1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * FDT related Helper functions used by the EFI stub on multiple
4 * architectures. This should be #included by the EFI stub
5 * implementation files.
6 *
7 * Copyright 2013 Linaro Limited; author Roy Franz
8 */
9
10 #include <linux/efi.h>
11 #include <linux/libfdt.h>
12 #include <asm/efi.h>
13
14 #include "efistub.h"
15
16 #define EFI_DT_ADDR_CELLS_DEFAULT 2
17 #define EFI_DT_SIZE_CELLS_DEFAULT 2
18
fdt_update_cell_size(efi_system_table_t * sys_table,void * fdt)19 static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
20 {
21 int offset;
22
23 offset = fdt_path_offset(fdt, "/");
24 /* Set the #address-cells and #size-cells values for an empty tree */
25
26 fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
27 fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
28 }
29
update_fdt(efi_system_table_t * sys_table,void * orig_fdt,unsigned long orig_fdt_size,void * fdt,int new_fdt_size,char * cmdline_ptr,u64 initrd_addr,u64 initrd_size)30 static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
31 unsigned long orig_fdt_size,
32 void *fdt, int new_fdt_size, char *cmdline_ptr,
33 u64 initrd_addr, u64 initrd_size)
34 {
35 int node, num_rsv;
36 int status;
37 u32 fdt_val32;
38 u64 fdt_val64;
39
40 /* Do some checks on provided FDT, if it exists: */
41 if (orig_fdt) {
42 if (fdt_check_header(orig_fdt)) {
43 pr_efi_err(sys_table, "Device Tree header not valid!\n");
44 return EFI_LOAD_ERROR;
45 }
46 /*
47 * We don't get the size of the FDT if we get if from a
48 * configuration table:
49 */
50 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
51 pr_efi_err(sys_table, "Truncated device tree! foo!\n");
52 return EFI_LOAD_ERROR;
53 }
54 }
55
56 if (orig_fdt) {
57 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
58 } else {
59 status = fdt_create_empty_tree(fdt, new_fdt_size);
60 if (status == 0) {
61 /*
62 * Any failure from the following function is
63 * non-critical:
64 */
65 fdt_update_cell_size(sys_table, fdt);
66 }
67 }
68
69 if (status != 0)
70 goto fdt_set_fail;
71
72 /*
73 * Delete all memory reserve map entries. When booting via UEFI,
74 * kernel will use the UEFI memory map to find reserved regions.
75 */
76 num_rsv = fdt_num_mem_rsv(fdt);
77 while (num_rsv-- > 0)
78 fdt_del_mem_rsv(fdt, num_rsv);
79
80 node = fdt_subnode_offset(fdt, 0, "chosen");
81 if (node < 0) {
82 node = fdt_add_subnode(fdt, 0, "chosen");
83 if (node < 0) {
84 /* 'node' is an error code when negative: */
85 status = node;
86 goto fdt_set_fail;
87 }
88 }
89
90 if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
91 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
92 strlen(cmdline_ptr) + 1);
93 if (status)
94 goto fdt_set_fail;
95 }
96
97 /* Set initrd address/end in device tree, if present */
98 if (initrd_size != 0) {
99 u64 initrd_image_end;
100 u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
101
102 status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
103 if (status)
104 goto fdt_set_fail;
105
106 initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
107 status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
108 if (status)
109 goto fdt_set_fail;
110 }
111
112 /* Add FDT entries for EFI runtime services in chosen node. */
113 node = fdt_subnode_offset(fdt, 0, "chosen");
114 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
115
116 status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
117 if (status)
118 goto fdt_set_fail;
119
120 fdt_val64 = U64_MAX; /* placeholder */
121
122 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
123 if (status)
124 goto fdt_set_fail;
125
126 fdt_val32 = U32_MAX; /* placeholder */
127
128 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
129 if (status)
130 goto fdt_set_fail;
131
132 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
133 if (status)
134 goto fdt_set_fail;
135
136 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
137 if (status)
138 goto fdt_set_fail;
139
140 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
141 efi_status_t efi_status;
142
143 efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
144 (u8 *)&fdt_val64);
145 if (efi_status == EFI_SUCCESS) {
146 status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
147 if (status)
148 goto fdt_set_fail;
149 } else if (efi_status != EFI_NOT_FOUND) {
150 return efi_status;
151 }
152 }
153
154 /* Shrink the FDT back to its minimum size: */
155 fdt_pack(fdt);
156
157 return EFI_SUCCESS;
158
159 fdt_set_fail:
160 if (status == -FDT_ERR_NOSPACE)
161 return EFI_BUFFER_TOO_SMALL;
162
163 return EFI_LOAD_ERROR;
164 }
165
update_fdt_memmap(void * fdt,struct efi_boot_memmap * map)166 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
167 {
168 int node = fdt_path_offset(fdt, "/chosen");
169 u64 fdt_val64;
170 u32 fdt_val32;
171 int err;
172
173 if (node < 0)
174 return EFI_LOAD_ERROR;
175
176 fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
177
178 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
179 if (err)
180 return EFI_LOAD_ERROR;
181
182 fdt_val32 = cpu_to_fdt32(*map->map_size);
183
184 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
185 if (err)
186 return EFI_LOAD_ERROR;
187
188 fdt_val32 = cpu_to_fdt32(*map->desc_size);
189
190 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
191 if (err)
192 return EFI_LOAD_ERROR;
193
194 fdt_val32 = cpu_to_fdt32(*map->desc_ver);
195
196 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
197 if (err)
198 return EFI_LOAD_ERROR;
199
200 return EFI_SUCCESS;
201 }
202
203 #ifndef EFI_FDT_ALIGN
204 # define EFI_FDT_ALIGN EFI_PAGE_SIZE
205 #endif
206
207 struct exit_boot_struct {
208 efi_memory_desc_t *runtime_map;
209 int *runtime_entry_count;
210 void *new_fdt_addr;
211 };
212
exit_boot_func(efi_system_table_t * sys_table_arg,struct efi_boot_memmap * map,void * priv)213 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
214 struct efi_boot_memmap *map,
215 void *priv)
216 {
217 struct exit_boot_struct *p = priv;
218 /*
219 * Update the memory map with virtual addresses. The function will also
220 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
221 * entries so that we can pass it straight to SetVirtualAddressMap()
222 */
223 efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
224 p->runtime_map, p->runtime_entry_count);
225
226 return update_fdt_memmap(p->new_fdt_addr, map);
227 }
228
229 #ifndef MAX_FDT_SIZE
230 # define MAX_FDT_SIZE SZ_2M
231 #endif
232
233 /*
234 * Allocate memory for a new FDT, then add EFI, commandline, and
235 * initrd related fields to the FDT. This routine increases the
236 * FDT allocation size until the allocated memory is large
237 * enough. EFI allocations are in EFI_PAGE_SIZE granules,
238 * which are fixed at 4K bytes, so in most cases the first
239 * allocation should succeed.
240 * EFI boot services are exited at the end of this function.
241 * There must be no allocations between the get_memory_map()
242 * call and the exit_boot_services() call, so the exiting of
243 * boot services is very tightly tied to the creation of the FDT
244 * with the final memory map in it.
245 */
246
allocate_new_fdt_and_exit_boot(efi_system_table_t * sys_table,void * handle,unsigned long * new_fdt_addr,unsigned long max_addr,u64 initrd_addr,u64 initrd_size,char * cmdline_ptr,unsigned long fdt_addr,unsigned long fdt_size)247 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
248 void *handle,
249 unsigned long *new_fdt_addr,
250 unsigned long max_addr,
251 u64 initrd_addr, u64 initrd_size,
252 char *cmdline_ptr,
253 unsigned long fdt_addr,
254 unsigned long fdt_size)
255 {
256 unsigned long map_size, desc_size, buff_size;
257 u32 desc_ver;
258 unsigned long mmap_key;
259 efi_memory_desc_t *memory_map, *runtime_map;
260 efi_status_t status;
261 int runtime_entry_count;
262 struct efi_boot_memmap map;
263 struct exit_boot_struct priv;
264
265 map.map = &runtime_map;
266 map.map_size = &map_size;
267 map.desc_size = &desc_size;
268 map.desc_ver = &desc_ver;
269 map.key_ptr = &mmap_key;
270 map.buff_size = &buff_size;
271
272 /*
273 * Get a copy of the current memory map that we will use to prepare
274 * the input for SetVirtualAddressMap(). We don't have to worry about
275 * subsequent allocations adding entries, since they could not affect
276 * the number of EFI_MEMORY_RUNTIME regions.
277 */
278 status = efi_get_memory_map(sys_table, &map);
279 if (status != EFI_SUCCESS) {
280 pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
281 return status;
282 }
283
284 pr_efi(sys_table, "Exiting boot services and installing virtual address map...\n");
285
286 map.map = &memory_map;
287 status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
288 new_fdt_addr, max_addr);
289 if (status != EFI_SUCCESS) {
290 pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
291 goto fail;
292 }
293
294 /*
295 * Now that we have done our final memory allocation (and free)
296 * we can get the memory map key needed for exit_boot_services().
297 */
298 status = efi_get_memory_map(sys_table, &map);
299 if (status != EFI_SUCCESS)
300 goto fail_free_new_fdt;
301
302 status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
303 (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
304 initrd_addr, initrd_size);
305
306 if (status != EFI_SUCCESS) {
307 pr_efi_err(sys_table, "Unable to construct new device tree.\n");
308 goto fail_free_new_fdt;
309 }
310
311 runtime_entry_count = 0;
312 priv.runtime_map = runtime_map;
313 priv.runtime_entry_count = &runtime_entry_count;
314 priv.new_fdt_addr = (void *)*new_fdt_addr;
315
316 status = efi_exit_boot_services(sys_table, handle, &map, &priv, exit_boot_func);
317
318 if (status == EFI_SUCCESS) {
319 efi_set_virtual_address_map_t *svam;
320
321 if (novamap())
322 return EFI_SUCCESS;
323
324 /* Install the new virtual address map */
325 svam = sys_table->runtime->set_virtual_address_map;
326 status = svam(runtime_entry_count * desc_size, desc_size,
327 desc_ver, runtime_map);
328
329 /*
330 * We are beyond the point of no return here, so if the call to
331 * SetVirtualAddressMap() failed, we need to signal that to the
332 * incoming kernel but proceed normally otherwise.
333 */
334 if (status != EFI_SUCCESS) {
335 int l;
336
337 /*
338 * Set the virtual address field of all
339 * EFI_MEMORY_RUNTIME entries to 0. This will signal
340 * the incoming kernel that no virtual translation has
341 * been installed.
342 */
343 for (l = 0; l < map_size; l += desc_size) {
344 efi_memory_desc_t *p = (void *)memory_map + l;
345
346 if (p->attribute & EFI_MEMORY_RUNTIME)
347 p->virt_addr = 0;
348 }
349 }
350 return EFI_SUCCESS;
351 }
352
353 pr_efi_err(sys_table, "Exit boot services failed.\n");
354
355 fail_free_new_fdt:
356 efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
357
358 fail:
359 sys_table->boottime->free_pool(runtime_map);
360
361 return EFI_LOAD_ERROR;
362 }
363
get_fdt(efi_system_table_t * sys_table,unsigned long * fdt_size)364 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
365 {
366 void *fdt;
367
368 fdt = get_efi_config_table(sys_table, DEVICE_TREE_GUID);
369
370 if (!fdt)
371 return NULL;
372
373 if (fdt_check_header(fdt) != 0) {
374 pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
375 return NULL;
376 }
377 *fdt_size = fdt_totalsize(fdt);
378 return fdt;
379 }
380