1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Single-step support.
4 *
5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6 */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16
17 extern char system_call_common[];
18
19 #ifdef CONFIG_PPC64
20 /* Bits in SRR1 that are copied from MSR */
21 #define MSR_MASK 0xffffffff87c0ffffUL
22 #else
23 #define MSR_MASK 0x87c0ffff
24 #endif
25
26 /* Bits in XER */
27 #define XER_SO 0x80000000U
28 #define XER_OV 0x40000000U
29 #define XER_CA 0x20000000U
30 #define XER_OV32 0x00080000U
31 #define XER_CA32 0x00040000U
32
33 #ifdef CONFIG_PPC_FPU
34 /*
35 * Functions in ldstfp.S
36 */
37 extern void get_fpr(int rn, double *p);
38 extern void put_fpr(int rn, const double *p);
39 extern void get_vr(int rn, __vector128 *p);
40 extern void put_vr(int rn, __vector128 *p);
41 extern void load_vsrn(int vsr, const void *p);
42 extern void store_vsrn(int vsr, void *p);
43 extern void conv_sp_to_dp(const float *sp, double *dp);
44 extern void conv_dp_to_sp(const double *dp, float *sp);
45 #endif
46
47 #ifdef __powerpc64__
48 /*
49 * Functions in quad.S
50 */
51 extern int do_lq(unsigned long ea, unsigned long *regs);
52 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
53 extern int do_lqarx(unsigned long ea, unsigned long *regs);
54 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
55 unsigned int *crp);
56 #endif
57
58 #ifdef __LITTLE_ENDIAN__
59 #define IS_LE 1
60 #define IS_BE 0
61 #else
62 #define IS_LE 0
63 #define IS_BE 1
64 #endif
65
66 /*
67 * Emulate the truncation of 64 bit values in 32-bit mode.
68 */
truncate_if_32bit(unsigned long msr,unsigned long val)69 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
70 unsigned long val)
71 {
72 #ifdef __powerpc64__
73 if ((msr & MSR_64BIT) == 0)
74 val &= 0xffffffffUL;
75 #endif
76 return val;
77 }
78
79 /*
80 * Determine whether a conditional branch instruction would branch.
81 */
branch_taken(unsigned int instr,const struct pt_regs * regs,struct instruction_op * op)82 static nokprobe_inline int branch_taken(unsigned int instr,
83 const struct pt_regs *regs,
84 struct instruction_op *op)
85 {
86 unsigned int bo = (instr >> 21) & 0x1f;
87 unsigned int bi;
88
89 if ((bo & 4) == 0) {
90 /* decrement counter */
91 op->type |= DECCTR;
92 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
93 return 0;
94 }
95 if ((bo & 0x10) == 0) {
96 /* check bit from CR */
97 bi = (instr >> 16) & 0x1f;
98 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
99 return 0;
100 }
101 return 1;
102 }
103
address_ok(struct pt_regs * regs,unsigned long ea,int nb)104 static nokprobe_inline long address_ok(struct pt_regs *regs,
105 unsigned long ea, int nb)
106 {
107 if (!user_mode(regs))
108 return 1;
109 if (__access_ok(ea, nb, USER_DS))
110 return 1;
111 if (__access_ok(ea, 1, USER_DS))
112 /* Access overlaps the end of the user region */
113 regs->dar = USER_DS.seg;
114 else
115 regs->dar = ea;
116 return 0;
117 }
118
119 /*
120 * Calculate effective address for a D-form instruction
121 */
dform_ea(unsigned int instr,const struct pt_regs * regs)122 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
123 const struct pt_regs *regs)
124 {
125 int ra;
126 unsigned long ea;
127
128 ra = (instr >> 16) & 0x1f;
129 ea = (signed short) instr; /* sign-extend */
130 if (ra)
131 ea += regs->gpr[ra];
132
133 return ea;
134 }
135
136 #ifdef __powerpc64__
137 /*
138 * Calculate effective address for a DS-form instruction
139 */
dsform_ea(unsigned int instr,const struct pt_regs * regs)140 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
141 const struct pt_regs *regs)
142 {
143 int ra;
144 unsigned long ea;
145
146 ra = (instr >> 16) & 0x1f;
147 ea = (signed short) (instr & ~3); /* sign-extend */
148 if (ra)
149 ea += regs->gpr[ra];
150
151 return ea;
152 }
153
154 /*
155 * Calculate effective address for a DQ-form instruction
156 */
dqform_ea(unsigned int instr,const struct pt_regs * regs)157 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
158 const struct pt_regs *regs)
159 {
160 int ra;
161 unsigned long ea;
162
163 ra = (instr >> 16) & 0x1f;
164 ea = (signed short) (instr & ~0xf); /* sign-extend */
165 if (ra)
166 ea += regs->gpr[ra];
167
168 return ea;
169 }
170 #endif /* __powerpc64 */
171
172 /*
173 * Calculate effective address for an X-form instruction
174 */
xform_ea(unsigned int instr,const struct pt_regs * regs)175 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
176 const struct pt_regs *regs)
177 {
178 int ra, rb;
179 unsigned long ea;
180
181 ra = (instr >> 16) & 0x1f;
182 rb = (instr >> 11) & 0x1f;
183 ea = regs->gpr[rb];
184 if (ra)
185 ea += regs->gpr[ra];
186
187 return ea;
188 }
189
190 /*
191 * Return the largest power of 2, not greater than sizeof(unsigned long),
192 * such that x is a multiple of it.
193 */
max_align(unsigned long x)194 static nokprobe_inline unsigned long max_align(unsigned long x)
195 {
196 x |= sizeof(unsigned long);
197 return x & -x; /* isolates rightmost bit */
198 }
199
byterev_2(unsigned long x)200 static nokprobe_inline unsigned long byterev_2(unsigned long x)
201 {
202 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
203 }
204
byterev_4(unsigned long x)205 static nokprobe_inline unsigned long byterev_4(unsigned long x)
206 {
207 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
208 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
209 }
210
211 #ifdef __powerpc64__
byterev_8(unsigned long x)212 static nokprobe_inline unsigned long byterev_8(unsigned long x)
213 {
214 return (byterev_4(x) << 32) | byterev_4(x >> 32);
215 }
216 #endif
217
do_byte_reverse(void * ptr,int nb)218 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
219 {
220 switch (nb) {
221 case 2:
222 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
223 break;
224 case 4:
225 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
226 break;
227 #ifdef __powerpc64__
228 case 8:
229 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
230 break;
231 case 16: {
232 unsigned long *up = (unsigned long *)ptr;
233 unsigned long tmp;
234 tmp = byterev_8(up[0]);
235 up[0] = byterev_8(up[1]);
236 up[1] = tmp;
237 break;
238 }
239 #endif
240 default:
241 WARN_ON_ONCE(1);
242 }
243 }
244
read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)245 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
246 unsigned long ea, int nb,
247 struct pt_regs *regs)
248 {
249 int err = 0;
250 unsigned long x = 0;
251
252 switch (nb) {
253 case 1:
254 err = __get_user(x, (unsigned char __user *) ea);
255 break;
256 case 2:
257 err = __get_user(x, (unsigned short __user *) ea);
258 break;
259 case 4:
260 err = __get_user(x, (unsigned int __user *) ea);
261 break;
262 #ifdef __powerpc64__
263 case 8:
264 err = __get_user(x, (unsigned long __user *) ea);
265 break;
266 #endif
267 }
268 if (!err)
269 *dest = x;
270 else
271 regs->dar = ea;
272 return err;
273 }
274
275 /*
276 * Copy from userspace to a buffer, using the largest possible
277 * aligned accesses, up to sizeof(long).
278 */
copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)279 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
280 struct pt_regs *regs)
281 {
282 int err = 0;
283 int c;
284
285 for (; nb > 0; nb -= c) {
286 c = max_align(ea);
287 if (c > nb)
288 c = max_align(nb);
289 switch (c) {
290 case 1:
291 err = __get_user(*dest, (unsigned char __user *) ea);
292 break;
293 case 2:
294 err = __get_user(*(u16 *)dest,
295 (unsigned short __user *) ea);
296 break;
297 case 4:
298 err = __get_user(*(u32 *)dest,
299 (unsigned int __user *) ea);
300 break;
301 #ifdef __powerpc64__
302 case 8:
303 err = __get_user(*(unsigned long *)dest,
304 (unsigned long __user *) ea);
305 break;
306 #endif
307 }
308 if (err) {
309 regs->dar = ea;
310 return err;
311 }
312 dest += c;
313 ea += c;
314 }
315 return 0;
316 }
317
read_mem_unaligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)318 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
319 unsigned long ea, int nb,
320 struct pt_regs *regs)
321 {
322 union {
323 unsigned long ul;
324 u8 b[sizeof(unsigned long)];
325 } u;
326 int i;
327 int err;
328
329 u.ul = 0;
330 i = IS_BE ? sizeof(unsigned long) - nb : 0;
331 err = copy_mem_in(&u.b[i], ea, nb, regs);
332 if (!err)
333 *dest = u.ul;
334 return err;
335 }
336
337 /*
338 * Read memory at address ea for nb bytes, return 0 for success
339 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
340 * If nb < sizeof(long), the result is right-justified on BE systems.
341 */
read_mem(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)342 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
343 struct pt_regs *regs)
344 {
345 if (!address_ok(regs, ea, nb))
346 return -EFAULT;
347 if ((ea & (nb - 1)) == 0)
348 return read_mem_aligned(dest, ea, nb, regs);
349 return read_mem_unaligned(dest, ea, nb, regs);
350 }
351 NOKPROBE_SYMBOL(read_mem);
352
write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)353 static nokprobe_inline int write_mem_aligned(unsigned long val,
354 unsigned long ea, int nb,
355 struct pt_regs *regs)
356 {
357 int err = 0;
358
359 switch (nb) {
360 case 1:
361 err = __put_user(val, (unsigned char __user *) ea);
362 break;
363 case 2:
364 err = __put_user(val, (unsigned short __user *) ea);
365 break;
366 case 4:
367 err = __put_user(val, (unsigned int __user *) ea);
368 break;
369 #ifdef __powerpc64__
370 case 8:
371 err = __put_user(val, (unsigned long __user *) ea);
372 break;
373 #endif
374 }
375 if (err)
376 regs->dar = ea;
377 return err;
378 }
379
380 /*
381 * Copy from a buffer to userspace, using the largest possible
382 * aligned accesses, up to sizeof(long).
383 */
copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)384 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
385 struct pt_regs *regs)
386 {
387 int err = 0;
388 int c;
389
390 for (; nb > 0; nb -= c) {
391 c = max_align(ea);
392 if (c > nb)
393 c = max_align(nb);
394 switch (c) {
395 case 1:
396 err = __put_user(*dest, (unsigned char __user *) ea);
397 break;
398 case 2:
399 err = __put_user(*(u16 *)dest,
400 (unsigned short __user *) ea);
401 break;
402 case 4:
403 err = __put_user(*(u32 *)dest,
404 (unsigned int __user *) ea);
405 break;
406 #ifdef __powerpc64__
407 case 8:
408 err = __put_user(*(unsigned long *)dest,
409 (unsigned long __user *) ea);
410 break;
411 #endif
412 }
413 if (err) {
414 regs->dar = ea;
415 return err;
416 }
417 dest += c;
418 ea += c;
419 }
420 return 0;
421 }
422
write_mem_unaligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)423 static nokprobe_inline int write_mem_unaligned(unsigned long val,
424 unsigned long ea, int nb,
425 struct pt_regs *regs)
426 {
427 union {
428 unsigned long ul;
429 u8 b[sizeof(unsigned long)];
430 } u;
431 int i;
432
433 u.ul = val;
434 i = IS_BE ? sizeof(unsigned long) - nb : 0;
435 return copy_mem_out(&u.b[i], ea, nb, regs);
436 }
437
438 /*
439 * Write memory at address ea for nb bytes, return 0 for success
440 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
441 */
write_mem(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)442 static int write_mem(unsigned long val, unsigned long ea, int nb,
443 struct pt_regs *regs)
444 {
445 if (!address_ok(regs, ea, nb))
446 return -EFAULT;
447 if ((ea & (nb - 1)) == 0)
448 return write_mem_aligned(val, ea, nb, regs);
449 return write_mem_unaligned(val, ea, nb, regs);
450 }
451 NOKPROBE_SYMBOL(write_mem);
452
453 #ifdef CONFIG_PPC_FPU
454 /*
455 * These access either the real FP register or the image in the
456 * thread_struct, depending on regs->msr & MSR_FP.
457 */
do_fp_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)458 static int do_fp_load(struct instruction_op *op, unsigned long ea,
459 struct pt_regs *regs, bool cross_endian)
460 {
461 int err, rn, nb;
462 union {
463 int i;
464 unsigned int u;
465 float f;
466 double d[2];
467 unsigned long l[2];
468 u8 b[2 * sizeof(double)];
469 } u;
470
471 nb = GETSIZE(op->type);
472 if (!address_ok(regs, ea, nb))
473 return -EFAULT;
474 rn = op->reg;
475 err = copy_mem_in(u.b, ea, nb, regs);
476 if (err)
477 return err;
478 if (unlikely(cross_endian)) {
479 do_byte_reverse(u.b, min(nb, 8));
480 if (nb == 16)
481 do_byte_reverse(&u.b[8], 8);
482 }
483 preempt_disable();
484 if (nb == 4) {
485 if (op->type & FPCONV)
486 conv_sp_to_dp(&u.f, &u.d[0]);
487 else if (op->type & SIGNEXT)
488 u.l[0] = u.i;
489 else
490 u.l[0] = u.u;
491 }
492 if (regs->msr & MSR_FP)
493 put_fpr(rn, &u.d[0]);
494 else
495 current->thread.TS_FPR(rn) = u.l[0];
496 if (nb == 16) {
497 /* lfdp */
498 rn |= 1;
499 if (regs->msr & MSR_FP)
500 put_fpr(rn, &u.d[1]);
501 else
502 current->thread.TS_FPR(rn) = u.l[1];
503 }
504 preempt_enable();
505 return 0;
506 }
507 NOKPROBE_SYMBOL(do_fp_load);
508
do_fp_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)509 static int do_fp_store(struct instruction_op *op, unsigned long ea,
510 struct pt_regs *regs, bool cross_endian)
511 {
512 int rn, nb;
513 union {
514 unsigned int u;
515 float f;
516 double d[2];
517 unsigned long l[2];
518 u8 b[2 * sizeof(double)];
519 } u;
520
521 nb = GETSIZE(op->type);
522 if (!address_ok(regs, ea, nb))
523 return -EFAULT;
524 rn = op->reg;
525 preempt_disable();
526 if (regs->msr & MSR_FP)
527 get_fpr(rn, &u.d[0]);
528 else
529 u.l[0] = current->thread.TS_FPR(rn);
530 if (nb == 4) {
531 if (op->type & FPCONV)
532 conv_dp_to_sp(&u.d[0], &u.f);
533 else
534 u.u = u.l[0];
535 }
536 if (nb == 16) {
537 rn |= 1;
538 if (regs->msr & MSR_FP)
539 get_fpr(rn, &u.d[1]);
540 else
541 u.l[1] = current->thread.TS_FPR(rn);
542 }
543 preempt_enable();
544 if (unlikely(cross_endian)) {
545 do_byte_reverse(u.b, min(nb, 8));
546 if (nb == 16)
547 do_byte_reverse(&u.b[8], 8);
548 }
549 return copy_mem_out(u.b, ea, nb, regs);
550 }
551 NOKPROBE_SYMBOL(do_fp_store);
552 #endif
553
554 #ifdef CONFIG_ALTIVEC
555 /* For Altivec/VMX, no need to worry about alignment */
do_vec_load(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)556 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
557 int size, struct pt_regs *regs,
558 bool cross_endian)
559 {
560 int err;
561 union {
562 __vector128 v;
563 u8 b[sizeof(__vector128)];
564 } u = {};
565
566 if (!address_ok(regs, ea & ~0xfUL, 16))
567 return -EFAULT;
568 /* align to multiple of size */
569 ea &= ~(size - 1);
570 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
571 if (err)
572 return err;
573 if (unlikely(cross_endian))
574 do_byte_reverse(&u.b[ea & 0xf], size);
575 preempt_disable();
576 if (regs->msr & MSR_VEC)
577 put_vr(rn, &u.v);
578 else
579 current->thread.vr_state.vr[rn] = u.v;
580 preempt_enable();
581 return 0;
582 }
583
do_vec_store(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)584 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
585 int size, struct pt_regs *regs,
586 bool cross_endian)
587 {
588 union {
589 __vector128 v;
590 u8 b[sizeof(__vector128)];
591 } u;
592
593 if (!address_ok(regs, ea & ~0xfUL, 16))
594 return -EFAULT;
595 /* align to multiple of size */
596 ea &= ~(size - 1);
597
598 preempt_disable();
599 if (regs->msr & MSR_VEC)
600 get_vr(rn, &u.v);
601 else
602 u.v = current->thread.vr_state.vr[rn];
603 preempt_enable();
604 if (unlikely(cross_endian))
605 do_byte_reverse(&u.b[ea & 0xf], size);
606 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
607 }
608 #endif /* CONFIG_ALTIVEC */
609
610 #ifdef __powerpc64__
emulate_lq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)611 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
612 int reg, bool cross_endian)
613 {
614 int err;
615
616 if (!address_ok(regs, ea, 16))
617 return -EFAULT;
618 /* if aligned, should be atomic */
619 if ((ea & 0xf) == 0) {
620 err = do_lq(ea, ®s->gpr[reg]);
621 } else {
622 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
623 if (!err)
624 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
625 }
626 if (!err && unlikely(cross_endian))
627 do_byte_reverse(®s->gpr[reg], 16);
628 return err;
629 }
630
emulate_stq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)631 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
632 int reg, bool cross_endian)
633 {
634 int err;
635 unsigned long vals[2];
636
637 if (!address_ok(regs, ea, 16))
638 return -EFAULT;
639 vals[0] = regs->gpr[reg];
640 vals[1] = regs->gpr[reg + 1];
641 if (unlikely(cross_endian))
642 do_byte_reverse(vals, 16);
643
644 /* if aligned, should be atomic */
645 if ((ea & 0xf) == 0)
646 return do_stq(ea, vals[0], vals[1]);
647
648 err = write_mem(vals[IS_LE], ea, 8, regs);
649 if (!err)
650 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
651 return err;
652 }
653 #endif /* __powerpc64 */
654
655 #ifdef CONFIG_VSX
emulate_vsx_load(struct instruction_op * op,union vsx_reg * reg,const void * mem,bool rev)656 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
657 const void *mem, bool rev)
658 {
659 int size, read_size;
660 int i, j;
661 const unsigned int *wp;
662 const unsigned short *hp;
663 const unsigned char *bp;
664
665 size = GETSIZE(op->type);
666 reg->d[0] = reg->d[1] = 0;
667
668 switch (op->element_size) {
669 case 16:
670 /* whole vector; lxv[x] or lxvl[l] */
671 if (size == 0)
672 break;
673 memcpy(reg, mem, size);
674 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
675 rev = !rev;
676 if (rev)
677 do_byte_reverse(reg, 16);
678 break;
679 case 8:
680 /* scalar loads, lxvd2x, lxvdsx */
681 read_size = (size >= 8) ? 8 : size;
682 i = IS_LE ? 8 : 8 - read_size;
683 memcpy(®->b[i], mem, read_size);
684 if (rev)
685 do_byte_reverse(®->b[i], 8);
686 if (size < 8) {
687 if (op->type & SIGNEXT) {
688 /* size == 4 is the only case here */
689 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
690 } else if (op->vsx_flags & VSX_FPCONV) {
691 preempt_disable();
692 conv_sp_to_dp(®->fp[1 + IS_LE],
693 ®->dp[IS_LE]);
694 preempt_enable();
695 }
696 } else {
697 if (size == 16) {
698 unsigned long v = *(unsigned long *)(mem + 8);
699 reg->d[IS_BE] = !rev ? v : byterev_8(v);
700 } else if (op->vsx_flags & VSX_SPLAT)
701 reg->d[IS_BE] = reg->d[IS_LE];
702 }
703 break;
704 case 4:
705 /* lxvw4x, lxvwsx */
706 wp = mem;
707 for (j = 0; j < size / 4; ++j) {
708 i = IS_LE ? 3 - j : j;
709 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
710 }
711 if (op->vsx_flags & VSX_SPLAT) {
712 u32 val = reg->w[IS_LE ? 3 : 0];
713 for (; j < 4; ++j) {
714 i = IS_LE ? 3 - j : j;
715 reg->w[i] = val;
716 }
717 }
718 break;
719 case 2:
720 /* lxvh8x */
721 hp = mem;
722 for (j = 0; j < size / 2; ++j) {
723 i = IS_LE ? 7 - j : j;
724 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
725 }
726 break;
727 case 1:
728 /* lxvb16x */
729 bp = mem;
730 for (j = 0; j < size; ++j) {
731 i = IS_LE ? 15 - j : j;
732 reg->b[i] = *bp++;
733 }
734 break;
735 }
736 }
737 EXPORT_SYMBOL_GPL(emulate_vsx_load);
738 NOKPROBE_SYMBOL(emulate_vsx_load);
739
emulate_vsx_store(struct instruction_op * op,const union vsx_reg * reg,void * mem,bool rev)740 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
741 void *mem, bool rev)
742 {
743 int size, write_size;
744 int i, j;
745 union vsx_reg buf;
746 unsigned int *wp;
747 unsigned short *hp;
748 unsigned char *bp;
749
750 size = GETSIZE(op->type);
751
752 switch (op->element_size) {
753 case 16:
754 /* stxv, stxvx, stxvl, stxvll */
755 if (size == 0)
756 break;
757 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
758 rev = !rev;
759 if (rev) {
760 /* reverse 16 bytes */
761 buf.d[0] = byterev_8(reg->d[1]);
762 buf.d[1] = byterev_8(reg->d[0]);
763 reg = &buf;
764 }
765 memcpy(mem, reg, size);
766 break;
767 case 8:
768 /* scalar stores, stxvd2x */
769 write_size = (size >= 8) ? 8 : size;
770 i = IS_LE ? 8 : 8 - write_size;
771 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
772 buf.d[0] = buf.d[1] = 0;
773 preempt_disable();
774 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
775 preempt_enable();
776 reg = &buf;
777 }
778 memcpy(mem, ®->b[i], write_size);
779 if (size == 16)
780 memcpy(mem + 8, ®->d[IS_BE], 8);
781 if (unlikely(rev)) {
782 do_byte_reverse(mem, write_size);
783 if (size == 16)
784 do_byte_reverse(mem + 8, 8);
785 }
786 break;
787 case 4:
788 /* stxvw4x */
789 wp = mem;
790 for (j = 0; j < size / 4; ++j) {
791 i = IS_LE ? 3 - j : j;
792 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
793 }
794 break;
795 case 2:
796 /* stxvh8x */
797 hp = mem;
798 for (j = 0; j < size / 2; ++j) {
799 i = IS_LE ? 7 - j : j;
800 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
801 }
802 break;
803 case 1:
804 /* stvxb16x */
805 bp = mem;
806 for (j = 0; j < size; ++j) {
807 i = IS_LE ? 15 - j : j;
808 *bp++ = reg->b[i];
809 }
810 break;
811 }
812 }
813 EXPORT_SYMBOL_GPL(emulate_vsx_store);
814 NOKPROBE_SYMBOL(emulate_vsx_store);
815
do_vsx_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)816 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
817 unsigned long ea, struct pt_regs *regs,
818 bool cross_endian)
819 {
820 int reg = op->reg;
821 u8 mem[16];
822 union vsx_reg buf;
823 int size = GETSIZE(op->type);
824
825 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
826 return -EFAULT;
827
828 emulate_vsx_load(op, &buf, mem, cross_endian);
829 preempt_disable();
830 if (reg < 32) {
831 /* FP regs + extensions */
832 if (regs->msr & MSR_FP) {
833 load_vsrn(reg, &buf);
834 } else {
835 current->thread.fp_state.fpr[reg][0] = buf.d[0];
836 current->thread.fp_state.fpr[reg][1] = buf.d[1];
837 }
838 } else {
839 if (regs->msr & MSR_VEC)
840 load_vsrn(reg, &buf);
841 else
842 current->thread.vr_state.vr[reg - 32] = buf.v;
843 }
844 preempt_enable();
845 return 0;
846 }
847
do_vsx_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)848 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
849 unsigned long ea, struct pt_regs *regs,
850 bool cross_endian)
851 {
852 int reg = op->reg;
853 u8 mem[16];
854 union vsx_reg buf;
855 int size = GETSIZE(op->type);
856
857 if (!address_ok(regs, ea, size))
858 return -EFAULT;
859
860 preempt_disable();
861 if (reg < 32) {
862 /* FP regs + extensions */
863 if (regs->msr & MSR_FP) {
864 store_vsrn(reg, &buf);
865 } else {
866 buf.d[0] = current->thread.fp_state.fpr[reg][0];
867 buf.d[1] = current->thread.fp_state.fpr[reg][1];
868 }
869 } else {
870 if (regs->msr & MSR_VEC)
871 store_vsrn(reg, &buf);
872 else
873 buf.v = current->thread.vr_state.vr[reg - 32];
874 }
875 preempt_enable();
876 emulate_vsx_store(op, &buf, mem, cross_endian);
877 return copy_mem_out(mem, ea, size, regs);
878 }
879 #endif /* CONFIG_VSX */
880
emulate_dcbz(unsigned long ea,struct pt_regs * regs)881 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
882 {
883 int err;
884 unsigned long i, size;
885
886 #ifdef __powerpc64__
887 size = ppc64_caches.l1d.block_size;
888 if (!(regs->msr & MSR_64BIT))
889 ea &= 0xffffffffUL;
890 #else
891 size = L1_CACHE_BYTES;
892 #endif
893 ea &= ~(size - 1);
894 if (!address_ok(regs, ea, size))
895 return -EFAULT;
896 for (i = 0; i < size; i += sizeof(long)) {
897 err = __put_user(0, (unsigned long __user *) (ea + i));
898 if (err) {
899 regs->dar = ea;
900 return err;
901 }
902 }
903 return 0;
904 }
905 NOKPROBE_SYMBOL(emulate_dcbz);
906
907 #define __put_user_asmx(x, addr, err, op, cr) \
908 __asm__ __volatile__( \
909 "1: " op " %2,0,%3\n" \
910 " mfcr %1\n" \
911 "2:\n" \
912 ".section .fixup,\"ax\"\n" \
913 "3: li %0,%4\n" \
914 " b 2b\n" \
915 ".previous\n" \
916 EX_TABLE(1b, 3b) \
917 : "=r" (err), "=r" (cr) \
918 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
919
920 #define __get_user_asmx(x, addr, err, op) \
921 __asm__ __volatile__( \
922 "1: "op" %1,0,%2\n" \
923 "2:\n" \
924 ".section .fixup,\"ax\"\n" \
925 "3: li %0,%3\n" \
926 " b 2b\n" \
927 ".previous\n" \
928 EX_TABLE(1b, 3b) \
929 : "=r" (err), "=r" (x) \
930 : "r" (addr), "i" (-EFAULT), "0" (err))
931
932 #define __cacheop_user_asmx(addr, err, op) \
933 __asm__ __volatile__( \
934 "1: "op" 0,%1\n" \
935 "2:\n" \
936 ".section .fixup,\"ax\"\n" \
937 "3: li %0,%3\n" \
938 " b 2b\n" \
939 ".previous\n" \
940 EX_TABLE(1b, 3b) \
941 : "=r" (err) \
942 : "r" (addr), "i" (-EFAULT), "0" (err))
943
set_cr0(const struct pt_regs * regs,struct instruction_op * op)944 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
945 struct instruction_op *op)
946 {
947 long val = op->val;
948
949 op->type |= SETCC;
950 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
951 #ifdef __powerpc64__
952 if (!(regs->msr & MSR_64BIT))
953 val = (int) val;
954 #endif
955 if (val < 0)
956 op->ccval |= 0x80000000;
957 else if (val > 0)
958 op->ccval |= 0x40000000;
959 else
960 op->ccval |= 0x20000000;
961 }
962
set_ca32(struct instruction_op * op,bool val)963 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
964 {
965 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
966 if (val)
967 op->xerval |= XER_CA32;
968 else
969 op->xerval &= ~XER_CA32;
970 }
971 }
972
add_with_carry(const struct pt_regs * regs,struct instruction_op * op,int rd,unsigned long val1,unsigned long val2,unsigned long carry_in)973 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
974 struct instruction_op *op, int rd,
975 unsigned long val1, unsigned long val2,
976 unsigned long carry_in)
977 {
978 unsigned long val = val1 + val2;
979
980 if (carry_in)
981 ++val;
982 op->type = COMPUTE + SETREG + SETXER;
983 op->reg = rd;
984 op->val = val;
985 #ifdef __powerpc64__
986 if (!(regs->msr & MSR_64BIT)) {
987 val = (unsigned int) val;
988 val1 = (unsigned int) val1;
989 }
990 #endif
991 op->xerval = regs->xer;
992 if (val < val1 || (carry_in && val == val1))
993 op->xerval |= XER_CA;
994 else
995 op->xerval &= ~XER_CA;
996
997 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
998 (carry_in && (unsigned int)val == (unsigned int)val1));
999 }
1000
do_cmp_signed(const struct pt_regs * regs,struct instruction_op * op,long v1,long v2,int crfld)1001 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1002 struct instruction_op *op,
1003 long v1, long v2, int crfld)
1004 {
1005 unsigned int crval, shift;
1006
1007 op->type = COMPUTE + SETCC;
1008 crval = (regs->xer >> 31) & 1; /* get SO bit */
1009 if (v1 < v2)
1010 crval |= 8;
1011 else if (v1 > v2)
1012 crval |= 4;
1013 else
1014 crval |= 2;
1015 shift = (7 - crfld) * 4;
1016 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1017 }
1018
do_cmp_unsigned(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2,int crfld)1019 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1020 struct instruction_op *op,
1021 unsigned long v1,
1022 unsigned long v2, int crfld)
1023 {
1024 unsigned int crval, shift;
1025
1026 op->type = COMPUTE + SETCC;
1027 crval = (regs->xer >> 31) & 1; /* get SO bit */
1028 if (v1 < v2)
1029 crval |= 8;
1030 else if (v1 > v2)
1031 crval |= 4;
1032 else
1033 crval |= 2;
1034 shift = (7 - crfld) * 4;
1035 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1036 }
1037
do_cmpb(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1038 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1039 struct instruction_op *op,
1040 unsigned long v1, unsigned long v2)
1041 {
1042 unsigned long long out_val, mask;
1043 int i;
1044
1045 out_val = 0;
1046 for (i = 0; i < 8; i++) {
1047 mask = 0xffUL << (i * 8);
1048 if ((v1 & mask) == (v2 & mask))
1049 out_val |= mask;
1050 }
1051 op->val = out_val;
1052 }
1053
1054 /*
1055 * The size parameter is used to adjust the equivalent popcnt instruction.
1056 * popcntb = 8, popcntw = 32, popcntd = 64
1057 */
do_popcnt(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,int size)1058 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1059 struct instruction_op *op,
1060 unsigned long v1, int size)
1061 {
1062 unsigned long long out = v1;
1063
1064 out -= (out >> 1) & 0x5555555555555555ULL;
1065 out = (0x3333333333333333ULL & out) +
1066 (0x3333333333333333ULL & (out >> 2));
1067 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1068
1069 if (size == 8) { /* popcntb */
1070 op->val = out;
1071 return;
1072 }
1073 out += out >> 8;
1074 out += out >> 16;
1075 if (size == 32) { /* popcntw */
1076 op->val = out & 0x0000003f0000003fULL;
1077 return;
1078 }
1079
1080 out = (out + (out >> 32)) & 0x7f;
1081 op->val = out; /* popcntd */
1082 }
1083
1084 #ifdef CONFIG_PPC64
do_bpermd(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1085 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1086 struct instruction_op *op,
1087 unsigned long v1, unsigned long v2)
1088 {
1089 unsigned char perm, idx;
1090 unsigned int i;
1091
1092 perm = 0;
1093 for (i = 0; i < 8; i++) {
1094 idx = (v1 >> (i * 8)) & 0xff;
1095 if (idx < 64)
1096 if (v2 & PPC_BIT(idx))
1097 perm |= 1 << i;
1098 }
1099 op->val = perm;
1100 }
1101 #endif /* CONFIG_PPC64 */
1102 /*
1103 * The size parameter adjusts the equivalent prty instruction.
1104 * prtyw = 32, prtyd = 64
1105 */
do_prty(const struct pt_regs * regs,struct instruction_op * op,unsigned long v,int size)1106 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1107 struct instruction_op *op,
1108 unsigned long v, int size)
1109 {
1110 unsigned long long res = v ^ (v >> 8);
1111
1112 res ^= res >> 16;
1113 if (size == 32) { /* prtyw */
1114 op->val = res & 0x0000000100000001ULL;
1115 return;
1116 }
1117
1118 res ^= res >> 32;
1119 op->val = res & 1; /*prtyd */
1120 }
1121
trap_compare(long v1,long v2)1122 static nokprobe_inline int trap_compare(long v1, long v2)
1123 {
1124 int ret = 0;
1125
1126 if (v1 < v2)
1127 ret |= 0x10;
1128 else if (v1 > v2)
1129 ret |= 0x08;
1130 else
1131 ret |= 0x04;
1132 if ((unsigned long)v1 < (unsigned long)v2)
1133 ret |= 0x02;
1134 else if ((unsigned long)v1 > (unsigned long)v2)
1135 ret |= 0x01;
1136 return ret;
1137 }
1138
1139 /*
1140 * Elements of 32-bit rotate and mask instructions.
1141 */
1142 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1143 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1144 #ifdef __powerpc64__
1145 #define MASK64_L(mb) (~0UL >> (mb))
1146 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1147 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1148 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1149 #else
1150 #define DATA32(x) (x)
1151 #endif
1152 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1153
1154 /*
1155 * Decode an instruction, and return information about it in *op
1156 * without changing *regs.
1157 * Integer arithmetic and logical instructions, branches, and barrier
1158 * instructions can be emulated just using the information in *op.
1159 *
1160 * Return value is 1 if the instruction can be emulated just by
1161 * updating *regs with the information in *op, -1 if we need the
1162 * GPRs but *regs doesn't contain the full register set, or 0
1163 * otherwise.
1164 */
analyse_instr(struct instruction_op * op,const struct pt_regs * regs,unsigned int instr)1165 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1166 unsigned int instr)
1167 {
1168 unsigned int opcode, ra, rb, rc, rd, spr, u;
1169 unsigned long int imm;
1170 unsigned long int val, val2;
1171 unsigned int mb, me, sh;
1172 long ival;
1173
1174 op->type = COMPUTE;
1175
1176 opcode = instr >> 26;
1177 switch (opcode) {
1178 case 16: /* bc */
1179 op->type = BRANCH;
1180 imm = (signed short)(instr & 0xfffc);
1181 if ((instr & 2) == 0)
1182 imm += regs->nip;
1183 op->val = truncate_if_32bit(regs->msr, imm);
1184 if (instr & 1)
1185 op->type |= SETLK;
1186 if (branch_taken(instr, regs, op))
1187 op->type |= BRTAKEN;
1188 return 1;
1189 #ifdef CONFIG_PPC64
1190 case 17: /* sc */
1191 if ((instr & 0xfe2) == 2)
1192 op->type = SYSCALL;
1193 else
1194 op->type = UNKNOWN;
1195 return 0;
1196 #endif
1197 case 18: /* b */
1198 op->type = BRANCH | BRTAKEN;
1199 imm = instr & 0x03fffffc;
1200 if (imm & 0x02000000)
1201 imm -= 0x04000000;
1202 if ((instr & 2) == 0)
1203 imm += regs->nip;
1204 op->val = truncate_if_32bit(regs->msr, imm);
1205 if (instr & 1)
1206 op->type |= SETLK;
1207 return 1;
1208 case 19:
1209 switch ((instr >> 1) & 0x3ff) {
1210 case 0: /* mcrf */
1211 op->type = COMPUTE + SETCC;
1212 rd = 7 - ((instr >> 23) & 0x7);
1213 ra = 7 - ((instr >> 18) & 0x7);
1214 rd *= 4;
1215 ra *= 4;
1216 val = (regs->ccr >> ra) & 0xf;
1217 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1218 return 1;
1219
1220 case 16: /* bclr */
1221 case 528: /* bcctr */
1222 op->type = BRANCH;
1223 imm = (instr & 0x400)? regs->ctr: regs->link;
1224 op->val = truncate_if_32bit(regs->msr, imm);
1225 if (instr & 1)
1226 op->type |= SETLK;
1227 if (branch_taken(instr, regs, op))
1228 op->type |= BRTAKEN;
1229 return 1;
1230
1231 case 18: /* rfid, scary */
1232 if (regs->msr & MSR_PR)
1233 goto priv;
1234 op->type = RFI;
1235 return 0;
1236
1237 case 150: /* isync */
1238 op->type = BARRIER | BARRIER_ISYNC;
1239 return 1;
1240
1241 case 33: /* crnor */
1242 case 129: /* crandc */
1243 case 193: /* crxor */
1244 case 225: /* crnand */
1245 case 257: /* crand */
1246 case 289: /* creqv */
1247 case 417: /* crorc */
1248 case 449: /* cror */
1249 op->type = COMPUTE + SETCC;
1250 ra = (instr >> 16) & 0x1f;
1251 rb = (instr >> 11) & 0x1f;
1252 rd = (instr >> 21) & 0x1f;
1253 ra = (regs->ccr >> (31 - ra)) & 1;
1254 rb = (regs->ccr >> (31 - rb)) & 1;
1255 val = (instr >> (6 + ra * 2 + rb)) & 1;
1256 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1257 (val << (31 - rd));
1258 return 1;
1259 }
1260 break;
1261 case 31:
1262 switch ((instr >> 1) & 0x3ff) {
1263 case 598: /* sync */
1264 op->type = BARRIER + BARRIER_SYNC;
1265 #ifdef __powerpc64__
1266 switch ((instr >> 21) & 3) {
1267 case 1: /* lwsync */
1268 op->type = BARRIER + BARRIER_LWSYNC;
1269 break;
1270 case 2: /* ptesync */
1271 op->type = BARRIER + BARRIER_PTESYNC;
1272 break;
1273 }
1274 #endif
1275 return 1;
1276
1277 case 854: /* eieio */
1278 op->type = BARRIER + BARRIER_EIEIO;
1279 return 1;
1280 }
1281 break;
1282 }
1283
1284 /* Following cases refer to regs->gpr[], so we need all regs */
1285 if (!FULL_REGS(regs))
1286 return -1;
1287
1288 rd = (instr >> 21) & 0x1f;
1289 ra = (instr >> 16) & 0x1f;
1290 rb = (instr >> 11) & 0x1f;
1291 rc = (instr >> 6) & 0x1f;
1292
1293 switch (opcode) {
1294 #ifdef __powerpc64__
1295 case 2: /* tdi */
1296 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1297 goto trap;
1298 return 1;
1299 #endif
1300 case 3: /* twi */
1301 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1302 goto trap;
1303 return 1;
1304
1305 #ifdef __powerpc64__
1306 case 4:
1307 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1308 return -1;
1309
1310 switch (instr & 0x3f) {
1311 case 48: /* maddhd */
1312 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1313 "=r" (op->val) : "r" (regs->gpr[ra]),
1314 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1315 goto compute_done;
1316
1317 case 49: /* maddhdu */
1318 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1319 "=r" (op->val) : "r" (regs->gpr[ra]),
1320 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1321 goto compute_done;
1322
1323 case 51: /* maddld */
1324 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1325 "=r" (op->val) : "r" (regs->gpr[ra]),
1326 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1327 goto compute_done;
1328 }
1329
1330 /*
1331 * There are other instructions from ISA 3.0 with the same
1332 * primary opcode which do not have emulation support yet.
1333 */
1334 return -1;
1335 #endif
1336
1337 case 7: /* mulli */
1338 op->val = regs->gpr[ra] * (short) instr;
1339 goto compute_done;
1340
1341 case 8: /* subfic */
1342 imm = (short) instr;
1343 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1344 return 1;
1345
1346 case 10: /* cmpli */
1347 imm = (unsigned short) instr;
1348 val = regs->gpr[ra];
1349 #ifdef __powerpc64__
1350 if ((rd & 1) == 0)
1351 val = (unsigned int) val;
1352 #endif
1353 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1354 return 1;
1355
1356 case 11: /* cmpi */
1357 imm = (short) instr;
1358 val = regs->gpr[ra];
1359 #ifdef __powerpc64__
1360 if ((rd & 1) == 0)
1361 val = (int) val;
1362 #endif
1363 do_cmp_signed(regs, op, val, imm, rd >> 2);
1364 return 1;
1365
1366 case 12: /* addic */
1367 imm = (short) instr;
1368 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1369 return 1;
1370
1371 case 13: /* addic. */
1372 imm = (short) instr;
1373 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1374 set_cr0(regs, op);
1375 return 1;
1376
1377 case 14: /* addi */
1378 imm = (short) instr;
1379 if (ra)
1380 imm += regs->gpr[ra];
1381 op->val = imm;
1382 goto compute_done;
1383
1384 case 15: /* addis */
1385 imm = ((short) instr) << 16;
1386 if (ra)
1387 imm += regs->gpr[ra];
1388 op->val = imm;
1389 goto compute_done;
1390
1391 case 19:
1392 if (((instr >> 1) & 0x1f) == 2) {
1393 /* addpcis */
1394 imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1395 imm |= (instr >> 15) & 0x3e; /* d1 field */
1396 op->val = regs->nip + (imm << 16) + 4;
1397 goto compute_done;
1398 }
1399 op->type = UNKNOWN;
1400 return 0;
1401
1402 case 20: /* rlwimi */
1403 mb = (instr >> 6) & 0x1f;
1404 me = (instr >> 1) & 0x1f;
1405 val = DATA32(regs->gpr[rd]);
1406 imm = MASK32(mb, me);
1407 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1408 goto logical_done;
1409
1410 case 21: /* rlwinm */
1411 mb = (instr >> 6) & 0x1f;
1412 me = (instr >> 1) & 0x1f;
1413 val = DATA32(regs->gpr[rd]);
1414 op->val = ROTATE(val, rb) & MASK32(mb, me);
1415 goto logical_done;
1416
1417 case 23: /* rlwnm */
1418 mb = (instr >> 6) & 0x1f;
1419 me = (instr >> 1) & 0x1f;
1420 rb = regs->gpr[rb] & 0x1f;
1421 val = DATA32(regs->gpr[rd]);
1422 op->val = ROTATE(val, rb) & MASK32(mb, me);
1423 goto logical_done;
1424
1425 case 24: /* ori */
1426 op->val = regs->gpr[rd] | (unsigned short) instr;
1427 goto logical_done_nocc;
1428
1429 case 25: /* oris */
1430 imm = (unsigned short) instr;
1431 op->val = regs->gpr[rd] | (imm << 16);
1432 goto logical_done_nocc;
1433
1434 case 26: /* xori */
1435 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1436 goto logical_done_nocc;
1437
1438 case 27: /* xoris */
1439 imm = (unsigned short) instr;
1440 op->val = regs->gpr[rd] ^ (imm << 16);
1441 goto logical_done_nocc;
1442
1443 case 28: /* andi. */
1444 op->val = regs->gpr[rd] & (unsigned short) instr;
1445 set_cr0(regs, op);
1446 goto logical_done_nocc;
1447
1448 case 29: /* andis. */
1449 imm = (unsigned short) instr;
1450 op->val = regs->gpr[rd] & (imm << 16);
1451 set_cr0(regs, op);
1452 goto logical_done_nocc;
1453
1454 #ifdef __powerpc64__
1455 case 30: /* rld* */
1456 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1457 val = regs->gpr[rd];
1458 if ((instr & 0x10) == 0) {
1459 sh = rb | ((instr & 2) << 4);
1460 val = ROTATE(val, sh);
1461 switch ((instr >> 2) & 3) {
1462 case 0: /* rldicl */
1463 val &= MASK64_L(mb);
1464 break;
1465 case 1: /* rldicr */
1466 val &= MASK64_R(mb);
1467 break;
1468 case 2: /* rldic */
1469 val &= MASK64(mb, 63 - sh);
1470 break;
1471 case 3: /* rldimi */
1472 imm = MASK64(mb, 63 - sh);
1473 val = (regs->gpr[ra] & ~imm) |
1474 (val & imm);
1475 }
1476 op->val = val;
1477 goto logical_done;
1478 } else {
1479 sh = regs->gpr[rb] & 0x3f;
1480 val = ROTATE(val, sh);
1481 switch ((instr >> 1) & 7) {
1482 case 0: /* rldcl */
1483 op->val = val & MASK64_L(mb);
1484 goto logical_done;
1485 case 1: /* rldcr */
1486 op->val = val & MASK64_R(mb);
1487 goto logical_done;
1488 }
1489 }
1490 #endif
1491 op->type = UNKNOWN; /* illegal instruction */
1492 return 0;
1493
1494 case 31:
1495 /* isel occupies 32 minor opcodes */
1496 if (((instr >> 1) & 0x1f) == 15) {
1497 mb = (instr >> 6) & 0x1f; /* bc field */
1498 val = (regs->ccr >> (31 - mb)) & 1;
1499 val2 = (ra) ? regs->gpr[ra] : 0;
1500
1501 op->val = (val) ? val2 : regs->gpr[rb];
1502 goto compute_done;
1503 }
1504
1505 switch ((instr >> 1) & 0x3ff) {
1506 case 4: /* tw */
1507 if (rd == 0x1f ||
1508 (rd & trap_compare((int)regs->gpr[ra],
1509 (int)regs->gpr[rb])))
1510 goto trap;
1511 return 1;
1512 #ifdef __powerpc64__
1513 case 68: /* td */
1514 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1515 goto trap;
1516 return 1;
1517 #endif
1518 case 83: /* mfmsr */
1519 if (regs->msr & MSR_PR)
1520 goto priv;
1521 op->type = MFMSR;
1522 op->reg = rd;
1523 return 0;
1524 case 146: /* mtmsr */
1525 if (regs->msr & MSR_PR)
1526 goto priv;
1527 op->type = MTMSR;
1528 op->reg = rd;
1529 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1530 return 0;
1531 #ifdef CONFIG_PPC64
1532 case 178: /* mtmsrd */
1533 if (regs->msr & MSR_PR)
1534 goto priv;
1535 op->type = MTMSR;
1536 op->reg = rd;
1537 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1538 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1539 imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1540 op->val = imm;
1541 return 0;
1542 #endif
1543
1544 case 19: /* mfcr */
1545 imm = 0xffffffffUL;
1546 if ((instr >> 20) & 1) {
1547 imm = 0xf0000000UL;
1548 for (sh = 0; sh < 8; ++sh) {
1549 if (instr & (0x80000 >> sh))
1550 break;
1551 imm >>= 4;
1552 }
1553 }
1554 op->val = regs->ccr & imm;
1555 goto compute_done;
1556
1557 case 144: /* mtcrf */
1558 op->type = COMPUTE + SETCC;
1559 imm = 0xf0000000UL;
1560 val = regs->gpr[rd];
1561 op->ccval = regs->ccr;
1562 for (sh = 0; sh < 8; ++sh) {
1563 if (instr & (0x80000 >> sh))
1564 op->ccval = (op->ccval & ~imm) |
1565 (val & imm);
1566 imm >>= 4;
1567 }
1568 return 1;
1569
1570 case 339: /* mfspr */
1571 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1572 op->type = MFSPR;
1573 op->reg = rd;
1574 op->spr = spr;
1575 if (spr == SPRN_XER || spr == SPRN_LR ||
1576 spr == SPRN_CTR)
1577 return 1;
1578 return 0;
1579
1580 case 467: /* mtspr */
1581 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1582 op->type = MTSPR;
1583 op->val = regs->gpr[rd];
1584 op->spr = spr;
1585 if (spr == SPRN_XER || spr == SPRN_LR ||
1586 spr == SPRN_CTR)
1587 return 1;
1588 return 0;
1589
1590 /*
1591 * Compare instructions
1592 */
1593 case 0: /* cmp */
1594 val = regs->gpr[ra];
1595 val2 = regs->gpr[rb];
1596 #ifdef __powerpc64__
1597 if ((rd & 1) == 0) {
1598 /* word (32-bit) compare */
1599 val = (int) val;
1600 val2 = (int) val2;
1601 }
1602 #endif
1603 do_cmp_signed(regs, op, val, val2, rd >> 2);
1604 return 1;
1605
1606 case 32: /* cmpl */
1607 val = regs->gpr[ra];
1608 val2 = regs->gpr[rb];
1609 #ifdef __powerpc64__
1610 if ((rd & 1) == 0) {
1611 /* word (32-bit) compare */
1612 val = (unsigned int) val;
1613 val2 = (unsigned int) val2;
1614 }
1615 #endif
1616 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1617 return 1;
1618
1619 case 508: /* cmpb */
1620 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1621 goto logical_done_nocc;
1622
1623 /*
1624 * Arithmetic instructions
1625 */
1626 case 8: /* subfc */
1627 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1628 regs->gpr[rb], 1);
1629 goto arith_done;
1630 #ifdef __powerpc64__
1631 case 9: /* mulhdu */
1632 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1633 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1634 goto arith_done;
1635 #endif
1636 case 10: /* addc */
1637 add_with_carry(regs, op, rd, regs->gpr[ra],
1638 regs->gpr[rb], 0);
1639 goto arith_done;
1640
1641 case 11: /* mulhwu */
1642 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1643 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1644 goto arith_done;
1645
1646 case 40: /* subf */
1647 op->val = regs->gpr[rb] - regs->gpr[ra];
1648 goto arith_done;
1649 #ifdef __powerpc64__
1650 case 73: /* mulhd */
1651 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1652 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1653 goto arith_done;
1654 #endif
1655 case 75: /* mulhw */
1656 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1657 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1658 goto arith_done;
1659
1660 case 104: /* neg */
1661 op->val = -regs->gpr[ra];
1662 goto arith_done;
1663
1664 case 136: /* subfe */
1665 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1666 regs->gpr[rb], regs->xer & XER_CA);
1667 goto arith_done;
1668
1669 case 138: /* adde */
1670 add_with_carry(regs, op, rd, regs->gpr[ra],
1671 regs->gpr[rb], regs->xer & XER_CA);
1672 goto arith_done;
1673
1674 case 200: /* subfze */
1675 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1676 regs->xer & XER_CA);
1677 goto arith_done;
1678
1679 case 202: /* addze */
1680 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1681 regs->xer & XER_CA);
1682 goto arith_done;
1683
1684 case 232: /* subfme */
1685 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1686 regs->xer & XER_CA);
1687 goto arith_done;
1688 #ifdef __powerpc64__
1689 case 233: /* mulld */
1690 op->val = regs->gpr[ra] * regs->gpr[rb];
1691 goto arith_done;
1692 #endif
1693 case 234: /* addme */
1694 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1695 regs->xer & XER_CA);
1696 goto arith_done;
1697
1698 case 235: /* mullw */
1699 op->val = (long)(int) regs->gpr[ra] *
1700 (int) regs->gpr[rb];
1701
1702 goto arith_done;
1703 #ifdef __powerpc64__
1704 case 265: /* modud */
1705 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1706 return -1;
1707 op->val = regs->gpr[ra] % regs->gpr[rb];
1708 goto compute_done;
1709 #endif
1710 case 266: /* add */
1711 op->val = regs->gpr[ra] + regs->gpr[rb];
1712 goto arith_done;
1713
1714 case 267: /* moduw */
1715 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1716 return -1;
1717 op->val = (unsigned int) regs->gpr[ra] %
1718 (unsigned int) regs->gpr[rb];
1719 goto compute_done;
1720 #ifdef __powerpc64__
1721 case 457: /* divdu */
1722 op->val = regs->gpr[ra] / regs->gpr[rb];
1723 goto arith_done;
1724 #endif
1725 case 459: /* divwu */
1726 op->val = (unsigned int) regs->gpr[ra] /
1727 (unsigned int) regs->gpr[rb];
1728 goto arith_done;
1729 #ifdef __powerpc64__
1730 case 489: /* divd */
1731 op->val = (long int) regs->gpr[ra] /
1732 (long int) regs->gpr[rb];
1733 goto arith_done;
1734 #endif
1735 case 491: /* divw */
1736 op->val = (int) regs->gpr[ra] /
1737 (int) regs->gpr[rb];
1738 goto arith_done;
1739
1740 case 755: /* darn */
1741 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1742 return -1;
1743 switch (ra & 0x3) {
1744 case 0:
1745 /* 32-bit conditioned */
1746 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1747 goto compute_done;
1748
1749 case 1:
1750 /* 64-bit conditioned */
1751 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1752 goto compute_done;
1753
1754 case 2:
1755 /* 64-bit raw */
1756 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1757 goto compute_done;
1758 }
1759
1760 return -1;
1761 #ifdef __powerpc64__
1762 case 777: /* modsd */
1763 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1764 return -1;
1765 op->val = (long int) regs->gpr[ra] %
1766 (long int) regs->gpr[rb];
1767 goto compute_done;
1768 #endif
1769 case 779: /* modsw */
1770 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1771 return -1;
1772 op->val = (int) regs->gpr[ra] %
1773 (int) regs->gpr[rb];
1774 goto compute_done;
1775
1776
1777 /*
1778 * Logical instructions
1779 */
1780 case 26: /* cntlzw */
1781 val = (unsigned int) regs->gpr[rd];
1782 op->val = ( val ? __builtin_clz(val) : 32 );
1783 goto logical_done;
1784 #ifdef __powerpc64__
1785 case 58: /* cntlzd */
1786 val = regs->gpr[rd];
1787 op->val = ( val ? __builtin_clzl(val) : 64 );
1788 goto logical_done;
1789 #endif
1790 case 28: /* and */
1791 op->val = regs->gpr[rd] & regs->gpr[rb];
1792 goto logical_done;
1793
1794 case 60: /* andc */
1795 op->val = regs->gpr[rd] & ~regs->gpr[rb];
1796 goto logical_done;
1797
1798 case 122: /* popcntb */
1799 do_popcnt(regs, op, regs->gpr[rd], 8);
1800 goto logical_done_nocc;
1801
1802 case 124: /* nor */
1803 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1804 goto logical_done;
1805
1806 case 154: /* prtyw */
1807 do_prty(regs, op, regs->gpr[rd], 32);
1808 goto logical_done_nocc;
1809
1810 case 186: /* prtyd */
1811 do_prty(regs, op, regs->gpr[rd], 64);
1812 goto logical_done_nocc;
1813 #ifdef CONFIG_PPC64
1814 case 252: /* bpermd */
1815 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1816 goto logical_done_nocc;
1817 #endif
1818 case 284: /* xor */
1819 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1820 goto logical_done;
1821
1822 case 316: /* xor */
1823 op->val = regs->gpr[rd] ^ regs->gpr[rb];
1824 goto logical_done;
1825
1826 case 378: /* popcntw */
1827 do_popcnt(regs, op, regs->gpr[rd], 32);
1828 goto logical_done_nocc;
1829
1830 case 412: /* orc */
1831 op->val = regs->gpr[rd] | ~regs->gpr[rb];
1832 goto logical_done;
1833
1834 case 444: /* or */
1835 op->val = regs->gpr[rd] | regs->gpr[rb];
1836 goto logical_done;
1837
1838 case 476: /* nand */
1839 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1840 goto logical_done;
1841 #ifdef CONFIG_PPC64
1842 case 506: /* popcntd */
1843 do_popcnt(regs, op, regs->gpr[rd], 64);
1844 goto logical_done_nocc;
1845 #endif
1846 case 538: /* cnttzw */
1847 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1848 return -1;
1849 val = (unsigned int) regs->gpr[rd];
1850 op->val = (val ? __builtin_ctz(val) : 32);
1851 goto logical_done;
1852 #ifdef __powerpc64__
1853 case 570: /* cnttzd */
1854 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1855 return -1;
1856 val = regs->gpr[rd];
1857 op->val = (val ? __builtin_ctzl(val) : 64);
1858 goto logical_done;
1859 #endif
1860 case 922: /* extsh */
1861 op->val = (signed short) regs->gpr[rd];
1862 goto logical_done;
1863
1864 case 954: /* extsb */
1865 op->val = (signed char) regs->gpr[rd];
1866 goto logical_done;
1867 #ifdef __powerpc64__
1868 case 986: /* extsw */
1869 op->val = (signed int) regs->gpr[rd];
1870 goto logical_done;
1871 #endif
1872
1873 /*
1874 * Shift instructions
1875 */
1876 case 24: /* slw */
1877 sh = regs->gpr[rb] & 0x3f;
1878 if (sh < 32)
1879 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1880 else
1881 op->val = 0;
1882 goto logical_done;
1883
1884 case 536: /* srw */
1885 sh = regs->gpr[rb] & 0x3f;
1886 if (sh < 32)
1887 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1888 else
1889 op->val = 0;
1890 goto logical_done;
1891
1892 case 792: /* sraw */
1893 op->type = COMPUTE + SETREG + SETXER;
1894 sh = regs->gpr[rb] & 0x3f;
1895 ival = (signed int) regs->gpr[rd];
1896 op->val = ival >> (sh < 32 ? sh : 31);
1897 op->xerval = regs->xer;
1898 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1899 op->xerval |= XER_CA;
1900 else
1901 op->xerval &= ~XER_CA;
1902 set_ca32(op, op->xerval & XER_CA);
1903 goto logical_done;
1904
1905 case 824: /* srawi */
1906 op->type = COMPUTE + SETREG + SETXER;
1907 sh = rb;
1908 ival = (signed int) regs->gpr[rd];
1909 op->val = ival >> sh;
1910 op->xerval = regs->xer;
1911 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1912 op->xerval |= XER_CA;
1913 else
1914 op->xerval &= ~XER_CA;
1915 set_ca32(op, op->xerval & XER_CA);
1916 goto logical_done;
1917
1918 #ifdef __powerpc64__
1919 case 27: /* sld */
1920 sh = regs->gpr[rb] & 0x7f;
1921 if (sh < 64)
1922 op->val = regs->gpr[rd] << sh;
1923 else
1924 op->val = 0;
1925 goto logical_done;
1926
1927 case 539: /* srd */
1928 sh = regs->gpr[rb] & 0x7f;
1929 if (sh < 64)
1930 op->val = regs->gpr[rd] >> sh;
1931 else
1932 op->val = 0;
1933 goto logical_done;
1934
1935 case 794: /* srad */
1936 op->type = COMPUTE + SETREG + SETXER;
1937 sh = regs->gpr[rb] & 0x7f;
1938 ival = (signed long int) regs->gpr[rd];
1939 op->val = ival >> (sh < 64 ? sh : 63);
1940 op->xerval = regs->xer;
1941 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1942 op->xerval |= XER_CA;
1943 else
1944 op->xerval &= ~XER_CA;
1945 set_ca32(op, op->xerval & XER_CA);
1946 goto logical_done;
1947
1948 case 826: /* sradi with sh_5 = 0 */
1949 case 827: /* sradi with sh_5 = 1 */
1950 op->type = COMPUTE + SETREG + SETXER;
1951 sh = rb | ((instr & 2) << 4);
1952 ival = (signed long int) regs->gpr[rd];
1953 op->val = ival >> sh;
1954 op->xerval = regs->xer;
1955 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1956 op->xerval |= XER_CA;
1957 else
1958 op->xerval &= ~XER_CA;
1959 set_ca32(op, op->xerval & XER_CA);
1960 goto logical_done;
1961
1962 case 890: /* extswsli with sh_5 = 0 */
1963 case 891: /* extswsli with sh_5 = 1 */
1964 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1965 return -1;
1966 op->type = COMPUTE + SETREG;
1967 sh = rb | ((instr & 2) << 4);
1968 val = (signed int) regs->gpr[rd];
1969 if (sh)
1970 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
1971 else
1972 op->val = val;
1973 goto logical_done;
1974
1975 #endif /* __powerpc64__ */
1976
1977 /*
1978 * Cache instructions
1979 */
1980 case 54: /* dcbst */
1981 op->type = MKOP(CACHEOP, DCBST, 0);
1982 op->ea = xform_ea(instr, regs);
1983 return 0;
1984
1985 case 86: /* dcbf */
1986 op->type = MKOP(CACHEOP, DCBF, 0);
1987 op->ea = xform_ea(instr, regs);
1988 return 0;
1989
1990 case 246: /* dcbtst */
1991 op->type = MKOP(CACHEOP, DCBTST, 0);
1992 op->ea = xform_ea(instr, regs);
1993 op->reg = rd;
1994 return 0;
1995
1996 case 278: /* dcbt */
1997 op->type = MKOP(CACHEOP, DCBTST, 0);
1998 op->ea = xform_ea(instr, regs);
1999 op->reg = rd;
2000 return 0;
2001
2002 case 982: /* icbi */
2003 op->type = MKOP(CACHEOP, ICBI, 0);
2004 op->ea = xform_ea(instr, regs);
2005 return 0;
2006
2007 case 1014: /* dcbz */
2008 op->type = MKOP(CACHEOP, DCBZ, 0);
2009 op->ea = xform_ea(instr, regs);
2010 return 0;
2011 }
2012 break;
2013 }
2014
2015 /*
2016 * Loads and stores.
2017 */
2018 op->type = UNKNOWN;
2019 op->update_reg = ra;
2020 op->reg = rd;
2021 op->val = regs->gpr[rd];
2022 u = (instr >> 20) & UPDATE;
2023 op->vsx_flags = 0;
2024
2025 switch (opcode) {
2026 case 31:
2027 u = instr & UPDATE;
2028 op->ea = xform_ea(instr, regs);
2029 switch ((instr >> 1) & 0x3ff) {
2030 case 20: /* lwarx */
2031 op->type = MKOP(LARX, 0, 4);
2032 break;
2033
2034 case 150: /* stwcx. */
2035 op->type = MKOP(STCX, 0, 4);
2036 break;
2037
2038 #ifdef __powerpc64__
2039 case 84: /* ldarx */
2040 op->type = MKOP(LARX, 0, 8);
2041 break;
2042
2043 case 214: /* stdcx. */
2044 op->type = MKOP(STCX, 0, 8);
2045 break;
2046
2047 case 52: /* lbarx */
2048 op->type = MKOP(LARX, 0, 1);
2049 break;
2050
2051 case 694: /* stbcx. */
2052 op->type = MKOP(STCX, 0, 1);
2053 break;
2054
2055 case 116: /* lharx */
2056 op->type = MKOP(LARX, 0, 2);
2057 break;
2058
2059 case 726: /* sthcx. */
2060 op->type = MKOP(STCX, 0, 2);
2061 break;
2062
2063 case 276: /* lqarx */
2064 if (!((rd & 1) || rd == ra || rd == rb))
2065 op->type = MKOP(LARX, 0, 16);
2066 break;
2067
2068 case 182: /* stqcx. */
2069 if (!(rd & 1))
2070 op->type = MKOP(STCX, 0, 16);
2071 break;
2072 #endif
2073
2074 case 23: /* lwzx */
2075 case 55: /* lwzux */
2076 op->type = MKOP(LOAD, u, 4);
2077 break;
2078
2079 case 87: /* lbzx */
2080 case 119: /* lbzux */
2081 op->type = MKOP(LOAD, u, 1);
2082 break;
2083
2084 #ifdef CONFIG_ALTIVEC
2085 /*
2086 * Note: for the load/store vector element instructions,
2087 * bits of the EA say which field of the VMX register to use.
2088 */
2089 case 7: /* lvebx */
2090 op->type = MKOP(LOAD_VMX, 0, 1);
2091 op->element_size = 1;
2092 break;
2093
2094 case 39: /* lvehx */
2095 op->type = MKOP(LOAD_VMX, 0, 2);
2096 op->element_size = 2;
2097 break;
2098
2099 case 71: /* lvewx */
2100 op->type = MKOP(LOAD_VMX, 0, 4);
2101 op->element_size = 4;
2102 break;
2103
2104 case 103: /* lvx */
2105 case 359: /* lvxl */
2106 op->type = MKOP(LOAD_VMX, 0, 16);
2107 op->element_size = 16;
2108 break;
2109
2110 case 135: /* stvebx */
2111 op->type = MKOP(STORE_VMX, 0, 1);
2112 op->element_size = 1;
2113 break;
2114
2115 case 167: /* stvehx */
2116 op->type = MKOP(STORE_VMX, 0, 2);
2117 op->element_size = 2;
2118 break;
2119
2120 case 199: /* stvewx */
2121 op->type = MKOP(STORE_VMX, 0, 4);
2122 op->element_size = 4;
2123 break;
2124
2125 case 231: /* stvx */
2126 case 487: /* stvxl */
2127 op->type = MKOP(STORE_VMX, 0, 16);
2128 break;
2129 #endif /* CONFIG_ALTIVEC */
2130
2131 #ifdef __powerpc64__
2132 case 21: /* ldx */
2133 case 53: /* ldux */
2134 op->type = MKOP(LOAD, u, 8);
2135 break;
2136
2137 case 149: /* stdx */
2138 case 181: /* stdux */
2139 op->type = MKOP(STORE, u, 8);
2140 break;
2141 #endif
2142
2143 case 151: /* stwx */
2144 case 183: /* stwux */
2145 op->type = MKOP(STORE, u, 4);
2146 break;
2147
2148 case 215: /* stbx */
2149 case 247: /* stbux */
2150 op->type = MKOP(STORE, u, 1);
2151 break;
2152
2153 case 279: /* lhzx */
2154 case 311: /* lhzux */
2155 op->type = MKOP(LOAD, u, 2);
2156 break;
2157
2158 #ifdef __powerpc64__
2159 case 341: /* lwax */
2160 case 373: /* lwaux */
2161 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2162 break;
2163 #endif
2164
2165 case 343: /* lhax */
2166 case 375: /* lhaux */
2167 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2168 break;
2169
2170 case 407: /* sthx */
2171 case 439: /* sthux */
2172 op->type = MKOP(STORE, u, 2);
2173 break;
2174
2175 #ifdef __powerpc64__
2176 case 532: /* ldbrx */
2177 op->type = MKOP(LOAD, BYTEREV, 8);
2178 break;
2179
2180 #endif
2181 case 533: /* lswx */
2182 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2183 break;
2184
2185 case 534: /* lwbrx */
2186 op->type = MKOP(LOAD, BYTEREV, 4);
2187 break;
2188
2189 case 597: /* lswi */
2190 if (rb == 0)
2191 rb = 32; /* # bytes to load */
2192 op->type = MKOP(LOAD_MULTI, 0, rb);
2193 op->ea = ra ? regs->gpr[ra] : 0;
2194 break;
2195
2196 #ifdef CONFIG_PPC_FPU
2197 case 535: /* lfsx */
2198 case 567: /* lfsux */
2199 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2200 break;
2201
2202 case 599: /* lfdx */
2203 case 631: /* lfdux */
2204 op->type = MKOP(LOAD_FP, u, 8);
2205 break;
2206
2207 case 663: /* stfsx */
2208 case 695: /* stfsux */
2209 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2210 break;
2211
2212 case 727: /* stfdx */
2213 case 759: /* stfdux */
2214 op->type = MKOP(STORE_FP, u, 8);
2215 break;
2216
2217 #ifdef __powerpc64__
2218 case 791: /* lfdpx */
2219 op->type = MKOP(LOAD_FP, 0, 16);
2220 break;
2221
2222 case 855: /* lfiwax */
2223 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2224 break;
2225
2226 case 887: /* lfiwzx */
2227 op->type = MKOP(LOAD_FP, 0, 4);
2228 break;
2229
2230 case 919: /* stfdpx */
2231 op->type = MKOP(STORE_FP, 0, 16);
2232 break;
2233
2234 case 983: /* stfiwx */
2235 op->type = MKOP(STORE_FP, 0, 4);
2236 break;
2237 #endif /* __powerpc64 */
2238 #endif /* CONFIG_PPC_FPU */
2239
2240 #ifdef __powerpc64__
2241 case 660: /* stdbrx */
2242 op->type = MKOP(STORE, BYTEREV, 8);
2243 op->val = byterev_8(regs->gpr[rd]);
2244 break;
2245
2246 #endif
2247 case 661: /* stswx */
2248 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2249 break;
2250
2251 case 662: /* stwbrx */
2252 op->type = MKOP(STORE, BYTEREV, 4);
2253 op->val = byterev_4(regs->gpr[rd]);
2254 break;
2255
2256 case 725: /* stswi */
2257 if (rb == 0)
2258 rb = 32; /* # bytes to store */
2259 op->type = MKOP(STORE_MULTI, 0, rb);
2260 op->ea = ra ? regs->gpr[ra] : 0;
2261 break;
2262
2263 case 790: /* lhbrx */
2264 op->type = MKOP(LOAD, BYTEREV, 2);
2265 break;
2266
2267 case 918: /* sthbrx */
2268 op->type = MKOP(STORE, BYTEREV, 2);
2269 op->val = byterev_2(regs->gpr[rd]);
2270 break;
2271
2272 #ifdef CONFIG_VSX
2273 case 12: /* lxsiwzx */
2274 op->reg = rd | ((instr & 1) << 5);
2275 op->type = MKOP(LOAD_VSX, 0, 4);
2276 op->element_size = 8;
2277 break;
2278
2279 case 76: /* lxsiwax */
2280 op->reg = rd | ((instr & 1) << 5);
2281 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2282 op->element_size = 8;
2283 break;
2284
2285 case 140: /* stxsiwx */
2286 op->reg = rd | ((instr & 1) << 5);
2287 op->type = MKOP(STORE_VSX, 0, 4);
2288 op->element_size = 8;
2289 break;
2290
2291 case 268: /* lxvx */
2292 op->reg = rd | ((instr & 1) << 5);
2293 op->type = MKOP(LOAD_VSX, 0, 16);
2294 op->element_size = 16;
2295 op->vsx_flags = VSX_CHECK_VEC;
2296 break;
2297
2298 case 269: /* lxvl */
2299 case 301: { /* lxvll */
2300 int nb;
2301 op->reg = rd | ((instr & 1) << 5);
2302 op->ea = ra ? regs->gpr[ra] : 0;
2303 nb = regs->gpr[rb] & 0xff;
2304 if (nb > 16)
2305 nb = 16;
2306 op->type = MKOP(LOAD_VSX, 0, nb);
2307 op->element_size = 16;
2308 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2309 VSX_CHECK_VEC;
2310 break;
2311 }
2312 case 332: /* lxvdsx */
2313 op->reg = rd | ((instr & 1) << 5);
2314 op->type = MKOP(LOAD_VSX, 0, 8);
2315 op->element_size = 8;
2316 op->vsx_flags = VSX_SPLAT;
2317 break;
2318
2319 case 364: /* lxvwsx */
2320 op->reg = rd | ((instr & 1) << 5);
2321 op->type = MKOP(LOAD_VSX, 0, 4);
2322 op->element_size = 4;
2323 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2324 break;
2325
2326 case 396: /* stxvx */
2327 op->reg = rd | ((instr & 1) << 5);
2328 op->type = MKOP(STORE_VSX, 0, 16);
2329 op->element_size = 16;
2330 op->vsx_flags = VSX_CHECK_VEC;
2331 break;
2332
2333 case 397: /* stxvl */
2334 case 429: { /* stxvll */
2335 int nb;
2336 op->reg = rd | ((instr & 1) << 5);
2337 op->ea = ra ? regs->gpr[ra] : 0;
2338 nb = regs->gpr[rb] & 0xff;
2339 if (nb > 16)
2340 nb = 16;
2341 op->type = MKOP(STORE_VSX, 0, nb);
2342 op->element_size = 16;
2343 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2344 VSX_CHECK_VEC;
2345 break;
2346 }
2347 case 524: /* lxsspx */
2348 op->reg = rd | ((instr & 1) << 5);
2349 op->type = MKOP(LOAD_VSX, 0, 4);
2350 op->element_size = 8;
2351 op->vsx_flags = VSX_FPCONV;
2352 break;
2353
2354 case 588: /* lxsdx */
2355 op->reg = rd | ((instr & 1) << 5);
2356 op->type = MKOP(LOAD_VSX, 0, 8);
2357 op->element_size = 8;
2358 break;
2359
2360 case 652: /* stxsspx */
2361 op->reg = rd | ((instr & 1) << 5);
2362 op->type = MKOP(STORE_VSX, 0, 4);
2363 op->element_size = 8;
2364 op->vsx_flags = VSX_FPCONV;
2365 break;
2366
2367 case 716: /* stxsdx */
2368 op->reg = rd | ((instr & 1) << 5);
2369 op->type = MKOP(STORE_VSX, 0, 8);
2370 op->element_size = 8;
2371 break;
2372
2373 case 780: /* lxvw4x */
2374 op->reg = rd | ((instr & 1) << 5);
2375 op->type = MKOP(LOAD_VSX, 0, 16);
2376 op->element_size = 4;
2377 break;
2378
2379 case 781: /* lxsibzx */
2380 op->reg = rd | ((instr & 1) << 5);
2381 op->type = MKOP(LOAD_VSX, 0, 1);
2382 op->element_size = 8;
2383 op->vsx_flags = VSX_CHECK_VEC;
2384 break;
2385
2386 case 812: /* lxvh8x */
2387 op->reg = rd | ((instr & 1) << 5);
2388 op->type = MKOP(LOAD_VSX, 0, 16);
2389 op->element_size = 2;
2390 op->vsx_flags = VSX_CHECK_VEC;
2391 break;
2392
2393 case 813: /* lxsihzx */
2394 op->reg = rd | ((instr & 1) << 5);
2395 op->type = MKOP(LOAD_VSX, 0, 2);
2396 op->element_size = 8;
2397 op->vsx_flags = VSX_CHECK_VEC;
2398 break;
2399
2400 case 844: /* lxvd2x */
2401 op->reg = rd | ((instr & 1) << 5);
2402 op->type = MKOP(LOAD_VSX, 0, 16);
2403 op->element_size = 8;
2404 break;
2405
2406 case 876: /* lxvb16x */
2407 op->reg = rd | ((instr & 1) << 5);
2408 op->type = MKOP(LOAD_VSX, 0, 16);
2409 op->element_size = 1;
2410 op->vsx_flags = VSX_CHECK_VEC;
2411 break;
2412
2413 case 908: /* stxvw4x */
2414 op->reg = rd | ((instr & 1) << 5);
2415 op->type = MKOP(STORE_VSX, 0, 16);
2416 op->element_size = 4;
2417 break;
2418
2419 case 909: /* stxsibx */
2420 op->reg = rd | ((instr & 1) << 5);
2421 op->type = MKOP(STORE_VSX, 0, 1);
2422 op->element_size = 8;
2423 op->vsx_flags = VSX_CHECK_VEC;
2424 break;
2425
2426 case 940: /* stxvh8x */
2427 op->reg = rd | ((instr & 1) << 5);
2428 op->type = MKOP(STORE_VSX, 0, 16);
2429 op->element_size = 2;
2430 op->vsx_flags = VSX_CHECK_VEC;
2431 break;
2432
2433 case 941: /* stxsihx */
2434 op->reg = rd | ((instr & 1) << 5);
2435 op->type = MKOP(STORE_VSX, 0, 2);
2436 op->element_size = 8;
2437 op->vsx_flags = VSX_CHECK_VEC;
2438 break;
2439
2440 case 972: /* stxvd2x */
2441 op->reg = rd | ((instr & 1) << 5);
2442 op->type = MKOP(STORE_VSX, 0, 16);
2443 op->element_size = 8;
2444 break;
2445
2446 case 1004: /* stxvb16x */
2447 op->reg = rd | ((instr & 1) << 5);
2448 op->type = MKOP(STORE_VSX, 0, 16);
2449 op->element_size = 1;
2450 op->vsx_flags = VSX_CHECK_VEC;
2451 break;
2452
2453 #endif /* CONFIG_VSX */
2454 }
2455 break;
2456
2457 case 32: /* lwz */
2458 case 33: /* lwzu */
2459 op->type = MKOP(LOAD, u, 4);
2460 op->ea = dform_ea(instr, regs);
2461 break;
2462
2463 case 34: /* lbz */
2464 case 35: /* lbzu */
2465 op->type = MKOP(LOAD, u, 1);
2466 op->ea = dform_ea(instr, regs);
2467 break;
2468
2469 case 36: /* stw */
2470 case 37: /* stwu */
2471 op->type = MKOP(STORE, u, 4);
2472 op->ea = dform_ea(instr, regs);
2473 break;
2474
2475 case 38: /* stb */
2476 case 39: /* stbu */
2477 op->type = MKOP(STORE, u, 1);
2478 op->ea = dform_ea(instr, regs);
2479 break;
2480
2481 case 40: /* lhz */
2482 case 41: /* lhzu */
2483 op->type = MKOP(LOAD, u, 2);
2484 op->ea = dform_ea(instr, regs);
2485 break;
2486
2487 case 42: /* lha */
2488 case 43: /* lhau */
2489 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2490 op->ea = dform_ea(instr, regs);
2491 break;
2492
2493 case 44: /* sth */
2494 case 45: /* sthu */
2495 op->type = MKOP(STORE, u, 2);
2496 op->ea = dform_ea(instr, regs);
2497 break;
2498
2499 case 46: /* lmw */
2500 if (ra >= rd)
2501 break; /* invalid form, ra in range to load */
2502 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2503 op->ea = dform_ea(instr, regs);
2504 break;
2505
2506 case 47: /* stmw */
2507 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2508 op->ea = dform_ea(instr, regs);
2509 break;
2510
2511 #ifdef CONFIG_PPC_FPU
2512 case 48: /* lfs */
2513 case 49: /* lfsu */
2514 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2515 op->ea = dform_ea(instr, regs);
2516 break;
2517
2518 case 50: /* lfd */
2519 case 51: /* lfdu */
2520 op->type = MKOP(LOAD_FP, u, 8);
2521 op->ea = dform_ea(instr, regs);
2522 break;
2523
2524 case 52: /* stfs */
2525 case 53: /* stfsu */
2526 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2527 op->ea = dform_ea(instr, regs);
2528 break;
2529
2530 case 54: /* stfd */
2531 case 55: /* stfdu */
2532 op->type = MKOP(STORE_FP, u, 8);
2533 op->ea = dform_ea(instr, regs);
2534 break;
2535 #endif
2536
2537 #ifdef __powerpc64__
2538 case 56: /* lq */
2539 if (!((rd & 1) || (rd == ra)))
2540 op->type = MKOP(LOAD, 0, 16);
2541 op->ea = dqform_ea(instr, regs);
2542 break;
2543 #endif
2544
2545 #ifdef CONFIG_VSX
2546 case 57: /* lfdp, lxsd, lxssp */
2547 op->ea = dsform_ea(instr, regs);
2548 switch (instr & 3) {
2549 case 0: /* lfdp */
2550 if (rd & 1)
2551 break; /* reg must be even */
2552 op->type = MKOP(LOAD_FP, 0, 16);
2553 break;
2554 case 2: /* lxsd */
2555 op->reg = rd + 32;
2556 op->type = MKOP(LOAD_VSX, 0, 8);
2557 op->element_size = 8;
2558 op->vsx_flags = VSX_CHECK_VEC;
2559 break;
2560 case 3: /* lxssp */
2561 op->reg = rd + 32;
2562 op->type = MKOP(LOAD_VSX, 0, 4);
2563 op->element_size = 8;
2564 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2565 break;
2566 }
2567 break;
2568 #endif /* CONFIG_VSX */
2569
2570 #ifdef __powerpc64__
2571 case 58: /* ld[u], lwa */
2572 op->ea = dsform_ea(instr, regs);
2573 switch (instr & 3) {
2574 case 0: /* ld */
2575 op->type = MKOP(LOAD, 0, 8);
2576 break;
2577 case 1: /* ldu */
2578 op->type = MKOP(LOAD, UPDATE, 8);
2579 break;
2580 case 2: /* lwa */
2581 op->type = MKOP(LOAD, SIGNEXT, 4);
2582 break;
2583 }
2584 break;
2585 #endif
2586
2587 #ifdef CONFIG_VSX
2588 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2589 switch (instr & 7) {
2590 case 0: /* stfdp with LSB of DS field = 0 */
2591 case 4: /* stfdp with LSB of DS field = 1 */
2592 op->ea = dsform_ea(instr, regs);
2593 op->type = MKOP(STORE_FP, 0, 16);
2594 break;
2595
2596 case 1: /* lxv */
2597 op->ea = dqform_ea(instr, regs);
2598 if (instr & 8)
2599 op->reg = rd + 32;
2600 op->type = MKOP(LOAD_VSX, 0, 16);
2601 op->element_size = 16;
2602 op->vsx_flags = VSX_CHECK_VEC;
2603 break;
2604
2605 case 2: /* stxsd with LSB of DS field = 0 */
2606 case 6: /* stxsd with LSB of DS field = 1 */
2607 op->ea = dsform_ea(instr, regs);
2608 op->reg = rd + 32;
2609 op->type = MKOP(STORE_VSX, 0, 8);
2610 op->element_size = 8;
2611 op->vsx_flags = VSX_CHECK_VEC;
2612 break;
2613
2614 case 3: /* stxssp with LSB of DS field = 0 */
2615 case 7: /* stxssp with LSB of DS field = 1 */
2616 op->ea = dsform_ea(instr, regs);
2617 op->reg = rd + 32;
2618 op->type = MKOP(STORE_VSX, 0, 4);
2619 op->element_size = 8;
2620 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2621 break;
2622
2623 case 5: /* stxv */
2624 op->ea = dqform_ea(instr, regs);
2625 if (instr & 8)
2626 op->reg = rd + 32;
2627 op->type = MKOP(STORE_VSX, 0, 16);
2628 op->element_size = 16;
2629 op->vsx_flags = VSX_CHECK_VEC;
2630 break;
2631 }
2632 break;
2633 #endif /* CONFIG_VSX */
2634
2635 #ifdef __powerpc64__
2636 case 62: /* std[u] */
2637 op->ea = dsform_ea(instr, regs);
2638 switch (instr & 3) {
2639 case 0: /* std */
2640 op->type = MKOP(STORE, 0, 8);
2641 break;
2642 case 1: /* stdu */
2643 op->type = MKOP(STORE, UPDATE, 8);
2644 break;
2645 case 2: /* stq */
2646 if (!(rd & 1))
2647 op->type = MKOP(STORE, 0, 16);
2648 break;
2649 }
2650 break;
2651 #endif /* __powerpc64__ */
2652
2653 }
2654
2655 #ifdef CONFIG_VSX
2656 if ((GETTYPE(op->type) == LOAD_VSX ||
2657 GETTYPE(op->type) == STORE_VSX) &&
2658 !cpu_has_feature(CPU_FTR_VSX)) {
2659 return -1;
2660 }
2661 #endif /* CONFIG_VSX */
2662
2663 return 0;
2664
2665 logical_done:
2666 if (instr & 1)
2667 set_cr0(regs, op);
2668 logical_done_nocc:
2669 op->reg = ra;
2670 op->type |= SETREG;
2671 return 1;
2672
2673 arith_done:
2674 if (instr & 1)
2675 set_cr0(regs, op);
2676 compute_done:
2677 op->reg = rd;
2678 op->type |= SETREG;
2679 return 1;
2680
2681 priv:
2682 op->type = INTERRUPT | 0x700;
2683 op->val = SRR1_PROGPRIV;
2684 return 0;
2685
2686 trap:
2687 op->type = INTERRUPT | 0x700;
2688 op->val = SRR1_PROGTRAP;
2689 return 0;
2690 }
2691 EXPORT_SYMBOL_GPL(analyse_instr);
2692 NOKPROBE_SYMBOL(analyse_instr);
2693
2694 /*
2695 * For PPC32 we always use stwu with r1 to change the stack pointer.
2696 * So this emulated store may corrupt the exception frame, now we
2697 * have to provide the exception frame trampoline, which is pushed
2698 * below the kprobed function stack. So we only update gpr[1] but
2699 * don't emulate the real store operation. We will do real store
2700 * operation safely in exception return code by checking this flag.
2701 */
handle_stack_update(unsigned long ea,struct pt_regs * regs)2702 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2703 {
2704 #ifdef CONFIG_PPC32
2705 /*
2706 * Check if we will touch kernel stack overflow
2707 */
2708 if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2709 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2710 return -EINVAL;
2711 }
2712 #endif /* CONFIG_PPC32 */
2713 /*
2714 * Check if we already set since that means we'll
2715 * lose the previous value.
2716 */
2717 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2718 set_thread_flag(TIF_EMULATE_STACK_STORE);
2719 return 0;
2720 }
2721
do_signext(unsigned long * valp,int size)2722 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2723 {
2724 switch (size) {
2725 case 2:
2726 *valp = (signed short) *valp;
2727 break;
2728 case 4:
2729 *valp = (signed int) *valp;
2730 break;
2731 }
2732 }
2733
do_byterev(unsigned long * valp,int size)2734 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2735 {
2736 switch (size) {
2737 case 2:
2738 *valp = byterev_2(*valp);
2739 break;
2740 case 4:
2741 *valp = byterev_4(*valp);
2742 break;
2743 #ifdef __powerpc64__
2744 case 8:
2745 *valp = byterev_8(*valp);
2746 break;
2747 #endif
2748 }
2749 }
2750
2751 /*
2752 * Emulate an instruction that can be executed just by updating
2753 * fields in *regs.
2754 */
emulate_update_regs(struct pt_regs * regs,struct instruction_op * op)2755 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2756 {
2757 unsigned long next_pc;
2758
2759 next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2760 switch (GETTYPE(op->type)) {
2761 case COMPUTE:
2762 if (op->type & SETREG)
2763 regs->gpr[op->reg] = op->val;
2764 if (op->type & SETCC)
2765 regs->ccr = op->ccval;
2766 if (op->type & SETXER)
2767 regs->xer = op->xerval;
2768 break;
2769
2770 case BRANCH:
2771 if (op->type & SETLK)
2772 regs->link = next_pc;
2773 if (op->type & BRTAKEN)
2774 next_pc = op->val;
2775 if (op->type & DECCTR)
2776 --regs->ctr;
2777 break;
2778
2779 case BARRIER:
2780 switch (op->type & BARRIER_MASK) {
2781 case BARRIER_SYNC:
2782 mb();
2783 break;
2784 case BARRIER_ISYNC:
2785 isync();
2786 break;
2787 case BARRIER_EIEIO:
2788 eieio();
2789 break;
2790 case BARRIER_LWSYNC:
2791 asm volatile("lwsync" : : : "memory");
2792 break;
2793 case BARRIER_PTESYNC:
2794 asm volatile("ptesync" : : : "memory");
2795 break;
2796 }
2797 break;
2798
2799 case MFSPR:
2800 switch (op->spr) {
2801 case SPRN_XER:
2802 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2803 break;
2804 case SPRN_LR:
2805 regs->gpr[op->reg] = regs->link;
2806 break;
2807 case SPRN_CTR:
2808 regs->gpr[op->reg] = regs->ctr;
2809 break;
2810 default:
2811 WARN_ON_ONCE(1);
2812 }
2813 break;
2814
2815 case MTSPR:
2816 switch (op->spr) {
2817 case SPRN_XER:
2818 regs->xer = op->val & 0xffffffffUL;
2819 break;
2820 case SPRN_LR:
2821 regs->link = op->val;
2822 break;
2823 case SPRN_CTR:
2824 regs->ctr = op->val;
2825 break;
2826 default:
2827 WARN_ON_ONCE(1);
2828 }
2829 break;
2830
2831 default:
2832 WARN_ON_ONCE(1);
2833 }
2834 regs->nip = next_pc;
2835 }
2836 NOKPROBE_SYMBOL(emulate_update_regs);
2837
2838 /*
2839 * Emulate a previously-analysed load or store instruction.
2840 * Return values are:
2841 * 0 = instruction emulated successfully
2842 * -EFAULT = address out of range or access faulted (regs->dar
2843 * contains the faulting address)
2844 * -EACCES = misaligned access, instruction requires alignment
2845 * -EINVAL = unknown operation in *op
2846 */
emulate_loadstore(struct pt_regs * regs,struct instruction_op * op)2847 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2848 {
2849 int err, size, type;
2850 int i, rd, nb;
2851 unsigned int cr;
2852 unsigned long val;
2853 unsigned long ea;
2854 bool cross_endian;
2855
2856 err = 0;
2857 size = GETSIZE(op->type);
2858 type = GETTYPE(op->type);
2859 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2860 ea = truncate_if_32bit(regs->msr, op->ea);
2861
2862 switch (type) {
2863 case LARX:
2864 if (ea & (size - 1))
2865 return -EACCES; /* can't handle misaligned */
2866 if (!address_ok(regs, ea, size))
2867 return -EFAULT;
2868 err = 0;
2869 val = 0;
2870 switch (size) {
2871 #ifdef __powerpc64__
2872 case 1:
2873 __get_user_asmx(val, ea, err, "lbarx");
2874 break;
2875 case 2:
2876 __get_user_asmx(val, ea, err, "lharx");
2877 break;
2878 #endif
2879 case 4:
2880 __get_user_asmx(val, ea, err, "lwarx");
2881 break;
2882 #ifdef __powerpc64__
2883 case 8:
2884 __get_user_asmx(val, ea, err, "ldarx");
2885 break;
2886 case 16:
2887 err = do_lqarx(ea, ®s->gpr[op->reg]);
2888 break;
2889 #endif
2890 default:
2891 return -EINVAL;
2892 }
2893 if (err) {
2894 regs->dar = ea;
2895 break;
2896 }
2897 if (size < 16)
2898 regs->gpr[op->reg] = val;
2899 break;
2900
2901 case STCX:
2902 if (ea & (size - 1))
2903 return -EACCES; /* can't handle misaligned */
2904 if (!address_ok(regs, ea, size))
2905 return -EFAULT;
2906 err = 0;
2907 switch (size) {
2908 #ifdef __powerpc64__
2909 case 1:
2910 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2911 break;
2912 case 2:
2913 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2914 break;
2915 #endif
2916 case 4:
2917 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2918 break;
2919 #ifdef __powerpc64__
2920 case 8:
2921 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2922 break;
2923 case 16:
2924 err = do_stqcx(ea, regs->gpr[op->reg],
2925 regs->gpr[op->reg + 1], &cr);
2926 break;
2927 #endif
2928 default:
2929 return -EINVAL;
2930 }
2931 if (!err)
2932 regs->ccr = (regs->ccr & 0x0fffffff) |
2933 (cr & 0xe0000000) |
2934 ((regs->xer >> 3) & 0x10000000);
2935 else
2936 regs->dar = ea;
2937 break;
2938
2939 case LOAD:
2940 #ifdef __powerpc64__
2941 if (size == 16) {
2942 err = emulate_lq(regs, ea, op->reg, cross_endian);
2943 break;
2944 }
2945 #endif
2946 err = read_mem(®s->gpr[op->reg], ea, size, regs);
2947 if (!err) {
2948 if (op->type & SIGNEXT)
2949 do_signext(®s->gpr[op->reg], size);
2950 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2951 do_byterev(®s->gpr[op->reg], size);
2952 }
2953 break;
2954
2955 #ifdef CONFIG_PPC_FPU
2956 case LOAD_FP:
2957 /*
2958 * If the instruction is in userspace, we can emulate it even
2959 * if the VMX state is not live, because we have the state
2960 * stored in the thread_struct. If the instruction is in
2961 * the kernel, we must not touch the state in the thread_struct.
2962 */
2963 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2964 return 0;
2965 err = do_fp_load(op, ea, regs, cross_endian);
2966 break;
2967 #endif
2968 #ifdef CONFIG_ALTIVEC
2969 case LOAD_VMX:
2970 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2971 return 0;
2972 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2973 break;
2974 #endif
2975 #ifdef CONFIG_VSX
2976 case LOAD_VSX: {
2977 unsigned long msrbit = MSR_VSX;
2978
2979 /*
2980 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2981 * when the target of the instruction is a vector register.
2982 */
2983 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2984 msrbit = MSR_VEC;
2985 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2986 return 0;
2987 err = do_vsx_load(op, ea, regs, cross_endian);
2988 break;
2989 }
2990 #endif
2991 case LOAD_MULTI:
2992 if (!address_ok(regs, ea, size))
2993 return -EFAULT;
2994 rd = op->reg;
2995 for (i = 0; i < size; i += 4) {
2996 unsigned int v32 = 0;
2997
2998 nb = size - i;
2999 if (nb > 4)
3000 nb = 4;
3001 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3002 if (err)
3003 break;
3004 if (unlikely(cross_endian))
3005 v32 = byterev_4(v32);
3006 regs->gpr[rd] = v32;
3007 ea += 4;
3008 /* reg number wraps from 31 to 0 for lsw[ix] */
3009 rd = (rd + 1) & 0x1f;
3010 }
3011 break;
3012
3013 case STORE:
3014 #ifdef __powerpc64__
3015 if (size == 16) {
3016 err = emulate_stq(regs, ea, op->reg, cross_endian);
3017 break;
3018 }
3019 #endif
3020 if ((op->type & UPDATE) && size == sizeof(long) &&
3021 op->reg == 1 && op->update_reg == 1 &&
3022 !(regs->msr & MSR_PR) &&
3023 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3024 err = handle_stack_update(ea, regs);
3025 break;
3026 }
3027 if (unlikely(cross_endian))
3028 do_byterev(&op->val, size);
3029 err = write_mem(op->val, ea, size, regs);
3030 break;
3031
3032 #ifdef CONFIG_PPC_FPU
3033 case STORE_FP:
3034 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3035 return 0;
3036 err = do_fp_store(op, ea, regs, cross_endian);
3037 break;
3038 #endif
3039 #ifdef CONFIG_ALTIVEC
3040 case STORE_VMX:
3041 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3042 return 0;
3043 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3044 break;
3045 #endif
3046 #ifdef CONFIG_VSX
3047 case STORE_VSX: {
3048 unsigned long msrbit = MSR_VSX;
3049
3050 /*
3051 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3052 * when the target of the instruction is a vector register.
3053 */
3054 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3055 msrbit = MSR_VEC;
3056 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3057 return 0;
3058 err = do_vsx_store(op, ea, regs, cross_endian);
3059 break;
3060 }
3061 #endif
3062 case STORE_MULTI:
3063 if (!address_ok(regs, ea, size))
3064 return -EFAULT;
3065 rd = op->reg;
3066 for (i = 0; i < size; i += 4) {
3067 unsigned int v32 = regs->gpr[rd];
3068
3069 nb = size - i;
3070 if (nb > 4)
3071 nb = 4;
3072 if (unlikely(cross_endian))
3073 v32 = byterev_4(v32);
3074 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3075 if (err)
3076 break;
3077 ea += 4;
3078 /* reg number wraps from 31 to 0 for stsw[ix] */
3079 rd = (rd + 1) & 0x1f;
3080 }
3081 break;
3082
3083 default:
3084 return -EINVAL;
3085 }
3086
3087 if (err)
3088 return err;
3089
3090 if (op->type & UPDATE)
3091 regs->gpr[op->update_reg] = op->ea;
3092
3093 return 0;
3094 }
3095 NOKPROBE_SYMBOL(emulate_loadstore);
3096
3097 /*
3098 * Emulate instructions that cause a transfer of control,
3099 * loads and stores, and a few other instructions.
3100 * Returns 1 if the step was emulated, 0 if not,
3101 * or -1 if the instruction is one that should not be stepped,
3102 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3103 */
emulate_step(struct pt_regs * regs,unsigned int instr)3104 int emulate_step(struct pt_regs *regs, unsigned int instr)
3105 {
3106 struct instruction_op op;
3107 int r, err, type;
3108 unsigned long val;
3109 unsigned long ea;
3110
3111 r = analyse_instr(&op, regs, instr);
3112 if (r < 0)
3113 return r;
3114 if (r > 0) {
3115 emulate_update_regs(regs, &op);
3116 return 1;
3117 }
3118
3119 err = 0;
3120 type = GETTYPE(op.type);
3121
3122 if (OP_IS_LOAD_STORE(type)) {
3123 err = emulate_loadstore(regs, &op);
3124 if (err)
3125 return 0;
3126 goto instr_done;
3127 }
3128
3129 switch (type) {
3130 case CACHEOP:
3131 ea = truncate_if_32bit(regs->msr, op.ea);
3132 if (!address_ok(regs, ea, 8))
3133 return 0;
3134 switch (op.type & CACHEOP_MASK) {
3135 case DCBST:
3136 __cacheop_user_asmx(ea, err, "dcbst");
3137 break;
3138 case DCBF:
3139 __cacheop_user_asmx(ea, err, "dcbf");
3140 break;
3141 case DCBTST:
3142 if (op.reg == 0)
3143 prefetchw((void *) ea);
3144 break;
3145 case DCBT:
3146 if (op.reg == 0)
3147 prefetch((void *) ea);
3148 break;
3149 case ICBI:
3150 __cacheop_user_asmx(ea, err, "icbi");
3151 break;
3152 case DCBZ:
3153 err = emulate_dcbz(ea, regs);
3154 break;
3155 }
3156 if (err) {
3157 regs->dar = ea;
3158 return 0;
3159 }
3160 goto instr_done;
3161
3162 case MFMSR:
3163 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3164 goto instr_done;
3165
3166 case MTMSR:
3167 val = regs->gpr[op.reg];
3168 if ((val & MSR_RI) == 0)
3169 /* can't step mtmsr[d] that would clear MSR_RI */
3170 return -1;
3171 /* here op.val is the mask of bits to change */
3172 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3173 goto instr_done;
3174
3175 #ifdef CONFIG_PPC64
3176 case SYSCALL: /* sc */
3177 /*
3178 * N.B. this uses knowledge about how the syscall
3179 * entry code works. If that is changed, this will
3180 * need to be changed also.
3181 */
3182 if (regs->gpr[0] == 0x1ebe &&
3183 cpu_has_feature(CPU_FTR_REAL_LE)) {
3184 regs->msr ^= MSR_LE;
3185 goto instr_done;
3186 }
3187 regs->gpr[9] = regs->gpr[13];
3188 regs->gpr[10] = MSR_KERNEL;
3189 regs->gpr[11] = regs->nip + 4;
3190 regs->gpr[12] = regs->msr & MSR_MASK;
3191 regs->gpr[13] = (unsigned long) get_paca();
3192 regs->nip = (unsigned long) &system_call_common;
3193 regs->msr = MSR_KERNEL;
3194 return 1;
3195
3196 case RFI:
3197 return -1;
3198 #endif
3199 }
3200 return 0;
3201
3202 instr_done:
3203 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3204 return 1;
3205 }
3206 NOKPROBE_SYMBOL(emulate_step);
3207