create /sys/devices/ap. */
2274 ap_root_device = root_device_register("ap");
2275 rc = PTR_ERR_OR_ZERO(ap_root_device);
2276 if (rc)
2277 goto out_bus;
2278 ap_root_device->bus = &ap_bus_type;
2279
2280 /* Setup the AP bus rescan timer. */
2281 timer_setup(&ap_config_timer, ap_config_timeout, 0);
2282
2283 /*
2284 * Setup the high resolution poll timer.
2285 * If we are running under z/VM adjust polling to z/VM polling rate.
2286 */
2287 if (MACHINE_IS_VM)
2288 poll_high_timeout = 1500000;
2289 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2290 ap_poll_timer.function = ap_poll_timeout;
2291
2292 /* Start the low priority AP bus poll thread. */
2293 if (ap_thread_flag) {
2294 rc = ap_poll_thread_start();
2295 if (rc)
2296 goto out_work;
2297 }
2298
2299 queue_work(system_long_wq, &ap_scan_work);
2300
2301 return 0;
2302
2303 out_work:
2304 hrtimer_cancel(&ap_poll_timer);
2305 root_device_unregister(ap_root_device);
2306 out_bus:
2307 bus_unregister(&ap_bus_type);
2308 out:
2309 if (ap_irq_flag)
2310 unregister_adapter_interrupt(&ap_airq);
2311 kfree(ap_qci_info);
2312 return rc;
2313 }
2314 device_initcall(ap_module_init);
2315