1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RDMA Transport Layer
4 *
5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8 */
9
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12
13 #include <linux/module.h>
14
15 #include "rtrs-srv.h"
16 #include "rtrs-log.h"
17 #include <rdma/ib_cm.h>
18 #include <rdma/ib_verbs.h>
19 #include "rtrs-srv-trace.h"
20
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28
29 static struct rtrs_rdma_dev_pd dev_pd;
30 struct class *rtrs_dev_class;
31 static struct rtrs_srv_ib_ctx ib_ctx;
32
33 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
34 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
35
36 static bool always_invalidate = true;
37 module_param(always_invalidate, bool, 0444);
38 MODULE_PARM_DESC(always_invalidate,
39 "Invalidate memory registration for contiguous memory regions before accessing.");
40
41 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
42 MODULE_PARM_DESC(max_chunk_size,
43 "Max size for each IO request, when change the unit is in byte (default: "
44 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
45
46 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
47 MODULE_PARM_DESC(sess_queue_depth,
48 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
49 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
50 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
51
52 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
53
54 static struct workqueue_struct *rtrs_wq;
55
to_srv_con(struct rtrs_con * c)56 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
57 {
58 return container_of(c, struct rtrs_srv_con, c);
59 }
60
rtrs_srv_change_state(struct rtrs_srv_path * srv_path,enum rtrs_srv_state new_state)61 static bool rtrs_srv_change_state(struct rtrs_srv_path *srv_path,
62 enum rtrs_srv_state new_state)
63 {
64 enum rtrs_srv_state old_state;
65 bool changed = false;
66
67 spin_lock_irq(&srv_path->state_lock);
68 old_state = srv_path->state;
69 switch (new_state) {
70 case RTRS_SRV_CONNECTED:
71 if (old_state == RTRS_SRV_CONNECTING)
72 changed = true;
73 break;
74 case RTRS_SRV_CLOSING:
75 if (old_state == RTRS_SRV_CONNECTING ||
76 old_state == RTRS_SRV_CONNECTED)
77 changed = true;
78 break;
79 case RTRS_SRV_CLOSED:
80 if (old_state == RTRS_SRV_CLOSING)
81 changed = true;
82 break;
83 default:
84 break;
85 }
86 if (changed)
87 srv_path->state = new_state;
88 spin_unlock_irq(&srv_path->state_lock);
89
90 return changed;
91 }
92
free_id(struct rtrs_srv_op * id)93 static void free_id(struct rtrs_srv_op *id)
94 {
95 if (!id)
96 return;
97 kfree(id);
98 }
99
rtrs_srv_free_ops_ids(struct rtrs_srv_path * srv_path)100 static void rtrs_srv_free_ops_ids(struct rtrs_srv_path *srv_path)
101 {
102 struct rtrs_srv_sess *srv = srv_path->srv;
103 int i;
104
105 if (srv_path->ops_ids) {
106 for (i = 0; i < srv->queue_depth; i++)
107 free_id(srv_path->ops_ids[i]);
108 kfree(srv_path->ops_ids);
109 srv_path->ops_ids = NULL;
110 }
111 }
112
113 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
114
115 static struct ib_cqe io_comp_cqe = {
116 .done = rtrs_srv_rdma_done
117 };
118
rtrs_srv_inflight_ref_release(struct percpu_ref * ref)119 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref)
120 {
121 struct rtrs_srv_path *srv_path = container_of(ref,
122 struct rtrs_srv_path,
123 ids_inflight_ref);
124
125 percpu_ref_exit(&srv_path->ids_inflight_ref);
126 complete(&srv_path->complete_done);
127 }
128
rtrs_srv_alloc_ops_ids(struct rtrs_srv_path * srv_path)129 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_path *srv_path)
130 {
131 struct rtrs_srv_sess *srv = srv_path->srv;
132 struct rtrs_srv_op *id;
133 int i, ret;
134
135 srv_path->ops_ids = kcalloc(srv->queue_depth,
136 sizeof(*srv_path->ops_ids),
137 GFP_KERNEL);
138 if (!srv_path->ops_ids)
139 goto err;
140
141 for (i = 0; i < srv->queue_depth; ++i) {
142 id = kzalloc(sizeof(*id), GFP_KERNEL);
143 if (!id)
144 goto err;
145
146 srv_path->ops_ids[i] = id;
147 }
148
149 ret = percpu_ref_init(&srv_path->ids_inflight_ref,
150 rtrs_srv_inflight_ref_release, 0, GFP_KERNEL);
151 if (ret) {
152 pr_err("Percpu reference init failed\n");
153 goto err;
154 }
155 init_completion(&srv_path->complete_done);
156
157 return 0;
158
159 err:
160 rtrs_srv_free_ops_ids(srv_path);
161 return -ENOMEM;
162 }
163
rtrs_srv_get_ops_ids(struct rtrs_srv_path * srv_path)164 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_path *srv_path)
165 {
166 percpu_ref_get(&srv_path->ids_inflight_ref);
167 }
168
rtrs_srv_put_ops_ids(struct rtrs_srv_path * srv_path)169 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_path *srv_path)
170 {
171 percpu_ref_put(&srv_path->ids_inflight_ref);
172 }
173
rtrs_srv_reg_mr_done(struct ib_cq * cq,struct ib_wc * wc)174 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
175 {
176 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
177 struct rtrs_path *s = con->c.path;
178 struct rtrs_srv_path *srv_path = to_srv_path(s);
179
180 if (wc->status != IB_WC_SUCCESS) {
181 rtrs_err(s, "REG MR failed: %s\n",
182 ib_wc_status_msg(wc->status));
183 close_path(srv_path);
184 return;
185 }
186 }
187
188 static struct ib_cqe local_reg_cqe = {
189 .done = rtrs_srv_reg_mr_done
190 };
191
rdma_write_sg(struct rtrs_srv_op * id)192 static int rdma_write_sg(struct rtrs_srv_op *id)
193 {
194 struct rtrs_path *s = id->con->c.path;
195 struct rtrs_srv_path *srv_path = to_srv_path(s);
196 dma_addr_t dma_addr = srv_path->dma_addr[id->msg_id];
197 struct rtrs_srv_mr *srv_mr;
198 struct ib_send_wr inv_wr;
199 struct ib_rdma_wr imm_wr;
200 struct ib_rdma_wr *wr = NULL;
201 enum ib_send_flags flags;
202 size_t sg_cnt;
203 int err, offset;
204 bool need_inval;
205 u32 rkey = 0;
206 struct ib_reg_wr rwr;
207 struct ib_sge *plist;
208 struct ib_sge list;
209
210 sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
211 need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
212 if (sg_cnt != 1)
213 return -EINVAL;
214
215 offset = 0;
216
217 wr = &id->tx_wr;
218 plist = &id->tx_sg;
219 plist->addr = dma_addr + offset;
220 plist->length = le32_to_cpu(id->rd_msg->desc[0].len);
221
222 /* WR will fail with length error
223 * if this is 0
224 */
225 if (plist->length == 0) {
226 rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
227 return -EINVAL;
228 }
229
230 plist->lkey = srv_path->s.dev->ib_pd->local_dma_lkey;
231 offset += plist->length;
232
233 wr->wr.sg_list = plist;
234 wr->wr.num_sge = 1;
235 wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr);
236 wr->rkey = le32_to_cpu(id->rd_msg->desc[0].key);
237 if (rkey == 0)
238 rkey = wr->rkey;
239 else
240 /* Only one key is actually used */
241 WARN_ON_ONCE(rkey != wr->rkey);
242
243 wr->wr.opcode = IB_WR_RDMA_WRITE;
244 wr->wr.wr_cqe = &io_comp_cqe;
245 wr->wr.ex.imm_data = 0;
246 wr->wr.send_flags = 0;
247
248 if (need_inval && always_invalidate) {
249 wr->wr.next = &rwr.wr;
250 rwr.wr.next = &inv_wr;
251 inv_wr.next = &imm_wr.wr;
252 } else if (always_invalidate) {
253 wr->wr.next = &rwr.wr;
254 rwr.wr.next = &imm_wr.wr;
255 } else if (need_inval) {
256 wr->wr.next = &inv_wr;
257 inv_wr.next = &imm_wr.wr;
258 } else {
259 wr->wr.next = &imm_wr.wr;
260 }
261 /*
262 * From time to time we have to post signaled sends,
263 * or send queue will fill up and only QP reset can help.
264 */
265 flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ?
266 0 : IB_SEND_SIGNALED;
267
268 if (need_inval) {
269 inv_wr.sg_list = NULL;
270 inv_wr.num_sge = 0;
271 inv_wr.opcode = IB_WR_SEND_WITH_INV;
272 inv_wr.wr_cqe = &io_comp_cqe;
273 inv_wr.send_flags = 0;
274 inv_wr.ex.invalidate_rkey = rkey;
275 }
276
277 imm_wr.wr.next = NULL;
278 if (always_invalidate) {
279 struct rtrs_msg_rkey_rsp *msg;
280
281 srv_mr = &srv_path->mrs[id->msg_id];
282 rwr.wr.opcode = IB_WR_REG_MR;
283 rwr.wr.wr_cqe = &local_reg_cqe;
284 rwr.wr.num_sge = 0;
285 rwr.mr = srv_mr->mr;
286 rwr.wr.send_flags = 0;
287 rwr.key = srv_mr->mr->rkey;
288 rwr.access = (IB_ACCESS_LOCAL_WRITE |
289 IB_ACCESS_REMOTE_WRITE);
290 msg = srv_mr->iu->buf;
291 msg->buf_id = cpu_to_le16(id->msg_id);
292 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
293 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
294
295 list.addr = srv_mr->iu->dma_addr;
296 list.length = sizeof(*msg);
297 list.lkey = srv_path->s.dev->ib_pd->local_dma_lkey;
298 imm_wr.wr.sg_list = &list;
299 imm_wr.wr.num_sge = 1;
300 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
301 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
302 srv_mr->iu->dma_addr,
303 srv_mr->iu->size, DMA_TO_DEVICE);
304 } else {
305 imm_wr.wr.sg_list = NULL;
306 imm_wr.wr.num_sge = 0;
307 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
308 }
309 imm_wr.wr.send_flags = flags;
310 imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
311 0, need_inval));
312
313 imm_wr.wr.wr_cqe = &io_comp_cqe;
314 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, dma_addr,
315 offset, DMA_BIDIRECTIONAL);
316
317 err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
318 if (err)
319 rtrs_err(s,
320 "Posting RDMA-Write-Request to QP failed, err: %d\n",
321 err);
322
323 return err;
324 }
325
326 /**
327 * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
328 * requests or on successful WRITE request.
329 * @con: the connection to send back result
330 * @id: the id associated with the IO
331 * @errno: the error number of the IO.
332 *
333 * Return 0 on success, errno otherwise.
334 */
send_io_resp_imm(struct rtrs_srv_con * con,struct rtrs_srv_op * id,int errno)335 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
336 int errno)
337 {
338 struct rtrs_path *s = con->c.path;
339 struct rtrs_srv_path *srv_path = to_srv_path(s);
340 struct ib_send_wr inv_wr, *wr = NULL;
341 struct ib_rdma_wr imm_wr;
342 struct ib_reg_wr rwr;
343 struct rtrs_srv_mr *srv_mr;
344 bool need_inval = false;
345 enum ib_send_flags flags;
346 u32 imm;
347 int err;
348
349 if (id->dir == READ) {
350 struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
351 size_t sg_cnt;
352
353 need_inval = le16_to_cpu(rd_msg->flags) &
354 RTRS_MSG_NEED_INVAL_F;
355 sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
356
357 if (need_inval) {
358 if (sg_cnt) {
359 inv_wr.wr_cqe = &io_comp_cqe;
360 inv_wr.sg_list = NULL;
361 inv_wr.num_sge = 0;
362 inv_wr.opcode = IB_WR_SEND_WITH_INV;
363 inv_wr.send_flags = 0;
364 /* Only one key is actually used */
365 inv_wr.ex.invalidate_rkey =
366 le32_to_cpu(rd_msg->desc[0].key);
367 } else {
368 WARN_ON_ONCE(1);
369 need_inval = false;
370 }
371 }
372 }
373
374 trace_send_io_resp_imm(id, need_inval, always_invalidate, errno);
375
376 if (need_inval && always_invalidate) {
377 wr = &inv_wr;
378 inv_wr.next = &rwr.wr;
379 rwr.wr.next = &imm_wr.wr;
380 } else if (always_invalidate) {
381 wr = &rwr.wr;
382 rwr.wr.next = &imm_wr.wr;
383 } else if (need_inval) {
384 wr = &inv_wr;
385 inv_wr.next = &imm_wr.wr;
386 } else {
387 wr = &imm_wr.wr;
388 }
389 /*
390 * From time to time we have to post signalled sends,
391 * or send queue will fill up and only QP reset can help.
392 */
393 flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ?
394 0 : IB_SEND_SIGNALED;
395 imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
396 imm_wr.wr.next = NULL;
397 if (always_invalidate) {
398 struct ib_sge list;
399 struct rtrs_msg_rkey_rsp *msg;
400
401 srv_mr = &srv_path->mrs[id->msg_id];
402 rwr.wr.next = &imm_wr.wr;
403 rwr.wr.opcode = IB_WR_REG_MR;
404 rwr.wr.wr_cqe = &local_reg_cqe;
405 rwr.wr.num_sge = 0;
406 rwr.wr.send_flags = 0;
407 rwr.mr = srv_mr->mr;
408 rwr.key = srv_mr->mr->rkey;
409 rwr.access = (IB_ACCESS_LOCAL_WRITE |
410 IB_ACCESS_REMOTE_WRITE);
411 msg = srv_mr->iu->buf;
412 msg->buf_id = cpu_to_le16(id->msg_id);
413 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
414 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
415
416 list.addr = srv_mr->iu->dma_addr;
417 list.length = sizeof(*msg);
418 list.lkey = srv_path->s.dev->ib_pd->local_dma_lkey;
419 imm_wr.wr.sg_list = &list;
420 imm_wr.wr.num_sge = 1;
421 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
422 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
423 srv_mr->iu->dma_addr,
424 srv_mr->iu->size, DMA_TO_DEVICE);
425 } else {
426 imm_wr.wr.sg_list = NULL;
427 imm_wr.wr.num_sge = 0;
428 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
429 }
430 imm_wr.wr.send_flags = flags;
431 imm_wr.wr.wr_cqe = &io_comp_cqe;
432
433 imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
434
435 err = ib_post_send(id->con->c.qp, wr, NULL);
436 if (err)
437 rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
438 err);
439
440 return err;
441 }
442
close_path(struct rtrs_srv_path * srv_path)443 void close_path(struct rtrs_srv_path *srv_path)
444 {
445 if (rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSING))
446 queue_work(rtrs_wq, &srv_path->close_work);
447 WARN_ON(srv_path->state != RTRS_SRV_CLOSING);
448 }
449
rtrs_srv_state_str(enum rtrs_srv_state state)450 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
451 {
452 switch (state) {
453 case RTRS_SRV_CONNECTING:
454 return "RTRS_SRV_CONNECTING";
455 case RTRS_SRV_CONNECTED:
456 return "RTRS_SRV_CONNECTED";
457 case RTRS_SRV_CLOSING:
458 return "RTRS_SRV_CLOSING";
459 case RTRS_SRV_CLOSED:
460 return "RTRS_SRV_CLOSED";
461 default:
462 return "UNKNOWN";
463 }
464 }
465
466 /**
467 * rtrs_srv_resp_rdma() - Finish an RDMA request
468 *
469 * @id: Internal RTRS operation identifier
470 * @status: Response Code sent to the other side for this operation.
471 * 0 = success, <=0 error
472 * Context: any
473 *
474 * Finish a RDMA operation. A message is sent to the client and the
475 * corresponding memory areas will be released.
476 */
rtrs_srv_resp_rdma(struct rtrs_srv_op * id,int status)477 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
478 {
479 struct rtrs_srv_path *srv_path;
480 struct rtrs_srv_con *con;
481 struct rtrs_path *s;
482 int err;
483
484 if (WARN_ON(!id))
485 return true;
486
487 con = id->con;
488 s = con->c.path;
489 srv_path = to_srv_path(s);
490
491 id->status = status;
492
493 if (srv_path->state != RTRS_SRV_CONNECTED) {
494 rtrs_err_rl(s,
495 "Sending I/O response failed, server path %s is disconnected, path state %s\n",
496 kobject_name(&srv_path->kobj),
497 rtrs_srv_state_str(srv_path->state));
498 goto out;
499 }
500 if (always_invalidate) {
501 struct rtrs_srv_mr *mr = &srv_path->mrs[id->msg_id];
502
503 ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
504 }
505 if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) {
506 rtrs_err(s, "IB send queue full: srv_path=%s cid=%d\n",
507 kobject_name(&srv_path->kobj),
508 con->c.cid);
509 atomic_add(1, &con->c.sq_wr_avail);
510 spin_lock(&con->rsp_wr_wait_lock);
511 list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
512 spin_unlock(&con->rsp_wr_wait_lock);
513 return false;
514 }
515
516 if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
517 err = send_io_resp_imm(con, id, status);
518 else
519 err = rdma_write_sg(id);
520
521 if (err) {
522 rtrs_err_rl(s, "IO response failed: %d: srv_path=%s\n", err,
523 kobject_name(&srv_path->kobj));
524 close_path(srv_path);
525 }
526 out:
527 rtrs_srv_put_ops_ids(srv_path);
528 return true;
529 }
530 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
531
532 /**
533 * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
534 * @srv: Session pointer
535 * @priv: The private pointer that is associated with the session.
536 */
rtrs_srv_set_sess_priv(struct rtrs_srv_sess * srv,void * priv)537 void rtrs_srv_set_sess_priv(struct rtrs_srv_sess *srv, void *priv)
538 {
539 srv->priv = priv;
540 }
541 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
542
unmap_cont_bufs(struct rtrs_srv_path * srv_path)543 static void unmap_cont_bufs(struct rtrs_srv_path *srv_path)
544 {
545 int i;
546
547 for (i = 0; i < srv_path->mrs_num; i++) {
548 struct rtrs_srv_mr *srv_mr;
549
550 srv_mr = &srv_path->mrs[i];
551 rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1);
552 ib_dereg_mr(srv_mr->mr);
553 ib_dma_unmap_sg(srv_path->s.dev->ib_dev, srv_mr->sgt.sgl,
554 srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
555 sg_free_table(&srv_mr->sgt);
556 }
557 kfree(srv_path->mrs);
558 }
559
map_cont_bufs(struct rtrs_srv_path * srv_path)560 static int map_cont_bufs(struct rtrs_srv_path *srv_path)
561 {
562 struct rtrs_srv_sess *srv = srv_path->srv;
563 struct rtrs_path *ss = &srv_path->s;
564 int i, mri, err, mrs_num;
565 unsigned int chunk_bits;
566 int chunks_per_mr = 1;
567
568 /*
569 * Here we map queue_depth chunks to MR. Firstly we have to
570 * figure out how many chunks can we map per MR.
571 */
572 if (always_invalidate) {
573 /*
574 * in order to do invalidate for each chunks of memory, we needs
575 * more memory regions.
576 */
577 mrs_num = srv->queue_depth;
578 } else {
579 chunks_per_mr =
580 srv_path->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
581 mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
582 chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
583 }
584
585 srv_path->mrs = kcalloc(mrs_num, sizeof(*srv_path->mrs), GFP_KERNEL);
586 if (!srv_path->mrs)
587 return -ENOMEM;
588
589 srv_path->mrs_num = mrs_num;
590
591 for (mri = 0; mri < mrs_num; mri++) {
592 struct rtrs_srv_mr *srv_mr = &srv_path->mrs[mri];
593 struct sg_table *sgt = &srv_mr->sgt;
594 struct scatterlist *s;
595 struct ib_mr *mr;
596 int nr, nr_sgt, chunks;
597
598 chunks = chunks_per_mr * mri;
599 if (!always_invalidate)
600 chunks_per_mr = min_t(int, chunks_per_mr,
601 srv->queue_depth - chunks);
602
603 err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
604 if (err)
605 goto err;
606
607 for_each_sg(sgt->sgl, s, chunks_per_mr, i)
608 sg_set_page(s, srv->chunks[chunks + i],
609 max_chunk_size, 0);
610
611 nr_sgt = ib_dma_map_sg(srv_path->s.dev->ib_dev, sgt->sgl,
612 sgt->nents, DMA_BIDIRECTIONAL);
613 if (!nr_sgt) {
614 err = -EINVAL;
615 goto free_sg;
616 }
617 mr = ib_alloc_mr(srv_path->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
618 nr_sgt);
619 if (IS_ERR(mr)) {
620 err = PTR_ERR(mr);
621 goto unmap_sg;
622 }
623 nr = ib_map_mr_sg(mr, sgt->sgl, nr_sgt,
624 NULL, max_chunk_size);
625 if (nr < 0 || nr < sgt->nents) {
626 err = nr < 0 ? nr : -EINVAL;
627 goto dereg_mr;
628 }
629
630 if (always_invalidate) {
631 srv_mr->iu = rtrs_iu_alloc(1,
632 sizeof(struct rtrs_msg_rkey_rsp),
633 GFP_KERNEL, srv_path->s.dev->ib_dev,
634 DMA_TO_DEVICE, rtrs_srv_rdma_done);
635 if (!srv_mr->iu) {
636 err = -ENOMEM;
637 rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
638 goto dereg_mr;
639 }
640 }
641 /* Eventually dma addr for each chunk can be cached */
642 for_each_sg(sgt->sgl, s, nr_sgt, i)
643 srv_path->dma_addr[chunks + i] = sg_dma_address(s);
644
645 ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
646 srv_mr->mr = mr;
647
648 continue;
649 err:
650 while (mri--) {
651 srv_mr = &srv_path->mrs[mri];
652 sgt = &srv_mr->sgt;
653 mr = srv_mr->mr;
654 rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1);
655 dereg_mr:
656 ib_dereg_mr(mr);
657 unmap_sg:
658 ib_dma_unmap_sg(srv_path->s.dev->ib_dev, sgt->sgl,
659 sgt->nents, DMA_BIDIRECTIONAL);
660 free_sg:
661 sg_free_table(sgt);
662 }
663 kfree(srv_path->mrs);
664
665 return err;
666 }
667
668 chunk_bits = ilog2(srv->queue_depth - 1) + 1;
669 srv_path->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
670
671 return 0;
672 }
673
rtrs_srv_hb_err_handler(struct rtrs_con * c)674 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
675 {
676 close_path(to_srv_path(c->path));
677 }
678
rtrs_srv_init_hb(struct rtrs_srv_path * srv_path)679 static void rtrs_srv_init_hb(struct rtrs_srv_path *srv_path)
680 {
681 rtrs_init_hb(&srv_path->s, &io_comp_cqe,
682 RTRS_HB_INTERVAL_MS,
683 RTRS_HB_MISSED_MAX,
684 rtrs_srv_hb_err_handler,
685 rtrs_wq);
686 }
687
rtrs_srv_start_hb(struct rtrs_srv_path * srv_path)688 static void rtrs_srv_start_hb(struct rtrs_srv_path *srv_path)
689 {
690 rtrs_start_hb(&srv_path->s);
691 }
692
rtrs_srv_stop_hb(struct rtrs_srv_path * srv_path)693 static void rtrs_srv_stop_hb(struct rtrs_srv_path *srv_path)
694 {
695 rtrs_stop_hb(&srv_path->s);
696 }
697
rtrs_srv_info_rsp_done(struct ib_cq * cq,struct ib_wc * wc)698 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
699 {
700 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
701 struct rtrs_path *s = con->c.path;
702 struct rtrs_srv_path *srv_path = to_srv_path(s);
703 struct rtrs_iu *iu;
704
705 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
706 rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
707
708 if (wc->status != IB_WC_SUCCESS) {
709 rtrs_err(s, "Sess info response send failed: %s\n",
710 ib_wc_status_msg(wc->status));
711 close_path(srv_path);
712 return;
713 }
714 WARN_ON(wc->opcode != IB_WC_SEND);
715 }
716
rtrs_srv_path_up(struct rtrs_srv_path * srv_path)717 static void rtrs_srv_path_up(struct rtrs_srv_path *srv_path)
718 {
719 struct rtrs_srv_sess *srv = srv_path->srv;
720 struct rtrs_srv_ctx *ctx = srv->ctx;
721 int up;
722
723 mutex_lock(&srv->paths_ev_mutex);
724 up = ++srv->paths_up;
725 if (up == 1)
726 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
727 mutex_unlock(&srv->paths_ev_mutex);
728
729 /* Mark session as established */
730 srv_path->established = true;
731 }
732
rtrs_srv_path_down(struct rtrs_srv_path * srv_path)733 static void rtrs_srv_path_down(struct rtrs_srv_path *srv_path)
734 {
735 struct rtrs_srv_sess *srv = srv_path->srv;
736 struct rtrs_srv_ctx *ctx = srv->ctx;
737
738 if (!srv_path->established)
739 return;
740
741 srv_path->established = false;
742 mutex_lock(&srv->paths_ev_mutex);
743 WARN_ON(!srv->paths_up);
744 if (--srv->paths_up == 0)
745 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
746 mutex_unlock(&srv->paths_ev_mutex);
747 }
748
exist_pathname(struct rtrs_srv_ctx * ctx,const char * pathname,const uuid_t * path_uuid)749 static bool exist_pathname(struct rtrs_srv_ctx *ctx,
750 const char *pathname, const uuid_t *path_uuid)
751 {
752 struct rtrs_srv_sess *srv;
753 struct rtrs_srv_path *srv_path;
754 bool found = false;
755
756 mutex_lock(&ctx->srv_mutex);
757 list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
758 mutex_lock(&srv->paths_mutex);
759
760 /* when a client with same uuid and same sessname tried to add a path */
761 if (uuid_equal(&srv->paths_uuid, path_uuid)) {
762 mutex_unlock(&srv->paths_mutex);
763 continue;
764 }
765
766 list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
767 if (strlen(srv_path->s.sessname) == strlen(pathname) &&
768 !strcmp(srv_path->s.sessname, pathname)) {
769 found = true;
770 break;
771 }
772 }
773 mutex_unlock(&srv->paths_mutex);
774 if (found)
775 break;
776 }
777 mutex_unlock(&ctx->srv_mutex);
778 return found;
779 }
780
781 static int post_recv_path(struct rtrs_srv_path *srv_path);
782 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno);
783
process_info_req(struct rtrs_srv_con * con,struct rtrs_msg_info_req * msg)784 static int process_info_req(struct rtrs_srv_con *con,
785 struct rtrs_msg_info_req *msg)
786 {
787 struct rtrs_path *s = con->c.path;
788 struct rtrs_srv_path *srv_path = to_srv_path(s);
789 struct ib_send_wr *reg_wr = NULL;
790 struct rtrs_msg_info_rsp *rsp;
791 struct rtrs_iu *tx_iu;
792 struct ib_reg_wr *rwr;
793 int mri, err;
794 size_t tx_sz;
795
796 err = post_recv_path(srv_path);
797 if (err) {
798 rtrs_err(s, "post_recv_path(), err: %d\n", err);
799 return err;
800 }
801
802 if (strchr(msg->pathname, '/') || strchr(msg->pathname, '.')) {
803 rtrs_err(s, "pathname cannot contain / and .\n");
804 return -EINVAL;
805 }
806
807 if (exist_pathname(srv_path->srv->ctx,
808 msg->pathname, &srv_path->srv->paths_uuid)) {
809 rtrs_err(s, "pathname is duplicated: %s\n", msg->pathname);
810 return -EPERM;
811 }
812 strscpy(srv_path->s.sessname, msg->pathname,
813 sizeof(srv_path->s.sessname));
814
815 rwr = kcalloc(srv_path->mrs_num, sizeof(*rwr), GFP_KERNEL);
816 if (!rwr)
817 return -ENOMEM;
818
819 tx_sz = sizeof(*rsp);
820 tx_sz += sizeof(rsp->desc[0]) * srv_path->mrs_num;
821 tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, srv_path->s.dev->ib_dev,
822 DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
823 if (!tx_iu) {
824 err = -ENOMEM;
825 goto rwr_free;
826 }
827
828 rsp = tx_iu->buf;
829 rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
830 rsp->sg_cnt = cpu_to_le16(srv_path->mrs_num);
831
832 for (mri = 0; mri < srv_path->mrs_num; mri++) {
833 struct ib_mr *mr = srv_path->mrs[mri].mr;
834
835 rsp->desc[mri].addr = cpu_to_le64(mr->iova);
836 rsp->desc[mri].key = cpu_to_le32(mr->rkey);
837 rsp->desc[mri].len = cpu_to_le32(mr->length);
838
839 /*
840 * Fill in reg MR request and chain them *backwards*
841 */
842 rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
843 rwr[mri].wr.opcode = IB_WR_REG_MR;
844 rwr[mri].wr.wr_cqe = &local_reg_cqe;
845 rwr[mri].wr.num_sge = 0;
846 rwr[mri].wr.send_flags = 0;
847 rwr[mri].mr = mr;
848 rwr[mri].key = mr->rkey;
849 rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
850 IB_ACCESS_REMOTE_WRITE);
851 reg_wr = &rwr[mri].wr;
852 }
853
854 err = rtrs_srv_create_path_files(srv_path);
855 if (err)
856 goto iu_free;
857 kobject_get(&srv_path->kobj);
858 get_device(&srv_path->srv->dev);
859 rtrs_srv_change_state(srv_path, RTRS_SRV_CONNECTED);
860 rtrs_srv_start_hb(srv_path);
861
862 /*
863 * We do not account number of established connections at the current
864 * moment, we rely on the client, which should send info request when
865 * all connections are successfully established. Thus, simply notify
866 * listener with a proper event if we are the first path.
867 */
868 rtrs_srv_path_up(srv_path);
869
870 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
871 tx_iu->dma_addr,
872 tx_iu->size, DMA_TO_DEVICE);
873
874 /* Send info response */
875 err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
876 if (err) {
877 rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
878 iu_free:
879 rtrs_iu_free(tx_iu, srv_path->s.dev->ib_dev, 1);
880 }
881 rwr_free:
882 kfree(rwr);
883
884 return err;
885 }
886
rtrs_srv_info_req_done(struct ib_cq * cq,struct ib_wc * wc)887 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
888 {
889 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
890 struct rtrs_path *s = con->c.path;
891 struct rtrs_srv_path *srv_path = to_srv_path(s);
892 struct rtrs_msg_info_req *msg;
893 struct rtrs_iu *iu;
894 int err;
895
896 WARN_ON(con->c.cid);
897
898 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
899 if (wc->status != IB_WC_SUCCESS) {
900 rtrs_err(s, "Sess info request receive failed: %s\n",
901 ib_wc_status_msg(wc->status));
902 goto close;
903 }
904 WARN_ON(wc->opcode != IB_WC_RECV);
905
906 if (wc->byte_len < sizeof(*msg)) {
907 rtrs_err(s, "Sess info request is malformed: size %d\n",
908 wc->byte_len);
909 goto close;
910 }
911 ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, iu->dma_addr,
912 iu->size, DMA_FROM_DEVICE);
913 msg = iu->buf;
914 if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) {
915 rtrs_err(s, "Sess info request is malformed: type %d\n",
916 le16_to_cpu(msg->type));
917 goto close;
918 }
919 err = process_info_req(con, msg);
920 if (err)
921 goto close;
922
923 out:
924 rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
925 return;
926 close:
927 close_path(srv_path);
928 goto out;
929 }
930
post_recv_info_req(struct rtrs_srv_con * con)931 static int post_recv_info_req(struct rtrs_srv_con *con)
932 {
933 struct rtrs_path *s = con->c.path;
934 struct rtrs_srv_path *srv_path = to_srv_path(s);
935 struct rtrs_iu *rx_iu;
936 int err;
937
938 rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
939 GFP_KERNEL, srv_path->s.dev->ib_dev,
940 DMA_FROM_DEVICE, rtrs_srv_info_req_done);
941 if (!rx_iu)
942 return -ENOMEM;
943 /* Prepare for getting info response */
944 err = rtrs_iu_post_recv(&con->c, rx_iu);
945 if (err) {
946 rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
947 rtrs_iu_free(rx_iu, srv_path->s.dev->ib_dev, 1);
948 return err;
949 }
950
951 return 0;
952 }
953
post_recv_io(struct rtrs_srv_con * con,size_t q_size)954 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
955 {
956 int i, err;
957
958 for (i = 0; i < q_size; i++) {
959 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
960 if (err)
961 return err;
962 }
963
964 return 0;
965 }
966
post_recv_path(struct rtrs_srv_path * srv_path)967 static int post_recv_path(struct rtrs_srv_path *srv_path)
968 {
969 struct rtrs_srv_sess *srv = srv_path->srv;
970 struct rtrs_path *s = &srv_path->s;
971 size_t q_size;
972 int err, cid;
973
974 for (cid = 0; cid < srv_path->s.con_num; cid++) {
975 if (cid == 0)
976 q_size = SERVICE_CON_QUEUE_DEPTH;
977 else
978 q_size = srv->queue_depth;
979
980 err = post_recv_io(to_srv_con(srv_path->s.con[cid]), q_size);
981 if (err) {
982 rtrs_err(s, "post_recv_io(), err: %d\n", err);
983 return err;
984 }
985 }
986
987 return 0;
988 }
989
process_read(struct rtrs_srv_con * con,struct rtrs_msg_rdma_read * msg,u32 buf_id,u32 off)990 static void process_read(struct rtrs_srv_con *con,
991 struct rtrs_msg_rdma_read *msg,
992 u32 buf_id, u32 off)
993 {
994 struct rtrs_path *s = con->c.path;
995 struct rtrs_srv_path *srv_path = to_srv_path(s);
996 struct rtrs_srv_sess *srv = srv_path->srv;
997 struct rtrs_srv_ctx *ctx = srv->ctx;
998 struct rtrs_srv_op *id;
999
1000 size_t usr_len, data_len;
1001 void *data;
1002 int ret;
1003
1004 if (srv_path->state != RTRS_SRV_CONNECTED) {
1005 rtrs_err_rl(s,
1006 "Processing read request failed, session is disconnected, sess state %s\n",
1007 rtrs_srv_state_str(srv_path->state));
1008 return;
1009 }
1010 if (msg->sg_cnt != 1 && msg->sg_cnt != 0) {
1011 rtrs_err_rl(s,
1012 "Processing read request failed, invalid message\n");
1013 return;
1014 }
1015 rtrs_srv_get_ops_ids(srv_path);
1016 rtrs_srv_update_rdma_stats(srv_path->stats, off, READ);
1017 id = srv_path->ops_ids[buf_id];
1018 id->con = con;
1019 id->dir = READ;
1020 id->msg_id = buf_id;
1021 id->rd_msg = msg;
1022 usr_len = le16_to_cpu(msg->usr_len);
1023 data_len = off - usr_len;
1024 data = page_address(srv->chunks[buf_id]);
1025 ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len,
1026 data + data_len, usr_len);
1027
1028 if (ret) {
1029 rtrs_err_rl(s,
1030 "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1031 buf_id, ret);
1032 goto send_err_msg;
1033 }
1034
1035 return;
1036
1037 send_err_msg:
1038 ret = send_io_resp_imm(con, id, ret);
1039 if (ret < 0) {
1040 rtrs_err_rl(s,
1041 "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1042 buf_id, ret);
1043 close_path(srv_path);
1044 }
1045 rtrs_srv_put_ops_ids(srv_path);
1046 }
1047
process_write(struct rtrs_srv_con * con,struct rtrs_msg_rdma_write * req,u32 buf_id,u32 off)1048 static void process_write(struct rtrs_srv_con *con,
1049 struct rtrs_msg_rdma_write *req,
1050 u32 buf_id, u32 off)
1051 {
1052 struct rtrs_path *s = con->c.path;
1053 struct rtrs_srv_path *srv_path = to_srv_path(s);
1054 struct rtrs_srv_sess *srv = srv_path->srv;
1055 struct rtrs_srv_ctx *ctx = srv->ctx;
1056 struct rtrs_srv_op *id;
1057
1058 size_t data_len, usr_len;
1059 void *data;
1060 int ret;
1061
1062 if (srv_path->state != RTRS_SRV_CONNECTED) {
1063 rtrs_err_rl(s,
1064 "Processing write request failed, session is disconnected, sess state %s\n",
1065 rtrs_srv_state_str(srv_path->state));
1066 return;
1067 }
1068 rtrs_srv_get_ops_ids(srv_path);
1069 rtrs_srv_update_rdma_stats(srv_path->stats, off, WRITE);
1070 id = srv_path->ops_ids[buf_id];
1071 id->con = con;
1072 id->dir = WRITE;
1073 id->msg_id = buf_id;
1074
1075 usr_len = le16_to_cpu(req->usr_len);
1076 data_len = off - usr_len;
1077 data = page_address(srv->chunks[buf_id]);
1078 ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len,
1079 data + data_len, usr_len);
1080 if (ret) {
1081 rtrs_err_rl(s,
1082 "Processing write request failed, user module callback reports err: %d\n",
1083 ret);
1084 goto send_err_msg;
1085 }
1086
1087 return;
1088
1089 send_err_msg:
1090 ret = send_io_resp_imm(con, id, ret);
1091 if (ret < 0) {
1092 rtrs_err_rl(s,
1093 "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1094 buf_id, ret);
1095 close_path(srv_path);
1096 }
1097 rtrs_srv_put_ops_ids(srv_path);
1098 }
1099
process_io_req(struct rtrs_srv_con * con,void * msg,u32 id,u32 off)1100 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1101 u32 id, u32 off)
1102 {
1103 struct rtrs_path *s = con->c.path;
1104 struct rtrs_srv_path *srv_path = to_srv_path(s);
1105 struct rtrs_msg_rdma_hdr *hdr;
1106 unsigned int type;
1107
1108 ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev,
1109 srv_path->dma_addr[id],
1110 max_chunk_size, DMA_BIDIRECTIONAL);
1111 hdr = msg;
1112 type = le16_to_cpu(hdr->type);
1113
1114 switch (type) {
1115 case RTRS_MSG_WRITE:
1116 process_write(con, msg, id, off);
1117 break;
1118 case RTRS_MSG_READ:
1119 process_read(con, msg, id, off);
1120 break;
1121 default:
1122 rtrs_err(s,
1123 "Processing I/O request failed, unknown message type received: 0x%02x\n",
1124 type);
1125 goto err;
1126 }
1127
1128 return;
1129
1130 err:
1131 close_path(srv_path);
1132 }
1133
rtrs_srv_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1134 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1135 {
1136 struct rtrs_srv_mr *mr =
1137 container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1138 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1139 struct rtrs_path *s = con->c.path;
1140 struct rtrs_srv_path *srv_path = to_srv_path(s);
1141 struct rtrs_srv_sess *srv = srv_path->srv;
1142 u32 msg_id, off;
1143 void *data;
1144
1145 if (wc->status != IB_WC_SUCCESS) {
1146 rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1147 ib_wc_status_msg(wc->status));
1148 close_path(srv_path);
1149 }
1150 msg_id = mr->msg_id;
1151 off = mr->msg_off;
1152 data = page_address(srv->chunks[msg_id]) + off;
1153 process_io_req(con, data, msg_id, off);
1154 }
1155
rtrs_srv_inv_rkey(struct rtrs_srv_con * con,struct rtrs_srv_mr * mr)1156 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1157 struct rtrs_srv_mr *mr)
1158 {
1159 struct ib_send_wr wr = {
1160 .opcode = IB_WR_LOCAL_INV,
1161 .wr_cqe = &mr->inv_cqe,
1162 .send_flags = IB_SEND_SIGNALED,
1163 .ex.invalidate_rkey = mr->mr->rkey,
1164 };
1165 mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1166
1167 return ib_post_send(con->c.qp, &wr, NULL);
1168 }
1169
rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con * con)1170 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1171 {
1172 spin_lock(&con->rsp_wr_wait_lock);
1173 while (!list_empty(&con->rsp_wr_wait_list)) {
1174 struct rtrs_srv_op *id;
1175 int ret;
1176
1177 id = list_entry(con->rsp_wr_wait_list.next,
1178 struct rtrs_srv_op, wait_list);
1179 list_del(&id->wait_list);
1180
1181 spin_unlock(&con->rsp_wr_wait_lock);
1182 ret = rtrs_srv_resp_rdma(id, id->status);
1183 spin_lock(&con->rsp_wr_wait_lock);
1184
1185 if (!ret) {
1186 list_add(&id->wait_list, &con->rsp_wr_wait_list);
1187 break;
1188 }
1189 }
1190 spin_unlock(&con->rsp_wr_wait_lock);
1191 }
1192
rtrs_srv_rdma_done(struct ib_cq * cq,struct ib_wc * wc)1193 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1194 {
1195 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1196 struct rtrs_path *s = con->c.path;
1197 struct rtrs_srv_path *srv_path = to_srv_path(s);
1198 struct rtrs_srv_sess *srv = srv_path->srv;
1199 u32 imm_type, imm_payload;
1200 int err;
1201
1202 if (wc->status != IB_WC_SUCCESS) {
1203 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1204 rtrs_err(s,
1205 "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1206 ib_wc_status_msg(wc->status), wc->wr_cqe,
1207 wc->opcode, wc->vendor_err, wc->byte_len);
1208 close_path(srv_path);
1209 }
1210 return;
1211 }
1212
1213 switch (wc->opcode) {
1214 case IB_WC_RECV_RDMA_WITH_IMM:
1215 /*
1216 * post_recv() RDMA write completions of IO reqs (read/write)
1217 * and hb
1218 */
1219 if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1220 return;
1221 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1222 if (err) {
1223 rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1224 close_path(srv_path);
1225 break;
1226 }
1227 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1228 &imm_type, &imm_payload);
1229 if (imm_type == RTRS_IO_REQ_IMM) {
1230 u32 msg_id, off;
1231 void *data;
1232
1233 msg_id = imm_payload >> srv_path->mem_bits;
1234 off = imm_payload & ((1 << srv_path->mem_bits) - 1);
1235 if (msg_id >= srv->queue_depth || off >= max_chunk_size) {
1236 rtrs_err(s, "Wrong msg_id %u, off %u\n",
1237 msg_id, off);
1238 close_path(srv_path);
1239 return;
1240 }
1241 if (always_invalidate) {
1242 struct rtrs_srv_mr *mr = &srv_path->mrs[msg_id];
1243
1244 mr->msg_off = off;
1245 mr->msg_id = msg_id;
1246 err = rtrs_srv_inv_rkey(con, mr);
1247 if (err) {
1248 rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1249 err);
1250 close_path(srv_path);
1251 break;
1252 }
1253 } else {
1254 data = page_address(srv->chunks[msg_id]) + off;
1255 process_io_req(con, data, msg_id, off);
1256 }
1257 } else if (imm_type == RTRS_HB_MSG_IMM) {
1258 WARN_ON(con->c.cid);
1259 rtrs_send_hb_ack(&srv_path->s);
1260 } else if (imm_type == RTRS_HB_ACK_IMM) {
1261 WARN_ON(con->c.cid);
1262 srv_path->s.hb_missed_cnt = 0;
1263 } else {
1264 rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1265 }
1266 break;
1267 case IB_WC_RDMA_WRITE:
1268 case IB_WC_SEND:
1269 /*
1270 * post_send() RDMA write completions of IO reqs (read/write)
1271 * and hb.
1272 */
1273 atomic_add(s->signal_interval, &con->c.sq_wr_avail);
1274
1275 if (!list_empty_careful(&con->rsp_wr_wait_list))
1276 rtrs_rdma_process_wr_wait_list(con);
1277
1278 break;
1279 default:
1280 rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1281 return;
1282 }
1283 }
1284
1285 /**
1286 * rtrs_srv_get_path_name() - Get rtrs_srv peer hostname.
1287 * @srv: Session
1288 * @pathname: Pathname buffer
1289 * @len: Length of sessname buffer
1290 */
rtrs_srv_get_path_name(struct rtrs_srv_sess * srv,char * pathname,size_t len)1291 int rtrs_srv_get_path_name(struct rtrs_srv_sess *srv, char *pathname,
1292 size_t len)
1293 {
1294 struct rtrs_srv_path *srv_path;
1295 int err = -ENOTCONN;
1296
1297 mutex_lock(&srv->paths_mutex);
1298 list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1299 if (srv_path->state != RTRS_SRV_CONNECTED)
1300 continue;
1301 strscpy(pathname, srv_path->s.sessname,
1302 min_t(size_t, sizeof(srv_path->s.sessname), len));
1303 err = 0;
1304 break;
1305 }
1306 mutex_unlock(&srv->paths_mutex);
1307
1308 return err;
1309 }
1310 EXPORT_SYMBOL(rtrs_srv_get_path_name);
1311
1312 /**
1313 * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth.
1314 * @srv: Session
1315 */
rtrs_srv_get_queue_depth(struct rtrs_srv_sess * srv)1316 int rtrs_srv_get_queue_depth(struct rtrs_srv_sess *srv)
1317 {
1318 return srv->queue_depth;
1319 }
1320 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1321
find_next_bit_ring(struct rtrs_srv_path * srv_path)1322 static int find_next_bit_ring(struct rtrs_srv_path *srv_path)
1323 {
1324 struct ib_device *ib_dev = srv_path->s.dev->ib_dev;
1325 int v;
1326
1327 v = cpumask_next(srv_path->cur_cq_vector, &cq_affinity_mask);
1328 if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1329 v = cpumask_first(&cq_affinity_mask);
1330 return v;
1331 }
1332
rtrs_srv_get_next_cq_vector(struct rtrs_srv_path * srv_path)1333 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_path *srv_path)
1334 {
1335 srv_path->cur_cq_vector = find_next_bit_ring(srv_path);
1336
1337 return srv_path->cur_cq_vector;
1338 }
1339
rtrs_srv_dev_release(struct device * dev)1340 static void rtrs_srv_dev_release(struct device *dev)
1341 {
1342 struct rtrs_srv_sess *srv = container_of(dev, struct rtrs_srv_sess,
1343 dev);
1344
1345 kfree(srv);
1346 }
1347
free_srv(struct rtrs_srv_sess * srv)1348 static void free_srv(struct rtrs_srv_sess *srv)
1349 {
1350 int i;
1351
1352 WARN_ON(refcount_read(&srv->refcount));
1353 for (i = 0; i < srv->queue_depth; i++)
1354 __free_pages(srv->chunks[i], get_order(max_chunk_size));
1355 kfree(srv->chunks);
1356 mutex_destroy(&srv->paths_mutex);
1357 mutex_destroy(&srv->paths_ev_mutex);
1358 /* last put to release the srv structure */
1359 put_device(&srv->dev);
1360 }
1361
get_or_create_srv(struct rtrs_srv_ctx * ctx,const uuid_t * paths_uuid,bool first_conn)1362 static struct rtrs_srv_sess *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1363 const uuid_t *paths_uuid,
1364 bool first_conn)
1365 {
1366 struct rtrs_srv_sess *srv;
1367 int i;
1368
1369 mutex_lock(&ctx->srv_mutex);
1370 list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1371 if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1372 refcount_inc_not_zero(&srv->refcount)) {
1373 mutex_unlock(&ctx->srv_mutex);
1374 return srv;
1375 }
1376 }
1377 mutex_unlock(&ctx->srv_mutex);
1378 /*
1379 * If this request is not the first connection request from the
1380 * client for this session then fail and return error.
1381 */
1382 if (!first_conn) {
1383 pr_err_ratelimited("Error: Not the first connection request for this session\n");
1384 return ERR_PTR(-ENXIO);
1385 }
1386
1387 /* need to allocate a new srv */
1388 srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1389 if (!srv)
1390 return ERR_PTR(-ENOMEM);
1391
1392 INIT_LIST_HEAD(&srv->paths_list);
1393 mutex_init(&srv->paths_mutex);
1394 mutex_init(&srv->paths_ev_mutex);
1395 uuid_copy(&srv->paths_uuid, paths_uuid);
1396 srv->queue_depth = sess_queue_depth;
1397 srv->ctx = ctx;
1398 device_initialize(&srv->dev);
1399 srv->dev.release = rtrs_srv_dev_release;
1400
1401 srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1402 GFP_KERNEL);
1403 if (!srv->chunks)
1404 goto err_free_srv;
1405
1406 for (i = 0; i < srv->queue_depth; i++) {
1407 srv->chunks[i] = alloc_pages(GFP_KERNEL,
1408 get_order(max_chunk_size));
1409 if (!srv->chunks[i])
1410 goto err_free_chunks;
1411 }
1412 refcount_set(&srv->refcount, 1);
1413 mutex_lock(&ctx->srv_mutex);
1414 list_add(&srv->ctx_list, &ctx->srv_list);
1415 mutex_unlock(&ctx->srv_mutex);
1416
1417 return srv;
1418
1419 err_free_chunks:
1420 while (i--)
1421 __free_pages(srv->chunks[i], get_order(max_chunk_size));
1422 kfree(srv->chunks);
1423
1424 err_free_srv:
1425 kfree(srv);
1426 return ERR_PTR(-ENOMEM);
1427 }
1428
put_srv(struct rtrs_srv_sess * srv)1429 static void put_srv(struct rtrs_srv_sess *srv)
1430 {
1431 if (refcount_dec_and_test(&srv->refcount)) {
1432 struct rtrs_srv_ctx *ctx = srv->ctx;
1433
1434 WARN_ON(srv->dev.kobj.state_in_sysfs);
1435
1436 mutex_lock(&ctx->srv_mutex);
1437 list_del(&srv->ctx_list);
1438 mutex_unlock(&ctx->srv_mutex);
1439 free_srv(srv);
1440 }
1441 }
1442
__add_path_to_srv(struct rtrs_srv_sess * srv,struct rtrs_srv_path * srv_path)1443 static void __add_path_to_srv(struct rtrs_srv_sess *srv,
1444 struct rtrs_srv_path *srv_path)
1445 {
1446 list_add_tail(&srv_path->s.entry, &srv->paths_list);
1447 srv->paths_num++;
1448 WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1449 }
1450
del_path_from_srv(struct rtrs_srv_path * srv_path)1451 static void del_path_from_srv(struct rtrs_srv_path *srv_path)
1452 {
1453 struct rtrs_srv_sess *srv = srv_path->srv;
1454
1455 if (WARN_ON(!srv))
1456 return;
1457
1458 mutex_lock(&srv->paths_mutex);
1459 list_del(&srv_path->s.entry);
1460 WARN_ON(!srv->paths_num);
1461 srv->paths_num--;
1462 mutex_unlock(&srv->paths_mutex);
1463 }
1464
1465 /* return true if addresses are the same, error other wise */
sockaddr_cmp(const struct sockaddr * a,const struct sockaddr * b)1466 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1467 {
1468 switch (a->sa_family) {
1469 case AF_IB:
1470 return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1471 &((struct sockaddr_ib *)b)->sib_addr,
1472 sizeof(struct ib_addr)) &&
1473 (b->sa_family == AF_IB);
1474 case AF_INET:
1475 return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1476 &((struct sockaddr_in *)b)->sin_addr,
1477 sizeof(struct in_addr)) &&
1478 (b->sa_family == AF_INET);
1479 case AF_INET6:
1480 return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1481 &((struct sockaddr_in6 *)b)->sin6_addr,
1482 sizeof(struct in6_addr)) &&
1483 (b->sa_family == AF_INET6);
1484 default:
1485 return -ENOENT;
1486 }
1487 }
1488
__is_path_w_addr_exists(struct rtrs_srv_sess * srv,struct rdma_addr * addr)1489 static bool __is_path_w_addr_exists(struct rtrs_srv_sess *srv,
1490 struct rdma_addr *addr)
1491 {
1492 struct rtrs_srv_path *srv_path;
1493
1494 list_for_each_entry(srv_path, &srv->paths_list, s.entry)
1495 if (!sockaddr_cmp((struct sockaddr *)&srv_path->s.dst_addr,
1496 (struct sockaddr *)&addr->dst_addr) &&
1497 !sockaddr_cmp((struct sockaddr *)&srv_path->s.src_addr,
1498 (struct sockaddr *)&addr->src_addr))
1499 return true;
1500
1501 return false;
1502 }
1503
free_path(struct rtrs_srv_path * srv_path)1504 static void free_path(struct rtrs_srv_path *srv_path)
1505 {
1506 if (srv_path->kobj.state_in_sysfs) {
1507 kobject_del(&srv_path->kobj);
1508 kobject_put(&srv_path->kobj);
1509 } else {
1510 free_percpu(srv_path->stats->rdma_stats);
1511 kfree(srv_path->stats);
1512 kfree(srv_path);
1513 }
1514 }
1515
rtrs_srv_close_work(struct work_struct * work)1516 static void rtrs_srv_close_work(struct work_struct *work)
1517 {
1518 struct rtrs_srv_path *srv_path;
1519 struct rtrs_srv_con *con;
1520 int i;
1521
1522 srv_path = container_of(work, typeof(*srv_path), close_work);
1523
1524 rtrs_srv_destroy_path_files(srv_path);
1525 rtrs_srv_stop_hb(srv_path);
1526
1527 for (i = 0; i < srv_path->s.con_num; i++) {
1528 if (!srv_path->s.con[i])
1529 continue;
1530 con = to_srv_con(srv_path->s.con[i]);
1531 rdma_disconnect(con->c.cm_id);
1532 ib_drain_qp(con->c.qp);
1533 }
1534
1535 /*
1536 * Degrade ref count to the usual model with a single shared
1537 * atomic_t counter
1538 */
1539 percpu_ref_kill(&srv_path->ids_inflight_ref);
1540
1541 /* Wait for all completion */
1542 wait_for_completion(&srv_path->complete_done);
1543
1544 /* Notify upper layer if we are the last path */
1545 rtrs_srv_path_down(srv_path);
1546
1547 unmap_cont_bufs(srv_path);
1548 rtrs_srv_free_ops_ids(srv_path);
1549
1550 for (i = 0; i < srv_path->s.con_num; i++) {
1551 if (!srv_path->s.con[i])
1552 continue;
1553 con = to_srv_con(srv_path->s.con[i]);
1554 rtrs_cq_qp_destroy(&con->c);
1555 rdma_destroy_id(con->c.cm_id);
1556 kfree(con);
1557 }
1558 rtrs_ib_dev_put(srv_path->s.dev);
1559
1560 del_path_from_srv(srv_path);
1561 put_srv(srv_path->srv);
1562 srv_path->srv = NULL;
1563 rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSED);
1564
1565 kfree(srv_path->dma_addr);
1566 kfree(srv_path->s.con);
1567 free_path(srv_path);
1568 }
1569
rtrs_rdma_do_accept(struct rtrs_srv_path * srv_path,struct rdma_cm_id * cm_id)1570 static int rtrs_rdma_do_accept(struct rtrs_srv_path *srv_path,
1571 struct rdma_cm_id *cm_id)
1572 {
1573 struct rtrs_srv_sess *srv = srv_path->srv;
1574 struct rtrs_msg_conn_rsp msg;
1575 struct rdma_conn_param param;
1576 int err;
1577
1578 param = (struct rdma_conn_param) {
1579 .rnr_retry_count = 7,
1580 .private_data = &msg,
1581 .private_data_len = sizeof(msg),
1582 };
1583
1584 msg = (struct rtrs_msg_conn_rsp) {
1585 .magic = cpu_to_le16(RTRS_MAGIC),
1586 .version = cpu_to_le16(RTRS_PROTO_VER),
1587 .queue_depth = cpu_to_le16(srv->queue_depth),
1588 .max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1589 .max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1590 };
1591
1592 if (always_invalidate)
1593 msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1594
1595 err = rdma_accept(cm_id, ¶m);
1596 if (err)
1597 pr_err("rdma_accept(), err: %d\n", err);
1598
1599 return err;
1600 }
1601
rtrs_rdma_do_reject(struct rdma_cm_id * cm_id,int errno)1602 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1603 {
1604 struct rtrs_msg_conn_rsp msg;
1605 int err;
1606
1607 msg = (struct rtrs_msg_conn_rsp) {
1608 .magic = cpu_to_le16(RTRS_MAGIC),
1609 .version = cpu_to_le16(RTRS_PROTO_VER),
1610 .errno = cpu_to_le16(errno),
1611 };
1612
1613 err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1614 if (err)
1615 pr_err("rdma_reject(), err: %d\n", err);
1616
1617 /* Bounce errno back */
1618 return errno;
1619 }
1620
1621 static struct rtrs_srv_path *
__find_path(struct rtrs_srv_sess * srv,const uuid_t * sess_uuid)1622 __find_path(struct rtrs_srv_sess *srv, const uuid_t *sess_uuid)
1623 {
1624 struct rtrs_srv_path *srv_path;
1625
1626 list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1627 if (uuid_equal(&srv_path->s.uuid, sess_uuid))
1628 return srv_path;
1629 }
1630
1631 return NULL;
1632 }
1633
create_con(struct rtrs_srv_path * srv_path,struct rdma_cm_id * cm_id,unsigned int cid)1634 static int create_con(struct rtrs_srv_path *srv_path,
1635 struct rdma_cm_id *cm_id,
1636 unsigned int cid)
1637 {
1638 struct rtrs_srv_sess *srv = srv_path->srv;
1639 struct rtrs_path *s = &srv_path->s;
1640 struct rtrs_srv_con *con;
1641
1642 u32 cq_num, max_send_wr, max_recv_wr, wr_limit;
1643 int err, cq_vector;
1644
1645 con = kzalloc(sizeof(*con), GFP_KERNEL);
1646 if (!con) {
1647 err = -ENOMEM;
1648 goto err;
1649 }
1650
1651 spin_lock_init(&con->rsp_wr_wait_lock);
1652 INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1653 con->c.cm_id = cm_id;
1654 con->c.path = &srv_path->s;
1655 con->c.cid = cid;
1656 atomic_set(&con->c.wr_cnt, 1);
1657 wr_limit = srv_path->s.dev->ib_dev->attrs.max_qp_wr;
1658
1659 if (con->c.cid == 0) {
1660 /*
1661 * All receive and all send (each requiring invalidate)
1662 * + 2 for drain and heartbeat
1663 */
1664 max_send_wr = min_t(int, wr_limit,
1665 SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1666 max_recv_wr = max_send_wr;
1667 s->signal_interval = min_not_zero(srv->queue_depth,
1668 (size_t)SERVICE_CON_QUEUE_DEPTH);
1669 } else {
1670 /* when always_invlaidate enalbed, we need linv+rinv+mr+imm */
1671 if (always_invalidate)
1672 max_send_wr =
1673 min_t(int, wr_limit,
1674 srv->queue_depth * (1 + 4) + 1);
1675 else
1676 max_send_wr =
1677 min_t(int, wr_limit,
1678 srv->queue_depth * (1 + 2) + 1);
1679
1680 max_recv_wr = srv->queue_depth + 1;
1681 /*
1682 * If we have all receive requests posted and
1683 * all write requests posted and each read request
1684 * requires an invalidate request + drain
1685 * and qp gets into error state.
1686 */
1687 }
1688 cq_num = max_send_wr + max_recv_wr;
1689 atomic_set(&con->c.sq_wr_avail, max_send_wr);
1690 cq_vector = rtrs_srv_get_next_cq_vector(srv_path);
1691
1692 /* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1693 err = rtrs_cq_qp_create(&srv_path->s, &con->c, 1, cq_vector, cq_num,
1694 max_send_wr, max_recv_wr,
1695 IB_POLL_WORKQUEUE);
1696 if (err) {
1697 rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1698 goto free_con;
1699 }
1700 if (con->c.cid == 0) {
1701 err = post_recv_info_req(con);
1702 if (err)
1703 goto free_cqqp;
1704 }
1705 WARN_ON(srv_path->s.con[cid]);
1706 srv_path->s.con[cid] = &con->c;
1707
1708 /*
1709 * Change context from server to current connection. The other
1710 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1711 */
1712 cm_id->context = &con->c;
1713
1714 return 0;
1715
1716 free_cqqp:
1717 rtrs_cq_qp_destroy(&con->c);
1718 free_con:
1719 kfree(con);
1720
1721 err:
1722 return err;
1723 }
1724
__alloc_path(struct rtrs_srv_sess * srv,struct rdma_cm_id * cm_id,unsigned int con_num,unsigned int recon_cnt,const uuid_t * uuid)1725 static struct rtrs_srv_path *__alloc_path(struct rtrs_srv_sess *srv,
1726 struct rdma_cm_id *cm_id,
1727 unsigned int con_num,
1728 unsigned int recon_cnt,
1729 const uuid_t *uuid)
1730 {
1731 struct rtrs_srv_path *srv_path;
1732 int err = -ENOMEM;
1733 char str[NAME_MAX];
1734 struct rtrs_addr path;
1735
1736 if (srv->paths_num >= MAX_PATHS_NUM) {
1737 err = -ECONNRESET;
1738 goto err;
1739 }
1740 if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1741 err = -EEXIST;
1742 pr_err("Path with same addr exists\n");
1743 goto err;
1744 }
1745 srv_path = kzalloc(sizeof(*srv_path), GFP_KERNEL);
1746 if (!srv_path)
1747 goto err;
1748
1749 srv_path->stats = kzalloc(sizeof(*srv_path->stats), GFP_KERNEL);
1750 if (!srv_path->stats)
1751 goto err_free_sess;
1752
1753 srv_path->stats->rdma_stats = alloc_percpu(struct rtrs_srv_stats_rdma_stats);
1754 if (!srv_path->stats->rdma_stats)
1755 goto err_free_stats;
1756
1757 srv_path->stats->srv_path = srv_path;
1758
1759 srv_path->dma_addr = kcalloc(srv->queue_depth,
1760 sizeof(*srv_path->dma_addr),
1761 GFP_KERNEL);
1762 if (!srv_path->dma_addr)
1763 goto err_free_percpu;
1764
1765 srv_path->s.con = kcalloc(con_num, sizeof(*srv_path->s.con),
1766 GFP_KERNEL);
1767 if (!srv_path->s.con)
1768 goto err_free_dma_addr;
1769
1770 srv_path->state = RTRS_SRV_CONNECTING;
1771 srv_path->srv = srv;
1772 srv_path->cur_cq_vector = -1;
1773 srv_path->s.dst_addr = cm_id->route.addr.dst_addr;
1774 srv_path->s.src_addr = cm_id->route.addr.src_addr;
1775
1776 /* temporary until receiving session-name from client */
1777 path.src = &srv_path->s.src_addr;
1778 path.dst = &srv_path->s.dst_addr;
1779 rtrs_addr_to_str(&path, str, sizeof(str));
1780 strscpy(srv_path->s.sessname, str, sizeof(srv_path->s.sessname));
1781
1782 srv_path->s.con_num = con_num;
1783 srv_path->s.irq_con_num = con_num;
1784 srv_path->s.recon_cnt = recon_cnt;
1785 uuid_copy(&srv_path->s.uuid, uuid);
1786 spin_lock_init(&srv_path->state_lock);
1787 INIT_WORK(&srv_path->close_work, rtrs_srv_close_work);
1788 rtrs_srv_init_hb(srv_path);
1789
1790 srv_path->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1791 if (!srv_path->s.dev) {
1792 err = -ENOMEM;
1793 goto err_free_con;
1794 }
1795 err = map_cont_bufs(srv_path);
1796 if (err)
1797 goto err_put_dev;
1798
1799 err = rtrs_srv_alloc_ops_ids(srv_path);
1800 if (err)
1801 goto err_unmap_bufs;
1802
1803 __add_path_to_srv(srv, srv_path);
1804
1805 return srv_path;
1806
1807 err_unmap_bufs:
1808 unmap_cont_bufs(srv_path);
1809 err_put_dev:
1810 rtrs_ib_dev_put(srv_path->s.dev);
1811 err_free_con:
1812 kfree(srv_path->s.con);
1813 err_free_dma_addr:
1814 kfree(srv_path->dma_addr);
1815 err_free_percpu:
1816 free_percpu(srv_path->stats->rdma_stats);
1817 err_free_stats:
1818 kfree(srv_path->stats);
1819 err_free_sess:
1820 kfree(srv_path);
1821 err:
1822 return ERR_PTR(err);
1823 }
1824
rtrs_rdma_connect(struct rdma_cm_id * cm_id,const struct rtrs_msg_conn_req * msg,size_t len)1825 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1826 const struct rtrs_msg_conn_req *msg,
1827 size_t len)
1828 {
1829 struct rtrs_srv_ctx *ctx = cm_id->context;
1830 struct rtrs_srv_path *srv_path;
1831 struct rtrs_srv_sess *srv;
1832
1833 u16 version, con_num, cid;
1834 u16 recon_cnt;
1835 int err = -ECONNRESET;
1836
1837 if (len < sizeof(*msg)) {
1838 pr_err("Invalid RTRS connection request\n");
1839 goto reject_w_err;
1840 }
1841 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1842 pr_err("Invalid RTRS magic\n");
1843 goto reject_w_err;
1844 }
1845 version = le16_to_cpu(msg->version);
1846 if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1847 pr_err("Unsupported major RTRS version: %d, expected %d\n",
1848 version >> 8, RTRS_PROTO_VER_MAJOR);
1849 goto reject_w_err;
1850 }
1851 con_num = le16_to_cpu(msg->cid_num);
1852 if (con_num > 4096) {
1853 /* Sanity check */
1854 pr_err("Too many connections requested: %d\n", con_num);
1855 goto reject_w_err;
1856 }
1857 cid = le16_to_cpu(msg->cid);
1858 if (cid >= con_num) {
1859 /* Sanity check */
1860 pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1861 goto reject_w_err;
1862 }
1863 recon_cnt = le16_to_cpu(msg->recon_cnt);
1864 srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1865 if (IS_ERR(srv)) {
1866 err = PTR_ERR(srv);
1867 pr_err("get_or_create_srv(), error %d\n", err);
1868 goto reject_w_err;
1869 }
1870 mutex_lock(&srv->paths_mutex);
1871 srv_path = __find_path(srv, &msg->sess_uuid);
1872 if (srv_path) {
1873 struct rtrs_path *s = &srv_path->s;
1874
1875 /* Session already holds a reference */
1876 put_srv(srv);
1877
1878 if (srv_path->state != RTRS_SRV_CONNECTING) {
1879 rtrs_err(s, "Session in wrong state: %s\n",
1880 rtrs_srv_state_str(srv_path->state));
1881 mutex_unlock(&srv->paths_mutex);
1882 goto reject_w_err;
1883 }
1884 /*
1885 * Sanity checks
1886 */
1887 if (con_num != s->con_num || cid >= s->con_num) {
1888 rtrs_err(s, "Incorrect request: %d, %d\n",
1889 cid, con_num);
1890 mutex_unlock(&srv->paths_mutex);
1891 goto reject_w_err;
1892 }
1893 if (s->con[cid]) {
1894 rtrs_err(s, "Connection already exists: %d\n",
1895 cid);
1896 mutex_unlock(&srv->paths_mutex);
1897 goto reject_w_err;
1898 }
1899 } else {
1900 srv_path = __alloc_path(srv, cm_id, con_num, recon_cnt,
1901 &msg->sess_uuid);
1902 if (IS_ERR(srv_path)) {
1903 mutex_unlock(&srv->paths_mutex);
1904 put_srv(srv);
1905 err = PTR_ERR(srv_path);
1906 pr_err("RTRS server session allocation failed: %d\n", err);
1907 goto reject_w_err;
1908 }
1909 }
1910 err = create_con(srv_path, cm_id, cid);
1911 if (err) {
1912 rtrs_err((&srv_path->s), "create_con(), error %d\n", err);
1913 rtrs_rdma_do_reject(cm_id, err);
1914 /*
1915 * Since session has other connections we follow normal way
1916 * through workqueue, but still return an error to tell cma.c
1917 * to call rdma_destroy_id() for current connection.
1918 */
1919 goto close_and_return_err;
1920 }
1921 err = rtrs_rdma_do_accept(srv_path, cm_id);
1922 if (err) {
1923 rtrs_err((&srv_path->s), "rtrs_rdma_do_accept(), error %d\n", err);
1924 rtrs_rdma_do_reject(cm_id, err);
1925 /*
1926 * Since current connection was successfully added to the
1927 * session we follow normal way through workqueue to close the
1928 * session, thus return 0 to tell cma.c we call
1929 * rdma_destroy_id() ourselves.
1930 */
1931 err = 0;
1932 goto close_and_return_err;
1933 }
1934 mutex_unlock(&srv->paths_mutex);
1935
1936 return 0;
1937
1938 reject_w_err:
1939 return rtrs_rdma_do_reject(cm_id, err);
1940
1941 close_and_return_err:
1942 mutex_unlock(&srv->paths_mutex);
1943 close_path(srv_path);
1944
1945 return err;
1946 }
1947
rtrs_srv_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1948 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1949 struct rdma_cm_event *ev)
1950 {
1951 struct rtrs_srv_path *srv_path = NULL;
1952 struct rtrs_path *s = NULL;
1953
1954 if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1955 struct rtrs_con *c = cm_id->context;
1956
1957 s = c->path;
1958 srv_path = to_srv_path(s);
1959 }
1960
1961 switch (ev->event) {
1962 case RDMA_CM_EVENT_CONNECT_REQUEST:
1963 /*
1964 * In case of error cma.c will destroy cm_id,
1965 * see cma_process_remove()
1966 */
1967 return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1968 ev->param.conn.private_data_len);
1969 case RDMA_CM_EVENT_ESTABLISHED:
1970 /* Nothing here */
1971 break;
1972 case RDMA_CM_EVENT_REJECTED:
1973 case RDMA_CM_EVENT_CONNECT_ERROR:
1974 case RDMA_CM_EVENT_UNREACHABLE:
1975 rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1976 rdma_event_msg(ev->event), ev->status);
1977 fallthrough;
1978 case RDMA_CM_EVENT_DISCONNECTED:
1979 case RDMA_CM_EVENT_ADDR_CHANGE:
1980 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1981 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1982 close_path(srv_path);
1983 break;
1984 default:
1985 pr_err("Ignoring unexpected CM event %s, err %d\n",
1986 rdma_event_msg(ev->event), ev->status);
1987 break;
1988 }
1989
1990 return 0;
1991 }
1992
rtrs_srv_cm_init(struct rtrs_srv_ctx * ctx,struct sockaddr * addr,enum rdma_ucm_port_space ps)1993 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1994 struct sockaddr *addr,
1995 enum rdma_ucm_port_space ps)
1996 {
1997 struct rdma_cm_id *cm_id;
1998 int ret;
1999
2000 cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
2001 ctx, ps, IB_QPT_RC);
2002 if (IS_ERR(cm_id)) {
2003 ret = PTR_ERR(cm_id);
2004 pr_err("Creating id for RDMA connection failed, err: %d\n",
2005 ret);
2006 goto err_out;
2007 }
2008 ret = rdma_bind_addr(cm_id, addr);
2009 if (ret) {
2010 pr_err("Binding RDMA address failed, err: %d\n", ret);
2011 goto err_cm;
2012 }
2013 ret = rdma_listen(cm_id, 64);
2014 if (ret) {
2015 pr_err("Listening on RDMA connection failed, err: %d\n",
2016 ret);
2017 goto err_cm;
2018 }
2019
2020 return cm_id;
2021
2022 err_cm:
2023 rdma_destroy_id(cm_id);
2024 err_out:
2025
2026 return ERR_PTR(ret);
2027 }
2028
rtrs_srv_rdma_init(struct rtrs_srv_ctx * ctx,u16 port)2029 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
2030 {
2031 struct sockaddr_in6 sin = {
2032 .sin6_family = AF_INET6,
2033 .sin6_addr = IN6ADDR_ANY_INIT,
2034 .sin6_port = htons(port),
2035 };
2036 struct sockaddr_ib sib = {
2037 .sib_family = AF_IB,
2038 .sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port),
2039 .sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL),
2040 .sib_pkey = cpu_to_be16(0xffff),
2041 };
2042 struct rdma_cm_id *cm_ip, *cm_ib;
2043 int ret;
2044
2045 /*
2046 * We accept both IPoIB and IB connections, so we need to keep
2047 * two cm id's, one for each socket type and port space.
2048 * If the cm initialization of one of the id's fails, we abort
2049 * everything.
2050 */
2051 cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2052 if (IS_ERR(cm_ip))
2053 return PTR_ERR(cm_ip);
2054
2055 cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2056 if (IS_ERR(cm_ib)) {
2057 ret = PTR_ERR(cm_ib);
2058 goto free_cm_ip;
2059 }
2060
2061 ctx->cm_id_ip = cm_ip;
2062 ctx->cm_id_ib = cm_ib;
2063
2064 return 0;
2065
2066 free_cm_ip:
2067 rdma_destroy_id(cm_ip);
2068
2069 return ret;
2070 }
2071
alloc_srv_ctx(struct rtrs_srv_ops * ops)2072 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2073 {
2074 struct rtrs_srv_ctx *ctx;
2075
2076 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2077 if (!ctx)
2078 return NULL;
2079
2080 ctx->ops = *ops;
2081 mutex_init(&ctx->srv_mutex);
2082 INIT_LIST_HEAD(&ctx->srv_list);
2083
2084 return ctx;
2085 }
2086
free_srv_ctx(struct rtrs_srv_ctx * ctx)2087 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2088 {
2089 WARN_ON(!list_empty(&ctx->srv_list));
2090 mutex_destroy(&ctx->srv_mutex);
2091 kfree(ctx);
2092 }
2093
rtrs_srv_add_one(struct ib_device * device)2094 static int rtrs_srv_add_one(struct ib_device *device)
2095 {
2096 struct rtrs_srv_ctx *ctx;
2097 int ret = 0;
2098
2099 mutex_lock(&ib_ctx.ib_dev_mutex);
2100 if (ib_ctx.ib_dev_count)
2101 goto out;
2102
2103 /*
2104 * Since our CM IDs are NOT bound to any ib device we will create them
2105 * only once
2106 */
2107 ctx = ib_ctx.srv_ctx;
2108 ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2109 if (ret) {
2110 /*
2111 * We errored out here.
2112 * According to the ib code, if we encounter an error here then the
2113 * error code is ignored, and no more calls to our ops are made.
2114 */
2115 pr_err("Failed to initialize RDMA connection");
2116 goto err_out;
2117 }
2118
2119 out:
2120 /*
2121 * Keep a track on the number of ib devices added
2122 */
2123 ib_ctx.ib_dev_count++;
2124
2125 err_out:
2126 mutex_unlock(&ib_ctx.ib_dev_mutex);
2127 return ret;
2128 }
2129
rtrs_srv_remove_one(struct ib_device * device,void * client_data)2130 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2131 {
2132 struct rtrs_srv_ctx *ctx;
2133
2134 mutex_lock(&ib_ctx.ib_dev_mutex);
2135 ib_ctx.ib_dev_count--;
2136
2137 if (ib_ctx.ib_dev_count)
2138 goto out;
2139
2140 /*
2141 * Since our CM IDs are NOT bound to any ib device we will remove them
2142 * only once, when the last device is removed
2143 */
2144 ctx = ib_ctx.srv_ctx;
2145 rdma_destroy_id(ctx->cm_id_ip);
2146 rdma_destroy_id(ctx->cm_id_ib);
2147
2148 out:
2149 mutex_unlock(&ib_ctx.ib_dev_mutex);
2150 }
2151
2152 static struct ib_client rtrs_srv_client = {
2153 .name = "rtrs_server",
2154 .add = rtrs_srv_add_one,
2155 .remove = rtrs_srv_remove_one
2156 };
2157
2158 /**
2159 * rtrs_srv_open() - open RTRS server context
2160 * @ops: callback functions
2161 * @port: port to listen on
2162 *
2163 * Creates server context with specified callbacks.
2164 *
2165 * Return a valid pointer on success otherwise PTR_ERR.
2166 */
rtrs_srv_open(struct rtrs_srv_ops * ops,u16 port)2167 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2168 {
2169 struct rtrs_srv_ctx *ctx;
2170 int err;
2171
2172 ctx = alloc_srv_ctx(ops);
2173 if (!ctx)
2174 return ERR_PTR(-ENOMEM);
2175
2176 mutex_init(&ib_ctx.ib_dev_mutex);
2177 ib_ctx.srv_ctx = ctx;
2178 ib_ctx.port = port;
2179
2180 err = ib_register_client(&rtrs_srv_client);
2181 if (err) {
2182 free_srv_ctx(ctx);
2183 return ERR_PTR(err);
2184 }
2185
2186 return ctx;
2187 }
2188 EXPORT_SYMBOL(rtrs_srv_open);
2189
close_paths(struct rtrs_srv_sess * srv)2190 static void close_paths(struct rtrs_srv_sess *srv)
2191 {
2192 struct rtrs_srv_path *srv_path;
2193
2194 mutex_lock(&srv->paths_mutex);
2195 list_for_each_entry(srv_path, &srv->paths_list, s.entry)
2196 close_path(srv_path);
2197 mutex_unlock(&srv->paths_mutex);
2198 }
2199
close_ctx(struct rtrs_srv_ctx * ctx)2200 static void close_ctx(struct rtrs_srv_ctx *ctx)
2201 {
2202 struct rtrs_srv_sess *srv;
2203
2204 mutex_lock(&ctx->srv_mutex);
2205 list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2206 close_paths(srv);
2207 mutex_unlock(&ctx->srv_mutex);
2208 flush_workqueue(rtrs_wq);
2209 }
2210
2211 /**
2212 * rtrs_srv_close() - close RTRS server context
2213 * @ctx: pointer to server context
2214 *
2215 * Closes RTRS server context with all client sessions.
2216 */
rtrs_srv_close(struct rtrs_srv_ctx * ctx)2217 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2218 {
2219 ib_unregister_client(&rtrs_srv_client);
2220 mutex_destroy(&ib_ctx.ib_dev_mutex);
2221 close_ctx(ctx);
2222 free_srv_ctx(ctx);
2223 }
2224 EXPORT_SYMBOL(rtrs_srv_close);
2225
check_module_params(void)2226 static int check_module_params(void)
2227 {
2228 if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2229 pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2230 sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2231 return -EINVAL;
2232 }
2233 if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) {
2234 pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2235 max_chunk_size, MIN_CHUNK_SIZE);
2236 return -EINVAL;
2237 }
2238
2239 /*
2240 * Check if IB immediate data size is enough to hold the mem_id and the
2241 * offset inside the memory chunk
2242 */
2243 if ((ilog2(sess_queue_depth - 1) + 1) +
2244 (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2245 pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2246 MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2247 return -EINVAL;
2248 }
2249
2250 return 0;
2251 }
2252
rtrs_server_init(void)2253 static int __init rtrs_server_init(void)
2254 {
2255 int err;
2256
2257 pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2258 KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2259 max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2260 sess_queue_depth, always_invalidate);
2261
2262 rtrs_rdma_dev_pd_init(0, &dev_pd);
2263
2264 err = check_module_params();
2265 if (err) {
2266 pr_err("Failed to load module, invalid module parameters, err: %d\n",
2267 err);
2268 return err;
2269 }
2270 rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2271 if (IS_ERR(rtrs_dev_class)) {
2272 err = PTR_ERR(rtrs_dev_class);
2273 goto out_err;
2274 }
2275 rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2276 if (!rtrs_wq) {
2277 err = -ENOMEM;
2278 goto out_dev_class;
2279 }
2280
2281 return 0;
2282
2283 out_dev_class:
2284 class_destroy(rtrs_dev_class);
2285 out_err:
2286 return err;
2287 }
2288
rtrs_server_exit(void)2289 static void __exit rtrs_server_exit(void)
2290 {
2291 destroy_workqueue(rtrs_wq);
2292 class_destroy(rtrs_dev_class);
2293 rtrs_rdma_dev_pd_deinit(&dev_pd);
2294 }
2295
2296 module_init(rtrs_server_init);
2297 module_exit(rtrs_server_exit);
2298