1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/iova.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/msidef.h>
39 #include <asm/proto.h>
40 #include <asm/iommu.h>
41 #include <asm/gart.h>
42 #include <asm/dma.h>
43
44 #include "amd_iommu.h"
45 #include "../irq_remapping.h"
46
47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
48
49 #define LOOP_TIMEOUT 100000
50
51 /* IO virtual address start page frame number */
52 #define IOVA_START_PFN (1)
53 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
54
55 /* Reserved IOVA ranges */
56 #define MSI_RANGE_START (0xfee00000)
57 #define MSI_RANGE_END (0xfeefffff)
58 #define HT_RANGE_START (0xfd00000000ULL)
59 #define HT_RANGE_END (0xffffffffffULL)
60
61 /*
62 * This bitmap is used to advertise the page sizes our hardware support
63 * to the IOMMU core, which will then use this information to split
64 * physically contiguous memory regions it is mapping into page sizes
65 * that we support.
66 *
67 * 512GB Pages are not supported due to a hardware bug
68 */
69 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
70
71 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
72
73 static DEFINE_SPINLOCK(pd_bitmap_lock);
74
75 /* List of all available dev_data structures */
76 static LLIST_HEAD(dev_data_list);
77
78 LIST_HEAD(ioapic_map);
79 LIST_HEAD(hpet_map);
80 LIST_HEAD(acpihid_map);
81
82 /*
83 * Domain for untranslated devices - only allocated
84 * if iommu=pt passed on kernel cmd line.
85 */
86 const struct iommu_ops amd_iommu_ops;
87
88 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
89 int amd_iommu_max_glx_val = -1;
90
91 /*
92 * general struct to manage commands send to an IOMMU
93 */
94 struct iommu_cmd {
95 u32 data[4];
96 };
97
98 struct kmem_cache *amd_iommu_irq_cache;
99
100 static void update_domain(struct protection_domain *domain);
101 static void detach_device(struct device *dev);
102 static void update_and_flush_device_table(struct protection_domain *domain,
103 struct domain_pgtable *pgtable);
104
105 /****************************************************************************
106 *
107 * Helper functions
108 *
109 ****************************************************************************/
110
get_pci_device_id(struct device * dev)111 static inline u16 get_pci_device_id(struct device *dev)
112 {
113 struct pci_dev *pdev = to_pci_dev(dev);
114
115 return pci_dev_id(pdev);
116 }
117
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)118 static inline int get_acpihid_device_id(struct device *dev,
119 struct acpihid_map_entry **entry)
120 {
121 struct acpi_device *adev = ACPI_COMPANION(dev);
122 struct acpihid_map_entry *p;
123
124 if (!adev)
125 return -ENODEV;
126
127 list_for_each_entry(p, &acpihid_map, list) {
128 if (acpi_dev_hid_uid_match(adev, p->hid,
129 p->uid[0] ? p->uid : NULL)) {
130 if (entry)
131 *entry = p;
132 return p->devid;
133 }
134 }
135 return -EINVAL;
136 }
137
get_device_id(struct device * dev)138 static inline int get_device_id(struct device *dev)
139 {
140 int devid;
141
142 if (dev_is_pci(dev))
143 devid = get_pci_device_id(dev);
144 else
145 devid = get_acpihid_device_id(dev, NULL);
146
147 return devid;
148 }
149
to_pdomain(struct iommu_domain * dom)150 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
151 {
152 return container_of(dom, struct protection_domain, domain);
153 }
154
amd_iommu_domain_get_pgtable(struct protection_domain * domain,struct domain_pgtable * pgtable)155 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain,
156 struct domain_pgtable *pgtable)
157 {
158 u64 pt_root = atomic64_read(&domain->pt_root);
159
160 pgtable->root = (u64 *)(pt_root & PAGE_MASK);
161 pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */
162 }
163
amd_iommu_domain_set_pt_root(struct protection_domain * domain,u64 root)164 static void amd_iommu_domain_set_pt_root(struct protection_domain *domain, u64 root)
165 {
166 atomic64_set(&domain->pt_root, root);
167 }
168
amd_iommu_domain_clr_pt_root(struct protection_domain * domain)169 static void amd_iommu_domain_clr_pt_root(struct protection_domain *domain)
170 {
171 amd_iommu_domain_set_pt_root(domain, 0);
172 }
173
amd_iommu_domain_set_pgtable(struct protection_domain * domain,u64 * root,int mode)174 static void amd_iommu_domain_set_pgtable(struct protection_domain *domain,
175 u64 *root, int mode)
176 {
177 u64 pt_root;
178
179 /* lowest 3 bits encode pgtable mode */
180 pt_root = mode & 7;
181 pt_root |= (u64)root;
182
183 amd_iommu_domain_set_pt_root(domain, pt_root);
184 }
185
alloc_dev_data(u16 devid)186 static struct iommu_dev_data *alloc_dev_data(u16 devid)
187 {
188 struct iommu_dev_data *dev_data;
189
190 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
191 if (!dev_data)
192 return NULL;
193
194 spin_lock_init(&dev_data->lock);
195 dev_data->devid = devid;
196 ratelimit_default_init(&dev_data->rs);
197
198 llist_add(&dev_data->dev_data_list, &dev_data_list);
199 return dev_data;
200 }
201
search_dev_data(u16 devid)202 static struct iommu_dev_data *search_dev_data(u16 devid)
203 {
204 struct iommu_dev_data *dev_data;
205 struct llist_node *node;
206
207 if (llist_empty(&dev_data_list))
208 return NULL;
209
210 node = dev_data_list.first;
211 llist_for_each_entry(dev_data, node, dev_data_list) {
212 if (dev_data->devid == devid)
213 return dev_data;
214 }
215
216 return NULL;
217 }
218
clone_alias(struct pci_dev * pdev,u16 alias,void * data)219 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
220 {
221 u16 devid = pci_dev_id(pdev);
222
223 if (devid == alias)
224 return 0;
225
226 amd_iommu_rlookup_table[alias] =
227 amd_iommu_rlookup_table[devid];
228 memcpy(amd_iommu_dev_table[alias].data,
229 amd_iommu_dev_table[devid].data,
230 sizeof(amd_iommu_dev_table[alias].data));
231
232 return 0;
233 }
234
clone_aliases(struct pci_dev * pdev)235 static void clone_aliases(struct pci_dev *pdev)
236 {
237 if (!pdev)
238 return;
239
240 /*
241 * The IVRS alias stored in the alias table may not be
242 * part of the PCI DMA aliases if it's bus differs
243 * from the original device.
244 */
245 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
246
247 pci_for_each_dma_alias(pdev, clone_alias, NULL);
248 }
249
setup_aliases(struct device * dev)250 static struct pci_dev *setup_aliases(struct device *dev)
251 {
252 struct pci_dev *pdev = to_pci_dev(dev);
253 u16 ivrs_alias;
254
255 /* For ACPI HID devices, there are no aliases */
256 if (!dev_is_pci(dev))
257 return NULL;
258
259 /*
260 * Add the IVRS alias to the pci aliases if it is on the same
261 * bus. The IVRS table may know about a quirk that we don't.
262 */
263 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
264 if (ivrs_alias != pci_dev_id(pdev) &&
265 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
266 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
267
268 clone_aliases(pdev);
269
270 return pdev;
271 }
272
find_dev_data(u16 devid)273 static struct iommu_dev_data *find_dev_data(u16 devid)
274 {
275 struct iommu_dev_data *dev_data;
276 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
277
278 dev_data = search_dev_data(devid);
279
280 if (dev_data == NULL) {
281 dev_data = alloc_dev_data(devid);
282 if (!dev_data)
283 return NULL;
284
285 if (translation_pre_enabled(iommu))
286 dev_data->defer_attach = true;
287 }
288
289 return dev_data;
290 }
291
292 /*
293 * Find or create an IOMMU group for a acpihid device.
294 */
acpihid_device_group(struct device * dev)295 static struct iommu_group *acpihid_device_group(struct device *dev)
296 {
297 struct acpihid_map_entry *p, *entry = NULL;
298 int devid;
299
300 devid = get_acpihid_device_id(dev, &entry);
301 if (devid < 0)
302 return ERR_PTR(devid);
303
304 list_for_each_entry(p, &acpihid_map, list) {
305 if ((devid == p->devid) && p->group)
306 entry->group = p->group;
307 }
308
309 if (!entry->group)
310 entry->group = generic_device_group(dev);
311 else
312 iommu_group_ref_get(entry->group);
313
314 return entry->group;
315 }
316
pci_iommuv2_capable(struct pci_dev * pdev)317 static bool pci_iommuv2_capable(struct pci_dev *pdev)
318 {
319 static const int caps[] = {
320 PCI_EXT_CAP_ID_PRI,
321 PCI_EXT_CAP_ID_PASID,
322 };
323 int i, pos;
324
325 if (!pci_ats_supported(pdev))
326 return false;
327
328 for (i = 0; i < 2; ++i) {
329 pos = pci_find_ext_capability(pdev, caps[i]);
330 if (pos == 0)
331 return false;
332 }
333
334 return true;
335 }
336
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)337 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
338 {
339 struct iommu_dev_data *dev_data;
340
341 dev_data = dev_iommu_priv_get(&pdev->dev);
342
343 return dev_data->errata & (1 << erratum) ? true : false;
344 }
345
346 /*
347 * This function checks if the driver got a valid device from the caller to
348 * avoid dereferencing invalid pointers.
349 */
check_device(struct device * dev)350 static bool check_device(struct device *dev)
351 {
352 int devid;
353
354 if (!dev)
355 return false;
356
357 devid = get_device_id(dev);
358 if (devid < 0)
359 return false;
360
361 /* Out of our scope? */
362 if (devid > amd_iommu_last_bdf)
363 return false;
364
365 if (amd_iommu_rlookup_table[devid] == NULL)
366 return false;
367
368 return true;
369 }
370
iommu_init_device(struct device * dev)371 static int iommu_init_device(struct device *dev)
372 {
373 struct iommu_dev_data *dev_data;
374 int devid;
375
376 if (dev_iommu_priv_get(dev))
377 return 0;
378
379 devid = get_device_id(dev);
380 if (devid < 0)
381 return devid;
382
383 dev_data = find_dev_data(devid);
384 if (!dev_data)
385 return -ENOMEM;
386
387 dev_data->pdev = setup_aliases(dev);
388
389 /*
390 * By default we use passthrough mode for IOMMUv2 capable device.
391 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
392 * invalid address), we ignore the capability for the device so
393 * it'll be forced to go into translation mode.
394 */
395 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
396 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
397 struct amd_iommu *iommu;
398
399 iommu = amd_iommu_rlookup_table[dev_data->devid];
400 dev_data->iommu_v2 = iommu->is_iommu_v2;
401 }
402
403 dev_iommu_priv_set(dev, dev_data);
404
405 return 0;
406 }
407
iommu_ignore_device(struct device * dev)408 static void iommu_ignore_device(struct device *dev)
409 {
410 int devid;
411
412 devid = get_device_id(dev);
413 if (devid < 0)
414 return;
415
416 amd_iommu_rlookup_table[devid] = NULL;
417 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
418
419 setup_aliases(dev);
420 }
421
amd_iommu_uninit_device(struct device * dev)422 static void amd_iommu_uninit_device(struct device *dev)
423 {
424 struct iommu_dev_data *dev_data;
425
426 dev_data = dev_iommu_priv_get(dev);
427 if (!dev_data)
428 return;
429
430 if (dev_data->domain)
431 detach_device(dev);
432
433 dev_iommu_priv_set(dev, NULL);
434
435 /*
436 * We keep dev_data around for unplugged devices and reuse it when the
437 * device is re-plugged - not doing so would introduce a ton of races.
438 */
439 }
440
441 /*
442 * Helper function to get the first pte of a large mapping
443 */
first_pte_l7(u64 * pte,unsigned long * page_size,unsigned long * count)444 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
445 unsigned long *count)
446 {
447 unsigned long pte_mask, pg_size, cnt;
448 u64 *fpte;
449
450 pg_size = PTE_PAGE_SIZE(*pte);
451 cnt = PAGE_SIZE_PTE_COUNT(pg_size);
452 pte_mask = ~((cnt << 3) - 1);
453 fpte = (u64 *)(((unsigned long)pte) & pte_mask);
454
455 if (page_size)
456 *page_size = pg_size;
457
458 if (count)
459 *count = cnt;
460
461 return fpte;
462 }
463
464 /****************************************************************************
465 *
466 * Interrupt handling functions
467 *
468 ****************************************************************************/
469
dump_dte_entry(u16 devid)470 static void dump_dte_entry(u16 devid)
471 {
472 int i;
473
474 for (i = 0; i < 4; ++i)
475 pr_err("DTE[%d]: %016llx\n", i,
476 amd_iommu_dev_table[devid].data[i]);
477 }
478
dump_command(unsigned long phys_addr)479 static void dump_command(unsigned long phys_addr)
480 {
481 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
482 int i;
483
484 for (i = 0; i < 4; ++i)
485 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
486 }
487
amd_iommu_report_rmp_hw_error(volatile u32 * event)488 static void amd_iommu_report_rmp_hw_error(volatile u32 *event)
489 {
490 struct iommu_dev_data *dev_data = NULL;
491 int devid, vmg_tag, flags;
492 struct pci_dev *pdev;
493 u64 spa;
494
495 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
496 vmg_tag = (event[1]) & 0xFFFF;
497 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
498 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
499
500 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
501 devid & 0xff);
502 if (pdev)
503 dev_data = dev_iommu_priv_get(&pdev->dev);
504
505 if (dev_data && __ratelimit(&dev_data->rs)) {
506 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
507 vmg_tag, spa, flags);
508 } else {
509 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
510 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
511 vmg_tag, spa, flags);
512 }
513
514 if (pdev)
515 pci_dev_put(pdev);
516 }
517
amd_iommu_report_rmp_fault(volatile u32 * event)518 static void amd_iommu_report_rmp_fault(volatile u32 *event)
519 {
520 struct iommu_dev_data *dev_data = NULL;
521 int devid, flags_rmp, vmg_tag, flags;
522 struct pci_dev *pdev;
523 u64 gpa;
524
525 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
526 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
527 vmg_tag = (event[1]) & 0xFFFF;
528 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
529 gpa = ((u64)event[3] << 32) | event[2];
530
531 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
532 devid & 0xff);
533 if (pdev)
534 dev_data = dev_iommu_priv_get(&pdev->dev);
535
536 if (dev_data && __ratelimit(&dev_data->rs)) {
537 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
538 vmg_tag, gpa, flags_rmp, flags);
539 } else {
540 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
541 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
542 vmg_tag, gpa, flags_rmp, flags);
543 }
544
545 if (pdev)
546 pci_dev_put(pdev);
547 }
548
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)549 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
550 u64 address, int flags)
551 {
552 struct iommu_dev_data *dev_data = NULL;
553 struct pci_dev *pdev;
554
555 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
556 devid & 0xff);
557 if (pdev)
558 dev_data = dev_iommu_priv_get(&pdev->dev);
559
560 if (dev_data && __ratelimit(&dev_data->rs)) {
561 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
562 domain_id, address, flags);
563 } else if (printk_ratelimit()) {
564 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
565 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
566 domain_id, address, flags);
567 }
568
569 if (pdev)
570 pci_dev_put(pdev);
571 }
572
iommu_print_event(struct amd_iommu * iommu,void * __evt)573 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
574 {
575 struct device *dev = iommu->iommu.dev;
576 int type, devid, flags, tag;
577 volatile u32 *event = __evt;
578 int count = 0;
579 u64 address;
580 u32 pasid;
581
582 retry:
583 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
584 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
585 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
586 (event[1] & EVENT_DOMID_MASK_LO);
587 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
588 address = (u64)(((u64)event[3]) << 32) | event[2];
589
590 if (type == 0) {
591 /* Did we hit the erratum? */
592 if (++count == LOOP_TIMEOUT) {
593 pr_err("No event written to event log\n");
594 return;
595 }
596 udelay(1);
597 goto retry;
598 }
599
600 if (type == EVENT_TYPE_IO_FAULT) {
601 amd_iommu_report_page_fault(devid, pasid, address, flags);
602 return;
603 }
604
605 switch (type) {
606 case EVENT_TYPE_ILL_DEV:
607 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
608 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
609 pasid, address, flags);
610 dump_dte_entry(devid);
611 break;
612 case EVENT_TYPE_DEV_TAB_ERR:
613 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
614 "address=0x%llx flags=0x%04x]\n",
615 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
616 address, flags);
617 break;
618 case EVENT_TYPE_PAGE_TAB_ERR:
619 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
620 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
621 pasid, address, flags);
622 break;
623 case EVENT_TYPE_ILL_CMD:
624 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
625 dump_command(address);
626 break;
627 case EVENT_TYPE_CMD_HARD_ERR:
628 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
629 address, flags);
630 break;
631 case EVENT_TYPE_IOTLB_INV_TO:
632 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
633 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
634 address);
635 break;
636 case EVENT_TYPE_INV_DEV_REQ:
637 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
638 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
639 pasid, address, flags);
640 break;
641 case EVENT_TYPE_RMP_FAULT:
642 amd_iommu_report_rmp_fault(event);
643 break;
644 case EVENT_TYPE_RMP_HW_ERR:
645 amd_iommu_report_rmp_hw_error(event);
646 break;
647 case EVENT_TYPE_INV_PPR_REQ:
648 pasid = PPR_PASID(*((u64 *)__evt));
649 tag = event[1] & 0x03FF;
650 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
651 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
652 pasid, address, flags, tag);
653 break;
654 default:
655 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
656 event[0], event[1], event[2], event[3]);
657 }
658
659 memset(__evt, 0, 4 * sizeof(u32));
660 }
661
iommu_poll_events(struct amd_iommu * iommu)662 static void iommu_poll_events(struct amd_iommu *iommu)
663 {
664 u32 head, tail;
665
666 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
667 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
668
669 while (head != tail) {
670 iommu_print_event(iommu, iommu->evt_buf + head);
671 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
672 }
673
674 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
675 }
676
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)677 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
678 {
679 struct amd_iommu_fault fault;
680
681 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
682 pr_err_ratelimited("Unknown PPR request received\n");
683 return;
684 }
685
686 fault.address = raw[1];
687 fault.pasid = PPR_PASID(raw[0]);
688 fault.device_id = PPR_DEVID(raw[0]);
689 fault.tag = PPR_TAG(raw[0]);
690 fault.flags = PPR_FLAGS(raw[0]);
691
692 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
693 }
694
iommu_poll_ppr_log(struct amd_iommu * iommu)695 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
696 {
697 u32 head, tail;
698
699 if (iommu->ppr_log == NULL)
700 return;
701
702 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
704
705 while (head != tail) {
706 volatile u64 *raw;
707 u64 entry[2];
708 int i;
709
710 raw = (u64 *)(iommu->ppr_log + head);
711
712 /*
713 * Hardware bug: Interrupt may arrive before the entry is
714 * written to memory. If this happens we need to wait for the
715 * entry to arrive.
716 */
717 for (i = 0; i < LOOP_TIMEOUT; ++i) {
718 if (PPR_REQ_TYPE(raw[0]) != 0)
719 break;
720 udelay(1);
721 }
722
723 /* Avoid memcpy function-call overhead */
724 entry[0] = raw[0];
725 entry[1] = raw[1];
726
727 /*
728 * To detect the hardware bug we need to clear the entry
729 * back to zero.
730 */
731 raw[0] = raw[1] = 0UL;
732
733 /* Update head pointer of hardware ring-buffer */
734 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
735 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
736
737 /* Handle PPR entry */
738 iommu_handle_ppr_entry(iommu, entry);
739
740 /* Refresh ring-buffer information */
741 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
742 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
743 }
744 }
745
746 #ifdef CONFIG_IRQ_REMAP
747 static int (*iommu_ga_log_notifier)(u32);
748
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))749 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
750 {
751 iommu_ga_log_notifier = notifier;
752
753 return 0;
754 }
755 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
756
iommu_poll_ga_log(struct amd_iommu * iommu)757 static void iommu_poll_ga_log(struct amd_iommu *iommu)
758 {
759 u32 head, tail, cnt = 0;
760
761 if (iommu->ga_log == NULL)
762 return;
763
764 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
765 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
766
767 while (head != tail) {
768 volatile u64 *raw;
769 u64 log_entry;
770
771 raw = (u64 *)(iommu->ga_log + head);
772 cnt++;
773
774 /* Avoid memcpy function-call overhead */
775 log_entry = *raw;
776
777 /* Update head pointer of hardware ring-buffer */
778 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
779 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
780
781 /* Handle GA entry */
782 switch (GA_REQ_TYPE(log_entry)) {
783 case GA_GUEST_NR:
784 if (!iommu_ga_log_notifier)
785 break;
786
787 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
788 __func__, GA_DEVID(log_entry),
789 GA_TAG(log_entry));
790
791 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
792 pr_err("GA log notifier failed.\n");
793 break;
794 default:
795 break;
796 }
797 }
798 }
799
800 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)801 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
802 {
803 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
804 pci_dev_has_special_msi_domain(to_pci_dev(dev)))
805 return;
806
807 dev_set_msi_domain(dev, iommu->msi_domain);
808 }
809
810 #else /* CONFIG_IRQ_REMAP */
811 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)812 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
813 #endif /* !CONFIG_IRQ_REMAP */
814
815 #define AMD_IOMMU_INT_MASK \
816 (MMIO_STATUS_EVT_INT_MASK | \
817 MMIO_STATUS_PPR_INT_MASK | \
818 MMIO_STATUS_GALOG_INT_MASK)
819
amd_iommu_int_thread(int irq,void * data)820 irqreturn_t amd_iommu_int_thread(int irq, void *data)
821 {
822 struct amd_iommu *iommu = (struct amd_iommu *) data;
823 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
824
825 while (status & AMD_IOMMU_INT_MASK) {
826 /* Enable EVT and PPR and GA interrupts again */
827 writel(AMD_IOMMU_INT_MASK,
828 iommu->mmio_base + MMIO_STATUS_OFFSET);
829
830 if (status & MMIO_STATUS_EVT_INT_MASK) {
831 pr_devel("Processing IOMMU Event Log\n");
832 iommu_poll_events(iommu);
833 }
834
835 if (status & MMIO_STATUS_PPR_INT_MASK) {
836 pr_devel("Processing IOMMU PPR Log\n");
837 iommu_poll_ppr_log(iommu);
838 }
839
840 #ifdef CONFIG_IRQ_REMAP
841 if (status & MMIO_STATUS_GALOG_INT_MASK) {
842 pr_devel("Processing IOMMU GA Log\n");
843 iommu_poll_ga_log(iommu);
844 }
845 #endif
846
847 /*
848 * Hardware bug: ERBT1312
849 * When re-enabling interrupt (by writing 1
850 * to clear the bit), the hardware might also try to set
851 * the interrupt bit in the event status register.
852 * In this scenario, the bit will be set, and disable
853 * subsequent interrupts.
854 *
855 * Workaround: The IOMMU driver should read back the
856 * status register and check if the interrupt bits are cleared.
857 * If not, driver will need to go through the interrupt handler
858 * again and re-clear the bits
859 */
860 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
861 }
862 return IRQ_HANDLED;
863 }
864
amd_iommu_int_handler(int irq,void * data)865 irqreturn_t amd_iommu_int_handler(int irq, void *data)
866 {
867 return IRQ_WAKE_THREAD;
868 }
869
870 /****************************************************************************
871 *
872 * IOMMU command queuing functions
873 *
874 ****************************************************************************/
875
wait_on_sem(struct amd_iommu * iommu,u64 data)876 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
877 {
878 int i = 0;
879
880 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
881 udelay(1);
882 i += 1;
883 }
884
885 if (i == LOOP_TIMEOUT) {
886 pr_alert("Completion-Wait loop timed out\n");
887 return -EIO;
888 }
889
890 return 0;
891 }
892
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)893 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
894 struct iommu_cmd *cmd)
895 {
896 u8 *target;
897 u32 tail;
898
899 /* Copy command to buffer */
900 tail = iommu->cmd_buf_tail;
901 target = iommu->cmd_buf + tail;
902 memcpy(target, cmd, sizeof(*cmd));
903
904 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
905 iommu->cmd_buf_tail = tail;
906
907 /* Tell the IOMMU about it */
908 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
909 }
910
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)911 static void build_completion_wait(struct iommu_cmd *cmd,
912 struct amd_iommu *iommu,
913 u64 data)
914 {
915 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
916
917 memset(cmd, 0, sizeof(*cmd));
918 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
919 cmd->data[1] = upper_32_bits(paddr);
920 cmd->data[2] = data;
921 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
922 }
923
build_inv_dte(struct iommu_cmd * cmd,u16 devid)924 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
925 {
926 memset(cmd, 0, sizeof(*cmd));
927 cmd->data[0] = devid;
928 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
929 }
930
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)931 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
932 size_t size, u16 domid, int pde)
933 {
934 u64 pages;
935 bool s;
936
937 pages = iommu_num_pages(address, size, PAGE_SIZE);
938 s = false;
939
940 if (pages > 1) {
941 /*
942 * If we have to flush more than one page, flush all
943 * TLB entries for this domain
944 */
945 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
946 s = true;
947 }
948
949 address &= PAGE_MASK;
950
951 memset(cmd, 0, sizeof(*cmd));
952 cmd->data[1] |= domid;
953 cmd->data[2] = lower_32_bits(address);
954 cmd->data[3] = upper_32_bits(address);
955 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
956 if (s) /* size bit - we flush more than one 4kb page */
957 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
958 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
959 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
960 }
961
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)962 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
963 u64 address, size_t size)
964 {
965 u64 pages;
966 bool s;
967
968 pages = iommu_num_pages(address, size, PAGE_SIZE);
969 s = false;
970
971 if (pages > 1) {
972 /*
973 * If we have to flush more than one page, flush all
974 * TLB entries for this domain
975 */
976 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
977 s = true;
978 }
979
980 address &= PAGE_MASK;
981
982 memset(cmd, 0, sizeof(*cmd));
983 cmd->data[0] = devid;
984 cmd->data[0] |= (qdep & 0xff) << 24;
985 cmd->data[1] = devid;
986 cmd->data[2] = lower_32_bits(address);
987 cmd->data[3] = upper_32_bits(address);
988 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
989 if (s)
990 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
991 }
992
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,u32 pasid,u64 address,bool size)993 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
994 u64 address, bool size)
995 {
996 memset(cmd, 0, sizeof(*cmd));
997
998 address &= ~(0xfffULL);
999
1000 cmd->data[0] = pasid;
1001 cmd->data[1] = domid;
1002 cmd->data[2] = lower_32_bits(address);
1003 cmd->data[3] = upper_32_bits(address);
1004 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1005 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1006 if (size)
1007 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1008 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1009 }
1010
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,u32 pasid,int qdep,u64 address,bool size)1011 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1012 int qdep, u64 address, bool size)
1013 {
1014 memset(cmd, 0, sizeof(*cmd));
1015
1016 address &= ~(0xfffULL);
1017
1018 cmd->data[0] = devid;
1019 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1020 cmd->data[0] |= (qdep & 0xff) << 24;
1021 cmd->data[1] = devid;
1022 cmd->data[1] |= (pasid & 0xff) << 16;
1023 cmd->data[2] = lower_32_bits(address);
1024 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1025 cmd->data[3] = upper_32_bits(address);
1026 if (size)
1027 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1028 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1029 }
1030
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,bool gn)1031 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1032 int status, int tag, bool gn)
1033 {
1034 memset(cmd, 0, sizeof(*cmd));
1035
1036 cmd->data[0] = devid;
1037 if (gn) {
1038 cmd->data[1] = pasid;
1039 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1040 }
1041 cmd->data[3] = tag & 0x1ff;
1042 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1043
1044 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1045 }
1046
build_inv_all(struct iommu_cmd * cmd)1047 static void build_inv_all(struct iommu_cmd *cmd)
1048 {
1049 memset(cmd, 0, sizeof(*cmd));
1050 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1051 }
1052
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1053 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1054 {
1055 memset(cmd, 0, sizeof(*cmd));
1056 cmd->data[0] = devid;
1057 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1058 }
1059
1060 /*
1061 * Writes the command to the IOMMUs command buffer and informs the
1062 * hardware about the new command.
1063 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1064 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1065 struct iommu_cmd *cmd,
1066 bool sync)
1067 {
1068 unsigned int count = 0;
1069 u32 left, next_tail;
1070
1071 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1072 again:
1073 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1074
1075 if (left <= 0x20) {
1076 /* Skip udelay() the first time around */
1077 if (count++) {
1078 if (count == LOOP_TIMEOUT) {
1079 pr_err("Command buffer timeout\n");
1080 return -EIO;
1081 }
1082
1083 udelay(1);
1084 }
1085
1086 /* Update head and recheck remaining space */
1087 iommu->cmd_buf_head = readl(iommu->mmio_base +
1088 MMIO_CMD_HEAD_OFFSET);
1089
1090 goto again;
1091 }
1092
1093 copy_cmd_to_buffer(iommu, cmd);
1094
1095 /* Do we need to make sure all commands are processed? */
1096 iommu->need_sync = sync;
1097
1098 return 0;
1099 }
1100
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1101 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1102 struct iommu_cmd *cmd,
1103 bool sync)
1104 {
1105 unsigned long flags;
1106 int ret;
1107
1108 raw_spin_lock_irqsave(&iommu->lock, flags);
1109 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1110 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1111
1112 return ret;
1113 }
1114
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1115 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1116 {
1117 return iommu_queue_command_sync(iommu, cmd, true);
1118 }
1119
1120 /*
1121 * This function queues a completion wait command into the command
1122 * buffer of an IOMMU
1123 */
iommu_completion_wait(struct amd_iommu * iommu)1124 static int iommu_completion_wait(struct amd_iommu *iommu)
1125 {
1126 struct iommu_cmd cmd;
1127 unsigned long flags;
1128 int ret;
1129 u64 data;
1130
1131 if (!iommu->need_sync)
1132 return 0;
1133
1134 raw_spin_lock_irqsave(&iommu->lock, flags);
1135
1136 data = ++iommu->cmd_sem_val;
1137 build_completion_wait(&cmd, iommu, data);
1138
1139 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1140 if (ret)
1141 goto out_unlock;
1142
1143 ret = wait_on_sem(iommu, data);
1144
1145 out_unlock:
1146 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1147
1148 return ret;
1149 }
1150
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1151 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1152 {
1153 struct iommu_cmd cmd;
1154
1155 build_inv_dte(&cmd, devid);
1156
1157 return iommu_queue_command(iommu, &cmd);
1158 }
1159
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1160 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1161 {
1162 u32 devid;
1163
1164 for (devid = 0; devid <= 0xffff; ++devid)
1165 iommu_flush_dte(iommu, devid);
1166
1167 iommu_completion_wait(iommu);
1168 }
1169
1170 /*
1171 * This function uses heavy locking and may disable irqs for some time. But
1172 * this is no issue because it is only called during resume.
1173 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1174 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1175 {
1176 u32 dom_id;
1177
1178 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1179 struct iommu_cmd cmd;
1180 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1181 dom_id, 1);
1182 iommu_queue_command(iommu, &cmd);
1183 }
1184
1185 iommu_completion_wait(iommu);
1186 }
1187
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1188 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1189 {
1190 struct iommu_cmd cmd;
1191
1192 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1193 dom_id, 1);
1194 iommu_queue_command(iommu, &cmd);
1195
1196 iommu_completion_wait(iommu);
1197 }
1198
amd_iommu_flush_all(struct amd_iommu * iommu)1199 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1200 {
1201 struct iommu_cmd cmd;
1202
1203 build_inv_all(&cmd);
1204
1205 iommu_queue_command(iommu, &cmd);
1206 iommu_completion_wait(iommu);
1207 }
1208
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1209 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1210 {
1211 struct iommu_cmd cmd;
1212
1213 build_inv_irt(&cmd, devid);
1214
1215 iommu_queue_command(iommu, &cmd);
1216 }
1217
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1218 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1219 {
1220 u32 devid;
1221
1222 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1223 iommu_flush_irt(iommu, devid);
1224
1225 iommu_completion_wait(iommu);
1226 }
1227
iommu_flush_all_caches(struct amd_iommu * iommu)1228 void iommu_flush_all_caches(struct amd_iommu *iommu)
1229 {
1230 if (iommu_feature(iommu, FEATURE_IA)) {
1231 amd_iommu_flush_all(iommu);
1232 } else {
1233 amd_iommu_flush_dte_all(iommu);
1234 amd_iommu_flush_irt_all(iommu);
1235 amd_iommu_flush_tlb_all(iommu);
1236 }
1237 }
1238
1239 /*
1240 * Command send function for flushing on-device TLB
1241 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1242 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1243 u64 address, size_t size)
1244 {
1245 struct amd_iommu *iommu;
1246 struct iommu_cmd cmd;
1247 int qdep;
1248
1249 qdep = dev_data->ats.qdep;
1250 iommu = amd_iommu_rlookup_table[dev_data->devid];
1251
1252 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1253
1254 return iommu_queue_command(iommu, &cmd);
1255 }
1256
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1257 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1258 {
1259 struct amd_iommu *iommu = data;
1260
1261 return iommu_flush_dte(iommu, alias);
1262 }
1263
1264 /*
1265 * Command send function for invalidating a device table entry
1266 */
device_flush_dte(struct iommu_dev_data * dev_data)1267 static int device_flush_dte(struct iommu_dev_data *dev_data)
1268 {
1269 struct amd_iommu *iommu;
1270 u16 alias;
1271 int ret;
1272
1273 iommu = amd_iommu_rlookup_table[dev_data->devid];
1274
1275 if (dev_data->pdev)
1276 ret = pci_for_each_dma_alias(dev_data->pdev,
1277 device_flush_dte_alias, iommu);
1278 else
1279 ret = iommu_flush_dte(iommu, dev_data->devid);
1280 if (ret)
1281 return ret;
1282
1283 alias = amd_iommu_alias_table[dev_data->devid];
1284 if (alias != dev_data->devid) {
1285 ret = iommu_flush_dte(iommu, alias);
1286 if (ret)
1287 return ret;
1288 }
1289
1290 if (dev_data->ats.enabled)
1291 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1292
1293 return ret;
1294 }
1295
1296 /*
1297 * TLB invalidation function which is called from the mapping functions.
1298 * It invalidates a single PTE if the range to flush is within a single
1299 * page. Otherwise it flushes the whole TLB of the IOMMU.
1300 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1301 static void __domain_flush_pages(struct protection_domain *domain,
1302 u64 address, size_t size, int pde)
1303 {
1304 struct iommu_dev_data *dev_data;
1305 struct iommu_cmd cmd;
1306 int ret = 0, i;
1307
1308 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1309
1310 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1311 if (!domain->dev_iommu[i])
1312 continue;
1313
1314 /*
1315 * Devices of this domain are behind this IOMMU
1316 * We need a TLB flush
1317 */
1318 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1319 }
1320
1321 list_for_each_entry(dev_data, &domain->dev_list, list) {
1322
1323 if (!dev_data->ats.enabled)
1324 continue;
1325
1326 ret |= device_flush_iotlb(dev_data, address, size);
1327 }
1328
1329 WARN_ON(ret);
1330 }
1331
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1332 static void domain_flush_pages(struct protection_domain *domain,
1333 u64 address, size_t size)
1334 {
1335 __domain_flush_pages(domain, address, size, 0);
1336 }
1337
1338 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1339 static void domain_flush_tlb_pde(struct protection_domain *domain)
1340 {
1341 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1342 }
1343
domain_flush_complete(struct protection_domain * domain)1344 static void domain_flush_complete(struct protection_domain *domain)
1345 {
1346 int i;
1347
1348 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1349 if (domain && !domain->dev_iommu[i])
1350 continue;
1351
1352 /*
1353 * Devices of this domain are behind this IOMMU
1354 * We need to wait for completion of all commands.
1355 */
1356 iommu_completion_wait(amd_iommus[i]);
1357 }
1358 }
1359
1360 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1361 static void domain_flush_np_cache(struct protection_domain *domain,
1362 dma_addr_t iova, size_t size)
1363 {
1364 if (unlikely(amd_iommu_np_cache)) {
1365 unsigned long flags;
1366
1367 spin_lock_irqsave(&domain->lock, flags);
1368 domain_flush_pages(domain, iova, size);
1369 domain_flush_complete(domain);
1370 spin_unlock_irqrestore(&domain->lock, flags);
1371 }
1372 }
1373
1374
1375 /*
1376 * This function flushes the DTEs for all devices in domain
1377 */
domain_flush_devices(struct protection_domain * domain)1378 static void domain_flush_devices(struct protection_domain *domain)
1379 {
1380 struct iommu_dev_data *dev_data;
1381
1382 list_for_each_entry(dev_data, &domain->dev_list, list)
1383 device_flush_dte(dev_data);
1384 }
1385
1386 /****************************************************************************
1387 *
1388 * The functions below are used the create the page table mappings for
1389 * unity mapped regions.
1390 *
1391 ****************************************************************************/
1392
free_page_list(struct page * freelist)1393 static void free_page_list(struct page *freelist)
1394 {
1395 while (freelist != NULL) {
1396 unsigned long p = (unsigned long)page_address(freelist);
1397 freelist = freelist->freelist;
1398 free_page(p);
1399 }
1400 }
1401
free_pt_page(unsigned long pt,struct page * freelist)1402 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1403 {
1404 struct page *p = virt_to_page((void *)pt);
1405
1406 p->freelist = freelist;
1407
1408 return p;
1409 }
1410
1411 #define DEFINE_FREE_PT_FN(LVL, FN) \
1412 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1413 { \
1414 unsigned long p; \
1415 u64 *pt; \
1416 int i; \
1417 \
1418 pt = (u64 *)__pt; \
1419 \
1420 for (i = 0; i < 512; ++i) { \
1421 /* PTE present? */ \
1422 if (!IOMMU_PTE_PRESENT(pt[i])) \
1423 continue; \
1424 \
1425 /* Large PTE? */ \
1426 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1427 PM_PTE_LEVEL(pt[i]) == 7) \
1428 continue; \
1429 \
1430 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1431 freelist = FN(p, freelist); \
1432 } \
1433 \
1434 return free_pt_page((unsigned long)pt, freelist); \
1435 }
1436
DEFINE_FREE_PT_FN(l2,free_pt_page)1437 DEFINE_FREE_PT_FN(l2, free_pt_page)
1438 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1439 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1440 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1441 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1442
1443 static struct page *free_sub_pt(unsigned long root, int mode,
1444 struct page *freelist)
1445 {
1446 switch (mode) {
1447 case PAGE_MODE_NONE:
1448 case PAGE_MODE_7_LEVEL:
1449 break;
1450 case PAGE_MODE_1_LEVEL:
1451 freelist = free_pt_page(root, freelist);
1452 break;
1453 case PAGE_MODE_2_LEVEL:
1454 freelist = free_pt_l2(root, freelist);
1455 break;
1456 case PAGE_MODE_3_LEVEL:
1457 freelist = free_pt_l3(root, freelist);
1458 break;
1459 case PAGE_MODE_4_LEVEL:
1460 freelist = free_pt_l4(root, freelist);
1461 break;
1462 case PAGE_MODE_5_LEVEL:
1463 freelist = free_pt_l5(root, freelist);
1464 break;
1465 case PAGE_MODE_6_LEVEL:
1466 freelist = free_pt_l6(root, freelist);
1467 break;
1468 default:
1469 BUG();
1470 }
1471
1472 return freelist;
1473 }
1474
free_pagetable(struct domain_pgtable * pgtable)1475 static void free_pagetable(struct domain_pgtable *pgtable)
1476 {
1477 struct page *freelist = NULL;
1478 unsigned long root;
1479
1480 if (pgtable->mode == PAGE_MODE_NONE)
1481 return;
1482
1483 BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
1484 pgtable->mode > PAGE_MODE_6_LEVEL);
1485
1486 root = (unsigned long)pgtable->root;
1487 freelist = free_sub_pt(root, pgtable->mode, freelist);
1488
1489 free_page_list(freelist);
1490 }
1491
1492 /*
1493 * This function is used to add another level to an IO page table. Adding
1494 * another level increases the size of the address space by 9 bits to a size up
1495 * to 64 bits.
1496 */
increase_address_space(struct protection_domain * domain,unsigned long address,gfp_t gfp)1497 static bool increase_address_space(struct protection_domain *domain,
1498 unsigned long address,
1499 gfp_t gfp)
1500 {
1501 struct domain_pgtable pgtable;
1502 unsigned long flags;
1503 bool ret = true;
1504 u64 *pte;
1505
1506 spin_lock_irqsave(&domain->lock, flags);
1507
1508 amd_iommu_domain_get_pgtable(domain, &pgtable);
1509
1510 if (address <= PM_LEVEL_SIZE(pgtable.mode))
1511 goto out;
1512
1513 ret = false;
1514 if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL))
1515 goto out;
1516
1517 pte = (void *)get_zeroed_page(gfp);
1518 if (!pte)
1519 goto out;
1520
1521 *pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root));
1522
1523 pgtable.root = pte;
1524 pgtable.mode += 1;
1525 update_and_flush_device_table(domain, &pgtable);
1526 domain_flush_complete(domain);
1527
1528 /*
1529 * Device Table needs to be updated and flushed before the new root can
1530 * be published.
1531 */
1532 amd_iommu_domain_set_pgtable(domain, pte, pgtable.mode);
1533
1534 ret = true;
1535
1536 out:
1537 spin_unlock_irqrestore(&domain->lock, flags);
1538
1539 return ret;
1540 }
1541
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp,bool * updated)1542 static u64 *alloc_pte(struct protection_domain *domain,
1543 unsigned long address,
1544 unsigned long page_size,
1545 u64 **pte_page,
1546 gfp_t gfp,
1547 bool *updated)
1548 {
1549 struct domain_pgtable pgtable;
1550 int level, end_lvl;
1551 u64 *pte, *page;
1552
1553 BUG_ON(!is_power_of_2(page_size));
1554
1555 amd_iommu_domain_get_pgtable(domain, &pgtable);
1556
1557 while (address > PM_LEVEL_SIZE(pgtable.mode)) {
1558 /*
1559 * Return an error if there is no memory to update the
1560 * page-table.
1561 */
1562 if (!increase_address_space(domain, address, gfp))
1563 return NULL;
1564
1565 /* Read new values to check if update was successful */
1566 amd_iommu_domain_get_pgtable(domain, &pgtable);
1567 }
1568
1569
1570 level = pgtable.mode - 1;
1571 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1572 address = PAGE_SIZE_ALIGN(address, page_size);
1573 end_lvl = PAGE_SIZE_LEVEL(page_size);
1574
1575 while (level > end_lvl) {
1576 u64 __pte, __npte;
1577 int pte_level;
1578
1579 __pte = *pte;
1580 pte_level = PM_PTE_LEVEL(__pte);
1581
1582 /*
1583 * If we replace a series of large PTEs, we need
1584 * to tear down all of them.
1585 */
1586 if (IOMMU_PTE_PRESENT(__pte) &&
1587 pte_level == PAGE_MODE_7_LEVEL) {
1588 unsigned long count, i;
1589 u64 *lpte;
1590
1591 lpte = first_pte_l7(pte, NULL, &count);
1592
1593 /*
1594 * Unmap the replicated PTEs that still match the
1595 * original large mapping
1596 */
1597 for (i = 0; i < count; ++i)
1598 cmpxchg64(&lpte[i], __pte, 0ULL);
1599
1600 *updated = true;
1601 continue;
1602 }
1603
1604 if (!IOMMU_PTE_PRESENT(__pte) ||
1605 pte_level == PAGE_MODE_NONE) {
1606 page = (u64 *)get_zeroed_page(gfp);
1607
1608 if (!page)
1609 return NULL;
1610
1611 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1612
1613 /* pte could have been changed somewhere. */
1614 if (cmpxchg64(pte, __pte, __npte) != __pte)
1615 free_page((unsigned long)page);
1616 else if (IOMMU_PTE_PRESENT(__pte))
1617 *updated = true;
1618
1619 continue;
1620 }
1621
1622 /* No level skipping support yet */
1623 if (pte_level != level)
1624 return NULL;
1625
1626 level -= 1;
1627
1628 pte = IOMMU_PTE_PAGE(__pte);
1629
1630 if (pte_page && level == end_lvl)
1631 *pte_page = pte;
1632
1633 pte = &pte[PM_LEVEL_INDEX(level, address)];
1634 }
1635
1636 return pte;
1637 }
1638
1639 /*
1640 * This function checks if there is a PTE for a given dma address. If
1641 * there is one, it returns the pointer to it.
1642 */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1643 static u64 *fetch_pte(struct protection_domain *domain,
1644 unsigned long address,
1645 unsigned long *page_size)
1646 {
1647 struct domain_pgtable pgtable;
1648 int level;
1649 u64 *pte;
1650
1651 *page_size = 0;
1652
1653 amd_iommu_domain_get_pgtable(domain, &pgtable);
1654
1655 if (address > PM_LEVEL_SIZE(pgtable.mode))
1656 return NULL;
1657
1658 level = pgtable.mode - 1;
1659 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1660 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1661
1662 while (level > 0) {
1663
1664 /* Not Present */
1665 if (!IOMMU_PTE_PRESENT(*pte))
1666 return NULL;
1667
1668 /* Large PTE */
1669 if (PM_PTE_LEVEL(*pte) == 7 ||
1670 PM_PTE_LEVEL(*pte) == 0)
1671 break;
1672
1673 /* No level skipping support yet */
1674 if (PM_PTE_LEVEL(*pte) != level)
1675 return NULL;
1676
1677 level -= 1;
1678
1679 /* Walk to the next level */
1680 pte = IOMMU_PTE_PAGE(*pte);
1681 pte = &pte[PM_LEVEL_INDEX(level, address)];
1682 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1683 }
1684
1685 /*
1686 * If we have a series of large PTEs, make
1687 * sure to return a pointer to the first one.
1688 */
1689 if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1690 pte = first_pte_l7(pte, page_size, NULL);
1691
1692 return pte;
1693 }
1694
free_clear_pte(u64 * pte,u64 pteval,struct page * freelist)1695 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1696 {
1697 unsigned long pt;
1698 int mode;
1699
1700 while (cmpxchg64(pte, pteval, 0) != pteval) {
1701 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1702 pteval = *pte;
1703 }
1704
1705 if (!IOMMU_PTE_PRESENT(pteval))
1706 return freelist;
1707
1708 pt = (unsigned long)IOMMU_PTE_PAGE(pteval);
1709 mode = IOMMU_PTE_MODE(pteval);
1710
1711 return free_sub_pt(pt, mode, freelist);
1712 }
1713
1714 /*
1715 * Generic mapping functions. It maps a physical address into a DMA
1716 * address space. It allocates the page table pages if necessary.
1717 * In the future it can be extended to a generic mapping function
1718 * supporting all features of AMD IOMMU page tables like level skipping
1719 * and full 64 bit address spaces.
1720 */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,unsigned long page_size,int prot,gfp_t gfp)1721 static int iommu_map_page(struct protection_domain *dom,
1722 unsigned long bus_addr,
1723 unsigned long phys_addr,
1724 unsigned long page_size,
1725 int prot,
1726 gfp_t gfp)
1727 {
1728 struct page *freelist = NULL;
1729 bool updated = false;
1730 u64 __pte, *pte;
1731 int ret, i, count;
1732
1733 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1734 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1735
1736 ret = -EINVAL;
1737 if (!(prot & IOMMU_PROT_MASK))
1738 goto out;
1739
1740 count = PAGE_SIZE_PTE_COUNT(page_size);
1741 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1742
1743 ret = -ENOMEM;
1744 if (!pte)
1745 goto out;
1746
1747 for (i = 0; i < count; ++i)
1748 freelist = free_clear_pte(&pte[i], pte[i], freelist);
1749
1750 if (freelist != NULL)
1751 updated = true;
1752
1753 if (count > 1) {
1754 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1755 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1756 } else
1757 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1758
1759 if (prot & IOMMU_PROT_IR)
1760 __pte |= IOMMU_PTE_IR;
1761 if (prot & IOMMU_PROT_IW)
1762 __pte |= IOMMU_PTE_IW;
1763
1764 for (i = 0; i < count; ++i)
1765 pte[i] = __pte;
1766
1767 ret = 0;
1768
1769 out:
1770 if (updated) {
1771 unsigned long flags;
1772
1773 spin_lock_irqsave(&dom->lock, flags);
1774 /*
1775 * Flush domain TLB(s) and wait for completion. Any Device-Table
1776 * Updates and flushing already happened in
1777 * increase_address_space().
1778 */
1779 domain_flush_tlb_pde(dom);
1780 domain_flush_complete(dom);
1781 spin_unlock_irqrestore(&dom->lock, flags);
1782 }
1783
1784 /* Everything flushed out, free pages now */
1785 free_page_list(freelist);
1786
1787 return ret;
1788 }
1789
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1790 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1791 unsigned long bus_addr,
1792 unsigned long page_size)
1793 {
1794 unsigned long long unmapped;
1795 unsigned long unmap_size;
1796 u64 *pte;
1797
1798 BUG_ON(!is_power_of_2(page_size));
1799
1800 unmapped = 0;
1801
1802 while (unmapped < page_size) {
1803
1804 pte = fetch_pte(dom, bus_addr, &unmap_size);
1805
1806 if (pte) {
1807 int i, count;
1808
1809 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1810 for (i = 0; i < count; i++)
1811 pte[i] = 0ULL;
1812 }
1813
1814 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1815 unmapped += unmap_size;
1816 }
1817
1818 BUG_ON(unmapped && !is_power_of_2(unmapped));
1819
1820 return unmapped;
1821 }
1822
1823 /****************************************************************************
1824 *
1825 * The next functions belong to the domain allocation. A domain is
1826 * allocated for every IOMMU as the default domain. If device isolation
1827 * is enabled, every device get its own domain. The most important thing
1828 * about domains is the page table mapping the DMA address space they
1829 * contain.
1830 *
1831 ****************************************************************************/
1832
domain_id_alloc(void)1833 static u16 domain_id_alloc(void)
1834 {
1835 int id;
1836
1837 spin_lock(&pd_bitmap_lock);
1838 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1839 BUG_ON(id == 0);
1840 if (id > 0 && id < MAX_DOMAIN_ID)
1841 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1842 else
1843 id = 0;
1844 spin_unlock(&pd_bitmap_lock);
1845
1846 return id;
1847 }
1848
domain_id_free(int id)1849 static void domain_id_free(int id)
1850 {
1851 spin_lock(&pd_bitmap_lock);
1852 if (id > 0 && id < MAX_DOMAIN_ID)
1853 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1854 spin_unlock(&pd_bitmap_lock);
1855 }
1856
free_gcr3_tbl_level1(u64 * tbl)1857 static void free_gcr3_tbl_level1(u64 *tbl)
1858 {
1859 u64 *ptr;
1860 int i;
1861
1862 for (i = 0; i < 512; ++i) {
1863 if (!(tbl[i] & GCR3_VALID))
1864 continue;
1865
1866 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1867
1868 free_page((unsigned long)ptr);
1869 }
1870 }
1871
free_gcr3_tbl_level2(u64 * tbl)1872 static void free_gcr3_tbl_level2(u64 *tbl)
1873 {
1874 u64 *ptr;
1875 int i;
1876
1877 for (i = 0; i < 512; ++i) {
1878 if (!(tbl[i] & GCR3_VALID))
1879 continue;
1880
1881 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1882
1883 free_gcr3_tbl_level1(ptr);
1884 }
1885 }
1886
free_gcr3_table(struct protection_domain * domain)1887 static void free_gcr3_table(struct protection_domain *domain)
1888 {
1889 if (domain->glx == 2)
1890 free_gcr3_tbl_level2(domain->gcr3_tbl);
1891 else if (domain->glx == 1)
1892 free_gcr3_tbl_level1(domain->gcr3_tbl);
1893 else
1894 BUG_ON(domain->glx != 0);
1895
1896 free_page((unsigned long)domain->gcr3_tbl);
1897 }
1898
set_dte_entry(u16 devid,struct protection_domain * domain,struct domain_pgtable * pgtable,bool ats,bool ppr)1899 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1900 struct domain_pgtable *pgtable,
1901 bool ats, bool ppr)
1902 {
1903 u64 pte_root = 0;
1904 u64 flags = 0;
1905 u32 old_domid;
1906
1907 if (pgtable->mode != PAGE_MODE_NONE)
1908 pte_root = iommu_virt_to_phys(pgtable->root);
1909
1910 pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK)
1911 << DEV_ENTRY_MODE_SHIFT;
1912 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1913
1914 flags = amd_iommu_dev_table[devid].data[1];
1915
1916 if (ats)
1917 flags |= DTE_FLAG_IOTLB;
1918
1919 if (ppr) {
1920 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1921
1922 if (iommu_feature(iommu, FEATURE_EPHSUP))
1923 pte_root |= 1ULL << DEV_ENTRY_PPR;
1924 }
1925
1926 if (domain->flags & PD_IOMMUV2_MASK) {
1927 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1928 u64 glx = domain->glx;
1929 u64 tmp;
1930
1931 pte_root |= DTE_FLAG_GV;
1932 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1933
1934 /* First mask out possible old values for GCR3 table */
1935 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1936 flags &= ~tmp;
1937
1938 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1939 flags &= ~tmp;
1940
1941 /* Encode GCR3 table into DTE */
1942 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1943 pte_root |= tmp;
1944
1945 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1946 flags |= tmp;
1947
1948 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1949 flags |= tmp;
1950 }
1951
1952 flags &= ~DEV_DOMID_MASK;
1953 flags |= domain->id;
1954
1955 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1956 amd_iommu_dev_table[devid].data[1] = flags;
1957 amd_iommu_dev_table[devid].data[0] = pte_root;
1958
1959 /*
1960 * A kdump kernel might be replacing a domain ID that was copied from
1961 * the previous kernel--if so, it needs to flush the translation cache
1962 * entries for the old domain ID that is being overwritten
1963 */
1964 if (old_domid) {
1965 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1966
1967 amd_iommu_flush_tlb_domid(iommu, old_domid);
1968 }
1969 }
1970
clear_dte_entry(u16 devid)1971 static void clear_dte_entry(u16 devid)
1972 {
1973 /* remove entry from the device table seen by the hardware */
1974 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1975 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1976
1977 amd_iommu_apply_erratum_63(devid);
1978 }
1979
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1980 static void do_attach(struct iommu_dev_data *dev_data,
1981 struct protection_domain *domain)
1982 {
1983 struct domain_pgtable pgtable;
1984 struct amd_iommu *iommu;
1985 bool ats;
1986
1987 iommu = amd_iommu_rlookup_table[dev_data->devid];
1988 ats = dev_data->ats.enabled;
1989
1990 /* Update data structures */
1991 dev_data->domain = domain;
1992 list_add(&dev_data->list, &domain->dev_list);
1993
1994 /* Do reference counting */
1995 domain->dev_iommu[iommu->index] += 1;
1996 domain->dev_cnt += 1;
1997
1998 /* Update device table */
1999 amd_iommu_domain_get_pgtable(domain, &pgtable);
2000 set_dte_entry(dev_data->devid, domain, &pgtable,
2001 ats, dev_data->iommu_v2);
2002 clone_aliases(dev_data->pdev);
2003
2004 device_flush_dte(dev_data);
2005 }
2006
do_detach(struct iommu_dev_data * dev_data)2007 static void do_detach(struct iommu_dev_data *dev_data)
2008 {
2009 struct protection_domain *domain = dev_data->domain;
2010 struct amd_iommu *iommu;
2011
2012 iommu = amd_iommu_rlookup_table[dev_data->devid];
2013
2014 /* Update data structures */
2015 dev_data->domain = NULL;
2016 list_del(&dev_data->list);
2017 clear_dte_entry(dev_data->devid);
2018 clone_aliases(dev_data->pdev);
2019
2020 /* Flush the DTE entry */
2021 device_flush_dte(dev_data);
2022
2023 /* Flush IOTLB */
2024 domain_flush_tlb_pde(domain);
2025
2026 /* Wait for the flushes to finish */
2027 domain_flush_complete(domain);
2028
2029 /* decrease reference counters - needs to happen after the flushes */
2030 domain->dev_iommu[iommu->index] -= 1;
2031 domain->dev_cnt -= 1;
2032 }
2033
pdev_iommuv2_disable(struct pci_dev * pdev)2034 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2035 {
2036 pci_disable_ats(pdev);
2037 pci_disable_pri(pdev);
2038 pci_disable_pasid(pdev);
2039 }
2040
2041 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2042 static int pri_reset_while_enabled(struct pci_dev *pdev)
2043 {
2044 u16 control;
2045 int pos;
2046
2047 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2048 if (!pos)
2049 return -EINVAL;
2050
2051 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2052 control |= PCI_PRI_CTRL_RESET;
2053 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2054
2055 return 0;
2056 }
2057
pdev_iommuv2_enable(struct pci_dev * pdev)2058 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2059 {
2060 bool reset_enable;
2061 int reqs, ret;
2062
2063 /* FIXME: Hardcode number of outstanding requests for now */
2064 reqs = 32;
2065 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2066 reqs = 1;
2067 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2068
2069 /* Only allow access to user-accessible pages */
2070 ret = pci_enable_pasid(pdev, 0);
2071 if (ret)
2072 goto out_err;
2073
2074 /* First reset the PRI state of the device */
2075 ret = pci_reset_pri(pdev);
2076 if (ret)
2077 goto out_err;
2078
2079 /* Enable PRI */
2080 ret = pci_enable_pri(pdev, reqs);
2081 if (ret)
2082 goto out_err;
2083
2084 if (reset_enable) {
2085 ret = pri_reset_while_enabled(pdev);
2086 if (ret)
2087 goto out_err;
2088 }
2089
2090 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2091 if (ret)
2092 goto out_err;
2093
2094 return 0;
2095
2096 out_err:
2097 pci_disable_pri(pdev);
2098 pci_disable_pasid(pdev);
2099
2100 return ret;
2101 }
2102
2103 /*
2104 * If a device is not yet associated with a domain, this function makes the
2105 * device visible in the domain
2106 */
attach_device(struct device * dev,struct protection_domain * domain)2107 static int attach_device(struct device *dev,
2108 struct protection_domain *domain)
2109 {
2110 struct iommu_dev_data *dev_data;
2111 struct pci_dev *pdev;
2112 unsigned long flags;
2113 int ret;
2114
2115 spin_lock_irqsave(&domain->lock, flags);
2116
2117 dev_data = dev_iommu_priv_get(dev);
2118
2119 spin_lock(&dev_data->lock);
2120
2121 ret = -EBUSY;
2122 if (dev_data->domain != NULL)
2123 goto out;
2124
2125 if (!dev_is_pci(dev))
2126 goto skip_ats_check;
2127
2128 pdev = to_pci_dev(dev);
2129 if (domain->flags & PD_IOMMUV2_MASK) {
2130 struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
2131
2132 ret = -EINVAL;
2133 if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
2134 goto out;
2135
2136 if (dev_data->iommu_v2) {
2137 if (pdev_iommuv2_enable(pdev) != 0)
2138 goto out;
2139
2140 dev_data->ats.enabled = true;
2141 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2142 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
2143 }
2144 } else if (amd_iommu_iotlb_sup &&
2145 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2146 dev_data->ats.enabled = true;
2147 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2148 }
2149
2150 skip_ats_check:
2151 ret = 0;
2152
2153 do_attach(dev_data, domain);
2154
2155 /*
2156 * We might boot into a crash-kernel here. The crashed kernel
2157 * left the caches in the IOMMU dirty. So we have to flush
2158 * here to evict all dirty stuff.
2159 */
2160 domain_flush_tlb_pde(domain);
2161
2162 domain_flush_complete(domain);
2163
2164 out:
2165 spin_unlock(&dev_data->lock);
2166
2167 spin_unlock_irqrestore(&domain->lock, flags);
2168
2169 return ret;
2170 }
2171
2172 /*
2173 * Removes a device from a protection domain (with devtable_lock held)
2174 */
detach_device(struct device * dev)2175 static void detach_device(struct device *dev)
2176 {
2177 struct protection_domain *domain;
2178 struct iommu_dev_data *dev_data;
2179 unsigned long flags;
2180
2181 dev_data = dev_iommu_priv_get(dev);
2182 domain = dev_data->domain;
2183
2184 spin_lock_irqsave(&domain->lock, flags);
2185
2186 spin_lock(&dev_data->lock);
2187
2188 /*
2189 * First check if the device is still attached. It might already
2190 * be detached from its domain because the generic
2191 * iommu_detach_group code detached it and we try again here in
2192 * our alias handling.
2193 */
2194 if (WARN_ON(!dev_data->domain))
2195 goto out;
2196
2197 do_detach(dev_data);
2198
2199 if (!dev_is_pci(dev))
2200 goto out;
2201
2202 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2203 pdev_iommuv2_disable(to_pci_dev(dev));
2204 else if (dev_data->ats.enabled)
2205 pci_disable_ats(to_pci_dev(dev));
2206
2207 dev_data->ats.enabled = false;
2208
2209 out:
2210 spin_unlock(&dev_data->lock);
2211
2212 spin_unlock_irqrestore(&domain->lock, flags);
2213 }
2214
amd_iommu_probe_device(struct device * dev)2215 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2216 {
2217 struct iommu_device *iommu_dev;
2218 struct amd_iommu *iommu;
2219 int ret, devid;
2220
2221 if (!check_device(dev))
2222 return ERR_PTR(-ENODEV);
2223
2224 devid = get_device_id(dev);
2225 if (devid < 0)
2226 return ERR_PTR(devid);
2227
2228 iommu = amd_iommu_rlookup_table[devid];
2229
2230 if (dev_iommu_priv_get(dev))
2231 return &iommu->iommu;
2232
2233 ret = iommu_init_device(dev);
2234 if (ret) {
2235 if (ret != -ENOTSUPP)
2236 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2237 iommu_dev = ERR_PTR(ret);
2238 iommu_ignore_device(dev);
2239 } else {
2240 amd_iommu_set_pci_msi_domain(dev, iommu);
2241 iommu_dev = &iommu->iommu;
2242 }
2243
2244 iommu_completion_wait(iommu);
2245
2246 return iommu_dev;
2247 }
2248
amd_iommu_probe_finalize(struct device * dev)2249 static void amd_iommu_probe_finalize(struct device *dev)
2250 {
2251 struct iommu_domain *domain;
2252
2253 /* Domains are initialized for this device - have a look what we ended up with */
2254 domain = iommu_get_domain_for_dev(dev);
2255 if (domain->type == IOMMU_DOMAIN_DMA)
2256 iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0);
2257 }
2258
amd_iommu_release_device(struct device * dev)2259 static void amd_iommu_release_device(struct device *dev)
2260 {
2261 int devid = get_device_id(dev);
2262 struct amd_iommu *iommu;
2263
2264 if (!check_device(dev))
2265 return;
2266
2267 iommu = amd_iommu_rlookup_table[devid];
2268
2269 amd_iommu_uninit_device(dev);
2270 iommu_completion_wait(iommu);
2271 }
2272
amd_iommu_device_group(struct device * dev)2273 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2274 {
2275 if (dev_is_pci(dev))
2276 return pci_device_group(dev);
2277
2278 return acpihid_device_group(dev);
2279 }
2280
amd_iommu_domain_get_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)2281 static int amd_iommu_domain_get_attr(struct iommu_domain *domain,
2282 enum iommu_attr attr, void *data)
2283 {
2284 switch (domain->type) {
2285 case IOMMU_DOMAIN_UNMANAGED:
2286 return -ENODEV;
2287 case IOMMU_DOMAIN_DMA:
2288 switch (attr) {
2289 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
2290 *(int *)data = !amd_iommu_unmap_flush;
2291 return 0;
2292 default:
2293 return -ENODEV;
2294 }
2295 break;
2296 default:
2297 return -EINVAL;
2298 }
2299 }
2300
2301 /*****************************************************************************
2302 *
2303 * The next functions belong to the dma_ops mapping/unmapping code.
2304 *
2305 *****************************************************************************/
2306
update_device_table(struct protection_domain * domain,struct domain_pgtable * pgtable)2307 static void update_device_table(struct protection_domain *domain,
2308 struct domain_pgtable *pgtable)
2309 {
2310 struct iommu_dev_data *dev_data;
2311
2312 list_for_each_entry(dev_data, &domain->dev_list, list) {
2313 set_dte_entry(dev_data->devid, domain, pgtable,
2314 dev_data->ats.enabled, dev_data->iommu_v2);
2315 clone_aliases(dev_data->pdev);
2316 }
2317 }
2318
update_and_flush_device_table(struct protection_domain * domain,struct domain_pgtable * pgtable)2319 static void update_and_flush_device_table(struct protection_domain *domain,
2320 struct domain_pgtable *pgtable)
2321 {
2322 update_device_table(domain, pgtable);
2323 domain_flush_devices(domain);
2324 }
2325
update_domain(struct protection_domain * domain)2326 static void update_domain(struct protection_domain *domain)
2327 {
2328 struct domain_pgtable pgtable;
2329
2330 /* Update device table */
2331 amd_iommu_domain_get_pgtable(domain, &pgtable);
2332 update_and_flush_device_table(domain, &pgtable);
2333
2334 /* Flush domain TLB(s) and wait for completion */
2335 domain_flush_tlb_pde(domain);
2336 domain_flush_complete(domain);
2337 }
2338
amd_iommu_init_api(void)2339 int __init amd_iommu_init_api(void)
2340 {
2341 int ret, err = 0;
2342
2343 ret = iova_cache_get();
2344 if (ret)
2345 return ret;
2346
2347 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2348 if (err)
2349 return err;
2350 #ifdef CONFIG_ARM_AMBA
2351 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2352 if (err)
2353 return err;
2354 #endif
2355 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2356 if (err)
2357 return err;
2358
2359 return 0;
2360 }
2361
amd_iommu_init_dma_ops(void)2362 int __init amd_iommu_init_dma_ops(void)
2363 {
2364 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2365
2366 if (amd_iommu_unmap_flush)
2367 pr_info("IO/TLB flush on unmap enabled\n");
2368 else
2369 pr_info("Lazy IO/TLB flushing enabled\n");
2370
2371 return 0;
2372
2373 }
2374
2375 /*****************************************************************************
2376 *
2377 * The following functions belong to the exported interface of AMD IOMMU
2378 *
2379 * This interface allows access to lower level functions of the IOMMU
2380 * like protection domain handling and assignement of devices to domains
2381 * which is not possible with the dma_ops interface.
2382 *
2383 *****************************************************************************/
2384
cleanup_domain(struct protection_domain * domain)2385 static void cleanup_domain(struct protection_domain *domain)
2386 {
2387 struct iommu_dev_data *entry;
2388 unsigned long flags;
2389
2390 spin_lock_irqsave(&domain->lock, flags);
2391
2392 while (!list_empty(&domain->dev_list)) {
2393 entry = list_first_entry(&domain->dev_list,
2394 struct iommu_dev_data, list);
2395 BUG_ON(!entry->domain);
2396 do_detach(entry);
2397 }
2398
2399 spin_unlock_irqrestore(&domain->lock, flags);
2400 }
2401
protection_domain_free(struct protection_domain * domain)2402 static void protection_domain_free(struct protection_domain *domain)
2403 {
2404 struct domain_pgtable pgtable;
2405
2406 if (!domain)
2407 return;
2408
2409 if (domain->id)
2410 domain_id_free(domain->id);
2411
2412 amd_iommu_domain_get_pgtable(domain, &pgtable);
2413 amd_iommu_domain_clr_pt_root(domain);
2414 free_pagetable(&pgtable);
2415
2416 kfree(domain);
2417 }
2418
protection_domain_init(struct protection_domain * domain,int mode)2419 static int protection_domain_init(struct protection_domain *domain, int mode)
2420 {
2421 u64 *pt_root = NULL;
2422
2423 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2424
2425 spin_lock_init(&domain->lock);
2426 domain->id = domain_id_alloc();
2427 if (!domain->id)
2428 return -ENOMEM;
2429 INIT_LIST_HEAD(&domain->dev_list);
2430
2431 if (mode != PAGE_MODE_NONE) {
2432 pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2433 if (!pt_root)
2434 return -ENOMEM;
2435 }
2436
2437 amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2438
2439 return 0;
2440 }
2441
protection_domain_alloc(int mode)2442 static struct protection_domain *protection_domain_alloc(int mode)
2443 {
2444 struct protection_domain *domain;
2445
2446 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2447 if (!domain)
2448 return NULL;
2449
2450 if (protection_domain_init(domain, mode))
2451 goto out_err;
2452
2453 return domain;
2454
2455 out_err:
2456 kfree(domain);
2457
2458 return NULL;
2459 }
2460
amd_iommu_domain_alloc(unsigned type)2461 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2462 {
2463 struct protection_domain *domain;
2464 int mode = DEFAULT_PGTABLE_LEVEL;
2465
2466 if (type == IOMMU_DOMAIN_IDENTITY)
2467 mode = PAGE_MODE_NONE;
2468
2469 domain = protection_domain_alloc(mode);
2470 if (!domain)
2471 return NULL;
2472
2473 domain->domain.geometry.aperture_start = 0;
2474 domain->domain.geometry.aperture_end = ~0ULL;
2475 domain->domain.geometry.force_aperture = true;
2476
2477 if (type == IOMMU_DOMAIN_DMA &&
2478 iommu_get_dma_cookie(&domain->domain) == -ENOMEM)
2479 goto free_domain;
2480
2481 return &domain->domain;
2482
2483 free_domain:
2484 protection_domain_free(domain);
2485
2486 return NULL;
2487 }
2488
amd_iommu_domain_free(struct iommu_domain * dom)2489 static void amd_iommu_domain_free(struct iommu_domain *dom)
2490 {
2491 struct protection_domain *domain;
2492
2493 domain = to_pdomain(dom);
2494
2495 if (domain->dev_cnt > 0)
2496 cleanup_domain(domain);
2497
2498 BUG_ON(domain->dev_cnt != 0);
2499
2500 if (!dom)
2501 return;
2502
2503 if (dom->type == IOMMU_DOMAIN_DMA)
2504 iommu_put_dma_cookie(&domain->domain);
2505
2506 if (domain->flags & PD_IOMMUV2_MASK)
2507 free_gcr3_table(domain);
2508
2509 protection_domain_free(domain);
2510 }
2511
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)2512 static void amd_iommu_detach_device(struct iommu_domain *dom,
2513 struct device *dev)
2514 {
2515 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2516 struct amd_iommu *iommu;
2517 int devid;
2518
2519 if (!check_device(dev))
2520 return;
2521
2522 devid = get_device_id(dev);
2523 if (devid < 0)
2524 return;
2525
2526 if (dev_data->domain != NULL)
2527 detach_device(dev);
2528
2529 iommu = amd_iommu_rlookup_table[devid];
2530 if (!iommu)
2531 return;
2532
2533 #ifdef CONFIG_IRQ_REMAP
2534 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2535 (dom->type == IOMMU_DOMAIN_UNMANAGED))
2536 dev_data->use_vapic = 0;
2537 #endif
2538
2539 iommu_completion_wait(iommu);
2540 }
2541
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2542 static int amd_iommu_attach_device(struct iommu_domain *dom,
2543 struct device *dev)
2544 {
2545 struct protection_domain *domain = to_pdomain(dom);
2546 struct iommu_dev_data *dev_data;
2547 struct amd_iommu *iommu;
2548 int ret;
2549
2550 if (!check_device(dev))
2551 return -EINVAL;
2552
2553 dev_data = dev_iommu_priv_get(dev);
2554 dev_data->defer_attach = false;
2555
2556 iommu = amd_iommu_rlookup_table[dev_data->devid];
2557 if (!iommu)
2558 return -EINVAL;
2559
2560 if (dev_data->domain)
2561 detach_device(dev);
2562
2563 ret = attach_device(dev, domain);
2564
2565 #ifdef CONFIG_IRQ_REMAP
2566 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2567 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2568 dev_data->use_vapic = 1;
2569 else
2570 dev_data->use_vapic = 0;
2571 }
2572 #endif
2573
2574 iommu_completion_wait(iommu);
2575
2576 return ret;
2577 }
2578
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot,gfp_t gfp)2579 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2580 phys_addr_t paddr, size_t page_size, int iommu_prot,
2581 gfp_t gfp)
2582 {
2583 struct protection_domain *domain = to_pdomain(dom);
2584 struct domain_pgtable pgtable;
2585 int prot = 0;
2586 int ret;
2587
2588 amd_iommu_domain_get_pgtable(domain, &pgtable);
2589 if (pgtable.mode == PAGE_MODE_NONE)
2590 return -EINVAL;
2591
2592 if (iommu_prot & IOMMU_READ)
2593 prot |= IOMMU_PROT_IR;
2594 if (iommu_prot & IOMMU_WRITE)
2595 prot |= IOMMU_PROT_IW;
2596
2597 ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp);
2598
2599 domain_flush_np_cache(domain, iova, page_size);
2600
2601 return ret;
2602 }
2603
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size,struct iommu_iotlb_gather * gather)2604 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2605 size_t page_size,
2606 struct iommu_iotlb_gather *gather)
2607 {
2608 struct protection_domain *domain = to_pdomain(dom);
2609 struct domain_pgtable pgtable;
2610
2611 amd_iommu_domain_get_pgtable(domain, &pgtable);
2612 if (pgtable.mode == PAGE_MODE_NONE)
2613 return 0;
2614
2615 return iommu_unmap_page(domain, iova, page_size);
2616 }
2617
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2618 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2619 dma_addr_t iova)
2620 {
2621 struct protection_domain *domain = to_pdomain(dom);
2622 unsigned long offset_mask, pte_pgsize;
2623 struct domain_pgtable pgtable;
2624 u64 *pte, __pte;
2625
2626 amd_iommu_domain_get_pgtable(domain, &pgtable);
2627 if (pgtable.mode == PAGE_MODE_NONE)
2628 return iova;
2629
2630 pte = fetch_pte(domain, iova, &pte_pgsize);
2631
2632 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2633 return 0;
2634
2635 offset_mask = pte_pgsize - 1;
2636 __pte = __sme_clr(*pte & PM_ADDR_MASK);
2637
2638 return (__pte & ~offset_mask) | (iova & offset_mask);
2639 }
2640
amd_iommu_capable(enum iommu_cap cap)2641 static bool amd_iommu_capable(enum iommu_cap cap)
2642 {
2643 switch (cap) {
2644 case IOMMU_CAP_CACHE_COHERENCY:
2645 return true;
2646 case IOMMU_CAP_INTR_REMAP:
2647 return (irq_remapping_enabled == 1);
2648 case IOMMU_CAP_NOEXEC:
2649 return false;
2650 default:
2651 break;
2652 }
2653
2654 return false;
2655 }
2656
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2657 static void amd_iommu_get_resv_regions(struct device *dev,
2658 struct list_head *head)
2659 {
2660 struct iommu_resv_region *region;
2661 struct unity_map_entry *entry;
2662 int devid;
2663
2664 devid = get_device_id(dev);
2665 if (devid < 0)
2666 return;
2667
2668 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2669 int type, prot = 0;
2670 size_t length;
2671
2672 if (devid < entry->devid_start || devid > entry->devid_end)
2673 continue;
2674
2675 type = IOMMU_RESV_DIRECT;
2676 length = entry->address_end - entry->address_start;
2677 if (entry->prot & IOMMU_PROT_IR)
2678 prot |= IOMMU_READ;
2679 if (entry->prot & IOMMU_PROT_IW)
2680 prot |= IOMMU_WRITE;
2681 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2682 /* Exclusion range */
2683 type = IOMMU_RESV_RESERVED;
2684
2685 region = iommu_alloc_resv_region(entry->address_start,
2686 length, prot, type);
2687 if (!region) {
2688 dev_err(dev, "Out of memory allocating dm-regions\n");
2689 return;
2690 }
2691 list_add_tail(®ion->list, head);
2692 }
2693
2694 region = iommu_alloc_resv_region(MSI_RANGE_START,
2695 MSI_RANGE_END - MSI_RANGE_START + 1,
2696 0, IOMMU_RESV_MSI);
2697 if (!region)
2698 return;
2699 list_add_tail(®ion->list, head);
2700
2701 region = iommu_alloc_resv_region(HT_RANGE_START,
2702 HT_RANGE_END - HT_RANGE_START + 1,
2703 0, IOMMU_RESV_RESERVED);
2704 if (!region)
2705 return;
2706 list_add_tail(®ion->list, head);
2707 }
2708
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)2709 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
2710 struct device *dev)
2711 {
2712 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2713
2714 return dev_data->defer_attach;
2715 }
2716 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2717
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2718 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2719 {
2720 struct protection_domain *dom = to_pdomain(domain);
2721 unsigned long flags;
2722
2723 spin_lock_irqsave(&dom->lock, flags);
2724 domain_flush_tlb_pde(dom);
2725 domain_flush_complete(dom);
2726 spin_unlock_irqrestore(&dom->lock, flags);
2727 }
2728
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2729 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2730 struct iommu_iotlb_gather *gather)
2731 {
2732 amd_iommu_flush_iotlb_all(domain);
2733 }
2734
amd_iommu_def_domain_type(struct device * dev)2735 static int amd_iommu_def_domain_type(struct device *dev)
2736 {
2737 struct iommu_dev_data *dev_data;
2738
2739 dev_data = dev_iommu_priv_get(dev);
2740 if (!dev_data)
2741 return 0;
2742
2743 /*
2744 * Do not identity map IOMMUv2 capable devices when memory encryption is
2745 * active, because some of those devices (AMD GPUs) don't have the
2746 * encryption bit in their DMA-mask and require remapping.
2747 */
2748 if (!mem_encrypt_active() && dev_data->iommu_v2)
2749 return IOMMU_DOMAIN_IDENTITY;
2750
2751 return 0;
2752 }
2753
2754 const struct iommu_ops amd_iommu_ops = {
2755 .capable = amd_iommu_capable,
2756 .domain_alloc = amd_iommu_domain_alloc,
2757 .domain_free = amd_iommu_domain_free,
2758 .attach_dev = amd_iommu_attach_device,
2759 .detach_dev = amd_iommu_detach_device,
2760 .map = amd_iommu_map,
2761 .unmap = amd_iommu_unmap,
2762 .iova_to_phys = amd_iommu_iova_to_phys,
2763 .probe_device = amd_iommu_probe_device,
2764 .release_device = amd_iommu_release_device,
2765 .probe_finalize = amd_iommu_probe_finalize,
2766 .device_group = amd_iommu_device_group,
2767 .domain_get_attr = amd_iommu_domain_get_attr,
2768 .get_resv_regions = amd_iommu_get_resv_regions,
2769 .put_resv_regions = generic_iommu_put_resv_regions,
2770 .is_attach_deferred = amd_iommu_is_attach_deferred,
2771 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
2772 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2773 .iotlb_sync = amd_iommu_iotlb_sync,
2774 .def_domain_type = amd_iommu_def_domain_type,
2775 };
2776
2777 /*****************************************************************************
2778 *
2779 * The next functions do a basic initialization of IOMMU for pass through
2780 * mode
2781 *
2782 * In passthrough mode the IOMMU is initialized and enabled but not used for
2783 * DMA-API translation.
2784 *
2785 *****************************************************************************/
2786
2787 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)2788 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2789 {
2790 return atomic_notifier_chain_register(&ppr_notifier, nb);
2791 }
2792 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2793
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)2794 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2795 {
2796 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2797 }
2798 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2799
amd_iommu_domain_direct_map(struct iommu_domain * dom)2800 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2801 {
2802 struct protection_domain *domain = to_pdomain(dom);
2803 struct domain_pgtable pgtable;
2804 unsigned long flags;
2805
2806 spin_lock_irqsave(&domain->lock, flags);
2807
2808 /* First save pgtable configuration*/
2809 amd_iommu_domain_get_pgtable(domain, &pgtable);
2810
2811 /* Remove page-table from domain */
2812 amd_iommu_domain_clr_pt_root(domain);
2813
2814 /* Make changes visible to IOMMUs */
2815 update_domain(domain);
2816
2817 /* Page-table is not visible to IOMMU anymore, so free it */
2818 free_pagetable(&pgtable);
2819
2820 spin_unlock_irqrestore(&domain->lock, flags);
2821 }
2822 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2823
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)2824 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2825 {
2826 struct protection_domain *domain = to_pdomain(dom);
2827 unsigned long flags;
2828 int levels, ret;
2829
2830 if (pasids <= 0 || pasids > (PASID_MASK + 1))
2831 return -EINVAL;
2832
2833 /* Number of GCR3 table levels required */
2834 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2835 levels += 1;
2836
2837 if (levels > amd_iommu_max_glx_val)
2838 return -EINVAL;
2839
2840 spin_lock_irqsave(&domain->lock, flags);
2841
2842 /*
2843 * Save us all sanity checks whether devices already in the
2844 * domain support IOMMUv2. Just force that the domain has no
2845 * devices attached when it is switched into IOMMUv2 mode.
2846 */
2847 ret = -EBUSY;
2848 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2849 goto out;
2850
2851 ret = -ENOMEM;
2852 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2853 if (domain->gcr3_tbl == NULL)
2854 goto out;
2855
2856 domain->glx = levels;
2857 domain->flags |= PD_IOMMUV2_MASK;
2858
2859 update_domain(domain);
2860
2861 ret = 0;
2862
2863 out:
2864 spin_unlock_irqrestore(&domain->lock, flags);
2865
2866 return ret;
2867 }
2868 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2869
__flush_pasid(struct protection_domain * domain,u32 pasid,u64 address,bool size)2870 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2871 u64 address, bool size)
2872 {
2873 struct iommu_dev_data *dev_data;
2874 struct iommu_cmd cmd;
2875 int i, ret;
2876
2877 if (!(domain->flags & PD_IOMMUV2_MASK))
2878 return -EINVAL;
2879
2880 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2881
2882 /*
2883 * IOMMU TLB needs to be flushed before Device TLB to
2884 * prevent device TLB refill from IOMMU TLB
2885 */
2886 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2887 if (domain->dev_iommu[i] == 0)
2888 continue;
2889
2890 ret = iommu_queue_command(amd_iommus[i], &cmd);
2891 if (ret != 0)
2892 goto out;
2893 }
2894
2895 /* Wait until IOMMU TLB flushes are complete */
2896 domain_flush_complete(domain);
2897
2898 /* Now flush device TLBs */
2899 list_for_each_entry(dev_data, &domain->dev_list, list) {
2900 struct amd_iommu *iommu;
2901 int qdep;
2902
2903 /*
2904 There might be non-IOMMUv2 capable devices in an IOMMUv2
2905 * domain.
2906 */
2907 if (!dev_data->ats.enabled)
2908 continue;
2909
2910 qdep = dev_data->ats.qdep;
2911 iommu = amd_iommu_rlookup_table[dev_data->devid];
2912
2913 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2914 qdep, address, size);
2915
2916 ret = iommu_queue_command(iommu, &cmd);
2917 if (ret != 0)
2918 goto out;
2919 }
2920
2921 /* Wait until all device TLBs are flushed */
2922 domain_flush_complete(domain);
2923
2924 ret = 0;
2925
2926 out:
2927
2928 return ret;
2929 }
2930
__amd_iommu_flush_page(struct protection_domain * domain,u32 pasid,u64 address)2931 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2932 u64 address)
2933 {
2934 return __flush_pasid(domain, pasid, address, false);
2935 }
2936
amd_iommu_flush_page(struct iommu_domain * dom,u32 pasid,u64 address)2937 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2938 u64 address)
2939 {
2940 struct protection_domain *domain = to_pdomain(dom);
2941 unsigned long flags;
2942 int ret;
2943
2944 spin_lock_irqsave(&domain->lock, flags);
2945 ret = __amd_iommu_flush_page(domain, pasid, address);
2946 spin_unlock_irqrestore(&domain->lock, flags);
2947
2948 return ret;
2949 }
2950 EXPORT_SYMBOL(amd_iommu_flush_page);
2951
__amd_iommu_flush_tlb(struct protection_domain * domain,u32 pasid)2952 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2953 {
2954 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2955 true);
2956 }
2957
amd_iommu_flush_tlb(struct iommu_domain * dom,u32 pasid)2958 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2959 {
2960 struct protection_domain *domain = to_pdomain(dom);
2961 unsigned long flags;
2962 int ret;
2963
2964 spin_lock_irqsave(&domain->lock, flags);
2965 ret = __amd_iommu_flush_tlb(domain, pasid);
2966 spin_unlock_irqrestore(&domain->lock, flags);
2967
2968 return ret;
2969 }
2970 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2971
__get_gcr3_pte(u64 * root,int level,u32 pasid,bool alloc)2972 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2973 {
2974 int index;
2975 u64 *pte;
2976
2977 while (true) {
2978
2979 index = (pasid >> (9 * level)) & 0x1ff;
2980 pte = &root[index];
2981
2982 if (level == 0)
2983 break;
2984
2985 if (!(*pte & GCR3_VALID)) {
2986 if (!alloc)
2987 return NULL;
2988
2989 root = (void *)get_zeroed_page(GFP_ATOMIC);
2990 if (root == NULL)
2991 return NULL;
2992
2993 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2994 }
2995
2996 root = iommu_phys_to_virt(*pte & PAGE_MASK);
2997
2998 level -= 1;
2999 }
3000
3001 return pte;
3002 }
3003
__set_gcr3(struct protection_domain * domain,u32 pasid,unsigned long cr3)3004 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
3005 unsigned long cr3)
3006 {
3007 struct domain_pgtable pgtable;
3008 u64 *pte;
3009
3010 amd_iommu_domain_get_pgtable(domain, &pgtable);
3011 if (pgtable.mode != PAGE_MODE_NONE)
3012 return -EINVAL;
3013
3014 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3015 if (pte == NULL)
3016 return -ENOMEM;
3017
3018 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3019
3020 return __amd_iommu_flush_tlb(domain, pasid);
3021 }
3022
__clear_gcr3(struct protection_domain * domain,u32 pasid)3023 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
3024 {
3025 struct domain_pgtable pgtable;
3026 u64 *pte;
3027
3028 amd_iommu_domain_get_pgtable(domain, &pgtable);
3029 if (pgtable.mode != PAGE_MODE_NONE)
3030 return -EINVAL;
3031
3032 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3033 if (pte == NULL)
3034 return 0;
3035
3036 *pte = 0;
3037
3038 return __amd_iommu_flush_tlb(domain, pasid);
3039 }
3040
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,u32 pasid,unsigned long cr3)3041 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
3042 unsigned long cr3)
3043 {
3044 struct protection_domain *domain = to_pdomain(dom);
3045 unsigned long flags;
3046 int ret;
3047
3048 spin_lock_irqsave(&domain->lock, flags);
3049 ret = __set_gcr3(domain, pasid, cr3);
3050 spin_unlock_irqrestore(&domain->lock, flags);
3051
3052 return ret;
3053 }
3054 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3055
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,u32 pasid)3056 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
3057 {
3058 struct protection_domain *domain = to_pdomain(dom);
3059 unsigned long flags;
3060 int ret;
3061
3062 spin_lock_irqsave(&domain->lock, flags);
3063 ret = __clear_gcr3(domain, pasid);
3064 spin_unlock_irqrestore(&domain->lock, flags);
3065
3066 return ret;
3067 }
3068 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3069
amd_iommu_complete_ppr(struct pci_dev * pdev,u32 pasid,int status,int tag)3070 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
3071 int status, int tag)
3072 {
3073 struct iommu_dev_data *dev_data;
3074 struct amd_iommu *iommu;
3075 struct iommu_cmd cmd;
3076
3077 dev_data = dev_iommu_priv_get(&pdev->dev);
3078 iommu = amd_iommu_rlookup_table[dev_data->devid];
3079
3080 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3081 tag, dev_data->pri_tlp);
3082
3083 return iommu_queue_command(iommu, &cmd);
3084 }
3085 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3086
amd_iommu_get_v2_domain(struct pci_dev * pdev)3087 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3088 {
3089 struct protection_domain *pdomain;
3090 struct iommu_dev_data *dev_data;
3091 struct device *dev = &pdev->dev;
3092 struct iommu_domain *io_domain;
3093
3094 if (!check_device(dev))
3095 return NULL;
3096
3097 dev_data = dev_iommu_priv_get(&pdev->dev);
3098 pdomain = dev_data->domain;
3099 io_domain = iommu_get_domain_for_dev(dev);
3100
3101 if (pdomain == NULL && dev_data->defer_attach) {
3102 dev_data->defer_attach = false;
3103 pdomain = to_pdomain(io_domain);
3104 attach_device(dev, pdomain);
3105 }
3106
3107 if (pdomain == NULL)
3108 return NULL;
3109
3110 if (io_domain->type != IOMMU_DOMAIN_DMA)
3111 return NULL;
3112
3113 /* Only return IOMMUv2 domains */
3114 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3115 return NULL;
3116
3117 return &pdomain->domain;
3118 }
3119 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3120
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3121 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3122 {
3123 struct iommu_dev_data *dev_data;
3124
3125 if (!amd_iommu_v2_supported())
3126 return;
3127
3128 dev_data = dev_iommu_priv_get(&pdev->dev);
3129 dev_data->errata |= (1 << erratum);
3130 }
3131 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3132
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3133 int amd_iommu_device_info(struct pci_dev *pdev,
3134 struct amd_iommu_device_info *info)
3135 {
3136 int max_pasids;
3137 int pos;
3138
3139 if (pdev == NULL || info == NULL)
3140 return -EINVAL;
3141
3142 if (!amd_iommu_v2_supported())
3143 return -EINVAL;
3144
3145 memset(info, 0, sizeof(*info));
3146
3147 if (pci_ats_supported(pdev))
3148 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3149
3150 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3151 if (pos)
3152 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3153
3154 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3155 if (pos) {
3156 int features;
3157
3158 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3159 max_pasids = min(max_pasids, (1 << 20));
3160
3161 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3162 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3163
3164 features = pci_pasid_features(pdev);
3165 if (features & PCI_PASID_CAP_EXEC)
3166 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3167 if (features & PCI_PASID_CAP_PRIV)
3168 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3169 }
3170
3171 return 0;
3172 }
3173 EXPORT_SYMBOL(amd_iommu_device_info);
3174
3175 #ifdef CONFIG_IRQ_REMAP
3176
3177 /*****************************************************************************
3178 *
3179 * Interrupt Remapping Implementation
3180 *
3181 *****************************************************************************/
3182
3183 static struct irq_chip amd_ir_chip;
3184 static DEFINE_SPINLOCK(iommu_table_lock);
3185
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3186 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3187 {
3188 u64 dte;
3189
3190 dte = amd_iommu_dev_table[devid].data[2];
3191 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3192 dte |= iommu_virt_to_phys(table->table);
3193 dte |= DTE_IRQ_REMAP_INTCTL;
3194 dte |= DTE_IRQ_TABLE_LEN;
3195 dte |= DTE_IRQ_REMAP_ENABLE;
3196
3197 amd_iommu_dev_table[devid].data[2] = dte;
3198 }
3199
get_irq_table(u16 devid)3200 static struct irq_remap_table *get_irq_table(u16 devid)
3201 {
3202 struct irq_remap_table *table;
3203
3204 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3205 "%s: no iommu for devid %x\n", __func__, devid))
3206 return NULL;
3207
3208 table = irq_lookup_table[devid];
3209 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3210 return NULL;
3211
3212 return table;
3213 }
3214
__alloc_irq_table(void)3215 static struct irq_remap_table *__alloc_irq_table(void)
3216 {
3217 struct irq_remap_table *table;
3218
3219 table = kzalloc(sizeof(*table), GFP_KERNEL);
3220 if (!table)
3221 return NULL;
3222
3223 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3224 if (!table->table) {
3225 kfree(table);
3226 return NULL;
3227 }
3228 raw_spin_lock_init(&table->lock);
3229
3230 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3231 memset(table->table, 0,
3232 MAX_IRQS_PER_TABLE * sizeof(u32));
3233 else
3234 memset(table->table, 0,
3235 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3236 return table;
3237 }
3238
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3239 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3240 struct irq_remap_table *table)
3241 {
3242 irq_lookup_table[devid] = table;
3243 set_dte_irq_entry(devid, table);
3244 iommu_flush_dte(iommu, devid);
3245 }
3246
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3247 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3248 void *data)
3249 {
3250 struct irq_remap_table *table = data;
3251
3252 irq_lookup_table[alias] = table;
3253 set_dte_irq_entry(alias, table);
3254
3255 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3256
3257 return 0;
3258 }
3259
alloc_irq_table(u16 devid,struct pci_dev * pdev)3260 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3261 {
3262 struct irq_remap_table *table = NULL;
3263 struct irq_remap_table *new_table = NULL;
3264 struct amd_iommu *iommu;
3265 unsigned long flags;
3266 u16 alias;
3267
3268 spin_lock_irqsave(&iommu_table_lock, flags);
3269
3270 iommu = amd_iommu_rlookup_table[devid];
3271 if (!iommu)
3272 goto out_unlock;
3273
3274 table = irq_lookup_table[devid];
3275 if (table)
3276 goto out_unlock;
3277
3278 alias = amd_iommu_alias_table[devid];
3279 table = irq_lookup_table[alias];
3280 if (table) {
3281 set_remap_table_entry(iommu, devid, table);
3282 goto out_wait;
3283 }
3284 spin_unlock_irqrestore(&iommu_table_lock, flags);
3285
3286 /* Nothing there yet, allocate new irq remapping table */
3287 new_table = __alloc_irq_table();
3288 if (!new_table)
3289 return NULL;
3290
3291 spin_lock_irqsave(&iommu_table_lock, flags);
3292
3293 table = irq_lookup_table[devid];
3294 if (table)
3295 goto out_unlock;
3296
3297 table = irq_lookup_table[alias];
3298 if (table) {
3299 set_remap_table_entry(iommu, devid, table);
3300 goto out_wait;
3301 }
3302
3303 table = new_table;
3304 new_table = NULL;
3305
3306 if (pdev)
3307 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3308 table);
3309 else
3310 set_remap_table_entry(iommu, devid, table);
3311
3312 if (devid != alias)
3313 set_remap_table_entry(iommu, alias, table);
3314
3315 out_wait:
3316 iommu_completion_wait(iommu);
3317
3318 out_unlock:
3319 spin_unlock_irqrestore(&iommu_table_lock, flags);
3320
3321 if (new_table) {
3322 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3323 kfree(new_table);
3324 }
3325 return table;
3326 }
3327
alloc_irq_index(u16 devid,int count,bool align,struct pci_dev * pdev)3328 static int alloc_irq_index(u16 devid, int count, bool align,
3329 struct pci_dev *pdev)
3330 {
3331 struct irq_remap_table *table;
3332 int index, c, alignment = 1;
3333 unsigned long flags;
3334 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3335
3336 if (!iommu)
3337 return -ENODEV;
3338
3339 table = alloc_irq_table(devid, pdev);
3340 if (!table)
3341 return -ENODEV;
3342
3343 if (align)
3344 alignment = roundup_pow_of_two(count);
3345
3346 raw_spin_lock_irqsave(&table->lock, flags);
3347
3348 /* Scan table for free entries */
3349 for (index = ALIGN(table->min_index, alignment), c = 0;
3350 index < MAX_IRQS_PER_TABLE;) {
3351 if (!iommu->irte_ops->is_allocated(table, index)) {
3352 c += 1;
3353 } else {
3354 c = 0;
3355 index = ALIGN(index + 1, alignment);
3356 continue;
3357 }
3358
3359 if (c == count) {
3360 for (; c != 0; --c)
3361 iommu->irte_ops->set_allocated(table, index - c + 1);
3362
3363 index -= count - 1;
3364 goto out;
3365 }
3366
3367 index++;
3368 }
3369
3370 index = -ENOSPC;
3371
3372 out:
3373 raw_spin_unlock_irqrestore(&table->lock, flags);
3374
3375 return index;
3376 }
3377
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)3378 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3379 struct amd_ir_data *data)
3380 {
3381 bool ret;
3382 struct irq_remap_table *table;
3383 struct amd_iommu *iommu;
3384 unsigned long flags;
3385 struct irte_ga *entry;
3386
3387 iommu = amd_iommu_rlookup_table[devid];
3388 if (iommu == NULL)
3389 return -EINVAL;
3390
3391 table = get_irq_table(devid);
3392 if (!table)
3393 return -ENOMEM;
3394
3395 raw_spin_lock_irqsave(&table->lock, flags);
3396
3397 entry = (struct irte_ga *)table->table;
3398 entry = &entry[index];
3399
3400 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3401 entry->lo.val, entry->hi.val,
3402 irte->lo.val, irte->hi.val);
3403 /*
3404 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3405 * and it cannot be updated by the hardware or other processors
3406 * behind us, so the return value of cmpxchg16 should be the
3407 * same as the old value.
3408 */
3409 WARN_ON(!ret);
3410
3411 if (data)
3412 data->ref = entry;
3413
3414 raw_spin_unlock_irqrestore(&table->lock, flags);
3415
3416 iommu_flush_irt(iommu, devid);
3417 iommu_completion_wait(iommu);
3418
3419 return 0;
3420 }
3421
modify_irte(u16 devid,int index,union irte * irte)3422 static int modify_irte(u16 devid, int index, union irte *irte)
3423 {
3424 struct irq_remap_table *table;
3425 struct amd_iommu *iommu;
3426 unsigned long flags;
3427
3428 iommu = amd_iommu_rlookup_table[devid];
3429 if (iommu == NULL)
3430 return -EINVAL;
3431
3432 table = get_irq_table(devid);
3433 if (!table)
3434 return -ENOMEM;
3435
3436 raw_spin_lock_irqsave(&table->lock, flags);
3437 table->table[index] = irte->val;
3438 raw_spin_unlock_irqrestore(&table->lock, flags);
3439
3440 iommu_flush_irt(iommu, devid);
3441 iommu_completion_wait(iommu);
3442
3443 return 0;
3444 }
3445
free_irte(u16 devid,int index)3446 static void free_irte(u16 devid, int index)
3447 {
3448 struct irq_remap_table *table;
3449 struct amd_iommu *iommu;
3450 unsigned long flags;
3451
3452 iommu = amd_iommu_rlookup_table[devid];
3453 if (iommu == NULL)
3454 return;
3455
3456 table = get_irq_table(devid);
3457 if (!table)
3458 return;
3459
3460 raw_spin_lock_irqsave(&table->lock, flags);
3461 iommu->irte_ops->clear_allocated(table, index);
3462 raw_spin_unlock_irqrestore(&table->lock, flags);
3463
3464 iommu_flush_irt(iommu, devid);
3465 iommu_completion_wait(iommu);
3466 }
3467
irte_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3468 static void irte_prepare(void *entry,
3469 u32 delivery_mode, u32 dest_mode,
3470 u8 vector, u32 dest_apicid, int devid)
3471 {
3472 union irte *irte = (union irte *) entry;
3473
3474 irte->val = 0;
3475 irte->fields.vector = vector;
3476 irte->fields.int_type = delivery_mode;
3477 irte->fields.destination = dest_apicid;
3478 irte->fields.dm = dest_mode;
3479 irte->fields.valid = 1;
3480 }
3481
irte_ga_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3482 static void irte_ga_prepare(void *entry,
3483 u32 delivery_mode, u32 dest_mode,
3484 u8 vector, u32 dest_apicid, int devid)
3485 {
3486 struct irte_ga *irte = (struct irte_ga *) entry;
3487
3488 irte->lo.val = 0;
3489 irte->hi.val = 0;
3490 irte->lo.fields_remap.int_type = delivery_mode;
3491 irte->lo.fields_remap.dm = dest_mode;
3492 irte->hi.fields.vector = vector;
3493 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3494 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3495 irte->lo.fields_remap.valid = 1;
3496 }
3497
irte_activate(void * entry,u16 devid,u16 index)3498 static void irte_activate(void *entry, u16 devid, u16 index)
3499 {
3500 union irte *irte = (union irte *) entry;
3501
3502 irte->fields.valid = 1;
3503 modify_irte(devid, index, irte);
3504 }
3505
irte_ga_activate(void * entry,u16 devid,u16 index)3506 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3507 {
3508 struct irte_ga *irte = (struct irte_ga *) entry;
3509
3510 irte->lo.fields_remap.valid = 1;
3511 modify_irte_ga(devid, index, irte, NULL);
3512 }
3513
irte_deactivate(void * entry,u16 devid,u16 index)3514 static void irte_deactivate(void *entry, u16 devid, u16 index)
3515 {
3516 union irte *irte = (union irte *) entry;
3517
3518 irte->fields.valid = 0;
3519 modify_irte(devid, index, irte);
3520 }
3521
irte_ga_deactivate(void * entry,u16 devid,u16 index)3522 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3523 {
3524 struct irte_ga *irte = (struct irte_ga *) entry;
3525
3526 irte->lo.fields_remap.valid = 0;
3527 modify_irte_ga(devid, index, irte, NULL);
3528 }
3529
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3530 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3531 u8 vector, u32 dest_apicid)
3532 {
3533 union irte *irte = (union irte *) entry;
3534
3535 irte->fields.vector = vector;
3536 irte->fields.destination = dest_apicid;
3537 modify_irte(devid, index, irte);
3538 }
3539
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3540 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3541 u8 vector, u32 dest_apicid)
3542 {
3543 struct irte_ga *irte = (struct irte_ga *) entry;
3544
3545 if (!irte->lo.fields_remap.guest_mode) {
3546 irte->hi.fields.vector = vector;
3547 irte->lo.fields_remap.destination =
3548 APICID_TO_IRTE_DEST_LO(dest_apicid);
3549 irte->hi.fields.destination =
3550 APICID_TO_IRTE_DEST_HI(dest_apicid);
3551 modify_irte_ga(devid, index, irte, NULL);
3552 }
3553 }
3554
3555 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3556 static void irte_set_allocated(struct irq_remap_table *table, int index)
3557 {
3558 table->table[index] = IRTE_ALLOCATED;
3559 }
3560
irte_ga_set_allocated(struct irq_remap_table * table,int index)3561 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3562 {
3563 struct irte_ga *ptr = (struct irte_ga *)table->table;
3564 struct irte_ga *irte = &ptr[index];
3565
3566 memset(&irte->lo.val, 0, sizeof(u64));
3567 memset(&irte->hi.val, 0, sizeof(u64));
3568 irte->hi.fields.vector = 0xff;
3569 }
3570
irte_is_allocated(struct irq_remap_table * table,int index)3571 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3572 {
3573 union irte *ptr = (union irte *)table->table;
3574 union irte *irte = &ptr[index];
3575
3576 return irte->val != 0;
3577 }
3578
irte_ga_is_allocated(struct irq_remap_table * table,int index)3579 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3580 {
3581 struct irte_ga *ptr = (struct irte_ga *)table->table;
3582 struct irte_ga *irte = &ptr[index];
3583
3584 return irte->hi.fields.vector != 0;
3585 }
3586
irte_clear_allocated(struct irq_remap_table * table,int index)3587 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3588 {
3589 table->table[index] = 0;
3590 }
3591
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3592 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3593 {
3594 struct irte_ga *ptr = (struct irte_ga *)table->table;
3595 struct irte_ga *irte = &ptr[index];
3596
3597 memset(&irte->lo.val, 0, sizeof(u64));
3598 memset(&irte->hi.val, 0, sizeof(u64));
3599 }
3600
get_devid(struct irq_alloc_info * info)3601 static int get_devid(struct irq_alloc_info *info)
3602 {
3603 switch (info->type) {
3604 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3605 case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
3606 return get_ioapic_devid(info->devid);
3607 case X86_IRQ_ALLOC_TYPE_HPET:
3608 case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
3609 return get_hpet_devid(info->devid);
3610 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3611 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3612 return get_device_id(msi_desc_to_dev(info->desc));
3613 default:
3614 WARN_ON_ONCE(1);
3615 return -1;
3616 }
3617 }
3618
get_irq_domain_for_devid(struct irq_alloc_info * info,int devid)3619 static struct irq_domain *get_irq_domain_for_devid(struct irq_alloc_info *info,
3620 int devid)
3621 {
3622 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3623
3624 if (!iommu)
3625 return NULL;
3626
3627 switch (info->type) {
3628 case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
3629 case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
3630 return iommu->ir_domain;
3631 default:
3632 WARN_ON_ONCE(1);
3633 return NULL;
3634 }
3635 }
3636
get_irq_domain(struct irq_alloc_info * info)3637 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3638 {
3639 int devid;
3640
3641 if (!info)
3642 return NULL;
3643
3644 devid = get_devid(info);
3645 if (devid < 0)
3646 return NULL;
3647 return get_irq_domain_for_devid(info, devid);
3648 }
3649
3650 struct irq_remap_ops amd_iommu_irq_ops = {
3651 .prepare = amd_iommu_prepare,
3652 .enable = amd_iommu_enable,
3653 .disable = amd_iommu_disable,
3654 .reenable = amd_iommu_reenable,
3655 .enable_faulting = amd_iommu_enable_faulting,
3656 .get_irq_domain = get_irq_domain,
3657 };
3658
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3659 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3660 struct irq_cfg *irq_cfg,
3661 struct irq_alloc_info *info,
3662 int devid, int index, int sub_handle)
3663 {
3664 struct irq_2_irte *irte_info = &data->irq_2_irte;
3665 struct msi_msg *msg = &data->msi_entry;
3666 struct IO_APIC_route_entry *entry;
3667 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3668
3669 if (!iommu)
3670 return;
3671
3672 data->irq_2_irte.devid = devid;
3673 data->irq_2_irte.index = index + sub_handle;
3674 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
3675 apic->irq_dest_mode, irq_cfg->vector,
3676 irq_cfg->dest_apicid, devid);
3677
3678 switch (info->type) {
3679 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3680 /* Setup IOAPIC entry */
3681 entry = info->ioapic.entry;
3682 info->ioapic.entry = NULL;
3683 memset(entry, 0, sizeof(*entry));
3684 entry->vector = index;
3685 entry->mask = 0;
3686 entry->trigger = info->ioapic.trigger;
3687 entry->polarity = info->ioapic.polarity;
3688 /* Mask level triggered irqs. */
3689 if (info->ioapic.trigger)
3690 entry->mask = 1;
3691 break;
3692
3693 case X86_IRQ_ALLOC_TYPE_HPET:
3694 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3695 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3696 msg->address_hi = MSI_ADDR_BASE_HI;
3697 msg->address_lo = MSI_ADDR_BASE_LO;
3698 msg->data = irte_info->index;
3699 break;
3700
3701 default:
3702 BUG_ON(1);
3703 break;
3704 }
3705 }
3706
3707 struct amd_irte_ops irte_32_ops = {
3708 .prepare = irte_prepare,
3709 .activate = irte_activate,
3710 .deactivate = irte_deactivate,
3711 .set_affinity = irte_set_affinity,
3712 .set_allocated = irte_set_allocated,
3713 .is_allocated = irte_is_allocated,
3714 .clear_allocated = irte_clear_allocated,
3715 };
3716
3717 struct amd_irte_ops irte_128_ops = {
3718 .prepare = irte_ga_prepare,
3719 .activate = irte_ga_activate,
3720 .deactivate = irte_ga_deactivate,
3721 .set_affinity = irte_ga_set_affinity,
3722 .set_allocated = irte_ga_set_allocated,
3723 .is_allocated = irte_ga_is_allocated,
3724 .clear_allocated = irte_ga_clear_allocated,
3725 };
3726
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3727 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3728 unsigned int nr_irqs, void *arg)
3729 {
3730 struct irq_alloc_info *info = arg;
3731 struct irq_data *irq_data;
3732 struct amd_ir_data *data = NULL;
3733 struct irq_cfg *cfg;
3734 int i, ret, devid;
3735 int index;
3736
3737 if (!info)
3738 return -EINVAL;
3739 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3740 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3741 return -EINVAL;
3742
3743 /*
3744 * With IRQ remapping enabled, don't need contiguous CPU vectors
3745 * to support multiple MSI interrupts.
3746 */
3747 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3748 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3749
3750 devid = get_devid(info);
3751 if (devid < 0)
3752 return -EINVAL;
3753
3754 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3755 if (ret < 0)
3756 return ret;
3757
3758 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3759 struct irq_remap_table *table;
3760 struct amd_iommu *iommu;
3761
3762 table = alloc_irq_table(devid, NULL);
3763 if (table) {
3764 if (!table->min_index) {
3765 /*
3766 * Keep the first 32 indexes free for IOAPIC
3767 * interrupts.
3768 */
3769 table->min_index = 32;
3770 iommu = amd_iommu_rlookup_table[devid];
3771 for (i = 0; i < 32; ++i)
3772 iommu->irte_ops->set_allocated(table, i);
3773 }
3774 WARN_ON(table->min_index != 32);
3775 index = info->ioapic.pin;
3776 } else {
3777 index = -ENOMEM;
3778 }
3779 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3780 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3781 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3782
3783 index = alloc_irq_index(devid, nr_irqs, align,
3784 msi_desc_to_pci_dev(info->desc));
3785 } else {
3786 index = alloc_irq_index(devid, nr_irqs, false, NULL);
3787 }
3788
3789 if (index < 0) {
3790 pr_warn("Failed to allocate IRTE\n");
3791 ret = index;
3792 goto out_free_parent;
3793 }
3794
3795 for (i = 0; i < nr_irqs; i++) {
3796 irq_data = irq_domain_get_irq_data(domain, virq + i);
3797 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3798 if (!cfg) {
3799 ret = -EINVAL;
3800 goto out_free_data;
3801 }
3802
3803 ret = -ENOMEM;
3804 data = kzalloc(sizeof(*data), GFP_KERNEL);
3805 if (!data)
3806 goto out_free_data;
3807
3808 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3809 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3810 else
3811 data->entry = kzalloc(sizeof(struct irte_ga),
3812 GFP_KERNEL);
3813 if (!data->entry) {
3814 kfree(data);
3815 goto out_free_data;
3816 }
3817
3818 irq_data->hwirq = (devid << 16) + i;
3819 irq_data->chip_data = data;
3820 irq_data->chip = &amd_ir_chip;
3821 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3822 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3823 }
3824
3825 return 0;
3826
3827 out_free_data:
3828 for (i--; i >= 0; i--) {
3829 irq_data = irq_domain_get_irq_data(domain, virq + i);
3830 if (irq_data)
3831 kfree(irq_data->chip_data);
3832 }
3833 for (i = 0; i < nr_irqs; i++)
3834 free_irte(devid, index + i);
3835 out_free_parent:
3836 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3837 return ret;
3838 }
3839
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3840 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3841 unsigned int nr_irqs)
3842 {
3843 struct irq_2_irte *irte_info;
3844 struct irq_data *irq_data;
3845 struct amd_ir_data *data;
3846 int i;
3847
3848 for (i = 0; i < nr_irqs; i++) {
3849 irq_data = irq_domain_get_irq_data(domain, virq + i);
3850 if (irq_data && irq_data->chip_data) {
3851 data = irq_data->chip_data;
3852 irte_info = &data->irq_2_irte;
3853 free_irte(irte_info->devid, irte_info->index);
3854 kfree(data->entry);
3855 kfree(data);
3856 }
3857 }
3858 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3859 }
3860
3861 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3862 struct amd_ir_data *ir_data,
3863 struct irq_2_irte *irte_info,
3864 struct irq_cfg *cfg);
3865
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3866 static int irq_remapping_activate(struct irq_domain *domain,
3867 struct irq_data *irq_data, bool reserve)
3868 {
3869 struct amd_ir_data *data = irq_data->chip_data;
3870 struct irq_2_irte *irte_info = &data->irq_2_irte;
3871 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3872 struct irq_cfg *cfg = irqd_cfg(irq_data);
3873
3874 if (!iommu)
3875 return 0;
3876
3877 iommu->irte_ops->activate(data->entry, irte_info->devid,
3878 irte_info->index);
3879 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3880 return 0;
3881 }
3882
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3883 static void irq_remapping_deactivate(struct irq_domain *domain,
3884 struct irq_data *irq_data)
3885 {
3886 struct amd_ir_data *data = irq_data->chip_data;
3887 struct irq_2_irte *irte_info = &data->irq_2_irte;
3888 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3889
3890 if (iommu)
3891 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3892 irte_info->index);
3893 }
3894
3895 static const struct irq_domain_ops amd_ir_domain_ops = {
3896 .alloc = irq_remapping_alloc,
3897 .free = irq_remapping_free,
3898 .activate = irq_remapping_activate,
3899 .deactivate = irq_remapping_deactivate,
3900 };
3901
amd_iommu_activate_guest_mode(void * data)3902 int amd_iommu_activate_guest_mode(void *data)
3903 {
3904 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3905 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3906 u64 valid;
3907
3908 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3909 !entry || entry->lo.fields_vapic.guest_mode)
3910 return 0;
3911
3912 valid = entry->lo.fields_vapic.valid;
3913
3914 entry->lo.val = 0;
3915 entry->hi.val = 0;
3916
3917 entry->lo.fields_vapic.valid = valid;
3918 entry->lo.fields_vapic.guest_mode = 1;
3919 entry->lo.fields_vapic.ga_log_intr = 1;
3920 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3921 entry->hi.fields.vector = ir_data->ga_vector;
3922 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3923
3924 return modify_irte_ga(ir_data->irq_2_irte.devid,
3925 ir_data->irq_2_irte.index, entry, ir_data);
3926 }
3927 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3928
amd_iommu_deactivate_guest_mode(void * data)3929 int amd_iommu_deactivate_guest_mode(void *data)
3930 {
3931 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3932 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3933 struct irq_cfg *cfg = ir_data->cfg;
3934 u64 valid;
3935
3936 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3937 !entry || !entry->lo.fields_vapic.guest_mode)
3938 return 0;
3939
3940 valid = entry->lo.fields_remap.valid;
3941
3942 entry->lo.val = 0;
3943 entry->hi.val = 0;
3944
3945 entry->lo.fields_remap.valid = valid;
3946 entry->lo.fields_remap.dm = apic->irq_dest_mode;
3947 entry->lo.fields_remap.int_type = apic->irq_delivery_mode;
3948 entry->hi.fields.vector = cfg->vector;
3949 entry->lo.fields_remap.destination =
3950 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3951 entry->hi.fields.destination =
3952 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3953
3954 return modify_irte_ga(ir_data->irq_2_irte.devid,
3955 ir_data->irq_2_irte.index, entry, ir_data);
3956 }
3957 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3958
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3959 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3960 {
3961 int ret;
3962 struct amd_iommu *iommu;
3963 struct amd_iommu_pi_data *pi_data = vcpu_info;
3964 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3965 struct amd_ir_data *ir_data = data->chip_data;
3966 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3967 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3968
3969 /* Note:
3970 * This device has never been set up for guest mode.
3971 * we should not modify the IRTE
3972 */
3973 if (!dev_data || !dev_data->use_vapic)
3974 return 0;
3975
3976 ir_data->cfg = irqd_cfg(data);
3977 pi_data->ir_data = ir_data;
3978
3979 /* Note:
3980 * SVM tries to set up for VAPIC mode, but we are in
3981 * legacy mode. So, we force legacy mode instead.
3982 */
3983 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3984 pr_debug("%s: Fall back to using intr legacy remap\n",
3985 __func__);
3986 pi_data->is_guest_mode = false;
3987 }
3988
3989 iommu = amd_iommu_rlookup_table[irte_info->devid];
3990 if (iommu == NULL)
3991 return -EINVAL;
3992
3993 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3994 if (pi_data->is_guest_mode) {
3995 ir_data->ga_root_ptr = (pi_data->base >> 12);
3996 ir_data->ga_vector = vcpu_pi_info->vector;
3997 ir_data->ga_tag = pi_data->ga_tag;
3998 ret = amd_iommu_activate_guest_mode(ir_data);
3999 if (!ret)
4000 ir_data->cached_ga_tag = pi_data->ga_tag;
4001 } else {
4002 ret = amd_iommu_deactivate_guest_mode(ir_data);
4003
4004 /*
4005 * This communicates the ga_tag back to the caller
4006 * so that it can do all the necessary clean up.
4007 */
4008 if (!ret)
4009 ir_data->cached_ga_tag = 0;
4010 }
4011
4012 return ret;
4013 }
4014
4015
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4016 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4017 struct amd_ir_data *ir_data,
4018 struct irq_2_irte *irte_info,
4019 struct irq_cfg *cfg)
4020 {
4021
4022 /*
4023 * Atomically updates the IRTE with the new destination, vector
4024 * and flushes the interrupt entry cache.
4025 */
4026 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4027 irte_info->index, cfg->vector,
4028 cfg->dest_apicid);
4029 }
4030
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4031 static int amd_ir_set_affinity(struct irq_data *data,
4032 const struct cpumask *mask, bool force)
4033 {
4034 struct amd_ir_data *ir_data = data->chip_data;
4035 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4036 struct irq_cfg *cfg = irqd_cfg(data);
4037 struct irq_data *parent = data->parent_data;
4038 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4039 int ret;
4040
4041 if (!iommu)
4042 return -ENODEV;
4043
4044 ret = parent->chip->irq_set_affinity(parent, mask, force);
4045 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4046 return ret;
4047
4048 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4049 /*
4050 * After this point, all the interrupts will start arriving
4051 * at the new destination. So, time to cleanup the previous
4052 * vector allocation.
4053 */
4054 send_cleanup_vector(cfg);
4055
4056 return IRQ_SET_MASK_OK_DONE;
4057 }
4058
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4059 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4060 {
4061 struct amd_ir_data *ir_data = irq_data->chip_data;
4062
4063 *msg = ir_data->msi_entry;
4064 }
4065
4066 static struct irq_chip amd_ir_chip = {
4067 .name = "AMD-IR",
4068 .irq_ack = apic_ack_irq,
4069 .irq_set_affinity = amd_ir_set_affinity,
4070 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4071 .irq_compose_msi_msg = ir_compose_msi_msg,
4072 };
4073
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4074 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4075 {
4076 struct fwnode_handle *fn;
4077
4078 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4079 if (!fn)
4080 return -ENOMEM;
4081 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4082 if (!iommu->ir_domain) {
4083 irq_domain_free_fwnode(fn);
4084 return -ENOMEM;
4085 }
4086
4087 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4088 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4089 "AMD-IR-MSI",
4090 iommu->index);
4091 return 0;
4092 }
4093
amd_iommu_update_ga(int cpu,bool is_run,void * data)4094 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4095 {
4096 unsigned long flags;
4097 struct amd_iommu *iommu;
4098 struct irq_remap_table *table;
4099 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4100 int devid = ir_data->irq_2_irte.devid;
4101 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4102 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4103
4104 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4105 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4106 return 0;
4107
4108 iommu = amd_iommu_rlookup_table[devid];
4109 if (!iommu)
4110 return -ENODEV;
4111
4112 table = get_irq_table(devid);
4113 if (!table)
4114 return -ENODEV;
4115
4116 raw_spin_lock_irqsave(&table->lock, flags);
4117
4118 if (ref->lo.fields_vapic.guest_mode) {
4119 if (cpu >= 0) {
4120 ref->lo.fields_vapic.destination =
4121 APICID_TO_IRTE_DEST_LO(cpu);
4122 ref->hi.fields.destination =
4123 APICID_TO_IRTE_DEST_HI(cpu);
4124 }
4125 ref->lo.fields_vapic.is_run = is_run;
4126 barrier();
4127 }
4128
4129 raw_spin_unlock_irqrestore(&table->lock, flags);
4130
4131 iommu_flush_irt(iommu, devid);
4132 iommu_completion_wait(iommu);
4133 return 0;
4134 }
4135 EXPORT_SYMBOL(amd_iommu_update_ga);
4136 #endif
4137