1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49
50 #include <drm/amdgpu_drm.h>
51
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
63
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65 struct ttm_tt *ttm,
66 struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68 struct ttm_tt *ttm);
69
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71 unsigned int type,
72 uint64_t size_in_page)
73 {
74 return ttm_range_man_init(&adev->mman.bdev, type,
75 false, size_in_page);
76 }
77
78 /**
79 * amdgpu_evict_flags - Compute placement flags
80 *
81 * @bo: The buffer object to evict
82 * @placement: Possible destination(s) for evicted BO
83 *
84 * Fill in placement data when ttm_bo_evict() is called
85 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 struct ttm_placement *placement)
88 {
89 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 struct amdgpu_bo *abo;
91 static const struct ttm_place placements = {
92 .fpfn = 0,
93 .lpfn = 0,
94 .mem_type = TTM_PL_SYSTEM,
95 .flags = 0
96 };
97
98 /* Don't handle scatter gather BOs */
99 if (bo->type == ttm_bo_type_sg) {
100 placement->num_placement = 0;
101 placement->num_busy_placement = 0;
102 return;
103 }
104
105 /* Object isn't an AMDGPU object so ignore */
106 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 placement->placement = &placements;
108 placement->busy_placement = &placements;
109 placement->num_placement = 1;
110 placement->num_busy_placement = 1;
111 return;
112 }
113
114 abo = ttm_to_amdgpu_bo(bo);
115 if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
116 struct dma_fence *fence;
117 struct dma_resv *resv = &bo->base._resv;
118
119 rcu_read_lock();
120 fence = rcu_dereference(resv->fence_excl);
121 if (fence && !fence->ops->signaled)
122 dma_fence_enable_sw_signaling(fence);
123
124 placement->num_placement = 0;
125 placement->num_busy_placement = 0;
126 rcu_read_unlock();
127 return;
128 }
129
130 switch (bo->resource->mem_type) {
131 case AMDGPU_PL_GDS:
132 case AMDGPU_PL_GWS:
133 case AMDGPU_PL_OA:
134 placement->num_placement = 0;
135 placement->num_busy_placement = 0;
136 return;
137
138 case TTM_PL_VRAM:
139 if (!adev->mman.buffer_funcs_enabled) {
140 /* Move to system memory */
141 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
142 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
143 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
144 amdgpu_bo_in_cpu_visible_vram(abo)) {
145
146 /* Try evicting to the CPU inaccessible part of VRAM
147 * first, but only set GTT as busy placement, so this
148 * BO will be evicted to GTT rather than causing other
149 * BOs to be evicted from VRAM
150 */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
152 AMDGPU_GEM_DOMAIN_GTT |
153 AMDGPU_GEM_DOMAIN_CPU);
154 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
155 abo->placements[0].lpfn = 0;
156 abo->placement.busy_placement = &abo->placements[1];
157 abo->placement.num_busy_placement = 1;
158 } else {
159 /* Move to GTT memory */
160 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
161 AMDGPU_GEM_DOMAIN_CPU);
162 }
163 break;
164 case TTM_PL_TT:
165 case AMDGPU_PL_PREEMPT:
166 default:
167 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
168 break;
169 }
170 *placement = abo->placement;
171 }
172
173 /**
174 * amdgpu_ttm_map_buffer - Map memory into the GART windows
175 * @bo: buffer object to map
176 * @mem: memory object to map
177 * @mm_cur: range to map
178 * @num_pages: number of pages to map
179 * @window: which GART window to use
180 * @ring: DMA ring to use for the copy
181 * @tmz: if we should setup a TMZ enabled mapping
182 * @addr: resulting address inside the MC address space
183 *
184 * Setup one of the GART windows to access a specific piece of memory or return
185 * the physical address for local memory.
186 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned num_pages,unsigned window,struct amdgpu_ring * ring,bool tmz,uint64_t * addr)187 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
188 struct ttm_resource *mem,
189 struct amdgpu_res_cursor *mm_cur,
190 unsigned num_pages, unsigned window,
191 struct amdgpu_ring *ring, bool tmz,
192 uint64_t *addr)
193 {
194 struct amdgpu_device *adev = ring->adev;
195 struct amdgpu_job *job;
196 unsigned num_dw, num_bytes;
197 struct dma_fence *fence;
198 uint64_t src_addr, dst_addr;
199 void *cpu_addr;
200 uint64_t flags;
201 unsigned int i;
202 int r;
203
204 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
205 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
206 BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
207
208 /* Map only what can't be accessed directly */
209 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
210 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
211 mm_cur->start;
212 return 0;
213 }
214
215 *addr = adev->gmc.gart_start;
216 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
217 AMDGPU_GPU_PAGE_SIZE;
218 *addr += mm_cur->start & ~PAGE_MASK;
219
220 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
221 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
222
223 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
224 AMDGPU_IB_POOL_DELAYED, &job);
225 if (r)
226 return r;
227
228 src_addr = num_dw * 4;
229 src_addr += job->ibs[0].gpu_addr;
230
231 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
232 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
233 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
234 dst_addr, num_bytes, false);
235
236 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
237 WARN_ON(job->ibs[0].length_dw > num_dw);
238
239 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
240 if (tmz)
241 flags |= AMDGPU_PTE_TMZ;
242
243 cpu_addr = &job->ibs[0].ptr[num_dw];
244
245 if (mem->mem_type == TTM_PL_TT) {
246 dma_addr_t *dma_addr;
247
248 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
249 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
250 cpu_addr);
251 if (r)
252 goto error_free;
253 } else {
254 dma_addr_t dma_address;
255
256 dma_address = mm_cur->start;
257 dma_address += adev->vm_manager.vram_base_offset;
258
259 for (i = 0; i < num_pages; ++i) {
260 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
261 &dma_address, flags, cpu_addr);
262 if (r)
263 goto error_free;
264
265 dma_address += PAGE_SIZE;
266 }
267 }
268
269 r = amdgpu_job_submit(job, &adev->mman.entity,
270 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
271 if (r)
272 goto error_free;
273
274 dma_fence_put(fence);
275
276 return r;
277
278 error_free:
279 amdgpu_job_free(job);
280 return r;
281 }
282
283 /**
284 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
285 * @adev: amdgpu device
286 * @src: buffer/address where to read from
287 * @dst: buffer/address where to write to
288 * @size: number of bytes to copy
289 * @tmz: if a secure copy should be used
290 * @resv: resv object to sync to
291 * @f: Returns the last fence if multiple jobs are submitted.
292 *
293 * The function copies @size bytes from {src->mem + src->offset} to
294 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
295 * move and different for a BO to BO copy.
296 *
297 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)298 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
299 const struct amdgpu_copy_mem *src,
300 const struct amdgpu_copy_mem *dst,
301 uint64_t size, bool tmz,
302 struct dma_resv *resv,
303 struct dma_fence **f)
304 {
305 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
306 AMDGPU_GPU_PAGE_SIZE);
307
308 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 struct amdgpu_res_cursor src_mm, dst_mm;
310 struct dma_fence *fence = NULL;
311 int r = 0;
312
313 if (!adev->mman.buffer_funcs_enabled) {
314 DRM_ERROR("Trying to move memory with ring turned off.\n");
315 return -EINVAL;
316 }
317
318 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320
321 mutex_lock(&adev->mman.gtt_window_lock);
322 while (src_mm.remaining) {
323 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
324 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
325 struct dma_fence *next;
326 uint32_t cur_size;
327 uint64_t from, to;
328
329 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
330 * begins at an offset, then adjust the size accordingly
331 */
332 cur_size = max(src_page_offset, dst_page_offset);
333 cur_size = min(min3(src_mm.size, dst_mm.size, size),
334 (uint64_t)(GTT_MAX_BYTES - cur_size));
335
336 /* Map src to window 0 and dst to window 1. */
337 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
338 PFN_UP(cur_size + src_page_offset),
339 0, ring, tmz, &from);
340 if (r)
341 goto error;
342
343 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
344 PFN_UP(cur_size + dst_page_offset),
345 1, ring, tmz, &to);
346 if (r)
347 goto error;
348
349 r = amdgpu_copy_buffer(ring, from, to, cur_size,
350 resv, &next, false, true, tmz);
351 if (r)
352 goto error;
353
354 dma_fence_put(fence);
355 fence = next;
356
357 amdgpu_res_next(&src_mm, cur_size);
358 amdgpu_res_next(&dst_mm, cur_size);
359 }
360 error:
361 mutex_unlock(&adev->mman.gtt_window_lock);
362 if (f)
363 *f = dma_fence_get(fence);
364 dma_fence_put(fence);
365 return r;
366 }
367
368 /*
369 * amdgpu_move_blit - Copy an entire buffer to another buffer
370 *
371 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
372 * help move buffers to and from VRAM.
373 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)374 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
375 bool evict,
376 struct ttm_resource *new_mem,
377 struct ttm_resource *old_mem)
378 {
379 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
380 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
381 struct amdgpu_copy_mem src, dst;
382 struct dma_fence *fence = NULL;
383 int r;
384
385 src.bo = bo;
386 dst.bo = bo;
387 src.mem = old_mem;
388 dst.mem = new_mem;
389 src.offset = 0;
390 dst.offset = 0;
391
392 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
393 new_mem->num_pages << PAGE_SHIFT,
394 amdgpu_bo_encrypted(abo),
395 bo->base.resv, &fence);
396 if (r)
397 goto error;
398
399 /* clear the space being freed */
400 if (old_mem->mem_type == TTM_PL_VRAM &&
401 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
402 struct dma_fence *wipe_fence = NULL;
403
404 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
405 NULL, &wipe_fence);
406 if (r) {
407 goto error;
408 } else if (wipe_fence) {
409 dma_fence_put(fence);
410 fence = wipe_fence;
411 }
412 }
413
414 /* Always block for VM page tables before committing the new location */
415 if (bo->type == ttm_bo_type_kernel)
416 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417 else
418 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419 dma_fence_put(fence);
420 return r;
421
422 error:
423 if (fence)
424 dma_fence_wait(fence, false);
425 dma_fence_put(fence);
426 return r;
427 }
428
429 /*
430 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
431 *
432 * Called by amdgpu_bo_move()
433 */
amdgpu_mem_visible(struct amdgpu_device * adev,struct ttm_resource * mem)434 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
435 struct ttm_resource *mem)
436 {
437 uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
438 struct amdgpu_res_cursor cursor;
439
440 if (mem->mem_type == TTM_PL_SYSTEM ||
441 mem->mem_type == TTM_PL_TT)
442 return true;
443 if (mem->mem_type != TTM_PL_VRAM)
444 return false;
445
446 amdgpu_res_first(mem, 0, mem_size, &cursor);
447
448 /* ttm_resource_ioremap only supports contiguous memory */
449 if (cursor.size != mem_size)
450 return false;
451
452 return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
453 }
454
455 /*
456 * amdgpu_bo_move - Move a buffer object to a new memory location
457 *
458 * Called by ttm_bo_handle_move_mem()
459 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461 struct ttm_operation_ctx *ctx,
462 struct ttm_resource *new_mem,
463 struct ttm_place *hop)
464 {
465 struct amdgpu_device *adev;
466 struct amdgpu_bo *abo;
467 struct ttm_resource *old_mem = bo->resource;
468 int r;
469
470 if (new_mem->mem_type == TTM_PL_TT ||
471 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473 if (r)
474 return r;
475 }
476
477 /* Can't move a pinned BO */
478 abo = ttm_to_amdgpu_bo(bo);
479 if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480 return -EINVAL;
481
482 adev = amdgpu_ttm_adev(bo->bdev);
483
484 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
485 ttm_bo_move_null(bo, new_mem);
486 goto out;
487 }
488 if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 (new_mem->mem_type == TTM_PL_TT ||
490 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 ttm_bo_move_null(bo, new_mem);
492 goto out;
493 }
494 if ((old_mem->mem_type == TTM_PL_TT ||
495 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
496 new_mem->mem_type == TTM_PL_SYSTEM) {
497 r = ttm_bo_wait_ctx(bo, ctx);
498 if (r)
499 return r;
500
501 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
502 ttm_resource_free(bo, &bo->resource);
503 ttm_bo_assign_mem(bo, new_mem);
504 goto out;
505 }
506
507 if (old_mem->mem_type == AMDGPU_PL_GDS ||
508 old_mem->mem_type == AMDGPU_PL_GWS ||
509 old_mem->mem_type == AMDGPU_PL_OA ||
510 new_mem->mem_type == AMDGPU_PL_GDS ||
511 new_mem->mem_type == AMDGPU_PL_GWS ||
512 new_mem->mem_type == AMDGPU_PL_OA) {
513 /* Nothing to save here */
514 ttm_bo_move_null(bo, new_mem);
515 goto out;
516 }
517
518 if (bo->type == ttm_bo_type_device &&
519 new_mem->mem_type == TTM_PL_VRAM &&
520 old_mem->mem_type != TTM_PL_VRAM) {
521 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
522 * accesses the BO after it's moved.
523 */
524 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
525 }
526
527 if (adev->mman.buffer_funcs_enabled) {
528 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
529 new_mem->mem_type == TTM_PL_VRAM) ||
530 (old_mem->mem_type == TTM_PL_VRAM &&
531 new_mem->mem_type == TTM_PL_SYSTEM))) {
532 hop->fpfn = 0;
533 hop->lpfn = 0;
534 hop->mem_type = TTM_PL_TT;
535 hop->flags = TTM_PL_FLAG_TEMPORARY;
536 return -EMULTIHOP;
537 }
538
539 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
540 } else {
541 r = -ENODEV;
542 }
543
544 if (r) {
545 /* Check that all memory is CPU accessible */
546 if (!amdgpu_mem_visible(adev, old_mem) ||
547 !amdgpu_mem_visible(adev, new_mem)) {
548 pr_err("Move buffer fallback to memcpy unavailable\n");
549 return r;
550 }
551
552 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
553 if (r)
554 return r;
555 }
556
557 out:
558 /* update statistics */
559 atomic64_add(bo->base.size, &adev->num_bytes_moved);
560 amdgpu_bo_move_notify(bo, evict, new_mem);
561 return 0;
562 }
563
564 /*
565 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
566 *
567 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
568 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)569 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
570 struct ttm_resource *mem)
571 {
572 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
573 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
574
575 switch (mem->mem_type) {
576 case TTM_PL_SYSTEM:
577 /* system memory */
578 return 0;
579 case TTM_PL_TT:
580 case AMDGPU_PL_PREEMPT:
581 break;
582 case TTM_PL_VRAM:
583 mem->bus.offset = mem->start << PAGE_SHIFT;
584 /* check if it's visible */
585 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
586 return -EINVAL;
587
588 if (adev->mman.aper_base_kaddr &&
589 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
590 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
591 mem->bus.offset;
592
593 mem->bus.offset += adev->gmc.aper_base;
594 mem->bus.is_iomem = true;
595 break;
596 default:
597 return -EINVAL;
598 }
599 return 0;
600 }
601
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)602 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
603 unsigned long page_offset)
604 {
605 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
606 struct amdgpu_res_cursor cursor;
607
608 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
609 &cursor);
610 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
611 }
612
613 /**
614 * amdgpu_ttm_domain_start - Returns GPU start address
615 * @adev: amdgpu device object
616 * @type: type of the memory
617 *
618 * Returns:
619 * GPU start address of a memory domain
620 */
621
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)622 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
623 {
624 switch (type) {
625 case TTM_PL_TT:
626 return adev->gmc.gart_start;
627 case TTM_PL_VRAM:
628 return adev->gmc.vram_start;
629 }
630
631 return 0;
632 }
633
634 /*
635 * TTM backend functions.
636 */
637 struct amdgpu_ttm_tt {
638 struct ttm_tt ttm;
639 struct drm_gem_object *gobj;
640 u64 offset;
641 uint64_t userptr;
642 struct task_struct *usertask;
643 uint32_t userflags;
644 bool bound;
645 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
646 struct hmm_range *range;
647 #endif
648 };
649
650 #ifdef CONFIG_DRM_AMDGPU_USERPTR
651 /*
652 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
653 * memory and start HMM tracking CPU page table update
654 *
655 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
656 * once afterwards to stop HMM tracking
657 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages)658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
659 {
660 struct ttm_tt *ttm = bo->tbo.ttm;
661 struct amdgpu_ttm_tt *gtt = (void *)ttm;
662 unsigned long start = gtt->userptr;
663 struct vm_area_struct *vma;
664 struct mm_struct *mm;
665 bool readonly;
666 int r = 0;
667
668 mm = bo->notifier.mm;
669 if (unlikely(!mm)) {
670 DRM_DEBUG_DRIVER("BO is not registered?\n");
671 return -EFAULT;
672 }
673
674 /* Another get_user_pages is running at the same time?? */
675 if (WARN_ON(gtt->range))
676 return -EFAULT;
677
678 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679 return -ESRCH;
680
681 mmap_read_lock(mm);
682 vma = vma_lookup(mm, start);
683 if (unlikely(!vma)) {
684 r = -EFAULT;
685 goto out_unlock;
686 }
687 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688 vma->vm_file)) {
689 r = -EPERM;
690 goto out_unlock;
691 }
692
693 readonly = amdgpu_ttm_tt_is_readonly(ttm);
694 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695 ttm->num_pages, >t->range, readonly,
696 true, NULL);
697 out_unlock:
698 mmap_read_unlock(mm);
699 mmput(mm);
700
701 return r;
702 }
703
704 /*
705 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
706 * Check if the pages backing this ttm range have been invalidated
707 *
708 * Returns: true if pages are still valid
709 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm)710 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
711 {
712 struct amdgpu_ttm_tt *gtt = (void *)ttm;
713 bool r = false;
714
715 if (!gtt || !gtt->userptr)
716 return false;
717
718 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
719 gtt->userptr, ttm->num_pages);
720
721 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
722 "No user pages to check\n");
723
724 if (gtt->range) {
725 /*
726 * FIXME: Must always hold notifier_lock for this, and must
727 * not ignore the return code.
728 */
729 r = amdgpu_hmm_range_get_pages_done(gtt->range);
730 gtt->range = NULL;
731 }
732
733 return !r;
734 }
735 #endif
736
737 /*
738 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
739 *
740 * Called by amdgpu_cs_list_validate(). This creates the page list
741 * that backs user memory and will ultimately be mapped into the device
742 * address space.
743 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)744 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
745 {
746 unsigned long i;
747
748 for (i = 0; i < ttm->num_pages; ++i)
749 ttm->pages[i] = pages ? pages[i] : NULL;
750 }
751
752 /*
753 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
754 *
755 * Called by amdgpu_ttm_backend_bind()
756 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)757 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
758 struct ttm_tt *ttm)
759 {
760 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
761 struct amdgpu_ttm_tt *gtt = (void *)ttm;
762 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
763 enum dma_data_direction direction = write ?
764 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
765 int r;
766
767 /* Allocate an SG array and squash pages into it */
768 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
769 (u64)ttm->num_pages << PAGE_SHIFT,
770 GFP_KERNEL);
771 if (r)
772 goto release_sg;
773
774 /* Map SG to device */
775 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
776 if (r)
777 goto release_sg;
778
779 /* convert SG to linear array of pages and dma addresses */
780 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
781 ttm->num_pages);
782
783 return 0;
784
785 release_sg:
786 kfree(ttm->sg);
787 ttm->sg = NULL;
788 return r;
789 }
790
791 /*
792 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
793 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)794 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
795 struct ttm_tt *ttm)
796 {
797 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
798 struct amdgpu_ttm_tt *gtt = (void *)ttm;
799 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
800 enum dma_data_direction direction = write ?
801 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
802
803 /* double check that we don't free the table twice */
804 if (!ttm->sg || !ttm->sg->sgl)
805 return;
806
807 /* unmap the pages mapped to the device */
808 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
809 sg_free_table(ttm->sg);
810
811 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
812 if (gtt->range) {
813 unsigned long i;
814
815 for (i = 0; i < ttm->num_pages; i++) {
816 if (ttm->pages[i] !=
817 hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
818 break;
819 }
820
821 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
822 }
823 #endif
824 }
825
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)826 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
827 struct ttm_buffer_object *tbo,
828 uint64_t flags)
829 {
830 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
831 struct ttm_tt *ttm = tbo->ttm;
832 struct amdgpu_ttm_tt *gtt = (void *)ttm;
833 int r;
834
835 if (amdgpu_bo_encrypted(abo))
836 flags |= AMDGPU_PTE_TMZ;
837
838 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
839 uint64_t page_idx = 1;
840
841 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
842 gtt->ttm.dma_address, flags);
843 if (r)
844 goto gart_bind_fail;
845
846 /* The memory type of the first page defaults to UC. Now
847 * modify the memory type to NC from the second page of
848 * the BO onward.
849 */
850 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
851 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
852
853 r = amdgpu_gart_bind(adev,
854 gtt->offset + (page_idx << PAGE_SHIFT),
855 ttm->num_pages - page_idx,
856 &(gtt->ttm.dma_address[page_idx]), flags);
857 } else {
858 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
859 gtt->ttm.dma_address, flags);
860 }
861
862 gart_bind_fail:
863 if (r)
864 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
865 ttm->num_pages, gtt->offset);
866
867 return r;
868 }
869
870 /*
871 * amdgpu_ttm_backend_bind - Bind GTT memory
872 *
873 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
874 * This handles binding GTT memory to the device address space.
875 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)876 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
877 struct ttm_tt *ttm,
878 struct ttm_resource *bo_mem)
879 {
880 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
881 struct amdgpu_ttm_tt *gtt = (void*)ttm;
882 uint64_t flags;
883 int r = 0;
884
885 if (!bo_mem)
886 return -EINVAL;
887
888 if (gtt->bound)
889 return 0;
890
891 if (gtt->userptr) {
892 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
893 if (r) {
894 DRM_ERROR("failed to pin userptr\n");
895 return r;
896 }
897 } else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
898 if (!ttm->sg) {
899 struct dma_buf_attachment *attach;
900 struct sg_table *sgt;
901
902 attach = gtt->gobj->import_attach;
903 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
904 if (IS_ERR(sgt))
905 return PTR_ERR(sgt);
906
907 ttm->sg = sgt;
908 }
909
910 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
911 ttm->num_pages);
912 }
913
914 if (!ttm->num_pages) {
915 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
916 ttm->num_pages, bo_mem, ttm);
917 }
918
919 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
920 bo_mem->mem_type == AMDGPU_PL_GWS ||
921 bo_mem->mem_type == AMDGPU_PL_OA)
922 return -EINVAL;
923
924 if (bo_mem->mem_type != TTM_PL_TT ||
925 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
926 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
927 return 0;
928 }
929
930 /* compute PTE flags relevant to this BO memory */
931 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
932
933 /* bind pages into GART page tables */
934 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
935 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
936 gtt->ttm.dma_address, flags);
937
938 if (r)
939 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
940 ttm->num_pages, gtt->offset);
941 gtt->bound = true;
942 return r;
943 }
944
945 /*
946 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
947 * through AGP or GART aperture.
948 *
949 * If bo is accessible through AGP aperture, then use AGP aperture
950 * to access bo; otherwise allocate logical space in GART aperture
951 * and map bo to GART aperture.
952 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)953 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
954 {
955 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
956 struct ttm_operation_ctx ctx = { false, false };
957 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
958 struct ttm_placement placement;
959 struct ttm_place placements;
960 struct ttm_resource *tmp;
961 uint64_t addr, flags;
962 int r;
963
964 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
965 return 0;
966
967 addr = amdgpu_gmc_agp_addr(bo);
968 if (addr != AMDGPU_BO_INVALID_OFFSET) {
969 bo->resource->start = addr >> PAGE_SHIFT;
970 return 0;
971 }
972
973 /* allocate GART space */
974 placement.num_placement = 1;
975 placement.placement = &placements;
976 placement.num_busy_placement = 1;
977 placement.busy_placement = &placements;
978 placements.fpfn = 0;
979 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
980 placements.mem_type = TTM_PL_TT;
981 placements.flags = bo->resource->placement;
982
983 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
984 if (unlikely(r))
985 return r;
986
987 /* compute PTE flags for this buffer object */
988 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
989
990 /* Bind pages */
991 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
992 r = amdgpu_ttm_gart_bind(adev, bo, flags);
993 if (unlikely(r)) {
994 ttm_resource_free(bo, &tmp);
995 return r;
996 }
997
998 amdgpu_gart_invalidate_tlb(adev);
999 ttm_resource_free(bo, &bo->resource);
1000 ttm_bo_assign_mem(bo, tmp);
1001
1002 return 0;
1003 }
1004
1005 /*
1006 * amdgpu_ttm_recover_gart - Rebind GTT pages
1007 *
1008 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1009 * rebind GTT pages during a GPU reset.
1010 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1011 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1012 {
1013 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1014 uint64_t flags;
1015 int r;
1016
1017 if (!tbo->ttm)
1018 return 0;
1019
1020 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1021 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1022
1023 return r;
1024 }
1025
1026 /*
1027 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1028 *
1029 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1030 * ttm_tt_destroy().
1031 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1032 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1033 struct ttm_tt *ttm)
1034 {
1035 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1036 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1037 int r;
1038
1039 /* if the pages have userptr pinning then clear that first */
1040 if (gtt->userptr) {
1041 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1042 } else if (ttm->sg && gtt->gobj->import_attach) {
1043 struct dma_buf_attachment *attach;
1044
1045 attach = gtt->gobj->import_attach;
1046 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1047 ttm->sg = NULL;
1048 }
1049
1050 if (!gtt->bound)
1051 return;
1052
1053 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1054 return;
1055
1056 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1057 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1058 if (r)
1059 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1060 gtt->ttm.num_pages, gtt->offset);
1061 gtt->bound = false;
1062 }
1063
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1064 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1065 struct ttm_tt *ttm)
1066 {
1067 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1068
1069 amdgpu_ttm_backend_unbind(bdev, ttm);
1070 ttm_tt_destroy_common(bdev, ttm);
1071 if (gtt->usertask)
1072 put_task_struct(gtt->usertask);
1073
1074 ttm_tt_fini(>t->ttm);
1075 kfree(gtt);
1076 }
1077
1078 /**
1079 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1080 *
1081 * @bo: The buffer object to create a GTT ttm_tt object around
1082 * @page_flags: Page flags to be added to the ttm_tt object
1083 *
1084 * Called by ttm_tt_create().
1085 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1086 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1087 uint32_t page_flags)
1088 {
1089 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1090 struct amdgpu_ttm_tt *gtt;
1091 enum ttm_caching caching;
1092
1093 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1094 if (gtt == NULL) {
1095 return NULL;
1096 }
1097 gtt->gobj = &bo->base;
1098
1099 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1100 caching = ttm_write_combined;
1101 else
1102 caching = ttm_cached;
1103
1104 /* allocate space for the uninitialized page entries */
1105 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1106 kfree(gtt);
1107 return NULL;
1108 }
1109 return >t->ttm;
1110 }
1111
1112 /*
1113 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1114 *
1115 * Map the pages of a ttm_tt object to an address space visible
1116 * to the underlying device.
1117 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1118 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1119 struct ttm_tt *ttm,
1120 struct ttm_operation_ctx *ctx)
1121 {
1122 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1123 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1124
1125 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1126 if (gtt->userptr) {
1127 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1128 if (!ttm->sg)
1129 return -ENOMEM;
1130 return 0;
1131 }
1132
1133 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1134 return 0;
1135
1136 return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1137 }
1138
1139 /*
1140 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1141 *
1142 * Unmaps pages of a ttm_tt object from the device address space and
1143 * unpopulates the page array backing it.
1144 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1145 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1146 struct ttm_tt *ttm)
1147 {
1148 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1149 struct amdgpu_device *adev;
1150
1151 if (gtt->userptr) {
1152 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1153 kfree(ttm->sg);
1154 ttm->sg = NULL;
1155 return;
1156 }
1157
1158 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1159 return;
1160
1161 adev = amdgpu_ttm_adev(bdev);
1162 return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1163 }
1164
1165 /**
1166 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1167 * task
1168 *
1169 * @bo: The ttm_buffer_object to bind this userptr to
1170 * @addr: The address in the current tasks VM space to use
1171 * @flags: Requirements of userptr object.
1172 *
1173 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1174 * to current task
1175 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1176 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1177 uint64_t addr, uint32_t flags)
1178 {
1179 struct amdgpu_ttm_tt *gtt;
1180
1181 if (!bo->ttm) {
1182 /* TODO: We want a separate TTM object type for userptrs */
1183 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1184 if (bo->ttm == NULL)
1185 return -ENOMEM;
1186 }
1187
1188 /* Set TTM_PAGE_FLAG_SG before populate but after create. */
1189 bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1190
1191 gtt = (void *)bo->ttm;
1192 gtt->userptr = addr;
1193 gtt->userflags = flags;
1194
1195 if (gtt->usertask)
1196 put_task_struct(gtt->usertask);
1197 gtt->usertask = current->group_leader;
1198 get_task_struct(gtt->usertask);
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1205 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1206 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1207 {
1208 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1209
1210 if (gtt == NULL)
1211 return NULL;
1212
1213 if (gtt->usertask == NULL)
1214 return NULL;
1215
1216 return gtt->usertask->mm;
1217 }
1218
1219 /*
1220 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1221 * address range for the current task.
1222 *
1223 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end)1224 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1225 unsigned long end)
1226 {
1227 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1228 unsigned long size;
1229
1230 if (gtt == NULL || !gtt->userptr)
1231 return false;
1232
1233 /* Return false if no part of the ttm_tt object lies within
1234 * the range
1235 */
1236 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1237 if (gtt->userptr > end || gtt->userptr + size <= start)
1238 return false;
1239
1240 return true;
1241 }
1242
1243 /*
1244 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1245 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1246 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1247 {
1248 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249
1250 if (gtt == NULL || !gtt->userptr)
1251 return false;
1252
1253 return true;
1254 }
1255
1256 /*
1257 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1258 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1259 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1260 {
1261 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1262
1263 if (gtt == NULL)
1264 return false;
1265
1266 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1267 }
1268
1269 /**
1270 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1271 *
1272 * @ttm: The ttm_tt object to compute the flags for
1273 * @mem: The memory registry backing this ttm_tt object
1274 *
1275 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1276 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1277 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1278 {
1279 uint64_t flags = 0;
1280
1281 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1282 flags |= AMDGPU_PTE_VALID;
1283
1284 if (mem && (mem->mem_type == TTM_PL_TT ||
1285 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1286 flags |= AMDGPU_PTE_SYSTEM;
1287
1288 if (ttm->caching == ttm_cached)
1289 flags |= AMDGPU_PTE_SNOOPED;
1290 }
1291
1292 if (mem && mem->mem_type == TTM_PL_VRAM &&
1293 mem->bus.caching == ttm_cached)
1294 flags |= AMDGPU_PTE_SNOOPED;
1295
1296 return flags;
1297 }
1298
1299 /**
1300 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1301 *
1302 * @adev: amdgpu_device pointer
1303 * @ttm: The ttm_tt object to compute the flags for
1304 * @mem: The memory registry backing this ttm_tt object
1305 *
1306 * Figure out the flags to use for a VM PTE (Page Table Entry).
1307 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1308 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1309 struct ttm_resource *mem)
1310 {
1311 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1312
1313 flags |= adev->gart.gart_pte_flags;
1314 flags |= AMDGPU_PTE_READABLE;
1315
1316 if (!amdgpu_ttm_tt_is_readonly(ttm))
1317 flags |= AMDGPU_PTE_WRITEABLE;
1318
1319 return flags;
1320 }
1321
1322 /*
1323 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1324 * object.
1325 *
1326 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1327 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1328 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1329 * used to clean out a memory space.
1330 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1331 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1332 const struct ttm_place *place)
1333 {
1334 unsigned long num_pages = bo->resource->num_pages;
1335 struct amdgpu_res_cursor cursor;
1336 struct dma_resv_list *flist;
1337 struct dma_fence *f;
1338 int i;
1339
1340 /* Swapout? */
1341 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1342 return true;
1343
1344 if (bo->type == ttm_bo_type_kernel &&
1345 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1346 return false;
1347
1348 /* If bo is a KFD BO, check if the bo belongs to the current process.
1349 * If true, then return false as any KFD process needs all its BOs to
1350 * be resident to run successfully
1351 */
1352 flist = dma_resv_shared_list(bo->base.resv);
1353 if (flist) {
1354 for (i = 0; i < flist->shared_count; ++i) {
1355 f = rcu_dereference_protected(flist->shared[i],
1356 dma_resv_held(bo->base.resv));
1357 if (amdkfd_fence_check_mm(f, current->mm))
1358 return false;
1359 }
1360 }
1361
1362 switch (bo->resource->mem_type) {
1363 case AMDGPU_PL_PREEMPT:
1364 /* Preemptible BOs don't own system resources managed by the
1365 * driver (pages, VRAM, GART space). They point to resources
1366 * owned by someone else (e.g. pageable memory in user mode
1367 * or a DMABuf). They are used in a preemptible context so we
1368 * can guarantee no deadlocks and good QoS in case of MMU
1369 * notifiers or DMABuf move notifiers from the resource owner.
1370 */
1371 return false;
1372 case TTM_PL_TT:
1373 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1374 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1375 return false;
1376 return true;
1377
1378 case TTM_PL_VRAM:
1379 /* Check each drm MM node individually */
1380 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1381 &cursor);
1382 while (cursor.remaining) {
1383 if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1384 && !(place->lpfn &&
1385 place->lpfn <= PFN_DOWN(cursor.start)))
1386 return true;
1387
1388 amdgpu_res_next(&cursor, cursor.size);
1389 }
1390 return false;
1391
1392 default:
1393 break;
1394 }
1395
1396 return ttm_bo_eviction_valuable(bo, place);
1397 }
1398
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1399 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1400 void *buf, size_t size, bool write)
1401 {
1402 while (size) {
1403 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1404 uint64_t bytes = 4 - (pos & 0x3);
1405 uint32_t shift = (pos & 0x3) * 8;
1406 uint32_t mask = 0xffffffff << shift;
1407 uint32_t value = 0;
1408
1409 if (size < bytes) {
1410 mask &= 0xffffffff >> (bytes - size) * 8;
1411 bytes = size;
1412 }
1413
1414 if (mask != 0xffffffff) {
1415 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1416 if (write) {
1417 value &= ~mask;
1418 value |= (*(uint32_t *)buf << shift) & mask;
1419 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1420 } else {
1421 value = (value & mask) >> shift;
1422 memcpy(buf, &value, bytes);
1423 }
1424 } else {
1425 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1426 }
1427
1428 pos += bytes;
1429 buf += bytes;
1430 size -= bytes;
1431 }
1432 }
1433
1434 /**
1435 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1436 *
1437 * @bo: The buffer object to read/write
1438 * @offset: Offset into buffer object
1439 * @buf: Secondary buffer to write/read from
1440 * @len: Length in bytes of access
1441 * @write: true if writing
1442 *
1443 * This is used to access VRAM that backs a buffer object via MMIO
1444 * access for debugging purposes.
1445 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1446 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1447 unsigned long offset, void *buf, int len,
1448 int write)
1449 {
1450 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1451 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1452 struct amdgpu_res_cursor cursor;
1453 int ret = 0;
1454
1455 if (bo->resource->mem_type != TTM_PL_VRAM)
1456 return -EIO;
1457
1458 amdgpu_res_first(bo->resource, offset, len, &cursor);
1459 while (cursor.remaining) {
1460 size_t count, size = cursor.size;
1461 loff_t pos = cursor.start;
1462
1463 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1464 size -= count;
1465 if (size) {
1466 /* using MM to access rest vram and handle un-aligned address */
1467 pos += count;
1468 buf += count;
1469 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1470 }
1471
1472 ret += cursor.size;
1473 buf += cursor.size;
1474 amdgpu_res_next(&cursor, cursor.size);
1475 }
1476
1477 return ret;
1478 }
1479
1480 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1481 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1482 {
1483 amdgpu_bo_move_notify(bo, false, NULL);
1484 }
1485
1486 static struct ttm_device_funcs amdgpu_bo_driver = {
1487 .ttm_tt_create = &amdgpu_ttm_tt_create,
1488 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1489 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1490 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1491 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1492 .evict_flags = &amdgpu_evict_flags,
1493 .move = &amdgpu_bo_move,
1494 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1495 .release_notify = &amdgpu_bo_release_notify,
1496 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1497 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1498 .access_memory = &amdgpu_ttm_access_memory,
1499 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1500 };
1501
1502 /*
1503 * Firmware Reservation functions
1504 */
1505 /**
1506 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1507 *
1508 * @adev: amdgpu_device pointer
1509 *
1510 * free fw reserved vram if it has been reserved.
1511 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1512 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1513 {
1514 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1515 NULL, &adev->mman.fw_vram_usage_va);
1516 }
1517
1518 /**
1519 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1520 *
1521 * @adev: amdgpu_device pointer
1522 *
1523 * create bo vram reservation from fw.
1524 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1525 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1526 {
1527 uint64_t vram_size = adev->gmc.visible_vram_size;
1528
1529 adev->mman.fw_vram_usage_va = NULL;
1530 adev->mman.fw_vram_usage_reserved_bo = NULL;
1531
1532 if (adev->mman.fw_vram_usage_size == 0 ||
1533 adev->mman.fw_vram_usage_size > vram_size)
1534 return 0;
1535
1536 return amdgpu_bo_create_kernel_at(adev,
1537 adev->mman.fw_vram_usage_start_offset,
1538 adev->mman.fw_vram_usage_size,
1539 AMDGPU_GEM_DOMAIN_VRAM,
1540 &adev->mman.fw_vram_usage_reserved_bo,
1541 &adev->mman.fw_vram_usage_va);
1542 }
1543
1544 /*
1545 * Memoy training reservation functions
1546 */
1547
1548 /**
1549 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1550 *
1551 * @adev: amdgpu_device pointer
1552 *
1553 * free memory training reserved vram if it has been reserved.
1554 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1555 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1556 {
1557 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1558
1559 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1560 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1561 ctx->c2p_bo = NULL;
1562
1563 return 0;
1564 }
1565
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev)1566 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1567 {
1568 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1569
1570 memset(ctx, 0, sizeof(*ctx));
1571
1572 ctx->c2p_train_data_offset =
1573 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1574 ctx->p2c_train_data_offset =
1575 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1576 ctx->train_data_size =
1577 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1578
1579 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1580 ctx->train_data_size,
1581 ctx->p2c_train_data_offset,
1582 ctx->c2p_train_data_offset);
1583 }
1584
1585 /*
1586 * reserve TMR memory at the top of VRAM which holds
1587 * IP Discovery data and is protected by PSP.
1588 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1589 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1590 {
1591 int ret;
1592 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1593 bool mem_train_support = false;
1594
1595 if (!amdgpu_sriov_vf(adev)) {
1596 if (amdgpu_atomfirmware_mem_training_supported(adev))
1597 mem_train_support = true;
1598 else
1599 DRM_DEBUG("memory training does not support!\n");
1600 }
1601
1602 /*
1603 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1604 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1605 *
1606 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1607 * discovery data and G6 memory training data respectively
1608 */
1609 adev->mman.discovery_tmr_size =
1610 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1611 if (!adev->mman.discovery_tmr_size)
1612 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1613
1614 if (mem_train_support) {
1615 /* reserve vram for mem train according to TMR location */
1616 amdgpu_ttm_training_data_block_init(adev);
1617 ret = amdgpu_bo_create_kernel_at(adev,
1618 ctx->c2p_train_data_offset,
1619 ctx->train_data_size,
1620 AMDGPU_GEM_DOMAIN_VRAM,
1621 &ctx->c2p_bo,
1622 NULL);
1623 if (ret) {
1624 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1625 amdgpu_ttm_training_reserve_vram_fini(adev);
1626 return ret;
1627 }
1628 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1629 }
1630
1631 ret = amdgpu_bo_create_kernel_at(adev,
1632 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1633 adev->mman.discovery_tmr_size,
1634 AMDGPU_GEM_DOMAIN_VRAM,
1635 &adev->mman.discovery_memory,
1636 NULL);
1637 if (ret) {
1638 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1639 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1640 return ret;
1641 }
1642
1643 return 0;
1644 }
1645
1646 /*
1647 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1648 * gtt/vram related fields.
1649 *
1650 * This initializes all of the memory space pools that the TTM layer
1651 * will need such as the GTT space (system memory mapped to the device),
1652 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1653 * can be mapped per VMID.
1654 */
amdgpu_ttm_init(struct amdgpu_device * adev)1655 int amdgpu_ttm_init(struct amdgpu_device *adev)
1656 {
1657 uint64_t gtt_size;
1658 int r;
1659 u64 vis_vram_limit;
1660
1661 mutex_init(&adev->mman.gtt_window_lock);
1662
1663 /* No others user of address space so set it to 0 */
1664 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1665 adev_to_drm(adev)->anon_inode->i_mapping,
1666 adev_to_drm(adev)->vma_offset_manager,
1667 adev->need_swiotlb,
1668 dma_addressing_limited(adev->dev));
1669 if (r) {
1670 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1671 return r;
1672 }
1673 adev->mman.initialized = true;
1674
1675 /* Initialize VRAM pool with all of VRAM divided into pages */
1676 r = amdgpu_vram_mgr_init(adev);
1677 if (r) {
1678 DRM_ERROR("Failed initializing VRAM heap.\n");
1679 return r;
1680 }
1681
1682 /* Reduce size of CPU-visible VRAM if requested */
1683 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1684 if (amdgpu_vis_vram_limit > 0 &&
1685 vis_vram_limit <= adev->gmc.visible_vram_size)
1686 adev->gmc.visible_vram_size = vis_vram_limit;
1687
1688 /* Change the size here instead of the init above so only lpfn is affected */
1689 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1690 #ifdef CONFIG_64BIT
1691 #ifdef CONFIG_X86
1692 if (adev->gmc.xgmi.connected_to_cpu)
1693 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1694 adev->gmc.visible_vram_size);
1695
1696 else
1697 #endif
1698 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1699 adev->gmc.visible_vram_size);
1700 #endif
1701
1702 /*
1703 *The reserved vram for firmware must be pinned to the specified
1704 *place on the VRAM, so reserve it early.
1705 */
1706 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1707 if (r) {
1708 return r;
1709 }
1710
1711 /*
1712 * only NAVI10 and onwards ASIC support for IP discovery.
1713 * If IP discovery enabled, a block of memory should be
1714 * reserved for IP discovey.
1715 */
1716 if (adev->mman.discovery_bin) {
1717 r = amdgpu_ttm_reserve_tmr(adev);
1718 if (r)
1719 return r;
1720 }
1721
1722 /* allocate memory as required for VGA
1723 * This is used for VGA emulation and pre-OS scanout buffers to
1724 * avoid display artifacts while transitioning between pre-OS
1725 * and driver. */
1726 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1727 AMDGPU_GEM_DOMAIN_VRAM,
1728 &adev->mman.stolen_vga_memory,
1729 NULL);
1730 if (r)
1731 return r;
1732 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1733 adev->mman.stolen_extended_size,
1734 AMDGPU_GEM_DOMAIN_VRAM,
1735 &adev->mman.stolen_extended_memory,
1736 NULL);
1737 if (r)
1738 return r;
1739 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1740 adev->mman.stolen_reserved_size,
1741 AMDGPU_GEM_DOMAIN_VRAM,
1742 &adev->mman.stolen_reserved_memory,
1743 NULL);
1744 if (r)
1745 return r;
1746
1747 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1748 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1749
1750 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1751 * or whatever the user passed on module init */
1752 if (amdgpu_gtt_size == -1) {
1753 struct sysinfo si;
1754
1755 si_meminfo(&si);
1756 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1757 adev->gmc.mc_vram_size),
1758 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1759 }
1760 else
1761 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1762
1763 /* Initialize GTT memory pool */
1764 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1765 if (r) {
1766 DRM_ERROR("Failed initializing GTT heap.\n");
1767 return r;
1768 }
1769 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1770 (unsigned)(gtt_size / (1024 * 1024)));
1771
1772 /* Initialize preemptible memory pool */
1773 r = amdgpu_preempt_mgr_init(adev);
1774 if (r) {
1775 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1776 return r;
1777 }
1778
1779 /* Initialize various on-chip memory pools */
1780 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1781 if (r) {
1782 DRM_ERROR("Failed initializing GDS heap.\n");
1783 return r;
1784 }
1785
1786 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1787 if (r) {
1788 DRM_ERROR("Failed initializing gws heap.\n");
1789 return r;
1790 }
1791
1792 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1793 if (r) {
1794 DRM_ERROR("Failed initializing oa heap.\n");
1795 return r;
1796 }
1797
1798 return 0;
1799 }
1800
1801 /*
1802 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1803 */
amdgpu_ttm_fini(struct amdgpu_device * adev)1804 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1805 {
1806 if (!adev->mman.initialized)
1807 return;
1808
1809 amdgpu_ttm_training_reserve_vram_fini(adev);
1810 /* return the stolen vga memory back to VRAM */
1811 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1812 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1813 /* return the IP Discovery TMR memory back to VRAM */
1814 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1815 if (adev->mman.stolen_reserved_size)
1816 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1817 NULL, NULL);
1818 amdgpu_ttm_fw_reserve_vram_fini(adev);
1819
1820 amdgpu_vram_mgr_fini(adev);
1821 amdgpu_gtt_mgr_fini(adev);
1822 amdgpu_preempt_mgr_fini(adev);
1823 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1824 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1825 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1826 ttm_device_fini(&adev->mman.bdev);
1827 adev->mman.initialized = false;
1828 DRM_INFO("amdgpu: ttm finalized\n");
1829 }
1830
1831 /**
1832 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1833 *
1834 * @adev: amdgpu_device pointer
1835 * @enable: true when we can use buffer functions.
1836 *
1837 * Enable/disable use of buffer functions during suspend/resume. This should
1838 * only be called at bootup or when userspace isn't running.
1839 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)1840 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1841 {
1842 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1843 uint64_t size;
1844 int r;
1845
1846 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1847 adev->mman.buffer_funcs_enabled == enable)
1848 return;
1849
1850 if (enable) {
1851 struct amdgpu_ring *ring;
1852 struct drm_gpu_scheduler *sched;
1853
1854 ring = adev->mman.buffer_funcs_ring;
1855 sched = &ring->sched;
1856 r = drm_sched_entity_init(&adev->mman.entity,
1857 DRM_SCHED_PRIORITY_KERNEL, &sched,
1858 1, NULL);
1859 if (r) {
1860 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1861 r);
1862 return;
1863 }
1864 } else {
1865 drm_sched_entity_destroy(&adev->mman.entity);
1866 dma_fence_put(man->move);
1867 man->move = NULL;
1868 }
1869
1870 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1871 if (enable)
1872 size = adev->gmc.real_vram_size;
1873 else
1874 size = adev->gmc.visible_vram_size;
1875 man->size = size >> PAGE_SHIFT;
1876 adev->mman.buffer_funcs_enabled = enable;
1877 }
1878
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)1879 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1880 uint64_t dst_offset, uint32_t byte_count,
1881 struct dma_resv *resv,
1882 struct dma_fence **fence, bool direct_submit,
1883 bool vm_needs_flush, bool tmz)
1884 {
1885 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1886 AMDGPU_IB_POOL_DELAYED;
1887 struct amdgpu_device *adev = ring->adev;
1888 struct amdgpu_job *job;
1889
1890 uint32_t max_bytes;
1891 unsigned num_loops, num_dw;
1892 unsigned i;
1893 int r;
1894
1895 if (direct_submit && !ring->sched.ready) {
1896 DRM_ERROR("Trying to move memory with ring turned off.\n");
1897 return -EINVAL;
1898 }
1899
1900 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1901 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1902 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1903
1904 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1905 if (r)
1906 return r;
1907
1908 if (vm_needs_flush) {
1909 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1910 adev->gmc.pdb0_bo : adev->gart.bo);
1911 job->vm_needs_flush = true;
1912 }
1913 if (resv) {
1914 r = amdgpu_sync_resv(adev, &job->sync, resv,
1915 AMDGPU_SYNC_ALWAYS,
1916 AMDGPU_FENCE_OWNER_UNDEFINED);
1917 if (r) {
1918 DRM_ERROR("sync failed (%d).\n", r);
1919 goto error_free;
1920 }
1921 }
1922
1923 for (i = 0; i < num_loops; i++) {
1924 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1925
1926 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1927 dst_offset, cur_size_in_bytes, tmz);
1928
1929 src_offset += cur_size_in_bytes;
1930 dst_offset += cur_size_in_bytes;
1931 byte_count -= cur_size_in_bytes;
1932 }
1933
1934 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1935 WARN_ON(job->ibs[0].length_dw > num_dw);
1936 if (direct_submit)
1937 r = amdgpu_job_submit_direct(job, ring, fence);
1938 else
1939 r = amdgpu_job_submit(job, &adev->mman.entity,
1940 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1941 if (r)
1942 goto error_free;
1943
1944 return r;
1945
1946 error_free:
1947 amdgpu_job_free(job);
1948 DRM_ERROR("Error scheduling IBs (%d)\n", r);
1949 return r;
1950 }
1951
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** fence)1952 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1953 uint32_t src_data,
1954 struct dma_resv *resv,
1955 struct dma_fence **fence)
1956 {
1957 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1958 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1959 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1960
1961 struct amdgpu_res_cursor cursor;
1962 unsigned int num_loops, num_dw;
1963 uint64_t num_bytes;
1964
1965 struct amdgpu_job *job;
1966 int r;
1967
1968 if (!adev->mman.buffer_funcs_enabled) {
1969 DRM_ERROR("Trying to clear memory with ring turned off.\n");
1970 return -EINVAL;
1971 }
1972
1973 if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1974 DRM_ERROR("Trying to clear preemptible memory.\n");
1975 return -EINVAL;
1976 }
1977
1978 if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1979 r = amdgpu_ttm_alloc_gart(&bo->tbo);
1980 if (r)
1981 return r;
1982 }
1983
1984 num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1985 num_loops = 0;
1986
1987 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1988 while (cursor.remaining) {
1989 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1990 amdgpu_res_next(&cursor, cursor.size);
1991 }
1992 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1993
1994 /* for IB padding */
1995 num_dw += 64;
1996
1997 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1998 &job);
1999 if (r)
2000 return r;
2001
2002 if (resv) {
2003 r = amdgpu_sync_resv(adev, &job->sync, resv,
2004 AMDGPU_SYNC_ALWAYS,
2005 AMDGPU_FENCE_OWNER_UNDEFINED);
2006 if (r) {
2007 DRM_ERROR("sync failed (%d).\n", r);
2008 goto error_free;
2009 }
2010 }
2011
2012 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2013 while (cursor.remaining) {
2014 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2015 uint64_t dst_addr = cursor.start;
2016
2017 dst_addr += amdgpu_ttm_domain_start(adev,
2018 bo->tbo.resource->mem_type);
2019 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2020 cur_size);
2021
2022 amdgpu_res_next(&cursor, cur_size);
2023 }
2024
2025 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2026 WARN_ON(job->ibs[0].length_dw > num_dw);
2027 r = amdgpu_job_submit(job, &adev->mman.entity,
2028 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2029 if (r)
2030 goto error_free;
2031
2032 return 0;
2033
2034 error_free:
2035 amdgpu_job_free(job);
2036 return r;
2037 }
2038
2039 #if defined(CONFIG_DEBUG_FS)
2040
amdgpu_mm_vram_table_show(struct seq_file * m,void * unused)2041 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2042 {
2043 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2044 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2045 TTM_PL_VRAM);
2046 struct drm_printer p = drm_seq_file_printer(m);
2047
2048 man->func->debug(man, &p);
2049 return 0;
2050 }
2051
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2052 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2053 {
2054 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2055
2056 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2057 }
2058
amdgpu_mm_tt_table_show(struct seq_file * m,void * unused)2059 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2060 {
2061 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2062 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2063 TTM_PL_TT);
2064 struct drm_printer p = drm_seq_file_printer(m);
2065
2066 man->func->debug(man, &p);
2067 return 0;
2068 }
2069
amdgpu_mm_gds_table_show(struct seq_file * m,void * unused)2070 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2071 {
2072 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2073 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2074 AMDGPU_PL_GDS);
2075 struct drm_printer p = drm_seq_file_printer(m);
2076
2077 man->func->debug(man, &p);
2078 return 0;
2079 }
2080
amdgpu_mm_gws_table_show(struct seq_file * m,void * unused)2081 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2082 {
2083 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2084 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2085 AMDGPU_PL_GWS);
2086 struct drm_printer p = drm_seq_file_printer(m);
2087
2088 man->func->debug(man, &p);
2089 return 0;
2090 }
2091
amdgpu_mm_oa_table_show(struct seq_file * m,void * unused)2092 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2093 {
2094 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2095 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2096 AMDGPU_PL_OA);
2097 struct drm_printer p = drm_seq_file_printer(m);
2098
2099 man->func->debug(man, &p);
2100 return 0;
2101 }
2102
2103 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2104 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2105 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2106 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2107 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2108 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2109
2110 /*
2111 * amdgpu_ttm_vram_read - Linear read access to VRAM
2112 *
2113 * Accesses VRAM via MMIO for debugging purposes.
2114 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2115 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2116 size_t size, loff_t *pos)
2117 {
2118 struct amdgpu_device *adev = file_inode(f)->i_private;
2119 ssize_t result = 0;
2120
2121 if (size & 0x3 || *pos & 0x3)
2122 return -EINVAL;
2123
2124 if (*pos >= adev->gmc.mc_vram_size)
2125 return -ENXIO;
2126
2127 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2128 while (size) {
2129 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2130 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2131
2132 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2133 if (copy_to_user(buf, value, bytes))
2134 return -EFAULT;
2135
2136 result += bytes;
2137 buf += bytes;
2138 *pos += bytes;
2139 size -= bytes;
2140 }
2141
2142 return result;
2143 }
2144
2145 /*
2146 * amdgpu_ttm_vram_write - Linear write access to VRAM
2147 *
2148 * Accesses VRAM via MMIO for debugging purposes.
2149 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2150 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2151 size_t size, loff_t *pos)
2152 {
2153 struct amdgpu_device *adev = file_inode(f)->i_private;
2154 ssize_t result = 0;
2155 int r;
2156
2157 if (size & 0x3 || *pos & 0x3)
2158 return -EINVAL;
2159
2160 if (*pos >= adev->gmc.mc_vram_size)
2161 return -ENXIO;
2162
2163 while (size) {
2164 uint32_t value;
2165
2166 if (*pos >= adev->gmc.mc_vram_size)
2167 return result;
2168
2169 r = get_user(value, (uint32_t *)buf);
2170 if (r)
2171 return r;
2172
2173 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2174
2175 result += 4;
2176 buf += 4;
2177 *pos += 4;
2178 size -= 4;
2179 }
2180
2181 return result;
2182 }
2183
2184 static const struct file_operations amdgpu_ttm_vram_fops = {
2185 .owner = THIS_MODULE,
2186 .read = amdgpu_ttm_vram_read,
2187 .write = amdgpu_ttm_vram_write,
2188 .llseek = default_llseek,
2189 };
2190
2191 /*
2192 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2193 *
2194 * This function is used to read memory that has been mapped to the
2195 * GPU and the known addresses are not physical addresses but instead
2196 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2197 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2198 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2199 size_t size, loff_t *pos)
2200 {
2201 struct amdgpu_device *adev = file_inode(f)->i_private;
2202 struct iommu_domain *dom;
2203 ssize_t result = 0;
2204 int r;
2205
2206 /* retrieve the IOMMU domain if any for this device */
2207 dom = iommu_get_domain_for_dev(adev->dev);
2208
2209 while (size) {
2210 phys_addr_t addr = *pos & PAGE_MASK;
2211 loff_t off = *pos & ~PAGE_MASK;
2212 size_t bytes = PAGE_SIZE - off;
2213 unsigned long pfn;
2214 struct page *p;
2215 void *ptr;
2216
2217 bytes = bytes < size ? bytes : size;
2218
2219 /* Translate the bus address to a physical address. If
2220 * the domain is NULL it means there is no IOMMU active
2221 * and the address translation is the identity
2222 */
2223 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2224
2225 pfn = addr >> PAGE_SHIFT;
2226 if (!pfn_valid(pfn))
2227 return -EPERM;
2228
2229 p = pfn_to_page(pfn);
2230 if (p->mapping != adev->mman.bdev.dev_mapping)
2231 return -EPERM;
2232
2233 ptr = kmap(p);
2234 r = copy_to_user(buf, ptr + off, bytes);
2235 kunmap(p);
2236 if (r)
2237 return -EFAULT;
2238
2239 size -= bytes;
2240 *pos += bytes;
2241 result += bytes;
2242 }
2243
2244 return result;
2245 }
2246
2247 /*
2248 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2249 *
2250 * This function is used to write memory that has been mapped to the
2251 * GPU and the known addresses are not physical addresses but instead
2252 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2253 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2254 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2255 size_t size, loff_t *pos)
2256 {
2257 struct amdgpu_device *adev = file_inode(f)->i_private;
2258 struct iommu_domain *dom;
2259 ssize_t result = 0;
2260 int r;
2261
2262 dom = iommu_get_domain_for_dev(adev->dev);
2263
2264 while (size) {
2265 phys_addr_t addr = *pos & PAGE_MASK;
2266 loff_t off = *pos & ~PAGE_MASK;
2267 size_t bytes = PAGE_SIZE - off;
2268 unsigned long pfn;
2269 struct page *p;
2270 void *ptr;
2271
2272 bytes = bytes < size ? bytes : size;
2273
2274 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2275
2276 pfn = addr >> PAGE_SHIFT;
2277 if (!pfn_valid(pfn))
2278 return -EPERM;
2279
2280 p = pfn_to_page(pfn);
2281 if (p->mapping != adev->mman.bdev.dev_mapping)
2282 return -EPERM;
2283
2284 ptr = kmap(p);
2285 r = copy_from_user(ptr + off, buf, bytes);
2286 kunmap(p);
2287 if (r)
2288 return -EFAULT;
2289
2290 size -= bytes;
2291 *pos += bytes;
2292 result += bytes;
2293 }
2294
2295 return result;
2296 }
2297
2298 static const struct file_operations amdgpu_ttm_iomem_fops = {
2299 .owner = THIS_MODULE,
2300 .read = amdgpu_iomem_read,
2301 .write = amdgpu_iomem_write,
2302 .llseek = default_llseek
2303 };
2304
2305 #endif
2306
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2307 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2308 {
2309 #if defined(CONFIG_DEBUG_FS)
2310 struct drm_minor *minor = adev_to_drm(adev)->primary;
2311 struct dentry *root = minor->debugfs_root;
2312
2313 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2314 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2315 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2316 &amdgpu_ttm_iomem_fops);
2317 debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2318 &amdgpu_mm_vram_table_fops);
2319 debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2320 &amdgpu_mm_tt_table_fops);
2321 debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2322 &amdgpu_mm_gds_table_fops);
2323 debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2324 &amdgpu_mm_gws_table_fops);
2325 debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2326 &amdgpu_mm_oa_table_fops);
2327 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2328 &amdgpu_ttm_page_pool_fops);
2329 #endif
2330 }
2331