1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 placement->num_busy_placement = 0;
106 return;
107 }
108
109 /* Object isn't an AMDGPU object so ignore */
110 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 placement->placement = &placements;
112 placement->busy_placement = &placements;
113 placement->num_placement = 1;
114 placement->num_busy_placement = 1;
115 return;
116 }
117
118 abo = ttm_to_amdgpu_bo(bo);
119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 placement->num_placement = 0;
121 placement->num_busy_placement = 0;
122 return;
123 }
124
125 switch (bo->resource->mem_type) {
126 case AMDGPU_PL_GDS:
127 case AMDGPU_PL_GWS:
128 case AMDGPU_PL_OA:
129 case AMDGPU_PL_DOORBELL:
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
132 return;
133
134 case TTM_PL_VRAM:
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
146 */
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
154 } else {
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
158 }
159 break;
160 case TTM_PL_TT:
161 case AMDGPU_PL_PREEMPT:
162 default:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 break;
165 }
166 *placement = abo->placement;
167 }
168
169 /**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned int window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 struct amdgpu_device *adev = ring->adev;
190 unsigned int offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct amdgpu_job *job;
193 void *cpu_addr;
194 uint64_t flags;
195 unsigned int i;
196 int r;
197
198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 return -EINVAL;
203
204 /* Map only what can't be accessed directly */
205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 mm_cur->start;
208 return 0;
209 }
210
211
212 /*
213 * If start begins at an offset inside the page, then adjust the size
214 * and addr accordingly
215 */
216 offset = mm_cur->start & ~PAGE_MASK;
217
218 num_pages = PFN_UP(*size + offset);
219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223 *addr = adev->gmc.gart_start;
224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 AMDGPU_GPU_PAGE_SIZE;
226 *addr += offset;
227
228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 AMDGPU_FENCE_OWNER_UNDEFINED,
233 num_dw * 4 + num_bytes,
234 AMDGPU_IB_POOL_DELAYED, &job);
235 if (r)
236 return r;
237
238 src_addr = num_dw * 4;
239 src_addr += job->ibs[0].gpu_addr;
240
241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 dst_addr, num_bytes, false);
245
246 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 WARN_ON(job->ibs[0].length_dw > num_dw);
248
249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 if (tmz)
251 flags |= AMDGPU_PTE_TMZ;
252
253 cpu_addr = &job->ibs[0].ptr[num_dw];
254
255 if (mem->mem_type == TTM_PL_TT) {
256 dma_addr_t *dma_addr;
257
258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 } else {
261 dma_addr_t dma_address;
262
263 dma_address = mm_cur->start;
264 dma_address += adev->vm_manager.vram_base_offset;
265
266 for (i = 0; i < num_pages; ++i) {
267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 flags, cpu_addr);
269 dma_address += PAGE_SIZE;
270 }
271 }
272
273 dma_fence_put(amdgpu_job_submit(job));
274 return 0;
275 }
276
277 /**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 const struct amdgpu_copy_mem *src,
294 const struct amdgpu_copy_mem *dst,
295 uint64_t size, bool tmz,
296 struct dma_resv *resv,
297 struct dma_fence **f)
298 {
299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 struct amdgpu_res_cursor src_mm, dst_mm;
301 struct dma_fence *fence = NULL;
302 int r = 0;
303
304 if (!adev->mman.buffer_funcs_enabled) {
305 DRM_ERROR("Trying to move memory with ring turned off.\n");
306 return -EINVAL;
307 }
308
309 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size;
315 struct dma_fence *next;
316
317 /* Never copy more than 256MiB at once to avoid a timeout */
318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320 /* Map src to window 0 and dst to window 1. */
321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 0, ring, tmz, &cur_size, &from);
323 if (r)
324 goto error;
325
326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 1, ring, tmz, &cur_size, &to);
328 if (r)
329 goto error;
330
331 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 resv, &next, false, true, tmz);
333 if (r)
334 goto error;
335
336 dma_fence_put(fence);
337 fence = next;
338
339 amdgpu_res_next(&src_mm, cur_size);
340 amdgpu_res_next(&dst_mm, cur_size);
341 }
342 error:
343 mutex_unlock(&adev->mman.gtt_window_lock);
344 if (f)
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
347 return r;
348 }
349
350 /*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 bool evict,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
360 {
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
365 int r;
366
367 src.bo = bo;
368 dst.bo = bo;
369 src.mem = old_mem;
370 dst.mem = new_mem;
371 src.offset = 0;
372 dst.offset = 0;
373
374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 new_mem->size,
376 amdgpu_bo_encrypted(abo),
377 bo->base.resv, &fence);
378 if (r)
379 goto error;
380
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
385
386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 false);
388 if (r) {
389 goto error;
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
392 fence = wipe_fence;
393 }
394 }
395
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 else
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
402 return r;
403
404 error:
405 if (fence)
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
408 return r;
409 }
410
411 /*
412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413 *
414 * Called by amdgpu_bo_move()
415 */
amdgpu_mem_visible(struct amdgpu_device * adev,struct ttm_resource * mem)416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 struct ttm_resource *mem)
418 {
419 u64 mem_size = (u64)mem->size;
420 struct amdgpu_res_cursor cursor;
421 u64 end;
422
423 if (mem->mem_type == TTM_PL_SYSTEM ||
424 mem->mem_type == TTM_PL_TT)
425 return true;
426 if (mem->mem_type != TTM_PL_VRAM)
427 return false;
428
429 amdgpu_res_first(mem, 0, mem_size, &cursor);
430 end = cursor.start + cursor.size;
431 while (cursor.remaining) {
432 amdgpu_res_next(&cursor, cursor.size);
433
434 if (!cursor.remaining)
435 break;
436
437 /* ttm_resource_ioremap only supports contiguous memory */
438 if (end != cursor.start)
439 return false;
440
441 end = cursor.start + cursor.size;
442 }
443
444 return end <= adev->gmc.visible_vram_size;
445 }
446
447 /*
448 * amdgpu_bo_move - Move a buffer object to a new memory location
449 *
450 * Called by ttm_bo_handle_move_mem()
451 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 struct ttm_operation_ctx *ctx,
454 struct ttm_resource *new_mem,
455 struct ttm_place *hop)
456 {
457 struct amdgpu_device *adev;
458 struct amdgpu_bo *abo;
459 struct ttm_resource *old_mem = bo->resource;
460 int r;
461
462 if (new_mem->mem_type == TTM_PL_TT ||
463 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 if (r)
466 return r;
467 }
468
469 abo = ttm_to_amdgpu_bo(bo);
470 adev = amdgpu_ttm_adev(bo->bdev);
471
472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473 bo->ttm == NULL)) {
474 ttm_bo_move_null(bo, new_mem);
475 goto out;
476 }
477 if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 (new_mem->mem_type == TTM_PL_TT ||
479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 ttm_bo_move_null(bo, new_mem);
481 goto out;
482 }
483 if ((old_mem->mem_type == TTM_PL_TT ||
484 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 new_mem->mem_type == TTM_PL_SYSTEM) {
486 r = ttm_bo_wait_ctx(bo, ctx);
487 if (r)
488 return r;
489
490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 ttm_resource_free(bo, &bo->resource);
492 ttm_bo_assign_mem(bo, new_mem);
493 goto out;
494 }
495
496 if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 old_mem->mem_type == AMDGPU_PL_GWS ||
498 old_mem->mem_type == AMDGPU_PL_OA ||
499 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500 new_mem->mem_type == AMDGPU_PL_GDS ||
501 new_mem->mem_type == AMDGPU_PL_GWS ||
502 new_mem->mem_type == AMDGPU_PL_OA ||
503 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504 /* Nothing to save here */
505 ttm_bo_move_null(bo, new_mem);
506 goto out;
507 }
508
509 if (bo->type == ttm_bo_type_device &&
510 new_mem->mem_type == TTM_PL_VRAM &&
511 old_mem->mem_type != TTM_PL_VRAM) {
512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 * accesses the BO after it's moved.
514 */
515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 }
517
518 if (adev->mman.buffer_funcs_enabled) {
519 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 new_mem->mem_type == TTM_PL_VRAM) ||
521 (old_mem->mem_type == TTM_PL_VRAM &&
522 new_mem->mem_type == TTM_PL_SYSTEM))) {
523 hop->fpfn = 0;
524 hop->lpfn = 0;
525 hop->mem_type = TTM_PL_TT;
526 hop->flags = TTM_PL_FLAG_TEMPORARY;
527 return -EMULTIHOP;
528 }
529
530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 } else {
532 r = -ENODEV;
533 }
534
535 if (r) {
536 /* Check that all memory is CPU accessible */
537 if (!amdgpu_mem_visible(adev, old_mem) ||
538 !amdgpu_mem_visible(adev, new_mem)) {
539 pr_err("Move buffer fallback to memcpy unavailable\n");
540 return r;
541 }
542
543 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 if (r)
545 return r;
546 }
547
548 out:
549 /* update statistics */
550 atomic64_add(bo->base.size, &adev->num_bytes_moved);
551 amdgpu_bo_move_notify(bo, evict, new_mem);
552 return 0;
553 }
554
555 /*
556 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
557 *
558 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
559 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)560 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
561 struct ttm_resource *mem)
562 {
563 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
564 size_t bus_size = (size_t)mem->size;
565
566 switch (mem->mem_type) {
567 case TTM_PL_SYSTEM:
568 /* system memory */
569 return 0;
570 case TTM_PL_TT:
571 case AMDGPU_PL_PREEMPT:
572 break;
573 case TTM_PL_VRAM:
574 mem->bus.offset = mem->start << PAGE_SHIFT;
575 /* check if it's visible */
576 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
577 return -EINVAL;
578
579 if (adev->mman.aper_base_kaddr &&
580 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
581 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
582 mem->bus.offset;
583
584 mem->bus.offset += adev->gmc.aper_base;
585 mem->bus.is_iomem = true;
586 break;
587 case AMDGPU_PL_DOORBELL:
588 mem->bus.offset = mem->start << PAGE_SHIFT;
589 mem->bus.offset += adev->doorbell.base;
590 mem->bus.is_iomem = true;
591 mem->bus.caching = ttm_uncached;
592 break;
593 default:
594 return -EINVAL;
595 }
596 return 0;
597 }
598
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)599 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
600 unsigned long page_offset)
601 {
602 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
603 struct amdgpu_res_cursor cursor;
604
605 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
606 &cursor);
607
608 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
609 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
610
611 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
612 }
613
614 /**
615 * amdgpu_ttm_domain_start - Returns GPU start address
616 * @adev: amdgpu device object
617 * @type: type of the memory
618 *
619 * Returns:
620 * GPU start address of a memory domain
621 */
622
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
624 {
625 switch (type) {
626 case TTM_PL_TT:
627 return adev->gmc.gart_start;
628 case TTM_PL_VRAM:
629 return adev->gmc.vram_start;
630 }
631
632 return 0;
633 }
634
635 /*
636 * TTM backend functions.
637 */
638 struct amdgpu_ttm_tt {
639 struct ttm_tt ttm;
640 struct drm_gem_object *gobj;
641 u64 offset;
642 uint64_t userptr;
643 struct task_struct *usertask;
644 uint32_t userflags;
645 bool bound;
646 int32_t pool_id;
647 };
648
649 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
650
651 #ifdef CONFIG_DRM_AMDGPU_USERPTR
652 /*
653 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
654 * memory and start HMM tracking CPU page table update
655 *
656 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
657 * once afterwards to stop HMM tracking
658 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)659 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
660 struct hmm_range **range)
661 {
662 struct ttm_tt *ttm = bo->tbo.ttm;
663 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
664 unsigned long start = gtt->userptr;
665 struct vm_area_struct *vma;
666 struct mm_struct *mm;
667 bool readonly;
668 int r = 0;
669
670 /* Make sure get_user_pages_done() can cleanup gracefully */
671 *range = NULL;
672
673 mm = bo->notifier.mm;
674 if (unlikely(!mm)) {
675 DRM_DEBUG_DRIVER("BO is not registered?\n");
676 return -EFAULT;
677 }
678
679 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
680 return -ESRCH;
681
682 mmap_read_lock(mm);
683 vma = vma_lookup(mm, start);
684 if (unlikely(!vma)) {
685 r = -EFAULT;
686 goto out_unlock;
687 }
688 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
689 vma->vm_file)) {
690 r = -EPERM;
691 goto out_unlock;
692 }
693
694 readonly = amdgpu_ttm_tt_is_readonly(ttm);
695 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
696 readonly, NULL, pages, range);
697 out_unlock:
698 mmap_read_unlock(mm);
699 if (r)
700 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
701
702 mmput(mm);
703
704 return r;
705 }
706
707 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
708 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)709 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
710 struct hmm_range *range)
711 {
712 struct amdgpu_ttm_tt *gtt = (void *)ttm;
713
714 if (gtt && gtt->userptr && range)
715 amdgpu_hmm_range_get_pages_done(range);
716 }
717
718 /*
719 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
720 * Check if the pages backing this ttm range have been invalidated
721 *
722 * Returns: true if pages are still valid
723 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)724 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
725 struct hmm_range *range)
726 {
727 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
728
729 if (!gtt || !gtt->userptr || !range)
730 return false;
731
732 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
733 gtt->userptr, ttm->num_pages);
734
735 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
736
737 return !amdgpu_hmm_range_get_pages_done(range);
738 }
739 #endif
740
741 /*
742 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
743 *
744 * Called by amdgpu_cs_list_validate(). This creates the page list
745 * that backs user memory and will ultimately be mapped into the device
746 * address space.
747 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)748 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
749 {
750 unsigned long i;
751
752 for (i = 0; i < ttm->num_pages; ++i)
753 ttm->pages[i] = pages ? pages[i] : NULL;
754 }
755
756 /*
757 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
758 *
759 * Called by amdgpu_ttm_backend_bind()
760 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)761 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
762 struct ttm_tt *ttm)
763 {
764 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
765 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
766 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
767 enum dma_data_direction direction = write ?
768 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
769 int r;
770
771 /* Allocate an SG array and squash pages into it */
772 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
773 (u64)ttm->num_pages << PAGE_SHIFT,
774 GFP_KERNEL);
775 if (r)
776 goto release_sg;
777
778 /* Map SG to device */
779 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
780 if (r)
781 goto release_sg;
782
783 /* convert SG to linear array of pages and dma addresses */
784 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
785 ttm->num_pages);
786
787 return 0;
788
789 release_sg:
790 kfree(ttm->sg);
791 ttm->sg = NULL;
792 return r;
793 }
794
795 /*
796 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
797 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)798 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
799 struct ttm_tt *ttm)
800 {
801 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
802 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
803 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
804 enum dma_data_direction direction = write ?
805 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
806
807 /* double check that we don't free the table twice */
808 if (!ttm->sg || !ttm->sg->sgl)
809 return;
810
811 /* unmap the pages mapped to the device */
812 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
813 sg_free_table(ttm->sg);
814 }
815
816 /*
817 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
818 * MQDn+CtrlStackn where n is the number of XCCs per partition.
819 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
820 * and uses memory type default, UC. The rest of pages_per_xcc are
821 * Ctrl stack and modify their memory type to NC.
822 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)823 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
824 struct ttm_tt *ttm, uint64_t flags)
825 {
826 struct amdgpu_ttm_tt *gtt = (void *)ttm;
827 uint64_t total_pages = ttm->num_pages;
828 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
829 uint64_t page_idx, pages_per_xcc;
830 int i;
831 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
832 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
833
834 pages_per_xcc = total_pages;
835 do_div(pages_per_xcc, num_xcc);
836
837 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
838 /* MQD page: use default flags */
839 amdgpu_gart_bind(adev,
840 gtt->offset + (page_idx << PAGE_SHIFT),
841 1, >t->ttm.dma_address[page_idx], flags);
842 /*
843 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
844 * the second page of the BO onward.
845 */
846 amdgpu_gart_bind(adev,
847 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
848 pages_per_xcc - 1,
849 >t->ttm.dma_address[page_idx + 1],
850 ctrl_flags);
851 }
852 }
853
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)854 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
855 struct ttm_buffer_object *tbo,
856 uint64_t flags)
857 {
858 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
859 struct ttm_tt *ttm = tbo->ttm;
860 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
861
862 if (amdgpu_bo_encrypted(abo))
863 flags |= AMDGPU_PTE_TMZ;
864
865 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
866 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
867 } else {
868 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
869 gtt->ttm.dma_address, flags);
870 }
871 }
872
873 /*
874 * amdgpu_ttm_backend_bind - Bind GTT memory
875 *
876 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
877 * This handles binding GTT memory to the device address space.
878 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)879 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
880 struct ttm_tt *ttm,
881 struct ttm_resource *bo_mem)
882 {
883 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
884 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
885 uint64_t flags;
886 int r;
887
888 if (!bo_mem)
889 return -EINVAL;
890
891 if (gtt->bound)
892 return 0;
893
894 if (gtt->userptr) {
895 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
896 if (r) {
897 DRM_ERROR("failed to pin userptr\n");
898 return r;
899 }
900 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
901 if (!ttm->sg) {
902 struct dma_buf_attachment *attach;
903 struct sg_table *sgt;
904
905 attach = gtt->gobj->import_attach;
906 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
907 if (IS_ERR(sgt))
908 return PTR_ERR(sgt);
909
910 ttm->sg = sgt;
911 }
912
913 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
914 ttm->num_pages);
915 }
916
917 if (!ttm->num_pages) {
918 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
919 ttm->num_pages, bo_mem, ttm);
920 }
921
922 if (bo_mem->mem_type != TTM_PL_TT ||
923 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
924 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
925 return 0;
926 }
927
928 /* compute PTE flags relevant to this BO memory */
929 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
930
931 /* bind pages into GART page tables */
932 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
933 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
934 gtt->ttm.dma_address, flags);
935 gtt->bound = true;
936 return 0;
937 }
938
939 /*
940 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
941 * through AGP or GART aperture.
942 *
943 * If bo is accessible through AGP aperture, then use AGP aperture
944 * to access bo; otherwise allocate logical space in GART aperture
945 * and map bo to GART aperture.
946 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)947 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
948 {
949 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
950 struct ttm_operation_ctx ctx = { false, false };
951 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
952 struct ttm_placement placement;
953 struct ttm_place placements;
954 struct ttm_resource *tmp;
955 uint64_t addr, flags;
956 int r;
957
958 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
959 return 0;
960
961 addr = amdgpu_gmc_agp_addr(bo);
962 if (addr != AMDGPU_BO_INVALID_OFFSET) {
963 bo->resource->start = addr >> PAGE_SHIFT;
964 return 0;
965 }
966
967 /* allocate GART space */
968 placement.num_placement = 1;
969 placement.placement = &placements;
970 placement.num_busy_placement = 1;
971 placement.busy_placement = &placements;
972 placements.fpfn = 0;
973 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
974 placements.mem_type = TTM_PL_TT;
975 placements.flags = bo->resource->placement;
976
977 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
978 if (unlikely(r))
979 return r;
980
981 /* compute PTE flags for this buffer object */
982 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
983
984 /* Bind pages */
985 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
986 amdgpu_ttm_gart_bind(adev, bo, flags);
987 amdgpu_gart_invalidate_tlb(adev);
988 ttm_resource_free(bo, &bo->resource);
989 ttm_bo_assign_mem(bo, tmp);
990
991 return 0;
992 }
993
994 /*
995 * amdgpu_ttm_recover_gart - Rebind GTT pages
996 *
997 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
998 * rebind GTT pages during a GPU reset.
999 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1000 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1001 {
1002 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1003 uint64_t flags;
1004
1005 if (!tbo->ttm)
1006 return;
1007
1008 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1009 amdgpu_ttm_gart_bind(adev, tbo, flags);
1010 }
1011
1012 /*
1013 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1014 *
1015 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1016 * ttm_tt_destroy().
1017 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1018 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1019 struct ttm_tt *ttm)
1020 {
1021 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1022 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1023
1024 /* if the pages have userptr pinning then clear that first */
1025 if (gtt->userptr) {
1026 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1027 } else if (ttm->sg && gtt->gobj->import_attach) {
1028 struct dma_buf_attachment *attach;
1029
1030 attach = gtt->gobj->import_attach;
1031 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1032 ttm->sg = NULL;
1033 }
1034
1035 if (!gtt->bound)
1036 return;
1037
1038 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1039 return;
1040
1041 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1042 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1043 gtt->bound = false;
1044 }
1045
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1046 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1047 struct ttm_tt *ttm)
1048 {
1049 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1050
1051 if (gtt->usertask)
1052 put_task_struct(gtt->usertask);
1053
1054 ttm_tt_fini(>t->ttm);
1055 kfree(gtt);
1056 }
1057
1058 /**
1059 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1060 *
1061 * @bo: The buffer object to create a GTT ttm_tt object around
1062 * @page_flags: Page flags to be added to the ttm_tt object
1063 *
1064 * Called by ttm_tt_create().
1065 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1066 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1067 uint32_t page_flags)
1068 {
1069 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1070 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1071 struct amdgpu_ttm_tt *gtt;
1072 enum ttm_caching caching;
1073
1074 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1075 if (!gtt)
1076 return NULL;
1077
1078 gtt->gobj = &bo->base;
1079 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1080 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1081 else
1082 gtt->pool_id = abo->xcp_id;
1083
1084 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1085 caching = ttm_write_combined;
1086 else
1087 caching = ttm_cached;
1088
1089 /* allocate space for the uninitialized page entries */
1090 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1091 kfree(gtt);
1092 return NULL;
1093 }
1094 return >t->ttm;
1095 }
1096
1097 /*
1098 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1099 *
1100 * Map the pages of a ttm_tt object to an address space visible
1101 * to the underlying device.
1102 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1103 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1104 struct ttm_tt *ttm,
1105 struct ttm_operation_ctx *ctx)
1106 {
1107 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1108 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1109 struct ttm_pool *pool;
1110 pgoff_t i;
1111 int ret;
1112
1113 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1114 if (gtt->userptr) {
1115 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1116 if (!ttm->sg)
1117 return -ENOMEM;
1118 return 0;
1119 }
1120
1121 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1122 return 0;
1123
1124 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1125 pool = &adev->mman.ttm_pools[gtt->pool_id];
1126 else
1127 pool = &adev->mman.bdev.pool;
1128 ret = ttm_pool_alloc(pool, ttm, ctx);
1129 if (ret)
1130 return ret;
1131
1132 for (i = 0; i < ttm->num_pages; ++i)
1133 ttm->pages[i]->mapping = bdev->dev_mapping;
1134
1135 return 0;
1136 }
1137
1138 /*
1139 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1140 *
1141 * Unmaps pages of a ttm_tt object from the device address space and
1142 * unpopulates the page array backing it.
1143 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1144 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1145 struct ttm_tt *ttm)
1146 {
1147 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1148 struct amdgpu_device *adev;
1149 struct ttm_pool *pool;
1150 pgoff_t i;
1151
1152 amdgpu_ttm_backend_unbind(bdev, ttm);
1153
1154 if (gtt->userptr) {
1155 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1156 kfree(ttm->sg);
1157 ttm->sg = NULL;
1158 return;
1159 }
1160
1161 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1162 return;
1163
1164 for (i = 0; i < ttm->num_pages; ++i)
1165 ttm->pages[i]->mapping = NULL;
1166
1167 adev = amdgpu_ttm_adev(bdev);
1168
1169 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1170 pool = &adev->mman.ttm_pools[gtt->pool_id];
1171 else
1172 pool = &adev->mman.bdev.pool;
1173
1174 return ttm_pool_free(pool, ttm);
1175 }
1176
1177 /**
1178 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1179 * task
1180 *
1181 * @tbo: The ttm_buffer_object that contains the userptr
1182 * @user_addr: The returned value
1183 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1184 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1185 uint64_t *user_addr)
1186 {
1187 struct amdgpu_ttm_tt *gtt;
1188
1189 if (!tbo->ttm)
1190 return -EINVAL;
1191
1192 gtt = (void *)tbo->ttm;
1193 *user_addr = gtt->userptr;
1194 return 0;
1195 }
1196
1197 /**
1198 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1199 * task
1200 *
1201 * @bo: The ttm_buffer_object to bind this userptr to
1202 * @addr: The address in the current tasks VM space to use
1203 * @flags: Requirements of userptr object.
1204 *
1205 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1206 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1207 * initialize GPU VM for a KFD process.
1208 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1209 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1210 uint64_t addr, uint32_t flags)
1211 {
1212 struct amdgpu_ttm_tt *gtt;
1213
1214 if (!bo->ttm) {
1215 /* TODO: We want a separate TTM object type for userptrs */
1216 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1217 if (bo->ttm == NULL)
1218 return -ENOMEM;
1219 }
1220
1221 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1222 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1223
1224 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1225 gtt->userptr = addr;
1226 gtt->userflags = flags;
1227
1228 if (gtt->usertask)
1229 put_task_struct(gtt->usertask);
1230 gtt->usertask = current->group_leader;
1231 get_task_struct(gtt->usertask);
1232
1233 return 0;
1234 }
1235
1236 /*
1237 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1238 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1239 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1240 {
1241 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1242
1243 if (gtt == NULL)
1244 return NULL;
1245
1246 if (gtt->usertask == NULL)
1247 return NULL;
1248
1249 return gtt->usertask->mm;
1250 }
1251
1252 /*
1253 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1254 * address range for the current task.
1255 *
1256 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1257 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1258 unsigned long end, unsigned long *userptr)
1259 {
1260 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1261 unsigned long size;
1262
1263 if (gtt == NULL || !gtt->userptr)
1264 return false;
1265
1266 /* Return false if no part of the ttm_tt object lies within
1267 * the range
1268 */
1269 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1270 if (gtt->userptr > end || gtt->userptr + size <= start)
1271 return false;
1272
1273 if (userptr)
1274 *userptr = gtt->userptr;
1275 return true;
1276 }
1277
1278 /*
1279 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1280 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1281 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1282 {
1283 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1284
1285 if (gtt == NULL || !gtt->userptr)
1286 return false;
1287
1288 return true;
1289 }
1290
1291 /*
1292 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1293 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1294 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1295 {
1296 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297
1298 if (gtt == NULL)
1299 return false;
1300
1301 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1302 }
1303
1304 /**
1305 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1306 *
1307 * @ttm: The ttm_tt object to compute the flags for
1308 * @mem: The memory registry backing this ttm_tt object
1309 *
1310 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1311 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1312 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1313 {
1314 uint64_t flags = 0;
1315
1316 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1317 flags |= AMDGPU_PTE_VALID;
1318
1319 if (mem && (mem->mem_type == TTM_PL_TT ||
1320 mem->mem_type == AMDGPU_PL_DOORBELL ||
1321 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1322 flags |= AMDGPU_PTE_SYSTEM;
1323
1324 if (ttm->caching == ttm_cached)
1325 flags |= AMDGPU_PTE_SNOOPED;
1326 }
1327
1328 if (mem && mem->mem_type == TTM_PL_VRAM &&
1329 mem->bus.caching == ttm_cached)
1330 flags |= AMDGPU_PTE_SNOOPED;
1331
1332 return flags;
1333 }
1334
1335 /**
1336 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1337 *
1338 * @adev: amdgpu_device pointer
1339 * @ttm: The ttm_tt object to compute the flags for
1340 * @mem: The memory registry backing this ttm_tt object
1341 *
1342 * Figure out the flags to use for a VM PTE (Page Table Entry).
1343 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1344 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1345 struct ttm_resource *mem)
1346 {
1347 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1348
1349 flags |= adev->gart.gart_pte_flags;
1350 flags |= AMDGPU_PTE_READABLE;
1351
1352 if (!amdgpu_ttm_tt_is_readonly(ttm))
1353 flags |= AMDGPU_PTE_WRITEABLE;
1354
1355 return flags;
1356 }
1357
1358 /*
1359 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1360 * object.
1361 *
1362 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1363 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1364 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1365 * used to clean out a memory space.
1366 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1367 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1368 const struct ttm_place *place)
1369 {
1370 struct dma_resv_iter resv_cursor;
1371 struct dma_fence *f;
1372
1373 if (!amdgpu_bo_is_amdgpu_bo(bo))
1374 return ttm_bo_eviction_valuable(bo, place);
1375
1376 /* Swapout? */
1377 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1378 return true;
1379
1380 if (bo->type == ttm_bo_type_kernel &&
1381 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1382 return false;
1383
1384 /* If bo is a KFD BO, check if the bo belongs to the current process.
1385 * If true, then return false as any KFD process needs all its BOs to
1386 * be resident to run successfully
1387 */
1388 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1389 DMA_RESV_USAGE_BOOKKEEP, f) {
1390 if (amdkfd_fence_check_mm(f, current->mm))
1391 return false;
1392 }
1393
1394 /* Preemptible BOs don't own system resources managed by the
1395 * driver (pages, VRAM, GART space). They point to resources
1396 * owned by someone else (e.g. pageable memory in user mode
1397 * or a DMABuf). They are used in a preemptible context so we
1398 * can guarantee no deadlocks and good QoS in case of MMU
1399 * notifiers or DMABuf move notifiers from the resource owner.
1400 */
1401 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1402 return false;
1403
1404 if (bo->resource->mem_type == TTM_PL_TT &&
1405 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1406 return false;
1407
1408 return ttm_bo_eviction_valuable(bo, place);
1409 }
1410
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1411 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1412 void *buf, size_t size, bool write)
1413 {
1414 while (size) {
1415 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1416 uint64_t bytes = 4 - (pos & 0x3);
1417 uint32_t shift = (pos & 0x3) * 8;
1418 uint32_t mask = 0xffffffff << shift;
1419 uint32_t value = 0;
1420
1421 if (size < bytes) {
1422 mask &= 0xffffffff >> (bytes - size) * 8;
1423 bytes = size;
1424 }
1425
1426 if (mask != 0xffffffff) {
1427 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1428 if (write) {
1429 value &= ~mask;
1430 value |= (*(uint32_t *)buf << shift) & mask;
1431 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1432 } else {
1433 value = (value & mask) >> shift;
1434 memcpy(buf, &value, bytes);
1435 }
1436 } else {
1437 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1438 }
1439
1440 pos += bytes;
1441 buf += bytes;
1442 size -= bytes;
1443 }
1444 }
1445
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1446 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1447 unsigned long offset, void *buf,
1448 int len, int write)
1449 {
1450 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1451 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1452 struct amdgpu_res_cursor src_mm;
1453 struct amdgpu_job *job;
1454 struct dma_fence *fence;
1455 uint64_t src_addr, dst_addr;
1456 unsigned int num_dw;
1457 int r, idx;
1458
1459 if (len != PAGE_SIZE)
1460 return -EINVAL;
1461
1462 if (!adev->mman.sdma_access_ptr)
1463 return -EACCES;
1464
1465 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1466 return -ENODEV;
1467
1468 if (write)
1469 memcpy(adev->mman.sdma_access_ptr, buf, len);
1470
1471 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1472 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1473 AMDGPU_FENCE_OWNER_UNDEFINED,
1474 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1475 &job);
1476 if (r)
1477 goto out;
1478
1479 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1480 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1481 src_mm.start;
1482 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1483 if (write)
1484 swap(src_addr, dst_addr);
1485
1486 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1487 PAGE_SIZE, false);
1488
1489 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1490 WARN_ON(job->ibs[0].length_dw > num_dw);
1491
1492 fence = amdgpu_job_submit(job);
1493
1494 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1495 r = -ETIMEDOUT;
1496 dma_fence_put(fence);
1497
1498 if (!(r || write))
1499 memcpy(buf, adev->mman.sdma_access_ptr, len);
1500 out:
1501 drm_dev_exit(idx);
1502 return r;
1503 }
1504
1505 /**
1506 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1507 *
1508 * @bo: The buffer object to read/write
1509 * @offset: Offset into buffer object
1510 * @buf: Secondary buffer to write/read from
1511 * @len: Length in bytes of access
1512 * @write: true if writing
1513 *
1514 * This is used to access VRAM that backs a buffer object via MMIO
1515 * access for debugging purposes.
1516 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1517 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1518 unsigned long offset, void *buf, int len,
1519 int write)
1520 {
1521 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1522 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1523 struct amdgpu_res_cursor cursor;
1524 int ret = 0;
1525
1526 if (bo->resource->mem_type != TTM_PL_VRAM)
1527 return -EIO;
1528
1529 if (amdgpu_device_has_timeouts_enabled(adev) &&
1530 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1531 return len;
1532
1533 amdgpu_res_first(bo->resource, offset, len, &cursor);
1534 while (cursor.remaining) {
1535 size_t count, size = cursor.size;
1536 loff_t pos = cursor.start;
1537
1538 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1539 size -= count;
1540 if (size) {
1541 /* using MM to access rest vram and handle un-aligned address */
1542 pos += count;
1543 buf += count;
1544 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1545 }
1546
1547 ret += cursor.size;
1548 buf += cursor.size;
1549 amdgpu_res_next(&cursor, cursor.size);
1550 }
1551
1552 return ret;
1553 }
1554
1555 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1556 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1557 {
1558 amdgpu_bo_move_notify(bo, false, NULL);
1559 }
1560
1561 static struct ttm_device_funcs amdgpu_bo_driver = {
1562 .ttm_tt_create = &amdgpu_ttm_tt_create,
1563 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1564 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1565 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1566 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1567 .evict_flags = &amdgpu_evict_flags,
1568 .move = &amdgpu_bo_move,
1569 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1570 .release_notify = &amdgpu_bo_release_notify,
1571 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1572 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1573 .access_memory = &amdgpu_ttm_access_memory,
1574 };
1575
1576 /*
1577 * Firmware Reservation functions
1578 */
1579 /**
1580 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1581 *
1582 * @adev: amdgpu_device pointer
1583 *
1584 * free fw reserved vram if it has been reserved.
1585 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1586 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1587 {
1588 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1589 NULL, &adev->mman.fw_vram_usage_va);
1590 }
1591
1592 /*
1593 * Driver Reservation functions
1594 */
1595 /**
1596 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1597 *
1598 * @adev: amdgpu_device pointer
1599 *
1600 * free drv reserved vram if it has been reserved.
1601 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1602 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1603 {
1604 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1605 NULL,
1606 &adev->mman.drv_vram_usage_va);
1607 }
1608
1609 /**
1610 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1611 *
1612 * @adev: amdgpu_device pointer
1613 *
1614 * create bo vram reservation from fw.
1615 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1616 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1617 {
1618 uint64_t vram_size = adev->gmc.visible_vram_size;
1619
1620 adev->mman.fw_vram_usage_va = NULL;
1621 adev->mman.fw_vram_usage_reserved_bo = NULL;
1622
1623 if (adev->mman.fw_vram_usage_size == 0 ||
1624 adev->mman.fw_vram_usage_size > vram_size)
1625 return 0;
1626
1627 return amdgpu_bo_create_kernel_at(adev,
1628 adev->mman.fw_vram_usage_start_offset,
1629 adev->mman.fw_vram_usage_size,
1630 &adev->mman.fw_vram_usage_reserved_bo,
1631 &adev->mman.fw_vram_usage_va);
1632 }
1633
1634 /**
1635 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1636 *
1637 * @adev: amdgpu_device pointer
1638 *
1639 * create bo vram reservation from drv.
1640 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1641 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1642 {
1643 u64 vram_size = adev->gmc.visible_vram_size;
1644
1645 adev->mman.drv_vram_usage_va = NULL;
1646 adev->mman.drv_vram_usage_reserved_bo = NULL;
1647
1648 if (adev->mman.drv_vram_usage_size == 0 ||
1649 adev->mman.drv_vram_usage_size > vram_size)
1650 return 0;
1651
1652 return amdgpu_bo_create_kernel_at(adev,
1653 adev->mman.drv_vram_usage_start_offset,
1654 adev->mman.drv_vram_usage_size,
1655 &adev->mman.drv_vram_usage_reserved_bo,
1656 &adev->mman.drv_vram_usage_va);
1657 }
1658
1659 /*
1660 * Memoy training reservation functions
1661 */
1662
1663 /**
1664 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1665 *
1666 * @adev: amdgpu_device pointer
1667 *
1668 * free memory training reserved vram if it has been reserved.
1669 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1670 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1671 {
1672 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1673
1674 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1675 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1676 ctx->c2p_bo = NULL;
1677
1678 return 0;
1679 }
1680
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1681 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1682 uint32_t reserve_size)
1683 {
1684 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1685
1686 memset(ctx, 0, sizeof(*ctx));
1687
1688 ctx->c2p_train_data_offset =
1689 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1690 ctx->p2c_train_data_offset =
1691 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1692 ctx->train_data_size =
1693 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1694
1695 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1696 ctx->train_data_size,
1697 ctx->p2c_train_data_offset,
1698 ctx->c2p_train_data_offset);
1699 }
1700
1701 /*
1702 * reserve TMR memory at the top of VRAM which holds
1703 * IP Discovery data and is protected by PSP.
1704 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1705 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1706 {
1707 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1708 bool mem_train_support = false;
1709 uint32_t reserve_size = 0;
1710 int ret;
1711
1712 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1713 if (amdgpu_atomfirmware_mem_training_supported(adev))
1714 mem_train_support = true;
1715 else
1716 DRM_DEBUG("memory training does not support!\n");
1717 }
1718
1719 /*
1720 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1721 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1722 *
1723 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1724 * discovery data and G6 memory training data respectively
1725 */
1726 if (adev->bios)
1727 reserve_size =
1728 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1729
1730 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1731 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732 else if (!reserve_size)
1733 reserve_size = DISCOVERY_TMR_OFFSET;
1734
1735 if (mem_train_support) {
1736 /* reserve vram for mem train according to TMR location */
1737 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738 ret = amdgpu_bo_create_kernel_at(adev,
1739 ctx->c2p_train_data_offset,
1740 ctx->train_data_size,
1741 &ctx->c2p_bo,
1742 NULL);
1743 if (ret) {
1744 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745 amdgpu_ttm_training_reserve_vram_fini(adev);
1746 return ret;
1747 }
1748 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749 }
1750
1751 if (!adev->gmc.is_app_apu) {
1752 ret = amdgpu_bo_create_kernel_at(
1753 adev, adev->gmc.real_vram_size - reserve_size,
1754 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755 if (ret) {
1756 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758 NULL, NULL);
1759 return ret;
1760 }
1761 } else {
1762 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763 }
1764
1765 return 0;
1766 }
1767
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1768 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769 {
1770 int i;
1771
1772 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773 return 0;
1774
1775 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776 sizeof(*adev->mman.ttm_pools),
1777 GFP_KERNEL);
1778 if (!adev->mman.ttm_pools)
1779 return -ENOMEM;
1780
1781 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783 adev->gmc.mem_partitions[i].numa.node,
1784 false, false);
1785 }
1786 return 0;
1787 }
1788
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1789 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790 {
1791 int i;
1792
1793 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794 return;
1795
1796 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798
1799 kfree(adev->mman.ttm_pools);
1800 adev->mman.ttm_pools = NULL;
1801 }
1802
1803 /*
1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805 * gtt/vram related fields.
1806 *
1807 * This initializes all of the memory space pools that the TTM layer
1808 * will need such as the GTT space (system memory mapped to the device),
1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810 * can be mapped per VMID.
1811 */
amdgpu_ttm_init(struct amdgpu_device * adev)1812 int amdgpu_ttm_init(struct amdgpu_device *adev)
1813 {
1814 uint64_t gtt_size;
1815 int r;
1816
1817 mutex_init(&adev->mman.gtt_window_lock);
1818
1819 /* No others user of address space so set it to 0 */
1820 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821 adev_to_drm(adev)->anon_inode->i_mapping,
1822 adev_to_drm(adev)->vma_offset_manager,
1823 adev->need_swiotlb,
1824 dma_addressing_limited(adev->dev));
1825 if (r) {
1826 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827 return r;
1828 }
1829
1830 r = amdgpu_ttm_pools_init(adev);
1831 if (r) {
1832 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833 return r;
1834 }
1835 adev->mman.initialized = true;
1836
1837 /* Initialize VRAM pool with all of VRAM divided into pages */
1838 r = amdgpu_vram_mgr_init(adev);
1839 if (r) {
1840 DRM_ERROR("Failed initializing VRAM heap.\n");
1841 return r;
1842 }
1843
1844 /* Change the size here instead of the init above so only lpfn is affected */
1845 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846 #ifdef CONFIG_64BIT
1847 #ifdef CONFIG_X86
1848 if (adev->gmc.xgmi.connected_to_cpu)
1849 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850 adev->gmc.visible_vram_size);
1851
1852 else if (adev->gmc.is_app_apu)
1853 DRM_DEBUG_DRIVER(
1854 "No need to ioremap when real vram size is 0\n");
1855 else
1856 #endif
1857 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858 adev->gmc.visible_vram_size);
1859 #endif
1860
1861 /*
1862 *The reserved vram for firmware must be pinned to the specified
1863 *place on the VRAM, so reserve it early.
1864 */
1865 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866 if (r)
1867 return r;
1868
1869 /*
1870 *The reserved vram for driver must be pinned to the specified
1871 *place on the VRAM, so reserve it early.
1872 */
1873 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874 if (r)
1875 return r;
1876
1877 /*
1878 * only NAVI10 and onwards ASIC support for IP discovery.
1879 * If IP discovery enabled, a block of memory should be
1880 * reserved for IP discovey.
1881 */
1882 if (adev->mman.discovery_bin) {
1883 r = amdgpu_ttm_reserve_tmr(adev);
1884 if (r)
1885 return r;
1886 }
1887
1888 /* allocate memory as required for VGA
1889 * This is used for VGA emulation and pre-OS scanout buffers to
1890 * avoid display artifacts while transitioning between pre-OS
1891 * and driver.
1892 */
1893 if (!adev->gmc.is_app_apu) {
1894 r = amdgpu_bo_create_kernel_at(adev, 0,
1895 adev->mman.stolen_vga_size,
1896 &adev->mman.stolen_vga_memory,
1897 NULL);
1898 if (r)
1899 return r;
1900
1901 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902 adev->mman.stolen_extended_size,
1903 &adev->mman.stolen_extended_memory,
1904 NULL);
1905
1906 if (r)
1907 return r;
1908
1909 r = amdgpu_bo_create_kernel_at(adev,
1910 adev->mman.stolen_reserved_offset,
1911 adev->mman.stolen_reserved_size,
1912 &adev->mman.stolen_reserved_memory,
1913 NULL);
1914 if (r)
1915 return r;
1916 } else {
1917 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918 }
1919
1920 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923 /* Compute GTT size, either based on TTM limit
1924 * or whatever the user passed on module init.
1925 */
1926 if (amdgpu_gtt_size == -1)
1927 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1928 else
1929 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930
1931 /* Initialize GTT memory pool */
1932 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933 if (r) {
1934 DRM_ERROR("Failed initializing GTT heap.\n");
1935 return r;
1936 }
1937 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938 (unsigned int)(gtt_size / (1024 * 1024)));
1939
1940 /* Initiailize doorbell pool on PCI BAR */
1941 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942 if (r) {
1943 DRM_ERROR("Failed initializing doorbell heap.\n");
1944 return r;
1945 }
1946
1947 /* Create a boorbell page for kernel usages */
1948 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949 if (r) {
1950 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951 return r;
1952 }
1953
1954 /* Initialize preemptible memory pool */
1955 r = amdgpu_preempt_mgr_init(adev);
1956 if (r) {
1957 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958 return r;
1959 }
1960
1961 /* Initialize various on-chip memory pools */
1962 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963 if (r) {
1964 DRM_ERROR("Failed initializing GDS heap.\n");
1965 return r;
1966 }
1967
1968 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969 if (r) {
1970 DRM_ERROR("Failed initializing gws heap.\n");
1971 return r;
1972 }
1973
1974 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975 if (r) {
1976 DRM_ERROR("Failed initializing oa heap.\n");
1977 return r;
1978 }
1979 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980 AMDGPU_GEM_DOMAIN_GTT,
1981 &adev->mman.sdma_access_bo, NULL,
1982 &adev->mman.sdma_access_ptr))
1983 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984
1985 return 0;
1986 }
1987
1988 /*
1989 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990 */
amdgpu_ttm_fini(struct amdgpu_device * adev)1991 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992 {
1993 int idx;
1994
1995 if (!adev->mman.initialized)
1996 return;
1997
1998 amdgpu_ttm_pools_fini(adev);
1999
2000 amdgpu_ttm_training_reserve_vram_fini(adev);
2001 /* return the stolen vga memory back to VRAM */
2002 if (!adev->gmc.is_app_apu) {
2003 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005 /* return the FW reserved memory back to VRAM */
2006 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007 NULL);
2008 if (adev->mman.stolen_reserved_size)
2009 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010 NULL, NULL);
2011 }
2012 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013 &adev->mman.sdma_access_ptr);
2014 amdgpu_ttm_fw_reserve_vram_fini(adev);
2015 amdgpu_ttm_drv_reserve_vram_fini(adev);
2016
2017 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018
2019 if (adev->mman.aper_base_kaddr)
2020 iounmap(adev->mman.aper_base_kaddr);
2021 adev->mman.aper_base_kaddr = NULL;
2022
2023 drm_dev_exit(idx);
2024 }
2025
2026 amdgpu_vram_mgr_fini(adev);
2027 amdgpu_gtt_mgr_fini(adev);
2028 amdgpu_preempt_mgr_fini(adev);
2029 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032 ttm_device_fini(&adev->mman.bdev);
2033 adev->mman.initialized = false;
2034 DRM_INFO("amdgpu: ttm finalized\n");
2035 }
2036
2037 /**
2038 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039 *
2040 * @adev: amdgpu_device pointer
2041 * @enable: true when we can use buffer functions.
2042 *
2043 * Enable/disable use of buffer functions during suspend/resume. This should
2044 * only be called at bootup or when userspace isn't running.
2045 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2046 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047 {
2048 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049 uint64_t size;
2050 int r;
2051
2052 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054 return;
2055
2056 if (enable) {
2057 struct amdgpu_ring *ring;
2058 struct drm_gpu_scheduler *sched;
2059
2060 ring = adev->mman.buffer_funcs_ring;
2061 sched = &ring->sched;
2062 r = drm_sched_entity_init(&adev->mman.high_pr,
2063 DRM_SCHED_PRIORITY_KERNEL, &sched,
2064 1, NULL);
2065 if (r) {
2066 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067 r);
2068 return;
2069 }
2070
2071 r = drm_sched_entity_init(&adev->mman.low_pr,
2072 DRM_SCHED_PRIORITY_NORMAL, &sched,
2073 1, NULL);
2074 if (r) {
2075 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076 r);
2077 goto error_free_entity;
2078 }
2079 } else {
2080 drm_sched_entity_destroy(&adev->mman.high_pr);
2081 drm_sched_entity_destroy(&adev->mman.low_pr);
2082 dma_fence_put(man->move);
2083 man->move = NULL;
2084 }
2085
2086 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087 if (enable)
2088 size = adev->gmc.real_vram_size;
2089 else
2090 size = adev->gmc.visible_vram_size;
2091 man->size = size;
2092 adev->mman.buffer_funcs_enabled = enable;
2093
2094 return;
2095
2096 error_free_entity:
2097 drm_sched_entity_destroy(&adev->mman.high_pr);
2098 }
2099
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2100 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101 bool direct_submit,
2102 unsigned int num_dw,
2103 struct dma_resv *resv,
2104 bool vm_needs_flush,
2105 struct amdgpu_job **job,
2106 bool delayed)
2107 {
2108 enum amdgpu_ib_pool_type pool = direct_submit ?
2109 AMDGPU_IB_POOL_DIRECT :
2110 AMDGPU_IB_POOL_DELAYED;
2111 int r;
2112 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113 &adev->mman.high_pr;
2114 r = amdgpu_job_alloc_with_ib(adev, entity,
2115 AMDGPU_FENCE_OWNER_UNDEFINED,
2116 num_dw * 4, pool, job);
2117 if (r)
2118 return r;
2119
2120 if (vm_needs_flush) {
2121 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122 adev->gmc.pdb0_bo :
2123 adev->gart.bo);
2124 (*job)->vm_needs_flush = true;
2125 }
2126 if (!resv)
2127 return 0;
2128
2129 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130 DMA_RESV_USAGE_BOOKKEEP);
2131 }
2132
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)2133 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134 uint64_t dst_offset, uint32_t byte_count,
2135 struct dma_resv *resv,
2136 struct dma_fence **fence, bool direct_submit,
2137 bool vm_needs_flush, bool tmz)
2138 {
2139 struct amdgpu_device *adev = ring->adev;
2140 unsigned int num_loops, num_dw;
2141 struct amdgpu_job *job;
2142 uint32_t max_bytes;
2143 unsigned int i;
2144 int r;
2145
2146 if (!direct_submit && !ring->sched.ready) {
2147 DRM_ERROR("Trying to move memory with ring turned off.\n");
2148 return -EINVAL;
2149 }
2150
2151 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155 resv, vm_needs_flush, &job, false);
2156 if (r)
2157 return r;
2158
2159 for (i = 0; i < num_loops; i++) {
2160 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163 dst_offset, cur_size_in_bytes, tmz);
2164
2165 src_offset += cur_size_in_bytes;
2166 dst_offset += cur_size_in_bytes;
2167 byte_count -= cur_size_in_bytes;
2168 }
2169
2170 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171 WARN_ON(job->ibs[0].length_dw > num_dw);
2172 if (direct_submit)
2173 r = amdgpu_job_submit_direct(job, ring, fence);
2174 else
2175 *fence = amdgpu_job_submit(job);
2176 if (r)
2177 goto error_free;
2178
2179 return r;
2180
2181 error_free:
2182 amdgpu_job_free(job);
2183 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184 return r;
2185 }
2186
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2187 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188 uint64_t dst_addr, uint32_t byte_count,
2189 struct dma_resv *resv,
2190 struct dma_fence **fence,
2191 bool vm_needs_flush, bool delayed)
2192 {
2193 struct amdgpu_device *adev = ring->adev;
2194 unsigned int num_loops, num_dw;
2195 struct amdgpu_job *job;
2196 uint32_t max_bytes;
2197 unsigned int i;
2198 int r;
2199
2200 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204 &job, delayed);
2205 if (r)
2206 return r;
2207
2208 for (i = 0; i < num_loops; i++) {
2209 uint32_t cur_size = min(byte_count, max_bytes);
2210
2211 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212 cur_size);
2213
2214 dst_addr += cur_size;
2215 byte_count -= cur_size;
2216 }
2217
2218 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219 WARN_ON(job->ibs[0].length_dw > num_dw);
2220 *fence = amdgpu_job_submit(job);
2221 return 0;
2222 }
2223
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2224 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225 uint32_t src_data,
2226 struct dma_resv *resv,
2227 struct dma_fence **f,
2228 bool delayed)
2229 {
2230 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232 struct dma_fence *fence = NULL;
2233 struct amdgpu_res_cursor dst;
2234 int r;
2235
2236 if (!adev->mman.buffer_funcs_enabled) {
2237 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238 return -EINVAL;
2239 }
2240
2241 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2242
2243 mutex_lock(&adev->mman.gtt_window_lock);
2244 while (dst.remaining) {
2245 struct dma_fence *next;
2246 uint64_t cur_size, to;
2247
2248 /* Never fill more than 256MiB at once to avoid timeouts */
2249 cur_size = min(dst.size, 256ULL << 20);
2250
2251 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252 1, ring, false, &cur_size, &to);
2253 if (r)
2254 goto error;
2255
2256 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257 &next, true, delayed);
2258 if (r)
2259 goto error;
2260
2261 dma_fence_put(fence);
2262 fence = next;
2263
2264 amdgpu_res_next(&dst, cur_size);
2265 }
2266 error:
2267 mutex_unlock(&adev->mman.gtt_window_lock);
2268 if (f)
2269 *f = dma_fence_get(fence);
2270 dma_fence_put(fence);
2271 return r;
2272 }
2273
2274 /**
2275 * amdgpu_ttm_evict_resources - evict memory buffers
2276 * @adev: amdgpu device object
2277 * @mem_type: evicted BO's memory type
2278 *
2279 * Evicts all @mem_type buffers on the lru list of the memory type.
2280 *
2281 * Returns:
2282 * 0 for success or a negative error code on failure.
2283 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2284 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285 {
2286 struct ttm_resource_manager *man;
2287
2288 switch (mem_type) {
2289 case TTM_PL_VRAM:
2290 case TTM_PL_TT:
2291 case AMDGPU_PL_GWS:
2292 case AMDGPU_PL_GDS:
2293 case AMDGPU_PL_OA:
2294 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295 break;
2296 default:
2297 DRM_ERROR("Trying to evict invalid memory type\n");
2298 return -EINVAL;
2299 }
2300
2301 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2302 }
2303
2304 #if defined(CONFIG_DEBUG_FS)
2305
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2306 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307 {
2308 struct amdgpu_device *adev = m->private;
2309
2310 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2311 }
2312
2313 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314
2315 /*
2316 * amdgpu_ttm_vram_read - Linear read access to VRAM
2317 *
2318 * Accesses VRAM via MMIO for debugging purposes.
2319 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2320 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321 size_t size, loff_t *pos)
2322 {
2323 struct amdgpu_device *adev = file_inode(f)->i_private;
2324 ssize_t result = 0;
2325
2326 if (size & 0x3 || *pos & 0x3)
2327 return -EINVAL;
2328
2329 if (*pos >= adev->gmc.mc_vram_size)
2330 return -ENXIO;
2331
2332 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333 while (size) {
2334 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336
2337 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338 if (copy_to_user(buf, value, bytes))
2339 return -EFAULT;
2340
2341 result += bytes;
2342 buf += bytes;
2343 *pos += bytes;
2344 size -= bytes;
2345 }
2346
2347 return result;
2348 }
2349
2350 /*
2351 * amdgpu_ttm_vram_write - Linear write access to VRAM
2352 *
2353 * Accesses VRAM via MMIO for debugging purposes.
2354 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2355 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356 size_t size, loff_t *pos)
2357 {
2358 struct amdgpu_device *adev = file_inode(f)->i_private;
2359 ssize_t result = 0;
2360 int r;
2361
2362 if (size & 0x3 || *pos & 0x3)
2363 return -EINVAL;
2364
2365 if (*pos >= adev->gmc.mc_vram_size)
2366 return -ENXIO;
2367
2368 while (size) {
2369 uint32_t value;
2370
2371 if (*pos >= adev->gmc.mc_vram_size)
2372 return result;
2373
2374 r = get_user(value, (uint32_t *)buf);
2375 if (r)
2376 return r;
2377
2378 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2379
2380 result += 4;
2381 buf += 4;
2382 *pos += 4;
2383 size -= 4;
2384 }
2385
2386 return result;
2387 }
2388
2389 static const struct file_operations amdgpu_ttm_vram_fops = {
2390 .owner = THIS_MODULE,
2391 .read = amdgpu_ttm_vram_read,
2392 .write = amdgpu_ttm_vram_write,
2393 .llseek = default_llseek,
2394 };
2395
2396 /*
2397 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398 *
2399 * This function is used to read memory that has been mapped to the
2400 * GPU and the known addresses are not physical addresses but instead
2401 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2403 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404 size_t size, loff_t *pos)
2405 {
2406 struct amdgpu_device *adev = file_inode(f)->i_private;
2407 struct iommu_domain *dom;
2408 ssize_t result = 0;
2409 int r;
2410
2411 /* retrieve the IOMMU domain if any for this device */
2412 dom = iommu_get_domain_for_dev(adev->dev);
2413
2414 while (size) {
2415 phys_addr_t addr = *pos & PAGE_MASK;
2416 loff_t off = *pos & ~PAGE_MASK;
2417 size_t bytes = PAGE_SIZE - off;
2418 unsigned long pfn;
2419 struct page *p;
2420 void *ptr;
2421
2422 bytes = min(bytes, size);
2423
2424 /* Translate the bus address to a physical address. If
2425 * the domain is NULL it means there is no IOMMU active
2426 * and the address translation is the identity
2427 */
2428 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429
2430 pfn = addr >> PAGE_SHIFT;
2431 if (!pfn_valid(pfn))
2432 return -EPERM;
2433
2434 p = pfn_to_page(pfn);
2435 if (p->mapping != adev->mman.bdev.dev_mapping)
2436 return -EPERM;
2437
2438 ptr = kmap_local_page(p);
2439 r = copy_to_user(buf, ptr + off, bytes);
2440 kunmap_local(ptr);
2441 if (r)
2442 return -EFAULT;
2443
2444 size -= bytes;
2445 *pos += bytes;
2446 result += bytes;
2447 }
2448
2449 return result;
2450 }
2451
2452 /*
2453 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454 *
2455 * This function is used to write memory that has been mapped to the
2456 * GPU and the known addresses are not physical addresses but instead
2457 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2459 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460 size_t size, loff_t *pos)
2461 {
2462 struct amdgpu_device *adev = file_inode(f)->i_private;
2463 struct iommu_domain *dom;
2464 ssize_t result = 0;
2465 int r;
2466
2467 dom = iommu_get_domain_for_dev(adev->dev);
2468
2469 while (size) {
2470 phys_addr_t addr = *pos & PAGE_MASK;
2471 loff_t off = *pos & ~PAGE_MASK;
2472 size_t bytes = PAGE_SIZE - off;
2473 unsigned long pfn;
2474 struct page *p;
2475 void *ptr;
2476
2477 bytes = min(bytes, size);
2478
2479 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481 pfn = addr >> PAGE_SHIFT;
2482 if (!pfn_valid(pfn))
2483 return -EPERM;
2484
2485 p = pfn_to_page(pfn);
2486 if (p->mapping != adev->mman.bdev.dev_mapping)
2487 return -EPERM;
2488
2489 ptr = kmap_local_page(p);
2490 r = copy_from_user(ptr + off, buf, bytes);
2491 kunmap_local(ptr);
2492 if (r)
2493 return -EFAULT;
2494
2495 size -= bytes;
2496 *pos += bytes;
2497 result += bytes;
2498 }
2499
2500 return result;
2501 }
2502
2503 static const struct file_operations amdgpu_ttm_iomem_fops = {
2504 .owner = THIS_MODULE,
2505 .read = amdgpu_iomem_read,
2506 .write = amdgpu_iomem_write,
2507 .llseek = default_llseek
2508 };
2509
2510 #endif
2511
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2512 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513 {
2514 #if defined(CONFIG_DEBUG_FS)
2515 struct drm_minor *minor = adev_to_drm(adev)->primary;
2516 struct dentry *root = minor->debugfs_root;
2517
2518 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521 &amdgpu_ttm_iomem_fops);
2522 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523 &amdgpu_ttm_page_pool_fops);
2524 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525 TTM_PL_VRAM),
2526 root, "amdgpu_vram_mm");
2527 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528 TTM_PL_TT),
2529 root, "amdgpu_gtt_mm");
2530 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531 AMDGPU_PL_GDS),
2532 root, "amdgpu_gds_mm");
2533 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 AMDGPU_PL_GWS),
2535 root, "amdgpu_gws_mm");
2536 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 AMDGPU_PL_OA),
2538 root, "amdgpu_oa_mm");
2539
2540 #endif
2541 }
2542