1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7
8 #include <linux/fault-inject.h>
9
10 #include "gem/i915_gem_lmem.h"
11 #include "i915_trace.h"
12 #include "intel_gt.h"
13 #include "intel_gtt.h"
14
alloc_pt_lmem(struct i915_address_space * vm,int sz)15 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
16 {
17 struct drm_i915_gem_object *obj;
18
19 /*
20 * To avoid severe over-allocation when dealing with min_page_size
21 * restrictions, we override that behaviour here by allowing an object
22 * size and page layout which can be smaller. In practice this should be
23 * totally fine, since GTT paging structures are not typically inserted
24 * into the GTT.
25 *
26 * Note that we also hit this path for the scratch page, and for this
27 * case it might need to be 64K, but that should work fine here since we
28 * used the passed in size for the page size, which should ensure it
29 * also has the same alignment.
30 */
31 obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, 0);
32 /*
33 * Ensure all paging structures for this vm share the same dma-resv
34 * object underneath, with the idea that one object_lock() will lock
35 * them all at once.
36 */
37 if (!IS_ERR(obj)) {
38 obj->base.resv = i915_vm_resv_get(vm);
39 obj->shares_resv_from = vm;
40 }
41
42 return obj;
43 }
44
alloc_pt_dma(struct i915_address_space * vm,int sz)45 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
46 {
47 struct drm_i915_gem_object *obj;
48
49 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
50 i915_gem_shrink_all(vm->i915);
51
52 obj = i915_gem_object_create_internal(vm->i915, sz);
53 /*
54 * Ensure all paging structures for this vm share the same dma-resv
55 * object underneath, with the idea that one object_lock() will lock
56 * them all at once.
57 */
58 if (!IS_ERR(obj)) {
59 obj->base.resv = i915_vm_resv_get(vm);
60 obj->shares_resv_from = vm;
61 }
62
63 return obj;
64 }
65
map_pt_dma(struct i915_address_space * vm,struct drm_i915_gem_object * obj)66 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
67 {
68 enum i915_map_type type;
69 void *vaddr;
70
71 type = i915_coherent_map_type(vm->i915, obj, true);
72 vaddr = i915_gem_object_pin_map_unlocked(obj, type);
73 if (IS_ERR(vaddr))
74 return PTR_ERR(vaddr);
75
76 i915_gem_object_make_unshrinkable(obj);
77 return 0;
78 }
79
map_pt_dma_locked(struct i915_address_space * vm,struct drm_i915_gem_object * obj)80 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
81 {
82 enum i915_map_type type;
83 void *vaddr;
84
85 type = i915_coherent_map_type(vm->i915, obj, true);
86 vaddr = i915_gem_object_pin_map(obj, type);
87 if (IS_ERR(vaddr))
88 return PTR_ERR(vaddr);
89
90 i915_gem_object_make_unshrinkable(obj);
91 return 0;
92 }
93
__i915_vm_close(struct i915_address_space * vm)94 void __i915_vm_close(struct i915_address_space *vm)
95 {
96 struct i915_vma *vma, *vn;
97
98 if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
99 return;
100
101 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
102 struct drm_i915_gem_object *obj = vma->obj;
103
104 /* Keep the obj (and hence the vma) alive as _we_ destroy it */
105 if (!kref_get_unless_zero(&obj->base.refcount))
106 continue;
107
108 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
109 WARN_ON(__i915_vma_unbind(vma));
110 __i915_vma_put(vma);
111
112 i915_gem_object_put(obj);
113 }
114 GEM_BUG_ON(!list_empty(&vm->bound_list));
115
116 mutex_unlock(&vm->mutex);
117 }
118
119 /* lock the vm into the current ww, if we lock one, we lock all */
i915_vm_lock_objects(struct i915_address_space * vm,struct i915_gem_ww_ctx * ww)120 int i915_vm_lock_objects(struct i915_address_space *vm,
121 struct i915_gem_ww_ctx *ww)
122 {
123 if (vm->scratch[0]->base.resv == &vm->_resv) {
124 return i915_gem_object_lock(vm->scratch[0], ww);
125 } else {
126 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
127
128 /* We borrowed the scratch page from ggtt, take the top level object */
129 return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
130 }
131 }
132
i915_address_space_fini(struct i915_address_space * vm)133 void i915_address_space_fini(struct i915_address_space *vm)
134 {
135 drm_mm_takedown(&vm->mm);
136 mutex_destroy(&vm->mutex);
137 }
138
139 /**
140 * i915_vm_resv_release - Final struct i915_address_space destructor
141 * @kref: Pointer to the &i915_address_space.resv_ref member.
142 *
143 * This function is called when the last lock sharer no longer shares the
144 * &i915_address_space._resv lock.
145 */
i915_vm_resv_release(struct kref * kref)146 void i915_vm_resv_release(struct kref *kref)
147 {
148 struct i915_address_space *vm =
149 container_of(kref, typeof(*vm), resv_ref);
150
151 dma_resv_fini(&vm->_resv);
152 kfree(vm);
153 }
154
__i915_vm_release(struct work_struct * work)155 static void __i915_vm_release(struct work_struct *work)
156 {
157 struct i915_address_space *vm =
158 container_of(work, struct i915_address_space, rcu.work);
159
160 vm->cleanup(vm);
161 i915_address_space_fini(vm);
162
163 i915_vm_resv_put(vm);
164 }
165
i915_vm_release(struct kref * kref)166 void i915_vm_release(struct kref *kref)
167 {
168 struct i915_address_space *vm =
169 container_of(kref, struct i915_address_space, ref);
170
171 GEM_BUG_ON(i915_is_ggtt(vm));
172 trace_i915_ppgtt_release(vm);
173
174 queue_rcu_work(vm->i915->wq, &vm->rcu);
175 }
176
i915_address_space_init(struct i915_address_space * vm,int subclass)177 void i915_address_space_init(struct i915_address_space *vm, int subclass)
178 {
179 kref_init(&vm->ref);
180
181 /*
182 * Special case for GGTT that has already done an early
183 * kref_init here.
184 */
185 if (!kref_read(&vm->resv_ref))
186 kref_init(&vm->resv_ref);
187
188 INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
189 atomic_set(&vm->open, 1);
190
191 /*
192 * The vm->mutex must be reclaim safe (for use in the shrinker).
193 * Do a dummy acquire now under fs_reclaim so that any allocation
194 * attempt holding the lock is immediately reported by lockdep.
195 */
196 mutex_init(&vm->mutex);
197 lockdep_set_subclass(&vm->mutex, subclass);
198
199 if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
200 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
201 } else {
202 /*
203 * CHV + BXT VTD workaround use stop_machine(),
204 * which is allowed to allocate memory. This means &vm->mutex
205 * is the outer lock, and in theory we can allocate memory inside
206 * it through stop_machine().
207 *
208 * Add the annotation for this, we use trylock in shrinker.
209 */
210 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
211 might_alloc(GFP_KERNEL);
212 mutex_release(&vm->mutex.dep_map, _THIS_IP_);
213 }
214 dma_resv_init(&vm->_resv);
215
216 GEM_BUG_ON(!vm->total);
217 drm_mm_init(&vm->mm, 0, vm->total);
218 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
219
220 INIT_LIST_HEAD(&vm->bound_list);
221 }
222
clear_pages(struct i915_vma * vma)223 void clear_pages(struct i915_vma *vma)
224 {
225 GEM_BUG_ON(!vma->pages);
226
227 if (vma->pages != vma->obj->mm.pages) {
228 sg_free_table(vma->pages);
229 kfree(vma->pages);
230 }
231 vma->pages = NULL;
232
233 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
234 }
235
__px_vaddr(struct drm_i915_gem_object * p)236 void *__px_vaddr(struct drm_i915_gem_object *p)
237 {
238 enum i915_map_type type;
239
240 GEM_BUG_ON(!i915_gem_object_has_pages(p));
241 return page_unpack_bits(p->mm.mapping, &type);
242 }
243
__px_dma(struct drm_i915_gem_object * p)244 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
245 {
246 GEM_BUG_ON(!i915_gem_object_has_pages(p));
247 return sg_dma_address(p->mm.pages->sgl);
248 }
249
__px_page(struct drm_i915_gem_object * p)250 struct page *__px_page(struct drm_i915_gem_object *p)
251 {
252 GEM_BUG_ON(!i915_gem_object_has_pages(p));
253 return sg_page(p->mm.pages->sgl);
254 }
255
256 void
fill_page_dma(struct drm_i915_gem_object * p,const u64 val,unsigned int count)257 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
258 {
259 void *vaddr = __px_vaddr(p);
260
261 memset64(vaddr, val, count);
262 clflush_cache_range(vaddr, PAGE_SIZE);
263 }
264
poison_scratch_page(struct drm_i915_gem_object * scratch)265 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
266 {
267 void *vaddr = __px_vaddr(scratch);
268 u8 val;
269
270 val = 0;
271 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
272 val = POISON_FREE;
273
274 memset(vaddr, val, scratch->base.size);
275 }
276
setup_scratch_page(struct i915_address_space * vm)277 int setup_scratch_page(struct i915_address_space *vm)
278 {
279 unsigned long size;
280
281 /*
282 * In order to utilize 64K pages for an object with a size < 2M, we will
283 * need to support a 64K scratch page, given that every 16th entry for a
284 * page-table operating in 64K mode must point to a properly aligned 64K
285 * region, including any PTEs which happen to point to scratch.
286 *
287 * This is only relevant for the 48b PPGTT where we support
288 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
289 * scratch (read-only) between all vm, we create one 64k scratch page
290 * for all.
291 */
292 size = I915_GTT_PAGE_SIZE_4K;
293 if (i915_vm_is_4lvl(vm) &&
294 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
295 size = I915_GTT_PAGE_SIZE_64K;
296
297 do {
298 struct drm_i915_gem_object *obj;
299
300 obj = vm->alloc_pt_dma(vm, size);
301 if (IS_ERR(obj))
302 goto skip;
303
304 if (map_pt_dma(vm, obj))
305 goto skip_obj;
306
307 /* We need a single contiguous page for our scratch */
308 if (obj->mm.page_sizes.sg < size)
309 goto skip_obj;
310
311 /* And it needs to be correspondingly aligned */
312 if (__px_dma(obj) & (size - 1))
313 goto skip_obj;
314
315 /*
316 * Use a non-zero scratch page for debugging.
317 *
318 * We want a value that should be reasonably obvious
319 * to spot in the error state, while also causing a GPU hang
320 * if executed. We prefer using a clear page in production, so
321 * should it ever be accidentally used, the effect should be
322 * fairly benign.
323 */
324 poison_scratch_page(obj);
325
326 vm->scratch[0] = obj;
327 vm->scratch_order = get_order(size);
328 return 0;
329
330 skip_obj:
331 i915_gem_object_put(obj);
332 skip:
333 if (size == I915_GTT_PAGE_SIZE_4K)
334 return -ENOMEM;
335
336 size = I915_GTT_PAGE_SIZE_4K;
337 } while (1);
338 }
339
free_scratch(struct i915_address_space * vm)340 void free_scratch(struct i915_address_space *vm)
341 {
342 int i;
343
344 for (i = 0; i <= vm->top; i++)
345 i915_gem_object_put(vm->scratch[i]);
346 }
347
gtt_write_workarounds(struct intel_gt * gt)348 void gtt_write_workarounds(struct intel_gt *gt)
349 {
350 struct drm_i915_private *i915 = gt->i915;
351 struct intel_uncore *uncore = gt->uncore;
352
353 /*
354 * This function is for gtt related workarounds. This function is
355 * called on driver load and after a GPU reset, so you can place
356 * workarounds here even if they get overwritten by GPU reset.
357 */
358 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
359 if (IS_BROADWELL(i915))
360 intel_uncore_write(uncore,
361 GEN8_L3_LRA_1_GPGPU,
362 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
363 else if (IS_CHERRYVIEW(i915))
364 intel_uncore_write(uncore,
365 GEN8_L3_LRA_1_GPGPU,
366 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
367 else if (IS_GEN9_LP(i915))
368 intel_uncore_write(uncore,
369 GEN8_L3_LRA_1_GPGPU,
370 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
371 else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
372 intel_uncore_write(uncore,
373 GEN8_L3_LRA_1_GPGPU,
374 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
375
376 /*
377 * To support 64K PTEs we need to first enable the use of the
378 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
379 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
380 * shouldn't be needed after GEN10.
381 *
382 * 64K pages were first introduced from BDW+, although technically they
383 * only *work* from gen9+. For pre-BDW we instead have the option for
384 * 32K pages, but we don't currently have any support for it in our
385 * driver.
386 */
387 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
388 GRAPHICS_VER(i915) <= 10)
389 intel_uncore_rmw(uncore,
390 GEN8_GAMW_ECO_DEV_RW_IA,
391 0,
392 GAMW_ECO_ENABLE_64K_IPS_FIELD);
393
394 if (IS_GRAPHICS_VER(i915, 8, 11)) {
395 bool can_use_gtt_cache = true;
396
397 /*
398 * According to the BSpec if we use 2M/1G pages then we also
399 * need to disable the GTT cache. At least on BDW we can see
400 * visual corruption when using 2M pages, and not disabling the
401 * GTT cache.
402 */
403 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
404 can_use_gtt_cache = false;
405
406 /* WaGttCachingOffByDefault */
407 intel_uncore_write(uncore,
408 HSW_GTT_CACHE_EN,
409 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
410 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
411 intel_uncore_read(uncore,
412 HSW_GTT_CACHE_EN) == 0);
413 }
414 }
415
tgl_setup_private_ppat(struct intel_uncore * uncore)416 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
417 {
418 /* TGL doesn't support LLC or AGE settings */
419 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
420 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
421 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
422 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
423 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
424 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
425 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
426 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
427 }
428
icl_setup_private_ppat(struct intel_uncore * uncore)429 static void icl_setup_private_ppat(struct intel_uncore *uncore)
430 {
431 intel_uncore_write(uncore,
432 GEN10_PAT_INDEX(0),
433 GEN8_PPAT_WB | GEN8_PPAT_LLC);
434 intel_uncore_write(uncore,
435 GEN10_PAT_INDEX(1),
436 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
437 intel_uncore_write(uncore,
438 GEN10_PAT_INDEX(2),
439 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
440 intel_uncore_write(uncore,
441 GEN10_PAT_INDEX(3),
442 GEN8_PPAT_UC);
443 intel_uncore_write(uncore,
444 GEN10_PAT_INDEX(4),
445 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
446 intel_uncore_write(uncore,
447 GEN10_PAT_INDEX(5),
448 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
449 intel_uncore_write(uncore,
450 GEN10_PAT_INDEX(6),
451 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
452 intel_uncore_write(uncore,
453 GEN10_PAT_INDEX(7),
454 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
455 }
456
457 /*
458 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
459 * bits. When using advanced contexts each context stores its own PAT, but
460 * writing this data shouldn't be harmful even in those cases.
461 */
bdw_setup_private_ppat(struct intel_uncore * uncore)462 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
463 {
464 struct drm_i915_private *i915 = uncore->i915;
465 u64 pat;
466
467 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
468 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
469 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
470 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
471 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
472 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
473 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
474
475 /* for scanout with eLLC */
476 if (GRAPHICS_VER(i915) >= 9)
477 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
478 else
479 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
480
481 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
482 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
483 }
484
chv_setup_private_ppat(struct intel_uncore * uncore)485 static void chv_setup_private_ppat(struct intel_uncore *uncore)
486 {
487 u64 pat;
488
489 /*
490 * Map WB on BDW to snooped on CHV.
491 *
492 * Only the snoop bit has meaning for CHV, the rest is
493 * ignored.
494 *
495 * The hardware will never snoop for certain types of accesses:
496 * - CPU GTT (GMADR->GGTT->no snoop->memory)
497 * - PPGTT page tables
498 * - some other special cycles
499 *
500 * As with BDW, we also need to consider the following for GT accesses:
501 * "For GGTT, there is NO pat_sel[2:0] from the entry,
502 * so RTL will always use the value corresponding to
503 * pat_sel = 000".
504 * Which means we must set the snoop bit in PAT entry 0
505 * in order to keep the global status page working.
506 */
507
508 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
509 GEN8_PPAT(1, 0) |
510 GEN8_PPAT(2, 0) |
511 GEN8_PPAT(3, 0) |
512 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
513 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
514 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
515 GEN8_PPAT(7, CHV_PPAT_SNOOP);
516
517 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
518 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
519 }
520
setup_private_pat(struct intel_uncore * uncore)521 void setup_private_pat(struct intel_uncore *uncore)
522 {
523 struct drm_i915_private *i915 = uncore->i915;
524
525 GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
526
527 if (GRAPHICS_VER(i915) >= 12)
528 tgl_setup_private_ppat(uncore);
529 else if (GRAPHICS_VER(i915) >= 11)
530 icl_setup_private_ppat(uncore);
531 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
532 chv_setup_private_ppat(uncore);
533 else
534 bdw_setup_private_ppat(uncore);
535 }
536
537 struct i915_vma *
__vm_create_scratch_for_read(struct i915_address_space * vm,unsigned long size)538 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
539 {
540 struct drm_i915_gem_object *obj;
541 struct i915_vma *vma;
542
543 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
544 if (IS_ERR(obj))
545 return ERR_CAST(obj);
546
547 i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
548
549 vma = i915_vma_instance(obj, vm, NULL);
550 if (IS_ERR(vma)) {
551 i915_gem_object_put(obj);
552 return vma;
553 }
554
555 return vma;
556 }
557
558 struct i915_vma *
__vm_create_scratch_for_read_pinned(struct i915_address_space * vm,unsigned long size)559 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
560 {
561 struct i915_vma *vma;
562 int err;
563
564 vma = __vm_create_scratch_for_read(vm, size);
565 if (IS_ERR(vma))
566 return vma;
567
568 err = i915_vma_pin(vma, 0, 0,
569 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
570 if (err) {
571 i915_vma_put(vma);
572 return ERR_PTR(err);
573 }
574
575 return vma;
576 }
577
578 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
579 #include "selftests/mock_gtt.c"
580 #endif
581